Remove advertising header from man pages.
[dragonfly.git] / usr.bin / top / m_dragonfly.c
blobec2652e1b36e920bb6f335f0858001b7cc53eae0
1 /*
2 * top - a top users display for Unix
4 * SYNOPSIS: For DragonFly 2.x and later
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
12 * This is the machine-dependent module for DragonFly 2.5.1
13 * Should work for:
14 * DragonFly 2.x and above
16 * LIBS: -lkvm
18 * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19 * This module has been put together from different sources and is based on the
20 * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
22 * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
45 /* Swap */
46 #include <stdlib.h>
47 #include <sys/conf.h>
49 #include <osreldate.h> /* for changes in kernel structures */
51 #include <sys/kinfo.h>
52 #include <kinfo.h>
53 #include "top.h"
54 #include "display.h"
55 #include "machine.h"
56 #include "screen.h"
57 #include "utils.h"
59 int swapmode(int *retavail, int *retfree);
60 static int namelength;
61 static int cmdlength;
62 static int show_fullcmd;
64 int n_cpus = 0;
66 /* get_process_info passes back a handle. This is what it looks like: */
68 struct handle {
69 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
70 int remaining; /* number of pointers remaining */
73 /* declarations for load_avg */
74 #include "loadavg.h"
76 #define PP(pp, field) ((pp)->kp_ ## field)
77 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
78 #define VP(pp, field) ((pp)->kp_vm_ ## field)
80 /* what we consider to be process size: */
81 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
84 * These definitions control the format of the per-process area
87 static char smp_header[] =
88 " PID %-*.*s NICE SIZE RES STATE CPU TIME CTIME CPU COMMAND";
90 #define smp_Proc_format \
91 "%5d %-*.*s %3d%7s %6s %8.8s %2d %6s %7s %5.2f%% %.*s"
93 /* process state names for the "STATE" column of the display */
95 * the extra nulls in the string "run" are for adding a slash and the
96 * processor number when needed
99 const char *state_abbrev[] = {
100 "", "RUN\0\0\0", "STOP", "SLEEP",
104 static kvm_t *kd;
106 /* values that we stash away in _init and use in later routines */
108 static long lastpid;
110 /* these are for calculating cpu state percentages */
112 static struct kinfo_cputime *cp_time, *cp_old;
114 /* these are for detailing the process states */
116 #define MAXPSTATES 6
118 int process_states[MAXPSTATES];
120 char *procstatenames[] = {
121 " running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
122 NULL
125 /* these are for detailing the cpu states */
126 #define CPU_STATES 5
127 int *cpu_states;
128 int* cpu_averages;
129 char *cpustatenames[CPU_STATES + 1] = {
130 "user", "nice", "system", "interrupt", "idle", NULL
133 /* these are for detailing the memory statistics */
135 long memory_stats[7];
136 char *memorynames[] = {
137 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
138 NULL
141 long swap_stats[7];
142 char *swapnames[] = {
143 /* 0 1 2 3 4 5 */
144 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
145 NULL
149 /* these are for keeping track of the proc array */
151 static int nproc;
152 static int onproc = -1;
153 static int pref_len;
154 static struct kinfo_proc *pbase;
155 static struct kinfo_proc **pref;
157 /* these are for getting the memory statistics */
159 static int pageshift; /* log base 2 of the pagesize */
161 /* define pagetok in terms of pageshift */
163 #define pagetok(size) ((size) << pageshift)
165 /* sorting orders. first is default */
166 char *ordernames[] = {
167 "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime", "pres", NULL
170 /* compare routines */
171 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
172 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
173 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
174 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
175 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
176 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
177 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
178 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
179 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
181 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
182 proc_compare,
183 compare_size,
184 compare_res,
185 compare_time,
186 compare_prio,
187 compare_thr,
188 compare_pid,
189 compare_ctime,
190 compare_pres,
191 NULL
194 static void
195 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
196 struct kinfo_cputime *old)
198 struct kinfo_cputime diffs;
199 uint64_t total_change, half_total;
201 /* initialization */
202 total_change = 0;
204 diffs.cp_user = new->cp_user - old->cp_user;
205 diffs.cp_nice = new->cp_nice - old->cp_nice;
206 diffs.cp_sys = new->cp_sys - old->cp_sys;
207 diffs.cp_intr = new->cp_intr - old->cp_intr;
208 diffs.cp_idle = new->cp_idle - old->cp_idle;
209 total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
210 diffs.cp_intr + diffs.cp_idle;
211 old->cp_user = new->cp_user;
212 old->cp_nice = new->cp_nice;
213 old->cp_sys = new->cp_sys;
214 old->cp_intr = new->cp_intr;
215 old->cp_idle = new->cp_idle;
217 /* avoid divide by zero potential */
218 if (total_change == 0)
219 total_change = 1;
221 /* calculate percentages based on overall change, rounding up */
222 half_total = total_change >> 1;
224 out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
225 out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
226 out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
227 out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
228 out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
232 machine_init(struct statics *statics)
234 int pagesize;
235 size_t modelen;
236 struct passwd *pw;
237 struct timeval boottime;
239 if (n_cpus < 1) {
240 if (kinfo_get_cpus(&n_cpus))
241 err(1, "kinfo_get_cpus failed");
243 /* get boot time */
244 modelen = sizeof(boottime);
245 if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
246 /* we have no boottime to report */
247 boottime.tv_sec = -1;
250 while ((pw = getpwent()) != NULL) {
251 if ((int)strlen(pw->pw_name) > namelength)
252 namelength = strlen(pw->pw_name);
254 if (namelength < 8)
255 namelength = 8;
256 if (namelength > 13)
257 namelength = 13;
259 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
260 return -1;
262 pbase = NULL;
263 pref = NULL;
264 nproc = 0;
265 onproc = -1;
267 * get the page size with "getpagesize" and calculate pageshift from
268 * it
270 pagesize = getpagesize();
271 pageshift = 0;
272 while (pagesize > 1) {
273 pageshift++;
274 pagesize >>= 1;
277 /* we only need the amount of log(2)1024 for our conversion */
278 pageshift -= LOG1024;
280 /* fill in the statics information */
281 statics->procstate_names = procstatenames;
282 statics->cpustate_names = cpustatenames;
283 statics->memory_names = memorynames;
284 statics->boottime = boottime.tv_sec;
285 statics->swap_names = swapnames;
286 statics->order_names = ordernames;
287 /* we need kvm descriptor in order to show full commands */
288 statics->flags.fullcmds = kd != NULL;
290 /* all done! */
291 return (0);
294 char *
295 format_header(char *uname_field)
297 static char Header[128];
299 snprintf(Header, sizeof(Header), smp_header,
300 namelength, namelength, uname_field);
302 if (screen_width <= 79)
303 cmdlength = 80;
304 else
305 cmdlength = screen_width;
307 cmdlength = cmdlength - strlen(Header) + 6;
309 return Header;
312 static int swappgsin = -1;
313 static int swappgsout = -1;
314 extern struct timeval timeout;
316 void
317 get_system_info(struct system_info *si)
319 size_t len;
320 int cpu;
322 if (cpu_states == NULL) {
323 cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
324 if (cpu_states == NULL)
325 err(1, "malloc");
326 bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
328 if (cp_time == NULL) {
329 cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
330 if (cp_time == NULL)
331 err(1, "cp_time");
332 cp_old = cp_time + n_cpus;
333 len = n_cpus * sizeof(cp_old[0]);
334 bzero(cp_time, len);
335 if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
336 err(1, "kern.cputime");
338 len = n_cpus * sizeof(cp_time[0]);
339 bzero(cp_time, len);
340 if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
341 err(1, "kern.cputime");
343 getloadavg(si->load_avg, 3);
345 lastpid = 0;
347 /* convert cp_time counts to percentages */
348 int combine_cpus = (enable_ncpus == 0 && n_cpus > 1);
349 for (cpu = 0; cpu < n_cpus; ++cpu) {
350 cputime_percentages(cpu_states + cpu * CPU_STATES,
351 &cp_time[cpu], &cp_old[cpu]);
353 if (combine_cpus) {
354 if (cpu_averages == NULL) {
355 cpu_averages = malloc(sizeof(*cpu_averages) * CPU_STATES);
356 if (cpu_averages == NULL)
357 err(1, "cpu_averages");
359 bzero(cpu_averages, sizeof(*cpu_averages) * CPU_STATES);
360 for (cpu = 0; cpu < n_cpus; ++cpu) {
361 int j = 0;
362 cpu_averages[0] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
363 cpu_averages[1] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
364 cpu_averages[2] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
365 cpu_averages[3] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
366 cpu_averages[4] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
368 for (int i = 0; i < CPU_STATES; ++i)
369 cpu_averages[i] /= n_cpus;
372 /* sum memory & swap statistics */
374 struct vmmeter vmm;
375 struct vmstats vms;
376 size_t vms_size = sizeof(vms);
377 size_t vmm_size = sizeof(vmm);
378 static unsigned int swap_delay = 0;
379 static int swapavail = 0;
380 static int swapfree = 0;
381 static long bufspace = 0;
383 if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
384 err(1, "sysctlbyname: vm.vmstats");
386 if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
387 err(1, "sysctlbyname: vm.vmmeter");
389 if (kinfo_get_vfs_bufspace(&bufspace))
390 err(1, "kinfo_get_vfs_bufspace");
392 /* convert memory stats to Kbytes */
393 memory_stats[0] = pagetok(vms.v_active_count);
394 memory_stats[1] = pagetok(vms.v_inactive_count);
395 memory_stats[2] = pagetok(vms.v_wire_count);
396 memory_stats[3] = pagetok(vms.v_cache_count);
397 memory_stats[4] = bufspace / 1024;
398 memory_stats[5] = pagetok(vms.v_free_count);
399 memory_stats[6] = -1;
401 /* first interval */
402 if (swappgsin < 0) {
403 swap_stats[4] = 0;
404 swap_stats[5] = 0;
406 /* compute differences between old and new swap statistic */
407 else {
408 swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
409 swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
412 swappgsin = vmm.v_swappgsin;
413 swappgsout = vmm.v_swappgsout;
415 /* call CPU heavy swapmode() only for changes */
416 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
417 swap_stats[3] = swapmode(&swapavail, &swapfree);
418 swap_stats[0] = swapavail;
419 swap_stats[1] = swapavail - swapfree;
420 swap_stats[2] = swapfree;
422 swap_delay = 1;
423 swap_stats[6] = -1;
426 /* set arrays and strings */
427 si->cpustates = combine_cpus == 1 ?
428 cpu_averages : cpu_states;
429 si->memory = memory_stats;
430 si->swap = swap_stats;
433 if (lastpid > 0) {
434 si->last_pid = lastpid;
435 } else {
436 si->last_pid = -1;
441 static struct handle handle;
443 caddr_t
444 get_process_info(struct system_info *si, struct process_select *sel,
445 int compare_index)
447 int i;
448 int total_procs;
449 int active_procs;
450 struct kinfo_proc **prefp;
451 struct kinfo_proc *pp;
453 /* these are copied out of sel for speed */
454 int show_idle;
455 int show_system;
456 int show_uid;
457 int show_threads;
459 show_threads = sel->threads;
462 pbase = kvm_getprocs(kd,
463 KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc);
464 if (nproc > onproc)
465 pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
466 * (onproc = nproc));
467 if (pref == NULL || pbase == NULL) {
468 (void)fprintf(stderr, "top: Out of memory.\n");
469 quit(23);
471 /* get a pointer to the states summary array */
472 si->procstates = process_states;
474 /* set up flags which define what we are going to select */
475 show_idle = sel->idle;
476 show_system = sel->system;
477 show_uid = sel->uid != -1;
478 show_fullcmd = sel->fullcmd;
480 /* count up process states and get pointers to interesting procs */
481 total_procs = 0;
482 active_procs = 0;
483 memset((char *)process_states, 0, sizeof(process_states));
484 prefp = pref;
485 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
487 * Place pointers to each valid proc structure in pref[].
488 * Process slots that are actually in use have a non-zero
489 * status field. Processes with P_SYSTEM set are system
490 * processes---these get ignored unless show_sysprocs is set.
492 if ((show_system && (LP(pp, pid) == -1)) ||
493 (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
494 int pstate = LP(pp, stat);
496 total_procs++;
497 if (pstate == LSRUN)
498 process_states[0]++;
499 if (pstate >= 0 && pstate < MAXPSTATES)
500 process_states[pstate]++;
501 if ((show_system && (LP(pp, pid) == -1)) ||
502 (show_idle || (LP(pp, pctcpu) != 0) ||
503 (pstate == LSRUN)) &&
504 (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
505 *prefp++ = pp;
506 active_procs++;
511 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
512 (int (*)(const void *, const void *))proc_compares[compare_index]);
514 /* remember active and total counts */
515 si->p_total = total_procs;
516 si->p_active = pref_len = active_procs;
518 /* pass back a handle */
519 handle.next_proc = pref;
520 handle.remaining = active_procs;
521 return ((caddr_t) & handle);
524 char fmt[MAX_COLS]; /* static area where result is built */
526 char *
527 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
529 struct kinfo_proc *pp;
530 long cputime;
531 long ccputime;
532 double pct;
533 struct handle *hp;
534 char status[16];
535 int state;
536 int xnice;
537 char **comm_full;
538 char *comm;
539 char cputime_fmt[10], ccputime_fmt[10];
541 /* find and remember the next proc structure */
542 hp = (struct handle *)xhandle;
543 pp = *(hp->next_proc++);
544 hp->remaining--;
546 /* get the process's command name */
547 if (show_fullcmd) {
548 if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
549 return (fmt);
552 else {
553 comm = PP(pp, comm);
557 * Convert the process's runtime from microseconds to seconds. This
558 * time includes the interrupt time to be in compliance with ps output.
560 cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
561 ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
562 format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
563 format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
565 /* calculate the base for cpu percentages */
566 pct = pctdouble(LP(pp, pctcpu));
568 /* generate "STATE" field */
569 switch (state = LP(pp, stat)) {
570 case LSRUN:
571 if (LP(pp, tdflags) & TDF_RUNNING)
572 sprintf(status, "CPU%d", LP(pp, cpuid));
573 else
574 strcpy(status, "RUN");
575 break;
576 case LSSLEEP:
577 if (LP(pp, wmesg) != NULL) {
578 sprintf(status, "%.8s", LP(pp, wmesg)); /* WMESGLEN */
579 break;
581 /* fall through */
582 default:
584 if (state >= 0 &&
585 (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
586 sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
587 else
588 sprintf(status, "?%5d", state);
589 break;
592 if (PP(pp, stat) == SZOMB)
593 strcpy(status, "ZOMB");
596 * idle time 0 - 31 -> nice value +21 - +52 normal time -> nice
597 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
598 * 0 - 31 -> nice value -53 -
600 switch (LP(pp, rtprio.type)) {
601 case RTP_PRIO_REALTIME:
602 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
603 break;
604 case RTP_PRIO_IDLE:
605 xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
606 break;
607 case RTP_PRIO_THREAD:
608 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
609 break;
610 default:
611 xnice = PP(pp, nice);
612 break;
615 /* format this entry */
616 snprintf(fmt, sizeof(fmt),
617 smp_Proc_format,
618 (int)PP(pp, pid),
619 namelength, namelength,
620 get_userid(PP(pp, ruid)),
621 (int)xnice,
622 format_k(PROCSIZE(pp)),
623 format_k(pagetok(VP(pp, rssize))),
624 status,
625 LP(pp, cpuid),
626 cputime_fmt,
627 ccputime_fmt,
628 100.0 * pct,
629 cmdlength,
630 show_fullcmd ? *comm_full : comm);
632 /* return the result */
633 return (fmt);
636 /* comparison routines for qsort */
639 * proc_compare - comparison function for "qsort"
640 * Compares the resource consumption of two processes using five
641 * distinct keys. The keys (in descending order of importance) are:
642 * percent cpu, cpu ticks, state, resident set size, total virtual
643 * memory usage. The process states are ordered as follows (from least
644 * to most important): WAIT, zombie, sleep, stop, start, run. The
645 * array declaration below maps a process state index into a number
646 * that reflects this ordering.
649 static unsigned char sorted_state[] =
651 0, /* not used */
652 3, /* sleep */
653 1, /* ABANDONED (WAIT) */
654 6, /* run */
655 5, /* start */
656 2, /* zombie */
657 4 /* stop */
661 #define ORDERKEY_PCTCPU \
662 if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
663 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
665 #define CPTICKS(p) (LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
667 #define ORDERKEY_CPTICKS \
668 if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
669 CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
671 #define CTIME(p) (((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
672 PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
674 #define ORDERKEY_CTIME \
675 if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
676 CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
678 #define ORDERKEY_STATE \
679 if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
680 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
682 #define ORDERKEY_PRIO \
683 if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
685 #define ORDERKEY_KTHREADS \
686 if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
688 #define ORDERKEY_KTHREADS_PRIO \
689 if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
691 #define ORDERKEY_RSSIZE \
692 if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
694 #define ORDERKEY_MEM \
695 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
697 #define ORDERKEY_PID \
698 if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
700 #define ORDERKEY_PRSSIZE \
701 if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
703 /* compare_cpu - the comparison function for sorting by cpu percentage */
706 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
708 struct kinfo_proc *p1;
709 struct kinfo_proc *p2;
710 int result;
711 pctcpu lresult;
713 /* remove one level of indirection */
714 p1 = *(struct kinfo_proc **) pp1;
715 p2 = *(struct kinfo_proc **) pp2;
717 ORDERKEY_PCTCPU
718 ORDERKEY_CPTICKS
719 ORDERKEY_STATE
720 ORDERKEY_PRIO
721 ORDERKEY_RSSIZE
722 ORDERKEY_MEM
725 return (result);
728 /* compare_size - the comparison function for sorting by total memory usage */
731 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
733 struct kinfo_proc *p1;
734 struct kinfo_proc *p2;
735 int result;
736 pctcpu lresult;
738 /* remove one level of indirection */
739 p1 = *(struct kinfo_proc **) pp1;
740 p2 = *(struct kinfo_proc **) pp2;
742 ORDERKEY_MEM
743 ORDERKEY_RSSIZE
744 ORDERKEY_PCTCPU
745 ORDERKEY_CPTICKS
746 ORDERKEY_STATE
747 ORDERKEY_PRIO
750 return (result);
753 /* compare_res - the comparison function for sorting by resident set size */
756 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
758 struct kinfo_proc *p1;
759 struct kinfo_proc *p2;
760 int result;
761 pctcpu lresult;
763 /* remove one level of indirection */
764 p1 = *(struct kinfo_proc **) pp1;
765 p2 = *(struct kinfo_proc **) pp2;
767 ORDERKEY_RSSIZE
768 ORDERKEY_MEM
769 ORDERKEY_PCTCPU
770 ORDERKEY_CPTICKS
771 ORDERKEY_STATE
772 ORDERKEY_PRIO
775 return (result);
778 /* compare_pres - the comparison function for sorting by proportional resident set size */
781 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
783 struct kinfo_proc *p1;
784 struct kinfo_proc *p2;
785 int result;
786 pctcpu lresult;
788 /* remove one level of indirection */
789 p1 = *(struct kinfo_proc **) pp1;
790 p2 = *(struct kinfo_proc **) pp2;
792 ORDERKEY_PRSSIZE
793 ORDERKEY_RSSIZE
794 ORDERKEY_MEM
795 ORDERKEY_PCTCPU
796 ORDERKEY_CPTICKS
797 ORDERKEY_STATE
798 ORDERKEY_PRIO
801 return (result);
804 /* compare_time - the comparison function for sorting by total cpu time */
807 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
809 struct kinfo_proc *p1;
810 struct kinfo_proc *p2;
811 int result;
812 pctcpu lresult;
814 /* remove one level of indirection */
815 p1 = *(struct kinfo_proc **) pp1;
816 p2 = *(struct kinfo_proc **) pp2;
818 ORDERKEY_CPTICKS
819 ORDERKEY_PCTCPU
820 ORDERKEY_KTHREADS
821 ORDERKEY_KTHREADS_PRIO
822 ORDERKEY_STATE
823 ORDERKEY_PRIO
824 ORDERKEY_RSSIZE
825 ORDERKEY_MEM
828 return (result);
832 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
834 struct kinfo_proc *p1;
835 struct kinfo_proc *p2;
836 int result;
837 pctcpu lresult;
839 /* remove one level of indirection */
840 p1 = *(struct kinfo_proc **) pp1;
841 p2 = *(struct kinfo_proc **) pp2;
843 ORDERKEY_CTIME
844 ORDERKEY_PCTCPU
845 ORDERKEY_KTHREADS
846 ORDERKEY_KTHREADS_PRIO
847 ORDERKEY_STATE
848 ORDERKEY_PRIO
849 ORDERKEY_RSSIZE
850 ORDERKEY_MEM
853 return (result);
856 /* compare_prio - the comparison function for sorting by cpu percentage */
859 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
861 struct kinfo_proc *p1;
862 struct kinfo_proc *p2;
863 int result;
864 pctcpu lresult;
866 /* remove one level of indirection */
867 p1 = *(struct kinfo_proc **) pp1;
868 p2 = *(struct kinfo_proc **) pp2;
870 ORDERKEY_KTHREADS
871 ORDERKEY_KTHREADS_PRIO
872 ORDERKEY_PRIO
873 ORDERKEY_CPTICKS
874 ORDERKEY_PCTCPU
875 ORDERKEY_STATE
876 ORDERKEY_RSSIZE
877 ORDERKEY_MEM
880 return (result);
884 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
886 struct kinfo_proc *p1;
887 struct kinfo_proc *p2;
888 int result;
889 pctcpu lresult;
891 /* remove one level of indirection */
892 p1 = *(struct kinfo_proc **)pp1;
893 p2 = *(struct kinfo_proc **)pp2;
895 ORDERKEY_KTHREADS
896 ORDERKEY_KTHREADS_PRIO
897 ORDERKEY_CPTICKS
898 ORDERKEY_PCTCPU
899 ORDERKEY_STATE
900 ORDERKEY_RSSIZE
901 ORDERKEY_MEM
904 return (result);
907 /* compare_pid - the comparison function for sorting by process id */
910 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
912 struct kinfo_proc *p1;
913 struct kinfo_proc *p2;
914 int result;
916 /* remove one level of indirection */
917 p1 = *(struct kinfo_proc **) pp1;
918 p2 = *(struct kinfo_proc **) pp2;
920 ORDERKEY_PID
923 return(result);
927 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
928 * the process does not exist.
929 * It is EXTREMLY IMPORTANT that this function work correctly.
930 * If top runs setuid root (as in SVR4), then this function
931 * is the only thing that stands in the way of a serious
932 * security problem. It validates requests for the "kill"
933 * and "renice" commands.
937 proc_owner(int pid)
939 int xcnt;
940 struct kinfo_proc **prefp;
941 struct kinfo_proc *pp;
943 prefp = pref;
944 xcnt = pref_len;
945 while (--xcnt >= 0) {
946 pp = *prefp++;
947 if (PP(pp, pid) == (pid_t) pid) {
948 return ((int)PP(pp, ruid));
951 return (-1);
956 * swapmode is based on a program called swapinfo written
957 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
960 swapmode(int *retavail, int *retfree)
962 int n;
963 int pagesize = getpagesize();
964 struct kvm_swap swapary[1];
966 *retavail = 0;
967 *retfree = 0;
969 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
971 n = kvm_getswapinfo(kd, swapary, 1, 0);
972 if (n < 0 || swapary[0].ksw_total == 0)
973 return (0);
975 *retavail = CONVERT(swapary[0].ksw_total);
976 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
978 n = (int)((double)swapary[0].ksw_used * 100.0 /
979 (double)swapary[0].ksw_total);
980 return (n);