Sync CAM with FreeBSD using lockmgr locks instead of mutexes.
[dragonfly.git] / sys / dev / raid / mly / mly.c
blob41e1a02e0cde0ada8f3ed6e7fff1750f0035ef9b
1 /*-
2 * Copyright (c) 2000, 2001 Michael Smith
3 * Copyright (c) 2000 BSDi
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/mly/mly.c,v 1.3.2.3 2001/03/05 20:17:24 msmith Exp $
28 * $DragonFly: src/sys/dev/raid/mly/mly.c,v 1.21 2008/05/18 20:30:23 pavalos Exp $
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/ctype.h>
39 #include <sys/ioccom.h>
40 #include <sys/stat.h>
41 #include <sys/rman.h>
42 #include <sys/thread2.h>
44 #include <bus/cam/cam.h>
45 #include <bus/cam/cam_ccb.h>
46 #include <bus/cam/cam_periph.h>
47 #include <bus/cam/cam_sim.h>
48 #include <bus/cam/cam_xpt_sim.h>
49 #include <bus/cam/scsi/scsi_all.h>
50 #include <bus/cam/scsi/scsi_message.h>
52 #include <bus/pci/pcireg.h>
53 #include <bus/pci/pcivar.h>
55 #include "mlyreg.h"
56 #include "mlyio.h"
57 #include "mlyvar.h"
58 #include "mly_tables.h"
60 static int mly_probe(device_t dev);
61 static int mly_attach(device_t dev);
62 static int mly_pci_attach(struct mly_softc *sc);
63 static int mly_detach(device_t dev);
64 static int mly_shutdown(device_t dev);
65 static void mly_intr(void *arg);
67 static int mly_sg_map(struct mly_softc *sc);
68 static void mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
69 static int mly_mmbox_map(struct mly_softc *sc);
70 static void mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
71 static void mly_free(struct mly_softc *sc);
73 static int mly_get_controllerinfo(struct mly_softc *sc);
74 static void mly_scan_devices(struct mly_softc *sc);
75 static void mly_rescan_btl(struct mly_softc *sc, int bus, int target);
76 static void mly_complete_rescan(struct mly_command *mc);
77 static int mly_get_eventstatus(struct mly_softc *sc);
78 static int mly_enable_mmbox(struct mly_softc *sc);
79 static int mly_flush(struct mly_softc *sc);
80 static int mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
81 size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
82 static void mly_check_event(struct mly_softc *sc);
83 static void mly_fetch_event(struct mly_softc *sc);
84 static void mly_complete_event(struct mly_command *mc);
85 static void mly_process_event(struct mly_softc *sc, struct mly_event *me);
86 static void mly_periodic(void *data);
88 static int mly_immediate_command(struct mly_command *mc);
89 static int mly_start(struct mly_command *mc);
90 static void mly_done(struct mly_softc *sc);
91 static void mly_complete(void *context, int pending);
93 static int mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
94 static void mly_release_command(struct mly_command *mc);
95 static void mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
96 static int mly_alloc_commands(struct mly_softc *sc);
97 static void mly_release_commands(struct mly_softc *sc);
98 static void mly_map_command(struct mly_command *mc);
99 static void mly_unmap_command(struct mly_command *mc);
101 static int mly_cam_attach(struct mly_softc *sc);
102 static void mly_cam_detach(struct mly_softc *sc);
103 static void mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
104 static void mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
105 static void mly_cam_action(struct cam_sim *sim, union ccb *ccb);
106 static int mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
107 static void mly_cam_poll(struct cam_sim *sim);
108 static void mly_cam_complete(struct mly_command *mc);
109 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
110 static int mly_name_device(struct mly_softc *sc, int bus, int target);
112 static int mly_fwhandshake(struct mly_softc *sc);
114 static void mly_describe_controller(struct mly_softc *sc);
115 #ifdef MLY_DEBUG
116 static void mly_printstate(struct mly_softc *sc);
117 static void mly_print_command(struct mly_command *mc);
118 static void mly_print_packet(struct mly_command *mc);
119 static void mly_panic(struct mly_softc *sc, char *reason);
120 #endif
121 void mly_print_controller(int controller);
122 static int mly_timeout(struct mly_softc *sc);
125 static d_open_t mly_user_open;
126 static d_close_t mly_user_close;
127 static d_ioctl_t mly_user_ioctl;
128 static int mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
129 static int mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
131 #define MLY_CMD_TIMEOUT 20
133 static device_method_t mly_methods[] = {
134 /* Device interface */
135 DEVMETHOD(device_probe, mly_probe),
136 DEVMETHOD(device_attach, mly_attach),
137 DEVMETHOD(device_detach, mly_detach),
138 DEVMETHOD(device_shutdown, mly_shutdown),
139 { 0, 0 }
142 static driver_t mly_pci_driver = {
143 "mly",
144 mly_methods,
145 sizeof(struct mly_softc)
148 static devclass_t mly_devclass;
149 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
151 #define MLY_CDEV_MAJOR 158
153 static struct dev_ops mly_ops = {
154 { "mly", MLY_CDEV_MAJOR, 0 },
155 .d_open = mly_user_open,
156 .d_close = mly_user_close,
157 .d_ioctl = mly_user_ioctl,
160 /********************************************************************************
161 ********************************************************************************
162 Device Interface
163 ********************************************************************************
164 ********************************************************************************/
166 static struct mly_ident
168 u_int16_t vendor;
169 u_int16_t device;
170 u_int16_t subvendor;
171 u_int16_t subdevice;
172 int hwif;
173 char *desc;
174 } mly_identifiers[] = {
175 {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
176 {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
177 {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX, "Mylex AcceleRAID 352"},
178 {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX, "Mylex AcceleRAID 170"},
179 {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX, "Mylex AcceleRAID 160"},
180 {0, 0, 0, 0, 0, 0}
183 /********************************************************************************
184 * Compare the provided PCI device with the list we support.
186 static int
187 mly_probe(device_t dev)
189 struct mly_ident *m;
191 debug_called(1);
193 for (m = mly_identifiers; m->vendor != 0; m++) {
194 if ((m->vendor == pci_get_vendor(dev)) &&
195 (m->device == pci_get_device(dev)) &&
196 ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
197 (m->subdevice == pci_get_subdevice(dev))))) {
199 device_set_desc(dev, m->desc);
200 return(BUS_PROBE_DEFAULT); /* allow room to be overridden */
203 return(ENXIO);
206 /********************************************************************************
207 * Initialise the controller and softc
209 static int
210 mly_attach(device_t dev)
212 struct mly_softc *sc = device_get_softc(dev);
213 int error;
215 debug_called(1);
217 sc->mly_dev = dev;
219 #ifdef MLY_DEBUG
220 if (device_get_unit(sc->mly_dev) == 0)
221 mly_softc0 = sc;
222 #endif
225 * Do PCI-specific initialisation.
227 if ((error = mly_pci_attach(sc)) != 0)
228 goto out;
230 callout_init(&sc->mly_periodic);
231 callout_init(&sc->mly_timeout);
234 * Initialise per-controller queues.
236 mly_initq_free(sc);
237 mly_initq_busy(sc);
238 mly_initq_complete(sc);
241 * Initialise command-completion task.
243 TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
245 /* disable interrupts before we start talking to the controller */
246 MLY_MASK_INTERRUPTS(sc);
249 * Wait for the controller to come ready, handshake with the firmware if required.
250 * This is typically only necessary on platforms where the controller BIOS does not
251 * run.
253 if ((error = mly_fwhandshake(sc)))
254 goto out;
257 * Allocate initial command buffers.
259 if ((error = mly_alloc_commands(sc)))
260 goto out;
263 * Obtain controller feature information
265 if ((error = mly_get_controllerinfo(sc)))
266 goto out;
269 * Reallocate command buffers now we know how many we want.
271 mly_release_commands(sc);
272 if ((error = mly_alloc_commands(sc)))
273 goto out;
276 * Get the current event counter for health purposes, populate the initial
277 * health status buffer.
279 if ((error = mly_get_eventstatus(sc)))
280 goto out;
283 * Enable memory-mailbox mode.
285 if ((error = mly_enable_mmbox(sc)))
286 goto out;
289 * Attach to CAM.
291 if ((error = mly_cam_attach(sc)))
292 goto out;
295 * Print a little information about the controller
297 mly_describe_controller(sc);
300 * Mark all attached devices for rescan.
302 mly_scan_devices(sc);
305 * Instigate the first status poll immediately. Rescan completions won't
306 * happen until interrupts are enabled, which should still be before
307 * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
309 mly_periodic((void *)sc);
312 * Create the control device.
314 dev_ops_add(&mly_ops, -1, device_get_unit(sc->mly_dev));
315 sc->mly_dev_t = make_dev(&mly_ops, device_get_unit(sc->mly_dev),
316 UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
317 "mly%d", device_get_unit(sc->mly_dev));
318 sc->mly_dev_t->si_drv1 = sc;
320 /* enable interrupts now */
321 MLY_UNMASK_INTERRUPTS(sc);
323 #ifdef MLY_DEBUG
324 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
325 (timeout_t *)mly_timeout, sc);
326 #endif
328 out:
329 if (error != 0)
330 mly_free(sc);
331 return(error);
334 /********************************************************************************
335 * Perform PCI-specific initialisation.
337 static int
338 mly_pci_attach(struct mly_softc *sc)
340 int i, error;
341 u_int32_t command;
343 debug_called(1);
345 /* assume failure is 'not configured' */
346 error = ENXIO;
349 * Verify that the adapter is correctly set up in PCI space.
351 * XXX we shouldn't do this; the PCI code should.
353 command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
354 command |= PCIM_CMD_BUSMASTEREN;
355 pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2);
356 command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
357 if (!(command & PCIM_CMD_BUSMASTEREN)) {
358 mly_printf(sc, "can't enable busmaster feature\n");
359 goto fail;
361 if ((command & PCIM_CMD_MEMEN) == 0) {
362 mly_printf(sc, "memory window not available\n");
363 goto fail;
367 * Allocate the PCI register window.
369 sc->mly_regs_rid = PCIR_BAR(0); /* first base address register */
370 if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
371 SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
372 mly_printf(sc, "can't allocate register window\n");
373 goto fail;
375 sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
376 sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
379 * Allocate and connect our interrupt.
381 sc->mly_irq_rid = 0;
382 if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
383 &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
384 mly_printf(sc, "can't allocate interrupt\n");
385 goto fail;
387 error = bus_setup_intr(sc->mly_dev, sc->mly_irq, 0,
388 mly_intr, sc, &sc->mly_intr, NULL);
389 if (error) {
390 mly_printf(sc, "can't set up interrupt\n");
391 goto fail;
394 /* assume failure is 'out of memory' */
395 error = ENOMEM;
398 * Allocate the parent bus DMA tag appropriate for our PCI interface.
400 * Note that all of these controllers are 64-bit capable.
402 if (bus_dma_tag_create(NULL, /* parent */
403 1, 0, /* alignment, boundary */
404 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
405 BUS_SPACE_MAXADDR, /* highaddr */
406 NULL, NULL, /* filter, filterarg */
407 MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
408 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
409 BUS_DMA_ALLOCNOW, /* flags */
410 &sc->mly_parent_dmat)) {
411 mly_printf(sc, "can't allocate parent DMA tag\n");
412 goto fail;
416 * Create DMA tag for mapping buffers into controller-addressable space.
418 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
419 1, 0, /* alignment, boundary */
420 BUS_SPACE_MAXADDR, /* lowaddr */
421 BUS_SPACE_MAXADDR, /* highaddr */
422 NULL, NULL, /* filter, filterarg */
423 MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
424 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
425 0, /* flags */
426 &sc->mly_buffer_dmat)) {
427 mly_printf(sc, "can't allocate buffer DMA tag\n");
428 goto fail;
432 * Initialise the DMA tag for command packets.
434 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
435 1, 0, /* alignment, boundary */
436 BUS_SPACE_MAXADDR, /* lowaddr */
437 BUS_SPACE_MAXADDR, /* highaddr */
438 NULL, NULL, /* filter, filterarg */
439 sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1, /* maxsize, nsegments */
440 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
441 BUS_DMA_ALLOCNOW, /* flags */
442 &sc->mly_packet_dmat)) {
443 mly_printf(sc, "can't allocate command packet DMA tag\n");
444 goto fail;
448 * Detect the hardware interface version
450 for (i = 0; mly_identifiers[i].vendor != 0; i++) {
451 if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
452 (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
453 sc->mly_hwif = mly_identifiers[i].hwif;
454 switch(sc->mly_hwif) {
455 case MLY_HWIF_I960RX:
456 debug(1, "set hardware up for i960RX");
457 sc->mly_doorbell_true = 0x00;
458 sc->mly_command_mailbox = MLY_I960RX_COMMAND_MAILBOX;
459 sc->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
460 sc->mly_idbr = MLY_I960RX_IDBR;
461 sc->mly_odbr = MLY_I960RX_ODBR;
462 sc->mly_error_status = MLY_I960RX_ERROR_STATUS;
463 sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
464 sc->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
465 break;
466 case MLY_HWIF_STRONGARM:
467 debug(1, "set hardware up for StrongARM");
468 sc->mly_doorbell_true = 0xff; /* doorbell 'true' is 0 */
469 sc->mly_command_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
470 sc->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
471 sc->mly_idbr = MLY_STRONGARM_IDBR;
472 sc->mly_odbr = MLY_STRONGARM_ODBR;
473 sc->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
474 sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
475 sc->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
476 break;
478 break;
483 * Create the scatter/gather mappings.
485 if ((error = mly_sg_map(sc)))
486 goto fail;
489 * Allocate and map the memory mailbox
491 if ((error = mly_mmbox_map(sc)))
492 goto fail;
494 error = 0;
496 fail:
497 return(error);
500 /********************************************************************************
501 * Shut the controller down and detach all our resources.
503 static int
504 mly_detach(device_t dev)
506 int error;
508 if ((error = mly_shutdown(dev)) != 0)
509 return(error);
511 mly_free(device_get_softc(dev));
512 return(0);
515 /********************************************************************************
516 * Bring the controller to a state where it can be safely left alone.
518 * Note that it should not be necessary to wait for any outstanding commands,
519 * as they should be completed prior to calling here.
521 * XXX this applies for I/O, but not status polls; we should beware of
522 * the case where a status command is running while we detach.
524 static int
525 mly_shutdown(device_t dev)
527 struct mly_softc *sc = device_get_softc(dev);
529 debug_called(1);
531 if (sc->mly_state & MLY_STATE_OPEN)
532 return(EBUSY);
534 /* kill the periodic event */
535 callout_stop(&sc->mly_periodic);
537 /* flush controller */
538 mly_printf(sc, "flushing cache...");
539 kprintf("%s\n", mly_flush(sc) ? "failed" : "done");
541 MLY_MASK_INTERRUPTS(sc);
543 return(0);
546 /*******************************************************************************
547 * Take an interrupt, or be poked by other code to look for interrupt-worthy
548 * status.
550 static void
551 mly_intr(void *arg)
553 struct mly_softc *sc = (struct mly_softc *)arg;
555 debug_called(2);
557 mly_done(sc);
560 /********************************************************************************
561 ********************************************************************************
562 Bus-dependant Resource Management
563 ********************************************************************************
564 ********************************************************************************/
566 /********************************************************************************
567 * Allocate memory for the scatter/gather tables
569 static int
570 mly_sg_map(struct mly_softc *sc)
572 size_t segsize;
574 debug_called(1);
577 * Create a single tag describing a region large enough to hold all of
578 * the s/g lists we will need.
580 segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
581 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
582 1, 0, /* alignment,boundary */
583 BUS_SPACE_MAXADDR, /* lowaddr */
584 BUS_SPACE_MAXADDR, /* highaddr */
585 NULL, NULL, /* filter, filterarg */
586 segsize, 1, /* maxsize, nsegments */
587 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
588 BUS_DMA_ALLOCNOW, /* flags */
589 &sc->mly_sg_dmat)) {
590 mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
591 return(ENOMEM);
595 * Allocate enough s/g maps for all commands and permanently map them into
596 * controller-visible space.
598 * XXX this assumes we can get enough space for all the s/g maps in one
599 * contiguous slab.
601 if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
602 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
603 mly_printf(sc, "can't allocate s/g table\n");
604 return(ENOMEM);
606 if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
607 segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
608 return (ENOMEM);
609 return(0);
612 /********************************************************************************
613 * Save the physical address of the base of the s/g table.
615 static void
616 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
618 struct mly_softc *sc = (struct mly_softc *)arg;
620 debug_called(1);
622 /* save base of s/g table's address in bus space */
623 sc->mly_sg_busaddr = segs->ds_addr;
626 /********************************************************************************
627 * Allocate memory for the memory-mailbox interface
629 static int
630 mly_mmbox_map(struct mly_softc *sc)
634 * Create a DMA tag for a single contiguous region large enough for the
635 * memory mailbox structure.
637 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
638 1, 0, /* alignment,boundary */
639 BUS_SPACE_MAXADDR, /* lowaddr */
640 BUS_SPACE_MAXADDR, /* highaddr */
641 NULL, NULL, /* filter, filterarg */
642 sizeof(struct mly_mmbox), 1, /* maxsize, nsegments */
643 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
644 BUS_DMA_ALLOCNOW, /* flags */
645 &sc->mly_mmbox_dmat)) {
646 mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
647 return(ENOMEM);
651 * Allocate the buffer
653 if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
654 mly_printf(sc, "can't allocate memory mailbox\n");
655 return(ENOMEM);
657 if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
658 sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
659 BUS_DMA_NOWAIT) != 0)
660 return (ENOMEM);
661 bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
662 return(0);
666 /********************************************************************************
667 * Save the physical address of the memory mailbox
669 static void
670 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
672 struct mly_softc *sc = (struct mly_softc *)arg;
674 debug_called(1);
676 sc->mly_mmbox_busaddr = segs->ds_addr;
679 /********************************************************************************
680 * Free all of the resources associated with (sc)
682 * Should not be called if the controller is active.
684 static void
685 mly_free(struct mly_softc *sc)
688 debug_called(1);
690 /* Remove the management device */
691 destroy_dev(sc->mly_dev_t);
693 /* detach from CAM */
694 mly_cam_detach(sc);
696 /* release command memory */
697 mly_release_commands(sc);
699 /* throw away the controllerinfo structure */
700 if (sc->mly_controllerinfo != NULL)
701 kfree(sc->mly_controllerinfo, M_DEVBUF);
703 /* throw away the controllerparam structure */
704 if (sc->mly_controllerparam != NULL)
705 kfree(sc->mly_controllerparam, M_DEVBUF);
707 /* destroy data-transfer DMA tag */
708 if (sc->mly_buffer_dmat)
709 bus_dma_tag_destroy(sc->mly_buffer_dmat);
711 /* free and destroy DMA memory and tag for s/g lists */
712 if (sc->mly_sg_table) {
713 bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
714 bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
716 if (sc->mly_sg_dmat)
717 bus_dma_tag_destroy(sc->mly_sg_dmat);
719 /* free and destroy DMA memory and tag for memory mailbox */
720 if (sc->mly_mmbox) {
721 bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
722 bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
724 if (sc->mly_mmbox_dmat)
725 bus_dma_tag_destroy(sc->mly_mmbox_dmat);
727 /* disconnect the interrupt handler */
728 if (sc->mly_intr)
729 bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
730 if (sc->mly_irq != NULL)
731 bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
733 /* destroy the parent DMA tag */
734 if (sc->mly_parent_dmat)
735 bus_dma_tag_destroy(sc->mly_parent_dmat);
737 /* release the register window mapping */
738 if (sc->mly_regs_resource != NULL)
739 bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
742 /********************************************************************************
743 ********************************************************************************
744 Command Wrappers
745 ********************************************************************************
746 ********************************************************************************/
748 /********************************************************************************
749 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
751 static int
752 mly_get_controllerinfo(struct mly_softc *sc)
754 struct mly_command_ioctl mci;
755 u_int8_t status;
756 int error;
758 debug_called(1);
760 if (sc->mly_controllerinfo != NULL)
761 kfree(sc->mly_controllerinfo, M_DEVBUF);
763 /* build the getcontrollerinfo ioctl and send it */
764 bzero(&mci, sizeof(mci));
765 sc->mly_controllerinfo = NULL;
766 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
767 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
768 &status, NULL, NULL)))
769 return(error);
770 if (status != 0)
771 return(EIO);
773 if (sc->mly_controllerparam != NULL)
774 kfree(sc->mly_controllerparam, M_DEVBUF);
776 /* build the getcontrollerparameter ioctl and send it */
777 bzero(&mci, sizeof(mci));
778 sc->mly_controllerparam = NULL;
779 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
780 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
781 &status, NULL, NULL)))
782 return(error);
783 if (status != 0)
784 return(EIO);
786 return(0);
789 /********************************************************************************
790 * Schedule all possible devices for a rescan.
793 static void
794 mly_scan_devices(struct mly_softc *sc)
796 int bus, target;
798 debug_called(1);
801 * Clear any previous BTL information.
803 bzero(&sc->mly_btl, sizeof(sc->mly_btl));
806 * Mark all devices as requiring a rescan, and let the next
807 * periodic scan collect them.
809 for (bus = 0; bus < sc->mly_cam_channels; bus++)
810 if (MLY_BUS_IS_VALID(sc, bus))
811 for (target = 0; target < MLY_MAX_TARGETS; target++)
812 sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
816 /********************************************************************************
817 * Rescan a device, possibly as a consequence of getting an event which suggests
818 * that it may have changed.
820 * If we suffer resource starvation, we can abandon the rescan as we'll be
821 * retried.
823 static void
824 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
826 struct mly_command *mc;
827 struct mly_command_ioctl *mci;
829 debug_called(1);
831 /* check that this bus is valid */
832 if (!MLY_BUS_IS_VALID(sc, bus))
833 return;
835 /* get a command */
836 if (mly_alloc_command(sc, &mc))
837 return;
839 /* set up the data buffer */
840 mc->mc_data = kmalloc(sizeof(union mly_devinfo), M_DEVBUF, M_INTWAIT | M_ZERO);
841 mc->mc_flags |= MLY_CMD_DATAIN;
842 mc->mc_complete = mly_complete_rescan;
845 * Build the ioctl.
847 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
848 mci->opcode = MDACMD_IOCTL;
849 mci->addr.phys.controller = 0;
850 mci->timeout.value = 30;
851 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
852 if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
853 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
854 mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
855 mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
856 debug(1, "logical device %d", mci->addr.log.logdev);
857 } else {
858 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
859 mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
860 mci->addr.phys.lun = 0;
861 mci->addr.phys.target = target;
862 mci->addr.phys.channel = bus;
863 debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
867 * Dispatch the command. If we successfully send the command, clear the rescan
868 * bit.
870 if (mly_start(mc) != 0) {
871 mly_release_command(mc);
872 } else {
873 sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN; /* success */
877 /********************************************************************************
878 * Handle the completion of a rescan operation
880 static void
881 mly_complete_rescan(struct mly_command *mc)
883 struct mly_softc *sc = mc->mc_sc;
884 struct mly_ioctl_getlogdevinfovalid *ldi;
885 struct mly_ioctl_getphysdevinfovalid *pdi;
886 struct mly_command_ioctl *mci;
887 struct mly_btl btl, *btlp;
888 int bus, target, rescan;
890 debug_called(1);
893 * Recover the bus and target from the command. We need these even in
894 * the case where we don't have a useful response.
896 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
897 if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
898 bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
899 target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
900 } else {
901 bus = mci->addr.phys.channel;
902 target = mci->addr.phys.target;
904 /* XXX validate bus/target? */
906 /* the default result is 'no device' */
907 bzero(&btl, sizeof(btl));
909 /* if the rescan completed OK, we have possibly-new BTL data */
910 if (mc->mc_status == 0) {
911 if (mc->mc_length == sizeof(*ldi)) {
912 ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
913 if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
914 (MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
915 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
916 bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
917 MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
918 /* XXX what can we do about this? */
920 btl.mb_flags = MLY_BTL_LOGICAL;
921 btl.mb_type = ldi->raid_level;
922 btl.mb_state = ldi->state;
923 debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
924 mly_describe_code(mly_table_device_type, ldi->raid_level),
925 mly_describe_code(mly_table_device_state, ldi->state));
926 } else if (mc->mc_length == sizeof(*pdi)) {
927 pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
928 if ((pdi->channel != bus) || (pdi->target != target)) {
929 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
930 bus, target, pdi->channel, pdi->target);
931 /* XXX what can we do about this? */
933 btl.mb_flags = MLY_BTL_PHYSICAL;
934 btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
935 btl.mb_state = pdi->state;
936 btl.mb_speed = pdi->speed;
937 btl.mb_width = pdi->width;
938 if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
939 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
940 debug(1, "BTL rescan for %d:%d returns %s", bus, target,
941 mly_describe_code(mly_table_device_state, pdi->state));
942 } else {
943 mly_printf(sc, "BTL rescan result invalid\n");
947 kfree(mc->mc_data, M_DEVBUF);
948 mly_release_command(mc);
951 * Decide whether we need to rescan the device.
953 rescan = 0;
955 /* device type changes (usually between 'nothing' and 'something') */
956 btlp = &sc->mly_btl[bus][target];
957 if (btl.mb_flags != btlp->mb_flags) {
958 debug(1, "flags changed, rescanning");
959 rescan = 1;
962 /* XXX other reasons? */
965 * Update BTL information.
967 *btlp = btl;
970 * Perform CAM rescan if required.
972 if (rescan)
973 mly_cam_rescan_btl(sc, bus, target);
976 /********************************************************************************
977 * Get the current health status and set the 'next event' counter to suit.
979 static int
980 mly_get_eventstatus(struct mly_softc *sc)
982 struct mly_command_ioctl mci;
983 struct mly_health_status *mh;
984 u_int8_t status;
985 int error;
987 /* build the gethealthstatus ioctl and send it */
988 bzero(&mci, sizeof(mci));
989 mh = NULL;
990 mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
992 if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
993 return(error);
994 if (status != 0)
995 return(EIO);
997 /* get the event counter */
998 sc->mly_event_change = mh->change_counter;
999 sc->mly_event_waiting = mh->next_event;
1000 sc->mly_event_counter = mh->next_event;
1002 /* save the health status into the memory mailbox */
1003 bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
1005 debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1007 kfree(mh, M_DEVBUF);
1008 return(0);
1011 /********************************************************************************
1012 * Enable the memory mailbox mode.
1014 static int
1015 mly_enable_mmbox(struct mly_softc *sc)
1017 struct mly_command_ioctl mci;
1018 u_int8_t *sp, status;
1019 int error;
1021 debug_called(1);
1023 /* build the ioctl and send it */
1024 bzero(&mci, sizeof(mci));
1025 mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1026 /* set buffer addresses */
1027 mci.param.setmemorymailbox.command_mailbox_physaddr =
1028 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1029 mci.param.setmemorymailbox.status_mailbox_physaddr =
1030 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1031 mci.param.setmemorymailbox.health_buffer_physaddr =
1032 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1034 /* set buffer sizes - abuse of data_size field is revolting */
1035 sp = (u_int8_t *)&mci.data_size;
1036 sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1037 sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1038 mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1040 debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1041 mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1042 mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1043 mci.param.setmemorymailbox.health_buffer_physaddr,
1044 mci.param.setmemorymailbox.health_buffer_size);
1046 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1047 return(error);
1048 if (status != 0)
1049 return(EIO);
1050 sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1051 debug(1, "memory mailbox active");
1052 return(0);
1055 /********************************************************************************
1056 * Flush all pending I/O from the controller.
1058 static int
1059 mly_flush(struct mly_softc *sc)
1061 struct mly_command_ioctl mci;
1062 u_int8_t status;
1063 int error;
1065 debug_called(1);
1067 /* build the ioctl */
1068 bzero(&mci, sizeof(mci));
1069 mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1070 mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1072 /* pass it off to the controller */
1073 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1074 return(error);
1076 return((status == 0) ? 0 : EIO);
1079 /********************************************************************************
1080 * Perform an ioctl command.
1082 * If (data) is not NULL, the command requires data transfer. If (*data) is NULL
1083 * the command requires data transfer from the controller, and we will allocate
1084 * a buffer for it. If (*data) is not NULL, the command requires data transfer
1085 * to the controller.
1087 * XXX passing in the whole ioctl structure is ugly. Better ideas?
1089 * XXX we don't even try to handle the case where datasize > 4k. We should.
1091 static int
1092 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1093 u_int8_t *status, void *sense_buffer, size_t *sense_length)
1095 struct mly_command *mc;
1096 struct mly_command_ioctl *mci;
1097 int error;
1099 debug_called(1);
1101 mc = NULL;
1102 if (mly_alloc_command(sc, &mc)) {
1103 error = ENOMEM;
1104 goto out;
1107 /* copy the ioctl structure, but save some important fields and then fixup */
1108 mci = &mc->mc_packet->ioctl;
1109 ioctl->sense_buffer_address = mci->sense_buffer_address;
1110 ioctl->maximum_sense_size = mci->maximum_sense_size;
1111 *mci = *ioctl;
1112 mci->opcode = MDACMD_IOCTL;
1113 mci->timeout.value = 30;
1114 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1116 /* handle the data buffer */
1117 if (data != NULL) {
1118 if (*data == NULL) {
1119 /* allocate data buffer */
1120 mc->mc_data = kmalloc(datasize, M_DEVBUF, M_INTWAIT);
1121 mc->mc_flags |= MLY_CMD_DATAIN;
1122 } else {
1123 mc->mc_data = *data;
1124 mc->mc_flags |= MLY_CMD_DATAOUT;
1126 mc->mc_length = datasize;
1127 mc->mc_packet->generic.data_size = datasize;
1130 /* run the command */
1131 if ((error = mly_immediate_command(mc)))
1132 goto out;
1134 /* clean up and return any data */
1135 *status = mc->mc_status;
1136 if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1137 bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1138 *sense_length = mc->mc_sense;
1139 goto out;
1142 /* should we return a data pointer? */
1143 if ((data != NULL) && (*data == NULL))
1144 *data = mc->mc_data;
1146 /* command completed OK */
1147 error = 0;
1149 out:
1150 if (mc != NULL) {
1151 /* do we need to free a data buffer we allocated? */
1152 if (error && (mc->mc_data != NULL) && (*data == NULL))
1153 kfree(mc->mc_data, M_DEVBUF);
1154 mly_release_command(mc);
1156 return(error);
1159 /********************************************************************************
1160 * Check for event(s) outstanding in the controller.
1162 static void
1163 mly_check_event(struct mly_softc *sc)
1167 * The controller may have updated the health status information,
1168 * so check for it here. Note that the counters are all in host memory,
1169 * so this check is very cheap. Also note that we depend on checking on
1170 * completion
1172 if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1173 sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1174 debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1175 sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1176 sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1178 /* wake up anyone that might be interested in this */
1179 wakeup(&sc->mly_event_change);
1181 if (sc->mly_event_counter != sc->mly_event_waiting)
1182 mly_fetch_event(sc);
1185 /********************************************************************************
1186 * Fetch one event from the controller.
1188 * If we fail due to resource starvation, we'll be retried the next time a
1189 * command completes.
1191 static void
1192 mly_fetch_event(struct mly_softc *sc)
1194 struct mly_command *mc;
1195 struct mly_command_ioctl *mci;
1196 u_int32_t event;
1198 debug_called(1);
1200 /* get a command */
1201 if (mly_alloc_command(sc, &mc))
1202 return;
1204 /* set up the data buffer */
1205 mc->mc_data = kmalloc(sizeof(struct mly_event), M_DEVBUF, M_INTWAIT|M_ZERO);
1206 mc->mc_length = sizeof(struct mly_event);
1207 mc->mc_flags |= MLY_CMD_DATAIN;
1208 mc->mc_complete = mly_complete_event;
1211 * Get an event number to fetch. It's possible that we've raced with another
1212 * context for the last event, in which case there will be no more events.
1214 crit_enter();
1215 if (sc->mly_event_counter == sc->mly_event_waiting) {
1216 mly_release_command(mc);
1217 crit_exit();
1218 return;
1220 event = sc->mly_event_counter++;
1221 crit_exit();
1224 * Build the ioctl.
1226 * At this point we are committed to sending this request, as it
1227 * will be the only one constructed for this particular event number.
1229 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1230 mci->opcode = MDACMD_IOCTL;
1231 mci->data_size = sizeof(struct mly_event);
1232 mci->addr.phys.lun = (event >> 16) & 0xff;
1233 mci->addr.phys.target = (event >> 24) & 0xff;
1234 mci->addr.phys.channel = 0;
1235 mci->addr.phys.controller = 0;
1236 mci->timeout.value = 30;
1237 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1238 mci->sub_ioctl = MDACIOCTL_GETEVENT;
1239 mci->param.getevent.sequence_number_low = event & 0xffff;
1241 debug(1, "fetch event %u", event);
1244 * Submit the command.
1246 * Note that failure of mly_start() will result in this event never being
1247 * fetched.
1249 if (mly_start(mc) != 0) {
1250 mly_printf(sc, "couldn't fetch event %u\n", event);
1251 mly_release_command(mc);
1255 /********************************************************************************
1256 * Handle the completion of an event poll.
1258 static void
1259 mly_complete_event(struct mly_command *mc)
1261 struct mly_softc *sc = mc->mc_sc;
1262 struct mly_event *me = (struct mly_event *)mc->mc_data;
1264 debug_called(1);
1267 * If the event was successfully fetched, process it.
1269 if (mc->mc_status == SCSI_STATUS_OK) {
1270 mly_process_event(sc, me);
1271 kfree(me, M_DEVBUF);
1273 mly_release_command(mc);
1276 * Check for another event.
1278 mly_check_event(sc);
1281 /********************************************************************************
1282 * Process a controller event.
1284 static void
1285 mly_process_event(struct mly_softc *sc, struct mly_event *me)
1287 struct scsi_sense_data *ssd = (struct scsi_sense_data *)&me->sense[0];
1288 char *fp, *tp;
1289 int bus, target, event, class, action;
1292 * Errors can be reported using vendor-unique sense data. In this case, the
1293 * event code will be 0x1c (Request sense data present), the sense key will
1294 * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1295 * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1296 * and low seven bits of the ASC (low seven bits of the high byte).
1298 if ((me->code == 0x1c) &&
1299 ((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1300 (ssd->add_sense_code & 0x80)) {
1301 event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1302 } else {
1303 event = me->code;
1306 /* look up event, get codes */
1307 fp = mly_describe_code(mly_table_event, event);
1309 debug(1, "Event %d code 0x%x", me->sequence_number, me->code);
1311 /* quiet event? */
1312 class = fp[0];
1313 if (isupper(class) && bootverbose)
1314 class = tolower(class);
1316 /* get action code, text string */
1317 action = fp[1];
1318 tp = &fp[2];
1321 * Print some information about the event.
1323 * This code uses a table derived from the corresponding portion of the Linux
1324 * driver, and thus the parser is very similar.
1326 switch(class) {
1327 case 'p': /* error on physical device */
1328 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1329 if (action == 'r')
1330 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1331 break;
1332 case 'l': /* error on logical unit */
1333 case 'm': /* message about logical unit */
1334 bus = MLY_LOGDEV_BUS(sc, me->lun);
1335 target = MLY_LOGDEV_TARGET(sc, me->lun);
1336 mly_name_device(sc, bus, target);
1337 mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1338 if (action == 'r')
1339 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1340 break;
1341 break;
1342 case 's': /* report of sense data */
1343 if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1344 (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1345 (ssd->add_sense_code == 0x04) &&
1346 ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1347 break; /* ignore NO_SENSE or NOT_READY in one case */
1349 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1350 mly_printf(sc, " sense key %d asc %02x ascq %02x\n",
1351 ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1352 mly_printf(sc, " info %4D csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1353 if (action == 'r')
1354 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1355 break;
1356 case 'e':
1357 mly_printf(sc, tp, me->target, me->lun);
1358 kprintf("\n");
1359 break;
1360 case 'c':
1361 mly_printf(sc, "controller %s\n", tp);
1362 break;
1363 case '?':
1364 mly_printf(sc, "%s - %d\n", tp, me->code);
1365 break;
1366 default: /* probably a 'noisy' event being ignored */
1367 break;
1371 /********************************************************************************
1372 * Perform periodic activities.
1374 static void
1375 mly_periodic(void *data)
1377 struct mly_softc *sc = (struct mly_softc *)data;
1378 int bus, target;
1380 debug_called(2);
1383 * Scan devices.
1385 for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1386 if (MLY_BUS_IS_VALID(sc, bus)) {
1387 for (target = 0; target < MLY_MAX_TARGETS; target++) {
1389 /* ignore the controller in this scan */
1390 if (target == sc->mly_controllerparam->initiator_id)
1391 continue;
1393 /* perform device rescan? */
1394 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1395 mly_rescan_btl(sc, bus, target);
1400 /* check for controller events */
1401 mly_check_event(sc);
1403 /* reschedule ourselves */
1404 callout_reset(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz, mly_periodic, sc);
1407 /********************************************************************************
1408 ********************************************************************************
1409 Command Processing
1410 ********************************************************************************
1411 ********************************************************************************/
1413 /********************************************************************************
1414 * Run a command and wait for it to complete.
1417 static int
1418 mly_immediate_command(struct mly_command *mc)
1420 struct mly_softc *sc = mc->mc_sc;
1421 int error;
1423 debug_called(1);
1425 /* spinning at splcam is ugly, but we're only used during controller init */
1426 crit_enter();
1427 if ((error = mly_start(mc))) {
1428 crit_exit();
1429 return(error);
1432 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1433 /* sleep on the command */
1434 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1435 tsleep(mc, 0, "mlywait", 0);
1437 } else {
1438 /* spin and collect status while we do */
1439 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1440 mly_done(mc->mc_sc);
1443 crit_exit();
1444 return(0);
1447 /********************************************************************************
1448 * Deliver a command to the controller.
1450 * XXX it would be good to just queue commands that we can't submit immediately
1451 * and send them later, but we probably want a wrapper for that so that
1452 * we don't hang on a failed submission for an immediate command.
1454 static int
1455 mly_start(struct mly_command *mc)
1457 struct mly_softc *sc = mc->mc_sc;
1458 union mly_command_packet *pkt;
1460 debug_called(2);
1463 * Set the command up for delivery to the controller.
1465 mly_map_command(mc);
1466 mc->mc_packet->generic.command_id = mc->mc_slot;
1468 #ifdef MLY_DEBUG
1469 mc->mc_timestamp = time_second;
1470 #endif
1472 crit_enter();
1475 * Do we have to use the hardware mailbox?
1477 if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1479 * Check to see if the controller is ready for us.
1481 if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1482 crit_exit();
1483 return(EBUSY);
1485 mc->mc_flags |= MLY_CMD_BUSY;
1488 * It's ready, send the command.
1490 MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1491 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1493 } else { /* use memory-mailbox mode */
1495 pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1497 /* check to see if the next index is free yet */
1498 if (pkt->mmbox.flag != 0) {
1499 crit_exit();
1500 return(EBUSY);
1502 mc->mc_flags |= MLY_CMD_BUSY;
1504 /* copy in new command */
1505 bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1506 /* barrier to ensure completion of previous write before we write the flag */
1507 bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1508 BUS_SPACE_BARRIER_WRITE);
1509 /* copy flag last */
1510 pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1511 /* barrier to ensure completion of previous write before we notify the controller */
1512 bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1513 BUS_SPACE_BARRIER_WRITE);
1515 /* signal controller, update index */
1516 MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1517 sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1520 mly_enqueue_busy(mc);
1521 crit_exit();
1522 return(0);
1525 /********************************************************************************
1526 * Pick up command status from the controller, schedule a completion event
1528 static void
1529 mly_done(struct mly_softc *sc)
1531 struct mly_command *mc;
1532 union mly_status_packet *sp;
1533 u_int16_t slot;
1534 int worked;
1536 crit_enter();
1537 worked = 0;
1539 /* pick up hardware-mailbox commands */
1540 if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1541 slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1542 if (slot < MLY_SLOT_MAX) {
1543 mc = &sc->mly_command[slot - MLY_SLOT_START];
1544 mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1545 mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1546 mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1547 mly_remove_busy(mc);
1548 mc->mc_flags &= ~MLY_CMD_BUSY;
1549 mly_enqueue_complete(mc);
1550 worked = 1;
1551 } else {
1552 /* slot 0xffff may mean "extremely bogus command" */
1553 mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1555 /* unconditionally acknowledge status */
1556 MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1557 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1560 /* pick up memory-mailbox commands */
1561 if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1562 for (;;) {
1563 sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1565 /* check for more status */
1566 if (sp->mmbox.flag == 0)
1567 break;
1569 /* get slot number */
1570 slot = sp->status.command_id;
1571 if (slot < MLY_SLOT_MAX) {
1572 mc = &sc->mly_command[slot - MLY_SLOT_START];
1573 mc->mc_status = sp->status.status;
1574 mc->mc_sense = sp->status.sense_length;
1575 mc->mc_resid = sp->status.residue;
1576 mly_remove_busy(mc);
1577 mc->mc_flags &= ~MLY_CMD_BUSY;
1578 mly_enqueue_complete(mc);
1579 worked = 1;
1580 } else {
1581 /* slot 0xffff may mean "extremely bogus command" */
1582 mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1583 slot, sc->mly_mmbox_status_index);
1586 /* clear and move to next index */
1587 sp->mmbox.flag = 0;
1588 sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1590 /* acknowledge that we have collected status value(s) */
1591 MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1594 crit_exit();
1595 if (worked) {
1596 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1597 taskqueue_enqueue(taskqueue_swi, &sc->mly_task_complete);
1598 else
1599 mly_complete(sc, 0);
1603 /********************************************************************************
1604 * Process completed commands
1606 static void
1607 mly_complete(void *context, int pending)
1609 struct mly_softc *sc = (struct mly_softc *)context;
1610 struct mly_command *mc;
1611 void (* mc_complete)(struct mly_command *mc);
1614 debug_called(2);
1617 * Spin pulling commands off the completed queue and processing them.
1619 while ((mc = mly_dequeue_complete(sc)) != NULL) {
1622 * Free controller resources, mark command complete.
1624 * Note that as soon as we mark the command complete, it may be freed
1625 * out from under us, so we need to save the mc_complete field in
1626 * order to later avoid dereferencing mc. (We would not expect to
1627 * have a polling/sleeping consumer with mc_complete != NULL).
1629 mly_unmap_command(mc);
1630 mc_complete = mc->mc_complete;
1631 mc->mc_flags |= MLY_CMD_COMPLETE;
1634 * Call completion handler or wake up sleeping consumer.
1636 if (mc_complete != NULL) {
1637 mc_complete(mc);
1638 } else {
1639 wakeup(mc);
1644 * XXX if we are deferring commands due to controller-busy status, we should
1645 * retry submitting them here.
1649 /********************************************************************************
1650 ********************************************************************************
1651 Command Buffer Management
1652 ********************************************************************************
1653 ********************************************************************************/
1655 /********************************************************************************
1656 * Allocate a command.
1658 static int
1659 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1661 struct mly_command *mc;
1663 debug_called(3);
1665 if ((mc = mly_dequeue_free(sc)) == NULL)
1666 return(ENOMEM);
1668 *mcp = mc;
1669 return(0);
1672 /********************************************************************************
1673 * Release a command back to the freelist.
1675 static void
1676 mly_release_command(struct mly_command *mc)
1678 debug_called(3);
1681 * Fill in parts of the command that may cause confusion if
1682 * a consumer doesn't when we are later allocated.
1684 mc->mc_data = NULL;
1685 mc->mc_flags = 0;
1686 mc->mc_complete = NULL;
1687 mc->mc_private = NULL;
1690 * By default, we set up to overwrite the command packet with
1691 * sense information.
1693 mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1694 mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1696 mly_enqueue_free(mc);
1699 /********************************************************************************
1700 * Map helper for command allocation.
1702 static void
1703 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1705 struct mly_softc *sc = (struct mly_softc *)arg;
1707 debug_called(1);
1709 sc->mly_packetphys = segs[0].ds_addr;
1712 /********************************************************************************
1713 * Allocate and initialise command and packet structures.
1715 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1716 * allocation to that number. If we don't yet know how many commands the
1717 * controller supports, allocate a very small set (suitable for initialisation
1718 * purposes only).
1720 static int
1721 mly_alloc_commands(struct mly_softc *sc)
1723 struct mly_command *mc;
1724 int i, ncmd;
1726 if (sc->mly_controllerinfo == NULL) {
1727 ncmd = 4;
1728 } else {
1729 ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1733 * Allocate enough space for all the command packets in one chunk and
1734 * map them permanently into controller-visible space.
1736 if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1737 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1738 return(ENOMEM);
1740 if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1741 ncmd * sizeof(union mly_command_packet),
1742 mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1743 return (ENOMEM);
1745 for (i = 0; i < ncmd; i++) {
1746 mc = &sc->mly_command[i];
1747 bzero(mc, sizeof(*mc));
1748 mc->mc_sc = sc;
1749 mc->mc_slot = MLY_SLOT_START + i;
1750 mc->mc_packet = sc->mly_packet + i;
1751 mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1752 if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1753 mly_release_command(mc);
1755 return(0);
1758 /********************************************************************************
1759 * Free all the storage held by commands.
1761 * Must be called with all commands on the free list.
1763 static void
1764 mly_release_commands(struct mly_softc *sc)
1766 struct mly_command *mc;
1768 /* throw away command buffer DMA maps */
1769 while (mly_alloc_command(sc, &mc) == 0)
1770 bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1772 /* release the packet storage */
1773 if (sc->mly_packet != NULL) {
1774 bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1775 bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1776 sc->mly_packet = NULL;
1781 /********************************************************************************
1782 * Command-mapping helper function - populate this command's s/g table
1783 * with the s/g entries for its data.
1785 static void
1786 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1788 struct mly_command *mc = (struct mly_command *)arg;
1789 struct mly_softc *sc = mc->mc_sc;
1790 struct mly_command_generic *gen = &(mc->mc_packet->generic);
1791 struct mly_sg_entry *sg;
1792 int i, tabofs;
1794 debug_called(2);
1796 /* can we use the transfer structure directly? */
1797 if (nseg <= 2) {
1798 sg = &gen->transfer.direct.sg[0];
1799 gen->command_control.extended_sg_table = 0;
1800 } else {
1801 tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1802 sg = sc->mly_sg_table + tabofs;
1803 gen->transfer.indirect.entries[0] = nseg;
1804 gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1805 gen->command_control.extended_sg_table = 1;
1808 /* copy the s/g table */
1809 for (i = 0; i < nseg; i++) {
1810 sg[i].physaddr = segs[i].ds_addr;
1811 sg[i].length = segs[i].ds_len;
1816 #if 0
1817 /********************************************************************************
1818 * Command-mapping helper function - save the cdb's physical address.
1820 * We don't support 'large' SCSI commands at this time, so this is unused.
1822 static void
1823 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1825 struct mly_command *mc = (struct mly_command *)arg;
1827 debug_called(2);
1829 /* XXX can we safely assume that a CDB will never cross a page boundary? */
1830 if ((segs[0].ds_addr % PAGE_SIZE) >
1831 ((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1832 panic("cdb crosses page boundary");
1834 /* fix up fields in the command packet */
1835 mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1837 #endif
1839 /********************************************************************************
1840 * Map a command into controller-visible space
1842 static void
1843 mly_map_command(struct mly_command *mc)
1845 struct mly_softc *sc = mc->mc_sc;
1847 debug_called(2);
1849 /* don't map more than once */
1850 if (mc->mc_flags & MLY_CMD_MAPPED)
1851 return;
1853 /* does the command have a data buffer? */
1854 if (mc->mc_data != NULL) {
1855 bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length,
1856 mly_map_command_sg, mc, 0);
1858 if (mc->mc_flags & MLY_CMD_DATAIN)
1859 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1860 if (mc->mc_flags & MLY_CMD_DATAOUT)
1861 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1863 mc->mc_flags |= MLY_CMD_MAPPED;
1866 /********************************************************************************
1867 * Unmap a command from controller-visible space
1869 static void
1870 mly_unmap_command(struct mly_command *mc)
1872 struct mly_softc *sc = mc->mc_sc;
1874 debug_called(2);
1876 if (!(mc->mc_flags & MLY_CMD_MAPPED))
1877 return;
1879 /* does the command have a data buffer? */
1880 if (mc->mc_data != NULL) {
1881 if (mc->mc_flags & MLY_CMD_DATAIN)
1882 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1883 if (mc->mc_flags & MLY_CMD_DATAOUT)
1884 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1886 bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1888 mc->mc_flags &= ~MLY_CMD_MAPPED;
1892 /********************************************************************************
1893 ********************************************************************************
1894 CAM interface
1895 ********************************************************************************
1896 ********************************************************************************/
1898 /********************************************************************************
1899 * Attach the physical and virtual SCSI busses to CAM.
1901 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1902 * than the highest physical bus. Physical busses are only registered if
1903 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1905 * When we refer to a "bus", we are referring to the bus number registered with
1906 * the SIM, wheras a "channel" is a channel number given to the adapter. In order
1907 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1908 * interchangeably.
1910 static int
1911 mly_cam_attach(struct mly_softc *sc)
1913 struct cam_devq *devq;
1914 int chn, i;
1916 debug_called(1);
1919 * Allocate a devq for all our channels combined.
1921 if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1922 mly_printf(sc, "can't allocate CAM SIM queue\n");
1923 return(ENOMEM);
1927 * If physical channel registration has been requested, register these first.
1928 * Note that we enable tagged command queueing for physical channels.
1930 if (ktestenv("hw.mly.register_physical_channels")) {
1931 chn = 0;
1932 for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1934 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1935 device_get_unit(sc->mly_dev),
1936 &sim_mplock,
1937 sc->mly_controllerinfo->maximum_parallel_commands,
1938 1, devq)) == NULL) {
1939 return(ENOMEM);
1941 if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1942 mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1943 return(ENXIO);
1945 debug(1, "registered physical channel %d", chn);
1950 * Register our virtual channels, with bus numbers matching channel numbers.
1952 chn = sc->mly_controllerinfo->physical_channels_present;
1953 for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1954 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1955 device_get_unit(sc->mly_dev),
1956 &sim_mplock,
1957 sc->mly_controllerinfo->maximum_parallel_commands,
1958 0, devq)) == NULL) {
1959 return(ENOMEM);
1961 if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1962 mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1963 return(ENXIO);
1965 debug(1, "registered virtual channel %d", chn);
1969 * This is the total number of channels that (might have been) registered with
1970 * CAM. Some may not have been; check the mly_cam_sim array to be certain.
1972 sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1973 sc->mly_controllerinfo->virtual_channels_present;
1975 return(0);
1978 /********************************************************************************
1979 * Detach from CAM
1981 static void
1982 mly_cam_detach(struct mly_softc *sc)
1984 int i;
1986 debug_called(1);
1988 for (i = 0; i < sc->mly_cam_channels; i++) {
1989 if (sc->mly_cam_sim[i] != NULL) {
1990 xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1991 cam_sim_free(sc->mly_cam_sim[i]);
1994 if (sc->mly_cam_devq != NULL)
1995 cam_simq_release(sc->mly_cam_devq);
1998 /************************************************************************
1999 * Rescan a device.
2001 static void
2002 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2004 union ccb *ccb;
2006 debug_called(1);
2008 ccb = kmalloc(sizeof(union ccb), M_TEMP, M_WAITOK | M_ZERO);
2010 if (xpt_create_path(&sc->mly_cam_path, xpt_periph,
2011 cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2012 mly_printf(sc, "rescan failed (can't create path)\n");
2013 kfree(ccb, M_TEMP);
2014 return;
2016 xpt_setup_ccb(&ccb->ccb_h, sc->mly_cam_path, 5/*priority (low)*/);
2017 ccb->ccb_h.func_code = XPT_SCAN_LUN;
2018 ccb->ccb_h.cbfcnp = mly_cam_rescan_callback;
2019 ccb->crcn.flags = CAM_FLAG_NONE;
2020 debug(1, "rescan target %d:%d", bus, target);
2021 xpt_action(ccb);
2024 static void
2025 mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
2027 kfree(ccb, M_TEMP);
2030 /********************************************************************************
2031 * Handle an action requested by CAM
2033 static void
2034 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2036 struct mly_softc *sc = cam_sim_softc(sim);
2038 debug_called(2);
2040 switch (ccb->ccb_h.func_code) {
2042 /* perform SCSI I/O */
2043 case XPT_SCSI_IO:
2044 if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2045 return;
2046 break;
2048 /* perform geometry calculations */
2049 case XPT_CALC_GEOMETRY:
2051 struct ccb_calc_geometry *ccg = &ccb->ccg;
2052 u_int32_t secs_per_cylinder;
2054 debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2056 if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2057 ccg->heads = 255;
2058 ccg->secs_per_track = 63;
2059 } else { /* MLY_BIOSGEOM_2G */
2060 ccg->heads = 128;
2061 ccg->secs_per_track = 32;
2063 secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2064 ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2065 ccb->ccb_h.status = CAM_REQ_CMP;
2066 break;
2069 /* handle path attribute inquiry */
2070 case XPT_PATH_INQ:
2072 struct ccb_pathinq *cpi = &ccb->cpi;
2074 debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2076 cpi->version_num = 1;
2077 cpi->hba_inquiry = PI_TAG_ABLE; /* XXX extra flags for physical channels? */
2078 cpi->target_sprt = 0;
2079 cpi->hba_misc = 0;
2080 cpi->max_target = MLY_MAX_TARGETS - 1;
2081 cpi->max_lun = MLY_MAX_LUNS - 1;
2082 cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2083 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2084 strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2085 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2086 cpi->unit_number = cam_sim_unit(sim);
2087 cpi->bus_id = cam_sim_bus(sim);
2088 cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
2089 cpi->transport = XPORT_SPI;
2090 cpi->transport_version = 2;
2091 cpi->protocol = PROTO_SCSI;
2092 cpi->protocol_version = SCSI_REV_2;
2093 ccb->ccb_h.status = CAM_REQ_CMP;
2094 break;
2097 case XPT_GET_TRAN_SETTINGS:
2099 struct ccb_trans_settings *cts = &ccb->cts;
2100 int bus, target;
2101 struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2102 struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2104 cts->protocol = PROTO_SCSI;
2105 cts->protocol_version = SCSI_REV_2;
2106 cts->transport = XPORT_SPI;
2107 cts->transport_version = 2;
2109 scsi->flags = 0;
2110 scsi->valid = 0;
2111 spi->flags = 0;
2112 spi->valid = 0;
2114 bus = cam_sim_bus(sim);
2115 target = cts->ccb_h.target_id;
2116 debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2117 /* logical device? */
2118 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2119 /* nothing special for these */
2120 /* physical device? */
2121 } else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2122 /* allow CAM to try tagged transactions */
2123 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2124 scsi->valid |= CTS_SCSI_VALID_TQ;
2126 /* convert speed (MHz) to usec */
2127 if (sc->mly_btl[bus][target].mb_speed == 0) {
2128 spi->sync_period = 1000000 / 5;
2129 } else {
2130 spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2133 /* convert bus width to CAM internal encoding */
2134 switch (sc->mly_btl[bus][target].mb_width) {
2135 case 32:
2136 spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2137 break;
2138 case 16:
2139 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2140 break;
2141 case 8:
2142 default:
2143 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2144 break;
2146 spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2148 /* not a device, bail out */
2149 } else {
2150 cts->ccb_h.status = CAM_REQ_CMP_ERR;
2151 break;
2154 /* disconnect always OK */
2155 spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2156 spi->valid |= CTS_SPI_VALID_DISC;
2158 cts->ccb_h.status = CAM_REQ_CMP;
2159 break;
2162 default: /* we can't do this */
2163 debug(2, "unsupported func_code = 0x%x", ccb->ccb_h.func_code);
2164 ccb->ccb_h.status = CAM_REQ_INVALID;
2165 break;
2168 xpt_done(ccb);
2171 /********************************************************************************
2172 * Handle an I/O operation requested by CAM
2174 static int
2175 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2177 struct mly_softc *sc = cam_sim_softc(sim);
2178 struct mly_command *mc;
2179 struct mly_command_scsi_small *ss;
2180 int bus, target;
2181 int error;
2183 bus = cam_sim_bus(sim);
2184 target = csio->ccb_h.target_id;
2186 debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2188 /* validate bus number */
2189 if (!MLY_BUS_IS_VALID(sc, bus)) {
2190 debug(0, " invalid bus %d", bus);
2191 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2194 /* check for I/O attempt to a protected device */
2195 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2196 debug(2, " device protected");
2197 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2200 /* check for I/O attempt to nonexistent device */
2201 if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2202 debug(2, " device %d:%d does not exist", bus, target);
2203 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2206 /* XXX increase if/when we support large SCSI commands */
2207 if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2208 debug(0, " command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2209 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2212 /* check that the CDB pointer is not to a physical address */
2213 if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2214 debug(0, " CDB pointer is to physical address");
2215 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2218 /* if there is data transfer, it must be to/from a virtual address */
2219 if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
2220 if (csio->ccb_h.flags & CAM_DATA_PHYS) { /* we can't map it */
2221 debug(0, " data pointer is to physical address");
2222 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2224 if (csio->ccb_h.flags & CAM_SCATTER_VALID) { /* we want to do the s/g setup */
2225 debug(0, " data has premature s/g setup");
2226 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2230 /* abandon aborted ccbs or those that have failed validation */
2231 if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2232 debug(2, "abandoning CCB due to abort/validation failure");
2233 return(EINVAL);
2237 * Get a command, or push the ccb back to CAM and freeze the queue.
2239 if ((error = mly_alloc_command(sc, &mc))) {
2240 crit_enter();
2241 xpt_freeze_simq(sim, 1);
2242 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2243 sc->mly_qfrzn_cnt++;
2244 crit_exit();
2245 return(error);
2248 /* build the command */
2249 mc->mc_data = csio->data_ptr;
2250 mc->mc_length = csio->dxfer_len;
2251 mc->mc_complete = mly_cam_complete;
2252 mc->mc_private = csio;
2254 /* save the bus number in the ccb for later recovery XXX should be a better way */
2255 csio->ccb_h.sim_priv.entries[0].field = bus;
2257 /* build the packet for the controller */
2258 ss = &mc->mc_packet->scsi_small;
2259 ss->opcode = MDACMD_SCSI;
2260 if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2261 ss->command_control.disable_disconnect = 1;
2262 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2263 ss->command_control.data_direction = MLY_CCB_WRITE;
2264 ss->data_size = csio->dxfer_len;
2265 ss->addr.phys.lun = csio->ccb_h.target_lun;
2266 ss->addr.phys.target = csio->ccb_h.target_id;
2267 ss->addr.phys.channel = bus;
2268 if (csio->ccb_h.timeout < (60 * 1000)) {
2269 ss->timeout.value = csio->ccb_h.timeout / 1000;
2270 ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2271 } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2272 ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2273 ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2274 } else {
2275 ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000); /* overflow? */
2276 ss->timeout.scale = MLY_TIMEOUT_HOURS;
2278 ss->maximum_sense_size = csio->sense_len;
2279 ss->cdb_length = csio->cdb_len;
2280 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2281 bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2282 } else {
2283 bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2286 /* give the command to the controller */
2287 if ((error = mly_start(mc))) {
2288 crit_enter();
2289 xpt_freeze_simq(sim, 1);
2290 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2291 sc->mly_qfrzn_cnt++;
2292 crit_exit();
2293 return(error);
2296 return(0);
2299 /********************************************************************************
2300 * Check for possibly-completed commands.
2302 static void
2303 mly_cam_poll(struct cam_sim *sim)
2305 struct mly_softc *sc = cam_sim_softc(sim);
2307 debug_called(2);
2309 mly_done(sc);
2312 /********************************************************************************
2313 * Handle completion of a command - pass results back through the CCB
2315 static void
2316 mly_cam_complete(struct mly_command *mc)
2318 struct mly_softc *sc = mc->mc_sc;
2319 struct ccb_scsiio *csio = (struct ccb_scsiio *)mc->mc_private;
2320 struct scsi_inquiry_data *inq = (struct scsi_inquiry_data *)csio->data_ptr;
2321 struct mly_btl *btl;
2322 u_int8_t cmd;
2323 int bus, target;
2325 debug_called(2);
2327 csio->scsi_status = mc->mc_status;
2328 switch(mc->mc_status) {
2329 case SCSI_STATUS_OK:
2331 * In order to report logical device type and status, we overwrite
2332 * the result of the INQUIRY command to logical devices.
2334 bus = csio->ccb_h.sim_priv.entries[0].field;
2335 target = csio->ccb_h.target_id;
2336 /* XXX validate bus/target? */
2337 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2338 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2339 cmd = *csio->cdb_io.cdb_ptr;
2340 } else {
2341 cmd = csio->cdb_io.cdb_bytes[0];
2343 if (cmd == INQUIRY) {
2344 btl = &sc->mly_btl[bus][target];
2345 padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2346 padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2347 padstr(inq->revision, "", 4);
2351 debug(2, "SCSI_STATUS_OK");
2352 csio->ccb_h.status = CAM_REQ_CMP;
2353 break;
2355 case SCSI_STATUS_CHECK_COND:
2356 debug(1, "SCSI_STATUS_CHECK_COND sense %d resid %d", mc->mc_sense, mc->mc_resid);
2357 csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2358 bzero(&csio->sense_data, SSD_FULL_SIZE);
2359 bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2360 csio->sense_len = mc->mc_sense;
2361 csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2362 csio->resid = mc->mc_resid; /* XXX this is a signed value... */
2363 break;
2365 case SCSI_STATUS_BUSY:
2366 debug(1, "SCSI_STATUS_BUSY");
2367 csio->ccb_h.status = CAM_SCSI_BUSY;
2368 break;
2370 default:
2371 debug(1, "unknown status 0x%x", csio->scsi_status);
2372 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2373 break;
2376 crit_enter();
2377 if (sc->mly_qfrzn_cnt) {
2378 csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2379 sc->mly_qfrzn_cnt--;
2381 crit_exit();
2383 xpt_done((union ccb *)csio);
2384 mly_release_command(mc);
2387 /********************************************************************************
2388 * Find a peripheral attahed at (bus),(target)
2390 static struct cam_periph *
2391 mly_find_periph(struct mly_softc *sc, int bus, int target)
2393 struct cam_periph *periph;
2394 struct cam_path *path;
2395 int status;
2397 status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2398 if (status == CAM_REQ_CMP) {
2399 periph = cam_periph_find(path, NULL);
2400 xpt_free_path(path);
2401 } else {
2402 periph = NULL;
2404 return(periph);
2407 /********************************************************************************
2408 * Name the device at (bus)(target)
2410 static int
2411 mly_name_device(struct mly_softc *sc, int bus, int target)
2413 struct cam_periph *periph;
2415 if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2416 ksprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2417 return(0);
2419 sc->mly_btl[bus][target].mb_name[0] = 0;
2420 return(ENOENT);
2423 /********************************************************************************
2424 ********************************************************************************
2425 Hardware Control
2426 ********************************************************************************
2427 ********************************************************************************/
2429 /********************************************************************************
2430 * Handshake with the firmware while the card is being initialised.
2432 static int
2433 mly_fwhandshake(struct mly_softc *sc)
2435 u_int8_t error, param0, param1;
2436 int spinup = 0;
2438 debug_called(1);
2440 /* set HM_STSACK and let the firmware initialise */
2441 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2442 DELAY(1000); /* too short? */
2444 /* if HM_STSACK is still true, the controller is initialising */
2445 if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2446 return(0);
2447 mly_printf(sc, "controller initialisation started\n");
2449 /* spin waiting for initialisation to finish, or for a message to be delivered */
2450 while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2451 /* check for a message */
2452 if (MLY_ERROR_VALID(sc)) {
2453 error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2454 param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2455 param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2457 switch(error) {
2458 case MLY_MSG_SPINUP:
2459 if (!spinup) {
2460 mly_printf(sc, "drive spinup in progress\n");
2461 spinup = 1; /* only print this once (should print drive being spun?) */
2463 break;
2464 case MLY_MSG_RACE_RECOVERY_FAIL:
2465 mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2466 break;
2467 case MLY_MSG_RACE_IN_PROGRESS:
2468 mly_printf(sc, "mirror race recovery in progress\n");
2469 break;
2470 case MLY_MSG_RACE_ON_CRITICAL:
2471 mly_printf(sc, "mirror race recovery on a critical drive\n");
2472 break;
2473 case MLY_MSG_PARITY_ERROR:
2474 mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2475 return(ENXIO);
2476 default:
2477 mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2481 return(0);
2484 /********************************************************************************
2485 ********************************************************************************
2486 Debugging and Diagnostics
2487 ********************************************************************************
2488 ********************************************************************************/
2490 /********************************************************************************
2491 * Print some information about the controller.
2493 static void
2494 mly_describe_controller(struct mly_softc *sc)
2496 struct mly_ioctl_getcontrollerinfo *mi = sc->mly_controllerinfo;
2498 mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2499 mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2500 mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build, /* XXX turn encoding? */
2501 mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2502 mi->memory_size);
2504 if (bootverbose) {
2505 mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2506 mly_describe_code(mly_table_oemname, mi->oem_information),
2507 mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2508 mi->interface_speed, mi->interface_width, mi->interface_name);
2509 mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2510 mi->memory_size, mi->memory_speed, mi->memory_width,
2511 mly_describe_code(mly_table_memorytype, mi->memory_type),
2512 mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2513 mi->cache_size);
2514 mly_printf(sc, "CPU: %s @ %dMHZ\n",
2515 mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2516 if (mi->l2cache_size != 0)
2517 mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2518 if (mi->exmemory_size != 0)
2519 mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2520 mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2521 mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2522 mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2523 mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2524 mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2525 mi->maximum_block_count, mi->maximum_sg_entries);
2526 mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2527 mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2528 mly_printf(sc, "physical devices present %d\n",
2529 mi->physical_devices_present);
2530 mly_printf(sc, "physical disks present/offline %d/%d\n",
2531 mi->physical_disks_present, mi->physical_disks_offline);
2532 mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2533 mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2534 mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2535 mi->virtual_channels_possible);
2536 mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2537 mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2538 mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2542 #ifdef MLY_DEBUG
2543 /********************************************************************************
2544 * Print some controller state
2546 static void
2547 mly_printstate(struct mly_softc *sc)
2549 mly_printf(sc, "IDBR %02x ODBR %02x ERROR %02x (%x %x %x)\n",
2550 MLY_GET_REG(sc, sc->mly_idbr),
2551 MLY_GET_REG(sc, sc->mly_odbr),
2552 MLY_GET_REG(sc, sc->mly_error_status),
2553 sc->mly_idbr,
2554 sc->mly_odbr,
2555 sc->mly_error_status);
2556 mly_printf(sc, "IMASK %02x ISTATUS %02x\n",
2557 MLY_GET_REG(sc, sc->mly_interrupt_mask),
2558 MLY_GET_REG(sc, sc->mly_interrupt_status));
2559 mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2560 MLY_GET_REG(sc, sc->mly_command_mailbox),
2561 MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2562 MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2563 MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2564 MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2565 MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2566 MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2567 MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2568 mly_printf(sc, "STATUS %02x %02x %02x %02x %02x %02x %02x %02x\n",
2569 MLY_GET_REG(sc, sc->mly_status_mailbox),
2570 MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2571 MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2572 MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2573 MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2574 MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2575 MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2576 MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2577 mly_printf(sc, " %04x %08x\n",
2578 MLY_GET_REG2(sc, sc->mly_status_mailbox),
2579 MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2582 struct mly_softc *mly_softc0 = NULL;
2583 void
2584 mly_printstate0(void)
2586 if (mly_softc0 != NULL)
2587 mly_printstate(mly_softc0);
2590 /********************************************************************************
2591 * Print a command
2593 static void
2594 mly_print_command(struct mly_command *mc)
2596 struct mly_softc *sc = mc->mc_sc;
2598 mly_printf(sc, "COMMAND @ %p\n", mc);
2599 mly_printf(sc, " slot %d\n", mc->mc_slot);
2600 mly_printf(sc, " status 0x%x\n", mc->mc_status);
2601 mly_printf(sc, " sense len %d\n", mc->mc_sense);
2602 mly_printf(sc, " resid %d\n", mc->mc_resid);
2603 mly_printf(sc, " packet %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2604 if (mc->mc_packet != NULL)
2605 mly_print_packet(mc);
2606 mly_printf(sc, " data %p/%d\n", mc->mc_data, mc->mc_length);
2607 mly_printf(sc, " flags %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2608 mly_printf(sc, " complete %p\n", mc->mc_complete);
2609 mly_printf(sc, " private %p\n", mc->mc_private);
2612 /********************************************************************************
2613 * Print a command packet
2615 static void
2616 mly_print_packet(struct mly_command *mc)
2618 struct mly_softc *sc = mc->mc_sc;
2619 struct mly_command_generic *ge = (struct mly_command_generic *)mc->mc_packet;
2620 struct mly_command_scsi_small *ss = (struct mly_command_scsi_small *)mc->mc_packet;
2621 struct mly_command_scsi_large *sl = (struct mly_command_scsi_large *)mc->mc_packet;
2622 struct mly_command_ioctl *io = (struct mly_command_ioctl *)mc->mc_packet;
2623 int transfer;
2625 mly_printf(sc, " command_id %d\n", ge->command_id);
2626 mly_printf(sc, " opcode %d\n", ge->opcode);
2627 mly_printf(sc, " command_control fua %d dpo %d est %d dd %s nas %d ddis %d\n",
2628 ge->command_control.force_unit_access,
2629 ge->command_control.disable_page_out,
2630 ge->command_control.extended_sg_table,
2631 (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2632 ge->command_control.no_auto_sense,
2633 ge->command_control.disable_disconnect);
2634 mly_printf(sc, " data_size %d\n", ge->data_size);
2635 mly_printf(sc, " sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2636 mly_printf(sc, " lun %d\n", ge->addr.phys.lun);
2637 mly_printf(sc, " target %d\n", ge->addr.phys.target);
2638 mly_printf(sc, " channel %d\n", ge->addr.phys.channel);
2639 mly_printf(sc, " logical device %d\n", ge->addr.log.logdev);
2640 mly_printf(sc, " controller %d\n", ge->addr.phys.controller);
2641 mly_printf(sc, " timeout %d %s\n",
2642 ge->timeout.value,
2643 (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2644 ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2645 mly_printf(sc, " maximum_sense_size %d\n", ge->maximum_sense_size);
2646 switch(ge->opcode) {
2647 case MDACMD_SCSIPT:
2648 case MDACMD_SCSI:
2649 mly_printf(sc, " cdb length %d\n", ss->cdb_length);
2650 mly_printf(sc, " cdb %*D\n", ss->cdb_length, ss->cdb, " ");
2651 transfer = 1;
2652 break;
2653 case MDACMD_SCSILC:
2654 case MDACMD_SCSILCPT:
2655 mly_printf(sc, " cdb length %d\n", sl->cdb_length);
2656 mly_printf(sc, " cdb 0x%llx\n", sl->cdb_physaddr);
2657 transfer = 1;
2658 break;
2659 case MDACMD_IOCTL:
2660 mly_printf(sc, " sub_ioctl 0x%x\n", io->sub_ioctl);
2661 switch(io->sub_ioctl) {
2662 case MDACIOCTL_SETMEMORYMAILBOX:
2663 mly_printf(sc, " health_buffer_size %d\n",
2664 io->param.setmemorymailbox.health_buffer_size);
2665 mly_printf(sc, " health_buffer_phys 0x%llx\n",
2666 io->param.setmemorymailbox.health_buffer_physaddr);
2667 mly_printf(sc, " command_mailbox 0x%llx\n",
2668 io->param.setmemorymailbox.command_mailbox_physaddr);
2669 mly_printf(sc, " status_mailbox 0x%llx\n",
2670 io->param.setmemorymailbox.status_mailbox_physaddr);
2671 transfer = 0;
2672 break;
2674 case MDACIOCTL_SETREALTIMECLOCK:
2675 case MDACIOCTL_GETHEALTHSTATUS:
2676 case MDACIOCTL_GETCONTROLLERINFO:
2677 case MDACIOCTL_GETLOGDEVINFOVALID:
2678 case MDACIOCTL_GETPHYSDEVINFOVALID:
2679 case MDACIOCTL_GETPHYSDEVSTATISTICS:
2680 case MDACIOCTL_GETLOGDEVSTATISTICS:
2681 case MDACIOCTL_GETCONTROLLERSTATISTICS:
2682 case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2683 case MDACIOCTL_CREATENEWCONF:
2684 case MDACIOCTL_ADDNEWCONF:
2685 case MDACIOCTL_GETDEVCONFINFO:
2686 case MDACIOCTL_GETFREESPACELIST:
2687 case MDACIOCTL_MORE:
2688 case MDACIOCTL_SETPHYSDEVPARAMETER:
2689 case MDACIOCTL_GETPHYSDEVPARAMETER:
2690 case MDACIOCTL_GETLOGDEVPARAMETER:
2691 case MDACIOCTL_SETLOGDEVPARAMETER:
2692 mly_printf(sc, " param %10D\n", io->param.data.param, " ");
2693 transfer = 1;
2694 break;
2696 case MDACIOCTL_GETEVENT:
2697 mly_printf(sc, " event %d\n",
2698 io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2699 transfer = 1;
2700 break;
2702 case MDACIOCTL_SETRAIDDEVSTATE:
2703 mly_printf(sc, " state %d\n", io->param.setraiddevstate.state);
2704 transfer = 0;
2705 break;
2707 case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2708 mly_printf(sc, " raid_device %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2709 mly_printf(sc, " controller %d\n", io->param.xlatephysdevtoraiddev.controller);
2710 mly_printf(sc, " channel %d\n", io->param.xlatephysdevtoraiddev.channel);
2711 mly_printf(sc, " target %d\n", io->param.xlatephysdevtoraiddev.target);
2712 mly_printf(sc, " lun %d\n", io->param.xlatephysdevtoraiddev.lun);
2713 transfer = 0;
2714 break;
2716 case MDACIOCTL_GETGROUPCONFINFO:
2717 mly_printf(sc, " group %d\n", io->param.getgroupconfinfo.group);
2718 transfer = 1;
2719 break;
2721 case MDACIOCTL_GET_SUBSYSTEM_DATA:
2722 case MDACIOCTL_SET_SUBSYSTEM_DATA:
2723 case MDACIOCTL_STARTDISOCVERY:
2724 case MDACIOCTL_INITPHYSDEVSTART:
2725 case MDACIOCTL_INITPHYSDEVSTOP:
2726 case MDACIOCTL_INITRAIDDEVSTART:
2727 case MDACIOCTL_INITRAIDDEVSTOP:
2728 case MDACIOCTL_REBUILDRAIDDEVSTART:
2729 case MDACIOCTL_REBUILDRAIDDEVSTOP:
2730 case MDACIOCTL_MAKECONSISTENTDATASTART:
2731 case MDACIOCTL_MAKECONSISTENTDATASTOP:
2732 case MDACIOCTL_CONSISTENCYCHECKSTART:
2733 case MDACIOCTL_CONSISTENCYCHECKSTOP:
2734 case MDACIOCTL_RESETDEVICE:
2735 case MDACIOCTL_FLUSHDEVICEDATA:
2736 case MDACIOCTL_PAUSEDEVICE:
2737 case MDACIOCTL_UNPAUSEDEVICE:
2738 case MDACIOCTL_LOCATEDEVICE:
2739 case MDACIOCTL_SETMASTERSLAVEMODE:
2740 case MDACIOCTL_DELETERAIDDEV:
2741 case MDACIOCTL_REPLACEINTERNALDEV:
2742 case MDACIOCTL_CLEARCONF:
2743 case MDACIOCTL_GETCONTROLLERPARAMETER:
2744 case MDACIOCTL_SETCONTRLLERPARAMETER:
2745 case MDACIOCTL_CLEARCONFSUSPMODE:
2746 case MDACIOCTL_STOREIMAGE:
2747 case MDACIOCTL_READIMAGE:
2748 case MDACIOCTL_FLASHIMAGES:
2749 case MDACIOCTL_RENAMERAIDDEV:
2750 default: /* no idea what to print */
2751 transfer = 0;
2752 break;
2754 break;
2756 case MDACMD_IOCTLCHECK:
2757 case MDACMD_MEMCOPY:
2758 default:
2759 transfer = 0;
2760 break; /* print nothing */
2762 if (transfer) {
2763 if (ge->command_control.extended_sg_table) {
2764 mly_printf(sc, " sg table 0x%llx/%d\n",
2765 ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2766 } else {
2767 mly_printf(sc, " 0000 0x%llx/%lld\n",
2768 ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2769 mly_printf(sc, " 0001 0x%llx/%lld\n",
2770 ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2775 /********************************************************************************
2776 * Panic in a slightly informative fashion
2778 static void
2779 mly_panic(struct mly_softc *sc, char *reason)
2781 mly_printstate(sc);
2782 panic(reason);
2785 /********************************************************************************
2786 * Print queue statistics, callable from DDB.
2788 void
2789 mly_print_controller(int controller)
2791 struct mly_softc *sc;
2793 if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2794 kprintf("mly: controller %d invalid\n", controller);
2795 } else {
2796 device_printf(sc->mly_dev, "queue curr max\n");
2797 device_printf(sc->mly_dev, "free %04d/%04d\n",
2798 sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2799 device_printf(sc->mly_dev, "busy %04d/%04d\n",
2800 sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2801 device_printf(sc->mly_dev, "complete %04d/%04d\n",
2802 sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2805 #endif
2808 /********************************************************************************
2809 ********************************************************************************
2810 Control device interface
2811 ********************************************************************************
2812 ********************************************************************************/
2814 /********************************************************************************
2815 * Accept an open operation on the control device.
2817 static int
2818 mly_user_open(struct dev_open_args *ap)
2820 cdev_t dev = ap->a_head.a_dev;
2821 int unit = minor(dev);
2822 struct mly_softc *sc = devclass_get_softc(devclass_find("mly"), unit);
2824 sc->mly_state |= MLY_STATE_OPEN;
2825 return(0);
2828 /********************************************************************************
2829 * Accept the last close on the control device.
2831 static int
2832 mly_user_close(struct dev_close_args *ap)
2834 cdev_t dev = ap->a_head.a_dev;
2835 int unit = minor(dev);
2836 struct mly_softc *sc = devclass_get_softc(devclass_find("mly"), unit);
2838 sc->mly_state &= ~MLY_STATE_OPEN;
2839 return (0);
2842 /********************************************************************************
2843 * Handle controller-specific control operations.
2845 static int
2846 mly_user_ioctl(struct dev_ioctl_args *ap)
2848 cdev_t dev = ap->a_head.a_dev;
2849 struct mly_softc *sc = (struct mly_softc *)dev->si_drv1;
2850 struct mly_user_command *uc = (struct mly_user_command *)ap->a_data;
2851 struct mly_user_health *uh = (struct mly_user_health *)ap->a_data;
2853 switch(ap->a_cmd) {
2854 case MLYIO_COMMAND:
2855 return(mly_user_command(sc, uc));
2856 case MLYIO_HEALTH:
2857 return(mly_user_health(sc, uh));
2858 default:
2859 return(ENOIOCTL);
2863 /********************************************************************************
2864 * Execute a command passed in from userspace.
2866 * The control structure contains the actual command for the controller, as well
2867 * as the user-space data pointer and data size, and an optional sense buffer
2868 * size/pointer. On completion, the data size is adjusted to the command
2869 * residual, and the sense buffer size to the size of the returned sense data.
2872 static int
2873 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2875 struct mly_command *mc;
2876 int error;
2878 /* allocate a command */
2879 if (mly_alloc_command(sc, &mc)) {
2880 error = ENOMEM;
2881 goto out; /* XXX Linux version will wait for a command */
2884 /* handle data size/direction */
2885 mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2886 if (mc->mc_length > 0)
2887 mc->mc_data = kmalloc(mc->mc_length, M_DEVBUF, M_INTWAIT);
2888 if (uc->DataTransferLength > 0) {
2889 mc->mc_flags |= MLY_CMD_DATAIN;
2890 bzero(mc->mc_data, mc->mc_length);
2892 if (uc->DataTransferLength < 0) {
2893 mc->mc_flags |= MLY_CMD_DATAOUT;
2894 if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2895 goto out;
2898 /* copy the controller command */
2899 bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2901 /* clear command completion handler so that we get woken up */
2902 mc->mc_complete = NULL;
2904 /* execute the command */
2905 if ((error = mly_start(mc)) != 0)
2906 goto out;
2907 crit_enter();
2908 while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2909 tsleep(mc, 0, "mlyioctl", 0);
2910 crit_exit();
2912 /* return the data to userspace */
2913 if (uc->DataTransferLength > 0)
2914 if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2915 goto out;
2917 /* return the sense buffer to userspace */
2918 if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2919 if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2920 min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2921 goto out;
2924 /* return command results to userspace (caller will copy out) */
2925 uc->DataTransferLength = mc->mc_resid;
2926 uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2927 uc->CommandStatus = mc->mc_status;
2928 error = 0;
2930 out:
2931 if (mc->mc_data != NULL)
2932 kfree(mc->mc_data, M_DEVBUF);
2933 if (mc != NULL)
2934 mly_release_command(mc);
2935 return(error);
2938 /********************************************************************************
2939 * Return health status to userspace. If the health change index in the user
2940 * structure does not match that currently exported by the controller, we
2941 * return the current status immediately. Otherwise, we block until either
2942 * interrupted or new status is delivered.
2944 static int
2945 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2947 struct mly_health_status mh;
2948 int error;
2950 /* fetch the current health status from userspace */
2951 if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2952 return(error);
2954 /* spin waiting for a status update */
2955 crit_enter();
2956 error = EWOULDBLOCK;
2957 while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2958 error = tsleep(&sc->mly_event_change, PCATCH, "mlyhealth", 0);
2959 crit_exit();
2961 /* copy the controller's health status buffer out (there is a race here if it changes again) */
2962 error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2963 sizeof(uh->HealthStatusBuffer));
2964 return(error);
2967 static int
2968 mly_timeout(struct mly_softc *sc)
2970 struct mly_command *mc;
2971 int deadline;
2973 deadline = time_second - MLY_CMD_TIMEOUT;
2974 TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2975 if ((mc->mc_timestamp < deadline)) {
2976 device_printf(sc->mly_dev,
2977 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2978 (int)(time_second - mc->mc_timestamp));
2982 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
2983 (timeout_t *)mly_timeout, sc);
2985 return (0);