jme: Enable RSS only after Toeplitz key and redirect table are configured
[dragonfly.git] / sys / dev / netif / jme / if_jme.c
blob47f8bce490508e5662652cce2b00e4c32846db71
1 /*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
30 #include "opt_ifpoll.h"
31 #include "opt_jme.h"
33 #include <sys/param.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/rman.h>
41 #include <sys/serialize.h>
42 #include <sys/serialize2.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/bpf.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_poll.h>
54 #include <net/ifq_var.h>
55 #include <net/if_ringmap.h>
56 #include <net/toeplitz.h>
57 #include <net/toeplitz2.h>
58 #include <net/vlan/if_vlan_var.h>
59 #include <net/vlan/if_vlan_ether.h>
61 #include <netinet/ip.h>
62 #include <netinet/tcp.h>
64 #include <dev/netif/mii_layer/mii.h>
65 #include <dev/netif/mii_layer/miivar.h>
66 #include <dev/netif/mii_layer/jmphyreg.h>
68 #include <bus/pci/pcireg.h>
69 #include <bus/pci/pcivar.h>
70 #include "pcidevs.h"
72 #include <dev/netif/jme/if_jmereg.h>
73 #include <dev/netif/jme/if_jmevar.h>
75 #include "miibus_if.h"
77 #define JME_TICK_CPUID 0 /* DO NOT CHANGE THIS */
79 #define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
81 #ifdef JME_RSS_DEBUG
82 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) \
83 do { \
84 if ((sc)->jme_rss_debug >= (lvl)) \
85 if_printf(&(sc)->arpcom.ac_if, fmt, __VA_ARGS__); \
86 } while (0)
87 #else /* !JME_RSS_DEBUG */
88 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) ((void)0)
89 #endif /* JME_RSS_DEBUG */
91 static int jme_probe(device_t);
92 static int jme_attach(device_t);
93 static int jme_detach(device_t);
94 static int jme_shutdown(device_t);
95 static int jme_suspend(device_t);
96 static int jme_resume(device_t);
98 static int jme_miibus_readreg(device_t, int, int);
99 static int jme_miibus_writereg(device_t, int, int, int);
100 static void jme_miibus_statchg(device_t);
102 static void jme_init(void *);
103 static int jme_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
104 static void jme_start(struct ifnet *, struct ifaltq_subque *);
105 static void jme_watchdog(struct ifnet *);
106 static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
107 static int jme_mediachange(struct ifnet *);
108 #ifdef IFPOLL_ENABLE
109 static void jme_npoll(struct ifnet *, struct ifpoll_info *);
110 static void jme_npoll_status(struct ifnet *);
111 static void jme_npoll_rx(struct ifnet *, void *, int);
112 static void jme_npoll_tx(struct ifnet *, void *, int);
113 #endif
114 static void jme_serialize(struct ifnet *, enum ifnet_serialize);
115 static void jme_deserialize(struct ifnet *, enum ifnet_serialize);
116 static int jme_tryserialize(struct ifnet *, enum ifnet_serialize);
117 #ifdef INVARIANTS
118 static void jme_serialize_assert(struct ifnet *, enum ifnet_serialize,
119 boolean_t);
120 #endif
122 static void jme_intr(void *);
123 static void jme_msix_tx(void *);
124 static void jme_msix_rx(void *);
125 static void jme_msix_status(void *);
126 static void jme_txeof(struct jme_txdata *);
127 static void jme_rxeof(struct jme_rxdata *, int, int);
128 static void jme_rx_intr(struct jme_softc *, uint32_t);
129 static void jme_enable_intr(struct jme_softc *);
130 static void jme_disable_intr(struct jme_softc *);
131 static void jme_rx_restart(struct jme_softc *, uint32_t);
133 static int jme_msix_setup(device_t);
134 static void jme_msix_teardown(device_t, int);
135 static int jme_intr_setup(device_t);
136 static void jme_intr_teardown(device_t);
137 static void jme_msix_try_alloc(device_t);
138 static void jme_msix_free(device_t);
139 static int jme_intr_alloc(device_t);
140 static void jme_intr_free(device_t);
141 static int jme_dma_alloc(struct jme_softc *);
142 static void jme_dma_free(struct jme_softc *);
143 static int jme_init_rx_ring(struct jme_rxdata *);
144 static void jme_init_tx_ring(struct jme_txdata *);
145 static void jme_init_ssb(struct jme_softc *);
146 static int jme_newbuf(struct jme_rxdata *, struct jme_rxdesc *, int);
147 static int jme_encap(struct jme_txdata *, struct mbuf **, int *);
148 static void jme_rxpkt(struct jme_rxdata *, int);
149 static int jme_rxring_dma_alloc(struct jme_rxdata *);
150 static int jme_rxbuf_dma_alloc(struct jme_rxdata *);
151 static int jme_rxbuf_dma_filter(void *, bus_addr_t);
153 static void jme_tick(void *);
154 static void jme_stop(struct jme_softc *);
155 static void jme_reset(struct jme_softc *);
156 static void jme_set_msinum(struct jme_softc *);
157 static void jme_set_vlan(struct jme_softc *);
158 static void jme_set_filter(struct jme_softc *);
159 static void jme_stop_tx(struct jme_softc *);
160 static void jme_stop_rx(struct jme_softc *);
161 static void jme_mac_config(struct jme_softc *);
162 static void jme_reg_macaddr(struct jme_softc *, uint8_t[]);
163 static int jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
164 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
165 #ifdef notyet
166 static void jme_setwol(struct jme_softc *);
167 static void jme_setlinkspeed(struct jme_softc *);
168 #endif
169 static void jme_set_tx_coal(struct jme_softc *);
170 static void jme_set_rx_coal(struct jme_softc *);
171 static void jme_enable_rss(struct jme_softc *);
172 static void jme_disable_rss(struct jme_softc *);
173 static void jme_serialize_skipmain(struct jme_softc *);
174 static void jme_deserialize_skipmain(struct jme_softc *);
175 static void jme_phy_poweron(struct jme_softc *);
176 static void jme_phy_poweroff(struct jme_softc *);
177 static int jme_miiext_read(struct jme_softc *, int);
178 static void jme_miiext_write(struct jme_softc *, int, int);
179 static void jme_phy_init(struct jme_softc *);
181 static void jme_sysctl_node(struct jme_softc *);
182 static int jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS);
183 static int jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
184 static int jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS);
185 static int jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
188 * Devices supported by this driver.
190 static const struct jme_dev {
191 uint16_t jme_vendorid;
192 uint16_t jme_deviceid;
193 uint32_t jme_caps;
194 const char *jme_name;
195 } jme_devs[] = {
196 { PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250,
197 JME_CAP_JUMBO,
198 "JMicron Inc, JMC250 Gigabit Ethernet" },
199 { PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260,
200 JME_CAP_FASTETH,
201 "JMicron Inc, JMC260 Fast Ethernet" },
202 { 0, 0, 0, NULL }
205 static device_method_t jme_methods[] = {
206 /* Device interface. */
207 DEVMETHOD(device_probe, jme_probe),
208 DEVMETHOD(device_attach, jme_attach),
209 DEVMETHOD(device_detach, jme_detach),
210 DEVMETHOD(device_shutdown, jme_shutdown),
211 DEVMETHOD(device_suspend, jme_suspend),
212 DEVMETHOD(device_resume, jme_resume),
214 /* Bus interface. */
215 DEVMETHOD(bus_print_child, bus_generic_print_child),
216 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
218 /* MII interface. */
219 DEVMETHOD(miibus_readreg, jme_miibus_readreg),
220 DEVMETHOD(miibus_writereg, jme_miibus_writereg),
221 DEVMETHOD(miibus_statchg, jme_miibus_statchg),
223 { NULL, NULL }
226 static driver_t jme_driver = {
227 "jme",
228 jme_methods,
229 sizeof(struct jme_softc)
232 static devclass_t jme_devclass;
234 DECLARE_DUMMY_MODULE(if_jme);
235 MODULE_DEPEND(if_jme, miibus, 1, 1, 1);
236 DRIVER_MODULE(if_jme, pci, jme_driver, jme_devclass, NULL, NULL);
237 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, NULL, NULL);
239 static const struct {
240 uint32_t jme_coal;
241 uint32_t jme_comp;
242 uint32_t jme_empty;
243 } jme_rx_status[JME_NRXRING_MAX] = {
244 { INTR_RXQ0_COAL | INTR_RXQ0_COAL_TO, INTR_RXQ0_COMP,
245 INTR_RXQ0_DESC_EMPTY },
246 { INTR_RXQ1_COAL | INTR_RXQ1_COAL_TO, INTR_RXQ1_COMP,
247 INTR_RXQ1_DESC_EMPTY },
248 { INTR_RXQ2_COAL | INTR_RXQ2_COAL_TO, INTR_RXQ2_COMP,
249 INTR_RXQ2_DESC_EMPTY },
250 { INTR_RXQ3_COAL | INTR_RXQ3_COAL_TO, INTR_RXQ3_COMP,
251 INTR_RXQ3_DESC_EMPTY }
254 static int jme_rx_desc_count = JME_RX_DESC_CNT_DEF;
255 static int jme_tx_desc_count = JME_TX_DESC_CNT_DEF;
256 static int jme_rx_ring_count = 0;
257 static int jme_msi_enable = 1;
258 static int jme_msix_enable = 1;
260 TUNABLE_INT("hw.jme.rx_desc_count", &jme_rx_desc_count);
261 TUNABLE_INT("hw.jme.tx_desc_count", &jme_tx_desc_count);
262 TUNABLE_INT("hw.jme.rx_ring_count", &jme_rx_ring_count);
263 TUNABLE_INT("hw.jme.msi.enable", &jme_msi_enable);
264 TUNABLE_INT("hw.jme.msix.enable", &jme_msix_enable);
266 static __inline void
267 jme_setup_rxdesc(struct jme_rxdesc *rxd)
269 struct jme_desc *desc;
271 desc = rxd->rx_desc;
272 desc->buflen = htole32(MCLBYTES);
273 desc->addr_lo = htole32(JME_ADDR_LO(rxd->rx_paddr));
274 desc->addr_hi = htole32(JME_ADDR_HI(rxd->rx_paddr));
275 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
279 * Read a PHY register on the MII of the JMC250.
281 static int
282 jme_miibus_readreg(device_t dev, int phy, int reg)
284 struct jme_softc *sc = device_get_softc(dev);
285 uint32_t val;
286 int i;
288 /* For FPGA version, PHY address 0 should be ignored. */
289 if (sc->jme_caps & JME_CAP_FPGA) {
290 if (phy == 0)
291 return (0);
292 } else {
293 if (sc->jme_phyaddr != phy)
294 return (0);
297 CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
298 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
300 for (i = JME_PHY_TIMEOUT; i > 0; i--) {
301 DELAY(1);
302 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
303 break;
305 if (i == 0) {
306 device_printf(sc->jme_dev, "phy read timeout: "
307 "phy %d, reg %d\n", phy, reg);
308 return (0);
311 return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
315 * Write a PHY register on the MII of the JMC250.
317 static int
318 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
320 struct jme_softc *sc = device_get_softc(dev);
321 int i;
323 /* For FPGA version, PHY address 0 should be ignored. */
324 if (sc->jme_caps & JME_CAP_FPGA) {
325 if (phy == 0)
326 return (0);
327 } else {
328 if (sc->jme_phyaddr != phy)
329 return (0);
332 CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
333 ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
334 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
336 for (i = JME_PHY_TIMEOUT; i > 0; i--) {
337 DELAY(1);
338 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
339 break;
341 if (i == 0) {
342 device_printf(sc->jme_dev, "phy write timeout: "
343 "phy %d, reg %d\n", phy, reg);
346 return (0);
350 * Callback from MII layer when media changes.
352 static void
353 jme_miibus_statchg(device_t dev)
355 struct jme_softc *sc = device_get_softc(dev);
356 struct ifnet *ifp = &sc->arpcom.ac_if;
357 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
358 struct mii_data *mii;
359 struct jme_txdesc *txd;
360 bus_addr_t paddr;
361 int i, r;
363 if (sc->jme_in_tick)
364 jme_serialize_skipmain(sc);
365 ASSERT_IFNET_SERIALIZED_ALL(ifp);
367 if ((ifp->if_flags & IFF_RUNNING) == 0)
368 goto done;
370 mii = device_get_softc(sc->jme_miibus);
372 sc->jme_has_link = FALSE;
373 if ((mii->mii_media_status & IFM_AVALID) != 0) {
374 switch (IFM_SUBTYPE(mii->mii_media_active)) {
375 case IFM_10_T:
376 case IFM_100_TX:
377 sc->jme_has_link = TRUE;
378 break;
379 case IFM_1000_T:
380 if (sc->jme_caps & JME_CAP_FASTETH)
381 break;
382 sc->jme_has_link = TRUE;
383 break;
384 default:
385 break;
390 * Disabling Rx/Tx MACs have a side-effect of resetting
391 * JME_TXNDA/JME_RXNDA register to the first address of
392 * Tx/Rx descriptor address. So driver should reset its
393 * internal procucer/consumer pointer and reclaim any
394 * allocated resources. Note, just saving the value of
395 * JME_TXNDA and JME_RXNDA registers before stopping MAC
396 * and restoring JME_TXNDA/JME_RXNDA register is not
397 * sufficient to make sure correct MAC state because
398 * stopping MAC operation can take a while and hardware
399 * might have updated JME_TXNDA/JME_RXNDA registers
400 * during the stop operation.
403 /* Disable interrupts */
404 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
406 /* Stop driver */
407 ifp->if_flags &= ~IFF_RUNNING;
408 ifq_clr_oactive(&ifp->if_snd);
409 ifp->if_timer = 0;
410 callout_stop(&sc->jme_tick_ch);
412 /* Stop receiver/transmitter. */
413 jme_stop_rx(sc);
414 jme_stop_tx(sc);
416 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
417 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
419 jme_rxeof(rdata, -1, -1);
420 if (rdata->jme_rxhead != NULL)
421 m_freem(rdata->jme_rxhead);
422 JME_RXCHAIN_RESET(rdata);
425 * Reuse configured Rx descriptors and reset
426 * procuder/consumer index.
428 rdata->jme_rx_cons = 0;
430 if (JME_ENABLE_HWRSS(sc))
431 jme_enable_rss(sc);
432 else
433 jme_disable_rss(sc);
435 jme_txeof(tdata);
436 if (tdata->jme_tx_cnt != 0) {
437 /* Remove queued packets for transmit. */
438 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
439 txd = &tdata->jme_txdesc[i];
440 if (txd->tx_m != NULL) {
441 bus_dmamap_unload( tdata->jme_tx_tag,
442 txd->tx_dmamap);
443 m_freem(txd->tx_m);
444 txd->tx_m = NULL;
445 txd->tx_ndesc = 0;
446 IFNET_STAT_INC(ifp, oerrors, 1);
450 jme_init_tx_ring(tdata);
452 /* Initialize shadow status block. */
453 jme_init_ssb(sc);
455 /* Program MAC with resolved speed/duplex/flow-control. */
456 if (sc->jme_has_link) {
457 jme_mac_config(sc);
459 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
461 /* Set Tx ring address to the hardware. */
462 paddr = tdata->jme_tx_ring_paddr;
463 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
464 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
466 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
467 CSR_WRITE_4(sc, JME_RXCSR,
468 sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
470 /* Set Rx ring address to the hardware. */
471 paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
472 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
473 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
476 /* Restart receiver/transmitter. */
477 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
478 RXCSR_RXQ_START);
479 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
482 ifp->if_flags |= IFF_RUNNING;
483 ifq_clr_oactive(&ifp->if_snd);
484 callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
485 JME_TICK_CPUID);
487 #ifdef IFPOLL_ENABLE
488 if (!(ifp->if_flags & IFF_NPOLLING))
489 #endif
490 /* Reenable interrupts. */
491 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
493 done:
494 if (sc->jme_in_tick)
495 jme_deserialize_skipmain(sc);
499 * Get the current interface media status.
501 static void
502 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
504 struct jme_softc *sc = ifp->if_softc;
505 struct mii_data *mii = device_get_softc(sc->jme_miibus);
507 ASSERT_IFNET_SERIALIZED_ALL(ifp);
509 mii_pollstat(mii);
510 ifmr->ifm_status = mii->mii_media_status;
511 ifmr->ifm_active = mii->mii_media_active;
515 * Set hardware to newly-selected media.
517 static int
518 jme_mediachange(struct ifnet *ifp)
520 struct jme_softc *sc = ifp->if_softc;
521 struct mii_data *mii = device_get_softc(sc->jme_miibus);
522 int error;
524 ASSERT_IFNET_SERIALIZED_ALL(ifp);
526 if (mii->mii_instance != 0) {
527 struct mii_softc *miisc;
529 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
530 mii_phy_reset(miisc);
532 error = mii_mediachg(mii);
534 return (error);
537 static int
538 jme_probe(device_t dev)
540 const struct jme_dev *sp;
541 uint16_t vid, did;
543 vid = pci_get_vendor(dev);
544 did = pci_get_device(dev);
545 for (sp = jme_devs; sp->jme_name != NULL; ++sp) {
546 if (vid == sp->jme_vendorid && did == sp->jme_deviceid) {
547 struct jme_softc *sc = device_get_softc(dev);
549 sc->jme_caps = sp->jme_caps;
550 device_set_desc(dev, sp->jme_name);
551 return (0);
554 return (ENXIO);
557 static int
558 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
560 uint32_t reg;
561 int i;
563 *val = 0;
564 for (i = JME_TIMEOUT; i > 0; i--) {
565 reg = CSR_READ_4(sc, JME_SMBCSR);
566 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
567 break;
568 DELAY(1);
571 if (i == 0) {
572 device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
573 return (ETIMEDOUT);
576 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
577 CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
578 for (i = JME_TIMEOUT; i > 0; i--) {
579 DELAY(1);
580 reg = CSR_READ_4(sc, JME_SMBINTF);
581 if ((reg & SMBINTF_CMD_TRIGGER) == 0)
582 break;
585 if (i == 0) {
586 device_printf(sc->jme_dev, "EEPROM read timeout!\n");
587 return (ETIMEDOUT);
590 reg = CSR_READ_4(sc, JME_SMBINTF);
591 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
593 return (0);
596 static int
597 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
599 uint8_t fup, reg, val;
600 uint32_t offset;
601 int match;
603 offset = 0;
604 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
605 fup != JME_EEPROM_SIG0)
606 return (ENOENT);
607 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
608 fup != JME_EEPROM_SIG1)
609 return (ENOENT);
610 match = 0;
611 do {
612 if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
613 break;
614 if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
615 (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
616 if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
617 break;
618 if (reg >= JME_PAR0 &&
619 reg < JME_PAR0 + ETHER_ADDR_LEN) {
620 if (jme_eeprom_read_byte(sc, offset + 2,
621 &val) != 0)
622 break;
623 eaddr[reg - JME_PAR0] = val;
624 match++;
627 /* Check for the end of EEPROM descriptor. */
628 if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
629 break;
630 /* Try next eeprom descriptor. */
631 offset += JME_EEPROM_DESC_BYTES;
632 } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
634 if (match == ETHER_ADDR_LEN)
635 return (0);
637 return (ENOENT);
640 static void
641 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
643 uint32_t par0, par1;
645 /* Read station address. */
646 par0 = CSR_READ_4(sc, JME_PAR0);
647 par1 = CSR_READ_4(sc, JME_PAR1);
648 par1 &= 0xFFFF;
649 if ((par0 == 0 && par1 == 0) || (par0 & 0x1)) {
650 device_printf(sc->jme_dev,
651 "generating fake ethernet address.\n");
652 par0 = karc4random();
653 /* Set OUI to JMicron. */
654 eaddr[0] = 0x00;
655 eaddr[1] = 0x1B;
656 eaddr[2] = 0x8C;
657 eaddr[3] = (par0 >> 16) & 0xff;
658 eaddr[4] = (par0 >> 8) & 0xff;
659 eaddr[5] = par0 & 0xff;
660 } else {
661 eaddr[0] = (par0 >> 0) & 0xFF;
662 eaddr[1] = (par0 >> 8) & 0xFF;
663 eaddr[2] = (par0 >> 16) & 0xFF;
664 eaddr[3] = (par0 >> 24) & 0xFF;
665 eaddr[4] = (par1 >> 0) & 0xFF;
666 eaddr[5] = (par1 >> 8) & 0xFF;
670 static int
671 jme_attach(device_t dev)
673 struct jme_softc *sc = device_get_softc(dev);
674 struct ifnet *ifp = &sc->arpcom.ac_if;
675 uint32_t reg;
676 uint16_t did;
677 uint8_t pcie_ptr, rev;
678 int error = 0, i, j, rx_desc_cnt, coal_max, ring_cnt;
679 uint8_t eaddr[ETHER_ADDR_LEN];
682 * Initialize serializers
684 lwkt_serialize_init(&sc->jme_serialize);
685 lwkt_serialize_init(&sc->jme_cdata.jme_tx_data.jme_tx_serialize);
686 for (i = 0; i < JME_NRXRING_MAX; ++i) {
687 lwkt_serialize_init(
688 &sc->jme_cdata.jme_rx_data[i].jme_rx_serialize);
692 * Get # of RX ring descriptors
694 rx_desc_cnt = device_getenv_int(dev, "rx_desc_count",
695 jme_rx_desc_count);
696 rx_desc_cnt = roundup(rx_desc_cnt, JME_NDESC_ALIGN);
697 if (rx_desc_cnt > JME_NDESC_MAX)
698 rx_desc_cnt = JME_NDESC_MAX;
701 * Get # of TX ring descriptors
703 sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
704 device_getenv_int(dev, "tx_desc_count", jme_tx_desc_count);
705 sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
706 roundup(sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt, JME_NDESC_ALIGN);
707 if (sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt > JME_NDESC_MAX)
708 sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt = JME_NDESC_MAX;
711 * Create TX/RX ring maps.
713 ring_cnt = device_getenv_int(dev, "rx_ring_count", jme_rx_ring_count);
714 /* Require power-of-2 ring count. */
715 sc->jme_rx_rmap = if_ringmap_alloc2(dev, ring_cnt, JME_NRXRING_MAX);
716 sc->jme_cdata.jme_rx_ring_cnt = if_ringmap_count(sc->jme_rx_rmap);
718 /* Only one TX ring is supported. */
719 sc->jme_tx_rmap = if_ringmap_alloc(dev, 1, 1);
722 * NOTE:
723 * There is _no_ need to align or match TX/RX ring maps,
724 * since TX/RX rings are completely indepedent in this
725 * driver.
729 * Initialize serializer array
731 i = 0;
733 KKASSERT(i < JME_NSERIALIZE);
734 sc->jme_serialize_arr[i++] = &sc->jme_serialize;
736 KKASSERT(i < JME_NSERIALIZE);
737 sc->jme_serialize_arr[i++] =
738 &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
740 for (j = 0; j < sc->jme_cdata.jme_rx_ring_cnt; ++j) {
741 KKASSERT(i < JME_NSERIALIZE);
742 sc->jme_serialize_arr[i++] =
743 &sc->jme_cdata.jme_rx_data[j].jme_rx_serialize;
746 KKASSERT(i <= JME_NSERIALIZE);
747 sc->jme_serialize_cnt = i;
750 * Setup TX ring specific data
752 sc->jme_cdata.jme_tx_data.jme_sc = sc;
755 * Setup RX rings specific data
757 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
758 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
760 rdata->jme_sc = sc;
761 rdata->jme_rx_coal = jme_rx_status[i].jme_coal;
762 rdata->jme_rx_comp = jme_rx_status[i].jme_comp;
763 rdata->jme_rx_empty = jme_rx_status[i].jme_empty;
764 rdata->jme_rx_idx = i;
765 rdata->jme_rx_desc_cnt = rx_desc_cnt;
768 sc->jme_dev = dev;
769 sc->jme_lowaddr = BUS_SPACE_MAXADDR;
771 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
773 callout_init_mp(&sc->jme_tick_ch);
775 #ifndef BURN_BRIDGES
776 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
777 uint32_t irq, mem;
779 irq = pci_read_config(dev, PCIR_INTLINE, 4);
780 mem = pci_read_config(dev, JME_PCIR_BAR, 4);
782 device_printf(dev, "chip is in D%d power mode "
783 "-- setting to D0\n", pci_get_powerstate(dev));
785 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
787 pci_write_config(dev, PCIR_INTLINE, irq, 4);
788 pci_write_config(dev, JME_PCIR_BAR, mem, 4);
790 #endif /* !BURN_BRIDGE */
792 /* Enable bus mastering */
793 pci_enable_busmaster(dev);
796 * Allocate IO memory
798 * JMC250 supports both memory mapped and I/O register space
799 * access. Because I/O register access should use different
800 * BARs to access registers it's waste of time to use I/O
801 * register spce access. JMC250 uses 16K to map entire memory
802 * space.
804 sc->jme_mem_rid = JME_PCIR_BAR;
805 sc->jme_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
806 &sc->jme_mem_rid, RF_ACTIVE);
807 if (sc->jme_mem_res == NULL) {
808 device_printf(dev, "can't allocate IO memory\n");
809 return ENXIO;
811 sc->jme_mem_bt = rman_get_bustag(sc->jme_mem_res);
812 sc->jme_mem_bh = rman_get_bushandle(sc->jme_mem_res);
815 * Allocate IRQ
817 error = jme_intr_alloc(dev);
818 if (error)
819 goto fail;
822 * Extract revisions
824 reg = CSR_READ_4(sc, JME_CHIPMODE);
825 if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
826 CHIPMODE_NOT_FPGA) {
827 sc->jme_caps |= JME_CAP_FPGA;
828 if (bootverbose) {
829 device_printf(dev, "FPGA revision: 0x%04x\n",
830 (reg & CHIPMODE_FPGA_REV_MASK) >>
831 CHIPMODE_FPGA_REV_SHIFT);
835 /* NOTE: FM revision is put in the upper 4 bits */
836 rev = ((reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT) << 4;
837 rev |= (reg & CHIPMODE_REVECO_MASK) >> CHIPMODE_REVECO_SHIFT;
838 if (bootverbose)
839 device_printf(dev, "Revision (FM/ECO): 0x%02x\n", rev);
841 did = pci_get_device(dev);
842 switch (did) {
843 case PCI_PRODUCT_JMICRON_JMC250:
844 if (rev == JME_REV1_A2)
845 sc->jme_workaround |= JME_WA_EXTFIFO | JME_WA_HDX;
846 break;
848 case PCI_PRODUCT_JMICRON_JMC260:
849 if (rev == JME_REV2) {
850 sc->jme_lowaddr = BUS_SPACE_MAXADDR_32BIT;
851 sc->jme_phycom0 = 0x608a;
852 } else if (rev == JME_REV2_2) {
853 sc->jme_phycom0 = 0x408a;
855 break;
857 default:
858 panic("unknown device id 0x%04x", did);
860 if (rev >= JME_REV2) {
861 sc->jme_clksrc = GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC;
862 sc->jme_clksrc_1000 = GHC_TXOFL_CLKSRC_1000 |
863 GHC_TXMAC_CLKSRC_1000;
865 if (rev >= JME_REV5)
866 sc->jme_caps |= JME_CAP_PHYPWR;
867 if (rev >= JME_REV6 || rev == JME_REV5 || rev == JME_REV5_1 ||
868 rev == JME_REV5_3) {
869 sc->jme_phycom0 = 0x008a;
870 sc->jme_phycom1 = 0x4109;
871 } else if (rev == JME_REV3_1 || rev == JME_REV3_2) {
872 sc->jme_phycom0 = 0xe088;
875 if (rev >= JME_REV2) {
876 reg = pci_read_config(dev, JME_PCI_SSCTRL, 4);
877 if ((reg & SSCTRL_PHYMASK) == SSCTRL_PHYEA) {
878 sc->jme_phycom0 = 0;
879 sc->jme_phycom1 = 0;
883 /* Reset the ethernet controller. */
884 jme_reset(sc);
886 /* Map MSI/MSI-X vectors */
887 jme_set_msinum(sc);
889 /* Get station address. */
890 reg = CSR_READ_4(sc, JME_SMBCSR);
891 if (reg & SMBCSR_EEPROM_PRESENT)
892 error = jme_eeprom_macaddr(sc, eaddr);
893 if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
894 if (error != 0 && (bootverbose)) {
895 device_printf(dev, "ethernet hardware address "
896 "not found in EEPROM.\n");
898 jme_reg_macaddr(sc, eaddr);
902 * Save PHY address.
903 * Integrated JR0211 has fixed PHY address whereas FPGA version
904 * requires PHY probing to get correct PHY address.
906 if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
907 sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
908 GPREG0_PHY_ADDR_MASK;
909 if (bootverbose) {
910 device_printf(dev, "PHY is at address %d.\n",
911 sc->jme_phyaddr);
913 } else {
914 sc->jme_phyaddr = 0;
917 /* Set max allowable DMA size. */
918 pcie_ptr = pci_get_pciecap_ptr(dev);
919 if (pcie_ptr != 0) {
920 uint16_t ctrl;
922 sc->jme_caps |= JME_CAP_PCIE;
923 ctrl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
924 if (bootverbose) {
925 device_printf(dev, "Read request size : %d bytes.\n",
926 128 << ((ctrl >> 12) & 0x07));
927 device_printf(dev, "TLP payload size : %d bytes.\n",
928 128 << ((ctrl >> 5) & 0x07));
930 switch (ctrl & PCIEM_DEVCTL_MAX_READRQ_MASK) {
931 case PCIEM_DEVCTL_MAX_READRQ_128:
932 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
933 break;
934 case PCIEM_DEVCTL_MAX_READRQ_256:
935 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
936 break;
937 default:
938 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
939 break;
941 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
942 } else {
943 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
944 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
947 #ifdef notyet
948 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
949 sc->jme_caps |= JME_CAP_PMCAP;
950 #endif
953 * Set default coalesce valves
955 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
956 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
957 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
958 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
961 * Adjust coalesce valves, in case that the number of TX/RX
962 * descs are set to small values by users.
964 * NOTE: coal_max will not be zero, since number of descs
965 * must aligned by JME_NDESC_ALIGN (16 currently)
967 coal_max = sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt / 2;
968 if (coal_max < sc->jme_tx_coal_pkt)
969 sc->jme_tx_coal_pkt = coal_max;
971 coal_max = sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt / 2;
972 if (coal_max < sc->jme_rx_coal_pkt)
973 sc->jme_rx_coal_pkt = coal_max;
975 sc->jme_cdata.jme_tx_data.jme_tx_wreg = JME_TXWREG_NSEGS;
978 * Create sysctl tree
980 jme_sysctl_node(sc);
982 /* Allocate DMA stuffs */
983 error = jme_dma_alloc(sc);
984 if (error)
985 goto fail;
987 ifp->if_softc = sc;
988 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
989 ifp->if_init = jme_init;
990 ifp->if_ioctl = jme_ioctl;
991 ifp->if_start = jme_start;
992 #ifdef IFPOLL_ENABLE
993 ifp->if_npoll = jme_npoll;
994 #endif
995 ifp->if_watchdog = jme_watchdog;
996 ifp->if_serialize = jme_serialize;
997 ifp->if_deserialize = jme_deserialize;
998 ifp->if_tryserialize = jme_tryserialize;
999 #ifdef INVARIANTS
1000 ifp->if_serialize_assert = jme_serialize_assert;
1001 #endif
1002 ifp->if_nmbclusters = sc->jme_cdata.jme_rx_ring_cnt *
1003 sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt;
1004 ifq_set_maxlen(&ifp->if_snd,
1005 sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt - JME_TXD_RSVD);
1006 ifq_set_ready(&ifp->if_snd);
1008 /* JMC250 supports Tx/Rx checksum offload and hardware vlan tagging. */
1009 ifp->if_capabilities = IFCAP_HWCSUM |
1010 IFCAP_TSO |
1011 IFCAP_VLAN_MTU |
1012 IFCAP_VLAN_HWTAGGING;
1013 if (sc->jme_cdata.jme_rx_ring_cnt > JME_NRXRING_MIN)
1014 ifp->if_capabilities |= IFCAP_RSS;
1015 ifp->if_capenable = ifp->if_capabilities;
1018 * Disable TXCSUM by default to improve bulk data
1019 * transmit performance (+20Mbps improvement).
1021 ifp->if_capenable &= ~IFCAP_TXCSUM;
1023 if (ifp->if_capenable & IFCAP_TXCSUM)
1024 ifp->if_hwassist |= JME_CSUM_FEATURES;
1025 ifp->if_hwassist |= CSUM_TSO;
1027 /* Set up MII bus. */
1028 error = mii_phy_probe(dev, &sc->jme_miibus,
1029 jme_mediachange, jme_mediastatus);
1030 if (error) {
1031 device_printf(dev, "no PHY found!\n");
1032 goto fail;
1036 * Save PHYADDR for FPGA mode PHY.
1038 if (sc->jme_caps & JME_CAP_FPGA) {
1039 struct mii_data *mii = device_get_softc(sc->jme_miibus);
1041 if (mii->mii_instance != 0) {
1042 struct mii_softc *miisc;
1044 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1045 if (miisc->mii_phy != 0) {
1046 sc->jme_phyaddr = miisc->mii_phy;
1047 break;
1050 if (sc->jme_phyaddr != 0) {
1051 device_printf(sc->jme_dev,
1052 "FPGA PHY is at %d\n", sc->jme_phyaddr);
1053 /* vendor magic. */
1054 jme_miibus_writereg(dev, sc->jme_phyaddr,
1055 JMPHY_CONF, JMPHY_CONF_DEFFIFO);
1057 /* XXX should we clear JME_WA_EXTFIFO */
1062 ether_ifattach(ifp, eaddr, NULL);
1064 /* Tell the upper layer(s) we support long frames. */
1065 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1067 /* Setup the TX ring's CPUID */
1068 ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
1069 ifq_set_hw_serialize(&ifp->if_snd,
1070 &sc->jme_cdata.jme_tx_data.jme_tx_serialize);
1072 error = jme_intr_setup(dev);
1073 if (error) {
1074 ether_ifdetach(ifp);
1075 goto fail;
1078 return 0;
1079 fail:
1080 jme_detach(dev);
1081 return (error);
1084 static int
1085 jme_detach(device_t dev)
1087 struct jme_softc *sc = device_get_softc(dev);
1089 if (device_is_attached(dev)) {
1090 struct ifnet *ifp = &sc->arpcom.ac_if;
1092 ifnet_serialize_all(ifp);
1093 jme_stop(sc);
1094 jme_intr_teardown(dev);
1095 ifnet_deserialize_all(ifp);
1097 ether_ifdetach(ifp);
1100 if (sc->jme_miibus != NULL)
1101 device_delete_child(dev, sc->jme_miibus);
1102 bus_generic_detach(dev);
1104 jme_intr_free(dev);
1106 if (sc->jme_mem_res != NULL) {
1107 bus_release_resource(dev, SYS_RES_MEMORY, sc->jme_mem_rid,
1108 sc->jme_mem_res);
1111 jme_dma_free(sc);
1113 if (sc->jme_rx_rmap != NULL)
1114 if_ringmap_free(sc->jme_rx_rmap);
1115 if (sc->jme_tx_rmap != NULL)
1116 if_ringmap_free(sc->jme_tx_rmap);
1118 return (0);
1121 static void
1122 jme_sysctl_node(struct jme_softc *sc)
1124 struct sysctl_ctx_list *ctx;
1125 struct sysctl_oid *tree;
1126 #ifdef JME_RSS_DEBUG
1127 int r;
1128 #endif
1130 ctx = device_get_sysctl_ctx(sc->jme_dev);
1131 tree = device_get_sysctl_tree(sc->jme_dev);
1132 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1133 "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1134 sc, 0, jme_sysctl_tx_coal_to, "I", "jme tx coalescing timeout");
1136 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1137 "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1138 sc, 0, jme_sysctl_tx_coal_pkt, "I", "jme tx coalescing packet");
1140 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1141 "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1142 sc, 0, jme_sysctl_rx_coal_to, "I", "jme rx coalescing timeout");
1144 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1145 "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1146 sc, 0, jme_sysctl_rx_coal_pkt, "I", "jme rx coalescing packet");
1148 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1149 "rx_desc_count", CTLFLAG_RD,
1150 &sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt,
1151 0, "RX desc count");
1152 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1153 "tx_desc_count", CTLFLAG_RD,
1154 &sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt,
1155 0, "TX desc count");
1156 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1157 "rx_ring_count", CTLFLAG_RD,
1158 &sc->jme_cdata.jme_rx_ring_cnt,
1159 0, "RX ring count");
1160 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1161 "tx_wreg", CTLFLAG_RW,
1162 &sc->jme_cdata.jme_tx_data.jme_tx_wreg, 0,
1163 "# of segments before writing to hardware register");
1165 if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX) {
1166 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1167 "tx_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1168 sc->jme_tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1169 "TX ring CPU map");
1170 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1171 "rx_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1172 sc->jme_rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1173 "RX ring CPU map");
1174 } else {
1175 #ifdef IFPOLL_ENABLE
1176 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1177 "tx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1178 sc->jme_tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1179 "TX poll CPU map");
1180 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1181 "rx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1182 sc->jme_rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1183 "RX poll CPU map");
1184 #endif
1187 #ifdef JME_RSS_DEBUG
1188 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1189 "rss_debug", CTLFLAG_RW, &sc->jme_rss_debug,
1190 0, "RSS debug level");
1191 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1192 char rx_ring_desc[32];
1194 ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1195 "rx_ring%d_pkt", r);
1196 SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1197 rx_ring_desc, CTLFLAG_RW,
1198 &sc->jme_cdata.jme_rx_data[r].jme_rx_pkt, "RXed packets");
1200 ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1201 "rx_ring%d_emp", r);
1202 SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1203 rx_ring_desc, CTLFLAG_RW,
1204 &sc->jme_cdata.jme_rx_data[r].jme_rx_emp,
1205 "# of time RX ring empty");
1207 #endif
1210 static int
1211 jme_dma_alloc(struct jme_softc *sc)
1213 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1214 struct jme_txdesc *txd;
1215 bus_dmamem_t dmem;
1216 int error, i, asize;
1218 asize = __VM_CACHELINE_ALIGN(
1219 tdata->jme_tx_desc_cnt * sizeof(struct jme_txdesc));
1220 tdata->jme_txdesc = kmalloc_cachealign(asize, M_DEVBUF,
1221 M_WAITOK | M_ZERO);
1223 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1224 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
1226 asize = __VM_CACHELINE_ALIGN(
1227 rdata->jme_rx_desc_cnt * sizeof(struct jme_rxdesc));
1228 rdata->jme_rxdesc = kmalloc_cachealign(asize, M_DEVBUF,
1229 M_WAITOK | M_ZERO);
1232 /* Create parent ring tag. */
1233 error = bus_dma_tag_create(NULL,/* parent */
1234 1, JME_RING_BOUNDARY, /* algnmnt, boundary */
1235 sc->jme_lowaddr, /* lowaddr */
1236 BUS_SPACE_MAXADDR, /* highaddr */
1237 NULL, NULL, /* filter, filterarg */
1238 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1239 0, /* nsegments */
1240 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1241 0, /* flags */
1242 &sc->jme_cdata.jme_ring_tag);
1243 if (error) {
1244 device_printf(sc->jme_dev,
1245 "could not create parent ring DMA tag.\n");
1246 return error;
1250 * Create DMA stuffs for TX ring
1252 asize = roundup2(JME_TX_RING_SIZE(tdata), JME_TX_RING_ALIGN);
1253 error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
1254 JME_TX_RING_ALIGN, 0,
1255 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1256 asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1257 if (error) {
1258 device_printf(sc->jme_dev, "could not allocate Tx ring.\n");
1259 return error;
1261 tdata->jme_tx_ring_tag = dmem.dmem_tag;
1262 tdata->jme_tx_ring_map = dmem.dmem_map;
1263 tdata->jme_tx_ring = dmem.dmem_addr;
1264 tdata->jme_tx_ring_paddr = dmem.dmem_busaddr;
1267 * Create DMA stuffs for RX rings
1269 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1270 error = jme_rxring_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1271 if (error)
1272 return error;
1275 /* Create parent buffer tag. */
1276 error = bus_dma_tag_create(NULL,/* parent */
1277 1, 0, /* algnmnt, boundary */
1278 sc->jme_lowaddr, /* lowaddr */
1279 BUS_SPACE_MAXADDR, /* highaddr */
1280 NULL, NULL, /* filter, filterarg */
1281 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1282 0, /* nsegments */
1283 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1284 0, /* flags */
1285 &sc->jme_cdata.jme_buffer_tag);
1286 if (error) {
1287 device_printf(sc->jme_dev,
1288 "could not create parent buffer DMA tag.\n");
1289 return error;
1293 * Create DMA stuffs for shadow status block
1295 asize = roundup2(JME_SSB_SIZE, JME_SSB_ALIGN);
1296 error = bus_dmamem_coherent(sc->jme_cdata.jme_buffer_tag,
1297 JME_SSB_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1298 asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1299 if (error) {
1300 device_printf(sc->jme_dev,
1301 "could not create shadow status block.\n");
1302 return error;
1304 sc->jme_cdata.jme_ssb_tag = dmem.dmem_tag;
1305 sc->jme_cdata.jme_ssb_map = dmem.dmem_map;
1306 sc->jme_cdata.jme_ssb_block = dmem.dmem_addr;
1307 sc->jme_cdata.jme_ssb_block_paddr = dmem.dmem_busaddr;
1310 * Create DMA stuffs for TX buffers
1313 /* Create tag for Tx buffers. */
1314 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1315 1, 0, /* algnmnt, boundary */
1316 BUS_SPACE_MAXADDR, /* lowaddr */
1317 BUS_SPACE_MAXADDR, /* highaddr */
1318 NULL, NULL, /* filter, filterarg */
1319 JME_TSO_MAXSIZE, /* maxsize */
1320 JME_MAXTXSEGS, /* nsegments */
1321 JME_MAXSEGSIZE, /* maxsegsize */
1322 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,/* flags */
1323 &tdata->jme_tx_tag);
1324 if (error != 0) {
1325 device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1326 return error;
1329 /* Create DMA maps for Tx buffers. */
1330 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1331 txd = &tdata->jme_txdesc[i];
1332 error = bus_dmamap_create(tdata->jme_tx_tag,
1333 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1334 &txd->tx_dmamap);
1335 if (error) {
1336 int j;
1338 device_printf(sc->jme_dev,
1339 "could not create %dth Tx dmamap.\n", i);
1341 for (j = 0; j < i; ++j) {
1342 txd = &tdata->jme_txdesc[j];
1343 bus_dmamap_destroy(tdata->jme_tx_tag,
1344 txd->tx_dmamap);
1346 bus_dma_tag_destroy(tdata->jme_tx_tag);
1347 tdata->jme_tx_tag = NULL;
1348 return error;
1353 * Create DMA stuffs for RX buffers
1355 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1356 error = jme_rxbuf_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1357 if (error)
1358 return error;
1360 return 0;
1363 static void
1364 jme_dma_free(struct jme_softc *sc)
1366 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1367 struct jme_txdesc *txd;
1368 struct jme_rxdesc *rxd;
1369 struct jme_rxdata *rdata;
1370 int i, r;
1372 /* Tx ring */
1373 if (tdata->jme_tx_ring_tag != NULL) {
1374 bus_dmamap_unload(tdata->jme_tx_ring_tag,
1375 tdata->jme_tx_ring_map);
1376 bus_dmamem_free(tdata->jme_tx_ring_tag,
1377 tdata->jme_tx_ring, tdata->jme_tx_ring_map);
1378 bus_dma_tag_destroy(tdata->jme_tx_ring_tag);
1379 tdata->jme_tx_ring_tag = NULL;
1382 /* Rx ring */
1383 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1384 rdata = &sc->jme_cdata.jme_rx_data[r];
1385 if (rdata->jme_rx_ring_tag != NULL) {
1386 bus_dmamap_unload(rdata->jme_rx_ring_tag,
1387 rdata->jme_rx_ring_map);
1388 bus_dmamem_free(rdata->jme_rx_ring_tag,
1389 rdata->jme_rx_ring,
1390 rdata->jme_rx_ring_map);
1391 bus_dma_tag_destroy(rdata->jme_rx_ring_tag);
1392 rdata->jme_rx_ring_tag = NULL;
1396 /* Tx buffers */
1397 if (tdata->jme_tx_tag != NULL) {
1398 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1399 txd = &tdata->jme_txdesc[i];
1400 bus_dmamap_destroy(tdata->jme_tx_tag, txd->tx_dmamap);
1402 bus_dma_tag_destroy(tdata->jme_tx_tag);
1403 tdata->jme_tx_tag = NULL;
1406 /* Rx buffers */
1407 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1408 rdata = &sc->jme_cdata.jme_rx_data[r];
1409 if (rdata->jme_rx_tag != NULL) {
1410 for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
1411 rxd = &rdata->jme_rxdesc[i];
1412 bus_dmamap_destroy(rdata->jme_rx_tag,
1413 rxd->rx_dmamap);
1415 bus_dmamap_destroy(rdata->jme_rx_tag,
1416 rdata->jme_rx_sparemap);
1417 bus_dma_tag_destroy(rdata->jme_rx_tag);
1418 rdata->jme_rx_tag = NULL;
1422 /* Shadow status block. */
1423 if (sc->jme_cdata.jme_ssb_tag != NULL) {
1424 bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1425 sc->jme_cdata.jme_ssb_map);
1426 bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1427 sc->jme_cdata.jme_ssb_block,
1428 sc->jme_cdata.jme_ssb_map);
1429 bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1430 sc->jme_cdata.jme_ssb_tag = NULL;
1433 if (sc->jme_cdata.jme_buffer_tag != NULL) {
1434 bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1435 sc->jme_cdata.jme_buffer_tag = NULL;
1437 if (sc->jme_cdata.jme_ring_tag != NULL) {
1438 bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1439 sc->jme_cdata.jme_ring_tag = NULL;
1442 if (tdata->jme_txdesc != NULL) {
1443 kfree(tdata->jme_txdesc, M_DEVBUF);
1444 tdata->jme_txdesc = NULL;
1446 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1447 rdata = &sc->jme_cdata.jme_rx_data[r];
1448 if (rdata->jme_rxdesc != NULL) {
1449 kfree(rdata->jme_rxdesc, M_DEVBUF);
1450 rdata->jme_rxdesc = NULL;
1456 * Make sure the interface is stopped at reboot time.
1458 static int
1459 jme_shutdown(device_t dev)
1461 return jme_suspend(dev);
1464 #ifdef notyet
1466 * Unlike other ethernet controllers, JMC250 requires
1467 * explicit resetting link speed to 10/100Mbps as gigabit
1468 * link will cunsume more power than 375mA.
1469 * Note, we reset the link speed to 10/100Mbps with
1470 * auto-negotiation but we don't know whether that operation
1471 * would succeed or not as we have no control after powering
1472 * off. If the renegotiation fail WOL may not work. Running
1473 * at 1Gbps draws more power than 375mA at 3.3V which is
1474 * specified in PCI specification and that would result in
1475 * complete shutdowning power to ethernet controller.
1477 * TODO
1478 * Save current negotiated media speed/duplex/flow-control
1479 * to softc and restore the same link again after resuming.
1480 * PHY handling such as power down/resetting to 100Mbps
1481 * may be better handled in suspend method in phy driver.
1483 static void
1484 jme_setlinkspeed(struct jme_softc *sc)
1486 struct mii_data *mii;
1487 int aneg, i;
1489 JME_LOCK_ASSERT(sc);
1491 mii = device_get_softc(sc->jme_miibus);
1492 mii_pollstat(mii);
1493 aneg = 0;
1494 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1495 switch IFM_SUBTYPE(mii->mii_media_active) {
1496 case IFM_10_T:
1497 case IFM_100_TX:
1498 return;
1499 case IFM_1000_T:
1500 aneg++;
1501 default:
1502 break;
1505 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1506 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1507 ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1508 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1509 BMCR_AUTOEN | BMCR_STARTNEG);
1510 DELAY(1000);
1511 if (aneg != 0) {
1512 /* Poll link state until jme(4) get a 10/100 link. */
1513 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1514 mii_pollstat(mii);
1515 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1516 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1517 case IFM_10_T:
1518 case IFM_100_TX:
1519 jme_mac_config(sc);
1520 return;
1521 default:
1522 break;
1525 JME_UNLOCK(sc);
1526 pause("jmelnk", hz);
1527 JME_LOCK(sc);
1529 if (i == MII_ANEGTICKS_GIGE)
1530 device_printf(sc->jme_dev, "establishing link failed, "
1531 "WOL may not work!");
1534 * No link, force MAC to have 100Mbps, full-duplex link.
1535 * This is the last resort and may/may not work.
1537 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1538 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1539 jme_mac_config(sc);
1542 static void
1543 jme_setwol(struct jme_softc *sc)
1545 struct ifnet *ifp = &sc->arpcom.ac_if;
1546 uint32_t gpr, pmcs;
1547 uint16_t pmstat;
1548 int pmc;
1550 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1551 /* No PME capability, PHY power down. */
1552 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1553 MII_BMCR, BMCR_PDOWN);
1554 return;
1557 gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1558 pmcs = CSR_READ_4(sc, JME_PMCS);
1559 pmcs &= ~PMCS_WOL_ENB_MASK;
1560 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1561 pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1562 /* Enable PME message. */
1563 gpr |= GPREG0_PME_ENB;
1564 /* For gigabit controllers, reset link speed to 10/100. */
1565 if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1566 jme_setlinkspeed(sc);
1569 CSR_WRITE_4(sc, JME_PMCS, pmcs);
1570 CSR_WRITE_4(sc, JME_GPREG0, gpr);
1572 /* Request PME. */
1573 pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1574 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1575 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1576 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1577 pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1578 if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1579 /* No WOL, PHY power down. */
1580 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1581 MII_BMCR, BMCR_PDOWN);
1584 #endif
1586 static int
1587 jme_suspend(device_t dev)
1589 struct jme_softc *sc = device_get_softc(dev);
1590 struct ifnet *ifp = &sc->arpcom.ac_if;
1592 ifnet_serialize_all(ifp);
1593 jme_stop(sc);
1594 #ifdef notyet
1595 jme_setwol(sc);
1596 #endif
1597 ifnet_deserialize_all(ifp);
1599 return (0);
1602 static int
1603 jme_resume(device_t dev)
1605 struct jme_softc *sc = device_get_softc(dev);
1606 struct ifnet *ifp = &sc->arpcom.ac_if;
1607 #ifdef notyet
1608 int pmc;
1609 #endif
1611 ifnet_serialize_all(ifp);
1613 #ifdef notyet
1614 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1615 uint16_t pmstat;
1617 pmstat = pci_read_config(sc->jme_dev,
1618 pmc + PCIR_POWER_STATUS, 2);
1619 /* Disable PME clear PME status. */
1620 pmstat &= ~PCIM_PSTAT_PMEENABLE;
1621 pci_write_config(sc->jme_dev,
1622 pmc + PCIR_POWER_STATUS, pmstat, 2);
1624 #endif
1626 if (ifp->if_flags & IFF_UP)
1627 jme_init(sc);
1629 ifnet_deserialize_all(ifp);
1631 return (0);
1634 static __inline int
1635 jme_tso_pullup(struct mbuf **mp)
1637 int hoff, iphlen, thoff;
1638 struct mbuf *m;
1640 m = *mp;
1641 KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
1643 iphlen = m->m_pkthdr.csum_iphlen;
1644 thoff = m->m_pkthdr.csum_thlen;
1645 hoff = m->m_pkthdr.csum_lhlen;
1647 KASSERT(iphlen > 0, ("invalid ip hlen"));
1648 KASSERT(thoff > 0, ("invalid tcp hlen"));
1649 KASSERT(hoff > 0, ("invalid ether hlen"));
1651 if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
1652 m = m_pullup(m, hoff + iphlen + thoff);
1653 if (m == NULL) {
1654 *mp = NULL;
1655 return ENOBUFS;
1657 *mp = m;
1659 return 0;
1662 static int
1663 jme_encap(struct jme_txdata *tdata, struct mbuf **m_head, int *segs_used)
1665 struct jme_txdesc *txd;
1666 struct jme_desc *desc;
1667 struct mbuf *m;
1668 bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1669 int maxsegs, nsegs;
1670 int error, i, prod, symbol_desc;
1671 uint32_t cflags, flag64, mss;
1673 M_ASSERTPKTHDR((*m_head));
1675 if ((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) {
1676 /* XXX Is this necessary? */
1677 error = jme_tso_pullup(m_head);
1678 if (error)
1679 return error;
1682 prod = tdata->jme_tx_prod;
1683 txd = &tdata->jme_txdesc[prod];
1685 if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
1686 symbol_desc = 1;
1687 else
1688 symbol_desc = 0;
1690 maxsegs = (tdata->jme_tx_desc_cnt - tdata->jme_tx_cnt) -
1691 (JME_TXD_RSVD + symbol_desc);
1692 if (maxsegs > JME_MAXTXSEGS)
1693 maxsegs = JME_MAXTXSEGS;
1694 KASSERT(maxsegs >= (JME_TXD_SPARE - symbol_desc),
1695 ("not enough segments %d", maxsegs));
1697 error = bus_dmamap_load_mbuf_defrag(tdata->jme_tx_tag,
1698 txd->tx_dmamap, m_head,
1699 txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1700 if (error)
1701 goto fail;
1702 *segs_used += nsegs;
1704 bus_dmamap_sync(tdata->jme_tx_tag, txd->tx_dmamap,
1705 BUS_DMASYNC_PREWRITE);
1707 m = *m_head;
1708 cflags = 0;
1709 mss = 0;
1711 /* Configure checksum offload. */
1712 if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1713 mss = (uint32_t)m->m_pkthdr.tso_segsz << JME_TD_MSS_SHIFT;
1714 cflags |= JME_TD_TSO;
1715 } else if (m->m_pkthdr.csum_flags & JME_CSUM_FEATURES) {
1716 if (m->m_pkthdr.csum_flags & CSUM_IP)
1717 cflags |= JME_TD_IPCSUM;
1718 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1719 cflags |= JME_TD_TCPCSUM;
1720 if (m->m_pkthdr.csum_flags & CSUM_UDP)
1721 cflags |= JME_TD_UDPCSUM;
1724 /* Configure VLAN. */
1725 if (m->m_flags & M_VLANTAG) {
1726 cflags |= (m->m_pkthdr.ether_vlantag & JME_TD_VLAN_MASK);
1727 cflags |= JME_TD_VLAN_TAG;
1730 desc = &tdata->jme_tx_ring[prod];
1731 desc->flags = htole32(cflags);
1732 desc->addr_hi = htole32(m->m_pkthdr.len);
1733 if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1735 * Use 64bits TX desc chain format.
1737 * The first TX desc of the chain, which is setup here,
1738 * is just a symbol TX desc carrying no payload.
1740 flag64 = JME_TD_64BIT;
1741 desc->buflen = htole32(mss);
1742 desc->addr_lo = 0;
1744 *segs_used += 1;
1746 /* No effective TX desc is consumed */
1747 i = 0;
1748 } else {
1750 * Use 32bits TX desc chain format.
1752 * The first TX desc of the chain, which is setup here,
1753 * is an effective TX desc carrying the first segment of
1754 * the mbuf chain.
1756 flag64 = 0;
1757 desc->buflen = htole32(mss | txsegs[0].ds_len);
1758 desc->addr_lo = htole32(JME_ADDR_LO(txsegs[0].ds_addr));
1760 /* One effective TX desc is consumed */
1761 i = 1;
1763 tdata->jme_tx_cnt++;
1764 KKASSERT(tdata->jme_tx_cnt - i < tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1765 JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1767 txd->tx_ndesc = 1 - i;
1768 for (; i < nsegs; i++) {
1769 desc = &tdata->jme_tx_ring[prod];
1770 desc->buflen = htole32(txsegs[i].ds_len);
1771 desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1772 desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1773 desc->flags = htole32(JME_TD_OWN | flag64);
1775 tdata->jme_tx_cnt++;
1776 KKASSERT(tdata->jme_tx_cnt <=
1777 tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1778 JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1781 /* Update producer index. */
1782 tdata->jme_tx_prod = prod;
1784 * Finally request interrupt and give the first descriptor
1785 * owenership to hardware.
1787 desc = txd->tx_desc;
1788 desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1790 txd->tx_m = m;
1791 txd->tx_ndesc += nsegs;
1793 return 0;
1794 fail:
1795 m_freem(*m_head);
1796 *m_head = NULL;
1797 return error;
1800 static void
1801 jme_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1803 struct jme_softc *sc = ifp->if_softc;
1804 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1805 struct mbuf *m_head;
1806 int enq = 0;
1808 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1809 ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
1811 if (!sc->jme_has_link) {
1812 ifq_purge(&ifp->if_snd);
1813 return;
1816 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1817 return;
1819 if (tdata->jme_tx_cnt >= JME_TX_DESC_HIWAT(tdata))
1820 jme_txeof(tdata);
1822 while (!ifq_is_empty(&ifp->if_snd)) {
1824 * Check number of available TX descs, always
1825 * leave JME_TXD_RSVD free TX descs.
1827 if (tdata->jme_tx_cnt + JME_TXD_SPARE >
1828 tdata->jme_tx_desc_cnt - JME_TXD_RSVD) {
1829 ifq_set_oactive(&ifp->if_snd);
1830 break;
1833 m_head = ifq_dequeue(&ifp->if_snd);
1834 if (m_head == NULL)
1835 break;
1838 * Pack the data into the transmit ring. If we
1839 * don't have room, set the OACTIVE flag and wait
1840 * for the NIC to drain the ring.
1842 if (jme_encap(tdata, &m_head, &enq)) {
1843 KKASSERT(m_head == NULL);
1844 IFNET_STAT_INC(ifp, oerrors, 1);
1845 ifq_set_oactive(&ifp->if_snd);
1846 break;
1849 if (enq >= tdata->jme_tx_wreg) {
1850 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr |
1851 TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1852 enq = 0;
1856 * If there's a BPF listener, bounce a copy of this frame
1857 * to him.
1859 ETHER_BPF_MTAP(ifp, m_head);
1861 /* Set a timeout in case the chip goes out to lunch. */
1862 ifp->if_timer = JME_TX_TIMEOUT;
1865 if (enq > 0) {
1867 * Reading TXCSR takes very long time under heavy load
1868 * so cache TXCSR value and writes the ORed value with
1869 * the kick command to the TXCSR. This saves one register
1870 * access cycle.
1872 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1873 TXCSR_TXQ_N_START(TXCSR_TXQ0));
1877 static void
1878 jme_watchdog(struct ifnet *ifp)
1880 struct jme_softc *sc = ifp->if_softc;
1881 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1883 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1885 if (!sc->jme_has_link) {
1886 if_printf(ifp, "watchdog timeout (missed link)\n");
1887 IFNET_STAT_INC(ifp, oerrors, 1);
1888 jme_init(sc);
1889 return;
1892 jme_txeof(tdata);
1893 if (tdata->jme_tx_cnt == 0) {
1894 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
1895 "-- recovering\n");
1896 if (!ifq_is_empty(&ifp->if_snd))
1897 if_devstart(ifp);
1898 return;
1901 if_printf(ifp, "watchdog timeout\n");
1902 IFNET_STAT_INC(ifp, oerrors, 1);
1903 jme_init(sc);
1904 if (!ifq_is_empty(&ifp->if_snd))
1905 if_devstart(ifp);
1908 static int
1909 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1911 struct jme_softc *sc = ifp->if_softc;
1912 struct mii_data *mii = device_get_softc(sc->jme_miibus);
1913 struct ifreq *ifr = (struct ifreq *)data;
1914 int error = 0, mask;
1916 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1918 switch (cmd) {
1919 case SIOCSIFMTU:
1920 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1921 (!(sc->jme_caps & JME_CAP_JUMBO) &&
1922 ifr->ifr_mtu > JME_MAX_MTU)) {
1923 error = EINVAL;
1924 break;
1927 if (ifp->if_mtu != ifr->ifr_mtu) {
1929 * No special configuration is required when interface
1930 * MTU is changed but availability of Tx checksum
1931 * offload should be chcked against new MTU size as
1932 * FIFO size is just 2K.
1934 if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1935 ifp->if_capenable &=
1936 ~(IFCAP_TXCSUM | IFCAP_TSO);
1937 ifp->if_hwassist &=
1938 ~(JME_CSUM_FEATURES | CSUM_TSO);
1940 ifp->if_mtu = ifr->ifr_mtu;
1941 if (ifp->if_flags & IFF_RUNNING)
1942 jme_init(sc);
1944 break;
1946 case SIOCSIFFLAGS:
1947 if (ifp->if_flags & IFF_UP) {
1948 if (ifp->if_flags & IFF_RUNNING) {
1949 if ((ifp->if_flags ^ sc->jme_if_flags) &
1950 (IFF_PROMISC | IFF_ALLMULTI))
1951 jme_set_filter(sc);
1952 } else {
1953 jme_init(sc);
1955 } else {
1956 if (ifp->if_flags & IFF_RUNNING)
1957 jme_stop(sc);
1959 sc->jme_if_flags = ifp->if_flags;
1960 break;
1962 case SIOCADDMULTI:
1963 case SIOCDELMULTI:
1964 if (ifp->if_flags & IFF_RUNNING)
1965 jme_set_filter(sc);
1966 break;
1968 case SIOCSIFMEDIA:
1969 case SIOCGIFMEDIA:
1970 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1971 break;
1973 case SIOCSIFCAP:
1974 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1976 if ((mask & IFCAP_TXCSUM) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1977 ifp->if_capenable ^= IFCAP_TXCSUM;
1978 if (ifp->if_capenable & IFCAP_TXCSUM)
1979 ifp->if_hwassist |= JME_CSUM_FEATURES;
1980 else
1981 ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1983 if (mask & IFCAP_RXCSUM) {
1984 uint32_t reg;
1986 ifp->if_capenable ^= IFCAP_RXCSUM;
1987 reg = CSR_READ_4(sc, JME_RXMAC);
1988 reg &= ~RXMAC_CSUM_ENB;
1989 if (ifp->if_capenable & IFCAP_RXCSUM)
1990 reg |= RXMAC_CSUM_ENB;
1991 CSR_WRITE_4(sc, JME_RXMAC, reg);
1994 if (mask & IFCAP_VLAN_HWTAGGING) {
1995 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1996 jme_set_vlan(sc);
1999 if ((mask & IFCAP_TSO) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
2000 ifp->if_capenable ^= IFCAP_TSO;
2001 if (ifp->if_capenable & IFCAP_TSO)
2002 ifp->if_hwassist |= CSUM_TSO;
2003 else
2004 ifp->if_hwassist &= ~CSUM_TSO;
2007 if (mask & IFCAP_RSS)
2008 ifp->if_capenable ^= IFCAP_RSS;
2009 break;
2011 default:
2012 error = ether_ioctl(ifp, cmd, data);
2013 break;
2015 return (error);
2018 static void
2019 jme_mac_config(struct jme_softc *sc)
2021 struct mii_data *mii;
2022 uint32_t ghc, rxmac, txmac, txpause, gp1;
2023 int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
2025 mii = device_get_softc(sc->jme_miibus);
2027 CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2028 DELAY(10);
2029 CSR_WRITE_4(sc, JME_GHC, 0);
2030 ghc = 0;
2031 rxmac = CSR_READ_4(sc, JME_RXMAC);
2032 rxmac &= ~RXMAC_FC_ENB;
2033 txmac = CSR_READ_4(sc, JME_TXMAC);
2034 txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2035 txpause = CSR_READ_4(sc, JME_TXPFC);
2036 txpause &= ~TXPFC_PAUSE_ENB;
2037 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2038 ghc |= GHC_FULL_DUPLEX;
2039 rxmac &= ~RXMAC_COLL_DET_ENB;
2040 txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2041 TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2042 TXMAC_FRAME_BURST);
2043 #ifdef notyet
2044 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2045 txpause |= TXPFC_PAUSE_ENB;
2046 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2047 rxmac |= RXMAC_FC_ENB;
2048 #endif
2049 /* Disable retry transmit timer/retry limit. */
2050 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2051 ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2052 } else {
2053 rxmac |= RXMAC_COLL_DET_ENB;
2054 txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2055 /* Enable retry transmit timer/retry limit. */
2056 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2057 TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2061 * Reprogram Tx/Rx MACs with resolved speed/duplex.
2063 gp1 = CSR_READ_4(sc, JME_GPREG1);
2064 gp1 &= ~GPREG1_WA_HDX;
2066 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2067 hdx = 1;
2069 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2070 case IFM_10_T:
2071 ghc |= GHC_SPEED_10 | sc->jme_clksrc;
2072 if (hdx)
2073 gp1 |= GPREG1_WA_HDX;
2074 break;
2076 case IFM_100_TX:
2077 ghc |= GHC_SPEED_100 | sc->jme_clksrc;
2078 if (hdx)
2079 gp1 |= GPREG1_WA_HDX;
2082 * Use extended FIFO depth to workaround CRC errors
2083 * emitted by chips before JMC250B
2085 phyconf = JMPHY_CONF_EXTFIFO;
2086 break;
2088 case IFM_1000_T:
2089 if (sc->jme_caps & JME_CAP_FASTETH)
2090 break;
2092 ghc |= GHC_SPEED_1000 | sc->jme_clksrc_1000;
2093 if (hdx)
2094 txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2095 break;
2097 default:
2098 break;
2100 CSR_WRITE_4(sc, JME_GHC, ghc);
2101 CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2102 CSR_WRITE_4(sc, JME_TXMAC, txmac);
2103 CSR_WRITE_4(sc, JME_TXPFC, txpause);
2105 if (sc->jme_workaround & JME_WA_EXTFIFO) {
2106 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2107 JMPHY_CONF, phyconf);
2109 if (sc->jme_workaround & JME_WA_HDX)
2110 CSR_WRITE_4(sc, JME_GPREG1, gp1);
2113 static void
2114 jme_intr(void *xsc)
2116 struct jme_softc *sc = xsc;
2117 struct ifnet *ifp = &sc->arpcom.ac_if;
2118 uint32_t status;
2119 int r;
2121 ASSERT_SERIALIZED(&sc->jme_serialize);
2123 status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2124 if (status == 0 || status == 0xFFFFFFFF)
2125 return;
2127 /* Disable interrupts. */
2128 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2130 status = CSR_READ_4(sc, JME_INTR_STATUS);
2131 if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2132 goto back;
2134 /* Reset PCC counter/timer and Ack interrupts. */
2135 status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2137 if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
2138 status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2140 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2141 if (status & jme_rx_status[r].jme_coal) {
2142 status |= jme_rx_status[r].jme_coal |
2143 jme_rx_status[r].jme_comp;
2147 CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2149 if (ifp->if_flags & IFF_RUNNING) {
2150 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2152 if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
2153 jme_rx_intr(sc, status);
2155 if (status & INTR_RXQ_DESC_EMPTY) {
2157 * Notify hardware availability of new Rx buffers.
2158 * Reading RXCSR takes very long time under heavy
2159 * load so cache RXCSR value and writes the ORed
2160 * value with the kick command to the RXCSR. This
2161 * saves one register access cycle.
2163 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2164 RXCSR_RX_ENB | RXCSR_RXQ_START);
2167 if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
2168 lwkt_serialize_enter(&tdata->jme_tx_serialize);
2169 jme_txeof(tdata);
2170 if (!ifq_is_empty(&ifp->if_snd))
2171 if_devstart(ifp);
2172 lwkt_serialize_exit(&tdata->jme_tx_serialize);
2175 back:
2176 /* Reenable interrupts. */
2177 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2180 static void
2181 jme_txeof(struct jme_txdata *tdata)
2183 struct ifnet *ifp = &tdata->jme_sc->arpcom.ac_if;
2184 int cons;
2186 cons = tdata->jme_tx_cons;
2187 if (cons == tdata->jme_tx_prod)
2188 return;
2191 * Go through our Tx list and free mbufs for those
2192 * frames which have been transmitted.
2194 while (cons != tdata->jme_tx_prod) {
2195 struct jme_txdesc *txd, *next_txd;
2196 uint32_t status, next_status;
2197 int next_cons, nsegs;
2199 txd = &tdata->jme_txdesc[cons];
2200 KASSERT(txd->tx_m != NULL,
2201 ("%s: freeing NULL mbuf!", __func__));
2203 status = le32toh(txd->tx_desc->flags);
2204 if ((status & JME_TD_OWN) == JME_TD_OWN)
2205 break;
2208 * NOTE:
2209 * This chip will always update the TX descriptor's
2210 * buflen field and this updating always happens
2211 * after clearing the OWN bit, so even if the OWN
2212 * bit is cleared by the chip, we still don't sure
2213 * about whether the buflen field has been updated
2214 * by the chip or not. To avoid this race, we wait
2215 * for the next TX descriptor's OWN bit to be cleared
2216 * by the chip before reusing this TX descriptor.
2218 next_cons = cons;
2219 JME_DESC_ADD(next_cons, txd->tx_ndesc, tdata->jme_tx_desc_cnt);
2220 next_txd = &tdata->jme_txdesc[next_cons];
2221 if (next_txd->tx_m == NULL)
2222 break;
2223 next_status = le32toh(next_txd->tx_desc->flags);
2224 if ((next_status & JME_TD_OWN) == JME_TD_OWN)
2225 break;
2227 if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
2228 IFNET_STAT_INC(ifp, oerrors, 1);
2229 } else {
2230 IFNET_STAT_INC(ifp, opackets, 1);
2231 if (status & JME_TD_COLLISION) {
2232 IFNET_STAT_INC(ifp, collisions,
2233 le32toh(txd->tx_desc->buflen) &
2234 JME_TD_BUF_LEN_MASK);
2239 * Only the first descriptor of multi-descriptor
2240 * transmission is updated so driver have to skip entire
2241 * chained buffers for the transmiited frame. In other
2242 * words, JME_TD_OWN bit is valid only at the first
2243 * descriptor of a multi-descriptor transmission.
2245 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2246 tdata->jme_tx_ring[cons].flags = 0;
2247 JME_DESC_INC(cons, tdata->jme_tx_desc_cnt);
2250 /* Reclaim transferred mbufs. */
2251 bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2252 m_freem(txd->tx_m);
2253 txd->tx_m = NULL;
2254 tdata->jme_tx_cnt -= txd->tx_ndesc;
2255 KASSERT(tdata->jme_tx_cnt >= 0,
2256 ("%s: Active Tx desc counter was garbled", __func__));
2257 txd->tx_ndesc = 0;
2259 tdata->jme_tx_cons = cons;
2261 /* 1 for symbol TX descriptor */
2262 if (tdata->jme_tx_cnt <= JME_MAXTXSEGS + 1)
2263 ifp->if_timer = 0;
2265 if (tdata->jme_tx_cnt + JME_TXD_SPARE <=
2266 tdata->jme_tx_desc_cnt - JME_TXD_RSVD)
2267 ifq_clr_oactive(&ifp->if_snd);
2270 static __inline void
2271 jme_discard_rxbufs(struct jme_rxdata *rdata, int cons, int count)
2273 int i;
2275 for (i = 0; i < count; ++i) {
2276 jme_setup_rxdesc(&rdata->jme_rxdesc[cons]);
2277 JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2281 static __inline struct pktinfo *
2282 jme_pktinfo(struct pktinfo *pi, uint32_t flags)
2284 if (flags & JME_RD_IPV4)
2285 pi->pi_netisr = NETISR_IP;
2286 else if (flags & JME_RD_IPV6)
2287 pi->pi_netisr = NETISR_IPV6;
2288 else
2289 return NULL;
2291 pi->pi_flags = 0;
2292 pi->pi_l3proto = IPPROTO_UNKNOWN;
2294 if (flags & JME_RD_MORE_FRAG)
2295 pi->pi_flags |= PKTINFO_FLAG_FRAG;
2296 else if (flags & JME_RD_TCP)
2297 pi->pi_l3proto = IPPROTO_TCP;
2298 else if (flags & JME_RD_UDP)
2299 pi->pi_l3proto = IPPROTO_UDP;
2300 else
2301 pi = NULL;
2302 return pi;
2305 /* Receive a frame. */
2306 static void
2307 jme_rxpkt(struct jme_rxdata *rdata, int cpuid)
2309 struct ifnet *ifp = &rdata->jme_sc->arpcom.ac_if;
2310 struct jme_desc *desc;
2311 struct jme_rxdesc *rxd;
2312 struct mbuf *mp, *m;
2313 uint32_t flags, status, hash, hashinfo;
2314 int cons, count, nsegs;
2316 cons = rdata->jme_rx_cons;
2317 desc = &rdata->jme_rx_ring[cons];
2319 flags = le32toh(desc->flags);
2320 status = le32toh(desc->buflen);
2321 hash = le32toh(desc->addr_hi);
2322 hashinfo = le32toh(desc->addr_lo);
2323 nsegs = JME_RX_NSEGS(status);
2325 if (nsegs > 1) {
2326 /* Skip the first descriptor. */
2327 JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2330 * Clear the OWN bit of the following RX descriptors;
2331 * hardware will not clear the OWN bit except the first
2332 * RX descriptor.
2334 * Since the first RX descriptor is setup, i.e. OWN bit
2335 * on, before its followins RX descriptors, leaving the
2336 * OWN bit on the following RX descriptors will trick
2337 * the hardware into thinking that the following RX
2338 * descriptors are ready to be used too.
2340 for (count = 1; count < nsegs; count++,
2341 JME_DESC_INC(cons, rdata->jme_rx_desc_cnt))
2342 rdata->jme_rx_ring[cons].flags = 0;
2344 cons = rdata->jme_rx_cons;
2347 JME_RSS_DPRINTF(rdata->jme_sc, 15, "ring%d, flags 0x%08x, "
2348 "hash 0x%08x, hash info 0x%08x\n",
2349 rdata->jme_rx_idx, flags, hash, hashinfo);
2351 if (status & JME_RX_ERR_STAT) {
2352 IFNET_STAT_INC(ifp, ierrors, 1);
2353 jme_discard_rxbufs(rdata, cons, nsegs);
2354 #ifdef JME_SHOW_ERRORS
2355 if_printf(ifp, "%s : receive error = 0x%b\n",
2356 __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2357 #endif
2358 rdata->jme_rx_cons += nsegs;
2359 rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2360 return;
2363 rdata->jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2364 for (count = 0; count < nsegs; count++,
2365 JME_DESC_INC(cons, rdata->jme_rx_desc_cnt)) {
2366 rxd = &rdata->jme_rxdesc[cons];
2367 mp = rxd->rx_m;
2369 /* Add a new receive buffer to the ring. */
2370 if (jme_newbuf(rdata, rxd, 0) != 0) {
2371 IFNET_STAT_INC(ifp, iqdrops, 1);
2372 /* Reuse buffer. */
2373 jme_discard_rxbufs(rdata, cons, nsegs - count);
2374 if (rdata->jme_rxhead != NULL) {
2375 m_freem(rdata->jme_rxhead);
2376 JME_RXCHAIN_RESET(rdata);
2378 break;
2382 * Assume we've received a full sized frame.
2383 * Actual size is fixed when we encounter the end of
2384 * multi-segmented frame.
2386 mp->m_len = MCLBYTES;
2388 /* Chain received mbufs. */
2389 if (rdata->jme_rxhead == NULL) {
2390 rdata->jme_rxhead = mp;
2391 rdata->jme_rxtail = mp;
2392 } else {
2394 * Receive processor can receive a maximum frame
2395 * size of 65535 bytes.
2397 rdata->jme_rxtail->m_next = mp;
2398 rdata->jme_rxtail = mp;
2401 if (count == nsegs - 1) {
2402 struct pktinfo pi0, *pi;
2404 /* Last desc. for this frame. */
2405 m = rdata->jme_rxhead;
2406 m->m_pkthdr.len = rdata->jme_rxlen;
2407 if (nsegs > 1) {
2408 /* Set first mbuf size. */
2409 m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2410 /* Set last mbuf size. */
2411 mp->m_len = rdata->jme_rxlen -
2412 ((MCLBYTES - JME_RX_PAD_BYTES) +
2413 (MCLBYTES * (nsegs - 2)));
2414 } else {
2415 m->m_len = rdata->jme_rxlen;
2417 m->m_pkthdr.rcvif = ifp;
2420 * Account for 10bytes auto padding which is used
2421 * to align IP header on 32bit boundary. Also note,
2422 * CRC bytes is automatically removed by the
2423 * hardware.
2425 m->m_data += JME_RX_PAD_BYTES;
2427 /* Set checksum information. */
2428 if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2429 (flags & JME_RD_IPV4)) {
2430 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2431 if (flags & JME_RD_IPCSUM)
2432 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2433 if ((flags & JME_RD_MORE_FRAG) == 0 &&
2434 ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2435 (JME_RD_TCP | JME_RD_TCPCSUM) ||
2436 (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2437 (JME_RD_UDP | JME_RD_UDPCSUM))) {
2438 m->m_pkthdr.csum_flags |=
2439 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2440 m->m_pkthdr.csum_data = 0xffff;
2444 /* Check for VLAN tagged packets. */
2445 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
2446 (flags & JME_RD_VLAN_TAG)) {
2447 m->m_pkthdr.ether_vlantag =
2448 flags & JME_RD_VLAN_MASK;
2449 m->m_flags |= M_VLANTAG;
2452 IFNET_STAT_INC(ifp, ipackets, 1);
2454 if (ifp->if_capenable & IFCAP_RSS)
2455 pi = jme_pktinfo(&pi0, flags);
2456 else
2457 pi = NULL;
2459 if (pi != NULL &&
2460 (hashinfo & JME_RD_HASH_FN_MASK) ==
2461 JME_RD_HASH_FN_TOEPLITZ) {
2462 m_sethash(m, toeplitz_hash(hash));
2463 m->m_flags |= M_CKHASH;
2466 #ifdef JME_RSS_DEBUG
2467 if (pi != NULL) {
2468 JME_RSS_DPRINTF(rdata->jme_sc, 10,
2469 "isr %d flags %08x, l3 %d %s\n",
2470 pi->pi_netisr, pi->pi_flags,
2471 pi->pi_l3proto,
2472 (m->m_flags & M_HASH) ? "hash" : "");
2474 #endif
2476 /* Pass it on. */
2477 ifp->if_input(ifp, m, pi, cpuid);
2479 /* Reset mbuf chains. */
2480 JME_RXCHAIN_RESET(rdata);
2481 #ifdef JME_RSS_DEBUG
2482 rdata->jme_rx_pkt++;
2483 #endif
2487 rdata->jme_rx_cons += nsegs;
2488 rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2491 static void
2492 jme_rxeof(struct jme_rxdata *rdata, int count, int cpuid)
2494 struct jme_desc *desc;
2495 int nsegs, pktlen;
2497 for (;;) {
2498 #ifdef IFPOLL_ENABLE
2499 if (count >= 0 && count-- == 0)
2500 break;
2501 #endif
2502 desc = &rdata->jme_rx_ring[rdata->jme_rx_cons];
2503 if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2504 break;
2505 if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2506 break;
2509 * Check number of segments against received bytes.
2510 * Non-matching value would indicate that hardware
2511 * is still trying to update Rx descriptors. I'm not
2512 * sure whether this check is needed.
2514 nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2515 pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2516 if (nsegs != howmany(pktlen, MCLBYTES)) {
2517 if_printf(&rdata->jme_sc->arpcom.ac_if,
2518 "RX fragment count(%d) and "
2519 "packet size(%d) mismach\n", nsegs, pktlen);
2520 break;
2524 * NOTE:
2525 * RSS hash and hash information may _not_ be set by the
2526 * hardware even if the OWN bit is cleared and VALID bit
2527 * is set.
2529 * If the RSS information is not delivered by the hardware
2530 * yet, we MUST NOT accept this packet, let alone reusing
2531 * its RX descriptor. If this packet was accepted and its
2532 * RX descriptor was reused before hardware delivering the
2533 * RSS information, the RX buffer's address would be trashed
2534 * by the RSS information delivered by the hardware.
2536 if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
2537 struct jme_rxdesc *rxd;
2538 uint32_t hashinfo;
2540 hashinfo = le32toh(desc->addr_lo);
2541 rxd = &rdata->jme_rxdesc[rdata->jme_rx_cons];
2544 * This test should be enough to detect the pending
2545 * RSS information delivery, given:
2546 * - If RSS hash is not calculated, the hashinfo
2547 * will be 0. Howvever, the lower 32bits of RX
2548 * buffers' physical address will never be 0.
2549 * (see jme_rxbuf_dma_filter)
2550 * - If RSS hash is calculated, the lowest 4 bits
2551 * of hashinfo will be set, while the RX buffers
2552 * are at least 2K aligned.
2554 if (hashinfo == JME_ADDR_LO(rxd->rx_paddr)) {
2555 #ifdef JME_SHOW_RSSWB
2556 if_printf(&rdata->jme_sc->arpcom.ac_if,
2557 "RSS is not written back yet\n");
2558 #endif
2559 break;
2563 /* Received a frame. */
2564 jme_rxpkt(rdata, cpuid);
2568 static void
2569 jme_tick(void *xsc)
2571 struct jme_softc *sc = xsc;
2572 struct mii_data *mii = device_get_softc(sc->jme_miibus);
2574 lwkt_serialize_enter(&sc->jme_serialize);
2576 KKASSERT(mycpuid == JME_TICK_CPUID);
2578 sc->jme_in_tick = TRUE;
2579 mii_tick(mii);
2580 sc->jme_in_tick = FALSE;
2582 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2584 lwkt_serialize_exit(&sc->jme_serialize);
2587 static void
2588 jme_reset(struct jme_softc *sc)
2590 uint32_t val;
2592 /* Make sure that TX and RX are stopped */
2593 jme_stop_tx(sc);
2594 jme_stop_rx(sc);
2596 /* Start reset */
2597 CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2598 DELAY(20);
2601 * Hold reset bit before stop reset
2604 /* Disable TXMAC and TXOFL clock sources */
2605 CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2606 /* Disable RXMAC clock source */
2607 val = CSR_READ_4(sc, JME_GPREG1);
2608 CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2609 /* Flush */
2610 CSR_READ_4(sc, JME_GHC);
2612 /* Stop reset */
2613 CSR_WRITE_4(sc, JME_GHC, 0);
2614 /* Flush */
2615 CSR_READ_4(sc, JME_GHC);
2618 * Clear reset bit after stop reset
2621 /* Enable TXMAC and TXOFL clock sources */
2622 CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2623 /* Enable RXMAC clock source */
2624 val = CSR_READ_4(sc, JME_GPREG1);
2625 CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2626 /* Flush */
2627 CSR_READ_4(sc, JME_GHC);
2629 /* Disable TXMAC and TXOFL clock sources */
2630 CSR_WRITE_4(sc, JME_GHC, 0);
2631 /* Disable RXMAC clock source */
2632 val = CSR_READ_4(sc, JME_GPREG1);
2633 CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2634 /* Flush */
2635 CSR_READ_4(sc, JME_GHC);
2637 /* Enable TX and RX */
2638 val = CSR_READ_4(sc, JME_TXCSR);
2639 CSR_WRITE_4(sc, JME_TXCSR, val | TXCSR_TX_ENB);
2640 val = CSR_READ_4(sc, JME_RXCSR);
2641 CSR_WRITE_4(sc, JME_RXCSR, val | RXCSR_RX_ENB);
2642 /* Flush */
2643 CSR_READ_4(sc, JME_TXCSR);
2644 CSR_READ_4(sc, JME_RXCSR);
2646 /* Enable TXMAC and TXOFL clock sources */
2647 CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2648 /* Disable RXMAC clock source */
2649 val = CSR_READ_4(sc, JME_GPREG1);
2650 CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2651 /* Flush */
2652 CSR_READ_4(sc, JME_GHC);
2654 /* Stop TX and RX */
2655 jme_stop_tx(sc);
2656 jme_stop_rx(sc);
2659 static void
2660 jme_init(void *xsc)
2662 struct jme_softc *sc = xsc;
2663 struct ifnet *ifp = &sc->arpcom.ac_if;
2664 struct mii_data *mii;
2665 uint8_t eaddr[ETHER_ADDR_LEN];
2666 bus_addr_t paddr;
2667 uint32_t reg;
2668 int error, r;
2670 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2673 * Cancel any pending I/O.
2675 jme_stop(sc);
2678 * Reset the chip to a known state.
2680 jme_reset(sc);
2683 * Setup MSI/MSI-X vectors to interrupts mapping
2685 jme_set_msinum(sc);
2687 if (JME_ENABLE_HWRSS(sc))
2688 jme_enable_rss(sc);
2689 else
2690 jme_disable_rss(sc);
2692 /* Init RX descriptors */
2693 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2694 error = jme_init_rx_ring(&sc->jme_cdata.jme_rx_data[r]);
2695 if (error) {
2696 if_printf(ifp, "initialization failed: "
2697 "no memory for %dth RX ring.\n", r);
2698 jme_stop(sc);
2699 return;
2703 /* Init TX descriptors */
2704 jme_init_tx_ring(&sc->jme_cdata.jme_tx_data);
2706 /* Initialize shadow status block. */
2707 jme_init_ssb(sc);
2709 /* Reprogram the station address. */
2710 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2711 CSR_WRITE_4(sc, JME_PAR0,
2712 eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2713 CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2716 * Configure Tx queue.
2717 * Tx priority queue weight value : 0
2718 * Tx FIFO threshold for processing next packet : 16QW
2719 * Maximum Tx DMA length : 512
2720 * Allow Tx DMA burst.
2722 sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2723 sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2724 sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2725 sc->jme_txcsr |= sc->jme_tx_dma_size;
2726 sc->jme_txcsr |= TXCSR_DMA_BURST;
2727 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2729 /* Set Tx descriptor counter. */
2730 CSR_WRITE_4(sc, JME_TXQDC, sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt);
2732 /* Set Tx ring address to the hardware. */
2733 paddr = sc->jme_cdata.jme_tx_data.jme_tx_ring_paddr;
2734 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2735 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2737 /* Configure TxMAC parameters. */
2738 reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2739 reg |= TXMAC_THRESH_1_PKT;
2740 reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2741 CSR_WRITE_4(sc, JME_TXMAC, reg);
2744 * Configure Rx queue.
2745 * FIFO full threshold for transmitting Tx pause packet : 128T
2746 * FIFO threshold for processing next packet : 128QW
2747 * Rx queue 0 select
2748 * Max Rx DMA length : 128
2749 * Rx descriptor retry : 32
2750 * Rx descriptor retry time gap : 256ns
2751 * Don't receive runt/bad frame.
2753 sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2754 #if 0
2756 * Since Rx FIFO size is 4K bytes, receiving frames larger
2757 * than 4K bytes will suffer from Rx FIFO overruns. So
2758 * decrease FIFO threshold to reduce the FIFO overruns for
2759 * frames larger than 4000 bytes.
2760 * For best performance of standard MTU sized frames use
2761 * maximum allowable FIFO threshold, 128QW.
2763 if ((ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN) >
2764 JME_RX_FIFO_SIZE)
2765 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2766 else
2767 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2768 #else
2769 /* Improve PCI Express compatibility */
2770 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2771 #endif
2772 sc->jme_rxcsr |= sc->jme_rx_dma_size;
2773 sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2774 sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2775 /* XXX TODO DROP_BAD */
2777 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2778 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
2780 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
2782 /* Set Rx descriptor counter. */
2783 CSR_WRITE_4(sc, JME_RXQDC, rdata->jme_rx_desc_cnt);
2785 /* Set Rx ring address to the hardware. */
2786 paddr = rdata->jme_rx_ring_paddr;
2787 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2788 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2791 /* Clear receive filter. */
2792 CSR_WRITE_4(sc, JME_RXMAC, 0);
2794 /* Set up the receive filter. */
2795 jme_set_filter(sc);
2796 jme_set_vlan(sc);
2799 * Disable all WOL bits as WOL can interfere normal Rx
2800 * operation. Also clear WOL detection status bits.
2802 reg = CSR_READ_4(sc, JME_PMCS);
2803 reg &= ~PMCS_WOL_ENB_MASK;
2804 CSR_WRITE_4(sc, JME_PMCS, reg);
2807 * Pad 10bytes right before received frame. This will greatly
2808 * help Rx performance on strict-alignment architectures as
2809 * it does not need to copy the frame to align the payload.
2811 reg = CSR_READ_4(sc, JME_RXMAC);
2812 reg |= RXMAC_PAD_10BYTES;
2814 if (ifp->if_capenable & IFCAP_RXCSUM)
2815 reg |= RXMAC_CSUM_ENB;
2816 CSR_WRITE_4(sc, JME_RXMAC, reg);
2818 /* Configure general purpose reg0 */
2819 reg = CSR_READ_4(sc, JME_GPREG0);
2820 reg &= ~GPREG0_PCC_UNIT_MASK;
2821 /* Set PCC timer resolution to micro-seconds unit. */
2822 reg |= GPREG0_PCC_UNIT_US;
2824 * Disable all shadow register posting as we have to read
2825 * JME_INTR_STATUS register in jme_intr. Also it seems
2826 * that it's hard to synchronize interrupt status between
2827 * hardware and software with shadow posting due to
2828 * requirements of bus_dmamap_sync(9).
2830 reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2831 GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2832 GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2833 GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2834 /* Disable posting of DW0. */
2835 reg &= ~GPREG0_POST_DW0_ENB;
2836 /* Clear PME message. */
2837 reg &= ~GPREG0_PME_ENB;
2838 /* Set PHY address. */
2839 reg &= ~GPREG0_PHY_ADDR_MASK;
2840 reg |= sc->jme_phyaddr;
2841 CSR_WRITE_4(sc, JME_GPREG0, reg);
2843 /* Configure Tx queue 0 packet completion coalescing. */
2844 jme_set_tx_coal(sc);
2846 /* Configure Rx queues packet completion coalescing. */
2847 jme_set_rx_coal(sc);
2849 /* Configure shadow status block but don't enable posting. */
2850 paddr = sc->jme_cdata.jme_ssb_block_paddr;
2851 CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2852 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2854 /* Disable Timer 1 and Timer 2. */
2855 CSR_WRITE_4(sc, JME_TIMER1, 0);
2856 CSR_WRITE_4(sc, JME_TIMER2, 0);
2858 /* Configure retry transmit period, retry limit value. */
2859 CSR_WRITE_4(sc, JME_TXTRHD,
2860 ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2861 TXTRHD_RT_PERIOD_MASK) |
2862 ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2863 TXTRHD_RT_LIMIT_SHIFT));
2865 #ifdef IFPOLL_ENABLE
2866 if (!(ifp->if_flags & IFF_NPOLLING))
2867 #endif
2868 /* Initialize the interrupt mask. */
2869 jme_enable_intr(sc);
2870 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2873 * Enabling Tx/Rx DMA engines and Rx queue processing is
2874 * done after detection of valid link in jme_miibus_statchg.
2876 sc->jme_has_link = FALSE;
2878 jme_phy_init(sc);
2880 /* Set the current media. */
2881 mii = device_get_softc(sc->jme_miibus);
2882 mii_mediachg(mii);
2884 callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
2885 JME_TICK_CPUID);
2887 ifp->if_flags |= IFF_RUNNING;
2888 ifq_clr_oactive(&ifp->if_snd);
2891 static void
2892 jme_stop(struct jme_softc *sc)
2894 struct ifnet *ifp = &sc->arpcom.ac_if;
2895 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2896 struct jme_txdesc *txd;
2897 struct jme_rxdesc *rxd;
2898 struct jme_rxdata *rdata;
2899 int i, r;
2901 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2904 * Mark the interface down and cancel the watchdog timer.
2906 ifp->if_flags &= ~IFF_RUNNING;
2907 ifq_clr_oactive(&ifp->if_snd);
2908 ifp->if_timer = 0;
2910 callout_stop(&sc->jme_tick_ch);
2911 sc->jme_has_link = FALSE;
2914 * Disable interrupts.
2916 jme_disable_intr(sc);
2917 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2919 /* Disable updating shadow status block. */
2920 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2921 CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2923 /* Stop receiver, transmitter. */
2924 jme_stop_rx(sc);
2925 jme_stop_tx(sc);
2928 * Free partial finished RX segments
2930 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2931 rdata = &sc->jme_cdata.jme_rx_data[r];
2932 if (rdata->jme_rxhead != NULL)
2933 m_freem(rdata->jme_rxhead);
2934 JME_RXCHAIN_RESET(rdata);
2938 * Free RX and TX mbufs still in the queues.
2940 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2941 rdata = &sc->jme_cdata.jme_rx_data[r];
2942 for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
2943 rxd = &rdata->jme_rxdesc[i];
2944 if (rxd->rx_m != NULL) {
2945 bus_dmamap_unload(rdata->jme_rx_tag,
2946 rxd->rx_dmamap);
2947 m_freem(rxd->rx_m);
2948 rxd->rx_m = NULL;
2952 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
2953 txd = &tdata->jme_txdesc[i];
2954 if (txd->tx_m != NULL) {
2955 bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2956 m_freem(txd->tx_m);
2957 txd->tx_m = NULL;
2958 txd->tx_ndesc = 0;
2963 static void
2964 jme_stop_tx(struct jme_softc *sc)
2966 uint32_t reg;
2967 int i;
2969 reg = CSR_READ_4(sc, JME_TXCSR);
2970 if ((reg & TXCSR_TX_ENB) == 0)
2971 return;
2972 reg &= ~TXCSR_TX_ENB;
2973 CSR_WRITE_4(sc, JME_TXCSR, reg);
2974 for (i = JME_TIMEOUT; i > 0; i--) {
2975 DELAY(1);
2976 if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2977 break;
2979 if (i == 0)
2980 device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2983 static void
2984 jme_stop_rx(struct jme_softc *sc)
2986 uint32_t reg;
2987 int i;
2989 reg = CSR_READ_4(sc, JME_RXCSR);
2990 if ((reg & RXCSR_RX_ENB) == 0)
2991 return;
2992 reg &= ~RXCSR_RX_ENB;
2993 CSR_WRITE_4(sc, JME_RXCSR, reg);
2994 for (i = JME_TIMEOUT; i > 0; i--) {
2995 DELAY(1);
2996 if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2997 break;
2999 if (i == 0)
3000 device_printf(sc->jme_dev, "stopping receiver timeout!\n");
3003 static void
3004 jme_init_tx_ring(struct jme_txdata *tdata)
3006 struct jme_txdesc *txd;
3007 int i;
3009 tdata->jme_tx_prod = 0;
3010 tdata->jme_tx_cons = 0;
3011 tdata->jme_tx_cnt = 0;
3013 bzero(tdata->jme_tx_ring, JME_TX_RING_SIZE(tdata));
3014 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
3015 txd = &tdata->jme_txdesc[i];
3016 txd->tx_m = NULL;
3017 txd->tx_desc = &tdata->jme_tx_ring[i];
3018 txd->tx_ndesc = 0;
3022 static void
3023 jme_init_ssb(struct jme_softc *sc)
3025 struct jme_chain_data *cd;
3027 cd = &sc->jme_cdata;
3028 bzero(cd->jme_ssb_block, JME_SSB_SIZE);
3031 static int
3032 jme_init_rx_ring(struct jme_rxdata *rdata)
3034 struct jme_rxdesc *rxd;
3035 int i;
3037 KKASSERT(rdata->jme_rxhead == NULL &&
3038 rdata->jme_rxtail == NULL &&
3039 rdata->jme_rxlen == 0);
3040 rdata->jme_rx_cons = 0;
3042 bzero(rdata->jme_rx_ring, JME_RX_RING_SIZE(rdata));
3043 for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3044 int error;
3046 rxd = &rdata->jme_rxdesc[i];
3047 rxd->rx_m = NULL;
3048 rxd->rx_desc = &rdata->jme_rx_ring[i];
3049 error = jme_newbuf(rdata, rxd, 1);
3050 if (error)
3051 return error;
3053 return 0;
3056 static int
3057 jme_newbuf(struct jme_rxdata *rdata, struct jme_rxdesc *rxd, int init)
3059 struct mbuf *m;
3060 bus_dma_segment_t segs;
3061 bus_dmamap_t map;
3062 int error, nsegs;
3064 m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3065 if (m == NULL)
3066 return ENOBUFS;
3068 * JMC250 has 64bit boundary alignment limitation so jme(4)
3069 * takes advantage of 10 bytes padding feature of hardware
3070 * in order not to copy entire frame to align IP header on
3071 * 32bit boundary.
3073 m->m_len = m->m_pkthdr.len = MCLBYTES;
3075 error = bus_dmamap_load_mbuf_segment(rdata->jme_rx_tag,
3076 rdata->jme_rx_sparemap, m, &segs, 1, &nsegs,
3077 BUS_DMA_NOWAIT);
3078 if (error) {
3079 m_freem(m);
3080 if (init) {
3081 if_printf(&rdata->jme_sc->arpcom.ac_if,
3082 "can't load RX mbuf\n");
3084 return error;
3087 if (rxd->rx_m != NULL) {
3088 bus_dmamap_sync(rdata->jme_rx_tag, rxd->rx_dmamap,
3089 BUS_DMASYNC_POSTREAD);
3090 bus_dmamap_unload(rdata->jme_rx_tag, rxd->rx_dmamap);
3092 map = rxd->rx_dmamap;
3093 rxd->rx_dmamap = rdata->jme_rx_sparemap;
3094 rdata->jme_rx_sparemap = map;
3095 rxd->rx_m = m;
3096 rxd->rx_paddr = segs.ds_addr;
3098 jme_setup_rxdesc(rxd);
3099 return 0;
3102 static void
3103 jme_set_vlan(struct jme_softc *sc)
3105 struct ifnet *ifp = &sc->arpcom.ac_if;
3106 uint32_t reg;
3108 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3110 reg = CSR_READ_4(sc, JME_RXMAC);
3111 reg &= ~RXMAC_VLAN_ENB;
3112 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
3113 reg |= RXMAC_VLAN_ENB;
3114 CSR_WRITE_4(sc, JME_RXMAC, reg);
3117 static void
3118 jme_set_filter(struct jme_softc *sc)
3120 struct ifnet *ifp = &sc->arpcom.ac_if;
3121 struct ifmultiaddr *ifma;
3122 uint32_t crc;
3123 uint32_t mchash[2];
3124 uint32_t rxcfg;
3126 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3128 rxcfg = CSR_READ_4(sc, JME_RXMAC);
3129 rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3130 RXMAC_ALLMULTI);
3133 * Always accept frames destined to our station address.
3134 * Always accept broadcast frames.
3136 rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
3138 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
3139 if (ifp->if_flags & IFF_PROMISC)
3140 rxcfg |= RXMAC_PROMISC;
3141 if (ifp->if_flags & IFF_ALLMULTI)
3142 rxcfg |= RXMAC_ALLMULTI;
3143 CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3144 CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3145 CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3146 return;
3150 * Set up the multicast address filter by passing all multicast
3151 * addresses through a CRC generator, and then using the low-order
3152 * 6 bits as an index into the 64 bit multicast hash table. The
3153 * high order bits select the register, while the rest of the bits
3154 * select the bit within the register.
3156 rxcfg |= RXMAC_MULTICAST;
3157 bzero(mchash, sizeof(mchash));
3159 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3160 if (ifma->ifma_addr->sa_family != AF_LINK)
3161 continue;
3162 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3163 ifma->ifma_addr), ETHER_ADDR_LEN);
3165 /* Just want the 6 least significant bits. */
3166 crc &= 0x3f;
3168 /* Set the corresponding bit in the hash table. */
3169 mchash[crc >> 5] |= 1 << (crc & 0x1f);
3172 CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3173 CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3174 CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3177 static int
3178 jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS)
3180 struct jme_softc *sc = arg1;
3181 struct ifnet *ifp = &sc->arpcom.ac_if;
3182 int error, v;
3184 ifnet_serialize_all(ifp);
3186 v = sc->jme_tx_coal_to;
3187 error = sysctl_handle_int(oidp, &v, 0, req);
3188 if (error || req->newptr == NULL)
3189 goto back;
3191 if (v < PCCTX_COAL_TO_MIN || v > PCCTX_COAL_TO_MAX) {
3192 error = EINVAL;
3193 goto back;
3196 if (v != sc->jme_tx_coal_to) {
3197 sc->jme_tx_coal_to = v;
3198 if (ifp->if_flags & IFF_RUNNING)
3199 jme_set_tx_coal(sc);
3201 back:
3202 ifnet_deserialize_all(ifp);
3203 return error;
3206 static int
3207 jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3209 struct jme_softc *sc = arg1;
3210 struct ifnet *ifp = &sc->arpcom.ac_if;
3211 int error, v;
3213 ifnet_serialize_all(ifp);
3215 v = sc->jme_tx_coal_pkt;
3216 error = sysctl_handle_int(oidp, &v, 0, req);
3217 if (error || req->newptr == NULL)
3218 goto back;
3220 if (v < PCCTX_COAL_PKT_MIN || v > PCCTX_COAL_PKT_MAX) {
3221 error = EINVAL;
3222 goto back;
3225 if (v != sc->jme_tx_coal_pkt) {
3226 sc->jme_tx_coal_pkt = v;
3227 if (ifp->if_flags & IFF_RUNNING)
3228 jme_set_tx_coal(sc);
3230 back:
3231 ifnet_deserialize_all(ifp);
3232 return error;
3235 static int
3236 jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS)
3238 struct jme_softc *sc = arg1;
3239 struct ifnet *ifp = &sc->arpcom.ac_if;
3240 int error, v;
3242 ifnet_serialize_all(ifp);
3244 v = sc->jme_rx_coal_to;
3245 error = sysctl_handle_int(oidp, &v, 0, req);
3246 if (error || req->newptr == NULL)
3247 goto back;
3249 if (v < PCCRX_COAL_TO_MIN || v > PCCRX_COAL_TO_MAX) {
3250 error = EINVAL;
3251 goto back;
3254 if (v != sc->jme_rx_coal_to) {
3255 sc->jme_rx_coal_to = v;
3256 if (ifp->if_flags & IFF_RUNNING)
3257 jme_set_rx_coal(sc);
3259 back:
3260 ifnet_deserialize_all(ifp);
3261 return error;
3264 static int
3265 jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3267 struct jme_softc *sc = arg1;
3268 struct ifnet *ifp = &sc->arpcom.ac_if;
3269 int error, v;
3271 ifnet_serialize_all(ifp);
3273 v = sc->jme_rx_coal_pkt;
3274 error = sysctl_handle_int(oidp, &v, 0, req);
3275 if (error || req->newptr == NULL)
3276 goto back;
3278 if (v < PCCRX_COAL_PKT_MIN || v > PCCRX_COAL_PKT_MAX) {
3279 error = EINVAL;
3280 goto back;
3283 if (v != sc->jme_rx_coal_pkt) {
3284 sc->jme_rx_coal_pkt = v;
3285 if (ifp->if_flags & IFF_RUNNING)
3286 jme_set_rx_coal(sc);
3288 back:
3289 ifnet_deserialize_all(ifp);
3290 return error;
3293 static void
3294 jme_set_tx_coal(struct jme_softc *sc)
3296 uint32_t reg;
3298 reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
3299 PCCTX_COAL_TO_MASK;
3300 reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
3301 PCCTX_COAL_PKT_MASK;
3302 reg |= PCCTX_COAL_TXQ0;
3303 CSR_WRITE_4(sc, JME_PCCTX, reg);
3306 static void
3307 jme_set_rx_coal(struct jme_softc *sc)
3309 uint32_t reg;
3310 int r;
3312 reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
3313 PCCRX_COAL_TO_MASK;
3314 reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
3315 PCCRX_COAL_PKT_MASK;
3316 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r)
3317 CSR_WRITE_4(sc, JME_PCCRX(r), reg);
3320 #ifdef IFPOLL_ENABLE
3322 static void
3323 jme_npoll_status(struct ifnet *ifp)
3325 struct jme_softc *sc = ifp->if_softc;
3326 uint32_t status;
3328 ASSERT_SERIALIZED(&sc->jme_serialize);
3330 status = CSR_READ_4(sc, JME_INTR_STATUS);
3331 if (status & INTR_RXQ_DESC_EMPTY) {
3332 CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3333 jme_rx_restart(sc, status);
3337 static void
3338 jme_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3340 struct jme_rxdata *rdata = arg;
3342 ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3344 jme_rxeof(rdata, cycle, mycpuid);
3347 static void
3348 jme_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3350 struct jme_txdata *tdata = arg;
3352 ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3354 jme_txeof(tdata);
3355 if (!ifq_is_empty(&ifp->if_snd))
3356 if_devstart(ifp);
3359 static void
3360 jme_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3362 struct jme_softc *sc = ifp->if_softc;
3364 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3366 if (info) {
3367 int i, cpu;
3369 info->ifpi_status.status_func = jme_npoll_status;
3370 info->ifpi_status.serializer = &sc->jme_serialize;
3372 cpu = if_ringmap_cpumap(sc->jme_tx_rmap, 0);
3373 KKASSERT(cpu <= netisr_ncpus);
3374 info->ifpi_tx[cpu].poll_func = jme_npoll_tx;
3375 info->ifpi_tx[cpu].arg = &sc->jme_cdata.jme_tx_data;
3376 info->ifpi_tx[cpu].serializer =
3377 &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3378 ifq_set_cpuid(&ifp->if_snd, cpu);
3380 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3381 struct jme_rxdata *rdata =
3382 &sc->jme_cdata.jme_rx_data[i];
3384 cpu = if_ringmap_cpumap(sc->jme_rx_rmap, i);
3385 KKASSERT(cpu <= netisr_ncpus);
3386 info->ifpi_rx[cpu].poll_func = jme_npoll_rx;
3387 info->ifpi_rx[cpu].arg = rdata;
3388 info->ifpi_rx[cpu].serializer =
3389 &rdata->jme_rx_serialize;
3392 if (ifp->if_flags & IFF_RUNNING)
3393 jme_disable_intr(sc);
3394 } else {
3395 ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
3396 if (ifp->if_flags & IFF_RUNNING)
3397 jme_enable_intr(sc);
3401 #endif /* IFPOLL_ENABLE */
3403 static int
3404 jme_rxring_dma_alloc(struct jme_rxdata *rdata)
3406 bus_dmamem_t dmem;
3407 int error, asize;
3409 asize = roundup2(JME_RX_RING_SIZE(rdata), JME_RX_RING_ALIGN);
3410 error = bus_dmamem_coherent(rdata->jme_sc->jme_cdata.jme_ring_tag,
3411 JME_RX_RING_ALIGN, 0,
3412 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3413 asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3414 if (error) {
3415 device_printf(rdata->jme_sc->jme_dev,
3416 "could not allocate %dth Rx ring.\n", rdata->jme_rx_idx);
3417 return error;
3419 rdata->jme_rx_ring_tag = dmem.dmem_tag;
3420 rdata->jme_rx_ring_map = dmem.dmem_map;
3421 rdata->jme_rx_ring = dmem.dmem_addr;
3422 rdata->jme_rx_ring_paddr = dmem.dmem_busaddr;
3424 return 0;
3427 static int
3428 jme_rxbuf_dma_filter(void *arg __unused, bus_addr_t paddr)
3430 if ((paddr & 0xffffffff) == 0) {
3432 * Don't allow lower 32bits of the RX buffer's
3433 * physical address to be 0, else it will break
3434 * hardware pending RSS information delivery
3435 * detection on RX path.
3437 return 1;
3439 return 0;
3442 static int
3443 jme_rxbuf_dma_alloc(struct jme_rxdata *rdata)
3445 bus_addr_t lowaddr;
3446 int i, error;
3448 lowaddr = BUS_SPACE_MAXADDR;
3449 if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
3450 /* jme_rxbuf_dma_filter will be called */
3451 lowaddr = BUS_SPACE_MAXADDR_32BIT;
3454 /* Create tag for Rx buffers. */
3455 error = bus_dma_tag_create(
3456 rdata->jme_sc->jme_cdata.jme_buffer_tag,/* parent */
3457 JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */
3458 lowaddr, /* lowaddr */
3459 BUS_SPACE_MAXADDR, /* highaddr */
3460 jme_rxbuf_dma_filter, NULL, /* filter, filterarg */
3461 MCLBYTES, /* maxsize */
3462 1, /* nsegments */
3463 MCLBYTES, /* maxsegsize */
3464 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,/* flags */
3465 &rdata->jme_rx_tag);
3466 if (error) {
3467 device_printf(rdata->jme_sc->jme_dev,
3468 "could not create %dth Rx DMA tag.\n", rdata->jme_rx_idx);
3469 return error;
3472 /* Create DMA maps for Rx buffers. */
3473 error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3474 &rdata->jme_rx_sparemap);
3475 if (error) {
3476 device_printf(rdata->jme_sc->jme_dev,
3477 "could not create %dth spare Rx dmamap.\n",
3478 rdata->jme_rx_idx);
3479 bus_dma_tag_destroy(rdata->jme_rx_tag);
3480 rdata->jme_rx_tag = NULL;
3481 return error;
3483 for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3484 struct jme_rxdesc *rxd = &rdata->jme_rxdesc[i];
3486 error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3487 &rxd->rx_dmamap);
3488 if (error) {
3489 int j;
3491 device_printf(rdata->jme_sc->jme_dev,
3492 "could not create %dth Rx dmamap "
3493 "for %dth RX ring.\n", i, rdata->jme_rx_idx);
3495 for (j = 0; j < i; ++j) {
3496 rxd = &rdata->jme_rxdesc[j];
3497 bus_dmamap_destroy(rdata->jme_rx_tag,
3498 rxd->rx_dmamap);
3500 bus_dmamap_destroy(rdata->jme_rx_tag,
3501 rdata->jme_rx_sparemap);
3502 bus_dma_tag_destroy(rdata->jme_rx_tag);
3503 rdata->jme_rx_tag = NULL;
3504 return error;
3507 return 0;
3510 static void
3511 jme_rx_intr(struct jme_softc *sc, uint32_t status)
3513 int r, cpuid = mycpuid;
3515 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3516 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3518 if (status & rdata->jme_rx_coal) {
3519 lwkt_serialize_enter(&rdata->jme_rx_serialize);
3520 jme_rxeof(rdata, -1, cpuid);
3521 lwkt_serialize_exit(&rdata->jme_rx_serialize);
3526 static void
3527 jme_enable_rss(struct jme_softc *sc)
3529 uint8_t key[RSSKEY_NREGS * RSSKEY_REGSIZE];
3530 uint32_t rssc;
3531 int j, i, r;
3533 KASSERT(sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_2 ||
3534 sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_4,
3535 ("%s: invalid # of RX rings (%d)",
3536 sc->arpcom.ac_if.if_xname, sc->jme_cdata.jme_rx_ring_cnt));
3537 jme_disable_rss(sc);
3539 toeplitz_get_key(key, sizeof(key));
3540 for (i = 0; i < RSSKEY_NREGS; ++i) {
3541 uint32_t keyreg;
3543 keyreg = RSSKEY_REGVAL(key, i);
3544 JME_RSS_DPRINTF(sc, 5, "keyreg%d 0x%08x, reg 0x%08x\n",
3545 i, keyreg, RSSKEY_REG(RSSKEY_NREGS - 1 - i));
3547 CSR_WRITE_4(sc, RSSKEY_REG(RSSKEY_NREGS - 1 - i), keyreg);
3551 * Fill redirect table.
3553 if_ringmap_rdrtable(sc->jme_rx_rmap, sc->jme_rdrtable,
3554 JME_RDRTABLE_SIZE);
3556 r = 0;
3557 for (j = 0; j < RSSTBL_NREGS; ++j) {
3558 uint32_t ind = 0;
3560 for (i = 0; i < RSSTBL_REGSIZE; ++i) {
3561 int q;
3563 q = sc->jme_rdrtable[r];
3564 ind |= q << (i * 8);
3565 ++r;
3567 JME_RSS_DPRINTF(sc, 1, "ind 0x%08x\n", ind);
3568 CSR_WRITE_4(sc, RSSTBL_REG(j), ind);
3572 * Enable RSS.
3574 rssc = RSSC_HASH_128_ENTRY;
3575 rssc |= RSSC_HASH_IPV4 | RSSC_HASH_IPV4_TCP;
3576 rssc |= sc->jme_cdata.jme_rx_ring_cnt >> 1;
3577 JME_RSS_DPRINTF(sc, 1, "rssc 0x%08x\n", rssc);
3578 CSR_WRITE_4(sc, JME_RSSC, rssc);
3581 static void
3582 jme_disable_rss(struct jme_softc *sc)
3584 CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
3587 static void
3588 jme_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3590 struct jme_softc *sc = ifp->if_softc;
3592 ifnet_serialize_array_enter(sc->jme_serialize_arr,
3593 sc->jme_serialize_cnt, slz);
3596 static void
3597 jme_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3599 struct jme_softc *sc = ifp->if_softc;
3601 ifnet_serialize_array_exit(sc->jme_serialize_arr,
3602 sc->jme_serialize_cnt, slz);
3605 static int
3606 jme_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3608 struct jme_softc *sc = ifp->if_softc;
3610 return ifnet_serialize_array_try(sc->jme_serialize_arr,
3611 sc->jme_serialize_cnt, slz);
3614 #ifdef INVARIANTS
3616 static void
3617 jme_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3618 boolean_t serialized)
3620 struct jme_softc *sc = ifp->if_softc;
3622 ifnet_serialize_array_assert(sc->jme_serialize_arr,
3623 sc->jme_serialize_cnt, slz, serialized);
3626 #endif /* INVARIANTS */
3628 static void
3629 jme_msix_try_alloc(device_t dev)
3631 struct jme_softc *sc = device_get_softc(dev);
3632 struct jme_msix_data *msix;
3633 int error, i, r, msix_enable, msix_count;
3635 msix_count = JME_MSIXCNT(sc->jme_cdata.jme_rx_ring_cnt);
3636 KKASSERT(msix_count <= JME_NMSIX);
3638 msix_enable = device_getenv_int(dev, "msix.enable", jme_msix_enable);
3641 * We leave the 1st MSI-X vector unused, so we
3642 * actually need msix_count + 1 MSI-X vectors.
3644 if (!msix_enable || pci_msix_count(dev) < (msix_count + 1))
3645 return;
3647 for (i = 0; i < msix_count; ++i)
3648 sc->jme_msix[i].jme_msix_rid = -1;
3650 i = 0;
3653 * Setup status MSI-X
3655 msix = &sc->jme_msix[i++];
3656 msix->jme_msix_cpuid = 0;
3657 msix->jme_msix_arg = sc;
3658 msix->jme_msix_func = jme_msix_status;
3659 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3660 msix->jme_msix_intrs |=
3661 sc->jme_cdata.jme_rx_data[r].jme_rx_empty;
3663 msix->jme_msix_serialize = &sc->jme_serialize;
3664 ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s sts",
3665 device_get_nameunit(dev));
3668 * Setup TX MSI-X
3670 msix = &sc->jme_msix[i++];
3671 msix->jme_msix_cpuid = if_ringmap_cpumap(sc->jme_tx_rmap, 0);
3672 sc->jme_tx_cpuid = msix->jme_msix_cpuid;
3673 msix->jme_msix_arg = &sc->jme_cdata.jme_tx_data;
3674 msix->jme_msix_func = jme_msix_tx;
3675 msix->jme_msix_intrs = INTR_TXQ_COAL | INTR_TXQ_COAL_TO;
3676 msix->jme_msix_serialize = &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3677 ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s tx",
3678 device_get_nameunit(dev));
3681 * Setup RX MSI-X
3683 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3684 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3686 msix = &sc->jme_msix[i++];
3687 msix->jme_msix_cpuid = if_ringmap_cpumap(sc->jme_rx_rmap, r);
3688 KKASSERT(msix->jme_msix_cpuid < netisr_ncpus);
3689 msix->jme_msix_arg = rdata;
3690 msix->jme_msix_func = jme_msix_rx;
3691 msix->jme_msix_intrs = rdata->jme_rx_coal;
3692 msix->jme_msix_serialize = &rdata->jme_rx_serialize;
3693 ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc),
3694 "%s rx%d", device_get_nameunit(dev), r);
3697 KKASSERT(i == msix_count);
3699 error = pci_setup_msix(dev);
3700 if (error)
3701 return;
3703 /* Setup jme_msix_cnt early, so we could cleanup */
3704 sc->jme_msix_cnt = msix_count;
3706 for (i = 0; i < msix_count; ++i) {
3707 msix = &sc->jme_msix[i];
3709 msix->jme_msix_vector = i + 1;
3710 error = pci_alloc_msix_vector(dev, msix->jme_msix_vector,
3711 &msix->jme_msix_rid, msix->jme_msix_cpuid);
3712 if (error)
3713 goto back;
3715 msix->jme_msix_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3716 &msix->jme_msix_rid, RF_ACTIVE);
3717 if (msix->jme_msix_res == NULL) {
3718 error = ENOMEM;
3719 goto back;
3723 for (i = 0; i < JME_INTR_CNT; ++i) {
3724 uint32_t intr_mask = (1 << i);
3725 int x;
3727 if ((JME_INTRS & intr_mask) == 0)
3728 continue;
3730 for (x = 0; x < msix_count; ++x) {
3731 msix = &sc->jme_msix[x];
3732 if (msix->jme_msix_intrs & intr_mask) {
3733 int reg, shift;
3735 reg = i / JME_MSINUM_FACTOR;
3736 KKASSERT(reg < JME_MSINUM_CNT);
3738 shift = (i % JME_MSINUM_FACTOR) * 4;
3740 sc->jme_msinum[reg] |=
3741 (msix->jme_msix_vector << shift);
3743 break;
3748 if (bootverbose) {
3749 for (i = 0; i < JME_MSINUM_CNT; ++i) {
3750 device_printf(dev, "MSINUM%d: %#x\n", i,
3751 sc->jme_msinum[i]);
3755 pci_enable_msix(dev);
3756 sc->jme_irq_type = PCI_INTR_TYPE_MSIX;
3758 back:
3759 if (error)
3760 jme_msix_free(dev);
3763 static int
3764 jme_intr_alloc(device_t dev)
3766 struct jme_softc *sc = device_get_softc(dev);
3767 u_int irq_flags;
3769 jme_msix_try_alloc(dev);
3771 if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3772 sc->jme_irq_type = pci_alloc_1intr(dev, jme_msi_enable,
3773 &sc->jme_irq_rid, &irq_flags);
3775 sc->jme_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3776 &sc->jme_irq_rid, irq_flags);
3777 if (sc->jme_irq_res == NULL) {
3778 device_printf(dev, "can't allocate irq\n");
3779 return ENXIO;
3781 sc->jme_tx_cpuid = rman_get_cpuid(sc->jme_irq_res);
3783 return 0;
3786 static void
3787 jme_msix_free(device_t dev)
3789 struct jme_softc *sc = device_get_softc(dev);
3790 int i;
3792 KKASSERT(sc->jme_msix_cnt > 1);
3794 for (i = 0; i < sc->jme_msix_cnt; ++i) {
3795 struct jme_msix_data *msix = &sc->jme_msix[i];
3797 if (msix->jme_msix_res != NULL) {
3798 bus_release_resource(dev, SYS_RES_IRQ,
3799 msix->jme_msix_rid, msix->jme_msix_res);
3800 msix->jme_msix_res = NULL;
3802 if (msix->jme_msix_rid >= 0) {
3803 pci_release_msix_vector(dev, msix->jme_msix_rid);
3804 msix->jme_msix_rid = -1;
3807 pci_teardown_msix(dev);
3810 static void
3811 jme_intr_free(device_t dev)
3813 struct jme_softc *sc = device_get_softc(dev);
3815 if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3816 if (sc->jme_irq_res != NULL) {
3817 bus_release_resource(dev, SYS_RES_IRQ, sc->jme_irq_rid,
3818 sc->jme_irq_res);
3820 if (sc->jme_irq_type == PCI_INTR_TYPE_MSI)
3821 pci_release_msi(dev);
3822 } else {
3823 jme_msix_free(dev);
3827 static void
3828 jme_msix_tx(void *xtdata)
3830 struct jme_txdata *tdata = xtdata;
3831 struct jme_softc *sc = tdata->jme_sc;
3832 struct ifnet *ifp = &sc->arpcom.ac_if;
3834 ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3836 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3838 CSR_WRITE_4(sc, JME_INTR_STATUS,
3839 INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP);
3841 if (ifp->if_flags & IFF_RUNNING) {
3842 jme_txeof(tdata);
3843 if (!ifq_is_empty(&ifp->if_snd))
3844 if_devstart(ifp);
3847 CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3850 static void
3851 jme_msix_rx(void *xrdata)
3853 struct jme_rxdata *rdata = xrdata;
3854 struct jme_softc *sc = rdata->jme_sc;
3855 struct ifnet *ifp = &sc->arpcom.ac_if;
3857 ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3859 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, rdata->jme_rx_coal);
3861 CSR_WRITE_4(sc, JME_INTR_STATUS,
3862 rdata->jme_rx_coal | rdata->jme_rx_comp);
3864 if (ifp->if_flags & IFF_RUNNING)
3865 jme_rxeof(rdata, -1, mycpuid);
3867 CSR_WRITE_4(sc, JME_INTR_MASK_SET, rdata->jme_rx_coal);
3870 static void
3871 jme_msix_status(void *xsc)
3873 struct jme_softc *sc = xsc;
3874 struct ifnet *ifp = &sc->arpcom.ac_if;
3875 uint32_t status;
3877 ASSERT_SERIALIZED(&sc->jme_serialize);
3879 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_RXQ_DESC_EMPTY);
3881 status = CSR_READ_4(sc, JME_INTR_STATUS);
3883 if (status & INTR_RXQ_DESC_EMPTY) {
3884 CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3885 if (ifp->if_flags & IFF_RUNNING)
3886 jme_rx_restart(sc, status);
3889 CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_RXQ_DESC_EMPTY);
3892 static void
3893 jme_rx_restart(struct jme_softc *sc, uint32_t status)
3895 int i, cpuid = mycpuid;
3897 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3898 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
3900 if (status & rdata->jme_rx_empty) {
3901 lwkt_serialize_enter(&rdata->jme_rx_serialize);
3902 jme_rxeof(rdata, -1, cpuid);
3903 #ifdef JME_RSS_DEBUG
3904 rdata->jme_rx_emp++;
3905 #endif
3906 lwkt_serialize_exit(&rdata->jme_rx_serialize);
3909 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
3910 RXCSR_RXQ_START);
3913 static void
3914 jme_set_msinum(struct jme_softc *sc)
3916 int i;
3918 for (i = 0; i < JME_MSINUM_CNT; ++i)
3919 CSR_WRITE_4(sc, JME_MSINUM(i), sc->jme_msinum[i]);
3922 static int
3923 jme_intr_setup(device_t dev)
3925 struct jme_softc *sc = device_get_softc(dev);
3926 int error;
3928 if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
3929 return jme_msix_setup(dev);
3931 error = bus_setup_intr(dev, sc->jme_irq_res, INTR_MPSAFE,
3932 jme_intr, sc, &sc->jme_irq_handle, &sc->jme_serialize);
3933 if (error) {
3934 device_printf(dev, "could not set up interrupt handler.\n");
3935 return error;
3938 return 0;
3941 static void
3942 jme_intr_teardown(device_t dev)
3944 struct jme_softc *sc = device_get_softc(dev);
3946 if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
3947 jme_msix_teardown(dev, sc->jme_msix_cnt);
3948 else
3949 bus_teardown_intr(dev, sc->jme_irq_res, sc->jme_irq_handle);
3952 static int
3953 jme_msix_setup(device_t dev)
3955 struct jme_softc *sc = device_get_softc(dev);
3956 int x;
3958 for (x = 0; x < sc->jme_msix_cnt; ++x) {
3959 struct jme_msix_data *msix = &sc->jme_msix[x];
3960 int error;
3962 error = bus_setup_intr_descr(dev, msix->jme_msix_res,
3963 INTR_MPSAFE, msix->jme_msix_func, msix->jme_msix_arg,
3964 &msix->jme_msix_handle, msix->jme_msix_serialize,
3965 msix->jme_msix_desc);
3966 if (error) {
3967 device_printf(dev, "could not set up %s "
3968 "interrupt handler.\n", msix->jme_msix_desc);
3969 jme_msix_teardown(dev, x);
3970 return error;
3973 return 0;
3976 static void
3977 jme_msix_teardown(device_t dev, int msix_count)
3979 struct jme_softc *sc = device_get_softc(dev);
3980 int x;
3982 for (x = 0; x < msix_count; ++x) {
3983 struct jme_msix_data *msix = &sc->jme_msix[x];
3985 bus_teardown_intr(dev, msix->jme_msix_res,
3986 msix->jme_msix_handle);
3990 static void
3991 jme_serialize_skipmain(struct jme_softc *sc)
3993 lwkt_serialize_array_enter(sc->jme_serialize_arr,
3994 sc->jme_serialize_cnt, 1);
3997 static void
3998 jme_deserialize_skipmain(struct jme_softc *sc)
4000 lwkt_serialize_array_exit(sc->jme_serialize_arr,
4001 sc->jme_serialize_cnt, 1);
4004 static void
4005 jme_enable_intr(struct jme_softc *sc)
4007 int i;
4009 for (i = 0; i < sc->jme_serialize_cnt; ++i)
4010 lwkt_serialize_handler_enable(sc->jme_serialize_arr[i]);
4012 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
4015 static void
4016 jme_disable_intr(struct jme_softc *sc)
4018 int i;
4020 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
4022 for (i = 0; i < sc->jme_serialize_cnt; ++i)
4023 lwkt_serialize_handler_disable(sc->jme_serialize_arr[i]);
4026 static void
4027 jme_phy_poweron(struct jme_softc *sc)
4029 uint16_t bmcr;
4031 bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
4032 bmcr &= ~BMCR_PDOWN;
4033 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
4035 if (sc->jme_caps & JME_CAP_PHYPWR) {
4036 uint32_t val;
4038 val = CSR_READ_4(sc, JME_PHYPWR);
4039 val &= ~(PHYPWR_DOWN1SEL | PHYPWR_DOWN1SW |
4040 PHYPWR_DOWN2 | PHYPWR_CLKSEL);
4041 CSR_WRITE_4(sc, JME_PHYPWR, val);
4043 val = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
4044 val &= ~PE1_GPREG0_PHYBG;
4045 val |= PE1_GPREG0_ENBG;
4046 pci_write_config(sc->jme_dev, JME_PCI_PE1, val, 4);
4050 static void
4051 jme_phy_poweroff(struct jme_softc *sc)
4053 uint16_t bmcr;
4055 bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
4056 bmcr |= BMCR_PDOWN;
4057 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
4059 if (sc->jme_caps & JME_CAP_PHYPWR) {
4060 uint32_t val;
4062 val = CSR_READ_4(sc, JME_PHYPWR);
4063 val |= PHYPWR_DOWN1SEL | PHYPWR_DOWN1SW |
4064 PHYPWR_DOWN2 | PHYPWR_CLKSEL;
4065 CSR_WRITE_4(sc, JME_PHYPWR, val);
4067 val = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
4068 val &= ~PE1_GPREG0_PHYBG;
4069 val |= PE1_GPREG0_PDD3COLD;
4070 pci_write_config(sc->jme_dev, JME_PCI_PE1, val, 4);
4074 static int
4075 jme_miiext_read(struct jme_softc *sc, int reg)
4077 int addr;
4079 addr = JME_MII_EXT_ADDR_RD | reg;
4080 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4081 JME_MII_EXT_ADDR, addr);
4082 return jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr,
4083 JME_MII_EXT_DATA);
4086 static void
4087 jme_miiext_write(struct jme_softc *sc, int reg, int val)
4089 int addr;
4091 addr = JME_MII_EXT_ADDR_WR | reg;
4092 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4093 JME_MII_EXT_DATA, val);
4094 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4095 JME_MII_EXT_ADDR, addr);
4098 static void
4099 jme_phy_init(struct jme_softc *sc)
4101 uint16_t gtcr;
4102 int val;
4104 jme_phy_poweroff(sc);
4105 jme_phy_poweron(sc);
4107 /* Enable PHY test 1 */
4108 gtcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR);
4109 gtcr &= ~GTCR_TEST_MASK;
4110 gtcr |= GTCR_TEST_1;
4111 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, gtcr);
4113 val = jme_miiext_read(sc, JME_MII_EXT_COM2);
4114 val &= ~JME_MII_EXT_COM2_CALIB_MODE0;
4115 val |= JME_MII_EXT_COM2_CALIB_LATCH | JME_MII_EXT_COM2_CALIB_EN;
4116 jme_miiext_write(sc, JME_MII_EXT_COM2, val);
4118 DELAY(20000);
4120 val = jme_miiext_read(sc, JME_MII_EXT_COM2);
4121 val &= ~(JME_MII_EXT_COM2_CALIB_MODE0 |
4122 JME_MII_EXT_COM2_CALIB_LATCH | JME_MII_EXT_COM2_CALIB_EN);
4123 jme_miiext_write(sc, JME_MII_EXT_COM2, val);
4125 /* Disable PHY test */
4126 gtcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR);
4127 gtcr &= ~GTCR_TEST_MASK;
4128 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, gtcr);
4130 if (sc->jme_phycom0 != 0)
4131 jme_miiext_write(sc, JME_MII_EXT_COM0, sc->jme_phycom0);
4132 if (sc->jme_phycom1 != 0)
4133 jme_miiext_write(sc, JME_MII_EXT_COM1, sc->jme_phycom1);