network - Fix issue with recent unix domain socket gc fixes
[dragonfly.git] / usr.bin / top / m_dragonfly.c
blobbe4303d8dc693984432ac432738d9ed64bad4373
1 /*
2 * top - a top users display for Unix
4 * SYNOPSIS: For DragonFly 2.x and later
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
12 * This is the machine-dependent module for DragonFly 2.5.1
13 * Should work for:
14 * DragonFly 2.x and above
16 * LIBS: -lkvm
18 * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19 * This module has been put together from different sources and is based on the
20 * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
22 * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23 * $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $
26 #include <sys/user.h>
27 #include <sys/types.h>
28 #include <sys/time.h>
29 #include <sys/signal.h>
30 #include <sys/param.h>
32 #include "os.h"
33 #include <err.h>
34 #include <kvm.h>
35 #include <stdio.h>
36 #include <unistd.h>
37 #include <math.h>
38 #include <pwd.h>
39 #include <sys/errno.h>
40 #include <sys/sysctl.h>
41 #include <sys/file.h>
42 #include <sys/vmmeter.h>
43 #include <sys/resource.h>
44 #include <sys/rtprio.h>
46 /* Swap */
47 #include <stdlib.h>
48 #include <stdio.h>
49 #include <sys/conf.h>
51 #include <osreldate.h> /* for changes in kernel structures */
53 #include <sys/kinfo.h>
54 #include <kinfo.h>
55 #include "top.h"
56 #include "display.h"
57 #include "machine.h"
58 #include "screen.h"
59 #include "utils.h"
61 int swapmode(int *retavail, int *retfree);
62 static int smpmode;
63 static int namelength;
64 static int cmdlength;
65 static int show_fullcmd;
67 int n_cpus = 0;
70 * needs to be a global symbol, so wrapper can be modified accordingly.
72 static int show_threads = 0;
74 /* get_process_info passes back a handle. This is what it looks like: */
76 struct handle {
77 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
78 int remaining; /* number of pointers remaining */
81 /* declarations for load_avg */
82 #include "loadavg.h"
84 #define PP(pp, field) ((pp)->kp_ ## field)
85 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
86 #define VP(pp, field) ((pp)->kp_vm_ ## field)
88 /* define what weighted cpu is. */
89 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
90 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
92 /* what we consider to be process size: */
93 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
96 * These definitions control the format of the per-process area
99 static char smp_header[] =
100 " PID %-*.*s NICE SIZE PRES STATE C TIME CTIME CPU COMMAND";
102 #define smp_Proc_format \
103 "%5d %-*.*s %3d%7s %6s %7.7s %1x %7s %7s %5.2f%% %.*s"
105 static char up_header[] =
106 " PID %-*.*s NICE SIZE PRES STATE TIME CTIME CPU COMMAND";
108 #define up_Proc_format \
109 "%5d %-*.*s %3d%7s %6s %7.7s%.0d %7s %7s %5.2f%% %.*s"
112 /* process state names for the "STATE" column of the display */
114 * the extra nulls in the string "run" are for adding a slash and the
115 * processor number when needed
118 const char *state_abbrev[] = {
119 "", "RUN\0\0\0", "STOP", "SLEEP",
123 static kvm_t *kd;
125 /* values that we stash away in _init and use in later routines */
127 static double logcpu;
129 static long lastpid;
130 static int ccpu;
132 /* these are for calculating cpu state percentages */
134 static struct kinfo_cputime *cp_time, *cp_old;
136 /* these are for detailing the process states */
138 int process_states[6];
139 char *procstatenames[] = {
140 " running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
141 NULL
144 /* these are for detailing the cpu states */
145 #define CPU_STATES 5
146 int *cpu_states;
147 char *cpustatenames[CPU_STATES + 1] = {
148 "user", "nice", "system", "interrupt", "idle", NULL
151 /* these are for detailing the memory statistics */
153 long memory_stats[7];
154 char *memorynames[] = {
155 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
156 NULL
159 long swap_stats[7];
160 char *swapnames[] = {
161 /* 0 1 2 3 4 5 */
162 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
163 NULL
167 /* these are for keeping track of the proc array */
169 static int nproc;
170 static int onproc = -1;
171 static int pref_len;
172 static struct kinfo_proc *pbase;
173 static struct kinfo_proc **pref;
175 /* these are for getting the memory statistics */
177 static int pageshift; /* log base 2 of the pagesize */
179 /* define pagetok in terms of pageshift */
181 #define pagetok(size) ((size) << pageshift)
183 /* sorting orders. first is default */
184 char *ordernames[] = {
185 "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime", "pres", NULL
188 /* compare routines */
189 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
190 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
191 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
192 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
193 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
194 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
195 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
196 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
197 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
199 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
200 proc_compare,
201 compare_size,
202 compare_res,
203 compare_time,
204 compare_prio,
205 compare_thr,
206 compare_pid,
207 compare_ctime,
208 compare_pres,
209 NULL
212 static void
213 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
214 struct kinfo_cputime *old)
216 struct kinfo_cputime diffs;
217 uint64_t total_change, half_total;
219 /* initialization */
220 total_change = 0;
222 diffs.cp_user = new->cp_user - old->cp_user;
223 diffs.cp_nice = new->cp_nice - old->cp_nice;
224 diffs.cp_sys = new->cp_sys - old->cp_sys;
225 diffs.cp_intr = new->cp_intr - old->cp_intr;
226 diffs.cp_idle = new->cp_idle - old->cp_idle;
227 total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
228 diffs.cp_intr + diffs.cp_idle;
229 old->cp_user = new->cp_user;
230 old->cp_nice = new->cp_nice;
231 old->cp_sys = new->cp_sys;
232 old->cp_intr = new->cp_intr;
233 old->cp_idle = new->cp_idle;
235 /* avoid divide by zero potential */
236 if (total_change == 0)
237 total_change = 1;
239 /* calculate percentages based on overall change, rounding up */
240 half_total = total_change >> 1;
242 out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
243 out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
244 out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
245 out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
246 out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
250 machine_init(struct statics *statics)
252 int pagesize;
253 size_t modelen;
254 struct passwd *pw;
255 struct timeval boottime;
257 if (n_cpus < 1) {
258 if (kinfo_get_cpus(&n_cpus))
259 err(1, "kinfo_get_cpus failed");
261 /* get boot time */
262 modelen = sizeof(boottime);
263 if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
264 /* we have no boottime to report */
265 boottime.tv_sec = -1;
267 modelen = sizeof(smpmode);
268 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
269 sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
270 modelen != sizeof(smpmode))
271 smpmode = 0;
273 while ((pw = getpwent()) != NULL) {
274 if ((int)strlen(pw->pw_name) > namelength)
275 namelength = strlen(pw->pw_name);
277 if (namelength < 8)
278 namelength = 8;
279 if (smpmode && namelength > 13)
280 namelength = 13;
281 else if (namelength > 15)
282 namelength = 15;
284 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
285 return -1;
287 if (kinfo_get_sched_ccpu(&ccpu)) {
288 fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
289 return (-1);
291 /* this is used in calculating WCPU -- calculate it ahead of time */
292 logcpu = log(loaddouble(ccpu));
294 pbase = NULL;
295 pref = NULL;
296 nproc = 0;
297 onproc = -1;
299 * get the page size with "getpagesize" and calculate pageshift from
300 * it
302 pagesize = getpagesize();
303 pageshift = 0;
304 while (pagesize > 1) {
305 pageshift++;
306 pagesize >>= 1;
309 /* we only need the amount of log(2)1024 for our conversion */
310 pageshift -= LOG1024;
312 /* fill in the statics information */
313 statics->procstate_names = procstatenames;
314 statics->cpustate_names = cpustatenames;
315 statics->memory_names = memorynames;
316 statics->boottime = boottime.tv_sec;
317 statics->swap_names = swapnames;
318 statics->order_names = ordernames;
319 /* we need kvm descriptor in order to show full commands */
320 statics->flags.fullcmds = kd != NULL;
322 /* all done! */
323 return (0);
326 char *
327 format_header(char *uname_field)
329 static char Header[128];
331 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
332 namelength, namelength, uname_field);
334 if (screen_width <= 79)
335 cmdlength = 80;
336 else
337 cmdlength = screen_width;
339 cmdlength = cmdlength - strlen(Header) + 6;
341 return Header;
344 static int swappgsin = -1;
345 static int swappgsout = -1;
346 extern struct timeval timeout;
348 void
349 get_system_info(struct system_info *si)
351 size_t len;
352 int cpu;
354 if (cpu_states == NULL) {
355 cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
356 if (cpu_states == NULL)
357 err(1, "malloc");
358 bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
360 if (cp_time == NULL) {
361 cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
362 if (cp_time == NULL)
363 err(1, "cp_time");
364 cp_old = cp_time + n_cpus;
365 len = n_cpus * sizeof(cp_old[0]);
366 bzero(cp_time, len);
367 if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
368 err(1, "kern.cputime");
370 len = n_cpus * sizeof(cp_time[0]);
371 bzero(cp_time, len);
372 if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
373 err(1, "kern.cputime");
375 getloadavg(si->load_avg, 3);
377 lastpid = 0;
379 /* convert cp_time counts to percentages */
380 for (cpu = 0; cpu < n_cpus; ++cpu) {
381 cputime_percentages(cpu_states + cpu * CPU_STATES,
382 &cp_time[cpu], &cp_old[cpu]);
385 /* sum memory & swap statistics */
387 struct vmmeter vmm;
388 struct vmstats vms;
389 size_t vms_size = sizeof(vms);
390 size_t vmm_size = sizeof(vmm);
391 static unsigned int swap_delay = 0;
392 static int swapavail = 0;
393 static int swapfree = 0;
394 static int bufspace = 0;
396 if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
397 err(1, "sysctlbyname: vm.vmstats");
399 if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
400 err(1, "sysctlbyname: vm.vmmeter");
402 if (kinfo_get_vfs_bufspace(&bufspace))
403 err(1, "kinfo_get_vfs_bufspace");
405 /* convert memory stats to Kbytes */
406 memory_stats[0] = pagetok(vms.v_active_count);
407 memory_stats[1] = pagetok(vms.v_inactive_count);
408 memory_stats[2] = pagetok(vms.v_wire_count);
409 memory_stats[3] = pagetok(vms.v_cache_count);
410 memory_stats[4] = bufspace / 1024;
411 memory_stats[5] = pagetok(vms.v_free_count);
412 memory_stats[6] = -1;
414 /* first interval */
415 if (swappgsin < 0) {
416 swap_stats[4] = 0;
417 swap_stats[5] = 0;
419 /* compute differences between old and new swap statistic */
420 else {
421 swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
422 swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
425 swappgsin = vmm.v_swappgsin;
426 swappgsout = vmm.v_swappgsout;
428 /* call CPU heavy swapmode() only for changes */
429 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
430 swap_stats[3] = swapmode(&swapavail, &swapfree);
431 swap_stats[0] = swapavail;
432 swap_stats[1] = swapavail - swapfree;
433 swap_stats[2] = swapfree;
435 swap_delay = 1;
436 swap_stats[6] = -1;
439 /* set arrays and strings */
440 si->cpustates = cpu_states;
441 si->memory = memory_stats;
442 si->swap = swap_stats;
445 if (lastpid > 0) {
446 si->last_pid = lastpid;
447 } else {
448 si->last_pid = -1;
453 static struct handle handle;
455 caddr_t
456 get_process_info(struct system_info *si, struct process_select *sel,
457 int compare_index)
459 int i;
460 int total_procs;
461 int active_procs;
462 struct kinfo_proc **prefp;
463 struct kinfo_proc *pp;
465 /* these are copied out of sel for speed */
466 int show_idle;
467 int show_system;
468 int show_uid;
471 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
472 if (nproc > onproc)
473 pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
474 * (onproc = nproc));
475 if (pref == NULL || pbase == NULL) {
476 (void)fprintf(stderr, "top: Out of memory.\n");
477 quit(23);
479 /* get a pointer to the states summary array */
480 si->procstates = process_states;
482 /* set up flags which define what we are going to select */
483 show_idle = sel->idle;
484 show_system = sel->system;
485 show_uid = sel->uid != -1;
486 show_fullcmd = sel->fullcmd;
488 /* count up process states and get pointers to interesting procs */
489 total_procs = 0;
490 active_procs = 0;
491 memset((char *)process_states, 0, sizeof(process_states));
492 prefp = pref;
493 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
495 * Place pointers to each valid proc structure in pref[].
496 * Process slots that are actually in use have a non-zero
497 * status field. Processes with P_SYSTEM set are system
498 * processes---these get ignored unless show_sysprocs is set.
500 if ((show_threads && (LP(pp, pid) == -1)) ||
501 (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
502 total_procs++;
503 if (LP(pp, stat) == LSRUN)
504 process_states[0]++;
505 process_states[PP(pp, stat)]++;
506 if ((show_threads && (LP(pp, pid) == -1)) ||
507 (show_idle || (LP(pp, pctcpu) != 0) ||
508 (LP(pp, stat) == LSRUN)) &&
509 (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
510 *prefp++ = pp;
511 active_procs++;
516 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
517 (int (*)(const void *, const void *))proc_compares[compare_index]);
519 /* remember active and total counts */
520 si->p_total = total_procs;
521 si->p_active = pref_len = active_procs;
523 /* pass back a handle */
524 handle.next_proc = pref;
525 handle.remaining = active_procs;
526 return ((caddr_t) & handle);
529 char fmt[MAX_COLS]; /* static area where result is built */
531 char *
532 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
534 struct kinfo_proc *pp;
535 long cputime;
536 long ccputime;
537 double pct;
538 struct handle *hp;
539 char status[16];
540 int state;
541 int xnice;
542 char **comm_full;
543 char *comm;
544 char cputime_fmt[10], ccputime_fmt[10];
546 /* find and remember the next proc structure */
547 hp = (struct handle *)xhandle;
548 pp = *(hp->next_proc++);
549 hp->remaining--;
551 /* get the process's command name */
552 if (show_fullcmd) {
553 if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
554 return (fmt);
557 else {
558 comm = PP(pp, comm);
562 * Convert the process's runtime from microseconds to seconds. This
563 * time includes the interrupt time to be in compliance with ps output.
565 cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
566 ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
567 format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
568 format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
570 /* calculate the base for cpu percentages */
571 pct = pctdouble(LP(pp, pctcpu));
573 /* generate "STATE" field */
574 switch (state = LP(pp, stat)) {
575 case LSRUN:
576 if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
577 sprintf(status, "CPU%d", LP(pp, cpuid));
578 else
579 strcpy(status, "RUN");
580 break;
581 case LSSLEEP:
582 if (LP(pp, wmesg) != NULL) {
583 sprintf(status, "%.6s", LP(pp, wmesg));
584 break;
586 /* fall through */
587 default:
589 if (state >= 0 &&
590 (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
591 sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
592 else
593 sprintf(status, "?%5d", state);
594 break;
597 if (PP(pp, stat) == SZOMB)
598 strcpy(status, "ZOMB");
601 * idle time 0 - 31 -> nice value +21 - +52 normal time -> nice
602 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
603 * 0 - 31 -> nice value -53 -
605 switch (LP(pp, rtprio.type)) {
606 case RTP_PRIO_REALTIME:
607 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
608 break;
609 case RTP_PRIO_IDLE:
610 xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
611 break;
612 case RTP_PRIO_THREAD:
613 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
614 break;
615 default:
616 xnice = PP(pp, nice);
617 break;
620 /* format this entry */
621 snprintf(fmt, sizeof(fmt),
622 smpmode ? smp_Proc_format : up_Proc_format,
623 (int)PP(pp, pid),
624 namelength, namelength,
625 get_userid(PP(pp, ruid)),
626 (int)xnice,
627 format_k(PROCSIZE(pp)),
628 format_k(pagetok(VP(pp, prssize))),
629 status,
630 (int)(smpmode ? LP(pp, cpuid) : 0),
631 cputime_fmt,
632 ccputime_fmt,
633 100.0 * pct,
634 cmdlength,
635 show_fullcmd ? *comm_full : comm);
637 /* return the result */
638 return (fmt);
641 /* comparison routines for qsort */
644 * proc_compare - comparison function for "qsort"
645 * Compares the resource consumption of two processes using five
646 * distinct keys. The keys (in descending order of importance) are:
647 * percent cpu, cpu ticks, state, resident set size, total virtual
648 * memory usage. The process states are ordered as follows (from least
649 * to most important): WAIT, zombie, sleep, stop, start, run. The
650 * array declaration below maps a process state index into a number
651 * that reflects this ordering.
654 static unsigned char sorted_state[] =
656 0, /* not used */
657 3, /* sleep */
658 1, /* ABANDONED (WAIT) */
659 6, /* run */
660 5, /* start */
661 2, /* zombie */
662 4 /* stop */
666 #define ORDERKEY_PCTCPU \
667 if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
668 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
670 #define CPTICKS(p) (LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
672 #define ORDERKEY_CPTICKS \
673 if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
674 CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
676 #define CTIME(p) (((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
677 PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
679 #define ORDERKEY_CTIME \
680 if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
681 CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
683 #define ORDERKEY_STATE \
684 if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
685 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
687 #define ORDERKEY_PRIO \
688 if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
690 #define ORDERKEY_KTHREADS \
691 if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
693 #define ORDERKEY_KTHREADS_PRIO \
694 if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
696 #define ORDERKEY_RSSIZE \
697 if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
699 #define ORDERKEY_MEM \
700 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
702 #define ORDERKEY_PID \
703 if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
705 #define ORDERKEY_PRSSIZE \
706 if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
708 /* compare_cpu - the comparison function for sorting by cpu percentage */
711 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
713 struct kinfo_proc *p1;
714 struct kinfo_proc *p2;
715 int result;
716 pctcpu lresult;
718 /* remove one level of indirection */
719 p1 = *(struct kinfo_proc **) pp1;
720 p2 = *(struct kinfo_proc **) pp2;
722 ORDERKEY_PCTCPU
723 ORDERKEY_CPTICKS
724 ORDERKEY_STATE
725 ORDERKEY_PRIO
726 ORDERKEY_RSSIZE
727 ORDERKEY_MEM
730 return (result);
733 /* compare_size - the comparison function for sorting by total memory usage */
736 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
738 struct kinfo_proc *p1;
739 struct kinfo_proc *p2;
740 int result;
741 pctcpu lresult;
743 /* remove one level of indirection */
744 p1 = *(struct kinfo_proc **) pp1;
745 p2 = *(struct kinfo_proc **) pp2;
747 ORDERKEY_MEM
748 ORDERKEY_RSSIZE
749 ORDERKEY_PCTCPU
750 ORDERKEY_CPTICKS
751 ORDERKEY_STATE
752 ORDERKEY_PRIO
755 return (result);
758 /* compare_res - the comparison function for sorting by resident set size */
761 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
763 struct kinfo_proc *p1;
764 struct kinfo_proc *p2;
765 int result;
766 pctcpu lresult;
768 /* remove one level of indirection */
769 p1 = *(struct kinfo_proc **) pp1;
770 p2 = *(struct kinfo_proc **) pp2;
772 ORDERKEY_RSSIZE
773 ORDERKEY_MEM
774 ORDERKEY_PCTCPU
775 ORDERKEY_CPTICKS
776 ORDERKEY_STATE
777 ORDERKEY_PRIO
780 return (result);
783 /* compare_pres - the comparison function for sorting by proportional resident set size */
786 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
788 struct kinfo_proc *p1;
789 struct kinfo_proc *p2;
790 int result;
791 pctcpu lresult;
793 /* remove one level of indirection */
794 p1 = *(struct kinfo_proc **) pp1;
795 p2 = *(struct kinfo_proc **) pp2;
797 ORDERKEY_PRSSIZE
798 ORDERKEY_RSSIZE
799 ORDERKEY_MEM
800 ORDERKEY_PCTCPU
801 ORDERKEY_CPTICKS
802 ORDERKEY_STATE
803 ORDERKEY_PRIO
806 return (result);
809 /* compare_time - the comparison function for sorting by total cpu time */
812 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
814 struct kinfo_proc *p1;
815 struct kinfo_proc *p2;
816 int result;
817 pctcpu lresult;
819 /* remove one level of indirection */
820 p1 = *(struct kinfo_proc **) pp1;
821 p2 = *(struct kinfo_proc **) pp2;
823 ORDERKEY_CPTICKS
824 ORDERKEY_PCTCPU
825 ORDERKEY_KTHREADS
826 ORDERKEY_KTHREADS_PRIO
827 ORDERKEY_STATE
828 ORDERKEY_PRIO
829 ORDERKEY_RSSIZE
830 ORDERKEY_MEM
833 return (result);
837 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
839 struct kinfo_proc *p1;
840 struct kinfo_proc *p2;
841 int result;
842 pctcpu lresult;
844 /* remove one level of indirection */
845 p1 = *(struct kinfo_proc **) pp1;
846 p2 = *(struct kinfo_proc **) pp2;
848 ORDERKEY_CTIME
849 ORDERKEY_PCTCPU
850 ORDERKEY_KTHREADS
851 ORDERKEY_KTHREADS_PRIO
852 ORDERKEY_STATE
853 ORDERKEY_PRIO
854 ORDERKEY_RSSIZE
855 ORDERKEY_MEM
858 return (result);
861 /* compare_prio - the comparison function for sorting by cpu percentage */
864 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
866 struct kinfo_proc *p1;
867 struct kinfo_proc *p2;
868 int result;
869 pctcpu lresult;
871 /* remove one level of indirection */
872 p1 = *(struct kinfo_proc **) pp1;
873 p2 = *(struct kinfo_proc **) pp2;
875 ORDERKEY_KTHREADS
876 ORDERKEY_KTHREADS_PRIO
877 ORDERKEY_PRIO
878 ORDERKEY_CPTICKS
879 ORDERKEY_PCTCPU
880 ORDERKEY_STATE
881 ORDERKEY_RSSIZE
882 ORDERKEY_MEM
885 return (result);
889 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
891 struct kinfo_proc *p1;
892 struct kinfo_proc *p2;
893 int result;
894 pctcpu lresult;
896 /* remove one level of indirection */
897 p1 = *(struct kinfo_proc **)pp1;
898 p2 = *(struct kinfo_proc **)pp2;
900 ORDERKEY_KTHREADS
901 ORDERKEY_KTHREADS_PRIO
902 ORDERKEY_CPTICKS
903 ORDERKEY_PCTCPU
904 ORDERKEY_STATE
905 ORDERKEY_RSSIZE
906 ORDERKEY_MEM
909 return (result);
912 /* compare_pid - the comparison function for sorting by process id */
915 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
917 struct kinfo_proc *p1;
918 struct kinfo_proc *p2;
919 int result;
921 /* remove one level of indirection */
922 p1 = *(struct kinfo_proc **) pp1;
923 p2 = *(struct kinfo_proc **) pp2;
925 ORDERKEY_PID
928 return(result);
932 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
933 * the process does not exist.
934 * It is EXTREMLY IMPORTANT that this function work correctly.
935 * If top runs setuid root (as in SVR4), then this function
936 * is the only thing that stands in the way of a serious
937 * security problem. It validates requests for the "kill"
938 * and "renice" commands.
942 proc_owner(int pid)
944 int xcnt;
945 struct kinfo_proc **prefp;
946 struct kinfo_proc *pp;
948 prefp = pref;
949 xcnt = pref_len;
950 while (--xcnt >= 0) {
951 pp = *prefp++;
952 if (PP(pp, pid) == (pid_t) pid) {
953 return ((int)PP(pp, ruid));
956 return (-1);
961 * swapmode is based on a program called swapinfo written
962 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
965 swapmode(int *retavail, int *retfree)
967 int n;
968 int pagesize = getpagesize();
969 struct kvm_swap swapary[1];
971 *retavail = 0;
972 *retfree = 0;
974 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
976 n = kvm_getswapinfo(kd, swapary, 1, 0);
977 if (n < 0 || swapary[0].ksw_total == 0)
978 return (0);
980 *retavail = CONVERT(swapary[0].ksw_total);
981 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
983 n = (int)((double)swapary[0].ksw_used * 100.0 /
984 (double)swapary[0].ksw_total);
985 return (n);