Remove empty DragonFly CVS IDs.
[dragonfly.git] / sys / netproto / 802_11 / wlan / ieee80211_proto.c
blob4da05470d21f86486cb6c753a3fd87a1f9128534
1 /*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * $FreeBSD: head/sys/net80211/ieee80211_proto.c 195618 2009-07-11 15:02:45Z rpaulo $
30 * IEEE 802.11 protocol support.
33 #include "opt_inet.h"
34 #include "opt_wlan.h"
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/systm.h>
40 #include <sys/socket.h>
41 #include <sys/sockio.h>
43 #include <net/if.h>
44 #include <net/if_media.h>
45 #include <net/route.h>
47 #include <netproto/802_11/ieee80211_var.h>
48 #include <netproto/802_11/ieee80211_adhoc.h>
49 #include <netproto/802_11/ieee80211_sta.h>
50 #include <netproto/802_11/ieee80211_hostap.h>
51 #include <netproto/802_11/ieee80211_wds.h>
52 #ifdef IEEE80211_SUPPORT_MESH
53 #include <netproto/802_11/ieee80211_mesh.h>
54 #endif
55 #include <netproto/802_11/ieee80211_monitor.h>
56 #include <netproto/802_11/ieee80211_input.h>
58 /* XXX tunables */
59 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
60 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
62 const char *ieee80211_mgt_subtype_name[] = {
63 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
64 "probe_req", "probe_resp", "reserved#6", "reserved#7",
65 "beacon", "atim", "disassoc", "auth",
66 "deauth", "action", "reserved#14", "reserved#15"
68 const char *ieee80211_ctl_subtype_name[] = {
69 "reserved#0", "reserved#1", "reserved#2", "reserved#3",
70 "reserved#3", "reserved#5", "reserved#6", "reserved#7",
71 "reserved#8", "reserved#9", "ps_poll", "rts",
72 "cts", "ack", "cf_end", "cf_end_ack"
74 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
75 "IBSS", /* IEEE80211_M_IBSS */
76 "STA", /* IEEE80211_M_STA */
77 "WDS", /* IEEE80211_M_WDS */
78 "AHDEMO", /* IEEE80211_M_AHDEMO */
79 "HOSTAP", /* IEEE80211_M_HOSTAP */
80 "MONITOR", /* IEEE80211_M_MONITOR */
81 "MBSS" /* IEEE80211_M_MBSS */
83 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
84 "INIT", /* IEEE80211_S_INIT */
85 "SCAN", /* IEEE80211_S_SCAN */
86 "AUTH", /* IEEE80211_S_AUTH */
87 "ASSOC", /* IEEE80211_S_ASSOC */
88 "CAC", /* IEEE80211_S_CAC */
89 "RUN", /* IEEE80211_S_RUN */
90 "CSA", /* IEEE80211_S_CSA */
91 "SLEEP", /* IEEE80211_S_SLEEP */
93 const char *ieee80211_wme_acnames[] = {
94 "WME_AC_BE",
95 "WME_AC_BK",
96 "WME_AC_VI",
97 "WME_AC_VO",
98 "WME_UPSD",
101 static void beacon_miss_task(void *, int);
102 static void beacon_swmiss_task(void *, int);
103 static void parent_updown_task(void *, int);
104 static void update_mcast_task(void *, int);
105 static void update_promisc_task(void *, int);
106 static void update_channel_task(void *, int);
107 static void ieee80211_newstate_task(void *, int);
108 static int ieee80211_new_state_locked(struct ieee80211vap *,
109 enum ieee80211_state, int);
111 static int
112 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
113 const struct ieee80211_bpf_params *params)
115 struct ifnet *ifp = ni->ni_ic->ic_ifp;
117 if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
118 m_freem(m);
119 return ENETDOWN;
122 void
123 ieee80211_proto_attach(struct ieee80211com *ic)
125 struct ifnet *ifp = ic->ic_ifp;
127 /* override the 802.3 setting */
128 ifp->if_hdrlen = ic->ic_headroom
129 + sizeof(struct ieee80211_qosframe_addr4)
130 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
131 + IEEE80211_WEP_EXTIVLEN;
132 /* XXX no way to recalculate on ifdetach */
133 if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
134 /* XXX sanity check... */
135 max_linkhdr = ALIGN(ifp->if_hdrlen);
136 max_hdr = max_linkhdr + max_protohdr;
137 max_datalen = MHLEN - max_hdr;
139 ic->ic_protmode = IEEE80211_PROT_CTSONLY;
141 TASK_INIT(&ic->ic_parent_task, 0, parent_updown_task, ifp);
142 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast_task, ic);
143 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc_task, ic);
144 TASK_INIT(&ic->ic_chan_task, 0, update_channel_task, ic);
145 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss_task, ic);
147 ic->ic_wme.wme_hipri_switch_hysteresis =
148 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150 /* initialize management frame handlers */
151 ic->ic_send_mgmt = ieee80211_send_mgmt;
152 ic->ic_raw_xmit = null_raw_xmit;
154 ieee80211_adhoc_attach(ic);
155 ieee80211_sta_attach(ic);
156 ieee80211_wds_attach(ic);
157 ieee80211_hostap_attach(ic);
158 #ifdef IEEE80211_SUPPORT_MESH
159 ieee80211_mesh_attach(ic);
160 #endif
161 ieee80211_monitor_attach(ic);
164 void
165 ieee80211_proto_detach(struct ieee80211com *ic)
167 ieee80211_monitor_detach(ic);
168 #ifdef IEEE80211_SUPPORT_MESH
169 ieee80211_mesh_detach(ic);
170 #endif
171 ieee80211_hostap_detach(ic);
172 ieee80211_wds_detach(ic);
173 ieee80211_adhoc_detach(ic);
174 ieee80211_sta_detach(ic);
177 static void
178 null_update_beacon(struct ieee80211vap *vap, int item)
182 void
183 ieee80211_proto_vattach(struct ieee80211vap *vap)
185 struct ieee80211com *ic = vap->iv_ic;
186 struct ifnet *ifp = vap->iv_ifp;
187 int i;
189 /* override the 802.3 setting */
190 ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
192 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
193 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
194 vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
195 callout_init_mp(&vap->iv_swbmiss);
196 callout_init_mp(&vap->iv_mgtsend);
197 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_task, vap);
198 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss_task, vap);
200 * Install default tx rate handling: no fixed rate, lowest
201 * supported rate for mgmt and multicast frames. Default
202 * max retry count. These settings can be changed by the
203 * driver and/or user applications.
205 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
206 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
208 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
209 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
210 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
211 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
212 } else {
213 vap->iv_txparms[i].mgmtrate =
214 rs->rs_rates[0] & IEEE80211_RATE_VAL;
215 vap->iv_txparms[i].mcastrate =
216 rs->rs_rates[0] & IEEE80211_RATE_VAL;
218 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
220 vap->iv_roaming = IEEE80211_ROAMING_AUTO;
222 vap->iv_update_beacon = null_update_beacon;
223 vap->iv_deliver_data = ieee80211_deliver_data;
225 /* attach support for operating mode */
226 ic->ic_vattach[vap->iv_opmode](vap);
229 void
230 ieee80211_proto_vdetach(struct ieee80211vap *vap)
232 #define FREEAPPIE(ie) do { \
233 if (ie != NULL) \
234 kfree(ie, M_80211_NODE_IE); \
235 } while (0)
237 * Detach operating mode module.
239 if (vap->iv_opdetach != NULL)
240 vap->iv_opdetach(vap);
242 * This should not be needed as we detach when reseting
243 * the state but be conservative here since the
244 * authenticator may do things like spawn kernel threads.
246 if (vap->iv_auth->ia_detach != NULL)
247 vap->iv_auth->ia_detach(vap);
249 * Detach any ACL'ator.
251 if (vap->iv_acl != NULL)
252 vap->iv_acl->iac_detach(vap);
254 FREEAPPIE(vap->iv_appie_beacon);
255 FREEAPPIE(vap->iv_appie_probereq);
256 FREEAPPIE(vap->iv_appie_proberesp);
257 FREEAPPIE(vap->iv_appie_assocreq);
258 FREEAPPIE(vap->iv_appie_assocresp);
259 FREEAPPIE(vap->iv_appie_wpa);
260 #undef FREEAPPIE
264 * Simple-minded authenticator module support.
267 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
268 /* XXX well-known names */
269 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
270 "wlan_internal", /* IEEE80211_AUTH_NONE */
271 "wlan_internal", /* IEEE80211_AUTH_OPEN */
272 "wlan_internal", /* IEEE80211_AUTH_SHARED */
273 "wlan_xauth", /* IEEE80211_AUTH_8021X */
274 "wlan_internal", /* IEEE80211_AUTH_AUTO */
275 "wlan_xauth", /* IEEE80211_AUTH_WPA */
277 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
279 static const struct ieee80211_authenticator auth_internal = {
280 .ia_name = "wlan_internal",
281 .ia_attach = NULL,
282 .ia_detach = NULL,
283 .ia_node_join = NULL,
284 .ia_node_leave = NULL,
288 * Setup internal authenticators once; they are never unregistered.
290 static void
291 ieee80211_auth_setup(void)
293 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
294 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
295 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
297 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
299 const struct ieee80211_authenticator *
300 ieee80211_authenticator_get(int auth)
302 if (auth >= IEEE80211_AUTH_MAX)
303 return NULL;
304 if (authenticators[auth] == NULL)
305 ieee80211_load_module(auth_modnames[auth]);
306 return authenticators[auth];
309 void
310 ieee80211_authenticator_register(int type,
311 const struct ieee80211_authenticator *auth)
313 if (type >= IEEE80211_AUTH_MAX)
314 return;
315 authenticators[type] = auth;
318 void
319 ieee80211_authenticator_unregister(int type)
322 if (type >= IEEE80211_AUTH_MAX)
323 return;
324 authenticators[type] = NULL;
328 * Very simple-minded ACL module support.
330 /* XXX just one for now */
331 static const struct ieee80211_aclator *acl = NULL;
333 void
334 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
336 kprintf("wlan: %s acl policy registered\n", iac->iac_name);
337 acl = iac;
340 void
341 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
343 if (acl == iac)
344 acl = NULL;
345 kprintf("wlan: %s acl policy unregistered\n", iac->iac_name);
348 const struct ieee80211_aclator *
349 ieee80211_aclator_get(const char *name)
351 if (acl == NULL)
352 ieee80211_load_module("wlan_acl");
353 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
356 void
357 ieee80211_print_essid(const uint8_t *essid, int len)
359 const uint8_t *p;
360 int i;
362 if (len > IEEE80211_NWID_LEN)
363 len = IEEE80211_NWID_LEN;
364 /* determine printable or not */
365 for (i = 0, p = essid; i < len; i++, p++) {
366 if (*p < ' ' || *p > 0x7e)
367 break;
369 if (i == len) {
370 kprintf("\"");
371 for (i = 0, p = essid; i < len; i++, p++)
372 kprintf("%c", *p);
373 kprintf("\"");
374 } else {
375 kprintf("0x");
376 for (i = 0, p = essid; i < len; i++, p++)
377 kprintf("%02x", *p);
381 void
382 ieee80211_dump_pkt(struct ieee80211com *ic,
383 const uint8_t *buf, int len, int rate, int rssi)
385 const struct ieee80211_frame *wh;
386 int i;
388 wh = (const struct ieee80211_frame *)buf;
389 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
390 case IEEE80211_FC1_DIR_NODS:
391 kprintf("NODS %6D", wh->i_addr2, ":");
392 kprintf("->%6D", wh->i_addr1, ":");
393 kprintf("(%6D)", wh->i_addr3, ":");
394 break;
395 case IEEE80211_FC1_DIR_TODS:
396 kprintf("TODS %6D", wh->i_addr2, ":");
397 kprintf("->%6D", wh->i_addr3, ":");
398 kprintf("(%6D)", wh->i_addr1, ":");
399 break;
400 case IEEE80211_FC1_DIR_FROMDS:
401 kprintf("FRDS %6D", wh->i_addr3, ":");
402 kprintf("->%6D", wh->i_addr1, ":");
403 kprintf("(%6D)", wh->i_addr2, ":");
404 break;
405 case IEEE80211_FC1_DIR_DSTODS:
406 kprintf("DSDS %6D", (const uint8_t *)&wh[1], ":");
407 kprintf("->%6D", wh->i_addr3, ":");
408 kprintf("(%6D", wh->i_addr2, ":");
409 kprintf("->%6D)", wh->i_addr1, ":");
410 break;
412 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
413 case IEEE80211_FC0_TYPE_DATA:
414 kprintf(" data");
415 break;
416 case IEEE80211_FC0_TYPE_MGT:
417 kprintf(" %s", ieee80211_mgt_subtype_name[
418 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
419 >> IEEE80211_FC0_SUBTYPE_SHIFT]);
420 break;
421 default:
422 kprintf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
423 break;
425 if (IEEE80211_QOS_HAS_SEQ(wh)) {
426 const struct ieee80211_qosframe *qwh =
427 (const struct ieee80211_qosframe *)buf;
428 kprintf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
429 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
431 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
432 int off;
434 off = ieee80211_anyhdrspace(ic, wh);
435 kprintf(" WEP [IV %.02x %.02x %.02x",
436 buf[off+0], buf[off+1], buf[off+2]);
437 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
438 kprintf(" %.02x %.02x %.02x",
439 buf[off+4], buf[off+5], buf[off+6]);
440 kprintf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
442 if (rate >= 0)
443 kprintf(" %dM", rate / 2);
444 if (rssi >= 0)
445 kprintf(" +%d", rssi);
446 kprintf("\n");
447 if (len > 0) {
448 for (i = 0; i < len; i++) {
449 if ((i & 1) == 0)
450 kprintf(" ");
451 kprintf("%02x", buf[i]);
453 kprintf("\n");
457 static __inline int
458 findrix(const struct ieee80211_rateset *rs, int r)
460 int i;
462 for (i = 0; i < rs->rs_nrates; i++)
463 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
464 return i;
465 return -1;
469 ieee80211_fix_rate(struct ieee80211_node *ni,
470 struct ieee80211_rateset *nrs, int flags)
472 #define RV(v) ((v) & IEEE80211_RATE_VAL)
473 struct ieee80211vap *vap = ni->ni_vap;
474 struct ieee80211com *ic = ni->ni_ic;
475 int i, j, rix, error;
476 int okrate, badrate, fixedrate, ucastrate;
477 const struct ieee80211_rateset *srs;
478 uint8_t r;
480 error = 0;
481 okrate = badrate = 0;
482 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
483 if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
485 * Workaround awkwardness with fixed rate. We are called
486 * to check both the legacy rate set and the HT rate set
487 * but we must apply any legacy fixed rate check only to the
488 * legacy rate set and vice versa. We cannot tell what type
489 * of rate set we've been given (legacy or HT) but we can
490 * distinguish the fixed rate type (MCS have 0x80 set).
491 * So to deal with this the caller communicates whether to
492 * check MCS or legacy rate using the flags and we use the
493 * type of any fixed rate to avoid applying an MCS to a
494 * legacy rate and vice versa.
496 if (ucastrate & 0x80) {
497 if (flags & IEEE80211_F_DOFRATE)
498 flags &= ~IEEE80211_F_DOFRATE;
499 } else if ((ucastrate & 0x80) == 0) {
500 if (flags & IEEE80211_F_DOFMCS)
501 flags &= ~IEEE80211_F_DOFMCS;
503 /* NB: required to make MCS match below work */
504 ucastrate &= IEEE80211_RATE_VAL;
506 fixedrate = IEEE80211_FIXED_RATE_NONE;
508 * XXX we are called to process both MCS and legacy rates;
509 * we must use the appropriate basic rate set or chaos will
510 * ensue; for now callers that want MCS must supply
511 * IEEE80211_F_DOBRS; at some point we'll need to split this
512 * function so there are two variants, one for MCS and one
513 * for legacy rates.
515 if (flags & IEEE80211_F_DOBRS)
516 srs = (const struct ieee80211_rateset *)
517 ieee80211_get_suphtrates(ic, ni->ni_chan);
518 else
519 srs = ieee80211_get_suprates(ic, ni->ni_chan);
520 for (i = 0; i < nrs->rs_nrates; ) {
521 if (flags & IEEE80211_F_DOSORT) {
523 * Sort rates.
525 for (j = i + 1; j < nrs->rs_nrates; j++) {
526 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
527 r = nrs->rs_rates[i];
528 nrs->rs_rates[i] = nrs->rs_rates[j];
529 nrs->rs_rates[j] = r;
533 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
534 badrate = r;
536 * Check for fixed rate.
538 if (r == ucastrate)
539 fixedrate = r;
541 * Check against supported rates.
543 rix = findrix(srs, r);
544 if (flags & IEEE80211_F_DONEGO) {
545 if (rix < 0) {
547 * A rate in the node's rate set is not
548 * supported. If this is a basic rate and we
549 * are operating as a STA then this is an error.
550 * Otherwise we just discard/ignore the rate.
552 if ((flags & IEEE80211_F_JOIN) &&
553 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
554 error++;
555 } else if ((flags & IEEE80211_F_JOIN) == 0) {
557 * Overwrite with the supported rate
558 * value so any basic rate bit is set.
560 nrs->rs_rates[i] = srs->rs_rates[rix];
563 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
565 * Delete unacceptable rates.
567 nrs->rs_nrates--;
568 for (j = i; j < nrs->rs_nrates; j++)
569 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
570 nrs->rs_rates[j] = 0;
571 continue;
573 if (rix >= 0)
574 okrate = nrs->rs_rates[i];
575 i++;
577 if (okrate == 0 || error != 0 ||
578 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
579 fixedrate != ucastrate)) {
580 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
581 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
582 "ucastrate %x\n", __func__, flags, okrate, error,
583 fixedrate, ucastrate);
584 return badrate | IEEE80211_RATE_BASIC;
585 } else
586 return RV(okrate);
587 #undef RV
591 * Reset 11g-related state.
593 void
594 ieee80211_reset_erp(struct ieee80211com *ic)
596 ic->ic_flags &= ~IEEE80211_F_USEPROT;
597 ic->ic_nonerpsta = 0;
598 ic->ic_longslotsta = 0;
600 * Short slot time is enabled only when operating in 11g
601 * and not in an IBSS. We must also honor whether or not
602 * the driver is capable of doing it.
604 ieee80211_set_shortslottime(ic,
605 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
606 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
607 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
608 ic->ic_opmode == IEEE80211_M_HOSTAP &&
609 (ic->ic_caps & IEEE80211_C_SHSLOT)));
611 * Set short preamble and ERP barker-preamble flags.
613 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
614 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
615 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
616 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
617 } else {
618 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
619 ic->ic_flags |= IEEE80211_F_USEBARKER;
624 * Set the short slot time state and notify the driver.
626 void
627 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
629 if (onoff)
630 ic->ic_flags |= IEEE80211_F_SHSLOT;
631 else
632 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
633 /* notify driver */
634 if (ic->ic_updateslot != NULL)
635 ic->ic_updateslot(ic->ic_ifp);
639 * Check if the specified rate set supports ERP.
640 * NB: the rate set is assumed to be sorted.
643 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
645 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
646 int i, j;
648 if (rs->rs_nrates < NELEM(rates))
649 return 0;
650 for (i = 0; i < NELEM(rates); i++) {
651 for (j = 0; j < rs->rs_nrates; j++) {
652 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
653 if (rates[i] == r)
654 goto next;
655 if (r > rates[i])
656 return 0;
658 return 0;
659 next:
662 return 1;
666 * Mark the basic rates for the rate table based on the
667 * operating mode. For real 11g we mark all the 11b rates
668 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only
669 * 11b rates. There's also a pseudo 11a-mode used to mark only
670 * the basic OFDM rates.
672 static void
673 setbasicrates(struct ieee80211_rateset *rs,
674 enum ieee80211_phymode mode, int add)
676 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
677 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } },
678 [IEEE80211_MODE_11B] = { 2, { 2, 4 } },
679 /* NB: mixed b/g */
680 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } },
681 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } },
682 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } },
683 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } },
684 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } },
685 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } },
686 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } },
687 /* NB: mixed b/g */
688 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } },
690 int i, j;
692 for (i = 0; i < rs->rs_nrates; i++) {
693 if (!add)
694 rs->rs_rates[i] &= IEEE80211_RATE_VAL;
695 for (j = 0; j < basic[mode].rs_nrates; j++)
696 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
697 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
698 break;
704 * Set the basic rates in a rate set.
706 void
707 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
708 enum ieee80211_phymode mode)
710 setbasicrates(rs, mode, 0);
714 * Add basic rates to a rate set.
716 void
717 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
718 enum ieee80211_phymode mode)
720 setbasicrates(rs, mode, 1);
724 * WME protocol support.
726 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
727 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
728 * Draft 2.0 Test Plan (Appendix D).
730 * Static/Dynamic Turbo mode settings come from Atheros.
732 typedef struct phyParamType {
733 uint8_t aifsn;
734 uint8_t logcwmin;
735 uint8_t logcwmax;
736 uint16_t txopLimit;
737 uint8_t acm;
738 } paramType;
740 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
741 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 },
742 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 },
743 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 },
744 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 },
745 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 },
746 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 },
747 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 },
748 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 },
749 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 },
750 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 },
751 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 },
752 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 },
754 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
755 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 },
756 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 },
757 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 },
758 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 },
759 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 },
760 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 },
761 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 },
762 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 },
763 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 },
764 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 },
765 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 },
766 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 },
768 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
769 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 },
770 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 },
771 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 },
772 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 },
773 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 },
774 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 },
775 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 },
776 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 },
777 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 },
778 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 },
779 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 },
780 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 },
782 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
783 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 },
784 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 },
785 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 },
786 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 },
787 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 },
788 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
789 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
790 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
791 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 },
792 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 },
793 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 },
794 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 },
797 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
798 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 },
799 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 },
800 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 },
801 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 },
802 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 },
803 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 },
804 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 },
805 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 },
806 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 },
807 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 },
808 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 },
809 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 },
811 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
812 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 },
813 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 },
814 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 },
815 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 },
816 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 },
817 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 },
818 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 },
819 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 },
820 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 },
821 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 },
822 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 },
823 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 },
825 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
826 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 },
827 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 },
828 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 },
829 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 },
830 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 },
831 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
832 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
833 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
834 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 },
835 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 },
836 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 },
837 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 },
840 static void
841 _setifsparams(struct wmeParams *wmep, const paramType *phy)
843 wmep->wmep_aifsn = phy->aifsn;
844 wmep->wmep_logcwmin = phy->logcwmin;
845 wmep->wmep_logcwmax = phy->logcwmax;
846 wmep->wmep_txopLimit = phy->txopLimit;
849 static void
850 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
851 struct wmeParams *wmep, const paramType *phy)
853 wmep->wmep_acm = phy->acm;
854 _setifsparams(wmep, phy);
856 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
857 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
858 ieee80211_wme_acnames[ac], type,
859 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
860 wmep->wmep_logcwmax, wmep->wmep_txopLimit);
863 static void
864 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
866 struct ieee80211com *ic = vap->iv_ic;
867 struct ieee80211_wme_state *wme = &ic->ic_wme;
868 const paramType *pPhyParam, *pBssPhyParam;
869 struct wmeParams *wmep;
870 enum ieee80211_phymode mode;
871 int i;
873 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
874 return;
877 * Select mode; we can be called early in which case we
878 * always use auto mode. We know we'll be called when
879 * entering the RUN state with bsschan setup properly
880 * so state will eventually get set correctly
882 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
883 mode = ieee80211_chan2mode(ic->ic_bsschan);
884 else
885 mode = IEEE80211_MODE_AUTO;
886 for (i = 0; i < WME_NUM_AC; i++) {
887 switch (i) {
888 case WME_AC_BK:
889 pPhyParam = &phyParamForAC_BK[mode];
890 pBssPhyParam = &phyParamForAC_BK[mode];
891 break;
892 case WME_AC_VI:
893 pPhyParam = &phyParamForAC_VI[mode];
894 pBssPhyParam = &bssPhyParamForAC_VI[mode];
895 break;
896 case WME_AC_VO:
897 pPhyParam = &phyParamForAC_VO[mode];
898 pBssPhyParam = &bssPhyParamForAC_VO[mode];
899 break;
900 case WME_AC_BE:
901 default:
902 pPhyParam = &phyParamForAC_BE[mode];
903 pBssPhyParam = &bssPhyParamForAC_BE[mode];
904 break;
906 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
907 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
908 setwmeparams(vap, "chan", i, wmep, pPhyParam);
909 } else {
910 setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
912 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
913 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
915 /* NB: check ic_bss to avoid NULL deref on initial attach */
916 if (vap->iv_bss != NULL) {
918 * Calculate agressive mode switching threshold based
919 * on beacon interval. This doesn't need locking since
920 * we're only called before entering the RUN state at
921 * which point we start sending beacon frames.
923 wme->wme_hipri_switch_thresh =
924 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
925 wme->wme_flags &= ~WME_F_AGGRMODE;
926 ieee80211_wme_updateparams(vap);
930 void
931 ieee80211_wme_initparams(struct ieee80211vap *vap)
933 struct ieee80211com *ic = vap->iv_ic;
935 ic = vap->iv_ic;
936 ieee80211_wme_initparams_locked(vap);
940 * Update WME parameters for ourself and the BSS.
942 void
943 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
945 static const paramType aggrParam[IEEE80211_MODE_MAX] = {
946 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 },
947 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 },
948 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 },
949 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 },
950 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 },
951 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 },
952 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 },
953 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 },
954 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 },
955 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 },
956 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
957 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
959 struct ieee80211com *ic = vap->iv_ic;
960 struct ieee80211_wme_state *wme = &ic->ic_wme;
961 const struct wmeParams *wmep;
962 struct wmeParams *chanp, *bssp;
963 enum ieee80211_phymode mode;
964 int i;
967 * Set up the channel access parameters for the physical
968 * device. First populate the configured settings.
970 for (i = 0; i < WME_NUM_AC; i++) {
971 chanp = &wme->wme_chanParams.cap_wmeParams[i];
972 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
973 chanp->wmep_aifsn = wmep->wmep_aifsn;
974 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
975 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
976 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
978 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
979 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
980 chanp->wmep_aifsn = wmep->wmep_aifsn;
981 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
982 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
983 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
987 * Select mode; we can be called early in which case we
988 * always use auto mode. We know we'll be called when
989 * entering the RUN state with bsschan setup properly
990 * so state will eventually get set correctly
992 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
993 mode = ieee80211_chan2mode(ic->ic_bsschan);
994 else
995 mode = IEEE80211_MODE_AUTO;
998 * This implements agressive mode as found in certain
999 * vendors' AP's. When there is significant high
1000 * priority (VI/VO) traffic in the BSS throttle back BE
1001 * traffic by using conservative parameters. Otherwise
1002 * BE uses agressive params to optimize performance of
1003 * legacy/non-QoS traffic.
1005 if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
1006 (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
1007 (vap->iv_opmode == IEEE80211_M_STA &&
1008 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
1009 (vap->iv_flags & IEEE80211_F_WME) == 0) {
1010 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1011 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1013 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1014 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1015 aggrParam[mode].logcwmin;
1016 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1017 aggrParam[mode].logcwmax;
1018 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1019 (vap->iv_flags & IEEE80211_F_BURST) ?
1020 aggrParam[mode].txopLimit : 0;
1021 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1022 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1023 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1024 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1025 chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1028 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1029 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1030 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1031 [IEEE80211_MODE_AUTO] = 3,
1032 [IEEE80211_MODE_11A] = 3,
1033 [IEEE80211_MODE_11B] = 4,
1034 [IEEE80211_MODE_11G] = 3,
1035 [IEEE80211_MODE_FH] = 4,
1036 [IEEE80211_MODE_TURBO_A] = 3,
1037 [IEEE80211_MODE_TURBO_G] = 3,
1038 [IEEE80211_MODE_STURBO_A] = 3,
1039 [IEEE80211_MODE_HALF] = 3,
1040 [IEEE80211_MODE_QUARTER] = 3,
1041 [IEEE80211_MODE_11NA] = 3,
1042 [IEEE80211_MODE_11NG] = 3,
1044 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1045 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1047 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1048 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1049 "update %s (chan+bss) logcwmin %u\n",
1050 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1052 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* XXX ibss? */
1054 * Arrange for a beacon update and bump the parameter
1055 * set number so associated stations load the new values.
1057 wme->wme_bssChanParams.cap_info =
1058 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1059 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1062 wme->wme_update(ic);
1064 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1065 "%s: WME params updated, cap_info 0x%x\n", __func__,
1066 vap->iv_opmode == IEEE80211_M_STA ?
1067 wme->wme_wmeChanParams.cap_info :
1068 wme->wme_bssChanParams.cap_info);
1071 void
1072 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1074 struct ieee80211com *ic = vap->iv_ic;
1076 if (ic->ic_caps & IEEE80211_C_WME) {
1077 ieee80211_wme_updateparams_locked(vap);
1081 static void
1082 parent_updown_task(void *arg, int npending)
1084 struct ifnet *parent = arg;
1086 wlan_serialize_enter();
1087 parent->if_ioctl(parent, SIOCSIFFLAGS, NULL, curthread->td_ucred);
1088 wlan_serialize_exit();
1091 static void
1092 update_mcast_task(void *arg, int npending)
1094 struct ieee80211com *ic = arg;
1095 struct ifnet *parent = ic->ic_ifp;
1097 wlan_serialize_enter();
1098 ic->ic_update_mcast(parent);
1099 wlan_serialize_exit();
1102 static void
1103 update_promisc_task(void *arg, int npending)
1105 struct ieee80211com *ic = arg;
1106 struct ifnet *parent = ic->ic_ifp;
1108 wlan_serialize_enter();
1109 ic->ic_update_promisc(parent);
1110 wlan_serialize_exit();
1113 static void
1114 update_channel_task(void *arg, int npending)
1116 struct ieee80211com *ic = arg;
1118 wlan_serialize_enter();
1119 ic->ic_set_channel(ic);
1120 ieee80211_radiotap_chan_change(ic);
1121 wlan_serialize_exit();
1125 * Block until the parent is in a known state. This is
1126 * used after any operations that dispatch a task (e.g.
1127 * to auto-configure the parent device up/down).
1129 void
1130 ieee80211_waitfor_parent(struct ieee80211com *ic)
1132 wlan_assert_serialized();
1133 wlan_serialize_exit(); /* exit to block */
1134 taskqueue_block(ic->ic_tq);
1135 ieee80211_draintask(ic, &ic->ic_parent_task);
1136 ieee80211_draintask(ic, &ic->ic_mcast_task);
1137 ieee80211_draintask(ic, &ic->ic_promisc_task);
1138 ieee80211_draintask(ic, &ic->ic_chan_task);
1139 ieee80211_draintask(ic, &ic->ic_bmiss_task);
1140 taskqueue_unblock(ic->ic_tq);
1141 wlan_serialize_enter(); /* then re-enter */
1145 * Start a vap running. If this is the first vap to be
1146 * set running on the underlying device then we
1147 * automatically bring the device up.
1149 void
1150 ieee80211_start_locked(struct ieee80211vap *vap)
1152 struct ifnet *ifp = vap->iv_ifp;
1153 struct ieee80211com *ic = vap->iv_ic;
1154 struct ifnet *parent = ic->ic_ifp;
1156 IEEE80211_DPRINTF(vap,
1157 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1158 "start running, %d vaps running\n", ic->ic_nrunning);
1160 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1162 * Mark us running. Note that it's ok to do this first;
1163 * if we need to bring the parent device up we defer that
1164 * to avoid dropping the com lock. We expect the device
1165 * to respond to being marked up by calling back into us
1166 * through ieee80211_start_all at which point we'll come
1167 * back in here and complete the work.
1169 ifp->if_flags |= IFF_RUNNING;
1171 * We are not running; if this we are the first vap
1172 * to be brought up auto-up the parent if necessary.
1174 if (ic->ic_nrunning++ == 0 &&
1175 (parent->if_flags & IFF_RUNNING) == 0) {
1176 IEEE80211_DPRINTF(vap,
1177 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1178 "%s: up parent %s\n", __func__, parent->if_xname);
1179 parent->if_flags |= IFF_UP;
1180 ieee80211_runtask(ic, &ic->ic_parent_task);
1181 return;
1185 * If the parent is up and running, then kick the
1186 * 802.11 state machine as appropriate.
1188 if ((parent->if_flags & IFF_RUNNING) &&
1189 vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1190 if (vap->iv_opmode == IEEE80211_M_STA) {
1191 #if 0
1192 /* XXX bypasses scan too easily; disable for now */
1194 * Try to be intelligent about clocking the state
1195 * machine. If we're currently in RUN state then
1196 * we should be able to apply any new state/parameters
1197 * simply by re-associating. Otherwise we need to
1198 * re-scan to select an appropriate ap.
1200 if (vap->iv_state >= IEEE80211_S_RUN)
1201 ieee80211_new_state_locked(vap,
1202 IEEE80211_S_ASSOC, 1);
1203 else
1204 #endif
1205 ieee80211_new_state_locked(vap,
1206 IEEE80211_S_SCAN, 0);
1207 } else {
1209 * For monitor+wds mode there's nothing to do but
1210 * start running. Otherwise if this is the first
1211 * vap to be brought up, start a scan which may be
1212 * preempted if the station is locked to a particular
1213 * channel.
1215 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1216 if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1217 vap->iv_opmode == IEEE80211_M_WDS)
1218 ieee80211_new_state_locked(vap,
1219 IEEE80211_S_RUN, -1);
1220 else
1221 ieee80211_new_state_locked(vap,
1222 IEEE80211_S_SCAN, 0);
1228 * Start a single vap.
1230 void
1231 ieee80211_init(void *arg)
1233 struct ieee80211vap *vap = arg;
1235 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1236 "%s\n", __func__);
1238 ieee80211_start_locked(vap);
1242 * Start all runnable vap's on a device.
1244 void
1245 ieee80211_start_all(struct ieee80211com *ic)
1247 struct ieee80211vap *vap;
1249 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1250 struct ifnet *ifp = vap->iv_ifp;
1251 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1252 ieee80211_start_locked(vap);
1257 * Stop a vap. We force it down using the state machine
1258 * then mark it's ifnet not running. If this is the last
1259 * vap running on the underlying device then we close it
1260 * too to insure it will be properly initialized when the
1261 * next vap is brought up.
1263 void
1264 ieee80211_stop_locked(struct ieee80211vap *vap)
1266 struct ieee80211com *ic = vap->iv_ic;
1267 struct ifnet *ifp = vap->iv_ifp;
1268 struct ifnet *parent = ic->ic_ifp;
1270 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1271 "stop running, %d vaps running\n", ic->ic_nrunning);
1273 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1274 if (ifp->if_flags & IFF_RUNNING) {
1275 ifp->if_flags &= ~IFF_RUNNING; /* mark us stopped */
1276 if (--ic->ic_nrunning == 0 &&
1277 (parent->if_flags & IFF_RUNNING)) {
1278 IEEE80211_DPRINTF(vap,
1279 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1280 "down parent %s\n", parent->if_xname);
1281 parent->if_flags &= ~IFF_UP;
1282 ieee80211_runtask(ic, &ic->ic_parent_task);
1287 void
1288 ieee80211_stop(struct ieee80211vap *vap)
1290 struct ieee80211com *ic = vap->iv_ic;
1292 ic = vap->iv_ic;
1293 ieee80211_stop_locked(vap);
1297 * Stop all vap's running on a device.
1299 void
1300 ieee80211_stop_all(struct ieee80211com *ic)
1302 struct ieee80211vap *vap;
1304 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1305 struct ifnet *ifp = vap->iv_ifp;
1306 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1307 ieee80211_stop_locked(vap);
1310 ieee80211_waitfor_parent(ic);
1314 * Stop all vap's running on a device and arrange
1315 * for those that were running to be resumed.
1317 void
1318 ieee80211_suspend_all(struct ieee80211com *ic)
1320 struct ieee80211vap *vap;
1322 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1323 struct ifnet *ifp = vap->iv_ifp;
1324 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
1325 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1326 ieee80211_stop_locked(vap);
1330 ieee80211_waitfor_parent(ic);
1334 * Start all vap's marked for resume.
1336 void
1337 ieee80211_resume_all(struct ieee80211com *ic)
1339 struct ieee80211vap *vap;
1341 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1342 struct ifnet *ifp = vap->iv_ifp;
1343 if (!IFNET_IS_UP_RUNNING(ifp) &&
1344 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1345 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1346 ieee80211_start_locked(vap);
1351 void
1352 ieee80211_beacon_miss(struct ieee80211com *ic)
1354 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1355 /* Process in a taskq, the handler may reenter the driver */
1356 ieee80211_runtask(ic, &ic->ic_bmiss_task);
1360 static void
1361 beacon_miss_task(void *arg, int npending)
1363 struct ieee80211com *ic = arg;
1364 struct ieee80211vap *vap;
1366 wlan_serialize_enter();
1367 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1369 * We only pass events through for sta vap's in RUN state;
1370 * may be too restrictive but for now this saves all the
1371 * handlers duplicating these checks.
1373 if (vap->iv_opmode == IEEE80211_M_STA &&
1374 vap->iv_state >= IEEE80211_S_RUN &&
1375 vap->iv_bmiss != NULL)
1376 vap->iv_bmiss(vap);
1378 wlan_serialize_exit();
1381 static void
1382 beacon_swmiss_task(void *arg, int npending)
1384 struct ieee80211vap *vap = arg;
1386 wlan_serialize_enter();
1387 if (vap->iv_state == IEEE80211_S_RUN) {
1388 /* XXX Call multiple times if npending > zero? */
1389 vap->iv_bmiss(vap);
1391 wlan_serialize_exit();
1395 * Software beacon miss handling. Check if any beacons
1396 * were received in the last period. If not post a
1397 * beacon miss; otherwise reset the counter.
1399 void
1400 ieee80211_swbmiss_callout(void *arg)
1402 struct ieee80211vap *vap = arg;
1403 struct ieee80211com *ic = vap->iv_ic;
1405 wlan_serialize_enter();
1406 KASSERT(vap->iv_state == IEEE80211_S_RUN,
1407 ("wrong state %d", vap->iv_state));
1409 if (ic->ic_flags & IEEE80211_F_SCAN) {
1411 * If scanning just ignore and reset state. If we get a
1412 * bmiss after coming out of scan because we haven't had
1413 * time to receive a beacon then we should probe the AP
1414 * before posting a real bmiss (unless iv_bmiss_max has
1415 * been artifiically lowered). A cleaner solution might
1416 * be to disable the timer on scan start/end but to handle
1417 * case of multiple sta vap's we'd need to disable the
1418 * timers of all affected vap's.
1420 vap->iv_swbmiss_count = 0;
1421 } else if (vap->iv_swbmiss_count == 0) {
1422 if (vap->iv_bmiss != NULL)
1423 ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1424 if (vap->iv_bmiss_count == 0) /* don't re-arm timer */
1425 goto done;
1426 } else {
1427 vap->iv_swbmiss_count = 0;
1429 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1430 ieee80211_swbmiss_callout, vap);
1431 done:
1432 wlan_serialize_exit();
1436 * Start an 802.11h channel switch. We record the parameters,
1437 * mark the operation pending, notify each vap through the
1438 * beacon update mechanism so it can update the beacon frame
1439 * contents, and then switch vap's to CSA state to block outbound
1440 * traffic. Devices that handle CSA directly can use the state
1441 * switch to do the right thing so long as they call
1442 * ieee80211_csa_completeswitch when it's time to complete the
1443 * channel change. Devices that depend on the net80211 layer can
1444 * use ieee80211_beacon_update to handle the countdown and the
1445 * channel switch.
1447 void
1448 ieee80211_csa_startswitch(struct ieee80211com *ic,
1449 struct ieee80211_channel *c, int mode, int count)
1451 struct ieee80211vap *vap;
1453 ic->ic_csa_newchan = c;
1454 ic->ic_csa_mode = mode;
1455 ic->ic_csa_count = count;
1456 ic->ic_flags |= IEEE80211_F_CSAPENDING;
1457 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1458 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1459 vap->iv_opmode == IEEE80211_M_IBSS ||
1460 vap->iv_opmode == IEEE80211_M_MBSS)
1461 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1462 /* switch to CSA state to block outbound traffic */
1463 if (vap->iv_state == IEEE80211_S_RUN)
1464 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1466 ieee80211_notify_csa(ic, c, mode, count);
1469 static void
1470 csa_completeswitch(struct ieee80211com *ic)
1472 struct ieee80211vap *vap;
1474 ic->ic_csa_newchan = NULL;
1475 ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1477 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1478 if (vap->iv_state == IEEE80211_S_CSA)
1479 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1483 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1484 * We clear state and move all vap's in CSA state to RUN state
1485 * so they can again transmit.
1487 void
1488 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1490 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1492 ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1493 csa_completeswitch(ic);
1497 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1498 * We clear state and move all vap's in CSA state to RUN state
1499 * so they can again transmit.
1501 void
1502 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1504 csa_completeswitch(ic);
1508 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1509 * We clear state and move all vap's in CAC state to RUN state.
1511 void
1512 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1514 struct ieee80211com *ic = vap0->iv_ic;
1515 struct ieee80211vap *vap;
1518 * Complete CAC state change for lead vap first; then
1519 * clock all the other vap's waiting.
1521 KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1522 ("wrong state %d", vap0->iv_state));
1523 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1525 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1526 if (vap->iv_state == IEEE80211_S_CAC)
1527 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1531 * Force all vap's other than the specified vap to the INIT state
1532 * and mark them as waiting for a scan to complete. These vaps
1533 * will be brought up when the scan completes and the scanning vap
1534 * reaches RUN state by wakeupwaiting.
1536 static void
1537 markwaiting(struct ieee80211vap *vap0)
1539 struct ieee80211com *ic = vap0->iv_ic;
1540 struct ieee80211vap *vap;
1543 * A vap list entry can not disappear since we are running on the
1544 * taskqueue and a vap destroy will queue and drain another state
1545 * change task.
1547 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1548 if (vap == vap0)
1549 continue;
1550 if (vap->iv_state != IEEE80211_S_INIT) {
1551 /* NB: iv_newstate may drop the lock */
1552 vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1553 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1559 * Wakeup all vap's waiting for a scan to complete. This is the
1560 * companion to markwaiting (above) and is used to coordinate
1561 * multiple vaps scanning.
1562 * This is called from the state taskqueue.
1564 static void
1565 wakeupwaiting(struct ieee80211vap *vap0)
1567 struct ieee80211com *ic = vap0->iv_ic;
1568 struct ieee80211vap *vap;
1571 * A vap list entry can not disappear since we are running on the
1572 * taskqueue and a vap destroy will queue and drain another state
1573 * change task.
1575 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1576 if (vap == vap0)
1577 continue;
1578 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1579 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1580 /* NB: sta's cannot go INIT->RUN */
1581 /* NB: iv_newstate may drop the lock */
1582 vap->iv_newstate(vap,
1583 vap->iv_opmode == IEEE80211_M_STA ?
1584 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1590 * Handle post state change work common to all operating modes.
1592 static void
1593 ieee80211_newstate_task(void *xvap, int npending)
1595 struct ieee80211vap *vap = xvap;
1596 struct ieee80211com *ic;
1597 enum ieee80211_state nstate, ostate;
1598 int arg, rc;
1600 wlan_serialize_enter();
1602 ic = vap->iv_ic;
1603 nstate = vap->iv_nstate;
1604 arg = vap->iv_nstate_arg;
1606 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1608 * We have been requested to drop back to the INIT before
1609 * proceeding to the new state.
1611 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1612 "%s: %s -> %s arg %d\n", __func__,
1613 ieee80211_state_name[vap->iv_state],
1614 ieee80211_state_name[IEEE80211_S_INIT], arg);
1615 vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1616 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1619 ostate = vap->iv_state;
1620 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1622 * SCAN was forced; e.g. on beacon miss. Force other running
1623 * vap's to INIT state and mark them as waiting for the scan to
1624 * complete. This insures they don't interfere with our
1625 * scanning. Since we are single threaded the vaps can not
1626 * transition again while we are executing.
1628 * XXX not always right, assumes ap follows sta
1630 markwaiting(vap);
1632 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1633 "%s: %s -> %s arg %d\n", __func__,
1634 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1636 rc = vap->iv_newstate(vap, nstate, arg);
1637 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1638 if (rc != 0) {
1639 /* State transition failed */
1640 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1641 KASSERT(nstate != IEEE80211_S_INIT,
1642 ("INIT state change failed"));
1643 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1644 "%s: %s returned error %d\n", __func__,
1645 ieee80211_state_name[nstate], rc);
1646 goto done;
1649 /* No actual transition, skip post processing */
1650 if (ostate == nstate)
1651 goto done;
1653 if (nstate == IEEE80211_S_RUN) {
1655 * OACTIVE may be set on the vap if the upper layer
1656 * tried to transmit (e.g. IPv6 NDP) before we reach
1657 * RUN state. Clear it and restart xmit.
1659 * Note this can also happen as a result of SLEEP->RUN
1660 * (i.e. coming out of power save mode).
1662 vap->iv_ifp->if_flags &= ~IFF_OACTIVE;
1663 vap->iv_ifp->if_start(vap->iv_ifp);
1665 /* bring up any vaps waiting on us */
1666 wakeupwaiting(vap);
1667 } else if (nstate == IEEE80211_S_INIT) {
1669 * Flush the scan cache if we did the last scan (XXX?)
1670 * and flush any frames on send queues from this vap.
1671 * Note the mgt q is used only for legacy drivers and
1672 * will go away shortly.
1674 ieee80211_scan_flush(vap);
1676 /* XXX NB: cast for altq */
1677 ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap);
1679 done:
1680 wlan_serialize_exit();
1684 * Public interface for initiating a state machine change.
1685 * This routine single-threads the request and coordinates
1686 * the scheduling of multiple vaps for the purpose of selecting
1687 * an operating channel. Specifically the following scenarios
1688 * are handled:
1689 * o only one vap can be selecting a channel so on transition to
1690 * SCAN state if another vap is already scanning then
1691 * mark the caller for later processing and return without
1692 * doing anything (XXX? expectations by caller of synchronous operation)
1693 * o only one vap can be doing CAC of a channel so on transition to
1694 * CAC state if another vap is already scanning for radar then
1695 * mark the caller for later processing and return without
1696 * doing anything (XXX? expectations by caller of synchronous operation)
1697 * o if another vap is already running when a request is made
1698 * to SCAN then an operating channel has been chosen; bypass
1699 * the scan and just join the channel
1701 * Note that the state change call is done through the iv_newstate
1702 * method pointer so any driver routine gets invoked. The driver
1703 * will normally call back into operating mode-specific
1704 * ieee80211_newstate routines (below) unless it needs to completely
1705 * bypass the state machine (e.g. because the firmware has it's
1706 * own idea how things should work). Bypassing the net80211 layer
1707 * is usually a mistake and indicates lack of proper integration
1708 * with the net80211 layer.
1710 static int
1711 ieee80211_new_state_locked(struct ieee80211vap *vap,
1712 enum ieee80211_state nstate, int arg)
1714 struct ieee80211com *ic = vap->iv_ic;
1715 struct ieee80211vap *vp;
1716 enum ieee80211_state ostate;
1717 int nrunning, nscanning;
1719 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1720 if (vap->iv_nstate == IEEE80211_S_INIT) {
1722 * XXX The vap is being stopped, do no allow any other
1723 * state changes until this is completed.
1725 return -1;
1726 } else if (vap->iv_state != vap->iv_nstate) {
1727 #if 0
1728 /* Warn if the previous state hasn't completed. */
1729 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1730 "%s: pending %s -> %s transition lost\n", __func__,
1731 ieee80211_state_name[vap->iv_state],
1732 ieee80211_state_name[vap->iv_nstate]);
1733 #else
1734 /* XXX temporarily enable to identify issues */
1735 if_printf(vap->iv_ifp,
1736 "%s: pending %s -> %s transition lost\n",
1737 __func__, ieee80211_state_name[vap->iv_state],
1738 ieee80211_state_name[vap->iv_nstate]);
1739 #endif
1743 nrunning = nscanning = 0;
1744 /* XXX can track this state instead of calculating */
1745 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1746 if (vp != vap) {
1747 if (vp->iv_state >= IEEE80211_S_RUN)
1748 nrunning++;
1749 /* XXX doesn't handle bg scan */
1750 /* NB: CAC+AUTH+ASSOC treated like SCAN */
1751 else if (vp->iv_state > IEEE80211_S_INIT)
1752 nscanning++;
1755 ostate = vap->iv_state;
1756 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1757 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1758 ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1759 nrunning, nscanning);
1760 switch (nstate) {
1761 case IEEE80211_S_SCAN:
1762 if (ostate == IEEE80211_S_INIT) {
1764 * INIT -> SCAN happens on initial bringup.
1766 KASSERT(!(nscanning && nrunning),
1767 ("%d scanning and %d running", nscanning, nrunning));
1768 if (nscanning) {
1770 * Someone is scanning, defer our state
1771 * change until the work has completed.
1773 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1774 "%s: defer %s -> %s\n",
1775 __func__, ieee80211_state_name[ostate],
1776 ieee80211_state_name[nstate]);
1777 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1778 return 0;
1780 if (nrunning) {
1782 * Someone is operating; just join the channel
1783 * they have chosen.
1785 /* XXX kill arg? */
1786 /* XXX check each opmode, adhoc? */
1787 if (vap->iv_opmode == IEEE80211_M_STA)
1788 nstate = IEEE80211_S_SCAN;
1789 else
1790 nstate = IEEE80211_S_RUN;
1791 #ifdef IEEE80211_DEBUG
1792 if (nstate != IEEE80211_S_SCAN) {
1793 IEEE80211_DPRINTF(vap,
1794 IEEE80211_MSG_STATE,
1795 "%s: override, now %s -> %s\n",
1796 __func__,
1797 ieee80211_state_name[ostate],
1798 ieee80211_state_name[nstate]);
1800 #endif
1803 break;
1804 case IEEE80211_S_RUN:
1805 if (vap->iv_opmode == IEEE80211_M_WDS &&
1806 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1807 nscanning) {
1809 * Legacy WDS with someone else scanning; don't
1810 * go online until that completes as we should
1811 * follow the other vap to the channel they choose.
1813 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1814 "%s: defer %s -> %s (legacy WDS)\n", __func__,
1815 ieee80211_state_name[ostate],
1816 ieee80211_state_name[nstate]);
1817 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1818 return 0;
1820 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1821 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1822 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1823 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1825 * This is a DFS channel, transition to CAC state
1826 * instead of RUN. This allows us to initiate
1827 * Channel Availability Check (CAC) as specified
1828 * by 11h/DFS.
1830 nstate = IEEE80211_S_CAC;
1831 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1832 "%s: override %s -> %s (DFS)\n", __func__,
1833 ieee80211_state_name[ostate],
1834 ieee80211_state_name[nstate]);
1836 break;
1837 case IEEE80211_S_INIT:
1838 /* cancel any scan in progress */
1839 ieee80211_cancel_scan(vap);
1840 if (ostate == IEEE80211_S_INIT ) {
1841 /* XXX don't believe this */
1842 /* INIT -> INIT. nothing to do */
1843 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1845 /* fall thru... */
1846 default:
1847 break;
1849 /* defer the state change to a thread */
1850 vap->iv_nstate = nstate;
1851 vap->iv_nstate_arg = arg;
1852 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1853 ieee80211_runtask(ic, &vap->iv_nstate_task);
1854 return EINPROGRESS;
1858 ieee80211_new_state(struct ieee80211vap *vap,
1859 enum ieee80211_state nstate, int arg)
1861 struct ieee80211com *ic = vap->iv_ic;
1862 int rc;
1864 ic = vap->iv_ic;
1865 rc = ieee80211_new_state_locked(vap, nstate, arg);
1866 return rc;