2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * $DragonFly: src/sys/kern/lwkt_ipiq.c,v 1.23 2007/11/18 09:53:19 sephe Exp $
38 * This module implements IPI message queueing and the MI portion of IPI
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 #include <machine/cpu.h>
61 #include <vm/vm_param.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_pager.h>
67 #include <vm/vm_extern.h>
68 #include <vm/vm_zone.h>
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 #include <machine/atomic.h>
76 #include <sys/stdint.h>
77 #include <libcaps/thread.h>
78 #include <sys/thread.h>
79 #include <sys/msgport.h>
80 #include <sys/errno.h>
81 #include <libcaps/globaldata.h>
82 #include <machine/cpufunc.h>
83 #include <sys/thread2.h>
84 #include <sys/msgport2.h>
88 #include <machine/lock.h>
89 #include <machine/cpu.h>
90 #include <machine/atomic.h>
95 static __int64_t ipiq_count
; /* total calls to lwkt_send_ipiq*() */
96 static __int64_t ipiq_fifofull
; /* number of fifo full conditions detected */
97 static __int64_t ipiq_avoided
; /* interlock with target avoids cpu ipi */
98 static __int64_t ipiq_passive
; /* passive IPI messages */
99 static __int64_t ipiq_cscount
; /* number of cpu synchronizations */
100 static int ipiq_optimized
= 1; /* XXX temporary sysctl */
102 static int panic_ipiq_cpu
= -1;
103 static int panic_ipiq_count
= 100;
110 SYSCTL_QUAD(_lwkt
, OID_AUTO
, ipiq_count
, CTLFLAG_RW
, &ipiq_count
, 0, "");
111 SYSCTL_QUAD(_lwkt
, OID_AUTO
, ipiq_fifofull
, CTLFLAG_RW
, &ipiq_fifofull
, 0, "");
112 SYSCTL_QUAD(_lwkt
, OID_AUTO
, ipiq_avoided
, CTLFLAG_RW
, &ipiq_avoided
, 0, "");
113 SYSCTL_QUAD(_lwkt
, OID_AUTO
, ipiq_passive
, CTLFLAG_RW
, &ipiq_passive
, 0, "");
114 SYSCTL_QUAD(_lwkt
, OID_AUTO
, ipiq_cscount
, CTLFLAG_RW
, &ipiq_cscount
, 0, "");
115 SYSCTL_INT(_lwkt
, OID_AUTO
, ipiq_optimized
, CTLFLAG_RW
, &ipiq_optimized
, 0, "");
117 SYSCTL_INT(_lwkt
, OID_AUTO
, panic_ipiq_cpu
, CTLFLAG_RW
, &panic_ipiq_cpu
, 0, "");
118 SYSCTL_INT(_lwkt
, OID_AUTO
, panic_ipiq_count
, CTLFLAG_RW
, &panic_ipiq_count
, 0, "");
121 #define IPIQ_STRING "func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
122 #define IPIQ_ARG_SIZE (sizeof(void *) * 2 + sizeof(int) * 2)
124 #if !defined(KTR_IPIQ)
125 #define KTR_IPIQ KTR_ALL
127 KTR_INFO_MASTER(ipiq
);
128 KTR_INFO(KTR_IPIQ
, ipiq
, send_norm
, 0, IPIQ_STRING
, IPIQ_ARG_SIZE
);
129 KTR_INFO(KTR_IPIQ
, ipiq
, send_pasv
, 1, IPIQ_STRING
, IPIQ_ARG_SIZE
);
130 KTR_INFO(KTR_IPIQ
, ipiq
, send_nbio
, 2, IPIQ_STRING
, IPIQ_ARG_SIZE
);
131 KTR_INFO(KTR_IPIQ
, ipiq
, send_fail
, 3, IPIQ_STRING
, IPIQ_ARG_SIZE
);
132 KTR_INFO(KTR_IPIQ
, ipiq
, receive
, 4, IPIQ_STRING
, IPIQ_ARG_SIZE
);
133 KTR_INFO(KTR_IPIQ
, ipiq
, sync_start
, 5, "cpumask=%08x", sizeof(cpumask_t
));
134 KTR_INFO(KTR_IPIQ
, ipiq
, sync_add
, 6, "cpumask=%08x", sizeof(cpumask_t
));
136 #define logipiq(name, func, arg1, arg2, sgd, dgd) \
137 KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
138 #define logipiq2(name, arg) \
139 KTR_LOG(ipiq_ ## name, arg)
146 static int lwkt_process_ipiq_core(globaldata_t sgd
, lwkt_ipiq_t ip
,
147 struct intrframe
*frame
);
148 static void lwkt_cpusync_remote1(lwkt_cpusync_t poll
);
149 static void lwkt_cpusync_remote2(lwkt_cpusync_t poll
);
152 * Send a function execution request to another cpu. The request is queued
153 * on the cpu<->cpu ipiq matrix. Each cpu owns a unique ipiq FIFO for every
154 * possible target cpu. The FIFO can be written.
156 * If the FIFO fills up we have to enable interrupts to avoid an APIC
157 * deadlock and process pending IPIQs while waiting for it to empty.
158 * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
160 * We can safely bump gd_intr_nesting_level because our crit_exit() at the
161 * end will take care of any pending interrupts.
163 * The actual hardware IPI is avoided if the target cpu is already processing
164 * the queue from a prior IPI. It is possible to pipeline IPI messages
165 * very quickly between cpus due to the FIFO hysteresis.
167 * Need not be called from a critical section.
170 lwkt_send_ipiq3(globaldata_t target
, ipifunc3_t func
, void *arg1
, int arg2
)
174 struct globaldata
*gd
= mycpu
;
176 logipiq(send_norm
, func
, arg1
, arg2
, gd
, target
);
179 func(arg1
, arg2
, NULL
);
183 ++gd
->gd_intr_nesting_level
;
185 if (gd
->gd_intr_nesting_level
> 20)
186 panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
188 KKASSERT(curthread
->td_pri
>= TDPRI_CRIT
);
190 ip
= &gd
->gd_ipiq
[target
->gd_cpuid
];
193 * Do not allow the FIFO to become full. Interrupts must be physically
194 * enabled while we liveloop to avoid deadlocking the APIC.
196 if (ip
->ip_windex
- ip
->ip_rindex
> MAXCPUFIFO
/ 2) {
197 unsigned int eflags
= read_eflags();
199 if (atomic_poll_acquire_int(&ip
->ip_npoll
) || ipiq_optimized
== 0)
200 cpu_send_ipiq(target
->gd_cpuid
);
203 while (ip
->ip_windex
- ip
->ip_rindex
> MAXCPUFIFO
/ 4) {
204 KKASSERT(ip
->ip_windex
- ip
->ip_rindex
!= MAXCPUFIFO
- 1);
207 write_eflags(eflags
);
211 * Queue the new message
213 windex
= ip
->ip_windex
& MAXCPUFIFO_MASK
;
214 ip
->ip_func
[windex
] = func
;
215 ip
->ip_arg1
[windex
] = arg1
;
216 ip
->ip_arg2
[windex
] = arg2
;
219 --gd
->gd_intr_nesting_level
;
222 * signal the target cpu that there is work pending.
224 if (atomic_poll_acquire_int(&ip
->ip_npoll
)) {
225 cpu_send_ipiq(target
->gd_cpuid
);
227 if (ipiq_optimized
== 0)
228 cpu_send_ipiq(target
->gd_cpuid
);
232 return(ip
->ip_windex
);
236 * Similar to lwkt_send_ipiq() but this function does not actually initiate
237 * the IPI to the target cpu unless the FIFO has become too full, so it is
240 * This function is used for non-critical IPI messages, such as memory
241 * deallocations. The queue will typically be flushed by the target cpu at
242 * the next clock interrupt.
244 * Need not be called from a critical section.
247 lwkt_send_ipiq3_passive(globaldata_t target
, ipifunc3_t func
,
248 void *arg1
, int arg2
)
252 struct globaldata
*gd
= mycpu
;
254 KKASSERT(target
!= gd
);
256 logipiq(send_pasv
, func
, arg1
, arg2
, gd
, target
);
257 ++gd
->gd_intr_nesting_level
;
259 if (gd
->gd_intr_nesting_level
> 20)
260 panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
262 KKASSERT(curthread
->td_pri
>= TDPRI_CRIT
);
265 ip
= &gd
->gd_ipiq
[target
->gd_cpuid
];
268 * Do not allow the FIFO to become full. Interrupts must be physically
269 * enabled while we liveloop to avoid deadlocking the APIC.
271 if (ip
->ip_windex
- ip
->ip_rindex
> MAXCPUFIFO
/ 2) {
272 unsigned int eflags
= read_eflags();
274 if (atomic_poll_acquire_int(&ip
->ip_npoll
) || ipiq_optimized
== 0)
275 cpu_send_ipiq(target
->gd_cpuid
);
278 while (ip
->ip_windex
- ip
->ip_rindex
> MAXCPUFIFO
/ 4) {
279 KKASSERT(ip
->ip_windex
- ip
->ip_rindex
!= MAXCPUFIFO
- 1);
282 write_eflags(eflags
);
286 * Queue the new message
288 windex
= ip
->ip_windex
& MAXCPUFIFO_MASK
;
289 ip
->ip_func
[windex
] = func
;
290 ip
->ip_arg1
[windex
] = arg1
;
291 ip
->ip_arg2
[windex
] = arg2
;
294 --gd
->gd_intr_nesting_level
;
297 * Do not signal the target cpu, it will pick up the IPI when it next
298 * polls (typically on the next tick).
301 return(ip
->ip_windex
);
305 * Send an IPI request without blocking, return 0 on success, ENOENT on
306 * failure. The actual queueing of the hardware IPI may still force us
307 * to spin and process incoming IPIs but that will eventually go away
308 * when we've gotten rid of the other general IPIs.
311 lwkt_send_ipiq3_nowait(globaldata_t target
, ipifunc3_t func
,
312 void *arg1
, int arg2
)
316 struct globaldata
*gd
= mycpu
;
318 logipiq(send_nbio
, func
, arg1
, arg2
, gd
, target
);
319 KKASSERT(curthread
->td_pri
>= TDPRI_CRIT
);
321 func(arg1
, arg2
, NULL
);
325 ip
= &gd
->gd_ipiq
[target
->gd_cpuid
];
327 if (ip
->ip_windex
- ip
->ip_rindex
>= MAXCPUFIFO
* 2 / 3) {
328 logipiq(send_fail
, func
, arg1
, arg2
, gd
, target
);
331 windex
= ip
->ip_windex
& MAXCPUFIFO_MASK
;
332 ip
->ip_func
[windex
] = func
;
333 ip
->ip_arg1
[windex
] = arg1
;
334 ip
->ip_arg2
[windex
] = arg2
;
339 * This isn't a passive IPI, we still have to signal the target cpu.
341 if (atomic_poll_acquire_int(&ip
->ip_npoll
)) {
342 cpu_send_ipiq(target
->gd_cpuid
);
344 if (ipiq_optimized
== 0)
345 cpu_send_ipiq(target
->gd_cpuid
);
353 * deprecated, used only by fast int forwarding.
356 lwkt_send_ipiq3_bycpu(int dcpu
, ipifunc3_t func
, void *arg1
, int arg2
)
358 return(lwkt_send_ipiq3(globaldata_find(dcpu
), func
, arg1
, arg2
));
362 * Send a message to several target cpus. Typically used for scheduling.
363 * The message will not be sent to stopped cpus.
366 lwkt_send_ipiq3_mask(u_int32_t mask
, ipifunc3_t func
, void *arg1
, int arg2
)
371 mask
&= ~stopped_cpus
;
374 lwkt_send_ipiq3(globaldata_find(cpuid
), func
, arg1
, arg2
);
375 mask
&= ~(1 << cpuid
);
382 * Wait for the remote cpu to finish processing a function.
384 * YYY we have to enable interrupts and process the IPIQ while waiting
385 * for it to empty or we may deadlock with another cpu. Create a CPU_*()
386 * function to do this! YYY we really should 'block' here.
388 * MUST be called from a critical section. This routine may be called
389 * from an interrupt (for example, if an interrupt wakes a foreign thread
393 lwkt_wait_ipiq(globaldata_t target
, int seq
)
396 int maxc
= 100000000;
398 if (target
!= mycpu
) {
399 ip
= &mycpu
->gd_ipiq
[target
->gd_cpuid
];
400 if ((int)(ip
->ip_xindex
- seq
) < 0) {
401 unsigned int eflags
= read_eflags();
403 while ((int)(ip
->ip_xindex
- seq
) < 0) {
408 kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu
->gd_cpuid
, target
->gd_cpuid
, ip
->ip_xindex
- seq
);
410 panic("LWKT_WAIT_IPIQ");
412 * xindex may be modified by another cpu, use a load fence
413 * to ensure that the loop does not use a speculative value
414 * (which may improve performance).
418 write_eflags(eflags
);
424 lwkt_seq_ipiq(globaldata_t target
)
428 ip
= &mycpu
->gd_ipiq
[target
->gd_cpuid
];
429 return(ip
->ip_windex
);
433 * Called from IPI interrupt (like a fast interrupt), which has placed
434 * us in a critical section. The MP lock may or may not be held.
435 * May also be called from doreti or splz, or be reentrantly called
436 * indirectly through the ip_func[] we run.
438 * There are two versions, one where no interrupt frame is available (when
439 * called from the send code and from splz, and one where an interrupt
440 * frame is available.
443 lwkt_process_ipiq(void)
445 globaldata_t gd
= mycpu
;
451 for (n
= 0; n
< ncpus
; ++n
) {
452 if (n
!= gd
->gd_cpuid
) {
453 sgd
= globaldata_find(n
);
456 while (lwkt_process_ipiq_core(sgd
, &ip
[gd
->gd_cpuid
], NULL
))
461 if (gd
->gd_cpusyncq
.ip_rindex
!= gd
->gd_cpusyncq
.ip_windex
) {
462 if (lwkt_process_ipiq_core(gd
, &gd
->gd_cpusyncq
, NULL
)) {
463 if (gd
->gd_curthread
->td_cscount
== 0)
472 lwkt_process_ipiq_frame(struct intrframe
*frame
)
474 globaldata_t gd
= mycpu
;
480 for (n
= 0; n
< ncpus
; ++n
) {
481 if (n
!= gd
->gd_cpuid
) {
482 sgd
= globaldata_find(n
);
485 while (lwkt_process_ipiq_core(sgd
, &ip
[gd
->gd_cpuid
], frame
))
490 if (gd
->gd_cpusyncq
.ip_rindex
!= gd
->gd_cpusyncq
.ip_windex
) {
491 if (lwkt_process_ipiq_core(gd
, &gd
->gd_cpusyncq
, frame
)) {
492 if (gd
->gd_curthread
->td_cscount
== 0)
501 lwkt_process_ipiq_core(globaldata_t sgd
, lwkt_ipiq_t ip
,
502 struct intrframe
*frame
)
506 ipifunc3_t copy_func
;
511 * Obtain the current write index, which is modified by a remote cpu.
512 * Issue a load fence to prevent speculative reads of e.g. data written
513 * by the other cpu prior to it updating the index.
515 KKASSERT(curthread
->td_pri
>= TDPRI_CRIT
);
520 * Note: xindex is only updated after we are sure the function has
521 * finished execution. Beware lwkt_process_ipiq() reentrancy! The
522 * function may send an IPI which may block/drain.
524 * Note: due to additional IPI operations that the callback function
525 * may make, it is possible for both rindex and windex to advance and
526 * thus for rindex to advance passed our cached windex.
528 while (wi
- (ri
= ip
->ip_rindex
) > 0) {
529 ri
&= MAXCPUFIFO_MASK
;
530 copy_func
= ip
->ip_func
[ri
];
531 copy_arg1
= ip
->ip_arg1
[ri
];
532 copy_arg2
= ip
->ip_arg2
[ri
];
535 KKASSERT((ip
->ip_rindex
& MAXCPUFIFO_MASK
) == ((ri
+ 1) & MAXCPUFIFO_MASK
));
536 logipiq(receive
, copy_func
, copy_arg1
, copy_arg2
, sgd
, mycpu
);
537 copy_func(copy_arg1
, copy_arg2
, frame
);
539 ip
->ip_xindex
= ip
->ip_rindex
;
543 * Simulate panics during the processing of an IPI
545 if (mycpu
->gd_cpuid
== panic_ipiq_cpu
&& panic_ipiq_count
) {
546 if (--panic_ipiq_count
== 0) {
548 Debugger("PANIC_DEBUG");
550 panic("PANIC_DEBUG");
558 * Return non-zero if there are more IPI messages pending on this
559 * ipiq. ip_npoll is left set as long as possible to reduce the
560 * number of IPIs queued by the originating cpu, but must be cleared
561 * *BEFORE* checking windex.
563 atomic_poll_release_int(&ip
->ip_npoll
);
564 return(wi
!= ip
->ip_windex
);
568 lwkt_sync_ipiq(void *arg
)
570 cpumask_t
*cpumask
= arg
;
572 atomic_clear_int(cpumask
, mycpu
->gd_cpumask
);
578 lwkt_synchronize_ipiqs(const char *wmesg
)
580 cpumask_t other_cpumask
;
582 other_cpumask
= mycpu
->gd_other_cpus
& smp_active_mask
;
583 lwkt_send_ipiq_mask(other_cpumask
, lwkt_sync_ipiq
, &other_cpumask
);
586 while (other_cpumask
!= 0) {
587 tsleep_interlock(&other_cpumask
);
588 if (other_cpumask
!= 0)
589 tsleep(&other_cpumask
, 0, wmesg
, 0);
597 * CPU Synchronization Support
599 * lwkt_cpusync_simple()
601 * The function is executed synchronously before return on remote cpus.
602 * A lwkt_cpusync_t pointer is passed as an argument. The data can
603 * be accessed via arg->cs_data.
605 * XXX should I just pass the data as an argument to be consistent?
609 lwkt_cpusync_simple(cpumask_t mask
, cpusync_func_t func
, void *data
)
611 struct lwkt_cpusync cmd
;
613 cmd
.cs_run_func
= NULL
;
614 cmd
.cs_fin1_func
= func
;
615 cmd
.cs_fin2_func
= NULL
;
617 lwkt_cpusync_start(mask
& mycpu
->gd_other_cpus
, &cmd
);
618 if (mask
& (1 << mycpu
->gd_cpuid
))
620 lwkt_cpusync_finish(&cmd
);
624 * lwkt_cpusync_fastdata()
626 * The function is executed in tandem with return on remote cpus.
627 * The data is directly passed as an argument. Do not pass pointers to
628 * temporary storage as the storage might have
629 * gone poof by the time the target cpu executes
632 * At the moment lwkt_cpusync is declared on the stack and we must wait
633 * for all remote cpus to ack in lwkt_cpusync_finish(), but as a future
634 * optimization we should be able to put a counter in the globaldata
635 * structure (if it is not otherwise being used) and just poke it and
636 * return without waiting. XXX
639 lwkt_cpusync_fastdata(cpumask_t mask
, cpusync_func2_t func
, void *data
)
641 struct lwkt_cpusync cmd
;
643 cmd
.cs_run_func
= NULL
;
644 cmd
.cs_fin1_func
= NULL
;
645 cmd
.cs_fin2_func
= func
;
647 lwkt_cpusync_start(mask
& mycpu
->gd_other_cpus
, &cmd
);
648 if (mask
& (1 << mycpu
->gd_cpuid
))
650 lwkt_cpusync_finish(&cmd
);
654 * lwkt_cpusync_start()
656 * Start synchronization with a set of target cpus, return once they are
657 * known to be in a synchronization loop. The target cpus will execute
658 * poll->cs_run_func() IN TANDEM WITH THE RETURN.
660 * XXX future: add lwkt_cpusync_start_quick() and require a call to
661 * lwkt_cpusync_add() or lwkt_cpusync_wait(), allowing the caller to
662 * potentially absorb the IPI latency doing something useful.
665 lwkt_cpusync_start(cpumask_t mask
, lwkt_cpusync_t poll
)
667 globaldata_t gd
= mycpu
;
670 poll
->cs_mask
= mask
;
672 logipiq2(sync_start
, mask
& gd
->gd_other_cpus
);
673 poll
->cs_maxcount
= lwkt_send_ipiq_mask(
674 mask
& gd
->gd_other_cpus
& smp_active_mask
,
675 (ipifunc1_t
)lwkt_cpusync_remote1
, poll
);
677 if (mask
& gd
->gd_cpumask
) {
678 if (poll
->cs_run_func
)
679 poll
->cs_run_func(poll
);
682 if (poll
->cs_maxcount
) {
684 ++gd
->gd_curthread
->td_cscount
;
685 while (poll
->cs_count
!= poll
->cs_maxcount
) {
695 lwkt_cpusync_add(cpumask_t mask
, lwkt_cpusync_t poll
)
697 globaldata_t gd
= mycpu
;
702 mask
&= ~poll
->cs_mask
;
703 poll
->cs_mask
|= mask
;
705 logipiq2(sync_add
, mask
& gd
->gd_other_cpus
);
706 count
= lwkt_send_ipiq_mask(
707 mask
& gd
->gd_other_cpus
& smp_active_mask
,
708 (ipifunc1_t
)lwkt_cpusync_remote1
, poll
);
710 if (mask
& gd
->gd_cpumask
) {
711 if (poll
->cs_run_func
)
712 poll
->cs_run_func(poll
);
715 poll
->cs_maxcount
+= count
;
716 if (poll
->cs_maxcount
) {
717 if (poll
->cs_maxcount
== count
)
718 ++gd
->gd_curthread
->td_cscount
;
719 while (poll
->cs_count
!= poll
->cs_maxcount
) {
729 * Finish synchronization with a set of target cpus. The target cpus will
730 * execute cs_fin1_func(poll) prior to this function returning, and will
731 * execute cs_fin2_func(data) IN TANDEM WITH THIS FUNCTION'S RETURN.
733 * If cs_maxcount is non-zero then we are mastering a cpusync with one or
734 * more remote cpus and must account for it in our thread structure.
737 lwkt_cpusync_finish(lwkt_cpusync_t poll
)
739 globaldata_t gd
= mycpu
;
742 if (poll
->cs_mask
& gd
->gd_cpumask
) {
743 if (poll
->cs_fin1_func
)
744 poll
->cs_fin1_func(poll
);
745 if (poll
->cs_fin2_func
)
746 poll
->cs_fin2_func(poll
->cs_data
);
749 if (poll
->cs_maxcount
) {
750 while (poll
->cs_count
!= -(poll
->cs_maxcount
+ 1)) {
755 --gd
->gd_curthread
->td_cscount
;
763 * helper IPI remote messaging function.
765 * Called on remote cpu when a new cpu synchronization request has been
766 * sent to us. Execute the run function and adjust cs_count, then requeue
767 * the request so we spin on it.
770 lwkt_cpusync_remote1(lwkt_cpusync_t poll
)
772 atomic_add_int(&poll
->cs_count
, 1);
773 if (poll
->cs_run_func
)
774 poll
->cs_run_func(poll
);
775 lwkt_cpusync_remote2(poll
);
779 * helper IPI remote messaging function.
781 * Poll for the originator telling us to finish. If it hasn't, requeue
782 * our request so we spin on it. When the originator requests that we
783 * finish we execute cs_fin1_func(poll) synchronously and cs_fin2_func(data)
784 * in tandem with the release.
787 lwkt_cpusync_remote2(lwkt_cpusync_t poll
)
789 if (poll
->cs_count
< 0) {
790 cpusync_func2_t savef
;
793 if (poll
->cs_fin1_func
)
794 poll
->cs_fin1_func(poll
);
795 if (poll
->cs_fin2_func
) {
796 savef
= poll
->cs_fin2_func
;
797 saved
= poll
->cs_data
;
798 atomic_add_int(&poll
->cs_count
, -1);
801 atomic_add_int(&poll
->cs_count
, -1);
804 globaldata_t gd
= mycpu
;
808 ip
= &gd
->gd_cpusyncq
;
809 wi
= ip
->ip_windex
& MAXCPUFIFO_MASK
;
810 ip
->ip_func
[wi
] = (ipifunc3_t
)(ipifunc1_t
)lwkt_cpusync_remote2
;
811 ip
->ip_arg1
[wi
] = poll
;