ifq: Switch to drop-head for default enqueue method.
[dragonfly.git] / sys / kern / kern_slaballoc.c
blob7e0de637d13706455792234dc5334c067fc37b35
1 /*
2 * (MPSAFE)
4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator
5 *
6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved.
7 *
8 * This code is derived from software contributed to The DragonFly Project
9 * by Matthew Dillon <dillon@backplane.com>
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * This module implements a slab allocator drop-in replacement for the
39 * kernel malloc().
41 * A slab allocator reserves a ZONE for each chunk size, then lays the
42 * chunks out in an array within the zone. Allocation and deallocation
43 * is nearly instantanious, and fragmentation/overhead losses are limited
44 * to a fixed worst-case amount.
46 * The downside of this slab implementation is in the chunk size
47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
48 * In a kernel implementation all this memory will be physical so
49 * the zone size is adjusted downward on machines with less physical
50 * memory. The upside is that overhead is bounded... this is the *worst*
51 * case overhead.
53 * Slab management is done on a per-cpu basis and no locking or mutexes
54 * are required, only a critical section. When one cpu frees memory
55 * belonging to another cpu's slab manager an asynchronous IPI message
56 * will be queued to execute the operation. In addition, both the
57 * high level slab allocator and the low level zone allocator optimize
58 * M_ZERO requests, and the slab allocator does not have to pre initialize
59 * the linked list of chunks.
61 * XXX Balancing is needed between cpus. Balance will be handled through
62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65 * the new zone should be restricted to M_USE_RESERVE requests only.
67 * Alloc Size Chunking Number of zones
68 * 0-127 8 16
69 * 128-255 16 8
70 * 256-511 32 8
71 * 512-1023 64 8
72 * 1024-2047 128 8
73 * 2048-4095 256 8
74 * 4096-8191 512 8
75 * 8192-16383 1024 8
76 * 16384-32767 2048 8
77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
79 * Allocations >= ZoneLimit go directly to kmem.
81 * Alignment properties:
82 * - All power-of-2 sized allocations are power-of-2 aligned.
83 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84 * power-of-2 round up of 'size'.
85 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86 * above table 'Chunking' column).
88 * API REQUIREMENTS AND SIDE EFFECTS
90 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91 * have remained compatible with the following API requirements:
93 * + malloc(0) is allowed and returns non-NULL (ahc driver)
94 * + ability to allocate arbitrarily large chunks of memory
97 #include "opt_vm.h"
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
121 #include <machine/cpu.h>
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
126 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
128 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x"
129 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags
131 #if !defined(KTR_MEMORY)
132 #define KTR_MEMORY KTR_ALL
133 #endif
134 KTR_INFO_MASTER(memory);
135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
147 #define logmemory(name, ptr, type, size, flags) \
148 KTR_LOG(memory_ ## name, ptr, type, size, flags)
149 #define logmemory_quick(name) \
150 KTR_LOG(memory_ ## name)
153 * Fixed globals (not per-cpu)
155 static int ZoneSize;
156 static int ZoneLimit;
157 static int ZonePageCount;
158 static uintptr_t ZoneMask;
159 static int ZoneBigAlloc; /* in KB */
160 static int ZoneGenAlloc; /* in KB */
161 struct malloc_type *kmemstatistics; /* exported to vmstat */
162 static int32_t weirdary[16];
164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
165 static void kmem_slab_free(void *ptr, vm_size_t bytes);
167 #if defined(INVARIANTS)
168 static void chunk_mark_allocated(SLZone *z, void *chunk);
169 static void chunk_mark_free(SLZone *z, void *chunk);
170 #else
171 #define chunk_mark_allocated(z, chunk)
172 #define chunk_mark_free(z, chunk)
173 #endif
176 * Misc constants. Note that allocations that are exact multiples of
177 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
179 #define ZONE_RELS_THRESH 32 /* threshold number of zones */
182 * The WEIRD_ADDR is used as known text to copy into free objects to
183 * try to create deterministic failure cases if the data is accessed after
184 * free.
186 #define WEIRD_ADDR 0xdeadc0de
187 #define MAX_COPY sizeof(weirdary)
188 #define ZERO_LENGTH_PTR ((void *)-8)
191 * Misc global malloc buckets
194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
197 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
199 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
200 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
203 * Initialize the slab memory allocator. We have to choose a zone size based
204 * on available physical memory. We choose a zone side which is approximately
205 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
206 * 128K. The zone size is limited to the bounds set in slaballoc.h
207 * (typically 32K min, 128K max).
209 static void kmeminit(void *dummy);
211 char *ZeroPage;
213 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
215 #ifdef INVARIANTS
217 * If enabled any memory allocated without M_ZERO is initialized to -1.
219 static int use_malloc_pattern;
220 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
221 &use_malloc_pattern, 0,
222 "Initialize memory to -1 if M_ZERO not specified");
223 #endif
225 static int ZoneRelsThresh = ZONE_RELS_THRESH;
226 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
228 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
229 static long SlabsAllocated;
230 static long SlabsFreed;
231 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD,
232 &SlabsAllocated, 0, "");
233 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD,
234 &SlabsFreed, 0, "");
235 static int SlabFreeToTail;
236 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW,
237 &SlabFreeToTail, 0, "");
240 * Returns the kernel memory size limit for the purposes of initializing
241 * various subsystem caches. The smaller of available memory and the KVM
242 * memory space is returned.
244 * The size in megabytes is returned.
246 size_t
247 kmem_lim_size(void)
249 size_t limsize;
251 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
252 if (limsize > KvaSize)
253 limsize = KvaSize;
254 return (limsize / (1024 * 1024));
257 static void
258 kmeminit(void *dummy)
260 size_t limsize;
261 int usesize;
262 int i;
264 limsize = kmem_lim_size();
265 usesize = (int)(limsize * 1024); /* convert to KB */
268 * If the machine has a large KVM space and more than 8G of ram,
269 * double the zone release threshold to reduce SMP invalidations.
270 * If more than 16G of ram, do it again.
272 * The BIOS eats a little ram so add some slop. We want 8G worth of
273 * memory sticks to trigger the first adjustment.
275 if (ZoneRelsThresh == ZONE_RELS_THRESH) {
276 if (limsize >= 7 * 1024)
277 ZoneRelsThresh *= 2;
278 if (limsize >= 15 * 1024)
279 ZoneRelsThresh *= 2;
283 * Calculate the zone size. This typically calculates to
284 * ZALLOC_MAX_ZONE_SIZE
286 ZoneSize = ZALLOC_MIN_ZONE_SIZE;
287 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
288 ZoneSize <<= 1;
289 ZoneLimit = ZoneSize / 4;
290 if (ZoneLimit > ZALLOC_ZONE_LIMIT)
291 ZoneLimit = ZALLOC_ZONE_LIMIT;
292 ZoneMask = ~(uintptr_t)(ZoneSize - 1);
293 ZonePageCount = ZoneSize / PAGE_SIZE;
295 for (i = 0; i < NELEM(weirdary); ++i)
296 weirdary[i] = WEIRD_ADDR;
298 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
300 if (bootverbose)
301 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
305 * (low level) Initialize slab-related elements in the globaldata structure.
307 * Occurs after kmeminit().
309 void
310 slab_gdinit(globaldata_t gd)
312 SLGlobalData *slgd;
313 int i;
315 slgd = &gd->gd_slab;
316 for (i = 0; i < NZONES; ++i)
317 TAILQ_INIT(&slgd->ZoneAry[i]);
318 TAILQ_INIT(&slgd->FreeZones);
319 TAILQ_INIT(&slgd->FreeOvZones);
323 * Initialize a malloc type tracking structure.
325 void
326 malloc_init(void *data)
328 struct malloc_type *type = data;
329 size_t limsize;
331 if (type->ks_magic != M_MAGIC)
332 panic("malloc type lacks magic");
334 if (type->ks_limit != 0)
335 return;
337 if (vmstats.v_page_count == 0)
338 panic("malloc_init not allowed before vm init");
340 limsize = kmem_lim_size() * (1024 * 1024);
341 type->ks_limit = limsize / 10;
343 type->ks_next = kmemstatistics;
344 kmemstatistics = type;
347 void
348 malloc_uninit(void *data)
350 struct malloc_type *type = data;
351 struct malloc_type *t;
352 #ifdef INVARIANTS
353 int i;
354 long ttl;
355 #endif
357 if (type->ks_magic != M_MAGIC)
358 panic("malloc type lacks magic");
360 if (vmstats.v_page_count == 0)
361 panic("malloc_uninit not allowed before vm init");
363 if (type->ks_limit == 0)
364 panic("malloc_uninit on uninitialized type");
366 /* Make sure that all pending kfree()s are finished. */
367 lwkt_synchronize_ipiqs("muninit");
369 #ifdef INVARIANTS
371 * memuse is only correct in aggregation. Due to memory being allocated
372 * on one cpu and freed on another individual array entries may be
373 * negative or positive (canceling each other out).
375 for (i = ttl = 0; i < ncpus; ++i)
376 ttl += type->ks_use[i].memuse;
377 if (ttl) {
378 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
379 ttl, type->ks_shortdesc, i);
381 #endif
382 if (type == kmemstatistics) {
383 kmemstatistics = type->ks_next;
384 } else {
385 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
386 if (t->ks_next == type) {
387 t->ks_next = type->ks_next;
388 break;
392 type->ks_next = NULL;
393 type->ks_limit = 0;
397 * Increase the kmalloc pool limit for the specified pool. No changes
398 * are the made if the pool would shrink.
400 void
401 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
403 if (type->ks_limit == 0)
404 malloc_init(type);
405 if (bytes == 0)
406 bytes = KvaSize;
407 if (type->ks_limit < bytes)
408 type->ks_limit = bytes;
411 void
412 kmalloc_set_unlimited(struct malloc_type *type)
414 type->ks_limit = kmem_lim_size() * (1024 * 1024);
418 * Dynamically create a malloc pool. This function is a NOP if *typep is
419 * already non-NULL.
421 void
422 kmalloc_create(struct malloc_type **typep, const char *descr)
424 struct malloc_type *type;
426 if (*typep == NULL) {
427 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
428 type->ks_magic = M_MAGIC;
429 type->ks_shortdesc = descr;
430 malloc_init(type);
431 *typep = type;
436 * Destroy a dynamically created malloc pool. This function is a NOP if
437 * the pool has already been destroyed.
439 void
440 kmalloc_destroy(struct malloc_type **typep)
442 if (*typep != NULL) {
443 malloc_uninit(*typep);
444 kfree(*typep, M_TEMP);
445 *typep = NULL;
450 * Calculate the zone index for the allocation request size and set the
451 * allocation request size to that particular zone's chunk size.
453 static __inline int
454 zoneindex(unsigned long *bytes, unsigned long *align)
456 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */
457 if (n < 128) {
458 *bytes = n = (n + 7) & ~7;
459 *align = 8;
460 return(n / 8 - 1); /* 8 byte chunks, 16 zones */
462 if (n < 256) {
463 *bytes = n = (n + 15) & ~15;
464 *align = 16;
465 return(n / 16 + 7);
467 if (n < 8192) {
468 if (n < 512) {
469 *bytes = n = (n + 31) & ~31;
470 *align = 32;
471 return(n / 32 + 15);
473 if (n < 1024) {
474 *bytes = n = (n + 63) & ~63;
475 *align = 64;
476 return(n / 64 + 23);
478 if (n < 2048) {
479 *bytes = n = (n + 127) & ~127;
480 *align = 128;
481 return(n / 128 + 31);
483 if (n < 4096) {
484 *bytes = n = (n + 255) & ~255;
485 *align = 256;
486 return(n / 256 + 39);
488 *bytes = n = (n + 511) & ~511;
489 *align = 512;
490 return(n / 512 + 47);
492 #if ZALLOC_ZONE_LIMIT > 8192
493 if (n < 16384) {
494 *bytes = n = (n + 1023) & ~1023;
495 *align = 1024;
496 return(n / 1024 + 55);
498 #endif
499 #if ZALLOC_ZONE_LIMIT > 16384
500 if (n < 32768) {
501 *bytes = n = (n + 2047) & ~2047;
502 *align = 2048;
503 return(n / 2048 + 63);
505 #endif
506 panic("Unexpected byte count %d", n);
507 return(0);
510 static __inline
511 void
512 clean_zone_rchunks(SLZone *z)
514 SLChunk *bchunk;
516 while ((bchunk = z->z_RChunks) != NULL) {
517 cpu_ccfence();
518 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
519 *z->z_LChunksp = bchunk;
520 while (bchunk) {
521 chunk_mark_free(z, bchunk);
522 z->z_LChunksp = &bchunk->c_Next;
523 bchunk = bchunk->c_Next;
524 ++z->z_NFree;
526 break;
528 /* retry */
533 * If the zone becomes totally free and is not the only zone listed for a
534 * chunk size we move it to the FreeZones list. We always leave at least
535 * one zone per chunk size listed, even if it is freeable.
537 * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
538 * otherwise MP races can result in our free_remote code accessing a
539 * destroyed zone. The remote end interlocks z_RCount with z_RChunks
540 * so one has to test both z_NFree and z_RCount.
542 * Since this code can be called from an IPI callback, do *NOT* try to mess
543 * with kernel_map here. Hysteresis will be performed at kmalloc() time.
545 static __inline
546 SLZone *
547 check_zone_free(SLGlobalData *slgd, SLZone *z)
549 SLZone *znext;
551 znext = TAILQ_NEXT(z, z_Entry);
552 if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
553 (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)
555 int *kup;
557 TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
559 z->z_Magic = -1;
560 TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
561 ++slgd->NFreeZones;
562 kup = btokup(z);
563 *kup = 0;
565 return znext;
568 #ifdef SLAB_DEBUG
570 * Used to debug memory corruption issues. Record up to (typically 32)
571 * allocation sources for this zone (for a particular chunk size).
574 static void
575 slab_record_source(SLZone *z, const char *file, int line)
577 int i;
578 int b = line & (SLAB_DEBUG_ENTRIES - 1);
580 i = b;
581 do {
582 if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
583 return;
584 if (z->z_Sources[i].file == NULL)
585 break;
586 i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
587 } while (i != b);
588 z->z_Sources[i].file = file;
589 z->z_Sources[i].line = line;
592 #endif
594 static __inline unsigned long
595 powerof2_size(unsigned long size)
597 int i;
599 if (size == 0 || powerof2(size))
600 return size;
602 i = flsl(size);
603 return (1UL << i);
607 * kmalloc() (SLAB ALLOCATOR)
609 * Allocate memory via the slab allocator. If the request is too large,
610 * or if it page-aligned beyond a certain size, we fall back to the
611 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
612 * &SlabMisc if you don't care.
614 * M_RNOWAIT - don't block.
615 * M_NULLOK - return NULL instead of blocking.
616 * M_ZERO - zero the returned memory.
617 * M_USE_RESERVE - allow greater drawdown of the free list
618 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
619 * M_POWEROF2 - roundup size to the nearest power of 2
621 * MPSAFE
624 #ifdef SLAB_DEBUG
625 void *
626 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
627 const char *file, int line)
628 #else
629 void *
630 kmalloc(unsigned long size, struct malloc_type *type, int flags)
631 #endif
633 SLZone *z;
634 SLChunk *chunk;
635 SLGlobalData *slgd;
636 struct globaldata *gd;
637 unsigned long align;
638 int zi;
639 #ifdef INVARIANTS
640 int i;
641 #endif
643 logmemory_quick(malloc_beg);
644 gd = mycpu;
645 slgd = &gd->gd_slab;
648 * XXX silly to have this in the critical path.
650 if (type->ks_limit == 0) {
651 crit_enter();
652 malloc_init(type);
653 crit_exit();
655 ++type->ks_calls;
657 if (flags & M_POWEROF2)
658 size = powerof2_size(size);
661 * Handle the case where the limit is reached. Panic if we can't return
662 * NULL. The original malloc code looped, but this tended to
663 * simply deadlock the computer.
665 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
666 * to determine if a more complete limit check should be done. The
667 * actual memory use is tracked via ks_use[cpu].memuse.
669 while (type->ks_loosememuse >= type->ks_limit) {
670 int i;
671 long ttl;
673 for (i = ttl = 0; i < ncpus; ++i)
674 ttl += type->ks_use[i].memuse;
675 type->ks_loosememuse = ttl; /* not MP synchronized */
676 if ((ssize_t)ttl < 0) /* deal with occassional race */
677 ttl = 0;
678 if (ttl >= type->ks_limit) {
679 if (flags & M_NULLOK) {
680 logmemory(malloc_end, NULL, type, size, flags);
681 return(NULL);
683 panic("%s: malloc limit exceeded", type->ks_shortdesc);
688 * Handle the degenerate size == 0 case. Yes, this does happen.
689 * Return a special pointer. This is to maintain compatibility with
690 * the original malloc implementation. Certain devices, such as the
691 * adaptec driver, not only allocate 0 bytes, they check for NULL and
692 * also realloc() later on. Joy.
694 if (size == 0) {
695 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
696 return(ZERO_LENGTH_PTR);
700 * Handle hysteresis from prior frees here in malloc(). We cannot
701 * safely manipulate the kernel_map in free() due to free() possibly
702 * being called via an IPI message or from sensitive interrupt code.
704 * NOTE: ku_pagecnt must be cleared before we free the slab or we
705 * might race another cpu allocating the kva and setting
706 * ku_pagecnt.
708 while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
709 crit_enter();
710 if (slgd->NFreeZones > ZoneRelsThresh) { /* crit sect race */
711 int *kup;
713 z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
714 KKASSERT(z != NULL);
715 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
716 --slgd->NFreeZones;
717 kup = btokup(z);
718 *kup = 0;
719 kmem_slab_free(z, ZoneSize); /* may block */
720 atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
722 crit_exit();
726 * XXX handle oversized frees that were queued from kfree().
728 while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
729 crit_enter();
730 if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
731 vm_size_t tsize;
733 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
734 TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
735 tsize = z->z_ChunkSize;
736 kmem_slab_free(z, tsize); /* may block */
737 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
739 crit_exit();
743 * Handle large allocations directly. There should not be very many of
744 * these so performance is not a big issue.
746 * The backend allocator is pretty nasty on a SMP system. Use the
747 * slab allocator for one and two page-sized chunks even though we lose
748 * some efficiency. XXX maybe fix mmio and the elf loader instead.
750 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
751 int *kup;
753 size = round_page(size);
754 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
755 if (chunk == NULL) {
756 logmemory(malloc_end, NULL, type, size, flags);
757 return(NULL);
759 atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
760 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */
761 flags |= M_PASSIVE_ZERO;
762 kup = btokup(chunk);
763 *kup = size / PAGE_SIZE;
764 crit_enter();
765 goto done;
769 * Attempt to allocate out of an existing zone. First try the free list,
770 * then allocate out of unallocated space. If we find a good zone move
771 * it to the head of the list so later allocations find it quickly
772 * (we might have thousands of zones in the list).
774 * Note: zoneindex() will panic of size is too large.
776 zi = zoneindex(&size, &align);
777 KKASSERT(zi < NZONES);
778 crit_enter();
780 if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
782 * Locate a chunk - we have to have at least one. If this is the
783 * last chunk go ahead and do the work to retrieve chunks freed
784 * from remote cpus, and if the zone is still empty move it off
785 * the ZoneAry.
787 if (--z->z_NFree <= 0) {
788 KKASSERT(z->z_NFree == 0);
791 * WARNING! This code competes with other cpus. It is ok
792 * for us to not drain RChunks here but we might as well, and
793 * it is ok if more accumulate after we're done.
795 * Set RSignal before pulling rchunks off, indicating that we
796 * will be moving ourselves off of the ZoneAry. Remote ends will
797 * read RSignal before putting rchunks on thus interlocking
798 * their IPI signaling.
800 if (z->z_RChunks == NULL)
801 atomic_swap_int(&z->z_RSignal, 1);
803 clean_zone_rchunks(z);
806 * Remove from the zone list if no free chunks remain.
807 * Clear RSignal
809 if (z->z_NFree == 0) {
810 TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
811 } else {
812 z->z_RSignal = 0;
817 * Fast path, we have chunks available in z_LChunks.
819 chunk = z->z_LChunks;
820 if (chunk) {
821 chunk_mark_allocated(z, chunk);
822 z->z_LChunks = chunk->c_Next;
823 if (z->z_LChunks == NULL)
824 z->z_LChunksp = &z->z_LChunks;
825 #ifdef SLAB_DEBUG
826 slab_record_source(z, file, line);
827 #endif
828 goto done;
832 * No chunks are available in LChunks, the free chunk MUST be
833 * in the never-before-used memory area, controlled by UIndex.
835 * The consequences are very serious if our zone got corrupted so
836 * we use an explicit panic rather than a KASSERT.
838 if (z->z_UIndex + 1 != z->z_NMax)
839 ++z->z_UIndex;
840 else
841 z->z_UIndex = 0;
843 if (z->z_UIndex == z->z_UEndIndex)
844 panic("slaballoc: corrupted zone");
846 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
847 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
848 flags &= ~M_ZERO;
849 flags |= M_PASSIVE_ZERO;
851 chunk_mark_allocated(z, chunk);
852 #ifdef SLAB_DEBUG
853 slab_record_source(z, file, line);
854 #endif
855 goto done;
859 * If all zones are exhausted we need to allocate a new zone for this
860 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
861 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
862 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
863 * we do not pre-zero it because we do not want to mess up the L1 cache.
865 * At least one subsystem, the tty code (see CROUND) expects power-of-2
866 * allocations to be power-of-2 aligned. We maintain compatibility by
867 * adjusting the base offset below.
870 int off;
871 int *kup;
873 if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
874 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
875 --slgd->NFreeZones;
876 bzero(z, sizeof(SLZone));
877 z->z_Flags |= SLZF_UNOTZEROD;
878 } else {
879 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
880 if (z == NULL)
881 goto fail;
882 atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
886 * How big is the base structure?
888 #if defined(INVARIANTS)
890 * Make room for z_Bitmap. An exact calculation is somewhat more
891 * complicated so don't make an exact calculation.
893 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
894 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
895 #else
896 off = sizeof(SLZone);
897 #endif
900 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
901 * Otherwise properly align the data according to the chunk size.
903 if (powerof2(size))
904 align = size;
905 off = roundup2(off, align);
907 z->z_Magic = ZALLOC_SLAB_MAGIC;
908 z->z_ZoneIndex = zi;
909 z->z_NMax = (ZoneSize - off) / size;
910 z->z_NFree = z->z_NMax - 1;
911 z->z_BasePtr = (char *)z + off;
912 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
913 z->z_ChunkSize = size;
914 z->z_CpuGd = gd;
915 z->z_Cpu = gd->gd_cpuid;
916 z->z_LChunksp = &z->z_LChunks;
917 #ifdef SLAB_DEBUG
918 bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
919 bzero(z->z_Sources, sizeof(z->z_Sources));
920 #endif
921 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
922 TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
923 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
924 flags &= ~M_ZERO; /* already zero'd */
925 flags |= M_PASSIVE_ZERO;
927 kup = btokup(z);
928 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
929 chunk_mark_allocated(z, chunk);
930 #ifdef SLAB_DEBUG
931 slab_record_source(z, file, line);
932 #endif
935 * Slide the base index for initial allocations out of the next
936 * zone we create so we do not over-weight the lower part of the
937 * cpu memory caches.
939 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
940 & (ZALLOC_MAX_ZONE_SIZE - 1);
943 done:
944 ++type->ks_use[gd->gd_cpuid].inuse;
945 type->ks_use[gd->gd_cpuid].memuse += size;
946 type->ks_loosememuse += size; /* not MP synchronized */
947 crit_exit();
949 if (flags & M_ZERO)
950 bzero(chunk, size);
951 #ifdef INVARIANTS
952 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
953 if (use_malloc_pattern) {
954 for (i = 0; i < size; i += sizeof(int)) {
955 *(int *)((char *)chunk + i) = -1;
958 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
960 #endif
961 logmemory(malloc_end, chunk, type, size, flags);
962 return(chunk);
963 fail:
964 crit_exit();
965 logmemory(malloc_end, NULL, type, size, flags);
966 return(NULL);
970 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE)
972 * Generally speaking this routine is not called very often and we do
973 * not attempt to optimize it beyond reusing the same pointer if the
974 * new size fits within the chunking of the old pointer's zone.
976 #ifdef SLAB_DEBUG
977 void *
978 krealloc_debug(void *ptr, unsigned long size,
979 struct malloc_type *type, int flags,
980 const char *file, int line)
981 #else
982 void *
983 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
984 #endif
986 unsigned long osize;
987 unsigned long align;
988 SLZone *z;
989 void *nptr;
990 int *kup;
992 KKASSERT((flags & M_ZERO) == 0); /* not supported */
994 if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
995 return(kmalloc_debug(size, type, flags, file, line));
996 if (size == 0) {
997 kfree(ptr, type);
998 return(NULL);
1002 * Handle oversized allocations. XXX we really should require that a
1003 * size be passed to free() instead of this nonsense.
1005 kup = btokup(ptr);
1006 if (*kup > 0) {
1007 osize = *kup << PAGE_SHIFT;
1008 if (osize == round_page(size))
1009 return(ptr);
1010 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1011 return(NULL);
1012 bcopy(ptr, nptr, min(size, osize));
1013 kfree(ptr, type);
1014 return(nptr);
1018 * Get the original allocation's zone. If the new request winds up
1019 * using the same chunk size we do not have to do anything.
1021 z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1022 kup = btokup(z);
1023 KKASSERT(*kup < 0);
1024 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1027 * Allocate memory for the new request size. Note that zoneindex has
1028 * already adjusted the request size to the appropriate chunk size, which
1029 * should optimize our bcopy(). Then copy and return the new pointer.
1031 * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1032 * necessary align the result.
1034 * We can only zoneindex (to align size to the chunk size) if the new
1035 * size is not too large.
1037 if (size < ZoneLimit) {
1038 zoneindex(&size, &align);
1039 if (z->z_ChunkSize == size)
1040 return(ptr);
1042 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1043 return(NULL);
1044 bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1045 kfree(ptr, type);
1046 return(nptr);
1050 * Return the kmalloc limit for this type, in bytes.
1052 long
1053 kmalloc_limit(struct malloc_type *type)
1055 if (type->ks_limit == 0) {
1056 crit_enter();
1057 if (type->ks_limit == 0)
1058 malloc_init(type);
1059 crit_exit();
1061 return(type->ks_limit);
1065 * Allocate a copy of the specified string.
1067 * (MP SAFE) (MAY BLOCK)
1069 #ifdef SLAB_DEBUG
1070 char *
1071 kstrdup_debug(const char *str, struct malloc_type *type,
1072 const char *file, int line)
1073 #else
1074 char *
1075 kstrdup(const char *str, struct malloc_type *type)
1076 #endif
1078 int zlen; /* length inclusive of terminating NUL */
1079 char *nstr;
1081 if (str == NULL)
1082 return(NULL);
1083 zlen = strlen(str) + 1;
1084 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1085 bcopy(str, nstr, zlen);
1086 return(nstr);
1089 #ifdef SLAB_DEBUG
1090 char *
1091 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1092 const char *file, int line)
1093 #else
1094 char *
1095 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1096 #endif
1098 int zlen; /* length inclusive of terminating NUL */
1099 char *nstr;
1101 if (str == NULL)
1102 return(NULL);
1103 zlen = strnlen(str, maxlen) + 1;
1104 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1105 bcopy(str, nstr, zlen);
1106 nstr[zlen - 1] = '\0';
1107 return(nstr);
1111 * Notify our cpu that a remote cpu has freed some chunks in a zone that
1112 * we own. RCount will be bumped so the memory should be good, but validate
1113 * that it really is.
1115 static
1116 void
1117 kfree_remote(void *ptr)
1119 SLGlobalData *slgd;
1120 SLZone *z;
1121 int nfree;
1122 int *kup;
1124 slgd = &mycpu->gd_slab;
1125 z = ptr;
1126 kup = btokup(z);
1127 KKASSERT(*kup == -((int)mycpuid + 1));
1128 KKASSERT(z->z_RCount > 0);
1129 atomic_subtract_int(&z->z_RCount, 1);
1131 logmemory(free_rem_beg, z, NULL, 0L, 0);
1132 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1133 KKASSERT(z->z_Cpu == mycpu->gd_cpuid);
1134 nfree = z->z_NFree;
1137 * Indicate that we will no longer be off of the ZoneAry by
1138 * clearing RSignal.
1140 if (z->z_RChunks)
1141 z->z_RSignal = 0;
1144 * Atomically extract the bchunks list and then process it back
1145 * into the lchunks list. We want to append our bchunks to the
1146 * lchunks list and not prepend since we likely do not have
1147 * cache mastership of the related data (not that it helps since
1148 * we are using c_Next).
1150 clean_zone_rchunks(z);
1151 if (z->z_NFree && nfree == 0) {
1152 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1156 * If the zone becomes totally free and is not the only zone listed for a
1157 * chunk size we move it to the FreeZones list. We always leave at least
1158 * one zone per chunk size listed, even if it is freeable.
1160 * Since this code can be called from an IPI callback, do *NOT* try to
1161 * mess with kernel_map here. Hysteresis will be performed at malloc()
1162 * time.
1164 * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
1165 * otherwise MP races can result in our free_remote code accessing a
1166 * destroyed zone. The remote end interlocks z_RCount with z_RChunks
1167 * so one has to test both z_NFree and z_RCount.
1169 if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
1170 (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z ||
1171 TAILQ_NEXT(z, z_Entry))
1173 int *kup;
1175 TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1176 z->z_Magic = -1;
1177 TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
1178 ++slgd->NFreeZones;
1179 kup = btokup(z);
1180 *kup = 0;
1182 logmemory(free_rem_end, z, NULL, 0L, 0);
1186 * free (SLAB ALLOCATOR)
1188 * Free a memory block previously allocated by malloc. Note that we do not
1189 * attempt to update ks_loosememuse as MP races could prevent us from
1190 * checking memory limits in malloc.
1192 * MPSAFE
1194 void
1195 kfree(void *ptr, struct malloc_type *type)
1197 SLZone *z;
1198 SLChunk *chunk;
1199 SLGlobalData *slgd;
1200 struct globaldata *gd;
1201 int *kup;
1202 unsigned long size;
1203 SLChunk *bchunk;
1204 int rsignal;
1206 logmemory_quick(free_beg);
1207 gd = mycpu;
1208 slgd = &gd->gd_slab;
1210 if (ptr == NULL)
1211 panic("trying to free NULL pointer");
1214 * Handle special 0-byte allocations
1216 if (ptr == ZERO_LENGTH_PTR) {
1217 logmemory(free_zero, ptr, type, -1UL, 0);
1218 logmemory_quick(free_end);
1219 return;
1223 * Panic on bad malloc type
1225 if (type->ks_magic != M_MAGIC)
1226 panic("free: malloc type lacks magic");
1229 * Handle oversized allocations. XXX we really should require that a
1230 * size be passed to free() instead of this nonsense.
1232 * This code is never called via an ipi.
1234 kup = btokup(ptr);
1235 if (*kup > 0) {
1236 size = *kup << PAGE_SHIFT;
1237 *kup = 0;
1238 #ifdef INVARIANTS
1239 KKASSERT(sizeof(weirdary) <= size);
1240 bcopy(weirdary, ptr, sizeof(weirdary));
1241 #endif
1243 * NOTE: For oversized allocations we do not record the
1244 * originating cpu. It gets freed on the cpu calling
1245 * kfree(). The statistics are in aggregate.
1247 * note: XXX we have still inherited the interrupts-can't-block
1248 * assumption. An interrupt thread does not bump
1249 * gd_intr_nesting_level so check TDF_INTTHREAD. This is
1250 * primarily until we can fix softupdate's assumptions about free().
1252 crit_enter();
1253 --type->ks_use[gd->gd_cpuid].inuse;
1254 type->ks_use[gd->gd_cpuid].memuse -= size;
1255 if (mycpu->gd_intr_nesting_level ||
1256 (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1258 logmemory(free_ovsz_delayed, ptr, type, size, 0);
1259 z = (SLZone *)ptr;
1260 z->z_Magic = ZALLOC_OVSZ_MAGIC;
1261 z->z_ChunkSize = size;
1263 TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1264 crit_exit();
1265 } else {
1266 crit_exit();
1267 logmemory(free_ovsz, ptr, type, size, 0);
1268 kmem_slab_free(ptr, size); /* may block */
1269 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1271 logmemory_quick(free_end);
1272 return;
1276 * Zone case. Figure out the zone based on the fact that it is
1277 * ZoneSize aligned.
1279 z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1280 kup = btokup(z);
1281 KKASSERT(*kup < 0);
1282 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1285 * If we do not own the zone then use atomic ops to free to the
1286 * remote cpu linked list and notify the target zone using a
1287 * passive message.
1289 * The target zone cannot be deallocated while we own a chunk of it,
1290 * so the zone header's storage is stable until the very moment
1291 * we adjust z_RChunks. After that we cannot safely dereference (z).
1293 * (no critical section needed)
1295 if (z->z_CpuGd != gd) {
1297 * Making these adjustments now allow us to avoid passing (type)
1298 * to the remote cpu. Note that inuse/memuse is being
1299 * adjusted on OUR cpu, not the zone cpu, but it should all still
1300 * sum up properly and cancel out.
1302 crit_enter();
1303 --type->ks_use[gd->gd_cpuid].inuse;
1304 type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1305 crit_exit();
1308 * WARNING! This code competes with other cpus. Once we
1309 * successfully link the chunk to RChunks the remote
1310 * cpu can rip z's storage out from under us.
1312 * Bumping RCount prevents z's storage from getting
1313 * ripped out.
1315 rsignal = z->z_RSignal;
1316 cpu_lfence();
1317 if (rsignal)
1318 atomic_add_int(&z->z_RCount, 1);
1320 chunk = ptr;
1321 for (;;) {
1322 bchunk = z->z_RChunks;
1323 cpu_ccfence();
1324 chunk->c_Next = bchunk;
1325 cpu_sfence();
1327 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1328 break;
1332 * We have to signal the remote cpu if our actions will cause
1333 * the remote zone to be placed back on ZoneAry so it can
1334 * move the zone back on.
1336 * We only need to deal with NULL->non-NULL RChunk transitions
1337 * and only if z_RSignal is set. We interlock by reading rsignal
1338 * before adding our chunk to RChunks. This should result in
1339 * virtually no IPI traffic.
1341 * We can use a passive IPI to reduce overhead even further.
1343 if (bchunk == NULL && rsignal) {
1344 logmemory(free_request, ptr, type,
1345 (unsigned long)z->z_ChunkSize, 0);
1346 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1347 /* z can get ripped out from under us from this point on */
1348 } else if (rsignal) {
1349 atomic_subtract_int(&z->z_RCount, 1);
1350 /* z can get ripped out from under us from this point on */
1352 logmemory_quick(free_end);
1353 return;
1357 * kfree locally
1359 logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1361 crit_enter();
1362 chunk = ptr;
1363 chunk_mark_free(z, chunk);
1366 * Put weird data into the memory to detect modifications after freeing,
1367 * illegal pointer use after freeing (we should fault on the odd address),
1368 * and so forth. XXX needs more work, see the old malloc code.
1370 #ifdef INVARIANTS
1371 if (z->z_ChunkSize < sizeof(weirdary))
1372 bcopy(weirdary, chunk, z->z_ChunkSize);
1373 else
1374 bcopy(weirdary, chunk, sizeof(weirdary));
1375 #endif
1378 * Add this free non-zero'd chunk to a linked list for reuse. Add
1379 * to the front of the linked list so it is more likely to be
1380 * reallocated, since it is already in our L1 cache.
1382 #ifdef INVARIANTS
1383 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1384 panic("BADFREE %p", chunk);
1385 #endif
1386 chunk->c_Next = z->z_LChunks;
1387 z->z_LChunks = chunk;
1388 if (chunk->c_Next == NULL)
1389 z->z_LChunksp = &chunk->c_Next;
1391 #ifdef INVARIANTS
1392 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1393 panic("BADFREE2");
1394 #endif
1397 * Bump the number of free chunks. If it becomes non-zero the zone
1398 * must be added back onto the appropriate list. A fully allocated
1399 * zone that sees its first free is considered 'mature' and is placed
1400 * at the head, giving the system time to potentially free the remaining
1401 * entries even while other allocations are going on and making the zone
1402 * freeable.
1404 if (z->z_NFree++ == 0) {
1405 if (SlabFreeToTail)
1406 TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1407 else
1408 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1411 --type->ks_use[z->z_Cpu].inuse;
1412 type->ks_use[z->z_Cpu].memuse -= z->z_ChunkSize;
1414 check_zone_free(slgd, z);
1415 logmemory_quick(free_end);
1416 crit_exit();
1420 * Cleanup slabs which are hanging around due to RChunks or which are wholely
1421 * free and can be moved to the free list if not moved by other means.
1423 * Called once every 10 seconds on all cpus.
1425 void
1426 slab_cleanup(void)
1428 SLGlobalData *slgd = &mycpu->gd_slab;
1429 SLZone *z;
1430 int i;
1432 crit_enter();
1433 for (i = 0; i < NZONES; ++i) {
1434 if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1435 continue;
1438 * Scan zones.
1440 while (z) {
1442 * Shift all RChunks to the end of the LChunks list. This is
1443 * an O(1) operation.
1445 * Then free the zone if possible.
1447 clean_zone_rchunks(z);
1448 z = check_zone_free(slgd, z);
1451 crit_exit();
1454 #if defined(INVARIANTS)
1457 * Helper routines for sanity checks
1459 static
1460 void
1461 chunk_mark_allocated(SLZone *z, void *chunk)
1463 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1464 uint32_t *bitptr;
1466 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1467 KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1468 ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1469 bitptr = &z->z_Bitmap[bitdex >> 5];
1470 bitdex &= 31;
1471 KASSERT((*bitptr & (1 << bitdex)) == 0,
1472 ("memory chunk %p is already allocated!", chunk));
1473 *bitptr |= 1 << bitdex;
1476 static
1477 void
1478 chunk_mark_free(SLZone *z, void *chunk)
1480 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1481 uint32_t *bitptr;
1483 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1484 KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1485 ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1486 bitptr = &z->z_Bitmap[bitdex >> 5];
1487 bitdex &= 31;
1488 KASSERT((*bitptr & (1 << bitdex)) != 0,
1489 ("memory chunk %p is already free!", chunk));
1490 *bitptr &= ~(1 << bitdex);
1493 #endif
1496 * kmem_slab_alloc()
1498 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1499 * specified alignment. M_* flags are expected in the flags field.
1501 * Alignment must be a multiple of PAGE_SIZE.
1503 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1504 * but when we move zalloc() over to use this function as its backend
1505 * we will have to switch to kreserve/krelease and call reserve(0)
1506 * after the new space is made available.
1508 * Interrupt code which has preempted other code is not allowed to
1509 * use PQ_CACHE pages. However, if an interrupt thread is run
1510 * non-preemptively or blocks and then runs non-preemptively, then
1511 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX
1513 static void *
1514 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1516 vm_size_t i;
1517 vm_offset_t addr;
1518 int count, vmflags, base_vmflags;
1519 vm_page_t mbase = NULL;
1520 vm_page_t m;
1521 thread_t td;
1523 size = round_page(size);
1524 addr = vm_map_min(&kernel_map);
1526 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1527 crit_enter();
1528 vm_map_lock(&kernel_map);
1529 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1530 vm_map_unlock(&kernel_map);
1531 if ((flags & M_NULLOK) == 0)
1532 panic("kmem_slab_alloc(): kernel_map ran out of space!");
1533 vm_map_entry_release(count);
1534 crit_exit();
1535 return(NULL);
1539 * kernel_object maps 1:1 to kernel_map.
1541 vm_object_hold(&kernel_object);
1542 vm_object_reference_locked(&kernel_object);
1543 vm_map_insert(&kernel_map, &count,
1544 &kernel_object, NULL,
1545 addr, addr, addr + size,
1546 VM_MAPTYPE_NORMAL,
1547 VM_SUBSYS_KMALLOC,
1548 VM_PROT_ALL, VM_PROT_ALL, 0);
1549 vm_object_drop(&kernel_object);
1550 vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1551 vm_map_unlock(&kernel_map);
1553 td = curthread;
1555 base_vmflags = 0;
1556 if (flags & M_ZERO)
1557 base_vmflags |= VM_ALLOC_ZERO;
1558 if (flags & M_USE_RESERVE)
1559 base_vmflags |= VM_ALLOC_SYSTEM;
1560 if (flags & M_USE_INTERRUPT_RESERVE)
1561 base_vmflags |= VM_ALLOC_INTERRUPT;
1562 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1563 panic("kmem_slab_alloc: bad flags %08x (%p)",
1564 flags, ((int **)&size)[-1]);
1568 * Allocate the pages. Do not map them yet. VM_ALLOC_NORMAL can only
1569 * be set if we are not preempting.
1571 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1572 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1573 * implied in this case), though I'm not sure if we really need to
1574 * do that.
1576 vmflags = base_vmflags;
1577 if (flags & M_WAITOK) {
1578 if (td->td_preempted)
1579 vmflags |= VM_ALLOC_SYSTEM;
1580 else
1581 vmflags |= VM_ALLOC_NORMAL;
1584 vm_object_hold(&kernel_object);
1585 for (i = 0; i < size; i += PAGE_SIZE) {
1586 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1587 if (i == 0)
1588 mbase = m;
1591 * If the allocation failed we either return NULL or we retry.
1593 * If M_WAITOK is specified we wait for more memory and retry.
1594 * If M_WAITOK is specified from a preemption we yield instead of
1595 * wait. Livelock will not occur because the interrupt thread
1596 * will not be preempting anyone the second time around after the
1597 * yield.
1599 if (m == NULL) {
1600 if (flags & M_WAITOK) {
1601 if (td->td_preempted) {
1602 lwkt_switch();
1603 } else {
1604 vm_wait(0);
1606 i -= PAGE_SIZE; /* retry */
1607 continue;
1609 break;
1614 * Check and deal with an allocation failure
1616 if (i != size) {
1617 while (i != 0) {
1618 i -= PAGE_SIZE;
1619 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1620 /* page should already be busy */
1621 vm_page_free(m);
1623 vm_map_lock(&kernel_map);
1624 vm_map_delete(&kernel_map, addr, addr + size, &count);
1625 vm_map_unlock(&kernel_map);
1626 vm_object_drop(&kernel_object);
1628 vm_map_entry_release(count);
1629 crit_exit();
1630 return(NULL);
1634 * Success!
1636 * NOTE: The VM pages are still busied. mbase points to the first one
1637 * but we have to iterate via vm_page_next()
1639 vm_object_drop(&kernel_object);
1640 crit_exit();
1643 * Enter the pages into the pmap and deal with M_ZERO.
1645 m = mbase;
1646 i = 0;
1648 while (i < size) {
1650 * page should already be busy
1652 m->valid = VM_PAGE_BITS_ALL;
1653 vm_page_wire(m);
1654 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
1655 1, NULL);
1656 if (flags & M_ZERO)
1657 pagezero((char *)addr + i);
1658 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1659 vm_page_flag_set(m, PG_REFERENCED);
1660 vm_page_wakeup(m);
1662 i += PAGE_SIZE;
1663 vm_object_hold(&kernel_object);
1664 m = vm_page_next(m);
1665 vm_object_drop(&kernel_object);
1667 smp_invltlb();
1668 vm_map_entry_release(count);
1669 atomic_add_long(&SlabsAllocated, 1);
1670 return((void *)addr);
1674 * kmem_slab_free()
1676 static void
1677 kmem_slab_free(void *ptr, vm_size_t size)
1679 crit_enter();
1680 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1681 atomic_add_long(&SlabsFreed, 1);
1682 crit_exit();
1685 void *
1686 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1687 int flags)
1689 #if (__VM_CACHELINE_SIZE == 32)
1690 #define CAN_CACHEALIGN(sz) ((sz) >= 256)
1691 #elif (__VM_CACHELINE_SIZE == 64)
1692 #define CAN_CACHEALIGN(sz) ((sz) >= 512)
1693 #elif (__VM_CACHELINE_SIZE == 128)
1694 #define CAN_CACHEALIGN(sz) ((sz) >= 1024)
1695 #else
1696 #error "unsupported cacheline size"
1697 #endif
1699 void *ret;
1701 if (size_alloc < __VM_CACHELINE_SIZE)
1702 size_alloc = __VM_CACHELINE_SIZE;
1703 else if (!CAN_CACHEALIGN(size_alloc))
1704 flags |= M_POWEROF2;
1706 ret = kmalloc(size_alloc, type, flags);
1707 KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1708 ("%p(%lu) not cacheline %d aligned",
1709 ret, size_alloc, __VM_CACHELINE_SIZE));
1710 return ret;
1712 #undef CAN_CACHEALIGN