kernel: Fix compilation
[dragonfly.git] / sys / kern / lwkt_ipiq.c
blobfd2eb6db5f5e32829ebe3729e8ab5be6da5ccaa3
1 /*
2 * Copyright (c) 2003-2016 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * This module implements IPI message queueing and the MI portion of IPI
37 * message processing.
40 #include "opt_ddb.h"
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/thread2.h>
49 #include <sys/sysctl.h>
50 #include <sys/ktr.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_zone.h>
65 #include <machine/stdarg.h>
66 #include <machine/smp.h>
67 #include <machine/clock.h>
68 #include <machine/atomic.h>
70 #ifdef _KERNEL_VIRTUAL
71 #include <pthread.h>
72 #endif
74 struct ipiq_stats {
75 int64_t ipiq_count; /* total calls to lwkt_send_ipiq*() */
76 int64_t ipiq_fifofull; /* number of fifo full conditions detected */
77 int64_t ipiq_avoided; /* interlock with target avoids cpu ipi */
78 int64_t ipiq_passive; /* passive IPI messages */
79 int64_t ipiq_cscount; /* number of cpu synchronizations */
80 } __cachealign;
82 static struct ipiq_stats ipiq_stats_percpu[MAXCPU];
83 #define ipiq_stat(gd) ipiq_stats_percpu[(gd)->gd_cpuid]
85 static int ipiq_debug; /* set to 1 for debug */
86 #ifdef PANIC_DEBUG
87 static int panic_ipiq_cpu = -1;
88 static int panic_ipiq_count = 100;
89 #endif
91 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_debug, CTLFLAG_RW, &ipiq_debug, 0,
92 "");
93 #ifdef PANIC_DEBUG
94 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
95 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
96 #endif
98 #define IPIQ_STRING "func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
99 #define IPIQ_ARGS void *func, void *arg1, int arg2, int scpu, int dcpu
101 #if !defined(KTR_IPIQ)
102 #define KTR_IPIQ KTR_ALL
103 #endif
104 KTR_INFO_MASTER(ipiq);
105 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARGS);
106 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARGS);
107 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARGS);
108 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08lx", unsigned long mask);
109 KTR_INFO(KTR_IPIQ, ipiq, sync_end, 6, "cpumask=%08lx", unsigned long mask);
110 KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARGS);
111 KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARGS);
112 KTR_INFO(KTR_IPIQ, ipiq, sync_quick, 9, "cpumask=%08lx", unsigned long mask);
114 #define logipiq(name, func, arg1, arg2, sgd, dgd) \
115 KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
116 #define logipiq2(name, arg) \
117 KTR_LOG(ipiq_ ## name, arg)
119 static void lwkt_process_ipiq_nested(void);
120 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
121 struct intrframe *frame, int limit);
122 static void lwkt_cpusync_remote1(lwkt_cpusync_t cs);
123 static void lwkt_cpusync_remote2(lwkt_cpusync_t cs);
125 #define IPIQ_SYSCTL(name) \
126 static int \
127 sysctl_##name(SYSCTL_HANDLER_ARGS) \
129 int64_t val = 0; \
130 int cpu, error; \
132 for (cpu = 0; cpu < ncpus; ++cpu) \
133 val += ipiq_stats_percpu[cpu].name; \
135 error = sysctl_handle_quad(oidp, &val, 0, req); \
136 if (error || req->newptr == NULL) \
137 return error; \
139 for (cpu = 0; cpu < ncpus; ++cpu) \
140 ipiq_stats_percpu[cpu].name = val; \
142 return 0; \
145 IPIQ_SYSCTL(ipiq_count);
146 IPIQ_SYSCTL(ipiq_fifofull);
147 IPIQ_SYSCTL(ipiq_avoided);
148 IPIQ_SYSCTL(ipiq_passive);
149 IPIQ_SYSCTL(ipiq_cscount);
151 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_count, (CTLTYPE_QUAD | CTLFLAG_RW),
152 0, 0, sysctl_ipiq_count, "Q", "Number of IPI's sent");
153 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_fifofull, (CTLTYPE_QUAD | CTLFLAG_RW),
154 0, 0, sysctl_ipiq_fifofull, "Q",
155 "Number of fifo full conditions detected");
156 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_avoided, (CTLTYPE_QUAD | CTLFLAG_RW),
157 0, 0, sysctl_ipiq_avoided, "Q",
158 "Number of IPI's avoided by interlock with target cpu");
159 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_passive, (CTLTYPE_QUAD | CTLFLAG_RW),
160 0, 0, sysctl_ipiq_passive, "Q",
161 "Number of passive IPI messages sent");
162 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_cscount, (CTLTYPE_QUAD | CTLFLAG_RW),
163 0, 0, sysctl_ipiq_cscount, "Q",
164 "Number of cpu synchronizations");
167 * Send a function execution request to another cpu. The request is queued
168 * on the cpu<->cpu ipiq matrix. Each cpu owns a unique ipiq FIFO for every
169 * possible target cpu. The FIFO can be written.
171 * If the FIFO fills up we have to enable interrupts to avoid an APIC
172 * deadlock and process pending IPIQs while waiting for it to empty.
173 * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
175 * We can safely bump gd_intr_nesting_level because our crit_exit() at the
176 * end will take care of any pending interrupts.
178 * The actual hardware IPI is avoided if the target cpu is already processing
179 * the queue from a prior IPI. It is possible to pipeline IPI messages
180 * very quickly between cpus due to the FIFO hysteresis.
182 * Need not be called from a critical section.
185 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
187 lwkt_ipiq_t ip;
188 int windex;
189 int level1;
190 int level2;
191 long rflags;
192 struct globaldata *gd = mycpu;
194 logipiq(send_norm, func, arg1, arg2, gd, target);
196 if (target == gd) {
197 func(arg1, arg2, NULL);
198 logipiq(send_end, func, arg1, arg2, gd, target);
199 return(0);
201 crit_enter();
202 ++gd->gd_intr_nesting_level;
203 #ifdef INVARIANTS
204 if (gd->gd_intr_nesting_level > 20)
205 panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
206 #endif
207 KKASSERT(curthread->td_critcount);
208 ++ipiq_stat(gd).ipiq_count;
209 ip = &gd->gd_ipiq[target->gd_cpuid];
212 * Do not allow the FIFO to become full. Interrupts must be physically
213 * enabled while we liveloop to avoid deadlocking the APIC.
215 * When we are not nested inside a processing loop we allow the FIFO
216 * to get 1/2 full. Once it exceeds 1/2 full we must wait for it to
217 * drain, executing any incoming IPIs while we wait.
219 * When we are nested we allow the FIFO to get almost completely full.
220 * This allows us to queue IPIs sent from IPI callbacks. The processing
221 * code will only process incoming FIFOs that are trying to drain while
222 * we wait, and only to the only-slightly-less-full point, to avoid a
223 * deadlock.
225 * We are guaranteed
228 if (gd->gd_processing_ipiq == 0) {
229 level1 = MAXCPUFIFO / 2;
230 level2 = MAXCPUFIFO / 4;
231 } else {
232 level1 = MAXCPUFIFO - 3;
233 level2 = MAXCPUFIFO - 5;
236 if (ip->ip_windex - ip->ip_rindex > level1) {
237 #ifndef _KERNEL_VIRTUAL
238 uint64_t tsc_base = rdtsc();
239 #endif
240 int repeating = 0;
241 int olimit;
243 rflags = read_rflags();
244 cpu_enable_intr();
245 ++ipiq_stat(gd).ipiq_fifofull;
246 DEBUG_PUSH_INFO("send_ipiq3");
247 olimit = atomic_swap_int(&ip->ip_drain, level2);
248 while (ip->ip_windex - ip->ip_rindex > level2) {
249 KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
250 lwkt_process_ipiq_nested();
251 cpu_pause();
254 * Check for target not draining issue. This should be fixed but
255 * leave the code in-place anyway as it can recover an otherwise
256 * dead system.
258 #ifdef _KERNEL_VIRTUAL
259 if (repeating++ > 10)
260 pthread_yield();
261 #else
262 if (rdtsc() - tsc_base > tsc_frequency) {
263 ++repeating;
264 if (repeating > 10) {
265 kprintf("send_ipiq %d->%d tgt not draining (%d) sniff=%p,%p\n",
266 gd->gd_cpuid, target->gd_cpuid, repeating,
267 target->gd_sample_pc, target->gd_sample_sp);
268 smp_sniff();
269 ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
270 cpu_send_ipiq(target->gd_cpuid);
271 } else {
272 kprintf("send_ipiq %d->%d tgt not draining (%d)\n",
273 gd->gd_cpuid, target->gd_cpuid, repeating);
274 smp_sniff();
276 tsc_base = rdtsc();
278 #endif
280 atomic_swap_int(&ip->ip_drain, olimit);
281 DEBUG_POP_INFO();
282 #if defined(__x86_64__)
283 write_rflags(rflags);
284 #else
285 #error "no write_*flags"
286 #endif
290 * Queue the new message and signal the target cpu. For now we need to
291 * physically disable interrupts because the target will not get signalled
292 * by other cpus once we set target->gd_npoll and we don't want to get
293 * interrupted.
295 * XXX not sure why this is a problem, the critical section should prevent
296 * any stalls (incoming interrupts except Xinvltlb and Xsnoop will
297 * just be made pending).
299 rflags = read_rflags();
300 cpu_disable_intr();
302 windex = ip->ip_windex & MAXCPUFIFO_MASK;
303 ip->ip_info[windex].func = func;
304 ip->ip_info[windex].arg1 = arg1;
305 ip->ip_info[windex].arg2 = arg2;
306 cpu_sfence();
307 ++ip->ip_windex;
308 ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
311 * signal the target cpu that there is work pending.
313 if (atomic_swap_int(&target->gd_npoll, 1) == 0) {
314 logipiq(cpu_send, func, arg1, arg2, gd, target);
315 cpu_send_ipiq(target->gd_cpuid);
316 } else {
317 ++ipiq_stat(gd).ipiq_avoided;
319 write_rflags(rflags);
321 --gd->gd_intr_nesting_level;
322 crit_exit();
323 logipiq(send_end, func, arg1, arg2, gd, target);
325 return(ip->ip_windex);
329 * Similar to lwkt_send_ipiq() but this function does not actually initiate
330 * the IPI to the target cpu unless the FIFO is greater than 1/4 full.
331 * This function is usually very fast.
333 * This function is used for non-critical IPI messages, such as memory
334 * deallocations. The queue will typically be flushed by the target cpu at
335 * the next clock interrupt.
337 * Need not be called from a critical section.
340 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
341 void *arg1, int arg2)
343 lwkt_ipiq_t ip;
344 int windex;
345 struct globaldata *gd = mycpu;
347 KKASSERT(target != gd);
348 crit_enter_gd(gd);
349 ++gd->gd_intr_nesting_level;
350 ip = &gd->gd_ipiq[target->gd_cpuid];
353 * If the FIFO is too full send the IPI actively.
355 * WARNING! This level must be low enough not to trigger a wait loop
356 * in the active sending code since we are not signalling the
357 * target cpu.
359 if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO / 4) {
360 --gd->gd_intr_nesting_level;
361 crit_exit_gd(gd);
362 return lwkt_send_ipiq3(target, func, arg1, arg2);
366 * Else we can do it passively.
368 logipiq(send_pasv, func, arg1, arg2, gd, target);
369 ++ipiq_stat(gd).ipiq_count;
370 ++ipiq_stat(gd).ipiq_passive;
373 * Queue the new message
375 windex = ip->ip_windex & MAXCPUFIFO_MASK;
376 ip->ip_info[windex].func = func;
377 ip->ip_info[windex].arg1 = arg1;
378 ip->ip_info[windex].arg2 = arg2;
379 cpu_sfence();
380 ++ip->ip_windex;
381 ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
382 --gd->gd_intr_nesting_level;
385 * Do not signal the target cpu, it will pick up the IPI when it next
386 * polls (typically on the next tick).
388 crit_exit();
389 logipiq(send_end, func, arg1, arg2, gd, target);
391 return(ip->ip_windex);
395 * deprecated, used only by fast int forwarding.
398 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
400 return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
404 * Send a message to several target cpus. Typically used for scheduling.
405 * The message will not be sent to stopped cpus.
408 lwkt_send_ipiq3_mask(cpumask_t mask, ipifunc3_t func, void *arg1, int arg2)
410 int cpuid;
411 int count = 0;
413 CPUMASK_NANDMASK(mask, stopped_cpus);
414 while (CPUMASK_TESTNZERO(mask)) {
415 cpuid = BSFCPUMASK(mask);
416 lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
417 CPUMASK_NANDBIT(mask, cpuid);
418 ++count;
420 return(count);
424 * Wait for the remote cpu to finish processing a function.
426 * YYY we have to enable interrupts and process the IPIQ while waiting
427 * for it to empty or we may deadlock with another cpu. Create a CPU_*()
428 * function to do this! YYY we really should 'block' here.
430 * MUST be called from a critical section. This routine may be called
431 * from an interrupt (for example, if an interrupt wakes a foreign thread
432 * up).
434 void
435 lwkt_wait_ipiq(globaldata_t target, int seq)
437 lwkt_ipiq_t ip;
439 if (target != mycpu) {
440 ip = &mycpu->gd_ipiq[target->gd_cpuid];
441 if ((int)(ip->ip_xindex - seq) < 0) {
442 #if defined(__x86_64__)
443 unsigned long rflags = read_rflags();
444 #else
445 #error "no read_*flags"
446 #endif
447 int64_t time_tgt = tsc_get_target(1000000000LL);
448 int time_loops = 10;
449 int benice = 0;
450 #ifdef _KERNEL_VIRTUAL
451 int repeating = 0;
452 #endif
454 cpu_enable_intr();
455 DEBUG_PUSH_INFO("wait_ipiq");
456 while ((int)(ip->ip_xindex - seq) < 0) {
457 crit_enter();
458 lwkt_process_ipiq();
459 crit_exit();
460 #ifdef _KERNEL_VIRTUAL
461 if (repeating++ > 10)
462 pthread_yield();
463 #endif
466 * IPIQs must be handled within 10 seconds and this code
467 * will warn after one second.
469 if ((benice & 255) == 0 && tsc_test_target(time_tgt) > 0) {
470 kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n",
471 mycpu->gd_cpuid, target->gd_cpuid,
472 ip->ip_xindex - seq);
473 if (--time_loops == 0)
474 panic("LWKT_WAIT_IPIQ");
475 time_tgt = tsc_get_target(1000000000LL);
477 ++benice;
480 * xindex may be modified by another cpu, use a load fence
481 * to ensure that the loop does not use a speculative value
482 * (which may improve performance).
484 cpu_pause();
485 cpu_lfence();
487 DEBUG_POP_INFO();
488 #if defined(__x86_64__)
489 write_rflags(rflags);
490 #else
491 #error "no write_*flags"
492 #endif
498 * Called from IPI interrupt (like a fast interrupt), which has placed
499 * us in a critical section. The MP lock may or may not be held.
500 * May also be called from doreti or splz, or be reentrantly called
501 * indirectly through the ip_info[].func we run.
503 * There are two versions, one where no interrupt frame is available (when
504 * called from the send code and from splz, and one where an interrupt
505 * frame is available.
507 * When the current cpu is mastering a cpusync we do NOT internally loop
508 * on the cpusyncq poll. We also do not re-flag a pending ipi due to
509 * the cpusyncq poll because this can cause doreti/splz to loop internally.
510 * The cpusync master's own loop must be allowed to run to avoid a deadlock.
512 void
513 lwkt_process_ipiq(void)
515 globaldata_t gd = mycpu;
516 globaldata_t sgd;
517 lwkt_ipiq_t ip;
518 cpumask_t mask;
519 int n;
521 ++gd->gd_processing_ipiq;
522 again:
523 mask = gd->gd_ipimask;
524 cpu_ccfence();
525 while (CPUMASK_TESTNZERO(mask)) {
526 n = BSFCPUMASK(mask);
527 if (n != gd->gd_cpuid) {
528 sgd = globaldata_find(n);
529 ip = sgd->gd_ipiq;
530 if (ip != NULL) {
531 ip += gd->gd_cpuid;
532 while (lwkt_process_ipiq_core(sgd, ip, NULL, 0))
534 ATOMIC_CPUMASK_NANDBIT(gd->gd_ipimask, n);
535 if (ip->ip_rindex != ip->ip_windex)
536 ATOMIC_CPUMASK_ORBIT(gd->gd_ipimask, n);
539 CPUMASK_NANDBIT(mask, n);
543 * Process pending cpusyncs. If the current thread has a cpusync
544 * active cpusync we only run the list once and do not re-flag
545 * as the thread itself is processing its interlock.
547 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL, 0)) {
548 if (gd->gd_curthread->td_cscount == 0)
549 goto again;
550 /* need_ipiq(); do not reflag */
554 * Interlock to allow more IPI interrupts.
556 --gd->gd_processing_ipiq;
559 void
560 lwkt_process_ipiq_frame(struct intrframe *frame)
562 globaldata_t gd = mycpu;
563 globaldata_t sgd;
564 lwkt_ipiq_t ip;
565 cpumask_t mask;
566 int n;
568 ++gd->gd_processing_ipiq;
569 again:
570 mask = gd->gd_ipimask;
571 cpu_ccfence();
572 while (CPUMASK_TESTNZERO(mask)) {
573 n = BSFCPUMASK(mask);
574 if (n != gd->gd_cpuid) {
575 sgd = globaldata_find(n);
576 ip = sgd->gd_ipiq;
577 if (ip != NULL) {
578 ip += gd->gd_cpuid;
579 while (lwkt_process_ipiq_core(sgd, ip, frame, 0))
581 ATOMIC_CPUMASK_NANDBIT(gd->gd_ipimask, n);
582 if (ip->ip_rindex != ip->ip_windex)
583 ATOMIC_CPUMASK_ORBIT(gd->gd_ipimask, n);
586 CPUMASK_NANDBIT(mask, n);
588 if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
589 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame, 0)) {
590 if (gd->gd_curthread->td_cscount == 0)
591 goto again;
592 /* need_ipiq(); do not reflag */
595 --gd->gd_processing_ipiq;
599 * Only process incoming IPIQs from draining senders and only process them
600 * to the point where the draining sender is able to continue. This is
601 * necessary to avoid deadlocking the IPI subsystem because we are acting on
602 * incoming messages and the callback may queue additional messages.
604 * We only want to have to act on senders that are blocked to limit the
605 * number of additional messages sent. At the same time, recipients are
606 * trying to drain our own queue. Theoretically this create a pipeline that
607 * cannot deadlock.
609 static void
610 lwkt_process_ipiq_nested(void)
612 globaldata_t gd = mycpu;
613 globaldata_t sgd;
614 lwkt_ipiq_t ip;
615 cpumask_t mask;
616 int n;
617 int limit;
619 ++gd->gd_processing_ipiq;
620 again:
621 mask = gd->gd_ipimask;
622 cpu_ccfence();
623 while (CPUMASK_TESTNZERO(mask)) {
624 n = BSFCPUMASK(mask);
625 if (n != gd->gd_cpuid) {
626 sgd = globaldata_find(n);
627 ip = sgd->gd_ipiq;
630 * NOTE: We do not mess with the cpumask at all, instead we allow
631 * the top-level ipiq processor deal with it.
633 if (ip != NULL) {
634 ip += gd->gd_cpuid;
635 if ((limit = ip->ip_drain) != 0) {
636 lwkt_process_ipiq_core(sgd, ip, NULL, limit);
637 /* no gd_ipimask when doing limited processing */
641 CPUMASK_NANDBIT(mask, n);
645 * Process pending cpusyncs. If the current thread has a cpusync
646 * active cpusync we only run the list once and do not re-flag
647 * as the thread itself is processing its interlock.
649 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL, 0)) {
650 if (gd->gd_curthread->td_cscount == 0)
651 goto again;
652 /* need_ipiq(); do not reflag */
654 --gd->gd_processing_ipiq;
658 * Process incoming IPI requests until only <limit> are left (0 to exhaust
659 * all incoming IPI requests).
661 static int
662 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
663 struct intrframe *frame, int limit)
665 globaldata_t mygd = mycpu;
666 int ri;
667 int wi;
668 ipifunc3_t copy_func;
669 void *copy_arg1;
670 int copy_arg2;
673 * Clear the originating core from our ipimask, we will process all
674 * incoming messages.
676 * Obtain the current write index, which is modified by a remote cpu.
677 * Issue a load fence to prevent speculative reads of e.g. data written
678 * by the other cpu prior to it updating the index.
680 KKASSERT(curthread->td_critcount);
681 wi = ip->ip_windex;
682 cpu_lfence();
683 ++mygd->gd_intr_nesting_level;
686 * NOTE: xindex is only updated after we are sure the function has
687 * finished execution. Beware lwkt_process_ipiq() reentrancy!
688 * The function may send an IPI which may block/drain.
690 * NOTE: Due to additional IPI operations that the callback function
691 * may make, it is possible for both rindex and windex to advance and
692 * thus for rindex to advance passed our cached windex.
694 * NOTE: A load fence is required to prevent speculative loads prior
695 * to the loading of ip_rindex. Even though stores might be
696 * ordered, loads are probably not. A memory fence is required
697 * to prevent reordering of the loads after the ip_rindex update.
699 * NOTE: Single pass only. Returns non-zero if the queue is not empty
700 * on return.
702 while (wi - (ri = ip->ip_rindex) > limit) {
703 ri &= MAXCPUFIFO_MASK;
704 cpu_lfence();
705 copy_func = ip->ip_info[ri].func;
706 copy_arg1 = ip->ip_info[ri].arg1;
707 copy_arg2 = ip->ip_info[ri].arg2;
708 cpu_mfence();
709 ++ip->ip_rindex;
710 KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) ==
711 ((ri + 1) & MAXCPUFIFO_MASK));
712 logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
713 #ifdef INVARIANTS
714 if (ipiq_debug && (ip->ip_rindex & 0xFFFFFF) == 0) {
715 kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
716 mycpu->gd_cpuid,
717 copy_func, copy_arg1, copy_arg2,
718 #if defined(__x86_64__)
719 (frame ? (void *)frame->if_rip : NULL));
720 #else
721 NULL);
722 #endif
724 #endif
725 copy_func(copy_arg1, copy_arg2, frame);
726 cpu_sfence();
727 ip->ip_xindex = ip->ip_rindex;
729 #ifdef PANIC_DEBUG
731 * Simulate panics during the processing of an IPI
733 if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
734 if (--panic_ipiq_count == 0) {
735 #ifdef DDB
736 Debugger("PANIC_DEBUG");
737 #else
738 panic("PANIC_DEBUG");
739 #endif
742 #endif
744 --mygd->gd_intr_nesting_level;
747 * Return non-zero if there is still more in the queue. Don't worry
748 * about fencing, we will get another interrupt if necessary.
750 return (ip->ip_rindex != ip->ip_windex);
753 static void
754 lwkt_sync_ipiq(void *arg)
756 volatile cpumask_t *cpumask = arg;
758 ATOMIC_CPUMASK_NANDBIT(*cpumask, mycpu->gd_cpuid);
759 if (CPUMASK_TESTZERO(*cpumask))
760 wakeup(cpumask);
763 void
764 lwkt_synchronize_ipiqs(const char *wmesg)
766 volatile cpumask_t other_cpumask;
768 other_cpumask = smp_active_mask;
769 CPUMASK_ANDMASK(other_cpumask, mycpu->gd_other_cpus);
770 lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq,
771 __DEVOLATILE(void *, &other_cpumask));
773 while (CPUMASK_TESTNZERO(other_cpumask)) {
774 tsleep_interlock(&other_cpumask, 0);
775 if (CPUMASK_TESTNZERO(other_cpumask))
776 tsleep(&other_cpumask, PINTERLOCKED, wmesg, 0);
781 * CPU Synchronization Support
783 * lwkt_cpusync_interlock() - Place specified cpus in a quiescent state.
784 * The current cpu is placed in a hard critical
785 * section.
787 * lwkt_cpusync_deinterlock() - Execute cs_func on specified cpus, including
788 * current cpu if specified, then return.
790 void
791 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *arg)
793 struct lwkt_cpusync cs;
795 lwkt_cpusync_init(&cs, mask, func, arg);
796 lwkt_cpusync_interlock(&cs);
797 lwkt_cpusync_deinterlock(&cs);
801 void
802 lwkt_cpusync_interlock(lwkt_cpusync_t cs)
804 globaldata_t gd = mycpu;
805 cpumask_t mask;
808 * mask acknowledge (cs_mack): 0->mask for stage 1
810 * mack does not include the current cpu.
812 mask = cs->cs_mask;
813 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
814 CPUMASK_ANDMASK(mask, smp_active_mask);
815 CPUMASK_ASSZERO(cs->cs_mack);
817 crit_enter_id("cpusync");
818 if (CPUMASK_TESTNZERO(mask)) {
819 DEBUG_PUSH_INFO("cpusync_interlock");
820 ++ipiq_stat(gd).ipiq_cscount;
821 ++gd->gd_curthread->td_cscount;
822 lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote1, cs);
823 logipiq2(sync_start, (long)CPUMASK_LOWMASK(mask));
824 while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
825 lwkt_process_ipiq();
826 cpu_pause();
827 #ifdef _KERNEL_VIRTUAL
828 pthread_yield();
829 #endif
831 DEBUG_POP_INFO();
836 * Interlocked cpus have executed remote1 and are polling in remote2.
837 * To deinterlock we clear cs_mack and wait for the cpus to execute
838 * the func and set their bit in cs_mack again.
841 void
842 lwkt_cpusync_deinterlock(lwkt_cpusync_t cs)
844 globaldata_t gd = mycpu;
845 cpumask_t mask;
848 * mask acknowledge (cs_mack): mack->0->mack for stage 2
850 * Clearing cpu bits for polling cpus in cs_mack will cause them to
851 * execute stage 2, which executes the cs_func(cs_data) and then sets
852 * their bit in cs_mack again.
854 * mack does not include the current cpu.
856 mask = cs->cs_mack;
857 cpu_ccfence();
858 CPUMASK_ASSZERO(cs->cs_mack);
859 cpu_ccfence();
860 if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
861 cs->cs_func(cs->cs_data);
862 if (CPUMASK_TESTNZERO(mask)) {
863 DEBUG_PUSH_INFO("cpusync_deinterlock");
864 while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
865 lwkt_process_ipiq();
866 cpu_pause();
867 #ifdef _KERNEL_VIRTUAL
868 pthread_yield();
869 #endif
871 DEBUG_POP_INFO();
873 * cpusyncq ipis may be left queued without the RQF flag set due to
874 * a non-zero td_cscount, so be sure to process any laggards after
875 * decrementing td_cscount.
877 --gd->gd_curthread->td_cscount;
878 lwkt_process_ipiq();
879 logipiq2(sync_end, (long)CPUMASK_LOWMASK(mask));
881 crit_exit_id("cpusync");
885 * The quick version does not quiesce the target cpu(s) but instead executes
886 * the function on the target cpu(s) and waits for all to acknowledge. This
887 * avoids spinning on the target cpus.
889 * This function is typically only used for kernel_pmap updates. User pmaps
890 * have to be quiesced.
892 void
893 lwkt_cpusync_quick(lwkt_cpusync_t cs)
895 globaldata_t gd = mycpu;
896 cpumask_t mask;
899 * stage-2 cs_mack only.
901 mask = cs->cs_mask;
902 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
903 CPUMASK_ANDMASK(mask, smp_active_mask);
904 CPUMASK_ASSZERO(cs->cs_mack);
906 crit_enter_id("cpusync");
907 if (CPUMASK_TESTNZERO(mask)) {
908 DEBUG_PUSH_INFO("cpusync_interlock");
909 ++ipiq_stat(gd).ipiq_cscount;
910 ++gd->gd_curthread->td_cscount;
911 lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote2, cs);
912 logipiq2(sync_quick, (long)CPUMASK_LOWMASK(mask));
913 while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
914 lwkt_process_ipiq();
915 cpu_pause();
916 #ifdef _KERNEL_VIRTUAL
917 pthread_yield();
918 #endif
922 * cpusyncq ipis may be left queued without the RQF flag set due to
923 * a non-zero td_cscount, so be sure to process any laggards after
924 * decrementing td_cscount.
926 DEBUG_POP_INFO();
927 --gd->gd_curthread->td_cscount;
928 lwkt_process_ipiq();
930 if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
931 cs->cs_func(cs->cs_data);
932 crit_exit_id("cpusync");
936 * helper IPI remote messaging function.
938 * Called on remote cpu when a new cpu synchronization request has been
939 * sent to us. Execute the run function and adjust cs_count, then requeue
940 * the request so we spin on it.
942 static void
943 lwkt_cpusync_remote1(lwkt_cpusync_t cs)
945 globaldata_t gd = mycpu;
947 ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
948 lwkt_cpusync_remote2(cs);
952 * helper IPI remote messaging function.
954 * Poll for the originator telling us to finish. If it hasn't, requeue
955 * our request so we spin on it.
957 static void
958 lwkt_cpusync_remote2(lwkt_cpusync_t cs)
960 globaldata_t gd = mycpu;
962 if (CPUMASK_TESTMASK(cs->cs_mack, gd->gd_cpumask) == 0) {
963 if (cs->cs_func)
964 cs->cs_func(cs->cs_data);
965 ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
966 /* cs can be ripped out at this point */
967 } else {
968 lwkt_ipiq_t ip;
969 int wi;
971 cpu_pause();
972 #ifdef _KERNEL_VIRTUAL
973 pthread_yield();
974 #endif
975 cpu_lfence();
978 * Requeue our IPI to avoid a deep stack recursion. If no other
979 * IPIs are pending we can just loop up, which should help VMs
980 * better-detect spin loops.
982 ip = &gd->gd_cpusyncq;
984 wi = ip->ip_windex & MAXCPUFIFO_MASK;
985 ip->ip_info[wi].func = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
986 ip->ip_info[wi].arg1 = cs;
987 ip->ip_info[wi].arg2 = 0;
988 cpu_sfence();
989 KKASSERT(ip->ip_windex - ip->ip_rindex < MAXCPUFIFO);
990 ++ip->ip_windex;
991 if (ipiq_debug && (ip->ip_windex & 0xFFFFFF) == 0) {
992 kprintf("cpu %d cm=%016jx %016jx f=%p\n",
993 gd->gd_cpuid,
994 (intmax_t)CPUMASK_LOWMASK(cs->cs_mask),
995 (intmax_t)CPUMASK_LOWMASK(cs->cs_mack),
996 cs->cs_func);
1001 #define LWKT_IPIQ_NLATENCY 8
1002 #define LWKT_IPIQ_NLATENCY_MASK (LWKT_IPIQ_NLATENCY - 1)
1004 struct lwkt_ipiq_latency_log {
1005 int idx; /* unmasked index */
1006 int pad;
1007 uint64_t latency[LWKT_IPIQ_NLATENCY];
1010 static struct lwkt_ipiq_latency_log lwkt_ipiq_latency_logs[MAXCPU];
1011 static uint64_t save_tsc;
1014 * IPI callback (already in a critical section)
1016 static void
1017 lwkt_ipiq_latency_testfunc(void *arg __unused)
1019 uint64_t delta_tsc;
1020 struct globaldata *gd;
1021 struct lwkt_ipiq_latency_log *lat;
1024 * Get delta TSC (assume TSCs are synchronized) as quickly as
1025 * possible and then convert to nanoseconds.
1027 delta_tsc = rdtsc_ordered() - save_tsc;
1028 delta_tsc = delta_tsc * 1000000000LU / tsc_frequency;
1031 * Record in our save array.
1033 gd = mycpu;
1034 lat = &lwkt_ipiq_latency_logs[gd->gd_cpuid];
1035 lat->latency[lat->idx & LWKT_IPIQ_NLATENCY_MASK] = delta_tsc;
1036 ++lat->idx;
1040 * Send IPI from cpu0 to other cpus
1042 * NOTE: Machine must be idle for test to run dependably, and also probably
1043 * a good idea not to be running powerd.
1045 * NOTE: Caller should use 'usched :1 <command>' to lock itself to cpu 0.
1046 * See 'ipitest' script in /usr/src/test/sysperf/ipitest
1048 static int
1049 lwkt_ipiq_latency_test(SYSCTL_HANDLER_ARGS)
1051 struct globaldata *gd;
1052 int cpu = 0, orig_cpu, error;
1054 error = sysctl_handle_int(oidp, &cpu, arg2, req);
1055 if (error || req->newptr == NULL)
1056 return error;
1058 if (cpu == 0)
1059 return 0;
1060 else if (cpu >= ncpus || cpu < 0)
1061 return EINVAL;
1063 orig_cpu = mycpuid;
1064 lwkt_migratecpu(0);
1066 gd = globaldata_find(cpu);
1068 save_tsc = rdtsc_ordered();
1069 lwkt_send_ipiq(gd, lwkt_ipiq_latency_testfunc, NULL);
1071 lwkt_migratecpu(orig_cpu);
1072 return 0;
1075 SYSCTL_NODE(_debug, OID_AUTO, ipiq, CTLFLAG_RW, 0, "");
1076 SYSCTL_PROC(_debug_ipiq, OID_AUTO, latency_test, CTLTYPE_INT | CTLFLAG_RW,
1077 NULL, 0, lwkt_ipiq_latency_test, "I",
1078 "ipi latency test, arg: remote cpuid");
1080 static int
1081 lwkt_ipiq_latency(SYSCTL_HANDLER_ARGS)
1083 struct lwkt_ipiq_latency_log *latency = arg1;
1084 uint64_t lat[LWKT_IPIQ_NLATENCY];
1085 int i;
1087 for (i = 0; i < LWKT_IPIQ_NLATENCY; ++i)
1088 lat[i] = latency->latency[i];
1090 return sysctl_handle_opaque(oidp, lat, sizeof(lat), req);
1093 static void
1094 lwkt_ipiq_latency_init(void *dummy __unused)
1096 int cpu;
1098 for (cpu = 0; cpu < ncpus; ++cpu) {
1099 char name[32];
1101 ksnprintf(name, sizeof(name), "latency%d", cpu);
1102 SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_debug_ipiq),
1103 OID_AUTO, name, CTLTYPE_OPAQUE | CTLFLAG_RD,
1104 &lwkt_ipiq_latency_logs[cpu], 0, lwkt_ipiq_latency,
1105 "LU", "7 latest ipi latency measurement results");
1108 SYSINIT(lwkt_ipiq_latency, SI_SUB_CONFIGURE, SI_ORDER_ANY,
1109 lwkt_ipiq_latency_init, NULL);