kernel - Fix auto port assignment collision in network code
[dragonfly.git] / sys / kern / lwkt_ipiq.c
blob5aecac4b47f82b5e8f9283e91302ebed8afcd8c6
1 /*
2 * Copyright (c) 2003-2016 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * This module implements IPI message queueing and the MI portion of IPI
37 * message processing.
40 #include "opt_ddb.h"
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/thread2.h>
49 #include <sys/sysctl.h>
50 #include <sys/ktr.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_zone.h>
65 #include <machine/stdarg.h>
66 #include <machine/smp.h>
67 #include <machine/clock.h>
68 #include <machine/atomic.h>
70 struct ipiq_stats {
71 int64_t ipiq_count; /* total calls to lwkt_send_ipiq*() */
72 int64_t ipiq_fifofull; /* number of fifo full conditions detected */
73 int64_t ipiq_avoided; /* interlock with target avoids cpu ipi */
74 int64_t ipiq_passive; /* passive IPI messages */
75 int64_t ipiq_cscount; /* number of cpu synchronizations */
76 } __cachealign;
78 static struct ipiq_stats ipiq_stats_percpu[MAXCPU];
79 #define ipiq_stat(gd) ipiq_stats_percpu[(gd)->gd_cpuid]
81 static int ipiq_debug; /* set to 1 for debug */
82 #ifdef PANIC_DEBUG
83 static int panic_ipiq_cpu = -1;
84 static int panic_ipiq_count = 100;
85 #endif
87 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_debug, CTLFLAG_RW, &ipiq_debug, 0,
88 "");
89 #ifdef PANIC_DEBUG
90 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
91 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
92 #endif
94 #define IPIQ_STRING "func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
95 #define IPIQ_ARGS void *func, void *arg1, int arg2, int scpu, int dcpu
97 #if !defined(KTR_IPIQ)
98 #define KTR_IPIQ KTR_ALL
99 #endif
100 KTR_INFO_MASTER(ipiq);
101 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARGS);
102 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARGS);
103 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARGS);
104 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08lx", unsigned long mask);
105 KTR_INFO(KTR_IPIQ, ipiq, sync_end, 6, "cpumask=%08lx", unsigned long mask);
106 KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARGS);
107 KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARGS);
108 KTR_INFO(KTR_IPIQ, ipiq, sync_quick, 9, "cpumask=%08lx", unsigned long mask);
110 #define logipiq(name, func, arg1, arg2, sgd, dgd) \
111 KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
112 #define logipiq2(name, arg) \
113 KTR_LOG(ipiq_ ## name, arg)
115 static void lwkt_process_ipiq_nested(void);
116 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
117 struct intrframe *frame, int limit);
118 static void lwkt_cpusync_remote1(lwkt_cpusync_t cs);
119 static void lwkt_cpusync_remote2(lwkt_cpusync_t cs);
121 #define IPIQ_SYSCTL(name) \
122 static int \
123 sysctl_##name(SYSCTL_HANDLER_ARGS) \
125 int64_t val = 0; \
126 int cpu, error; \
128 for (cpu = 0; cpu < ncpus; ++cpu) \
129 val += ipiq_stats_percpu[cpu].name; \
131 error = sysctl_handle_quad(oidp, &val, 0, req); \
132 if (error || req->newptr == NULL) \
133 return error; \
135 for (cpu = 0; cpu < ncpus; ++cpu) \
136 ipiq_stats_percpu[cpu].name = val; \
138 return 0; \
141 IPIQ_SYSCTL(ipiq_count);
142 IPIQ_SYSCTL(ipiq_fifofull);
143 IPIQ_SYSCTL(ipiq_avoided);
144 IPIQ_SYSCTL(ipiq_passive);
145 IPIQ_SYSCTL(ipiq_cscount);
147 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_count, (CTLTYPE_QUAD | CTLFLAG_RW),
148 0, 0, sysctl_ipiq_count, "Q", "Number of IPI's sent");
149 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_fifofull, (CTLTYPE_QUAD | CTLFLAG_RW),
150 0, 0, sysctl_ipiq_fifofull, "Q",
151 "Number of fifo full conditions detected");
152 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_avoided, (CTLTYPE_QUAD | CTLFLAG_RW),
153 0, 0, sysctl_ipiq_avoided, "Q",
154 "Number of IPI's avoided by interlock with target cpu");
155 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_passive, (CTLTYPE_QUAD | CTLFLAG_RW),
156 0, 0, sysctl_ipiq_passive, "Q",
157 "Number of passive IPI messages sent");
158 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_cscount, (CTLTYPE_QUAD | CTLFLAG_RW),
159 0, 0, sysctl_ipiq_cscount, "Q",
160 "Number of cpu synchronizations");
163 * Send a function execution request to another cpu. The request is queued
164 * on the cpu<->cpu ipiq matrix. Each cpu owns a unique ipiq FIFO for every
165 * possible target cpu. The FIFO can be written.
167 * If the FIFO fills up we have to enable interrupts to avoid an APIC
168 * deadlock and process pending IPIQs while waiting for it to empty.
169 * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
171 * We can safely bump gd_intr_nesting_level because our crit_exit() at the
172 * end will take care of any pending interrupts.
174 * The actual hardware IPI is avoided if the target cpu is already processing
175 * the queue from a prior IPI. It is possible to pipeline IPI messages
176 * very quickly between cpus due to the FIFO hysteresis.
178 * Need not be called from a critical section.
181 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
183 lwkt_ipiq_t ip;
184 int windex;
185 int level1;
186 int level2;
187 long rflags;
188 struct globaldata *gd = mycpu;
190 logipiq(send_norm, func, arg1, arg2, gd, target);
192 if (target == gd) {
193 func(arg1, arg2, NULL);
194 logipiq(send_end, func, arg1, arg2, gd, target);
195 return(0);
197 crit_enter();
198 ++gd->gd_intr_nesting_level;
199 #ifdef INVARIANTS
200 if (gd->gd_intr_nesting_level > 20)
201 panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
202 #endif
203 KKASSERT(curthread->td_critcount);
204 ++ipiq_stat(gd).ipiq_count;
205 ip = &gd->gd_ipiq[target->gd_cpuid];
208 * Do not allow the FIFO to become full. Interrupts must be physically
209 * enabled while we liveloop to avoid deadlocking the APIC.
211 * When we are not nested inside a processing loop we allow the FIFO
212 * to get 1/2 full. Once it exceeds 1/2 full we must wait for it to
213 * drain, executing any incoming IPIs while we wait.
215 * When we are nested we allow the FIFO to get almost completely full.
216 * This allows us to queue IPIs sent from IPI callbacks. The processing
217 * code will only process incoming FIFOs that are trying to drain while
218 * we wait, and only to the only-slightly-less-full point, to avoid a
219 * deadlock.
221 * We are guaranteed
224 if (gd->gd_processing_ipiq == 0) {
225 level1 = MAXCPUFIFO / 2;
226 level2 = MAXCPUFIFO / 4;
227 } else {
228 level1 = MAXCPUFIFO - 3;
229 level2 = MAXCPUFIFO - 5;
232 if (ip->ip_windex - ip->ip_rindex > level1) {
233 #ifndef _KERNEL_VIRTUAL
234 uint64_t tsc_base = rdtsc();
235 #endif
236 int repeating = 0;
237 int olimit;
239 rflags = read_rflags();
240 cpu_enable_intr();
241 ++ipiq_stat(gd).ipiq_fifofull;
242 DEBUG_PUSH_INFO("send_ipiq3");
243 olimit = atomic_swap_int(&ip->ip_drain, level2);
244 while (ip->ip_windex - ip->ip_rindex > level2) {
245 KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
246 lwkt_process_ipiq_nested();
247 cpu_pause();
250 * Check for target not draining issue. This should be fixed but
251 * leave the code in-place anyway as it can recover an otherwise
252 * dead system.
254 #ifdef _KERNEL_VIRTUAL
255 if (repeating++ > 10)
256 vkernel_yield();
257 #else
258 if (rdtsc() - tsc_base > tsc_frequency) {
259 ++repeating;
260 if (repeating > 10) {
261 kprintf("send_ipiq %d->%d tgt not draining (%d) sniff=%p,%p\n",
262 gd->gd_cpuid, target->gd_cpuid, repeating,
263 target->gd_sample_pc, target->gd_sample_sp);
264 smp_sniff();
265 cpu_disable_intr();
266 ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
267 cpu_send_ipiq(target->gd_cpuid);
268 cpu_enable_intr();
269 } else {
270 kprintf("send_ipiq %d->%d tgt not draining (%d)\n",
271 gd->gd_cpuid, target->gd_cpuid, repeating);
272 smp_sniff();
274 tsc_base = rdtsc();
276 #endif
278 atomic_swap_int(&ip->ip_drain, olimit);
279 DEBUG_POP_INFO();
280 #if defined(__x86_64__)
281 write_rflags(rflags);
282 #else
283 #error "no write_*flags"
284 #endif
288 * Queue the new message and signal the target cpu. For now we need to
289 * physically disable interrupts because the target will not get signalled
290 * by other cpus once we set target->gd_npoll and we don't want to get
291 * interrupted.
293 * XXX not sure why this is a problem, the critical section should prevent
294 * any stalls (incoming interrupts except Xinvltlb and Xsnoop will
295 * just be made pending).
297 rflags = read_rflags();
298 #ifndef _KERNEL_VIRTUAL
299 cpu_disable_intr();
300 #endif
302 windex = ip->ip_windex & MAXCPUFIFO_MASK;
303 ip->ip_info[windex].func = func;
304 ip->ip_info[windex].arg1 = arg1;
305 ip->ip_info[windex].arg2 = arg2;
306 cpu_sfence();
307 ++ip->ip_windex;
308 ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
311 * signal the target cpu that there is work pending.
313 if (atomic_swap_int(&target->gd_npoll, 1) == 0) {
314 logipiq(cpu_send, func, arg1, arg2, gd, target);
315 cpu_send_ipiq(target->gd_cpuid);
316 } else {
317 ++ipiq_stat(gd).ipiq_avoided;
319 write_rflags(rflags);
321 --gd->gd_intr_nesting_level;
322 crit_exit();
323 logipiq(send_end, func, arg1, arg2, gd, target);
325 return(ip->ip_windex);
329 * Similar to lwkt_send_ipiq() but this function does not actually initiate
330 * the IPI to the target cpu unless the FIFO is greater than 1/4 full.
331 * This function is usually very fast.
333 * This function is used for non-critical IPI messages, such as memory
334 * deallocations. The queue will typically be flushed by the target cpu at
335 * the next clock interrupt.
337 * Need not be called from a critical section.
340 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
341 void *arg1, int arg2)
343 lwkt_ipiq_t ip;
344 int windex;
345 struct globaldata *gd = mycpu;
347 KKASSERT(target != gd);
348 crit_enter_gd(gd);
349 ++gd->gd_intr_nesting_level;
350 ip = &gd->gd_ipiq[target->gd_cpuid];
353 * If the FIFO is too full send the IPI actively.
355 * WARNING! This level must be low enough not to trigger a wait loop
356 * in the active sending code since we are not signalling the
357 * target cpu.
359 if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO / 4) {
360 --gd->gd_intr_nesting_level;
361 crit_exit_gd(gd);
362 return lwkt_send_ipiq3(target, func, arg1, arg2);
366 * Else we can do it passively.
368 logipiq(send_pasv, func, arg1, arg2, gd, target);
369 ++ipiq_stat(gd).ipiq_count;
370 ++ipiq_stat(gd).ipiq_passive;
373 * Queue the new message
375 windex = ip->ip_windex & MAXCPUFIFO_MASK;
376 ip->ip_info[windex].func = func;
377 ip->ip_info[windex].arg1 = arg1;
378 ip->ip_info[windex].arg2 = arg2;
379 cpu_sfence();
380 ++ip->ip_windex;
381 ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
382 --gd->gd_intr_nesting_level;
385 * Do not signal the target cpu, it will pick up the IPI when it next
386 * polls (typically on the next tick).
388 crit_exit();
389 logipiq(send_end, func, arg1, arg2, gd, target);
391 return(ip->ip_windex);
395 * deprecated, used only by fast int forwarding.
398 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
400 return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
404 * Send a message to several target cpus. Typically used for scheduling.
405 * The message will not be sent to stopped cpus.
407 * To prevent treating low-numbered cpus as favored sons, the IPIs are
408 * issued in order starting at mycpu upward, then from 0 through mycpu.
409 * This is particularly important to prevent random scheduler pickups
410 * from favoring cpu 0.
413 lwkt_send_ipiq3_mask(cpumask_t mask, ipifunc3_t func, void *arg1, int arg2)
415 int cpuid;
416 int count = 0;
417 cpumask_t amask;
419 CPUMASK_NANDMASK(mask, stopped_cpus);
422 * All cpus in mask which are >= mycpu
424 CPUMASK_ASSBMASK(amask, mycpu->gd_cpuid);
425 CPUMASK_INVMASK(amask);
426 CPUMASK_ANDMASK(amask, mask);
427 while (CPUMASK_TESTNZERO(amask)) {
428 cpuid = BSFCPUMASK(amask);
429 lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
430 CPUMASK_NANDBIT(amask, cpuid);
431 ++count;
435 * All cpus in mask which are < mycpu
437 CPUMASK_ASSBMASK(amask, mycpu->gd_cpuid);
438 CPUMASK_ANDMASK(amask, mask);
439 while (CPUMASK_TESTNZERO(amask)) {
440 cpuid = BSFCPUMASK(amask);
441 lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
442 CPUMASK_NANDBIT(amask, cpuid);
443 ++count;
445 return(count);
449 * Wait for the remote cpu to finish processing a function.
451 * YYY we have to enable interrupts and process the IPIQ while waiting
452 * for it to empty or we may deadlock with another cpu. Create a CPU_*()
453 * function to do this! YYY we really should 'block' here.
455 * MUST be called from a critical section. This routine may be called
456 * from an interrupt (for example, if an interrupt wakes a foreign thread
457 * up).
459 void
460 lwkt_wait_ipiq(globaldata_t target, int seq)
462 lwkt_ipiq_t ip;
464 if (target != mycpu) {
465 ip = &mycpu->gd_ipiq[target->gd_cpuid];
466 if ((int)(ip->ip_xindex - seq) < 0) {
467 #if defined(__x86_64__)
468 unsigned long rflags = read_rflags();
469 #else
470 #error "no read_*flags"
471 #endif
472 int64_t time_tgt = tsc_get_target(1000000000LL);
473 int time_loops = 10;
474 int benice = 0;
475 #ifdef _KERNEL_VIRTUAL
476 int repeating = 0;
477 #endif
479 cpu_enable_intr();
480 DEBUG_PUSH_INFO("wait_ipiq");
481 while ((int)(ip->ip_xindex - seq) < 0) {
482 crit_enter();
483 lwkt_process_ipiq();
484 crit_exit();
485 #ifdef _KERNEL_VIRTUAL
486 if (repeating++ > 10)
487 vkernel_yield();
488 #endif
491 * IPIQs must be handled within 10 seconds and this code
492 * will warn after one second.
494 if ((benice & 255) == 0 && tsc_test_target(time_tgt) > 0) {
495 kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n",
496 mycpu->gd_cpuid, target->gd_cpuid,
497 ip->ip_xindex - seq);
498 if (--time_loops == 0)
499 panic("LWKT_WAIT_IPIQ");
500 time_tgt = tsc_get_target(1000000000LL);
502 ++benice;
505 * xindex may be modified by another cpu, use a load fence
506 * to ensure that the loop does not use a speculative value
507 * (which may improve performance).
509 cpu_pause();
510 cpu_lfence();
512 DEBUG_POP_INFO();
513 #if defined(__x86_64__)
514 write_rflags(rflags);
515 #else
516 #error "no write_*flags"
517 #endif
523 * Called from IPI interrupt (like a fast interrupt), and numerous
524 * other locations, and might also be called recursively. Caller must
525 * hold a critical section across this call.
527 * When called from doreti, splz, or an IPI interrupt, npoll is cleared
528 * by the caller using an atomic xchgl, thus synchronizing the incoming
529 * ipimask against npoll. A new IPI will be received if new traffic
530 * occurs verses the windex we read.
532 * However, ipimask might not be synchronized when called from other
533 * locations. Our processing will be more heuristic.
535 * There are two versions, one where no interrupt frame is available (when
536 * called from the send code and from splz, and one where an interrupt
537 * frame is available.
539 * When the current cpu is mastering a cpusync we do NOT internally loop
540 * on the cpusyncq poll. We also do not re-flag a pending ipi due to
541 * the cpusyncq poll because this can cause doreti/splz to loop internally.
542 * The cpusync master's own loop must be allowed to run to avoid a deadlock.
544 void
545 lwkt_process_ipiq(void)
547 globaldata_t gd = mycpu;
548 globaldata_t sgd;
549 lwkt_ipiq_t ip;
550 cpumask_t mask;
551 int n;
553 ++gd->gd_processing_ipiq;
554 again:
555 mask = gd->gd_ipimask;
556 cpu_ccfence();
557 while (CPUMASK_TESTNZERO(mask)) {
558 n = BSFCPUMASK(mask);
559 if (n != gd->gd_cpuid) {
560 sgd = globaldata_find(n);
561 ip = sgd->gd_ipiq;
562 if (ip != NULL) {
563 ip += gd->gd_cpuid;
564 while (lwkt_process_ipiq_core(sgd, ip, NULL, 0))
567 * Can't NAND before-hand as it will prevent recursive
568 * processing. Sender will adjust windex before adjusting
569 * ipimask.
571 ATOMIC_CPUMASK_NANDBIT(gd->gd_ipimask, n);
572 if (ip->ip_rindex != ip->ip_windex)
573 ATOMIC_CPUMASK_ORBIT(gd->gd_ipimask, n);
576 CPUMASK_NANDBIT(mask, n);
580 * Process pending cpusyncs. If the current thread has a cpusync
581 * active cpusync we only run the list once and do not re-flag
582 * as the thread itself is processing its interlock.
584 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL, 0)) {
585 if (gd->gd_curthread->td_cscount == 0)
586 goto again;
587 /* need_ipiq(); do not reflag */
591 * Interlock to allow more IPI interrupts.
593 --gd->gd_processing_ipiq;
596 void
597 lwkt_process_ipiq_frame(struct intrframe *frame)
599 globaldata_t gd = mycpu;
600 globaldata_t sgd;
601 lwkt_ipiq_t ip;
602 cpumask_t mask;
603 int n;
605 ++gd->gd_processing_ipiq;
606 again:
607 mask = gd->gd_ipimask;
608 cpu_ccfence();
609 while (CPUMASK_TESTNZERO(mask)) {
610 n = BSFCPUMASK(mask);
611 if (n != gd->gd_cpuid) {
612 sgd = globaldata_find(n);
613 ip = sgd->gd_ipiq;
614 if (ip != NULL) {
615 ip += gd->gd_cpuid;
616 while (lwkt_process_ipiq_core(sgd, ip, frame, 0))
619 * Can't NAND before-hand as it will prevent recursive
620 * processing. Sender will adjust windex before adjusting
621 * ipimask.
623 ATOMIC_CPUMASK_NANDBIT(gd->gd_ipimask, n);
624 if (ip->ip_rindex != ip->ip_windex)
625 ATOMIC_CPUMASK_ORBIT(gd->gd_ipimask, n);
628 CPUMASK_NANDBIT(mask, n);
630 if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
631 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame, 0)) {
632 if (gd->gd_curthread->td_cscount == 0)
633 goto again;
634 /* need_ipiq(); do not reflag */
637 --gd->gd_processing_ipiq;
641 * Only process incoming IPIQs from draining senders and only process them
642 * to the point where the draining sender is able to continue. This is
643 * necessary to avoid deadlocking the IPI subsystem because we are acting on
644 * incoming messages and the callback may queue additional messages.
646 * We only want to have to act on senders that are blocked to limit the
647 * number of additional messages sent. At the same time, recipients are
648 * trying to drain our own queue. Theoretically this create a pipeline that
649 * cannot deadlock.
651 static void
652 lwkt_process_ipiq_nested(void)
654 globaldata_t gd = mycpu;
655 globaldata_t sgd;
656 lwkt_ipiq_t ip;
657 cpumask_t mask;
658 int n;
659 int limit;
661 ++gd->gd_processing_ipiq;
662 again:
663 mask = gd->gd_ipimask;
664 cpu_ccfence();
665 while (CPUMASK_TESTNZERO(mask)) {
666 n = BSFCPUMASK(mask);
667 if (n != gd->gd_cpuid) {
668 sgd = globaldata_find(n);
669 ip = sgd->gd_ipiq;
672 * NOTE: We do not mess with the cpumask at all, instead we allow
673 * the top-level ipiq processor deal with it.
675 if (ip != NULL) {
676 ip += gd->gd_cpuid;
677 if ((limit = ip->ip_drain) != 0) {
678 lwkt_process_ipiq_core(sgd, ip, NULL, limit);
679 /* no gd_ipimask when doing limited processing */
683 CPUMASK_NANDBIT(mask, n);
687 * Process pending cpusyncs. If the current thread has a cpusync
688 * active cpusync we only run the list once and do not re-flag
689 * as the thread itself is processing its interlock.
691 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL, 0)) {
692 if (gd->gd_curthread->td_cscount == 0)
693 goto again;
694 /* need_ipiq(); do not reflag */
696 --gd->gd_processing_ipiq;
700 * Process incoming IPI requests until only <limit> are left (0 to exhaust
701 * all incoming IPI requests).
703 static int
704 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
705 struct intrframe *frame, int limit)
707 globaldata_t mygd = mycpu;
708 int ri;
709 int wi;
710 ipifunc3_t copy_func;
711 void *copy_arg1;
712 int copy_arg2;
715 * Clear the originating core from our ipimask, we will process all
716 * incoming messages.
718 * Obtain the current write index, which is modified by a remote cpu.
719 * Issue a load fence to prevent speculative reads of e.g. data written
720 * by the other cpu prior to them updating the windex.
722 KKASSERT(curthread->td_critcount);
723 wi = ip->ip_windex;
724 cpu_lfence();
725 ++mygd->gd_intr_nesting_level;
728 * NOTE: xindex is only updated after we are sure the function has
729 * finished execution. Beware lwkt_process_ipiq() reentrancy!
730 * The function may send an IPI which may block/drain.
732 * NOTE: Due to additional IPI operations that the callback function
733 * may make, it is possible for both rindex and windex to advance and
734 * thus for rindex to advance passed our cached windex.
736 * We must process only through our cached (wi) to ensure that
737 * speculative reads of ip_info[] content do not occur without
738 * a memory barrier.
740 * NOTE: Single pass only. Returns non-zero if the queue is not empty
741 * on return.
743 * NOTE: Our 'wi' guarantees that memory loads will not be out of order.
744 * Do NOT reload wi with windex in the below loop unless you also
745 * issue another lfence after reloading it.
747 while (wi - (ri = ip->ip_rindex) > limit) {
748 ri &= MAXCPUFIFO_MASK;
749 copy_func = ip->ip_info[ri].func;
750 copy_arg1 = ip->ip_info[ri].arg1;
751 copy_arg2 = ip->ip_info[ri].arg2;
752 cpu_ccfence();
753 ++ip->ip_rindex;
754 logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
755 #ifdef INVARIANTS
756 if (ipiq_debug && (ip->ip_rindex & 0xFFFFFF) == 0) {
757 kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
758 mycpu->gd_cpuid,
759 copy_func, copy_arg1, copy_arg2,
760 #if defined(__x86_64__)
761 (frame ? (void *)frame->if_rip : NULL));
762 #else
763 NULL);
764 #endif
766 #endif
767 copy_func(copy_arg1, copy_arg2, frame);
768 cpu_sfence();
769 ip->ip_xindex = ip->ip_rindex;
771 #ifdef PANIC_DEBUG
773 * Simulate panics during the processing of an IPI
775 if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
776 if (--panic_ipiq_count == 0) {
777 #ifdef DDB
778 Debugger("PANIC_DEBUG");
779 #else
780 panic("PANIC_DEBUG");
781 #endif
784 #endif
786 --mygd->gd_intr_nesting_level;
789 * Return non-zero if there is still more in the queue. Don't worry
790 * about fencing, we will get another interrupt if necessary.
792 return (ip->ip_rindex != ip->ip_windex);
795 static void
796 lwkt_sync_ipiq(void *arg)
798 volatile cpumask_t *cpumask = arg;
800 ATOMIC_CPUMASK_NANDBIT(*cpumask, mycpu->gd_cpuid);
801 if (CPUMASK_TESTZERO(*cpumask))
802 wakeup(cpumask);
805 void
806 lwkt_synchronize_ipiqs(const char *wmesg)
808 volatile cpumask_t other_cpumask;
810 other_cpumask = smp_active_mask;
811 CPUMASK_ANDMASK(other_cpumask, mycpu->gd_other_cpus);
812 lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq,
813 __DEVOLATILE(void *, &other_cpumask));
815 while (CPUMASK_TESTNZERO(other_cpumask)) {
816 tsleep_interlock(&other_cpumask, 0);
817 if (CPUMASK_TESTNZERO(other_cpumask))
818 tsleep(&other_cpumask, PINTERLOCKED, wmesg, 0);
823 * CPU Synchronization Support
825 * lwkt_cpusync_interlock() - Place specified cpus in a quiescent state.
826 * The current cpu is placed in a hard critical
827 * section.
829 * lwkt_cpusync_deinterlock() - Execute cs_func on specified cpus, including
830 * current cpu if specified, then return.
832 void
833 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *arg)
835 struct lwkt_cpusync cs;
837 lwkt_cpusync_init(&cs, mask, func, arg);
838 lwkt_cpusync_interlock(&cs);
839 lwkt_cpusync_deinterlock(&cs);
843 void
844 lwkt_cpusync_interlock(lwkt_cpusync_t cs)
846 globaldata_t gd = mycpu;
847 cpumask_t mask;
850 * mask acknowledge (cs_mack): 0->mask for stage 1
852 * mack does not include the current cpu.
854 mask = cs->cs_mask;
855 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
856 CPUMASK_ANDMASK(mask, smp_active_mask);
857 CPUMASK_ASSZERO(cs->cs_mack);
859 crit_enter_id("cpusync");
860 if (CPUMASK_TESTNZERO(mask)) {
861 DEBUG_PUSH_INFO("cpusync_interlock");
862 ++ipiq_stat(gd).ipiq_cscount;
863 ++gd->gd_curthread->td_cscount;
864 lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote1, cs);
865 logipiq2(sync_start, (long)CPUMASK_LOWMASK(mask));
866 while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
867 lwkt_process_ipiq();
868 cpu_pause();
869 #ifdef _KERNEL_VIRTUAL
870 vkernel_yield();
871 #endif
873 DEBUG_POP_INFO();
878 * Interlocked cpus have executed remote1 and are polling in remote2.
879 * To deinterlock we clear cs_mack and wait for the cpus to execute
880 * the func and set their bit in cs_mack again.
883 void
884 lwkt_cpusync_deinterlock(lwkt_cpusync_t cs)
886 globaldata_t gd = mycpu;
887 cpumask_t mask;
890 * mask acknowledge (cs_mack): mack->0->mack for stage 2
892 * Clearing cpu bits for polling cpus in cs_mack will cause them to
893 * execute stage 2, which executes the cs_func(cs_data) and then sets
894 * their bit in cs_mack again.
896 * mack does not include the current cpu.
898 mask = cs->cs_mack;
899 cpu_ccfence();
900 CPUMASK_ASSZERO(cs->cs_mack);
901 cpu_ccfence();
902 if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
903 cs->cs_func(cs->cs_data);
904 if (CPUMASK_TESTNZERO(mask)) {
905 DEBUG_PUSH_INFO("cpusync_deinterlock");
906 while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
907 lwkt_process_ipiq();
908 cpu_pause();
909 #ifdef _KERNEL_VIRTUAL
910 vkernel_yield();
911 #endif
913 DEBUG_POP_INFO();
915 * cpusyncq ipis may be left queued without the RQF flag set due to
916 * a non-zero td_cscount, so be sure to process any laggards after
917 * decrementing td_cscount.
919 --gd->gd_curthread->td_cscount;
920 lwkt_process_ipiq();
921 logipiq2(sync_end, (long)CPUMASK_LOWMASK(mask));
923 crit_exit_id("cpusync");
927 * The quick version does not quiesce the target cpu(s) but instead executes
928 * the function on the target cpu(s) and waits for all to acknowledge. This
929 * avoids spinning on the target cpus.
931 * This function is typically only used for kernel_pmap updates. User pmaps
932 * have to be quiesced.
934 void
935 lwkt_cpusync_quick(lwkt_cpusync_t cs)
937 globaldata_t gd = mycpu;
938 cpumask_t mask;
941 * stage-2 cs_mack only.
943 mask = cs->cs_mask;
944 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
945 CPUMASK_ANDMASK(mask, smp_active_mask);
946 CPUMASK_ASSZERO(cs->cs_mack);
948 crit_enter_id("cpusync");
949 if (CPUMASK_TESTNZERO(mask)) {
950 DEBUG_PUSH_INFO("cpusync_interlock");
951 ++ipiq_stat(gd).ipiq_cscount;
952 ++gd->gd_curthread->td_cscount;
953 lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote2, cs);
954 logipiq2(sync_quick, (long)CPUMASK_LOWMASK(mask));
955 while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
956 lwkt_process_ipiq();
957 cpu_pause();
958 #ifdef _KERNEL_VIRTUAL
959 vkernel_yield();
960 #endif
964 * cpusyncq ipis may be left queued without the RQF flag set due to
965 * a non-zero td_cscount, so be sure to process any laggards after
966 * decrementing td_cscount.
968 DEBUG_POP_INFO();
969 --gd->gd_curthread->td_cscount;
970 lwkt_process_ipiq();
972 if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
973 cs->cs_func(cs->cs_data);
974 crit_exit_id("cpusync");
978 * helper IPI remote messaging function.
980 * Called on remote cpu when a new cpu synchronization request has been
981 * sent to us. Execute the run function and adjust cs_count, then requeue
982 * the request so we spin on it.
984 static void
985 lwkt_cpusync_remote1(lwkt_cpusync_t cs)
987 globaldata_t gd = mycpu;
989 ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
990 lwkt_cpusync_remote2(cs);
994 * helper IPI remote messaging function.
996 * Poll for the originator telling us to finish. If it hasn't, requeue
997 * our request so we spin on it.
999 static void
1000 lwkt_cpusync_remote2(lwkt_cpusync_t cs)
1002 globaldata_t gd = mycpu;
1004 if (CPUMASK_TESTMASK(cs->cs_mack, gd->gd_cpumask) == 0) {
1005 if (cs->cs_func)
1006 cs->cs_func(cs->cs_data);
1007 ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
1008 /* cs can be ripped out at this point */
1009 } else {
1010 lwkt_ipiq_t ip;
1011 int wi;
1013 cpu_pause();
1014 #ifdef _KERNEL_VIRTUAL
1015 vkernel_yield();
1016 #endif
1017 cpu_lfence();
1020 * Requeue our IPI to avoid a deep stack recursion. If no other
1021 * IPIs are pending we can just loop up, which should help VMs
1022 * better-detect spin loops.
1024 ip = &gd->gd_cpusyncq;
1026 wi = ip->ip_windex & MAXCPUFIFO_MASK;
1027 ip->ip_info[wi].func = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
1028 ip->ip_info[wi].arg1 = cs;
1029 ip->ip_info[wi].arg2 = 0;
1030 cpu_sfence();
1031 KKASSERT(ip->ip_windex - ip->ip_rindex < MAXCPUFIFO);
1032 ++ip->ip_windex;
1033 if (ipiq_debug && (ip->ip_windex & 0xFFFFFF) == 0) {
1034 kprintf("cpu %d cm=%016jx %016jx f=%p\n",
1035 gd->gd_cpuid,
1036 (intmax_t)CPUMASK_LOWMASK(cs->cs_mask),
1037 (intmax_t)CPUMASK_LOWMASK(cs->cs_mack),
1038 cs->cs_func);
1043 #define LWKT_IPIQ_NLATENCY 8
1044 #define LWKT_IPIQ_NLATENCY_MASK (LWKT_IPIQ_NLATENCY - 1)
1046 struct lwkt_ipiq_latency_log {
1047 int idx; /* unmasked index */
1048 int pad;
1049 uint64_t latency[LWKT_IPIQ_NLATENCY];
1052 static struct lwkt_ipiq_latency_log lwkt_ipiq_latency_logs[MAXCPU];
1053 static uint64_t save_tsc;
1056 * IPI callback (already in a critical section)
1058 static void
1059 lwkt_ipiq_latency_testfunc(void *arg __unused)
1061 uint64_t delta_tsc;
1062 struct globaldata *gd;
1063 struct lwkt_ipiq_latency_log *lat;
1066 * Get delta TSC (assume TSCs are synchronized) as quickly as
1067 * possible and then convert to nanoseconds.
1069 delta_tsc = rdtsc_ordered() - save_tsc;
1070 delta_tsc = delta_tsc * 1000000000LU / tsc_frequency;
1073 * Record in our save array.
1075 gd = mycpu;
1076 lat = &lwkt_ipiq_latency_logs[gd->gd_cpuid];
1077 lat->latency[lat->idx & LWKT_IPIQ_NLATENCY_MASK] = delta_tsc;
1078 ++lat->idx;
1082 * Send IPI from cpu0 to other cpus
1084 * NOTE: Machine must be idle for test to run dependably, and also probably
1085 * a good idea not to be running powerd.
1087 * NOTE: Caller should use 'usched :1 <command>' to lock itself to cpu 0.
1088 * See 'ipitest' script in /usr/src/test/sysperf/ipitest
1090 static int
1091 lwkt_ipiq_latency_test(SYSCTL_HANDLER_ARGS)
1093 struct globaldata *gd;
1094 int cpu = 0, orig_cpu, error;
1096 error = sysctl_handle_int(oidp, &cpu, arg2, req);
1097 if (error || req->newptr == NULL)
1098 return error;
1100 if (cpu == 0)
1101 return 0;
1102 else if (cpu >= ncpus || cpu < 0)
1103 return EINVAL;
1105 orig_cpu = mycpuid;
1106 lwkt_migratecpu(0);
1108 gd = globaldata_find(cpu);
1110 save_tsc = rdtsc_ordered();
1111 lwkt_send_ipiq(gd, lwkt_ipiq_latency_testfunc, NULL);
1113 lwkt_migratecpu(orig_cpu);
1114 return 0;
1117 SYSCTL_NODE(_debug, OID_AUTO, ipiq, CTLFLAG_RW, 0, "");
1118 SYSCTL_PROC(_debug_ipiq, OID_AUTO, latency_test, CTLTYPE_INT | CTLFLAG_RW,
1119 NULL, 0, lwkt_ipiq_latency_test, "I",
1120 "ipi latency test, arg: remote cpuid");
1122 static int
1123 lwkt_ipiq_latency(SYSCTL_HANDLER_ARGS)
1125 struct lwkt_ipiq_latency_log *latency = arg1;
1126 uint64_t lat[LWKT_IPIQ_NLATENCY];
1127 int i;
1129 for (i = 0; i < LWKT_IPIQ_NLATENCY; ++i)
1130 lat[i] = latency->latency[i];
1132 return sysctl_handle_opaque(oidp, lat, sizeof(lat), req);
1135 static void
1136 lwkt_ipiq_latency_init(void *dummy __unused)
1138 int cpu;
1140 for (cpu = 0; cpu < ncpus; ++cpu) {
1141 char name[32];
1143 ksnprintf(name, sizeof(name), "latency%d", cpu);
1144 SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_debug_ipiq),
1145 OID_AUTO, name, CTLTYPE_OPAQUE | CTLFLAG_RD,
1146 &lwkt_ipiq_latency_logs[cpu], 0, lwkt_ipiq_latency,
1147 "LU", "7 latest ipi latency measurement results");
1150 SYSINIT(lwkt_ipiq_latency, SI_SUB_CONFIGURE, SI_ORDER_ANY,
1151 lwkt_ipiq_latency_init, NULL);