inet6: require RTF_ANNOUNCE to proxy NS
[dragonfly.git] / sys / dev / netif / jme / if_jme.c
blob612672415948028fd3a65103e1250cc200c09f06
1 /*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
30 #include "opt_ifpoll.h"
31 #include "opt_jme.h"
33 #include <sys/param.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/rman.h>
41 #include <sys/serialize.h>
42 #include <sys/serialize2.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/bpf.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_poll.h>
54 #include <net/ifq_var.h>
55 #include <net/if_ringmap.h>
56 #include <net/toeplitz.h>
57 #include <net/toeplitz2.h>
58 #include <net/vlan/if_vlan_var.h>
59 #include <net/vlan/if_vlan_ether.h>
61 #include <netinet/ip.h>
62 #include <netinet/tcp.h>
64 #include <dev/netif/mii_layer/mii.h>
65 #include <dev/netif/mii_layer/miivar.h>
66 #include <dev/netif/mii_layer/jmphyreg.h>
68 #include <bus/pci/pcireg.h>
69 #include <bus/pci/pcivar.h>
70 #include "pcidevs.h"
72 #include <dev/netif/jme/if_jmereg.h>
73 #include <dev/netif/jme/if_jmevar.h>
75 #include "miibus_if.h"
77 #define JME_TICK_CPUID 0 /* DO NOT CHANGE THIS */
79 #define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
81 #ifdef JME_RSS_DEBUG
82 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) \
83 do { \
84 if ((sc)->jme_rss_debug >= (lvl)) \
85 if_printf(&(sc)->arpcom.ac_if, fmt, __VA_ARGS__); \
86 } while (0)
87 #else /* !JME_RSS_DEBUG */
88 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) ((void)0)
89 #endif /* JME_RSS_DEBUG */
91 static int jme_probe(device_t);
92 static int jme_attach(device_t);
93 static int jme_detach(device_t);
94 static int jme_shutdown(device_t);
95 static int jme_suspend(device_t);
96 static int jme_resume(device_t);
98 static int jme_miibus_readreg(device_t, int, int);
99 static int jme_miibus_writereg(device_t, int, int, int);
100 static void jme_miibus_statchg(device_t);
102 static void jme_init(void *);
103 static int jme_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
104 static void jme_start(struct ifnet *, struct ifaltq_subque *);
105 static void jme_watchdog(struct ifnet *);
106 static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
107 static int jme_mediachange(struct ifnet *);
108 #ifdef IFPOLL_ENABLE
109 static void jme_npoll(struct ifnet *, struct ifpoll_info *);
110 static void jme_npoll_status(struct ifnet *);
111 static void jme_npoll_rx(struct ifnet *, void *, int);
112 static void jme_npoll_tx(struct ifnet *, void *, int);
113 #endif
114 static void jme_serialize(struct ifnet *, enum ifnet_serialize);
115 static void jme_deserialize(struct ifnet *, enum ifnet_serialize);
116 static int jme_tryserialize(struct ifnet *, enum ifnet_serialize);
117 #ifdef INVARIANTS
118 static void jme_serialize_assert(struct ifnet *, enum ifnet_serialize,
119 boolean_t);
120 #endif
122 static void jme_intr(void *);
123 static void jme_msix_tx(void *);
124 static void jme_msix_rx(void *);
125 static void jme_msix_status(void *);
126 static void jme_txeof(struct jme_txdata *);
127 static void jme_rxeof(struct jme_rxdata *, int, int);
128 static void jme_rx_intr(struct jme_softc *, uint32_t);
129 static void jme_enable_intr(struct jme_softc *);
130 static void jme_disable_intr(struct jme_softc *);
131 static void jme_rx_restart(struct jme_softc *, uint32_t);
133 static int jme_msix_setup(device_t);
134 static void jme_msix_teardown(device_t, int);
135 static int jme_intr_setup(device_t);
136 static void jme_intr_teardown(device_t);
137 static void jme_msix_try_alloc(device_t);
138 static void jme_msix_free(device_t);
139 static int jme_intr_alloc(device_t);
140 static void jme_intr_free(device_t);
141 static int jme_dma_alloc(struct jme_softc *);
142 static void jme_dma_free(struct jme_softc *);
143 static int jme_init_rx_ring(struct jme_rxdata *);
144 static void jme_init_tx_ring(struct jme_txdata *);
145 static void jme_init_ssb(struct jme_softc *);
146 static int jme_newbuf(struct jme_rxdata *, struct jme_rxdesc *, int);
147 static int jme_encap(struct jme_txdata *, struct mbuf **, int *);
148 static void jme_rxpkt(struct jme_rxdata *, int);
149 static int jme_rxring_dma_alloc(struct jme_rxdata *);
150 static int jme_rxbuf_dma_alloc(struct jme_rxdata *);
152 static void jme_tick(void *);
153 static void jme_stop(struct jme_softc *);
154 static void jme_reset(struct jme_softc *);
155 static void jme_set_msinum(struct jme_softc *);
156 static void jme_set_vlan(struct jme_softc *);
157 static void jme_set_filter(struct jme_softc *);
158 static void jme_stop_tx(struct jme_softc *);
159 static void jme_stop_rx(struct jme_softc *);
160 static void jme_mac_config(struct jme_softc *);
161 static void jme_reg_macaddr(struct jme_softc *, uint8_t[]);
162 static int jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
163 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
164 #ifdef notyet
165 static void jme_setwol(struct jme_softc *);
166 static void jme_setlinkspeed(struct jme_softc *);
167 #endif
168 static void jme_set_tx_coal(struct jme_softc *);
169 static void jme_set_rx_coal(struct jme_softc *);
170 static void jme_enable_rss(struct jme_softc *);
171 static void jme_disable_rss(struct jme_softc *);
172 static void jme_serialize_skipmain(struct jme_softc *);
173 static void jme_deserialize_skipmain(struct jme_softc *);
174 static void jme_phy_poweron(struct jme_softc *);
175 static void jme_phy_poweroff(struct jme_softc *);
176 static int jme_miiext_read(struct jme_softc *, int);
177 static void jme_miiext_write(struct jme_softc *, int, int);
178 static void jme_phy_init(struct jme_softc *);
180 static void jme_sysctl_node(struct jme_softc *);
181 static int jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS);
182 static int jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
183 static int jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS);
184 static int jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
187 * Devices supported by this driver.
189 static const struct jme_dev {
190 uint16_t jme_vendorid;
191 uint16_t jme_deviceid;
192 uint32_t jme_caps;
193 const char *jme_name;
194 } jme_devs[] = {
195 { PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250,
196 JME_CAP_JUMBO,
197 "JMicron Inc, JMC250 Gigabit Ethernet" },
198 { PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260,
199 JME_CAP_FASTETH,
200 "JMicron Inc, JMC260 Fast Ethernet" },
201 { 0, 0, 0, NULL }
204 static device_method_t jme_methods[] = {
205 /* Device interface. */
206 DEVMETHOD(device_probe, jme_probe),
207 DEVMETHOD(device_attach, jme_attach),
208 DEVMETHOD(device_detach, jme_detach),
209 DEVMETHOD(device_shutdown, jme_shutdown),
210 DEVMETHOD(device_suspend, jme_suspend),
211 DEVMETHOD(device_resume, jme_resume),
213 /* Bus interface. */
214 DEVMETHOD(bus_print_child, bus_generic_print_child),
215 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
217 /* MII interface. */
218 DEVMETHOD(miibus_readreg, jme_miibus_readreg),
219 DEVMETHOD(miibus_writereg, jme_miibus_writereg),
220 DEVMETHOD(miibus_statchg, jme_miibus_statchg),
222 { NULL, NULL }
225 static driver_t jme_driver = {
226 "jme",
227 jme_methods,
228 sizeof(struct jme_softc)
231 static devclass_t jme_devclass;
233 DECLARE_DUMMY_MODULE(if_jme);
234 MODULE_DEPEND(if_jme, miibus, 1, 1, 1);
235 DRIVER_MODULE(if_jme, pci, jme_driver, jme_devclass, NULL, NULL);
236 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, NULL, NULL);
238 static const struct {
239 uint32_t jme_coal;
240 uint32_t jme_comp;
241 uint32_t jme_empty;
242 } jme_rx_status[JME_NRXRING_MAX] = {
243 { INTR_RXQ0_COAL | INTR_RXQ0_COAL_TO, INTR_RXQ0_COMP,
244 INTR_RXQ0_DESC_EMPTY },
245 { INTR_RXQ1_COAL | INTR_RXQ1_COAL_TO, INTR_RXQ1_COMP,
246 INTR_RXQ1_DESC_EMPTY },
247 { INTR_RXQ2_COAL | INTR_RXQ2_COAL_TO, INTR_RXQ2_COMP,
248 INTR_RXQ2_DESC_EMPTY },
249 { INTR_RXQ3_COAL | INTR_RXQ3_COAL_TO, INTR_RXQ3_COMP,
250 INTR_RXQ3_DESC_EMPTY }
253 static int jme_rx_desc_count = JME_RX_DESC_CNT_DEF;
254 static int jme_tx_desc_count = JME_TX_DESC_CNT_DEF;
255 static int jme_rx_ring_count = 0;
256 static int jme_msi_enable = 1;
257 static int jme_msix_enable = 1;
259 TUNABLE_INT("hw.jme.rx_desc_count", &jme_rx_desc_count);
260 TUNABLE_INT("hw.jme.tx_desc_count", &jme_tx_desc_count);
261 TUNABLE_INT("hw.jme.rx_ring_count", &jme_rx_ring_count);
262 TUNABLE_INT("hw.jme.msi.enable", &jme_msi_enable);
263 TUNABLE_INT("hw.jme.msix.enable", &jme_msix_enable);
265 static __inline void
266 jme_setup_rxdesc(struct jme_rxdesc *rxd)
268 struct jme_desc *desc;
270 desc = rxd->rx_desc;
271 desc->buflen = htole32(MCLBYTES);
272 desc->addr_lo = htole32(JME_ADDR_LO(rxd->rx_paddr));
273 desc->addr_hi = htole32(JME_ADDR_HI(rxd->rx_paddr));
274 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
278 * Read a PHY register on the MII of the JMC250.
280 static int
281 jme_miibus_readreg(device_t dev, int phy, int reg)
283 struct jme_softc *sc = device_get_softc(dev);
284 uint32_t val;
285 int i;
287 /* For FPGA version, PHY address 0 should be ignored. */
288 if (sc->jme_caps & JME_CAP_FPGA) {
289 if (phy == 0)
290 return (0);
291 } else {
292 if (sc->jme_phyaddr != phy)
293 return (0);
296 CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
297 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
299 for (i = JME_PHY_TIMEOUT; i > 0; i--) {
300 DELAY(1);
301 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
302 break;
304 if (i == 0) {
305 device_printf(sc->jme_dev, "phy read timeout: "
306 "phy %d, reg %d\n", phy, reg);
307 return (0);
310 return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
314 * Write a PHY register on the MII of the JMC250.
316 static int
317 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
319 struct jme_softc *sc = device_get_softc(dev);
320 int i;
322 /* For FPGA version, PHY address 0 should be ignored. */
323 if (sc->jme_caps & JME_CAP_FPGA) {
324 if (phy == 0)
325 return (0);
326 } else {
327 if (sc->jme_phyaddr != phy)
328 return (0);
331 CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
332 ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
333 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
335 for (i = JME_PHY_TIMEOUT; i > 0; i--) {
336 DELAY(1);
337 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
338 break;
340 if (i == 0) {
341 device_printf(sc->jme_dev, "phy write timeout: "
342 "phy %d, reg %d\n", phy, reg);
345 return (0);
349 * Callback from MII layer when media changes.
351 static void
352 jme_miibus_statchg(device_t dev)
354 struct jme_softc *sc = device_get_softc(dev);
355 struct ifnet *ifp = &sc->arpcom.ac_if;
356 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
357 struct mii_data *mii;
358 struct jme_txdesc *txd;
359 bus_addr_t paddr;
360 int i, r;
362 if (sc->jme_in_tick)
363 jme_serialize_skipmain(sc);
364 ASSERT_IFNET_SERIALIZED_ALL(ifp);
366 if ((ifp->if_flags & IFF_RUNNING) == 0)
367 goto done;
369 mii = device_get_softc(sc->jme_miibus);
371 sc->jme_has_link = FALSE;
372 if ((mii->mii_media_status & IFM_AVALID) != 0) {
373 switch (IFM_SUBTYPE(mii->mii_media_active)) {
374 case IFM_10_T:
375 case IFM_100_TX:
376 sc->jme_has_link = TRUE;
377 break;
378 case IFM_1000_T:
379 if (sc->jme_caps & JME_CAP_FASTETH)
380 break;
381 sc->jme_has_link = TRUE;
382 break;
383 default:
384 break;
389 * Disabling Rx/Tx MACs have a side-effect of resetting
390 * JME_TXNDA/JME_RXNDA register to the first address of
391 * Tx/Rx descriptor address. So driver should reset its
392 * internal procucer/consumer pointer and reclaim any
393 * allocated resources. Note, just saving the value of
394 * JME_TXNDA and JME_RXNDA registers before stopping MAC
395 * and restoring JME_TXNDA/JME_RXNDA register is not
396 * sufficient to make sure correct MAC state because
397 * stopping MAC operation can take a while and hardware
398 * might have updated JME_TXNDA/JME_RXNDA registers
399 * during the stop operation.
402 /* Disable interrupts */
403 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
405 /* Stop driver */
406 ifp->if_flags &= ~IFF_RUNNING;
407 ifq_clr_oactive(&ifp->if_snd);
408 ifp->if_timer = 0;
409 callout_stop(&sc->jme_tick_ch);
411 /* Stop receiver/transmitter. */
412 jme_stop_rx(sc);
413 jme_stop_tx(sc);
415 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
416 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
418 jme_rxeof(rdata, -1, -1);
419 if (rdata->jme_rxhead != NULL)
420 m_freem(rdata->jme_rxhead);
421 JME_RXCHAIN_RESET(rdata);
424 * Reuse configured Rx descriptors and reset
425 * procuder/consumer index.
427 rdata->jme_rx_cons = 0;
429 if (JME_ENABLE_HWRSS(sc))
430 jme_enable_rss(sc);
431 else
432 jme_disable_rss(sc);
434 jme_txeof(tdata);
435 if (tdata->jme_tx_cnt != 0) {
436 /* Remove queued packets for transmit. */
437 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
438 txd = &tdata->jme_txdesc[i];
439 if (txd->tx_m != NULL) {
440 bus_dmamap_unload( tdata->jme_tx_tag,
441 txd->tx_dmamap);
442 m_freem(txd->tx_m);
443 txd->tx_m = NULL;
444 txd->tx_ndesc = 0;
445 IFNET_STAT_INC(ifp, oerrors, 1);
449 jme_init_tx_ring(tdata);
451 /* Initialize shadow status block. */
452 jme_init_ssb(sc);
454 /* Program MAC with resolved speed/duplex/flow-control. */
455 if (sc->jme_has_link) {
456 jme_mac_config(sc);
458 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
460 /* Set Tx ring address to the hardware. */
461 paddr = tdata->jme_tx_ring_paddr;
462 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
463 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
465 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
466 CSR_WRITE_4(sc, JME_RXCSR,
467 sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
469 /* Set Rx ring address to the hardware. */
470 paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
471 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
472 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
475 /* Restart receiver/transmitter. */
476 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
477 RXCSR_RXQ_START);
478 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
481 ifp->if_flags |= IFF_RUNNING;
482 ifq_clr_oactive(&ifp->if_snd);
483 callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
484 JME_TICK_CPUID);
486 #ifdef IFPOLL_ENABLE
487 if (!(ifp->if_flags & IFF_NPOLLING))
488 #endif
489 /* Reenable interrupts. */
490 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
492 done:
493 if (sc->jme_in_tick)
494 jme_deserialize_skipmain(sc);
498 * Get the current interface media status.
500 static void
501 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
503 struct jme_softc *sc = ifp->if_softc;
504 struct mii_data *mii = device_get_softc(sc->jme_miibus);
506 ASSERT_IFNET_SERIALIZED_ALL(ifp);
508 mii_pollstat(mii);
509 ifmr->ifm_status = mii->mii_media_status;
510 ifmr->ifm_active = mii->mii_media_active;
514 * Set hardware to newly-selected media.
516 static int
517 jme_mediachange(struct ifnet *ifp)
519 struct jme_softc *sc = ifp->if_softc;
520 struct mii_data *mii = device_get_softc(sc->jme_miibus);
521 int error;
523 ASSERT_IFNET_SERIALIZED_ALL(ifp);
525 if (mii->mii_instance != 0) {
526 struct mii_softc *miisc;
528 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
529 mii_phy_reset(miisc);
531 error = mii_mediachg(mii);
533 return (error);
536 static int
537 jme_probe(device_t dev)
539 const struct jme_dev *sp;
540 uint16_t vid, did;
542 vid = pci_get_vendor(dev);
543 did = pci_get_device(dev);
544 for (sp = jme_devs; sp->jme_name != NULL; ++sp) {
545 if (vid == sp->jme_vendorid && did == sp->jme_deviceid) {
546 struct jme_softc *sc = device_get_softc(dev);
548 sc->jme_caps = sp->jme_caps;
549 device_set_desc(dev, sp->jme_name);
550 return (0);
553 return (ENXIO);
556 static int
557 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
559 uint32_t reg;
560 int i;
562 *val = 0;
563 for (i = JME_TIMEOUT; i > 0; i--) {
564 reg = CSR_READ_4(sc, JME_SMBCSR);
565 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
566 break;
567 DELAY(1);
570 if (i == 0) {
571 device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
572 return (ETIMEDOUT);
575 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
576 CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
577 for (i = JME_TIMEOUT; i > 0; i--) {
578 DELAY(1);
579 reg = CSR_READ_4(sc, JME_SMBINTF);
580 if ((reg & SMBINTF_CMD_TRIGGER) == 0)
581 break;
584 if (i == 0) {
585 device_printf(sc->jme_dev, "EEPROM read timeout!\n");
586 return (ETIMEDOUT);
589 reg = CSR_READ_4(sc, JME_SMBINTF);
590 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
592 return (0);
595 static int
596 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
598 uint8_t fup, reg, val;
599 uint32_t offset;
600 int match;
602 offset = 0;
603 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
604 fup != JME_EEPROM_SIG0)
605 return (ENOENT);
606 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
607 fup != JME_EEPROM_SIG1)
608 return (ENOENT);
609 match = 0;
610 do {
611 if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
612 break;
613 if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
614 (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
615 if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
616 break;
617 if (reg >= JME_PAR0 &&
618 reg < JME_PAR0 + ETHER_ADDR_LEN) {
619 if (jme_eeprom_read_byte(sc, offset + 2,
620 &val) != 0)
621 break;
622 eaddr[reg - JME_PAR0] = val;
623 match++;
626 /* Check for the end of EEPROM descriptor. */
627 if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
628 break;
629 /* Try next eeprom descriptor. */
630 offset += JME_EEPROM_DESC_BYTES;
631 } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
633 if (match == ETHER_ADDR_LEN)
634 return (0);
636 return (ENOENT);
639 static void
640 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
642 uint32_t par0, par1;
644 /* Read station address. */
645 par0 = CSR_READ_4(sc, JME_PAR0);
646 par1 = CSR_READ_4(sc, JME_PAR1);
647 par1 &= 0xFFFF;
648 if ((par0 == 0 && par1 == 0) || (par0 & 0x1)) {
649 device_printf(sc->jme_dev,
650 "generating fake ethernet address.\n");
651 par0 = karc4random();
652 /* Set OUI to JMicron. */
653 eaddr[0] = 0x00;
654 eaddr[1] = 0x1B;
655 eaddr[2] = 0x8C;
656 eaddr[3] = (par0 >> 16) & 0xff;
657 eaddr[4] = (par0 >> 8) & 0xff;
658 eaddr[5] = par0 & 0xff;
659 } else {
660 eaddr[0] = (par0 >> 0) & 0xFF;
661 eaddr[1] = (par0 >> 8) & 0xFF;
662 eaddr[2] = (par0 >> 16) & 0xFF;
663 eaddr[3] = (par0 >> 24) & 0xFF;
664 eaddr[4] = (par1 >> 0) & 0xFF;
665 eaddr[5] = (par1 >> 8) & 0xFF;
669 static int
670 jme_attach(device_t dev)
672 struct jme_softc *sc = device_get_softc(dev);
673 struct ifnet *ifp = &sc->arpcom.ac_if;
674 uint32_t reg;
675 uint16_t did;
676 uint8_t pcie_ptr, rev;
677 int error = 0, i, j, rx_desc_cnt, coal_max, ring_cnt;
678 uint8_t eaddr[ETHER_ADDR_LEN];
681 * Initialize serializers
683 lwkt_serialize_init(&sc->jme_serialize);
684 lwkt_serialize_init(&sc->jme_cdata.jme_tx_data.jme_tx_serialize);
685 for (i = 0; i < JME_NRXRING_MAX; ++i) {
686 lwkt_serialize_init(
687 &sc->jme_cdata.jme_rx_data[i].jme_rx_serialize);
691 * Get # of RX ring descriptors
693 rx_desc_cnt = device_getenv_int(dev, "rx_desc_count",
694 jme_rx_desc_count);
695 rx_desc_cnt = roundup(rx_desc_cnt, JME_NDESC_ALIGN);
696 if (rx_desc_cnt > JME_NDESC_MAX)
697 rx_desc_cnt = JME_NDESC_MAX;
700 * Get # of TX ring descriptors
702 sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
703 device_getenv_int(dev, "tx_desc_count", jme_tx_desc_count);
704 sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
705 roundup(sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt, JME_NDESC_ALIGN);
706 if (sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt > JME_NDESC_MAX)
707 sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt = JME_NDESC_MAX;
710 * Create TX/RX ring maps.
712 ring_cnt = device_getenv_int(dev, "rx_ring_count", jme_rx_ring_count);
713 /* Require power-of-2 ring count. */
714 sc->jme_rx_rmap = if_ringmap_alloc2(dev, ring_cnt, JME_NRXRING_MAX);
715 sc->jme_cdata.jme_rx_ring_cnt = if_ringmap_count(sc->jme_rx_rmap);
717 /* Only one TX ring is supported. */
718 sc->jme_tx_rmap = if_ringmap_alloc(dev, 1, 1);
721 * NOTE:
722 * There is _no_ need to align or match TX/RX ring maps,
723 * since TX/RX rings are completely indepedent in this
724 * driver.
728 * Initialize serializer array
730 i = 0;
732 KKASSERT(i < JME_NSERIALIZE);
733 sc->jme_serialize_arr[i++] = &sc->jme_serialize;
735 KKASSERT(i < JME_NSERIALIZE);
736 sc->jme_serialize_arr[i++] =
737 &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
739 for (j = 0; j < sc->jme_cdata.jme_rx_ring_cnt; ++j) {
740 KKASSERT(i < JME_NSERIALIZE);
741 sc->jme_serialize_arr[i++] =
742 &sc->jme_cdata.jme_rx_data[j].jme_rx_serialize;
745 KKASSERT(i <= JME_NSERIALIZE);
746 sc->jme_serialize_cnt = i;
749 * Setup TX ring specific data
751 sc->jme_cdata.jme_tx_data.jme_sc = sc;
754 * Setup RX rings specific data
756 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
757 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
759 rdata->jme_sc = sc;
760 rdata->jme_rx_coal = jme_rx_status[i].jme_coal;
761 rdata->jme_rx_comp = jme_rx_status[i].jme_comp;
762 rdata->jme_rx_empty = jme_rx_status[i].jme_empty;
763 rdata->jme_rx_idx = i;
764 rdata->jme_rx_desc_cnt = rx_desc_cnt;
767 sc->jme_dev = dev;
768 sc->jme_lowaddr = BUS_SPACE_MAXADDR;
770 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
772 callout_init_mp(&sc->jme_tick_ch);
774 #ifndef BURN_BRIDGES
775 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
776 uint32_t irq, mem;
778 irq = pci_read_config(dev, PCIR_INTLINE, 4);
779 mem = pci_read_config(dev, JME_PCIR_BAR, 4);
781 device_printf(dev, "chip is in D%d power mode "
782 "-- setting to D0\n", pci_get_powerstate(dev));
784 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
786 pci_write_config(dev, PCIR_INTLINE, irq, 4);
787 pci_write_config(dev, JME_PCIR_BAR, mem, 4);
789 #endif /* !BURN_BRIDGE */
791 /* Enable bus mastering */
792 pci_enable_busmaster(dev);
795 * Allocate IO memory
797 * JMC250 supports both memory mapped and I/O register space
798 * access. Because I/O register access should use different
799 * BARs to access registers it's waste of time to use I/O
800 * register space access. JMC250 uses 16K to map entire memory
801 * space.
803 sc->jme_mem_rid = JME_PCIR_BAR;
804 sc->jme_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
805 &sc->jme_mem_rid, RF_ACTIVE);
806 if (sc->jme_mem_res == NULL) {
807 device_printf(dev, "can't allocate IO memory\n");
808 return ENXIO;
810 sc->jme_mem_bt = rman_get_bustag(sc->jme_mem_res);
811 sc->jme_mem_bh = rman_get_bushandle(sc->jme_mem_res);
814 * Allocate IRQ
816 error = jme_intr_alloc(dev);
817 if (error)
818 goto fail;
821 * Extract revisions
823 reg = CSR_READ_4(sc, JME_CHIPMODE);
824 if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
825 CHIPMODE_NOT_FPGA) {
826 sc->jme_caps |= JME_CAP_FPGA;
827 if (bootverbose) {
828 device_printf(dev, "FPGA revision: 0x%04x\n",
829 (reg & CHIPMODE_FPGA_REV_MASK) >>
830 CHIPMODE_FPGA_REV_SHIFT);
834 /* NOTE: FM revision is put in the upper 4 bits */
835 rev = ((reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT) << 4;
836 rev |= (reg & CHIPMODE_REVECO_MASK) >> CHIPMODE_REVECO_SHIFT;
837 if (bootverbose)
838 device_printf(dev, "Revision (FM/ECO): 0x%02x\n", rev);
840 did = pci_get_device(dev);
841 switch (did) {
842 case PCI_PRODUCT_JMICRON_JMC250:
843 if (rev == JME_REV1_A2)
844 sc->jme_workaround |= JME_WA_EXTFIFO | JME_WA_HDX;
845 break;
847 case PCI_PRODUCT_JMICRON_JMC260:
848 if (rev == JME_REV2) {
849 sc->jme_lowaddr = BUS_SPACE_MAXADDR_32BIT;
850 sc->jme_phycom0 = 0x608a;
851 } else if (rev == JME_REV2_2) {
852 sc->jme_phycom0 = 0x408a;
854 break;
856 default:
857 panic("unknown device id 0x%04x", did);
859 if (rev >= JME_REV2) {
860 sc->jme_clksrc = GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC;
861 sc->jme_clksrc_1000 = GHC_TXOFL_CLKSRC_1000 |
862 GHC_TXMAC_CLKSRC_1000;
864 if (rev >= JME_REV5)
865 sc->jme_caps |= JME_CAP_PHYPWR;
866 if (rev >= JME_REV6 || rev == JME_REV5 || rev == JME_REV5_1 ||
867 rev == JME_REV5_3) {
868 sc->jme_phycom0 = 0x008a;
869 sc->jme_phycom1 = 0x4109;
870 } else if (rev == JME_REV3_1 || rev == JME_REV3_2) {
871 sc->jme_phycom0 = 0xe088;
874 if (rev >= JME_REV2) {
875 reg = pci_read_config(dev, JME_PCI_SSCTRL, 4);
876 if ((reg & SSCTRL_PHYMASK) == SSCTRL_PHYEA) {
877 sc->jme_phycom0 = 0;
878 sc->jme_phycom1 = 0;
882 /* Reset the ethernet controller. */
883 jme_reset(sc);
885 /* Map MSI/MSI-X vectors */
886 jme_set_msinum(sc);
888 /* Get station address. */
889 reg = CSR_READ_4(sc, JME_SMBCSR);
890 if (reg & SMBCSR_EEPROM_PRESENT)
891 error = jme_eeprom_macaddr(sc, eaddr);
892 if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
893 if (error != 0 && (bootverbose)) {
894 device_printf(dev, "ethernet hardware address "
895 "not found in EEPROM.\n");
897 jme_reg_macaddr(sc, eaddr);
901 * Save PHY address.
902 * Integrated JR0211 has fixed PHY address whereas FPGA version
903 * requires PHY probing to get correct PHY address.
905 if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
906 sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
907 GPREG0_PHY_ADDR_MASK;
908 if (bootverbose) {
909 device_printf(dev, "PHY is at address %d.\n",
910 sc->jme_phyaddr);
912 } else {
913 sc->jme_phyaddr = 0;
916 /* Set max allowable DMA size. */
917 pcie_ptr = pci_get_pciecap_ptr(dev);
918 if (pcie_ptr != 0) {
919 uint16_t ctrl;
921 sc->jme_caps |= JME_CAP_PCIE;
922 ctrl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
923 if (bootverbose) {
924 device_printf(dev, "Read request size : %d bytes.\n",
925 128 << ((ctrl >> 12) & 0x07));
926 device_printf(dev, "TLP payload size : %d bytes.\n",
927 128 << ((ctrl >> 5) & 0x07));
929 switch (ctrl & PCIEM_DEVCTL_MAX_READRQ_MASK) {
930 case PCIEM_DEVCTL_MAX_READRQ_128:
931 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
932 break;
933 case PCIEM_DEVCTL_MAX_READRQ_256:
934 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
935 break;
936 default:
937 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
938 break;
940 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
941 } else {
942 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
943 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
946 #ifdef notyet
947 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
948 sc->jme_caps |= JME_CAP_PMCAP;
949 #endif
952 * Set default coalesce valves
954 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
955 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
956 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
957 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
960 * Adjust coalesce valves, in case that the number of TX/RX
961 * descs are set to small values by users.
963 * NOTE: coal_max will not be zero, since number of descs
964 * must aligned by JME_NDESC_ALIGN (16 currently)
966 coal_max = sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt / 2;
967 if (coal_max < sc->jme_tx_coal_pkt)
968 sc->jme_tx_coal_pkt = coal_max;
970 coal_max = sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt / 2;
971 if (coal_max < sc->jme_rx_coal_pkt)
972 sc->jme_rx_coal_pkt = coal_max;
974 sc->jme_cdata.jme_tx_data.jme_tx_wreg = JME_TXWREG_NSEGS;
977 * Create sysctl tree
979 jme_sysctl_node(sc);
981 /* Allocate DMA stuffs */
982 error = jme_dma_alloc(sc);
983 if (error)
984 goto fail;
986 ifp->if_softc = sc;
987 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
988 ifp->if_init = jme_init;
989 ifp->if_ioctl = jme_ioctl;
990 ifp->if_start = jme_start;
991 #ifdef IFPOLL_ENABLE
992 ifp->if_npoll = jme_npoll;
993 #endif
994 ifp->if_watchdog = jme_watchdog;
995 ifp->if_serialize = jme_serialize;
996 ifp->if_deserialize = jme_deserialize;
997 ifp->if_tryserialize = jme_tryserialize;
998 #ifdef INVARIANTS
999 ifp->if_serialize_assert = jme_serialize_assert;
1000 #endif
1001 ifp->if_nmbclusters = sc->jme_cdata.jme_rx_ring_cnt *
1002 sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt;
1003 ifq_set_maxlen(&ifp->if_snd,
1004 sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt - JME_TXD_RSVD);
1005 ifq_set_ready(&ifp->if_snd);
1007 /* JMC250 supports Tx/Rx checksum offload and hardware vlan tagging. */
1008 ifp->if_capabilities = IFCAP_HWCSUM |
1009 IFCAP_TSO |
1010 IFCAP_VLAN_MTU |
1011 IFCAP_VLAN_HWTAGGING;
1012 if (sc->jme_cdata.jme_rx_ring_cnt > JME_NRXRING_MIN)
1013 ifp->if_capabilities |= IFCAP_RSS;
1014 ifp->if_capenable = ifp->if_capabilities;
1017 * Disable TXCSUM by default to improve bulk data
1018 * transmit performance (+20Mbps improvement).
1020 ifp->if_capenable &= ~IFCAP_TXCSUM;
1022 if (ifp->if_capenable & IFCAP_TXCSUM)
1023 ifp->if_hwassist |= JME_CSUM_FEATURES;
1024 ifp->if_hwassist |= CSUM_TSO;
1026 /* Set up MII bus. */
1027 error = mii_phy_probe(dev, &sc->jme_miibus,
1028 jme_mediachange, jme_mediastatus);
1029 if (error) {
1030 device_printf(dev, "no PHY found!\n");
1031 goto fail;
1035 * Save PHYADDR for FPGA mode PHY.
1037 if (sc->jme_caps & JME_CAP_FPGA) {
1038 struct mii_data *mii = device_get_softc(sc->jme_miibus);
1040 if (mii->mii_instance != 0) {
1041 struct mii_softc *miisc;
1043 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1044 if (miisc->mii_phy != 0) {
1045 sc->jme_phyaddr = miisc->mii_phy;
1046 break;
1049 if (sc->jme_phyaddr != 0) {
1050 device_printf(sc->jme_dev,
1051 "FPGA PHY is at %d\n", sc->jme_phyaddr);
1052 /* vendor magic. */
1053 jme_miibus_writereg(dev, sc->jme_phyaddr,
1054 JMPHY_CONF, JMPHY_CONF_DEFFIFO);
1056 /* XXX should we clear JME_WA_EXTFIFO */
1061 ether_ifattach(ifp, eaddr, NULL);
1063 /* Tell the upper layer(s) we support long frames. */
1064 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1066 /* Setup the TX ring's CPUID */
1067 ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
1068 ifq_set_hw_serialize(&ifp->if_snd,
1069 &sc->jme_cdata.jme_tx_data.jme_tx_serialize);
1071 error = jme_intr_setup(dev);
1072 if (error) {
1073 ether_ifdetach(ifp);
1074 goto fail;
1077 return 0;
1078 fail:
1079 jme_detach(dev);
1080 return (error);
1083 static int
1084 jme_detach(device_t dev)
1086 struct jme_softc *sc = device_get_softc(dev);
1088 if (device_is_attached(dev)) {
1089 struct ifnet *ifp = &sc->arpcom.ac_if;
1091 ifnet_serialize_all(ifp);
1092 jme_stop(sc);
1093 jme_intr_teardown(dev);
1094 ifnet_deserialize_all(ifp);
1096 ether_ifdetach(ifp);
1099 if (sc->jme_miibus != NULL)
1100 device_delete_child(dev, sc->jme_miibus);
1101 bus_generic_detach(dev);
1103 jme_intr_free(dev);
1105 if (sc->jme_mem_res != NULL) {
1106 bus_release_resource(dev, SYS_RES_MEMORY, sc->jme_mem_rid,
1107 sc->jme_mem_res);
1110 jme_dma_free(sc);
1112 if (sc->jme_rx_rmap != NULL)
1113 if_ringmap_free(sc->jme_rx_rmap);
1114 if (sc->jme_tx_rmap != NULL)
1115 if_ringmap_free(sc->jme_tx_rmap);
1117 return (0);
1120 static void
1121 jme_sysctl_node(struct jme_softc *sc)
1123 struct sysctl_ctx_list *ctx;
1124 struct sysctl_oid *tree;
1125 #ifdef JME_RSS_DEBUG
1126 int r;
1127 #endif
1129 ctx = device_get_sysctl_ctx(sc->jme_dev);
1130 tree = device_get_sysctl_tree(sc->jme_dev);
1131 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1132 "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1133 sc, 0, jme_sysctl_tx_coal_to, "I", "jme tx coalescing timeout");
1135 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1136 "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1137 sc, 0, jme_sysctl_tx_coal_pkt, "I", "jme tx coalescing packet");
1139 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1140 "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1141 sc, 0, jme_sysctl_rx_coal_to, "I", "jme rx coalescing timeout");
1143 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1144 "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1145 sc, 0, jme_sysctl_rx_coal_pkt, "I", "jme rx coalescing packet");
1147 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1148 "rx_desc_count", CTLFLAG_RD,
1149 &sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt,
1150 0, "RX desc count");
1151 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1152 "tx_desc_count", CTLFLAG_RD,
1153 &sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt,
1154 0, "TX desc count");
1155 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1156 "rx_ring_count", CTLFLAG_RD,
1157 &sc->jme_cdata.jme_rx_ring_cnt,
1158 0, "RX ring count");
1159 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1160 "tx_wreg", CTLFLAG_RW,
1161 &sc->jme_cdata.jme_tx_data.jme_tx_wreg, 0,
1162 "# of segments before writing to hardware register");
1164 if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX) {
1165 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1166 "tx_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1167 sc->jme_tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1168 "TX ring CPU map");
1169 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1170 "rx_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1171 sc->jme_rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1172 "RX ring CPU map");
1173 } else {
1174 #ifdef IFPOLL_ENABLE
1175 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1176 "tx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1177 sc->jme_tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1178 "TX poll CPU map");
1179 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1180 "rx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1181 sc->jme_rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1182 "RX poll CPU map");
1183 #endif
1186 #ifdef JME_RSS_DEBUG
1187 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1188 "rss_debug", CTLFLAG_RW, &sc->jme_rss_debug,
1189 0, "RSS debug level");
1190 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1191 char rx_ring_desc[32];
1193 ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1194 "rx_ring%d_pkt", r);
1195 SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1196 rx_ring_desc, CTLFLAG_RW,
1197 &sc->jme_cdata.jme_rx_data[r].jme_rx_pkt, "RXed packets");
1199 ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1200 "rx_ring%d_emp", r);
1201 SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1202 rx_ring_desc, CTLFLAG_RW,
1203 &sc->jme_cdata.jme_rx_data[r].jme_rx_emp,
1204 "# of time RX ring empty");
1206 #endif
1209 static int
1210 jme_dma_alloc(struct jme_softc *sc)
1212 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1213 struct jme_txdesc *txd;
1214 bus_dmamem_t dmem;
1215 int error, i, asize;
1217 asize = __VM_CACHELINE_ALIGN(
1218 tdata->jme_tx_desc_cnt * sizeof(struct jme_txdesc));
1219 tdata->jme_txdesc = kmalloc(asize, M_DEVBUF,
1220 M_WAITOK | M_ZERO | M_CACHEALIGN);
1222 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1223 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
1225 asize = __VM_CACHELINE_ALIGN(
1226 rdata->jme_rx_desc_cnt * sizeof(struct jme_rxdesc));
1227 rdata->jme_rxdesc = kmalloc(asize, M_DEVBUF,
1228 M_WAITOK | M_ZERO | M_CACHEALIGN);
1231 /* Create parent ring tag. */
1232 error = bus_dma_tag_create(NULL,/* parent */
1233 1, JME_RING_BOUNDARY, /* algnmnt, boundary */
1234 sc->jme_lowaddr, /* lowaddr */
1235 BUS_SPACE_MAXADDR, /* highaddr */
1236 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1237 0, /* nsegments */
1238 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1239 0, /* flags */
1240 &sc->jme_cdata.jme_ring_tag);
1241 if (error) {
1242 device_printf(sc->jme_dev,
1243 "could not create parent ring DMA tag.\n");
1244 return error;
1248 * Create DMA stuffs for TX ring
1250 asize = roundup2(JME_TX_RING_SIZE(tdata), JME_TX_RING_ALIGN);
1251 error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
1252 JME_TX_RING_ALIGN, 0,
1253 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1254 asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1255 if (error) {
1256 device_printf(sc->jme_dev, "could not allocate Tx ring.\n");
1257 return error;
1259 tdata->jme_tx_ring_tag = dmem.dmem_tag;
1260 tdata->jme_tx_ring_map = dmem.dmem_map;
1261 tdata->jme_tx_ring = dmem.dmem_addr;
1262 tdata->jme_tx_ring_paddr = dmem.dmem_busaddr;
1265 * Create DMA stuffs for RX rings
1267 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1268 error = jme_rxring_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1269 if (error)
1270 return error;
1273 /* Create parent buffer tag. */
1274 error = bus_dma_tag_create(NULL,/* parent */
1275 1, 0, /* algnmnt, boundary */
1276 sc->jme_lowaddr, /* lowaddr */
1277 BUS_SPACE_MAXADDR, /* highaddr */
1278 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1279 0, /* nsegments */
1280 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1281 0, /* flags */
1282 &sc->jme_cdata.jme_buffer_tag);
1283 if (error) {
1284 device_printf(sc->jme_dev,
1285 "could not create parent buffer DMA tag.\n");
1286 return error;
1290 * Create DMA stuffs for shadow status block
1292 asize = roundup2(JME_SSB_SIZE, JME_SSB_ALIGN);
1293 error = bus_dmamem_coherent(sc->jme_cdata.jme_buffer_tag,
1294 JME_SSB_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1295 asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1296 if (error) {
1297 device_printf(sc->jme_dev,
1298 "could not create shadow status block.\n");
1299 return error;
1301 sc->jme_cdata.jme_ssb_tag = dmem.dmem_tag;
1302 sc->jme_cdata.jme_ssb_map = dmem.dmem_map;
1303 sc->jme_cdata.jme_ssb_block = dmem.dmem_addr;
1304 sc->jme_cdata.jme_ssb_block_paddr = dmem.dmem_busaddr;
1307 * Create DMA stuffs for TX buffers
1310 /* Create tag for Tx buffers. */
1311 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1312 1, 0, /* algnmnt, boundary */
1313 BUS_SPACE_MAXADDR, /* lowaddr */
1314 BUS_SPACE_MAXADDR, /* highaddr */
1315 JME_TSO_MAXSIZE, /* maxsize */
1316 JME_MAXTXSEGS, /* nsegments */
1317 JME_MAXSEGSIZE, /* maxsegsize */
1318 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,/* flags */
1319 &tdata->jme_tx_tag);
1320 if (error != 0) {
1321 device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1322 return error;
1325 /* Create DMA maps for Tx buffers. */
1326 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1327 txd = &tdata->jme_txdesc[i];
1328 error = bus_dmamap_create(tdata->jme_tx_tag,
1329 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1330 &txd->tx_dmamap);
1331 if (error) {
1332 int j;
1334 device_printf(sc->jme_dev,
1335 "could not create %dth Tx dmamap.\n", i);
1337 for (j = 0; j < i; ++j) {
1338 txd = &tdata->jme_txdesc[j];
1339 bus_dmamap_destroy(tdata->jme_tx_tag,
1340 txd->tx_dmamap);
1342 bus_dma_tag_destroy(tdata->jme_tx_tag);
1343 tdata->jme_tx_tag = NULL;
1344 return error;
1349 * Create DMA stuffs for RX buffers
1351 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1352 error = jme_rxbuf_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1353 if (error)
1354 return error;
1356 return 0;
1359 static void
1360 jme_dma_free(struct jme_softc *sc)
1362 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1363 struct jme_txdesc *txd;
1364 struct jme_rxdesc *rxd;
1365 struct jme_rxdata *rdata;
1366 int i, r;
1368 /* Tx ring */
1369 if (tdata->jme_tx_ring_tag != NULL) {
1370 bus_dmamap_unload(tdata->jme_tx_ring_tag,
1371 tdata->jme_tx_ring_map);
1372 bus_dmamem_free(tdata->jme_tx_ring_tag,
1373 tdata->jme_tx_ring, tdata->jme_tx_ring_map);
1374 bus_dma_tag_destroy(tdata->jme_tx_ring_tag);
1375 tdata->jme_tx_ring_tag = NULL;
1378 /* Rx ring */
1379 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1380 rdata = &sc->jme_cdata.jme_rx_data[r];
1381 if (rdata->jme_rx_ring_tag != NULL) {
1382 bus_dmamap_unload(rdata->jme_rx_ring_tag,
1383 rdata->jme_rx_ring_map);
1384 bus_dmamem_free(rdata->jme_rx_ring_tag,
1385 rdata->jme_rx_ring,
1386 rdata->jme_rx_ring_map);
1387 bus_dma_tag_destroy(rdata->jme_rx_ring_tag);
1388 rdata->jme_rx_ring_tag = NULL;
1392 /* Tx buffers */
1393 if (tdata->jme_tx_tag != NULL) {
1394 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1395 txd = &tdata->jme_txdesc[i];
1396 bus_dmamap_destroy(tdata->jme_tx_tag, txd->tx_dmamap);
1398 bus_dma_tag_destroy(tdata->jme_tx_tag);
1399 tdata->jme_tx_tag = NULL;
1402 /* Rx buffers */
1403 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1404 rdata = &sc->jme_cdata.jme_rx_data[r];
1405 if (rdata->jme_rx_tag != NULL) {
1406 for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
1407 rxd = &rdata->jme_rxdesc[i];
1408 bus_dmamap_destroy(rdata->jme_rx_tag,
1409 rxd->rx_dmamap);
1411 bus_dmamap_destroy(rdata->jme_rx_tag,
1412 rdata->jme_rx_sparemap);
1413 bus_dma_tag_destroy(rdata->jme_rx_tag);
1414 rdata->jme_rx_tag = NULL;
1418 /* Shadow status block. */
1419 if (sc->jme_cdata.jme_ssb_tag != NULL) {
1420 bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1421 sc->jme_cdata.jme_ssb_map);
1422 bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1423 sc->jme_cdata.jme_ssb_block,
1424 sc->jme_cdata.jme_ssb_map);
1425 bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1426 sc->jme_cdata.jme_ssb_tag = NULL;
1429 if (sc->jme_cdata.jme_buffer_tag != NULL) {
1430 bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1431 sc->jme_cdata.jme_buffer_tag = NULL;
1433 if (sc->jme_cdata.jme_ring_tag != NULL) {
1434 bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1435 sc->jme_cdata.jme_ring_tag = NULL;
1438 if (tdata->jme_txdesc != NULL) {
1439 kfree(tdata->jme_txdesc, M_DEVBUF);
1440 tdata->jme_txdesc = NULL;
1442 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1443 rdata = &sc->jme_cdata.jme_rx_data[r];
1444 if (rdata->jme_rxdesc != NULL) {
1445 kfree(rdata->jme_rxdesc, M_DEVBUF);
1446 rdata->jme_rxdesc = NULL;
1452 * Make sure the interface is stopped at reboot time.
1454 static int
1455 jme_shutdown(device_t dev)
1457 return jme_suspend(dev);
1460 #ifdef notyet
1462 * Unlike other ethernet controllers, JMC250 requires
1463 * explicit resetting link speed to 10/100Mbps as gigabit
1464 * link will cunsume more power than 375mA.
1465 * Note, we reset the link speed to 10/100Mbps with
1466 * auto-negotiation but we don't know whether that operation
1467 * would succeed or not as we have no control after powering
1468 * off. If the renegotiation fail WOL may not work. Running
1469 * at 1Gbps draws more power than 375mA at 3.3V which is
1470 * specified in PCI specification and that would result in
1471 * complete shutdowning power to ethernet controller.
1473 * TODO
1474 * Save current negotiated media speed/duplex/flow-control
1475 * to softc and restore the same link again after resuming.
1476 * PHY handling such as power down/resetting to 100Mbps
1477 * may be better handled in suspend method in phy driver.
1479 static void
1480 jme_setlinkspeed(struct jme_softc *sc)
1482 struct mii_data *mii;
1483 int aneg, i;
1485 JME_LOCK_ASSERT(sc);
1487 mii = device_get_softc(sc->jme_miibus);
1488 mii_pollstat(mii);
1489 aneg = 0;
1490 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1491 switch IFM_SUBTYPE(mii->mii_media_active) {
1492 case IFM_10_T:
1493 case IFM_100_TX:
1494 return;
1495 case IFM_1000_T:
1496 aneg++;
1497 default:
1498 break;
1501 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1502 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1503 ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1504 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1505 BMCR_AUTOEN | BMCR_STARTNEG);
1506 DELAY(1000);
1507 if (aneg != 0) {
1508 /* Poll link state until jme(4) get a 10/100 link. */
1509 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1510 mii_pollstat(mii);
1511 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1512 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1513 case IFM_10_T:
1514 case IFM_100_TX:
1515 jme_mac_config(sc);
1516 return;
1517 default:
1518 break;
1521 JME_UNLOCK(sc);
1522 pause("jmelnk", hz);
1523 JME_LOCK(sc);
1525 if (i == MII_ANEGTICKS_GIGE)
1526 device_printf(sc->jme_dev, "establishing link failed, "
1527 "WOL may not work!");
1530 * No link, force MAC to have 100Mbps, full-duplex link.
1531 * This is the last resort and may/may not work.
1533 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1534 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1535 jme_mac_config(sc);
1538 static void
1539 jme_setwol(struct jme_softc *sc)
1541 struct ifnet *ifp = &sc->arpcom.ac_if;
1542 uint32_t gpr, pmcs;
1543 uint16_t pmstat;
1544 int pmc;
1546 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1547 /* No PME capability, PHY power down. */
1548 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1549 MII_BMCR, BMCR_PDOWN);
1550 return;
1553 gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1554 pmcs = CSR_READ_4(sc, JME_PMCS);
1555 pmcs &= ~PMCS_WOL_ENB_MASK;
1556 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1557 pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1558 /* Enable PME message. */
1559 gpr |= GPREG0_PME_ENB;
1560 /* For gigabit controllers, reset link speed to 10/100. */
1561 if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1562 jme_setlinkspeed(sc);
1565 CSR_WRITE_4(sc, JME_PMCS, pmcs);
1566 CSR_WRITE_4(sc, JME_GPREG0, gpr);
1568 /* Request PME. */
1569 pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1570 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1571 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1572 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1573 pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1574 if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1575 /* No WOL, PHY power down. */
1576 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1577 MII_BMCR, BMCR_PDOWN);
1580 #endif
1582 static int
1583 jme_suspend(device_t dev)
1585 struct jme_softc *sc = device_get_softc(dev);
1586 struct ifnet *ifp = &sc->arpcom.ac_if;
1588 ifnet_serialize_all(ifp);
1589 jme_stop(sc);
1590 #ifdef notyet
1591 jme_setwol(sc);
1592 #endif
1593 ifnet_deserialize_all(ifp);
1595 return (0);
1598 static int
1599 jme_resume(device_t dev)
1601 struct jme_softc *sc = device_get_softc(dev);
1602 struct ifnet *ifp = &sc->arpcom.ac_if;
1603 #ifdef notyet
1604 int pmc;
1605 #endif
1607 ifnet_serialize_all(ifp);
1609 #ifdef notyet
1610 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1611 uint16_t pmstat;
1613 pmstat = pci_read_config(sc->jme_dev,
1614 pmc + PCIR_POWER_STATUS, 2);
1615 /* Disable PME clear PME status. */
1616 pmstat &= ~PCIM_PSTAT_PMEENABLE;
1617 pci_write_config(sc->jme_dev,
1618 pmc + PCIR_POWER_STATUS, pmstat, 2);
1620 #endif
1622 if (ifp->if_flags & IFF_UP)
1623 jme_init(sc);
1625 ifnet_deserialize_all(ifp);
1627 return (0);
1630 static __inline int
1631 jme_tso_pullup(struct mbuf **mp)
1633 int hoff, iphlen, thoff;
1634 struct mbuf *m;
1636 m = *mp;
1637 KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
1639 iphlen = m->m_pkthdr.csum_iphlen;
1640 thoff = m->m_pkthdr.csum_thlen;
1641 hoff = m->m_pkthdr.csum_lhlen;
1643 KASSERT(iphlen > 0, ("invalid ip hlen"));
1644 KASSERT(thoff > 0, ("invalid tcp hlen"));
1645 KASSERT(hoff > 0, ("invalid ether hlen"));
1647 if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
1648 m = m_pullup(m, hoff + iphlen + thoff);
1649 if (m == NULL) {
1650 *mp = NULL;
1651 return ENOBUFS;
1653 *mp = m;
1655 return 0;
1658 static int
1659 jme_encap(struct jme_txdata *tdata, struct mbuf **m_head, int *segs_used)
1661 struct jme_txdesc *txd;
1662 struct jme_desc *desc;
1663 struct mbuf *m;
1664 bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1665 int maxsegs, nsegs;
1666 int error, i, prod, symbol_desc;
1667 uint32_t cflags, flag64, mss;
1669 M_ASSERTPKTHDR((*m_head));
1671 if ((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) {
1672 /* XXX Is this necessary? */
1673 error = jme_tso_pullup(m_head);
1674 if (error)
1675 return error;
1678 prod = tdata->jme_tx_prod;
1679 txd = &tdata->jme_txdesc[prod];
1681 if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
1682 symbol_desc = 1;
1683 else
1684 symbol_desc = 0;
1686 maxsegs = (tdata->jme_tx_desc_cnt - tdata->jme_tx_cnt) -
1687 (JME_TXD_RSVD + symbol_desc);
1688 if (maxsegs > JME_MAXTXSEGS)
1689 maxsegs = JME_MAXTXSEGS;
1690 KASSERT(maxsegs >= (JME_TXD_SPARE - symbol_desc),
1691 ("not enough segments %d", maxsegs));
1693 error = bus_dmamap_load_mbuf_defrag(tdata->jme_tx_tag,
1694 txd->tx_dmamap, m_head,
1695 txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1696 if (error)
1697 goto fail;
1698 *segs_used += nsegs;
1700 bus_dmamap_sync(tdata->jme_tx_tag, txd->tx_dmamap,
1701 BUS_DMASYNC_PREWRITE);
1703 m = *m_head;
1704 cflags = 0;
1705 mss = 0;
1707 /* Configure checksum offload. */
1708 if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1709 mss = (uint32_t)m->m_pkthdr.tso_segsz << JME_TD_MSS_SHIFT;
1710 cflags |= JME_TD_TSO;
1711 } else if (m->m_pkthdr.csum_flags & JME_CSUM_FEATURES) {
1712 if (m->m_pkthdr.csum_flags & CSUM_IP)
1713 cflags |= JME_TD_IPCSUM;
1714 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1715 cflags |= JME_TD_TCPCSUM;
1716 if (m->m_pkthdr.csum_flags & CSUM_UDP)
1717 cflags |= JME_TD_UDPCSUM;
1720 /* Configure VLAN. */
1721 if (m->m_flags & M_VLANTAG) {
1722 cflags |= (m->m_pkthdr.ether_vlantag & JME_TD_VLAN_MASK);
1723 cflags |= JME_TD_VLAN_TAG;
1726 desc = &tdata->jme_tx_ring[prod];
1727 desc->flags = htole32(cflags);
1728 desc->addr_hi = htole32(m->m_pkthdr.len);
1729 if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1731 * Use 64bits TX desc chain format.
1733 * The first TX desc of the chain, which is setup here,
1734 * is just a symbol TX desc carrying no payload.
1736 flag64 = JME_TD_64BIT;
1737 desc->buflen = htole32(mss);
1738 desc->addr_lo = 0;
1740 *segs_used += 1;
1742 /* No effective TX desc is consumed */
1743 i = 0;
1744 } else {
1746 * Use 32bits TX desc chain format.
1748 * The first TX desc of the chain, which is setup here,
1749 * is an effective TX desc carrying the first segment of
1750 * the mbuf chain.
1752 flag64 = 0;
1753 desc->buflen = htole32(mss | txsegs[0].ds_len);
1754 desc->addr_lo = htole32(JME_ADDR_LO(txsegs[0].ds_addr));
1756 /* One effective TX desc is consumed */
1757 i = 1;
1759 tdata->jme_tx_cnt++;
1760 KKASSERT(tdata->jme_tx_cnt - i < tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1761 JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1763 txd->tx_ndesc = 1 - i;
1764 for (; i < nsegs; i++) {
1765 desc = &tdata->jme_tx_ring[prod];
1766 desc->buflen = htole32(txsegs[i].ds_len);
1767 desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1768 desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1769 desc->flags = htole32(JME_TD_OWN | flag64);
1771 tdata->jme_tx_cnt++;
1772 KKASSERT(tdata->jme_tx_cnt <=
1773 tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1774 JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1777 /* Update producer index. */
1778 tdata->jme_tx_prod = prod;
1780 * Finally request interrupt and give the first descriptor
1781 * owenership to hardware.
1783 desc = txd->tx_desc;
1784 desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1786 txd->tx_m = m;
1787 txd->tx_ndesc += nsegs;
1789 return 0;
1790 fail:
1791 m_freem(*m_head);
1792 *m_head = NULL;
1793 return error;
1796 static void
1797 jme_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1799 struct jme_softc *sc = ifp->if_softc;
1800 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1801 struct mbuf *m_head;
1802 int enq = 0;
1804 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1805 ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
1807 if (!sc->jme_has_link) {
1808 ifq_purge(&ifp->if_snd);
1809 return;
1812 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1813 return;
1815 if (tdata->jme_tx_cnt >= JME_TX_DESC_HIWAT(tdata))
1816 jme_txeof(tdata);
1818 while (!ifq_is_empty(&ifp->if_snd)) {
1820 * Check number of available TX descs, always
1821 * leave JME_TXD_RSVD free TX descs.
1823 if (tdata->jme_tx_cnt + JME_TXD_SPARE >
1824 tdata->jme_tx_desc_cnt - JME_TXD_RSVD) {
1825 ifq_set_oactive(&ifp->if_snd);
1826 break;
1829 m_head = ifq_dequeue(&ifp->if_snd);
1830 if (m_head == NULL)
1831 break;
1834 * Pack the data into the transmit ring. If we
1835 * don't have room, set the OACTIVE flag and wait
1836 * for the NIC to drain the ring.
1838 if (jme_encap(tdata, &m_head, &enq)) {
1839 KKASSERT(m_head == NULL);
1840 IFNET_STAT_INC(ifp, oerrors, 1);
1841 ifq_set_oactive(&ifp->if_snd);
1842 break;
1845 if (enq >= tdata->jme_tx_wreg) {
1846 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr |
1847 TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1848 enq = 0;
1852 * If there's a BPF listener, bounce a copy of this frame
1853 * to him.
1855 ETHER_BPF_MTAP(ifp, m_head);
1857 /* Set a timeout in case the chip goes out to lunch. */
1858 ifp->if_timer = JME_TX_TIMEOUT;
1861 if (enq > 0) {
1863 * Reading TXCSR takes very long time under heavy load
1864 * so cache TXCSR value and writes the ORed value with
1865 * the kick command to the TXCSR. This saves one register
1866 * access cycle.
1868 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1869 TXCSR_TXQ_N_START(TXCSR_TXQ0));
1873 static void
1874 jme_watchdog(struct ifnet *ifp)
1876 struct jme_softc *sc = ifp->if_softc;
1877 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1879 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1881 if (!sc->jme_has_link) {
1882 if_printf(ifp, "watchdog timeout (missed link)\n");
1883 IFNET_STAT_INC(ifp, oerrors, 1);
1884 jme_init(sc);
1885 return;
1888 jme_txeof(tdata);
1889 if (tdata->jme_tx_cnt == 0) {
1890 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
1891 "-- recovering\n");
1892 if (!ifq_is_empty(&ifp->if_snd))
1893 if_devstart(ifp);
1894 return;
1897 if_printf(ifp, "watchdog timeout\n");
1898 IFNET_STAT_INC(ifp, oerrors, 1);
1899 jme_init(sc);
1900 if (!ifq_is_empty(&ifp->if_snd))
1901 if_devstart(ifp);
1904 static int
1905 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1907 struct jme_softc *sc = ifp->if_softc;
1908 struct mii_data *mii = device_get_softc(sc->jme_miibus);
1909 struct ifreq *ifr = (struct ifreq *)data;
1910 int error = 0, mask;
1912 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1914 switch (cmd) {
1915 case SIOCSIFMTU:
1916 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1917 (!(sc->jme_caps & JME_CAP_JUMBO) &&
1918 ifr->ifr_mtu > JME_MAX_MTU)) {
1919 error = EINVAL;
1920 break;
1923 if (ifp->if_mtu != ifr->ifr_mtu) {
1925 * No special configuration is required when interface
1926 * MTU is changed but availability of Tx checksum
1927 * offload should be chcked against new MTU size as
1928 * FIFO size is just 2K.
1930 if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1931 ifp->if_capenable &=
1932 ~(IFCAP_TXCSUM | IFCAP_TSO);
1933 ifp->if_hwassist &=
1934 ~(JME_CSUM_FEATURES | CSUM_TSO);
1936 ifp->if_mtu = ifr->ifr_mtu;
1937 if (ifp->if_flags & IFF_RUNNING)
1938 jme_init(sc);
1940 break;
1942 case SIOCSIFFLAGS:
1943 if (ifp->if_flags & IFF_UP) {
1944 if (ifp->if_flags & IFF_RUNNING) {
1945 if ((ifp->if_flags ^ sc->jme_if_flags) &
1946 (IFF_PROMISC | IFF_ALLMULTI))
1947 jme_set_filter(sc);
1948 } else {
1949 jme_init(sc);
1951 } else {
1952 if (ifp->if_flags & IFF_RUNNING)
1953 jme_stop(sc);
1955 sc->jme_if_flags = ifp->if_flags;
1956 break;
1958 case SIOCADDMULTI:
1959 case SIOCDELMULTI:
1960 if (ifp->if_flags & IFF_RUNNING)
1961 jme_set_filter(sc);
1962 break;
1964 case SIOCSIFMEDIA:
1965 case SIOCGIFMEDIA:
1966 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1967 break;
1969 case SIOCSIFCAP:
1970 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1972 if ((mask & IFCAP_TXCSUM) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1973 ifp->if_capenable ^= IFCAP_TXCSUM;
1974 if (ifp->if_capenable & IFCAP_TXCSUM)
1975 ifp->if_hwassist |= JME_CSUM_FEATURES;
1976 else
1977 ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1979 if (mask & IFCAP_RXCSUM) {
1980 uint32_t reg;
1982 ifp->if_capenable ^= IFCAP_RXCSUM;
1983 reg = CSR_READ_4(sc, JME_RXMAC);
1984 reg &= ~RXMAC_CSUM_ENB;
1985 if (ifp->if_capenable & IFCAP_RXCSUM)
1986 reg |= RXMAC_CSUM_ENB;
1987 CSR_WRITE_4(sc, JME_RXMAC, reg);
1990 if (mask & IFCAP_VLAN_HWTAGGING) {
1991 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1992 jme_set_vlan(sc);
1995 if ((mask & IFCAP_TSO) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1996 ifp->if_capenable ^= IFCAP_TSO;
1997 if (ifp->if_capenable & IFCAP_TSO)
1998 ifp->if_hwassist |= CSUM_TSO;
1999 else
2000 ifp->if_hwassist &= ~CSUM_TSO;
2003 if (mask & IFCAP_RSS)
2004 ifp->if_capenable ^= IFCAP_RSS;
2005 break;
2007 default:
2008 error = ether_ioctl(ifp, cmd, data);
2009 break;
2011 return (error);
2014 static void
2015 jme_mac_config(struct jme_softc *sc)
2017 struct mii_data *mii;
2018 uint32_t ghc, rxmac, txmac, txpause, gp1;
2019 int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
2021 mii = device_get_softc(sc->jme_miibus);
2023 CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2024 DELAY(10);
2025 CSR_WRITE_4(sc, JME_GHC, 0);
2026 ghc = 0;
2027 rxmac = CSR_READ_4(sc, JME_RXMAC);
2028 rxmac &= ~RXMAC_FC_ENB;
2029 txmac = CSR_READ_4(sc, JME_TXMAC);
2030 txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2031 txpause = CSR_READ_4(sc, JME_TXPFC);
2032 txpause &= ~TXPFC_PAUSE_ENB;
2033 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2034 ghc |= GHC_FULL_DUPLEX;
2035 rxmac &= ~RXMAC_COLL_DET_ENB;
2036 txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2037 TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2038 TXMAC_FRAME_BURST);
2039 #ifdef notyet
2040 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2041 txpause |= TXPFC_PAUSE_ENB;
2042 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2043 rxmac |= RXMAC_FC_ENB;
2044 #endif
2045 /* Disable retry transmit timer/retry limit. */
2046 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2047 ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2048 } else {
2049 rxmac |= RXMAC_COLL_DET_ENB;
2050 txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2051 /* Enable retry transmit timer/retry limit. */
2052 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2053 TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2057 * Reprogram Tx/Rx MACs with resolved speed/duplex.
2059 gp1 = CSR_READ_4(sc, JME_GPREG1);
2060 gp1 &= ~GPREG1_WA_HDX;
2062 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2063 hdx = 1;
2065 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2066 case IFM_10_T:
2067 ghc |= GHC_SPEED_10 | sc->jme_clksrc;
2068 if (hdx)
2069 gp1 |= GPREG1_WA_HDX;
2070 break;
2072 case IFM_100_TX:
2073 ghc |= GHC_SPEED_100 | sc->jme_clksrc;
2074 if (hdx)
2075 gp1 |= GPREG1_WA_HDX;
2078 * Use extended FIFO depth to workaround CRC errors
2079 * emitted by chips before JMC250B
2081 phyconf = JMPHY_CONF_EXTFIFO;
2082 break;
2084 case IFM_1000_T:
2085 if (sc->jme_caps & JME_CAP_FASTETH)
2086 break;
2088 ghc |= GHC_SPEED_1000 | sc->jme_clksrc_1000;
2089 if (hdx)
2090 txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2091 break;
2093 default:
2094 break;
2096 CSR_WRITE_4(sc, JME_GHC, ghc);
2097 CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2098 CSR_WRITE_4(sc, JME_TXMAC, txmac);
2099 CSR_WRITE_4(sc, JME_TXPFC, txpause);
2101 if (sc->jme_workaround & JME_WA_EXTFIFO) {
2102 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2103 JMPHY_CONF, phyconf);
2105 if (sc->jme_workaround & JME_WA_HDX)
2106 CSR_WRITE_4(sc, JME_GPREG1, gp1);
2109 static void
2110 jme_intr(void *xsc)
2112 struct jme_softc *sc = xsc;
2113 struct ifnet *ifp = &sc->arpcom.ac_if;
2114 uint32_t status;
2115 int r;
2117 ASSERT_SERIALIZED(&sc->jme_serialize);
2119 status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2120 if (status == 0 || status == 0xFFFFFFFF)
2121 return;
2123 /* Disable interrupts. */
2124 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2126 status = CSR_READ_4(sc, JME_INTR_STATUS);
2127 if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2128 goto back;
2130 /* Reset PCC counter/timer and Ack interrupts. */
2131 status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2133 if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
2134 status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2136 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2137 if (status & jme_rx_status[r].jme_coal) {
2138 status |= jme_rx_status[r].jme_coal |
2139 jme_rx_status[r].jme_comp;
2143 CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2145 if (ifp->if_flags & IFF_RUNNING) {
2146 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2148 if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
2149 jme_rx_intr(sc, status);
2151 if (status & INTR_RXQ_DESC_EMPTY) {
2153 * Notify hardware availability of new Rx buffers.
2154 * Reading RXCSR takes very long time under heavy
2155 * load so cache RXCSR value and writes the ORed
2156 * value with the kick command to the RXCSR. This
2157 * saves one register access cycle.
2159 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2160 RXCSR_RX_ENB | RXCSR_RXQ_START);
2163 if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
2164 lwkt_serialize_enter(&tdata->jme_tx_serialize);
2165 jme_txeof(tdata);
2166 if (!ifq_is_empty(&ifp->if_snd))
2167 if_devstart(ifp);
2168 lwkt_serialize_exit(&tdata->jme_tx_serialize);
2171 back:
2172 /* Reenable interrupts. */
2173 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2176 static void
2177 jme_txeof(struct jme_txdata *tdata)
2179 struct ifnet *ifp = &tdata->jme_sc->arpcom.ac_if;
2180 int cons;
2182 cons = tdata->jme_tx_cons;
2183 if (cons == tdata->jme_tx_prod)
2184 return;
2187 * Go through our Tx list and free mbufs for those
2188 * frames which have been transmitted.
2190 while (cons != tdata->jme_tx_prod) {
2191 struct jme_txdesc *txd, *next_txd;
2192 uint32_t status, next_status;
2193 int next_cons, nsegs;
2195 txd = &tdata->jme_txdesc[cons];
2196 KASSERT(txd->tx_m != NULL,
2197 ("%s: freeing NULL mbuf!", __func__));
2199 status = le32toh(txd->tx_desc->flags);
2200 if ((status & JME_TD_OWN) == JME_TD_OWN)
2201 break;
2204 * NOTE:
2205 * This chip will always update the TX descriptor's
2206 * buflen field and this updating always happens
2207 * after clearing the OWN bit, so even if the OWN
2208 * bit is cleared by the chip, we still don't sure
2209 * about whether the buflen field has been updated
2210 * by the chip or not. To avoid this race, we wait
2211 * for the next TX descriptor's OWN bit to be cleared
2212 * by the chip before reusing this TX descriptor.
2214 next_cons = cons;
2215 JME_DESC_ADD(next_cons, txd->tx_ndesc, tdata->jme_tx_desc_cnt);
2216 next_txd = &tdata->jme_txdesc[next_cons];
2217 if (next_txd->tx_m == NULL)
2218 break;
2219 next_status = le32toh(next_txd->tx_desc->flags);
2220 if ((next_status & JME_TD_OWN) == JME_TD_OWN)
2221 break;
2223 if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
2224 IFNET_STAT_INC(ifp, oerrors, 1);
2225 } else {
2226 IFNET_STAT_INC(ifp, opackets, 1);
2227 if (status & JME_TD_COLLISION) {
2228 IFNET_STAT_INC(ifp, collisions,
2229 le32toh(txd->tx_desc->buflen) &
2230 JME_TD_BUF_LEN_MASK);
2235 * Only the first descriptor of multi-descriptor
2236 * transmission is updated so driver have to skip entire
2237 * chained buffers for the transmiited frame. In other
2238 * words, JME_TD_OWN bit is valid only at the first
2239 * descriptor of a multi-descriptor transmission.
2241 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2242 tdata->jme_tx_ring[cons].flags = 0;
2243 JME_DESC_INC(cons, tdata->jme_tx_desc_cnt);
2246 /* Reclaim transferred mbufs. */
2247 bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2248 m_freem(txd->tx_m);
2249 txd->tx_m = NULL;
2250 tdata->jme_tx_cnt -= txd->tx_ndesc;
2251 KASSERT(tdata->jme_tx_cnt >= 0,
2252 ("%s: Active Tx desc counter was garbled", __func__));
2253 txd->tx_ndesc = 0;
2255 tdata->jme_tx_cons = cons;
2257 /* 1 for symbol TX descriptor */
2258 if (tdata->jme_tx_cnt <= JME_MAXTXSEGS + 1)
2259 ifp->if_timer = 0;
2261 if (tdata->jme_tx_cnt + JME_TXD_SPARE <=
2262 tdata->jme_tx_desc_cnt - JME_TXD_RSVD)
2263 ifq_clr_oactive(&ifp->if_snd);
2266 static __inline void
2267 jme_discard_rxbufs(struct jme_rxdata *rdata, int cons, int count)
2269 int i;
2271 for (i = 0; i < count; ++i) {
2272 jme_setup_rxdesc(&rdata->jme_rxdesc[cons]);
2273 JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2277 static __inline struct pktinfo *
2278 jme_pktinfo(struct pktinfo *pi, uint32_t flags)
2280 if (flags & JME_RD_IPV4)
2281 pi->pi_netisr = NETISR_IP;
2282 else if (flags & JME_RD_IPV6)
2283 pi->pi_netisr = NETISR_IPV6;
2284 else
2285 return NULL;
2287 pi->pi_flags = 0;
2288 pi->pi_l3proto = IPPROTO_UNKNOWN;
2290 if (flags & JME_RD_MORE_FRAG)
2291 pi->pi_flags |= PKTINFO_FLAG_FRAG;
2292 else if (flags & JME_RD_TCP)
2293 pi->pi_l3proto = IPPROTO_TCP;
2294 else if (flags & JME_RD_UDP)
2295 pi->pi_l3proto = IPPROTO_UDP;
2296 else
2297 pi = NULL;
2298 return pi;
2301 /* Receive a frame. */
2302 static void
2303 jme_rxpkt(struct jme_rxdata *rdata, int cpuid)
2305 struct ifnet *ifp = &rdata->jme_sc->arpcom.ac_if;
2306 struct jme_desc *desc;
2307 struct jme_rxdesc *rxd;
2308 struct mbuf *mp, *m;
2309 uint32_t flags, status, hash, hashinfo;
2310 int cons, count, nsegs;
2312 cons = rdata->jme_rx_cons;
2313 desc = &rdata->jme_rx_ring[cons];
2315 flags = le32toh(desc->flags);
2316 status = le32toh(desc->buflen);
2317 hash = le32toh(desc->addr_hi);
2318 hashinfo = le32toh(desc->addr_lo);
2319 nsegs = JME_RX_NSEGS(status);
2321 if (nsegs > 1) {
2322 /* Skip the first descriptor. */
2323 JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2326 * Clear the OWN bit of the following RX descriptors;
2327 * hardware will not clear the OWN bit except the first
2328 * RX descriptor.
2330 * Since the first RX descriptor is setup, i.e. OWN bit
2331 * on, before its followins RX descriptors, leaving the
2332 * OWN bit on the following RX descriptors will trick
2333 * the hardware into thinking that the following RX
2334 * descriptors are ready to be used too.
2336 for (count = 1; count < nsegs; count++,
2337 JME_DESC_INC(cons, rdata->jme_rx_desc_cnt))
2338 rdata->jme_rx_ring[cons].flags = 0;
2340 cons = rdata->jme_rx_cons;
2343 JME_RSS_DPRINTF(rdata->jme_sc, 15, "ring%d, flags 0x%08x, "
2344 "hash 0x%08x, hash info 0x%08x\n",
2345 rdata->jme_rx_idx, flags, hash, hashinfo);
2347 if (status & JME_RX_ERR_STAT) {
2348 IFNET_STAT_INC(ifp, ierrors, 1);
2349 jme_discard_rxbufs(rdata, cons, nsegs);
2350 #ifdef JME_SHOW_ERRORS
2351 if_printf(ifp, "%s : receive error = 0x%pb%i\n",
2352 __func__, JME_RX_ERR_BITS, JME_RX_ERR(status));
2353 #endif
2354 rdata->jme_rx_cons += nsegs;
2355 rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2356 return;
2359 rdata->jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2360 for (count = 0; count < nsegs; count++,
2361 JME_DESC_INC(cons, rdata->jme_rx_desc_cnt)) {
2362 rxd = &rdata->jme_rxdesc[cons];
2363 mp = rxd->rx_m;
2365 /* Add a new receive buffer to the ring. */
2366 if (jme_newbuf(rdata, rxd, 0) != 0) {
2367 IFNET_STAT_INC(ifp, iqdrops, 1);
2368 /* Reuse buffer. */
2369 jme_discard_rxbufs(rdata, cons, nsegs - count);
2370 if (rdata->jme_rxhead != NULL) {
2371 m_freem(rdata->jme_rxhead);
2372 JME_RXCHAIN_RESET(rdata);
2374 break;
2378 * Assume we've received a full sized frame.
2379 * Actual size is fixed when we encounter the end of
2380 * multi-segmented frame.
2382 mp->m_len = MCLBYTES;
2384 /* Chain received mbufs. */
2385 if (rdata->jme_rxhead == NULL) {
2386 rdata->jme_rxhead = mp;
2387 rdata->jme_rxtail = mp;
2388 } else {
2390 * Receive processor can receive a maximum frame
2391 * size of 65535 bytes.
2393 rdata->jme_rxtail->m_next = mp;
2394 rdata->jme_rxtail = mp;
2397 if (count == nsegs - 1) {
2398 struct pktinfo pi0, *pi;
2400 /* Last desc. for this frame. */
2401 m = rdata->jme_rxhead;
2402 m->m_pkthdr.len = rdata->jme_rxlen;
2403 if (nsegs > 1) {
2404 /* Set first mbuf size. */
2405 m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2406 /* Set last mbuf size. */
2407 mp->m_len = rdata->jme_rxlen -
2408 ((MCLBYTES - JME_RX_PAD_BYTES) +
2409 (MCLBYTES * (nsegs - 2)));
2410 } else {
2411 m->m_len = rdata->jme_rxlen;
2413 m->m_pkthdr.rcvif = ifp;
2416 * Account for 10bytes auto padding which is used
2417 * to align IP header on 32bit boundary. Also note,
2418 * CRC bytes is automatically removed by the
2419 * hardware.
2421 m->m_data += JME_RX_PAD_BYTES;
2423 /* Set checksum information. */
2424 if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2425 (flags & JME_RD_IPV4)) {
2426 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2427 if (flags & JME_RD_IPCSUM)
2428 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2429 if ((flags & JME_RD_MORE_FRAG) == 0 &&
2430 ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2431 (JME_RD_TCP | JME_RD_TCPCSUM) ||
2432 (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2433 (JME_RD_UDP | JME_RD_UDPCSUM))) {
2434 m->m_pkthdr.csum_flags |=
2435 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2436 m->m_pkthdr.csum_data = 0xffff;
2440 /* Check for VLAN tagged packets. */
2441 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
2442 (flags & JME_RD_VLAN_TAG)) {
2443 m->m_pkthdr.ether_vlantag =
2444 flags & JME_RD_VLAN_MASK;
2445 m->m_flags |= M_VLANTAG;
2448 IFNET_STAT_INC(ifp, ipackets, 1);
2450 if (ifp->if_capenable & IFCAP_RSS)
2451 pi = jme_pktinfo(&pi0, flags);
2452 else
2453 pi = NULL;
2455 if (pi != NULL &&
2456 (hashinfo & JME_RD_HASH_FN_MASK) ==
2457 JME_RD_HASH_FN_TOEPLITZ) {
2458 m_sethash(m, toeplitz_hash(hash));
2459 m->m_flags |= M_CKHASH;
2462 #ifdef JME_RSS_DEBUG
2463 if (pi != NULL) {
2464 JME_RSS_DPRINTF(rdata->jme_sc, 10,
2465 "isr %d flags %08x, l3 %d %s\n",
2466 pi->pi_netisr, pi->pi_flags,
2467 pi->pi_l3proto,
2468 (m->m_flags & M_HASH) ? "hash" : "");
2470 #endif
2472 /* Pass it on. */
2473 ifp->if_input(ifp, m, pi, cpuid);
2475 /* Reset mbuf chains. */
2476 JME_RXCHAIN_RESET(rdata);
2477 #ifdef JME_RSS_DEBUG
2478 rdata->jme_rx_pkt++;
2479 #endif
2483 rdata->jme_rx_cons += nsegs;
2484 rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2487 static void
2488 jme_rxeof(struct jme_rxdata *rdata, int count, int cpuid)
2490 struct jme_desc *desc;
2491 int nsegs, pktlen;
2493 for (;;) {
2494 #ifdef IFPOLL_ENABLE
2495 if (count >= 0 && count-- == 0)
2496 break;
2497 #endif
2498 desc = &rdata->jme_rx_ring[rdata->jme_rx_cons];
2499 if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2500 break;
2501 if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2502 break;
2505 * Check number of segments against received bytes.
2506 * Non-matching value would indicate that hardware
2507 * is still trying to update Rx descriptors. I'm not
2508 * sure whether this check is needed.
2510 nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2511 pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2512 if (nsegs != howmany(pktlen, MCLBYTES)) {
2513 if_printf(&rdata->jme_sc->arpcom.ac_if,
2514 "RX fragment count(%d) and "
2515 "packet size(%d) mismach\n", nsegs, pktlen);
2516 break;
2520 * NOTE:
2521 * RSS hash and hash information may _not_ be set by the
2522 * hardware even if the OWN bit is cleared and VALID bit
2523 * is set.
2525 * If the RSS information is not delivered by the hardware
2526 * yet, we MUST NOT accept this packet, let alone reusing
2527 * its RX descriptor. If this packet was accepted and its
2528 * RX descriptor was reused before hardware delivering the
2529 * RSS information, the RX buffer's address would be trashed
2530 * by the RSS information delivered by the hardware.
2532 if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
2533 struct jme_rxdesc *rxd;
2534 uint32_t hashinfo;
2536 hashinfo = le32toh(desc->addr_lo);
2537 rxd = &rdata->jme_rxdesc[rdata->jme_rx_cons];
2540 * This test should be enough to detect the pending
2541 * RSS information delivery, given:
2542 * - If RSS hash is not calculated, the hashinfo
2543 * will be 0. However, the lower 32bits of RX
2544 * buffers' physical address will never be 0.
2545 * (see jme_rxbuf_dma_filter)
2546 * - If RSS hash is calculated, the lowest 4 bits
2547 * of hashinfo will be set, while the RX buffers
2548 * are at least 2K aligned.
2550 if (hashinfo == JME_ADDR_LO(rxd->rx_paddr)) {
2551 #ifdef JME_SHOW_RSSWB
2552 if_printf(&rdata->jme_sc->arpcom.ac_if,
2553 "RSS is not written back yet\n");
2554 #endif
2555 break;
2559 /* Received a frame. */
2560 jme_rxpkt(rdata, cpuid);
2564 static void
2565 jme_tick(void *xsc)
2567 struct jme_softc *sc = xsc;
2568 struct mii_data *mii = device_get_softc(sc->jme_miibus);
2570 lwkt_serialize_enter(&sc->jme_serialize);
2572 KKASSERT(mycpuid == JME_TICK_CPUID);
2574 sc->jme_in_tick = TRUE;
2575 mii_tick(mii);
2576 sc->jme_in_tick = FALSE;
2578 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2580 lwkt_serialize_exit(&sc->jme_serialize);
2583 static void
2584 jme_reset(struct jme_softc *sc)
2586 uint32_t val;
2588 /* Make sure that TX and RX are stopped */
2589 jme_stop_tx(sc);
2590 jme_stop_rx(sc);
2592 /* Start reset */
2593 CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2594 DELAY(20);
2597 * Hold reset bit before stop reset
2600 /* Disable TXMAC and TXOFL clock sources */
2601 CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2602 /* Disable RXMAC clock source */
2603 val = CSR_READ_4(sc, JME_GPREG1);
2604 CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2605 /* Flush */
2606 CSR_READ_4(sc, JME_GHC);
2608 /* Stop reset */
2609 CSR_WRITE_4(sc, JME_GHC, 0);
2610 /* Flush */
2611 CSR_READ_4(sc, JME_GHC);
2614 * Clear reset bit after stop reset
2617 /* Enable TXMAC and TXOFL clock sources */
2618 CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2619 /* Enable RXMAC clock source */
2620 val = CSR_READ_4(sc, JME_GPREG1);
2621 CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2622 /* Flush */
2623 CSR_READ_4(sc, JME_GHC);
2625 /* Disable TXMAC and TXOFL clock sources */
2626 CSR_WRITE_4(sc, JME_GHC, 0);
2627 /* Disable RXMAC clock source */
2628 val = CSR_READ_4(sc, JME_GPREG1);
2629 CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2630 /* Flush */
2631 CSR_READ_4(sc, JME_GHC);
2633 /* Enable TX and RX */
2634 val = CSR_READ_4(sc, JME_TXCSR);
2635 CSR_WRITE_4(sc, JME_TXCSR, val | TXCSR_TX_ENB);
2636 val = CSR_READ_4(sc, JME_RXCSR);
2637 CSR_WRITE_4(sc, JME_RXCSR, val | RXCSR_RX_ENB);
2638 /* Flush */
2639 CSR_READ_4(sc, JME_TXCSR);
2640 CSR_READ_4(sc, JME_RXCSR);
2642 /* Enable TXMAC and TXOFL clock sources */
2643 CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2644 /* Disable RXMAC clock source */
2645 val = CSR_READ_4(sc, JME_GPREG1);
2646 CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2647 /* Flush */
2648 CSR_READ_4(sc, JME_GHC);
2650 /* Stop TX and RX */
2651 jme_stop_tx(sc);
2652 jme_stop_rx(sc);
2655 static void
2656 jme_init(void *xsc)
2658 struct jme_softc *sc = xsc;
2659 struct ifnet *ifp = &sc->arpcom.ac_if;
2660 struct mii_data *mii;
2661 uint8_t eaddr[ETHER_ADDR_LEN];
2662 bus_addr_t paddr;
2663 uint32_t reg;
2664 int error, r;
2666 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2669 * Cancel any pending I/O.
2671 jme_stop(sc);
2674 * Reset the chip to a known state.
2676 jme_reset(sc);
2679 * Setup MSI/MSI-X vectors to interrupts mapping
2681 jme_set_msinum(sc);
2683 if (JME_ENABLE_HWRSS(sc))
2684 jme_enable_rss(sc);
2685 else
2686 jme_disable_rss(sc);
2688 /* Init RX descriptors */
2689 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2690 error = jme_init_rx_ring(&sc->jme_cdata.jme_rx_data[r]);
2691 if (error) {
2692 if_printf(ifp, "initialization failed: "
2693 "no memory for %dth RX ring.\n", r);
2694 jme_stop(sc);
2695 return;
2699 /* Init TX descriptors */
2700 jme_init_tx_ring(&sc->jme_cdata.jme_tx_data);
2702 /* Initialize shadow status block. */
2703 jme_init_ssb(sc);
2705 /* Reprogram the station address. */
2706 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2707 CSR_WRITE_4(sc, JME_PAR0,
2708 eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2709 CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2712 * Configure Tx queue.
2713 * Tx priority queue weight value : 0
2714 * Tx FIFO threshold for processing next packet : 16QW
2715 * Maximum Tx DMA length : 512
2716 * Allow Tx DMA burst.
2718 sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2719 sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2720 sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2721 sc->jme_txcsr |= sc->jme_tx_dma_size;
2722 sc->jme_txcsr |= TXCSR_DMA_BURST;
2723 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2725 /* Set Tx descriptor counter. */
2726 CSR_WRITE_4(sc, JME_TXQDC, sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt);
2728 /* Set Tx ring address to the hardware. */
2729 paddr = sc->jme_cdata.jme_tx_data.jme_tx_ring_paddr;
2730 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2731 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2733 /* Configure TxMAC parameters. */
2734 reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2735 reg |= TXMAC_THRESH_1_PKT;
2736 reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2737 CSR_WRITE_4(sc, JME_TXMAC, reg);
2740 * Configure Rx queue.
2741 * FIFO full threshold for transmitting Tx pause packet : 128T
2742 * FIFO threshold for processing next packet : 128QW
2743 * Rx queue 0 select
2744 * Max Rx DMA length : 128
2745 * Rx descriptor retry : 32
2746 * Rx descriptor retry time gap : 256ns
2747 * Don't receive runt/bad frame.
2749 sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2750 #if 0
2752 * Since Rx FIFO size is 4K bytes, receiving frames larger
2753 * than 4K bytes will suffer from Rx FIFO overruns. So
2754 * decrease FIFO threshold to reduce the FIFO overruns for
2755 * frames larger than 4000 bytes.
2756 * For best performance of standard MTU sized frames use
2757 * maximum allowable FIFO threshold, 128QW.
2759 if ((ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN) >
2760 JME_RX_FIFO_SIZE)
2761 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2762 else
2763 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2764 #else
2765 /* Improve PCI Express compatibility */
2766 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2767 #endif
2768 sc->jme_rxcsr |= sc->jme_rx_dma_size;
2769 sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2770 sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2771 /* XXX TODO DROP_BAD */
2773 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2774 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
2776 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
2778 /* Set Rx descriptor counter. */
2779 CSR_WRITE_4(sc, JME_RXQDC, rdata->jme_rx_desc_cnt);
2781 /* Set Rx ring address to the hardware. */
2782 paddr = rdata->jme_rx_ring_paddr;
2783 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2784 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2787 /* Clear receive filter. */
2788 CSR_WRITE_4(sc, JME_RXMAC, 0);
2790 /* Set up the receive filter. */
2791 jme_set_filter(sc);
2792 jme_set_vlan(sc);
2795 * Disable all WOL bits as WOL can interfere normal Rx
2796 * operation. Also clear WOL detection status bits.
2798 reg = CSR_READ_4(sc, JME_PMCS);
2799 reg &= ~PMCS_WOL_ENB_MASK;
2800 CSR_WRITE_4(sc, JME_PMCS, reg);
2803 * Pad 10bytes right before received frame. This will greatly
2804 * help Rx performance on strict-alignment architectures as
2805 * it does not need to copy the frame to align the payload.
2807 reg = CSR_READ_4(sc, JME_RXMAC);
2808 reg |= RXMAC_PAD_10BYTES;
2810 if (ifp->if_capenable & IFCAP_RXCSUM)
2811 reg |= RXMAC_CSUM_ENB;
2812 CSR_WRITE_4(sc, JME_RXMAC, reg);
2814 /* Configure general purpose reg0 */
2815 reg = CSR_READ_4(sc, JME_GPREG0);
2816 reg &= ~GPREG0_PCC_UNIT_MASK;
2817 /* Set PCC timer resolution to micro-seconds unit. */
2818 reg |= GPREG0_PCC_UNIT_US;
2820 * Disable all shadow register posting as we have to read
2821 * JME_INTR_STATUS register in jme_intr. Also it seems
2822 * that it's hard to synchronize interrupt status between
2823 * hardware and software with shadow posting due to
2824 * requirements of bus_dmamap_sync(9).
2826 reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2827 GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2828 GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2829 GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2830 /* Disable posting of DW0. */
2831 reg &= ~GPREG0_POST_DW0_ENB;
2832 /* Clear PME message. */
2833 reg &= ~GPREG0_PME_ENB;
2834 /* Set PHY address. */
2835 reg &= ~GPREG0_PHY_ADDR_MASK;
2836 reg |= sc->jme_phyaddr;
2837 CSR_WRITE_4(sc, JME_GPREG0, reg);
2839 /* Configure Tx queue 0 packet completion coalescing. */
2840 jme_set_tx_coal(sc);
2842 /* Configure Rx queues packet completion coalescing. */
2843 jme_set_rx_coal(sc);
2845 /* Configure shadow status block but don't enable posting. */
2846 paddr = sc->jme_cdata.jme_ssb_block_paddr;
2847 CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2848 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2850 /* Disable Timer 1 and Timer 2. */
2851 CSR_WRITE_4(sc, JME_TIMER1, 0);
2852 CSR_WRITE_4(sc, JME_TIMER2, 0);
2854 /* Configure retry transmit period, retry limit value. */
2855 CSR_WRITE_4(sc, JME_TXTRHD,
2856 ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2857 TXTRHD_RT_PERIOD_MASK) |
2858 ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2859 TXTRHD_RT_LIMIT_SHIFT));
2861 #ifdef IFPOLL_ENABLE
2862 if (!(ifp->if_flags & IFF_NPOLLING))
2863 #endif
2864 /* Initialize the interrupt mask. */
2865 jme_enable_intr(sc);
2866 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2869 * Enabling Tx/Rx DMA engines and Rx queue processing is
2870 * done after detection of valid link in jme_miibus_statchg.
2872 sc->jme_has_link = FALSE;
2874 jme_phy_init(sc);
2876 /* Set the current media. */
2877 mii = device_get_softc(sc->jme_miibus);
2878 mii_mediachg(mii);
2880 callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
2881 JME_TICK_CPUID);
2883 ifp->if_flags |= IFF_RUNNING;
2884 ifq_clr_oactive(&ifp->if_snd);
2887 static void
2888 jme_stop(struct jme_softc *sc)
2890 struct ifnet *ifp = &sc->arpcom.ac_if;
2891 struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2892 struct jme_txdesc *txd;
2893 struct jme_rxdesc *rxd;
2894 struct jme_rxdata *rdata;
2895 int i, r;
2897 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2900 * Mark the interface down and cancel the watchdog timer.
2902 ifp->if_flags &= ~IFF_RUNNING;
2903 ifq_clr_oactive(&ifp->if_snd);
2904 ifp->if_timer = 0;
2906 callout_stop(&sc->jme_tick_ch);
2907 sc->jme_has_link = FALSE;
2910 * Disable interrupts.
2912 jme_disable_intr(sc);
2913 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2915 /* Disable updating shadow status block. */
2916 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2917 CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2919 /* Stop receiver, transmitter. */
2920 jme_stop_rx(sc);
2921 jme_stop_tx(sc);
2924 * Free partial finished RX segments
2926 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2927 rdata = &sc->jme_cdata.jme_rx_data[r];
2928 if (rdata->jme_rxhead != NULL)
2929 m_freem(rdata->jme_rxhead);
2930 JME_RXCHAIN_RESET(rdata);
2934 * Free RX and TX mbufs still in the queues.
2936 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2937 rdata = &sc->jme_cdata.jme_rx_data[r];
2938 for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
2939 rxd = &rdata->jme_rxdesc[i];
2940 if (rxd->rx_m != NULL) {
2941 bus_dmamap_unload(rdata->jme_rx_tag,
2942 rxd->rx_dmamap);
2943 m_freem(rxd->rx_m);
2944 rxd->rx_m = NULL;
2948 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
2949 txd = &tdata->jme_txdesc[i];
2950 if (txd->tx_m != NULL) {
2951 bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2952 m_freem(txd->tx_m);
2953 txd->tx_m = NULL;
2954 txd->tx_ndesc = 0;
2959 static void
2960 jme_stop_tx(struct jme_softc *sc)
2962 uint32_t reg;
2963 int i;
2965 reg = CSR_READ_4(sc, JME_TXCSR);
2966 if ((reg & TXCSR_TX_ENB) == 0)
2967 return;
2968 reg &= ~TXCSR_TX_ENB;
2969 CSR_WRITE_4(sc, JME_TXCSR, reg);
2970 for (i = JME_TIMEOUT; i > 0; i--) {
2971 DELAY(1);
2972 if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2973 break;
2975 if (i == 0)
2976 device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2979 static void
2980 jme_stop_rx(struct jme_softc *sc)
2982 uint32_t reg;
2983 int i;
2985 reg = CSR_READ_4(sc, JME_RXCSR);
2986 if ((reg & RXCSR_RX_ENB) == 0)
2987 return;
2988 reg &= ~RXCSR_RX_ENB;
2989 CSR_WRITE_4(sc, JME_RXCSR, reg);
2990 for (i = JME_TIMEOUT; i > 0; i--) {
2991 DELAY(1);
2992 if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2993 break;
2995 if (i == 0)
2996 device_printf(sc->jme_dev, "stopping receiver timeout!\n");
2999 static void
3000 jme_init_tx_ring(struct jme_txdata *tdata)
3002 struct jme_txdesc *txd;
3003 int i;
3005 tdata->jme_tx_prod = 0;
3006 tdata->jme_tx_cons = 0;
3007 tdata->jme_tx_cnt = 0;
3009 bzero(tdata->jme_tx_ring, JME_TX_RING_SIZE(tdata));
3010 for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
3011 txd = &tdata->jme_txdesc[i];
3012 txd->tx_m = NULL;
3013 txd->tx_desc = &tdata->jme_tx_ring[i];
3014 txd->tx_ndesc = 0;
3018 static void
3019 jme_init_ssb(struct jme_softc *sc)
3021 struct jme_chain_data *cd;
3023 cd = &sc->jme_cdata;
3024 bzero(cd->jme_ssb_block, JME_SSB_SIZE);
3027 static int
3028 jme_init_rx_ring(struct jme_rxdata *rdata)
3030 struct jme_rxdesc *rxd;
3031 int i;
3033 KKASSERT(rdata->jme_rxhead == NULL &&
3034 rdata->jme_rxtail == NULL &&
3035 rdata->jme_rxlen == 0);
3036 rdata->jme_rx_cons = 0;
3038 bzero(rdata->jme_rx_ring, JME_RX_RING_SIZE(rdata));
3039 for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3040 int error;
3042 rxd = &rdata->jme_rxdesc[i];
3043 rxd->rx_m = NULL;
3044 rxd->rx_desc = &rdata->jme_rx_ring[i];
3045 error = jme_newbuf(rdata, rxd, 1);
3046 if (error)
3047 return error;
3049 return 0;
3052 static int
3053 jme_newbuf(struct jme_rxdata *rdata, struct jme_rxdesc *rxd, int init)
3055 struct mbuf *m;
3056 bus_dma_segment_t segs;
3057 bus_dmamap_t map;
3058 int error, nsegs;
3060 m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3061 if (m == NULL)
3062 return ENOBUFS;
3064 * JMC250 has 64bit boundary alignment limitation so jme(4)
3065 * takes advantage of 10 bytes padding feature of hardware
3066 * in order not to copy entire frame to align IP header on
3067 * 32bit boundary.
3069 m->m_len = m->m_pkthdr.len = MCLBYTES;
3071 error = bus_dmamap_load_mbuf_segment(rdata->jme_rx_tag,
3072 rdata->jme_rx_sparemap, m, &segs, 1, &nsegs,
3073 BUS_DMA_NOWAIT);
3074 if (error) {
3075 m_freem(m);
3076 if (init) {
3077 if_printf(&rdata->jme_sc->arpcom.ac_if,
3078 "can't load RX mbuf\n");
3080 return error;
3083 if (rxd->rx_m != NULL) {
3084 bus_dmamap_sync(rdata->jme_rx_tag, rxd->rx_dmamap,
3085 BUS_DMASYNC_POSTREAD);
3086 bus_dmamap_unload(rdata->jme_rx_tag, rxd->rx_dmamap);
3088 map = rxd->rx_dmamap;
3089 rxd->rx_dmamap = rdata->jme_rx_sparemap;
3090 rdata->jme_rx_sparemap = map;
3091 rxd->rx_m = m;
3092 rxd->rx_paddr = segs.ds_addr;
3094 jme_setup_rxdesc(rxd);
3095 return 0;
3098 static void
3099 jme_set_vlan(struct jme_softc *sc)
3101 struct ifnet *ifp = &sc->arpcom.ac_if;
3102 uint32_t reg;
3104 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3106 reg = CSR_READ_4(sc, JME_RXMAC);
3107 reg &= ~RXMAC_VLAN_ENB;
3108 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
3109 reg |= RXMAC_VLAN_ENB;
3110 CSR_WRITE_4(sc, JME_RXMAC, reg);
3113 static void
3114 jme_set_filter(struct jme_softc *sc)
3116 struct ifnet *ifp = &sc->arpcom.ac_if;
3117 struct ifmultiaddr *ifma;
3118 uint32_t crc;
3119 uint32_t mchash[2];
3120 uint32_t rxcfg;
3122 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3124 rxcfg = CSR_READ_4(sc, JME_RXMAC);
3125 rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3126 RXMAC_ALLMULTI);
3129 * Always accept frames destined to our station address.
3130 * Always accept broadcast frames.
3132 rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
3134 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
3135 if (ifp->if_flags & IFF_PROMISC)
3136 rxcfg |= RXMAC_PROMISC;
3137 if (ifp->if_flags & IFF_ALLMULTI)
3138 rxcfg |= RXMAC_ALLMULTI;
3139 CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3140 CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3141 CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3142 return;
3146 * Set up the multicast address filter by passing all multicast
3147 * addresses through a CRC generator, and then using the low-order
3148 * 6 bits as an index into the 64 bit multicast hash table. The
3149 * high order bits select the register, while the rest of the bits
3150 * select the bit within the register.
3152 rxcfg |= RXMAC_MULTICAST;
3153 bzero(mchash, sizeof(mchash));
3155 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3156 if (ifma->ifma_addr->sa_family != AF_LINK)
3157 continue;
3158 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3159 ifma->ifma_addr), ETHER_ADDR_LEN);
3161 /* Just want the 6 least significant bits. */
3162 crc &= 0x3f;
3164 /* Set the corresponding bit in the hash table. */
3165 mchash[crc >> 5] |= 1 << (crc & 0x1f);
3168 CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3169 CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3170 CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3173 static int
3174 jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS)
3176 struct jme_softc *sc = arg1;
3177 struct ifnet *ifp = &sc->arpcom.ac_if;
3178 int error, v;
3180 ifnet_serialize_all(ifp);
3182 v = sc->jme_tx_coal_to;
3183 error = sysctl_handle_int(oidp, &v, 0, req);
3184 if (error || req->newptr == NULL)
3185 goto back;
3187 if (v < PCCTX_COAL_TO_MIN || v > PCCTX_COAL_TO_MAX) {
3188 error = EINVAL;
3189 goto back;
3192 if (v != sc->jme_tx_coal_to) {
3193 sc->jme_tx_coal_to = v;
3194 if (ifp->if_flags & IFF_RUNNING)
3195 jme_set_tx_coal(sc);
3197 back:
3198 ifnet_deserialize_all(ifp);
3199 return error;
3202 static int
3203 jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3205 struct jme_softc *sc = arg1;
3206 struct ifnet *ifp = &sc->arpcom.ac_if;
3207 int error, v;
3209 ifnet_serialize_all(ifp);
3211 v = sc->jme_tx_coal_pkt;
3212 error = sysctl_handle_int(oidp, &v, 0, req);
3213 if (error || req->newptr == NULL)
3214 goto back;
3216 if (v < PCCTX_COAL_PKT_MIN || v > PCCTX_COAL_PKT_MAX) {
3217 error = EINVAL;
3218 goto back;
3221 if (v != sc->jme_tx_coal_pkt) {
3222 sc->jme_tx_coal_pkt = v;
3223 if (ifp->if_flags & IFF_RUNNING)
3224 jme_set_tx_coal(sc);
3226 back:
3227 ifnet_deserialize_all(ifp);
3228 return error;
3231 static int
3232 jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS)
3234 struct jme_softc *sc = arg1;
3235 struct ifnet *ifp = &sc->arpcom.ac_if;
3236 int error, v;
3238 ifnet_serialize_all(ifp);
3240 v = sc->jme_rx_coal_to;
3241 error = sysctl_handle_int(oidp, &v, 0, req);
3242 if (error || req->newptr == NULL)
3243 goto back;
3245 if (v < PCCRX_COAL_TO_MIN || v > PCCRX_COAL_TO_MAX) {
3246 error = EINVAL;
3247 goto back;
3250 if (v != sc->jme_rx_coal_to) {
3251 sc->jme_rx_coal_to = v;
3252 if (ifp->if_flags & IFF_RUNNING)
3253 jme_set_rx_coal(sc);
3255 back:
3256 ifnet_deserialize_all(ifp);
3257 return error;
3260 static int
3261 jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3263 struct jme_softc *sc = arg1;
3264 struct ifnet *ifp = &sc->arpcom.ac_if;
3265 int error, v;
3267 ifnet_serialize_all(ifp);
3269 v = sc->jme_rx_coal_pkt;
3270 error = sysctl_handle_int(oidp, &v, 0, req);
3271 if (error || req->newptr == NULL)
3272 goto back;
3274 if (v < PCCRX_COAL_PKT_MIN || v > PCCRX_COAL_PKT_MAX) {
3275 error = EINVAL;
3276 goto back;
3279 if (v != sc->jme_rx_coal_pkt) {
3280 sc->jme_rx_coal_pkt = v;
3281 if (ifp->if_flags & IFF_RUNNING)
3282 jme_set_rx_coal(sc);
3284 back:
3285 ifnet_deserialize_all(ifp);
3286 return error;
3289 static void
3290 jme_set_tx_coal(struct jme_softc *sc)
3292 uint32_t reg;
3294 reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
3295 PCCTX_COAL_TO_MASK;
3296 reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
3297 PCCTX_COAL_PKT_MASK;
3298 reg |= PCCTX_COAL_TXQ0;
3299 CSR_WRITE_4(sc, JME_PCCTX, reg);
3302 static void
3303 jme_set_rx_coal(struct jme_softc *sc)
3305 uint32_t reg;
3306 int r;
3308 reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
3309 PCCRX_COAL_TO_MASK;
3310 reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
3311 PCCRX_COAL_PKT_MASK;
3312 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r)
3313 CSR_WRITE_4(sc, JME_PCCRX(r), reg);
3316 #ifdef IFPOLL_ENABLE
3318 static void
3319 jme_npoll_status(struct ifnet *ifp)
3321 struct jme_softc *sc = ifp->if_softc;
3322 uint32_t status;
3324 ASSERT_SERIALIZED(&sc->jme_serialize);
3326 status = CSR_READ_4(sc, JME_INTR_STATUS);
3327 if (status & INTR_RXQ_DESC_EMPTY) {
3328 CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3329 jme_rx_restart(sc, status);
3333 static void
3334 jme_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3336 struct jme_rxdata *rdata = arg;
3338 ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3340 jme_rxeof(rdata, cycle, mycpuid);
3343 static void
3344 jme_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3346 struct jme_txdata *tdata = arg;
3348 ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3350 jme_txeof(tdata);
3351 if (!ifq_is_empty(&ifp->if_snd))
3352 if_devstart(ifp);
3355 static void
3356 jme_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3358 struct jme_softc *sc = ifp->if_softc;
3360 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3362 if (info) {
3363 int i, cpu;
3365 info->ifpi_status.status_func = jme_npoll_status;
3366 info->ifpi_status.serializer = &sc->jme_serialize;
3368 cpu = if_ringmap_cpumap(sc->jme_tx_rmap, 0);
3369 KKASSERT(cpu <= netisr_ncpus);
3370 info->ifpi_tx[cpu].poll_func = jme_npoll_tx;
3371 info->ifpi_tx[cpu].arg = &sc->jme_cdata.jme_tx_data;
3372 info->ifpi_tx[cpu].serializer =
3373 &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3374 ifq_set_cpuid(&ifp->if_snd, cpu);
3376 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3377 struct jme_rxdata *rdata =
3378 &sc->jme_cdata.jme_rx_data[i];
3380 cpu = if_ringmap_cpumap(sc->jme_rx_rmap, i);
3381 KKASSERT(cpu <= netisr_ncpus);
3382 info->ifpi_rx[cpu].poll_func = jme_npoll_rx;
3383 info->ifpi_rx[cpu].arg = rdata;
3384 info->ifpi_rx[cpu].serializer =
3385 &rdata->jme_rx_serialize;
3388 if (ifp->if_flags & IFF_RUNNING)
3389 jme_disable_intr(sc);
3390 } else {
3391 ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
3392 if (ifp->if_flags & IFF_RUNNING)
3393 jme_enable_intr(sc);
3397 #endif /* IFPOLL_ENABLE */
3399 static int
3400 jme_rxring_dma_alloc(struct jme_rxdata *rdata)
3402 bus_dmamem_t dmem;
3403 int error, asize;
3405 asize = roundup2(JME_RX_RING_SIZE(rdata), JME_RX_RING_ALIGN);
3406 error = bus_dmamem_coherent(rdata->jme_sc->jme_cdata.jme_ring_tag,
3407 JME_RX_RING_ALIGN, 0,
3408 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3409 asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3410 if (error) {
3411 device_printf(rdata->jme_sc->jme_dev,
3412 "could not allocate %dth Rx ring.\n", rdata->jme_rx_idx);
3413 return error;
3415 rdata->jme_rx_ring_tag = dmem.dmem_tag;
3416 rdata->jme_rx_ring_map = dmem.dmem_map;
3417 rdata->jme_rx_ring = dmem.dmem_addr;
3418 rdata->jme_rx_ring_paddr = dmem.dmem_busaddr;
3420 return 0;
3423 static int
3424 jme_rxbuf_dma_alloc(struct jme_rxdata *rdata)
3426 bus_addr_t lowaddr;
3427 int i, error;
3429 lowaddr = BUS_SPACE_MAXADDR;
3430 if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
3431 lowaddr = BUS_SPACE_MAXADDR_32BIT;
3434 /* Create tag for Rx buffers. */
3435 error = bus_dma_tag_create(
3436 rdata->jme_sc->jme_cdata.jme_buffer_tag,/* parent */
3437 JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */
3438 lowaddr, /* lowaddr */
3439 BUS_SPACE_MAXADDR, /* highaddr */
3440 MCLBYTES, /* maxsize */
3441 1, /* nsegments */
3442 MCLBYTES, /* maxsegsize */
3443 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,/* flags */
3444 &rdata->jme_rx_tag);
3445 if (error) {
3446 device_printf(rdata->jme_sc->jme_dev,
3447 "could not create %dth Rx DMA tag.\n", rdata->jme_rx_idx);
3448 return error;
3451 /* Create DMA maps for Rx buffers. */
3452 error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3453 &rdata->jme_rx_sparemap);
3454 if (error) {
3455 device_printf(rdata->jme_sc->jme_dev,
3456 "could not create %dth spare Rx dmamap.\n",
3457 rdata->jme_rx_idx);
3458 bus_dma_tag_destroy(rdata->jme_rx_tag);
3459 rdata->jme_rx_tag = NULL;
3460 return error;
3462 for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3463 struct jme_rxdesc *rxd = &rdata->jme_rxdesc[i];
3465 error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3466 &rxd->rx_dmamap);
3467 if (error) {
3468 int j;
3470 device_printf(rdata->jme_sc->jme_dev,
3471 "could not create %dth Rx dmamap "
3472 "for %dth RX ring.\n", i, rdata->jme_rx_idx);
3474 for (j = 0; j < i; ++j) {
3475 rxd = &rdata->jme_rxdesc[j];
3476 bus_dmamap_destroy(rdata->jme_rx_tag,
3477 rxd->rx_dmamap);
3479 bus_dmamap_destroy(rdata->jme_rx_tag,
3480 rdata->jme_rx_sparemap);
3481 bus_dma_tag_destroy(rdata->jme_rx_tag);
3482 rdata->jme_rx_tag = NULL;
3483 return error;
3486 return 0;
3489 static void
3490 jme_rx_intr(struct jme_softc *sc, uint32_t status)
3492 int r, cpuid = mycpuid;
3494 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3495 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3497 if (status & rdata->jme_rx_coal) {
3498 lwkt_serialize_enter(&rdata->jme_rx_serialize);
3499 jme_rxeof(rdata, -1, cpuid);
3500 lwkt_serialize_exit(&rdata->jme_rx_serialize);
3505 static void
3506 jme_enable_rss(struct jme_softc *sc)
3508 uint8_t key[RSSKEY_NREGS * RSSKEY_REGSIZE];
3509 uint32_t rssc;
3510 int j, i, r;
3512 KASSERT(sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_2 ||
3513 sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_4,
3514 ("%s: invalid # of RX rings (%d)",
3515 sc->arpcom.ac_if.if_xname, sc->jme_cdata.jme_rx_ring_cnt));
3516 jme_disable_rss(sc);
3518 toeplitz_get_key(key, sizeof(key));
3519 for (i = 0; i < RSSKEY_NREGS; ++i) {
3520 uint32_t keyreg;
3522 keyreg = RSSKEY_REGVAL(key, i);
3523 JME_RSS_DPRINTF(sc, 5, "keyreg%d 0x%08x, reg 0x%08x\n",
3524 i, keyreg, RSSKEY_REG(RSSKEY_NREGS - 1 - i));
3526 CSR_WRITE_4(sc, RSSKEY_REG(RSSKEY_NREGS - 1 - i), keyreg);
3530 * Fill redirect table.
3532 if_ringmap_rdrtable(sc->jme_rx_rmap, sc->jme_rdrtable,
3533 JME_RDRTABLE_SIZE);
3535 r = 0;
3536 for (j = 0; j < RSSTBL_NREGS; ++j) {
3537 uint32_t ind = 0;
3539 for (i = 0; i < RSSTBL_REGSIZE; ++i) {
3540 int q;
3542 q = sc->jme_rdrtable[r];
3543 ind |= q << (i * 8);
3544 ++r;
3546 JME_RSS_DPRINTF(sc, 1, "ind 0x%08x\n", ind);
3547 CSR_WRITE_4(sc, RSSTBL_REG(j), ind);
3551 * Enable RSS.
3553 rssc = RSSC_HASH_128_ENTRY;
3554 rssc |= RSSC_HASH_IPV4 | RSSC_HASH_IPV4_TCP;
3555 rssc |= sc->jme_cdata.jme_rx_ring_cnt >> 1;
3556 JME_RSS_DPRINTF(sc, 1, "rssc 0x%08x\n", rssc);
3557 CSR_WRITE_4(sc, JME_RSSC, rssc);
3560 static void
3561 jme_disable_rss(struct jme_softc *sc)
3563 CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
3566 static void
3567 jme_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3569 struct jme_softc *sc = ifp->if_softc;
3571 ifnet_serialize_array_enter(sc->jme_serialize_arr,
3572 sc->jme_serialize_cnt, slz);
3575 static void
3576 jme_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3578 struct jme_softc *sc = ifp->if_softc;
3580 ifnet_serialize_array_exit(sc->jme_serialize_arr,
3581 sc->jme_serialize_cnt, slz);
3584 static int
3585 jme_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3587 struct jme_softc *sc = ifp->if_softc;
3589 return ifnet_serialize_array_try(sc->jme_serialize_arr,
3590 sc->jme_serialize_cnt, slz);
3593 #ifdef INVARIANTS
3595 static void
3596 jme_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3597 boolean_t serialized)
3599 struct jme_softc *sc = ifp->if_softc;
3601 ifnet_serialize_array_assert(sc->jme_serialize_arr,
3602 sc->jme_serialize_cnt, slz, serialized);
3605 #endif /* INVARIANTS */
3607 static void
3608 jme_msix_try_alloc(device_t dev)
3610 struct jme_softc *sc = device_get_softc(dev);
3611 struct jme_msix_data *msix;
3612 int error, i, r, msix_enable, msix_count;
3614 msix_count = JME_MSIXCNT(sc->jme_cdata.jme_rx_ring_cnt);
3615 KKASSERT(msix_count <= JME_NMSIX);
3617 msix_enable = device_getenv_int(dev, "msix.enable", jme_msix_enable);
3620 * We leave the 1st MSI-X vector unused, so we
3621 * actually need msix_count + 1 MSI-X vectors.
3623 if (!msix_enable || pci_msix_count(dev) < (msix_count + 1))
3624 return;
3626 for (i = 0; i < msix_count; ++i)
3627 sc->jme_msix[i].jme_msix_rid = -1;
3629 i = 0;
3632 * Setup status MSI-X
3634 msix = &sc->jme_msix[i++];
3635 msix->jme_msix_cpuid = 0;
3636 msix->jme_msix_arg = sc;
3637 msix->jme_msix_func = jme_msix_status;
3638 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3639 msix->jme_msix_intrs |=
3640 sc->jme_cdata.jme_rx_data[r].jme_rx_empty;
3642 msix->jme_msix_serialize = &sc->jme_serialize;
3643 ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s sts",
3644 device_get_nameunit(dev));
3647 * Setup TX MSI-X
3649 msix = &sc->jme_msix[i++];
3650 msix->jme_msix_cpuid = if_ringmap_cpumap(sc->jme_tx_rmap, 0);
3651 sc->jme_tx_cpuid = msix->jme_msix_cpuid;
3652 msix->jme_msix_arg = &sc->jme_cdata.jme_tx_data;
3653 msix->jme_msix_func = jme_msix_tx;
3654 msix->jme_msix_intrs = INTR_TXQ_COAL | INTR_TXQ_COAL_TO;
3655 msix->jme_msix_serialize = &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3656 ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s tx",
3657 device_get_nameunit(dev));
3660 * Setup RX MSI-X
3662 for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3663 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3665 msix = &sc->jme_msix[i++];
3666 msix->jme_msix_cpuid = if_ringmap_cpumap(sc->jme_rx_rmap, r);
3667 KKASSERT(msix->jme_msix_cpuid < netisr_ncpus);
3668 msix->jme_msix_arg = rdata;
3669 msix->jme_msix_func = jme_msix_rx;
3670 msix->jme_msix_intrs = rdata->jme_rx_coal;
3671 msix->jme_msix_serialize = &rdata->jme_rx_serialize;
3672 ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc),
3673 "%s rx%d", device_get_nameunit(dev), r);
3676 KKASSERT(i == msix_count);
3678 error = pci_setup_msix(dev);
3679 if (error)
3680 return;
3682 /* Setup jme_msix_cnt early, so we could cleanup */
3683 sc->jme_msix_cnt = msix_count;
3685 for (i = 0; i < msix_count; ++i) {
3686 msix = &sc->jme_msix[i];
3688 msix->jme_msix_vector = i + 1;
3689 error = pci_alloc_msix_vector(dev, msix->jme_msix_vector,
3690 &msix->jme_msix_rid, msix->jme_msix_cpuid);
3691 if (error)
3692 goto back;
3694 msix->jme_msix_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3695 &msix->jme_msix_rid, RF_ACTIVE);
3696 if (msix->jme_msix_res == NULL) {
3697 error = ENOMEM;
3698 goto back;
3702 for (i = 0; i < JME_INTR_CNT; ++i) {
3703 uint32_t intr_mask = (1 << i);
3704 int x;
3706 if ((JME_INTRS & intr_mask) == 0)
3707 continue;
3709 for (x = 0; x < msix_count; ++x) {
3710 msix = &sc->jme_msix[x];
3711 if (msix->jme_msix_intrs & intr_mask) {
3712 int reg, shift;
3714 reg = i / JME_MSINUM_FACTOR;
3715 KKASSERT(reg < JME_MSINUM_CNT);
3717 shift = (i % JME_MSINUM_FACTOR) * 4;
3719 sc->jme_msinum[reg] |=
3720 (msix->jme_msix_vector << shift);
3722 break;
3727 if (bootverbose) {
3728 for (i = 0; i < JME_MSINUM_CNT; ++i) {
3729 device_printf(dev, "MSINUM%d: %#x\n", i,
3730 sc->jme_msinum[i]);
3734 pci_enable_msix(dev);
3735 sc->jme_irq_type = PCI_INTR_TYPE_MSIX;
3737 back:
3738 if (error)
3739 jme_msix_free(dev);
3742 static int
3743 jme_intr_alloc(device_t dev)
3745 struct jme_softc *sc = device_get_softc(dev);
3746 u_int irq_flags;
3748 jme_msix_try_alloc(dev);
3750 if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3751 sc->jme_irq_type = pci_alloc_1intr(dev, jme_msi_enable,
3752 &sc->jme_irq_rid, &irq_flags);
3754 sc->jme_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3755 &sc->jme_irq_rid, irq_flags);
3756 if (sc->jme_irq_res == NULL) {
3757 device_printf(dev, "can't allocate irq\n");
3758 return ENXIO;
3760 sc->jme_tx_cpuid = rman_get_cpuid(sc->jme_irq_res);
3762 return 0;
3765 static void
3766 jme_msix_free(device_t dev)
3768 struct jme_softc *sc = device_get_softc(dev);
3769 int i;
3771 KKASSERT(sc->jme_msix_cnt > 1);
3773 for (i = 0; i < sc->jme_msix_cnt; ++i) {
3774 struct jme_msix_data *msix = &sc->jme_msix[i];
3776 if (msix->jme_msix_res != NULL) {
3777 bus_release_resource(dev, SYS_RES_IRQ,
3778 msix->jme_msix_rid, msix->jme_msix_res);
3779 msix->jme_msix_res = NULL;
3781 if (msix->jme_msix_rid >= 0) {
3782 pci_release_msix_vector(dev, msix->jme_msix_rid);
3783 msix->jme_msix_rid = -1;
3786 pci_teardown_msix(dev);
3789 static void
3790 jme_intr_free(device_t dev)
3792 struct jme_softc *sc = device_get_softc(dev);
3794 if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3795 if (sc->jme_irq_res != NULL) {
3796 bus_release_resource(dev, SYS_RES_IRQ, sc->jme_irq_rid,
3797 sc->jme_irq_res);
3799 if (sc->jme_irq_type == PCI_INTR_TYPE_MSI)
3800 pci_release_msi(dev);
3801 } else {
3802 jme_msix_free(dev);
3806 static void
3807 jme_msix_tx(void *xtdata)
3809 struct jme_txdata *tdata = xtdata;
3810 struct jme_softc *sc = tdata->jme_sc;
3811 struct ifnet *ifp = &sc->arpcom.ac_if;
3813 ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3815 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3817 CSR_WRITE_4(sc, JME_INTR_STATUS,
3818 INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP);
3820 if (ifp->if_flags & IFF_RUNNING) {
3821 jme_txeof(tdata);
3822 if (!ifq_is_empty(&ifp->if_snd))
3823 if_devstart(ifp);
3826 CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3829 static void
3830 jme_msix_rx(void *xrdata)
3832 struct jme_rxdata *rdata = xrdata;
3833 struct jme_softc *sc = rdata->jme_sc;
3834 struct ifnet *ifp = &sc->arpcom.ac_if;
3836 ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3838 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, rdata->jme_rx_coal);
3840 CSR_WRITE_4(sc, JME_INTR_STATUS,
3841 rdata->jme_rx_coal | rdata->jme_rx_comp);
3843 if (ifp->if_flags & IFF_RUNNING)
3844 jme_rxeof(rdata, -1, mycpuid);
3846 CSR_WRITE_4(sc, JME_INTR_MASK_SET, rdata->jme_rx_coal);
3849 static void
3850 jme_msix_status(void *xsc)
3852 struct jme_softc *sc = xsc;
3853 struct ifnet *ifp = &sc->arpcom.ac_if;
3854 uint32_t status;
3856 ASSERT_SERIALIZED(&sc->jme_serialize);
3858 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_RXQ_DESC_EMPTY);
3860 status = CSR_READ_4(sc, JME_INTR_STATUS);
3862 if (status & INTR_RXQ_DESC_EMPTY) {
3863 CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3864 if (ifp->if_flags & IFF_RUNNING)
3865 jme_rx_restart(sc, status);
3868 CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_RXQ_DESC_EMPTY);
3871 static void
3872 jme_rx_restart(struct jme_softc *sc, uint32_t status)
3874 int i, cpuid = mycpuid;
3876 for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3877 struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
3879 if (status & rdata->jme_rx_empty) {
3880 lwkt_serialize_enter(&rdata->jme_rx_serialize);
3881 jme_rxeof(rdata, -1, cpuid);
3882 #ifdef JME_RSS_DEBUG
3883 rdata->jme_rx_emp++;
3884 #endif
3885 lwkt_serialize_exit(&rdata->jme_rx_serialize);
3888 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
3889 RXCSR_RXQ_START);
3892 static void
3893 jme_set_msinum(struct jme_softc *sc)
3895 int i;
3897 for (i = 0; i < JME_MSINUM_CNT; ++i)
3898 CSR_WRITE_4(sc, JME_MSINUM(i), sc->jme_msinum[i]);
3901 static int
3902 jme_intr_setup(device_t dev)
3904 struct jme_softc *sc = device_get_softc(dev);
3905 int error;
3907 if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
3908 return jme_msix_setup(dev);
3910 error = bus_setup_intr(dev, sc->jme_irq_res, INTR_MPSAFE,
3911 jme_intr, sc, &sc->jme_irq_handle, &sc->jme_serialize);
3912 if (error) {
3913 device_printf(dev, "could not set up interrupt handler.\n");
3914 return error;
3917 return 0;
3920 static void
3921 jme_intr_teardown(device_t dev)
3923 struct jme_softc *sc = device_get_softc(dev);
3925 if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
3926 jme_msix_teardown(dev, sc->jme_msix_cnt);
3927 else
3928 bus_teardown_intr(dev, sc->jme_irq_res, sc->jme_irq_handle);
3931 static int
3932 jme_msix_setup(device_t dev)
3934 struct jme_softc *sc = device_get_softc(dev);
3935 int x;
3937 for (x = 0; x < sc->jme_msix_cnt; ++x) {
3938 struct jme_msix_data *msix = &sc->jme_msix[x];
3939 int error;
3941 error = bus_setup_intr_descr(dev, msix->jme_msix_res,
3942 INTR_MPSAFE, msix->jme_msix_func, msix->jme_msix_arg,
3943 &msix->jme_msix_handle, msix->jme_msix_serialize,
3944 msix->jme_msix_desc);
3945 if (error) {
3946 device_printf(dev, "could not set up %s "
3947 "interrupt handler.\n", msix->jme_msix_desc);
3948 jme_msix_teardown(dev, x);
3949 return error;
3952 return 0;
3955 static void
3956 jme_msix_teardown(device_t dev, int msix_count)
3958 struct jme_softc *sc = device_get_softc(dev);
3959 int x;
3961 for (x = 0; x < msix_count; ++x) {
3962 struct jme_msix_data *msix = &sc->jme_msix[x];
3964 bus_teardown_intr(dev, msix->jme_msix_res,
3965 msix->jme_msix_handle);
3969 static void
3970 jme_serialize_skipmain(struct jme_softc *sc)
3972 lwkt_serialize_array_enter(sc->jme_serialize_arr,
3973 sc->jme_serialize_cnt, 1);
3976 static void
3977 jme_deserialize_skipmain(struct jme_softc *sc)
3979 lwkt_serialize_array_exit(sc->jme_serialize_arr,
3980 sc->jme_serialize_cnt, 1);
3983 static void
3984 jme_enable_intr(struct jme_softc *sc)
3986 int i;
3988 for (i = 0; i < sc->jme_serialize_cnt; ++i)
3989 lwkt_serialize_handler_enable(sc->jme_serialize_arr[i]);
3991 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
3994 static void
3995 jme_disable_intr(struct jme_softc *sc)
3997 int i;
3999 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
4001 for (i = 0; i < sc->jme_serialize_cnt; ++i)
4002 lwkt_serialize_handler_disable(sc->jme_serialize_arr[i]);
4005 static void
4006 jme_phy_poweron(struct jme_softc *sc)
4008 uint16_t bmcr;
4010 bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
4011 bmcr &= ~BMCR_PDOWN;
4012 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
4014 if (sc->jme_caps & JME_CAP_PHYPWR) {
4015 uint32_t val;
4017 val = CSR_READ_4(sc, JME_PHYPWR);
4018 val &= ~(PHYPWR_DOWN1SEL | PHYPWR_DOWN1SW |
4019 PHYPWR_DOWN2 | PHYPWR_CLKSEL);
4020 CSR_WRITE_4(sc, JME_PHYPWR, val);
4022 val = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
4023 val &= ~PE1_GPREG0_PHYBG;
4024 val |= PE1_GPREG0_ENBG;
4025 pci_write_config(sc->jme_dev, JME_PCI_PE1, val, 4);
4029 static void
4030 jme_phy_poweroff(struct jme_softc *sc)
4032 uint16_t bmcr;
4034 bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
4035 bmcr |= BMCR_PDOWN;
4036 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
4038 if (sc->jme_caps & JME_CAP_PHYPWR) {
4039 uint32_t val;
4041 val = CSR_READ_4(sc, JME_PHYPWR);
4042 val |= PHYPWR_DOWN1SEL | PHYPWR_DOWN1SW |
4043 PHYPWR_DOWN2 | PHYPWR_CLKSEL;
4044 CSR_WRITE_4(sc, JME_PHYPWR, val);
4046 val = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
4047 val &= ~PE1_GPREG0_PHYBG;
4048 val |= PE1_GPREG0_PDD3COLD;
4049 pci_write_config(sc->jme_dev, JME_PCI_PE1, val, 4);
4053 static int
4054 jme_miiext_read(struct jme_softc *sc, int reg)
4056 int addr;
4058 addr = JME_MII_EXT_ADDR_RD | reg;
4059 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4060 JME_MII_EXT_ADDR, addr);
4061 return jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr,
4062 JME_MII_EXT_DATA);
4065 static void
4066 jme_miiext_write(struct jme_softc *sc, int reg, int val)
4068 int addr;
4070 addr = JME_MII_EXT_ADDR_WR | reg;
4071 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4072 JME_MII_EXT_DATA, val);
4073 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4074 JME_MII_EXT_ADDR, addr);
4077 static void
4078 jme_phy_init(struct jme_softc *sc)
4080 uint16_t gtcr;
4081 int val;
4083 jme_phy_poweroff(sc);
4084 jme_phy_poweron(sc);
4086 /* Enable PHY test 1 */
4087 gtcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR);
4088 gtcr &= ~GTCR_TEST_MASK;
4089 gtcr |= GTCR_TEST_1;
4090 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, gtcr);
4092 val = jme_miiext_read(sc, JME_MII_EXT_COM2);
4093 val &= ~JME_MII_EXT_COM2_CALIB_MODE0;
4094 val |= JME_MII_EXT_COM2_CALIB_LATCH | JME_MII_EXT_COM2_CALIB_EN;
4095 jme_miiext_write(sc, JME_MII_EXT_COM2, val);
4097 DELAY(20000);
4099 val = jme_miiext_read(sc, JME_MII_EXT_COM2);
4100 val &= ~(JME_MII_EXT_COM2_CALIB_MODE0 |
4101 JME_MII_EXT_COM2_CALIB_LATCH | JME_MII_EXT_COM2_CALIB_EN);
4102 jme_miiext_write(sc, JME_MII_EXT_COM2, val);
4104 /* Disable PHY test */
4105 gtcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR);
4106 gtcr &= ~GTCR_TEST_MASK;
4107 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, gtcr);
4109 if (sc->jme_phycom0 != 0)
4110 jme_miiext_write(sc, JME_MII_EXT_COM0, sc->jme_phycom0);
4111 if (sc->jme_phycom1 != 0)
4112 jme_miiext_write(sc, JME_MII_EXT_COM1, sc->jme_phycom1);