2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * $FreeBSD: head/sys/net80211/ieee80211_proto.c 195618 2009-07-11 15:02:45Z rpaulo $
30 * IEEE 802.11 protocol support.
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/systm.h>
40 #include <sys/socket.h>
41 #include <sys/sockio.h>
44 #include <net/if_media.h>
45 #include <net/route.h>
47 #include <netproto/802_11/ieee80211_var.h>
48 #include <netproto/802_11/ieee80211_adhoc.h>
49 #include <netproto/802_11/ieee80211_sta.h>
50 #include <netproto/802_11/ieee80211_hostap.h>
51 #include <netproto/802_11/ieee80211_wds.h>
52 #ifdef IEEE80211_SUPPORT_MESH
53 #include <netproto/802_11/ieee80211_mesh.h>
55 #include <netproto/802_11/ieee80211_monitor.h>
56 #include <netproto/802_11/ieee80211_input.h>
59 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
60 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
62 const char *ieee80211_mgt_subtype_name
[] = {
63 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
64 "probe_req", "probe_resp", "reserved#6", "reserved#7",
65 "beacon", "atim", "disassoc", "auth",
66 "deauth", "action", "reserved#14", "reserved#15"
68 const char *ieee80211_ctl_subtype_name
[] = {
69 "reserved#0", "reserved#1", "reserved#2", "reserved#3",
70 "reserved#3", "reserved#5", "reserved#6", "reserved#7",
71 "reserved#8", "reserved#9", "ps_poll", "rts",
72 "cts", "ack", "cf_end", "cf_end_ack"
74 const char *ieee80211_opmode_name
[IEEE80211_OPMODE_MAX
] = {
75 "IBSS", /* IEEE80211_M_IBSS */
76 "STA", /* IEEE80211_M_STA */
77 "WDS", /* IEEE80211_M_WDS */
78 "AHDEMO", /* IEEE80211_M_AHDEMO */
79 "HOSTAP", /* IEEE80211_M_HOSTAP */
80 "MONITOR", /* IEEE80211_M_MONITOR */
81 "MBSS" /* IEEE80211_M_MBSS */
83 const char *ieee80211_state_name
[IEEE80211_S_MAX
] = {
84 "INIT", /* IEEE80211_S_INIT */
85 "SCAN", /* IEEE80211_S_SCAN */
86 "AUTH", /* IEEE80211_S_AUTH */
87 "ASSOC", /* IEEE80211_S_ASSOC */
88 "CAC", /* IEEE80211_S_CAC */
89 "RUN", /* IEEE80211_S_RUN */
90 "CSA", /* IEEE80211_S_CSA */
91 "SLEEP", /* IEEE80211_S_SLEEP */
93 const char *ieee80211_wme_acnames
[] = {
101 static void beacon_miss_task(void *, int);
102 static void beacon_swmiss_task(void *, int);
103 static void parent_updown_task(void *, int);
104 static void update_mcast_task(void *, int);
105 static void update_promisc_task(void *, int);
106 static void update_channel_task(void *, int);
107 static void ieee80211_newstate_task(void *, int);
108 static int ieee80211_new_state_locked(struct ieee80211vap
*,
109 enum ieee80211_state
, int);
112 null_raw_xmit(struct ieee80211_node
*ni
, struct mbuf
*m
,
113 const struct ieee80211_bpf_params
*params
)
115 struct ifnet
*ifp
= ni
->ni_ic
->ic_ifp
;
117 if_printf(ifp
, "missing ic_raw_xmit callback, drop frame\n");
123 ieee80211_proto_attach(struct ieee80211com
*ic
)
125 struct ifnet
*ifp
= ic
->ic_ifp
;
127 /* override the 802.3 setting */
128 ifp
->if_hdrlen
= ic
->ic_headroom
129 + sizeof(struct ieee80211_qosframe_addr4
)
130 + IEEE80211_WEP_IVLEN
+ IEEE80211_WEP_KIDLEN
131 + IEEE80211_WEP_EXTIVLEN
;
132 /* XXX no way to recalculate on ifdetach */
133 if (ALIGN(ifp
->if_hdrlen
) > max_linkhdr
) {
134 /* XXX sanity check... */
135 max_linkhdr
= ALIGN(ifp
->if_hdrlen
);
136 max_hdr
= max_linkhdr
+ max_protohdr
;
137 max_datalen
= MHLEN
- max_hdr
;
139 ic
->ic_protmode
= IEEE80211_PROT_CTSONLY
;
141 TASK_INIT(&ic
->ic_parent_task
, 0, parent_updown_task
, ifp
);
142 TASK_INIT(&ic
->ic_mcast_task
, 0, update_mcast_task
, ic
);
143 TASK_INIT(&ic
->ic_promisc_task
, 0, update_promisc_task
, ic
);
144 TASK_INIT(&ic
->ic_chan_task
, 0, update_channel_task
, ic
);
145 TASK_INIT(&ic
->ic_bmiss_task
, 0, beacon_miss_task
, ic
);
147 ic
->ic_wme
.wme_hipri_switch_hysteresis
=
148 AGGRESSIVE_MODE_SWITCH_HYSTERESIS
;
150 /* initialize management frame handlers */
151 ic
->ic_send_mgmt
= ieee80211_send_mgmt
;
152 ic
->ic_raw_xmit
= null_raw_xmit
;
154 ieee80211_adhoc_attach(ic
);
155 ieee80211_sta_attach(ic
);
156 ieee80211_wds_attach(ic
);
157 ieee80211_hostap_attach(ic
);
158 #ifdef IEEE80211_SUPPORT_MESH
159 ieee80211_mesh_attach(ic
);
161 ieee80211_monitor_attach(ic
);
165 ieee80211_proto_detach(struct ieee80211com
*ic
)
167 ieee80211_monitor_detach(ic
);
168 #ifdef IEEE80211_SUPPORT_MESH
169 ieee80211_mesh_detach(ic
);
171 ieee80211_hostap_detach(ic
);
172 ieee80211_wds_detach(ic
);
173 ieee80211_adhoc_detach(ic
);
174 ieee80211_sta_detach(ic
);
178 null_update_beacon(struct ieee80211vap
*vap
, int item
)
183 ieee80211_proto_vattach(struct ieee80211vap
*vap
)
185 struct ieee80211com
*ic
= vap
->iv_ic
;
186 struct ifnet
*ifp
= vap
->iv_ifp
;
189 /* override the 802.3 setting */
190 ifp
->if_hdrlen
= ic
->ic_ifp
->if_hdrlen
;
192 vap
->iv_rtsthreshold
= IEEE80211_RTS_DEFAULT
;
193 vap
->iv_fragthreshold
= IEEE80211_FRAG_DEFAULT
;
194 vap
->iv_bmiss_max
= IEEE80211_BMISS_MAX
;
195 callout_init_mp(&vap
->iv_swbmiss
);
196 callout_init_mp(&vap
->iv_mgtsend
);
197 TASK_INIT(&vap
->iv_nstate_task
, 0, ieee80211_newstate_task
, vap
);
198 TASK_INIT(&vap
->iv_swbmiss_task
, 0, beacon_swmiss_task
, vap
);
200 * Install default tx rate handling: no fixed rate, lowest
201 * supported rate for mgmt and multicast frames. Default
202 * max retry count. These settings can be changed by the
203 * driver and/or user applications.
205 for (i
= IEEE80211_MODE_11A
; i
< IEEE80211_MODE_MAX
; i
++) {
206 const struct ieee80211_rateset
*rs
= &ic
->ic_sup_rates
[i
];
208 vap
->iv_txparms
[i
].ucastrate
= IEEE80211_FIXED_RATE_NONE
;
209 if (i
== IEEE80211_MODE_11NA
|| i
== IEEE80211_MODE_11NG
) {
210 vap
->iv_txparms
[i
].mgmtrate
= 0 | IEEE80211_RATE_MCS
;
211 vap
->iv_txparms
[i
].mcastrate
= 0 | IEEE80211_RATE_MCS
;
213 vap
->iv_txparms
[i
].mgmtrate
=
214 rs
->rs_rates
[0] & IEEE80211_RATE_VAL
;
215 vap
->iv_txparms
[i
].mcastrate
=
216 rs
->rs_rates
[0] & IEEE80211_RATE_VAL
;
218 vap
->iv_txparms
[i
].maxretry
= IEEE80211_TXMAX_DEFAULT
;
220 vap
->iv_roaming
= IEEE80211_ROAMING_AUTO
;
222 vap
->iv_update_beacon
= null_update_beacon
;
223 vap
->iv_deliver_data
= ieee80211_deliver_data
;
225 /* attach support for operating mode */
226 ic
->ic_vattach
[vap
->iv_opmode
](vap
);
230 ieee80211_proto_vdetach(struct ieee80211vap
*vap
)
232 #define FREEAPPIE(ie) do { \
234 kfree(ie, M_80211_NODE_IE); \
237 * Detach operating mode module.
239 if (vap
->iv_opdetach
!= NULL
)
240 vap
->iv_opdetach(vap
);
242 * This should not be needed as we detach when reseting
243 * the state but be conservative here since the
244 * authenticator may do things like spawn kernel threads.
246 if (vap
->iv_auth
->ia_detach
!= NULL
)
247 vap
->iv_auth
->ia_detach(vap
);
249 * Detach any ACL'ator.
251 if (vap
->iv_acl
!= NULL
)
252 vap
->iv_acl
->iac_detach(vap
);
254 FREEAPPIE(vap
->iv_appie_beacon
);
255 FREEAPPIE(vap
->iv_appie_probereq
);
256 FREEAPPIE(vap
->iv_appie_proberesp
);
257 FREEAPPIE(vap
->iv_appie_assocreq
);
258 FREEAPPIE(vap
->iv_appie_assocresp
);
259 FREEAPPIE(vap
->iv_appie_wpa
);
264 * Simple-minded authenticator module support.
267 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
268 /* XXX well-known names */
269 static const char *auth_modnames
[IEEE80211_AUTH_MAX
] = {
270 "wlan_internal", /* IEEE80211_AUTH_NONE */
271 "wlan_internal", /* IEEE80211_AUTH_OPEN */
272 "wlan_internal", /* IEEE80211_AUTH_SHARED */
273 "wlan_xauth", /* IEEE80211_AUTH_8021X */
274 "wlan_internal", /* IEEE80211_AUTH_AUTO */
275 "wlan_xauth", /* IEEE80211_AUTH_WPA */
277 static const struct ieee80211_authenticator
*authenticators
[IEEE80211_AUTH_MAX
];
279 static const struct ieee80211_authenticator auth_internal
= {
280 .ia_name
= "wlan_internal",
283 .ia_node_join
= NULL
,
284 .ia_node_leave
= NULL
,
288 * Setup internal authenticators once; they are never unregistered.
291 ieee80211_auth_setup(void)
293 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN
, &auth_internal
);
294 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED
, &auth_internal
);
295 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO
, &auth_internal
);
297 SYSINIT(wlan_auth
, SI_SUB_DRIVERS
, SI_ORDER_FIRST
, ieee80211_auth_setup
, NULL
);
299 const struct ieee80211_authenticator
*
300 ieee80211_authenticator_get(int auth
)
302 if (auth
>= IEEE80211_AUTH_MAX
)
304 if (authenticators
[auth
] == NULL
)
305 ieee80211_load_module(auth_modnames
[auth
]);
306 return authenticators
[auth
];
310 ieee80211_authenticator_register(int type
,
311 const struct ieee80211_authenticator
*auth
)
313 if (type
>= IEEE80211_AUTH_MAX
)
315 authenticators
[type
] = auth
;
319 ieee80211_authenticator_unregister(int type
)
322 if (type
>= IEEE80211_AUTH_MAX
)
324 authenticators
[type
] = NULL
;
328 * Very simple-minded ACL module support.
330 /* XXX just one for now */
331 static const struct ieee80211_aclator
*acl
= NULL
;
334 ieee80211_aclator_register(const struct ieee80211_aclator
*iac
)
336 kprintf("wlan: %s acl policy registered\n", iac
->iac_name
);
341 ieee80211_aclator_unregister(const struct ieee80211_aclator
*iac
)
345 kprintf("wlan: %s acl policy unregistered\n", iac
->iac_name
);
348 const struct ieee80211_aclator
*
349 ieee80211_aclator_get(const char *name
)
352 ieee80211_load_module("wlan_acl");
353 return acl
!= NULL
&& strcmp(acl
->iac_name
, name
) == 0 ? acl
: NULL
;
357 ieee80211_print_essid(const uint8_t *essid
, int len
)
362 if (len
> IEEE80211_NWID_LEN
)
363 len
= IEEE80211_NWID_LEN
;
364 /* determine printable or not */
365 for (i
= 0, p
= essid
; i
< len
; i
++, p
++) {
366 if (*p
< ' ' || *p
> 0x7e)
371 for (i
= 0, p
= essid
; i
< len
; i
++, p
++)
376 for (i
= 0, p
= essid
; i
< len
; i
++, p
++)
382 ieee80211_dump_pkt(struct ieee80211com
*ic
,
383 const uint8_t *buf
, int len
, int rate
, int rssi
)
385 const struct ieee80211_frame
*wh
;
388 wh
= (const struct ieee80211_frame
*)buf
;
389 switch (wh
->i_fc
[1] & IEEE80211_FC1_DIR_MASK
) {
390 case IEEE80211_FC1_DIR_NODS
:
391 kprintf("NODS %6D", wh
->i_addr2
, ":");
392 kprintf("->%6D", wh
->i_addr1
, ":");
393 kprintf("(%6D)", wh
->i_addr3
, ":");
395 case IEEE80211_FC1_DIR_TODS
:
396 kprintf("TODS %6D", wh
->i_addr2
, ":");
397 kprintf("->%6D", wh
->i_addr3
, ":");
398 kprintf("(%6D)", wh
->i_addr1
, ":");
400 case IEEE80211_FC1_DIR_FROMDS
:
401 kprintf("FRDS %6D", wh
->i_addr3
, ":");
402 kprintf("->%6D", wh
->i_addr1
, ":");
403 kprintf("(%6D)", wh
->i_addr2
, ":");
405 case IEEE80211_FC1_DIR_DSTODS
:
406 kprintf("DSDS %6D", (const uint8_t *)&wh
[1], ":");
407 kprintf("->%6D", wh
->i_addr3
, ":");
408 kprintf("(%6D", wh
->i_addr2
, ":");
409 kprintf("->%6D)", wh
->i_addr1
, ":");
412 switch (wh
->i_fc
[0] & IEEE80211_FC0_TYPE_MASK
) {
413 case IEEE80211_FC0_TYPE_DATA
:
416 case IEEE80211_FC0_TYPE_MGT
:
417 kprintf(" %s", ieee80211_mgt_subtype_name
[
418 (wh
->i_fc
[0] & IEEE80211_FC0_SUBTYPE_MASK
)
419 >> IEEE80211_FC0_SUBTYPE_SHIFT
]);
422 kprintf(" type#%d", wh
->i_fc
[0] & IEEE80211_FC0_TYPE_MASK
);
425 if (IEEE80211_QOS_HAS_SEQ(wh
)) {
426 const struct ieee80211_qosframe
*qwh
=
427 (const struct ieee80211_qosframe
*)buf
;
428 kprintf(" QoS [TID %u%s]", qwh
->i_qos
[0] & IEEE80211_QOS_TID
,
429 qwh
->i_qos
[0] & IEEE80211_QOS_ACKPOLICY
? " ACM" : "");
431 if (wh
->i_fc
[1] & IEEE80211_FC1_WEP
) {
434 off
= ieee80211_anyhdrspace(ic
, wh
);
435 kprintf(" WEP [IV %.02x %.02x %.02x",
436 buf
[off
+0], buf
[off
+1], buf
[off
+2]);
437 if (buf
[off
+IEEE80211_WEP_IVLEN
] & IEEE80211_WEP_EXTIV
)
438 kprintf(" %.02x %.02x %.02x",
439 buf
[off
+4], buf
[off
+5], buf
[off
+6]);
440 kprintf(" KID %u]", buf
[off
+IEEE80211_WEP_IVLEN
] >> 6);
443 kprintf(" %dM", rate
/ 2);
445 kprintf(" +%d", rssi
);
448 for (i
= 0; i
< len
; i
++) {
451 kprintf("%02x", buf
[i
]);
458 findrix(const struct ieee80211_rateset
*rs
, int r
)
462 for (i
= 0; i
< rs
->rs_nrates
; i
++)
463 if ((rs
->rs_rates
[i
] & IEEE80211_RATE_VAL
) == r
)
469 ieee80211_fix_rate(struct ieee80211_node
*ni
,
470 struct ieee80211_rateset
*nrs
, int flags
)
472 #define RV(v) ((v) & IEEE80211_RATE_VAL)
473 struct ieee80211vap
*vap
= ni
->ni_vap
;
474 struct ieee80211com
*ic
= ni
->ni_ic
;
475 int i
, j
, rix
, error
;
476 int okrate
, badrate
, fixedrate
, ucastrate
;
477 const struct ieee80211_rateset
*srs
;
481 okrate
= badrate
= 0;
482 ucastrate
= vap
->iv_txparms
[ieee80211_chan2mode(ni
->ni_chan
)].ucastrate
;
483 if (ucastrate
!= IEEE80211_FIXED_RATE_NONE
) {
485 * Workaround awkwardness with fixed rate. We are called
486 * to check both the legacy rate set and the HT rate set
487 * but we must apply any legacy fixed rate check only to the
488 * legacy rate set and vice versa. We cannot tell what type
489 * of rate set we've been given (legacy or HT) but we can
490 * distinguish the fixed rate type (MCS have 0x80 set).
491 * So to deal with this the caller communicates whether to
492 * check MCS or legacy rate using the flags and we use the
493 * type of any fixed rate to avoid applying an MCS to a
494 * legacy rate and vice versa.
496 if (ucastrate
& 0x80) {
497 if (flags
& IEEE80211_F_DOFRATE
)
498 flags
&= ~IEEE80211_F_DOFRATE
;
499 } else if ((ucastrate
& 0x80) == 0) {
500 if (flags
& IEEE80211_F_DOFMCS
)
501 flags
&= ~IEEE80211_F_DOFMCS
;
503 /* NB: required to make MCS match below work */
504 ucastrate
&= IEEE80211_RATE_VAL
;
506 fixedrate
= IEEE80211_FIXED_RATE_NONE
;
508 * XXX we are called to process both MCS and legacy rates;
509 * we must use the appropriate basic rate set or chaos will
510 * ensue; for now callers that want MCS must supply
511 * IEEE80211_F_DOBRS; at some point we'll need to split this
512 * function so there are two variants, one for MCS and one
515 if (flags
& IEEE80211_F_DOBRS
)
516 srs
= (const struct ieee80211_rateset
*)
517 ieee80211_get_suphtrates(ic
, ni
->ni_chan
);
519 srs
= ieee80211_get_suprates(ic
, ni
->ni_chan
);
520 for (i
= 0; i
< nrs
->rs_nrates
; ) {
521 if (flags
& IEEE80211_F_DOSORT
) {
525 for (j
= i
+ 1; j
< nrs
->rs_nrates
; j
++) {
526 if (RV(nrs
->rs_rates
[i
]) > RV(nrs
->rs_rates
[j
])) {
527 r
= nrs
->rs_rates
[i
];
528 nrs
->rs_rates
[i
] = nrs
->rs_rates
[j
];
529 nrs
->rs_rates
[j
] = r
;
533 r
= nrs
->rs_rates
[i
] & IEEE80211_RATE_VAL
;
536 * Check for fixed rate.
541 * Check against supported rates.
543 rix
= findrix(srs
, r
);
544 if (flags
& IEEE80211_F_DONEGO
) {
547 * A rate in the node's rate set is not
548 * supported. If this is a basic rate and we
549 * are operating as a STA then this is an error.
550 * Otherwise we just discard/ignore the rate.
552 if ((flags
& IEEE80211_F_JOIN
) &&
553 (nrs
->rs_rates
[i
] & IEEE80211_RATE_BASIC
))
555 } else if ((flags
& IEEE80211_F_JOIN
) == 0) {
557 * Overwrite with the supported rate
558 * value so any basic rate bit is set.
560 nrs
->rs_rates
[i
] = srs
->rs_rates
[rix
];
563 if ((flags
& IEEE80211_F_DODEL
) && rix
< 0) {
565 * Delete unacceptable rates.
568 for (j
= i
; j
< nrs
->rs_nrates
; j
++)
569 nrs
->rs_rates
[j
] = nrs
->rs_rates
[j
+ 1];
570 nrs
->rs_rates
[j
] = 0;
574 okrate
= nrs
->rs_rates
[i
];
577 if (okrate
== 0 || error
!= 0 ||
578 ((flags
& (IEEE80211_F_DOFRATE
|IEEE80211_F_DOFMCS
)) &&
579 fixedrate
!= ucastrate
)) {
580 IEEE80211_NOTE(vap
, IEEE80211_MSG_XRATE
| IEEE80211_MSG_11N
, ni
,
581 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
582 "ucastrate %x\n", __func__
, flags
, okrate
, error
,
583 fixedrate
, ucastrate
);
584 return badrate
| IEEE80211_RATE_BASIC
;
591 * Reset 11g-related state.
594 ieee80211_reset_erp(struct ieee80211com
*ic
)
596 ic
->ic_flags
&= ~IEEE80211_F_USEPROT
;
597 ic
->ic_nonerpsta
= 0;
598 ic
->ic_longslotsta
= 0;
600 * Short slot time is enabled only when operating in 11g
601 * and not in an IBSS. We must also honor whether or not
602 * the driver is capable of doing it.
604 ieee80211_set_shortslottime(ic
,
605 IEEE80211_IS_CHAN_A(ic
->ic_curchan
) ||
606 IEEE80211_IS_CHAN_HT(ic
->ic_curchan
) ||
607 (IEEE80211_IS_CHAN_ANYG(ic
->ic_curchan
) &&
608 ic
->ic_opmode
== IEEE80211_M_HOSTAP
&&
609 (ic
->ic_caps
& IEEE80211_C_SHSLOT
)));
611 * Set short preamble and ERP barker-preamble flags.
613 if (IEEE80211_IS_CHAN_A(ic
->ic_curchan
) ||
614 (ic
->ic_caps
& IEEE80211_C_SHPREAMBLE
)) {
615 ic
->ic_flags
|= IEEE80211_F_SHPREAMBLE
;
616 ic
->ic_flags
&= ~IEEE80211_F_USEBARKER
;
618 ic
->ic_flags
&= ~IEEE80211_F_SHPREAMBLE
;
619 ic
->ic_flags
|= IEEE80211_F_USEBARKER
;
624 * Set the short slot time state and notify the driver.
627 ieee80211_set_shortslottime(struct ieee80211com
*ic
, int onoff
)
630 ic
->ic_flags
|= IEEE80211_F_SHSLOT
;
632 ic
->ic_flags
&= ~IEEE80211_F_SHSLOT
;
634 if (ic
->ic_updateslot
!= NULL
)
635 ic
->ic_updateslot(ic
->ic_ifp
);
639 * Check if the specified rate set supports ERP.
640 * NB: the rate set is assumed to be sorted.
643 ieee80211_iserp_rateset(const struct ieee80211_rateset
*rs
)
645 static const int rates
[] = { 2, 4, 11, 22, 12, 24, 48 };
648 if (rs
->rs_nrates
< NELEM(rates
))
650 for (i
= 0; i
< NELEM(rates
); i
++) {
651 for (j
= 0; j
< rs
->rs_nrates
; j
++) {
652 int r
= rs
->rs_rates
[j
] & IEEE80211_RATE_VAL
;
666 * Mark the basic rates for the rate table based on the
667 * operating mode. For real 11g we mark all the 11b rates
668 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only
669 * 11b rates. There's also a pseudo 11a-mode used to mark only
670 * the basic OFDM rates.
673 setbasicrates(struct ieee80211_rateset
*rs
,
674 enum ieee80211_phymode mode
, int add
)
676 static const struct ieee80211_rateset basic
[IEEE80211_MODE_MAX
] = {
677 [IEEE80211_MODE_11A
] = { 3, { 12, 24, 48 } },
678 [IEEE80211_MODE_11B
] = { 2, { 2, 4 } },
680 [IEEE80211_MODE_11G
] = { 4, { 2, 4, 11, 22 } },
681 [IEEE80211_MODE_TURBO_A
] = { 3, { 12, 24, 48 } },
682 [IEEE80211_MODE_TURBO_G
] = { 4, { 2, 4, 11, 22 } },
683 [IEEE80211_MODE_STURBO_A
] = { 3, { 12, 24, 48 } },
684 [IEEE80211_MODE_HALF
] = { 3, { 6, 12, 24 } },
685 [IEEE80211_MODE_QUARTER
] = { 3, { 3, 6, 12 } },
686 [IEEE80211_MODE_11NA
] = { 3, { 12, 24, 48 } },
688 [IEEE80211_MODE_11NG
] = { 4, { 2, 4, 11, 22 } },
692 for (i
= 0; i
< rs
->rs_nrates
; i
++) {
694 rs
->rs_rates
[i
] &= IEEE80211_RATE_VAL
;
695 for (j
= 0; j
< basic
[mode
].rs_nrates
; j
++)
696 if (basic
[mode
].rs_rates
[j
] == rs
->rs_rates
[i
]) {
697 rs
->rs_rates
[i
] |= IEEE80211_RATE_BASIC
;
704 * Set the basic rates in a rate set.
707 ieee80211_setbasicrates(struct ieee80211_rateset
*rs
,
708 enum ieee80211_phymode mode
)
710 setbasicrates(rs
, mode
, 0);
714 * Add basic rates to a rate set.
717 ieee80211_addbasicrates(struct ieee80211_rateset
*rs
,
718 enum ieee80211_phymode mode
)
720 setbasicrates(rs
, mode
, 1);
724 * WME protocol support.
726 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
727 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
728 * Draft 2.0 Test Plan (Appendix D).
730 * Static/Dynamic Turbo mode settings come from Atheros.
732 typedef struct phyParamType
{
740 static const struct phyParamType phyParamForAC_BE
[IEEE80211_MODE_MAX
] = {
741 [IEEE80211_MODE_AUTO
] = { 3, 4, 6, 0, 0 },
742 [IEEE80211_MODE_11A
] = { 3, 4, 6, 0, 0 },
743 [IEEE80211_MODE_11B
] = { 3, 4, 6, 0, 0 },
744 [IEEE80211_MODE_11G
] = { 3, 4, 6, 0, 0 },
745 [IEEE80211_MODE_FH
] = { 3, 4, 6, 0, 0 },
746 [IEEE80211_MODE_TURBO_A
]= { 2, 3, 5, 0, 0 },
747 [IEEE80211_MODE_TURBO_G
]= { 2, 3, 5, 0, 0 },
748 [IEEE80211_MODE_STURBO_A
]={ 2, 3, 5, 0, 0 },
749 [IEEE80211_MODE_HALF
] = { 3, 4, 6, 0, 0 },
750 [IEEE80211_MODE_QUARTER
]= { 3, 4, 6, 0, 0 },
751 [IEEE80211_MODE_11NA
] = { 3, 4, 6, 0, 0 },
752 [IEEE80211_MODE_11NG
] = { 3, 4, 6, 0, 0 },
754 static const struct phyParamType phyParamForAC_BK
[IEEE80211_MODE_MAX
] = {
755 [IEEE80211_MODE_AUTO
] = { 7, 4, 10, 0, 0 },
756 [IEEE80211_MODE_11A
] = { 7, 4, 10, 0, 0 },
757 [IEEE80211_MODE_11B
] = { 7, 4, 10, 0, 0 },
758 [IEEE80211_MODE_11G
] = { 7, 4, 10, 0, 0 },
759 [IEEE80211_MODE_FH
] = { 7, 4, 10, 0, 0 },
760 [IEEE80211_MODE_TURBO_A
]= { 7, 3, 10, 0, 0 },
761 [IEEE80211_MODE_TURBO_G
]= { 7, 3, 10, 0, 0 },
762 [IEEE80211_MODE_STURBO_A
]={ 7, 3, 10, 0, 0 },
763 [IEEE80211_MODE_HALF
] = { 7, 4, 10, 0, 0 },
764 [IEEE80211_MODE_QUARTER
]= { 7, 4, 10, 0, 0 },
765 [IEEE80211_MODE_11NA
] = { 7, 4, 10, 0, 0 },
766 [IEEE80211_MODE_11NG
] = { 7, 4, 10, 0, 0 },
768 static const struct phyParamType phyParamForAC_VI
[IEEE80211_MODE_MAX
] = {
769 [IEEE80211_MODE_AUTO
] = { 1, 3, 4, 94, 0 },
770 [IEEE80211_MODE_11A
] = { 1, 3, 4, 94, 0 },
771 [IEEE80211_MODE_11B
] = { 1, 3, 4, 188, 0 },
772 [IEEE80211_MODE_11G
] = { 1, 3, 4, 94, 0 },
773 [IEEE80211_MODE_FH
] = { 1, 3, 4, 188, 0 },
774 [IEEE80211_MODE_TURBO_A
]= { 1, 2, 3, 94, 0 },
775 [IEEE80211_MODE_TURBO_G
]= { 1, 2, 3, 94, 0 },
776 [IEEE80211_MODE_STURBO_A
]={ 1, 2, 3, 94, 0 },
777 [IEEE80211_MODE_HALF
] = { 1, 3, 4, 94, 0 },
778 [IEEE80211_MODE_QUARTER
]= { 1, 3, 4, 94, 0 },
779 [IEEE80211_MODE_11NA
] = { 1, 3, 4, 94, 0 },
780 [IEEE80211_MODE_11NG
] = { 1, 3, 4, 94, 0 },
782 static const struct phyParamType phyParamForAC_VO
[IEEE80211_MODE_MAX
] = {
783 [IEEE80211_MODE_AUTO
] = { 1, 2, 3, 47, 0 },
784 [IEEE80211_MODE_11A
] = { 1, 2, 3, 47, 0 },
785 [IEEE80211_MODE_11B
] = { 1, 2, 3, 102, 0 },
786 [IEEE80211_MODE_11G
] = { 1, 2, 3, 47, 0 },
787 [IEEE80211_MODE_FH
] = { 1, 2, 3, 102, 0 },
788 [IEEE80211_MODE_TURBO_A
]= { 1, 2, 2, 47, 0 },
789 [IEEE80211_MODE_TURBO_G
]= { 1, 2, 2, 47, 0 },
790 [IEEE80211_MODE_STURBO_A
]={ 1, 2, 2, 47, 0 },
791 [IEEE80211_MODE_HALF
] = { 1, 2, 3, 47, 0 },
792 [IEEE80211_MODE_QUARTER
]= { 1, 2, 3, 47, 0 },
793 [IEEE80211_MODE_11NA
] = { 1, 2, 3, 47, 0 },
794 [IEEE80211_MODE_11NG
] = { 1, 2, 3, 47, 0 },
797 static const struct phyParamType bssPhyParamForAC_BE
[IEEE80211_MODE_MAX
] = {
798 [IEEE80211_MODE_AUTO
] = { 3, 4, 10, 0, 0 },
799 [IEEE80211_MODE_11A
] = { 3, 4, 10, 0, 0 },
800 [IEEE80211_MODE_11B
] = { 3, 4, 10, 0, 0 },
801 [IEEE80211_MODE_11G
] = { 3, 4, 10, 0, 0 },
802 [IEEE80211_MODE_FH
] = { 3, 4, 10, 0, 0 },
803 [IEEE80211_MODE_TURBO_A
]= { 2, 3, 10, 0, 0 },
804 [IEEE80211_MODE_TURBO_G
]= { 2, 3, 10, 0, 0 },
805 [IEEE80211_MODE_STURBO_A
]={ 2, 3, 10, 0, 0 },
806 [IEEE80211_MODE_HALF
] = { 3, 4, 10, 0, 0 },
807 [IEEE80211_MODE_QUARTER
]= { 3, 4, 10, 0, 0 },
808 [IEEE80211_MODE_11NA
] = { 3, 4, 10, 0, 0 },
809 [IEEE80211_MODE_11NG
] = { 3, 4, 10, 0, 0 },
811 static const struct phyParamType bssPhyParamForAC_VI
[IEEE80211_MODE_MAX
] = {
812 [IEEE80211_MODE_AUTO
] = { 2, 3, 4, 94, 0 },
813 [IEEE80211_MODE_11A
] = { 2, 3, 4, 94, 0 },
814 [IEEE80211_MODE_11B
] = { 2, 3, 4, 188, 0 },
815 [IEEE80211_MODE_11G
] = { 2, 3, 4, 94, 0 },
816 [IEEE80211_MODE_FH
] = { 2, 3, 4, 188, 0 },
817 [IEEE80211_MODE_TURBO_A
]= { 2, 2, 3, 94, 0 },
818 [IEEE80211_MODE_TURBO_G
]= { 2, 2, 3, 94, 0 },
819 [IEEE80211_MODE_STURBO_A
]={ 2, 2, 3, 94, 0 },
820 [IEEE80211_MODE_HALF
] = { 2, 3, 4, 94, 0 },
821 [IEEE80211_MODE_QUARTER
]= { 2, 3, 4, 94, 0 },
822 [IEEE80211_MODE_11NA
] = { 2, 3, 4, 94, 0 },
823 [IEEE80211_MODE_11NG
] = { 2, 3, 4, 94, 0 },
825 static const struct phyParamType bssPhyParamForAC_VO
[IEEE80211_MODE_MAX
] = {
826 [IEEE80211_MODE_AUTO
] = { 2, 2, 3, 47, 0 },
827 [IEEE80211_MODE_11A
] = { 2, 2, 3, 47, 0 },
828 [IEEE80211_MODE_11B
] = { 2, 2, 3, 102, 0 },
829 [IEEE80211_MODE_11G
] = { 2, 2, 3, 47, 0 },
830 [IEEE80211_MODE_FH
] = { 2, 2, 3, 102, 0 },
831 [IEEE80211_MODE_TURBO_A
]= { 1, 2, 2, 47, 0 },
832 [IEEE80211_MODE_TURBO_G
]= { 1, 2, 2, 47, 0 },
833 [IEEE80211_MODE_STURBO_A
]={ 1, 2, 2, 47, 0 },
834 [IEEE80211_MODE_HALF
] = { 2, 2, 3, 47, 0 },
835 [IEEE80211_MODE_QUARTER
]= { 2, 2, 3, 47, 0 },
836 [IEEE80211_MODE_11NA
] = { 2, 2, 3, 47, 0 },
837 [IEEE80211_MODE_11NG
] = { 2, 2, 3, 47, 0 },
841 _setifsparams(struct wmeParams
*wmep
, const paramType
*phy
)
843 wmep
->wmep_aifsn
= phy
->aifsn
;
844 wmep
->wmep_logcwmin
= phy
->logcwmin
;
845 wmep
->wmep_logcwmax
= phy
->logcwmax
;
846 wmep
->wmep_txopLimit
= phy
->txopLimit
;
850 setwmeparams(struct ieee80211vap
*vap
, const char *type
, int ac
,
851 struct wmeParams
*wmep
, const paramType
*phy
)
853 wmep
->wmep_acm
= phy
->acm
;
854 _setifsparams(wmep
, phy
);
856 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_WME
,
857 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
858 ieee80211_wme_acnames
[ac
], type
,
859 wmep
->wmep_acm
, wmep
->wmep_aifsn
, wmep
->wmep_logcwmin
,
860 wmep
->wmep_logcwmax
, wmep
->wmep_txopLimit
);
864 ieee80211_wme_initparams_locked(struct ieee80211vap
*vap
)
866 struct ieee80211com
*ic
= vap
->iv_ic
;
867 struct ieee80211_wme_state
*wme
= &ic
->ic_wme
;
868 const paramType
*pPhyParam
, *pBssPhyParam
;
869 struct wmeParams
*wmep
;
870 enum ieee80211_phymode mode
;
873 if ((ic
->ic_caps
& IEEE80211_C_WME
) == 0 || ic
->ic_nrunning
> 1)
877 * Select mode; we can be called early in which case we
878 * always use auto mode. We know we'll be called when
879 * entering the RUN state with bsschan setup properly
880 * so state will eventually get set correctly
882 if (ic
->ic_bsschan
!= IEEE80211_CHAN_ANYC
)
883 mode
= ieee80211_chan2mode(ic
->ic_bsschan
);
885 mode
= IEEE80211_MODE_AUTO
;
886 for (i
= 0; i
< WME_NUM_AC
; i
++) {
889 pPhyParam
= &phyParamForAC_BK
[mode
];
890 pBssPhyParam
= &phyParamForAC_BK
[mode
];
893 pPhyParam
= &phyParamForAC_VI
[mode
];
894 pBssPhyParam
= &bssPhyParamForAC_VI
[mode
];
897 pPhyParam
= &phyParamForAC_VO
[mode
];
898 pBssPhyParam
= &bssPhyParamForAC_VO
[mode
];
902 pPhyParam
= &phyParamForAC_BE
[mode
];
903 pBssPhyParam
= &bssPhyParamForAC_BE
[mode
];
906 wmep
= &wme
->wme_wmeChanParams
.cap_wmeParams
[i
];
907 if (ic
->ic_opmode
== IEEE80211_M_HOSTAP
) {
908 setwmeparams(vap
, "chan", i
, wmep
, pPhyParam
);
910 setwmeparams(vap
, "chan", i
, wmep
, pBssPhyParam
);
912 wmep
= &wme
->wme_wmeBssChanParams
.cap_wmeParams
[i
];
913 setwmeparams(vap
, "bss ", i
, wmep
, pBssPhyParam
);
915 /* NB: check ic_bss to avoid NULL deref on initial attach */
916 if (vap
->iv_bss
!= NULL
) {
918 * Calculate agressive mode switching threshold based
919 * on beacon interval. This doesn't need locking since
920 * we're only called before entering the RUN state at
921 * which point we start sending beacon frames.
923 wme
->wme_hipri_switch_thresh
=
924 (HIGH_PRI_SWITCH_THRESH
* vap
->iv_bss
->ni_intval
) / 100;
925 wme
->wme_flags
&= ~WME_F_AGGRMODE
;
926 ieee80211_wme_updateparams(vap
);
931 ieee80211_wme_initparams(struct ieee80211vap
*vap
)
933 struct ieee80211com
*ic
= vap
->iv_ic
;
936 ieee80211_wme_initparams_locked(vap
);
940 * Update WME parameters for ourself and the BSS.
943 ieee80211_wme_updateparams_locked(struct ieee80211vap
*vap
)
945 static const paramType aggrParam
[IEEE80211_MODE_MAX
] = {
946 [IEEE80211_MODE_AUTO
] = { 2, 4, 10, 64, 0 },
947 [IEEE80211_MODE_11A
] = { 2, 4, 10, 64, 0 },
948 [IEEE80211_MODE_11B
] = { 2, 5, 10, 64, 0 },
949 [IEEE80211_MODE_11G
] = { 2, 4, 10, 64, 0 },
950 [IEEE80211_MODE_FH
] = { 2, 5, 10, 64, 0 },
951 [IEEE80211_MODE_TURBO_A
] = { 1, 3, 10, 64, 0 },
952 [IEEE80211_MODE_TURBO_G
] = { 1, 3, 10, 64, 0 },
953 [IEEE80211_MODE_STURBO_A
] = { 1, 3, 10, 64, 0 },
954 [IEEE80211_MODE_HALF
] = { 2, 4, 10, 64, 0 },
955 [IEEE80211_MODE_QUARTER
] = { 2, 4, 10, 64, 0 },
956 [IEEE80211_MODE_11NA
] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
957 [IEEE80211_MODE_11NG
] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
959 struct ieee80211com
*ic
= vap
->iv_ic
;
960 struct ieee80211_wme_state
*wme
= &ic
->ic_wme
;
961 const struct wmeParams
*wmep
;
962 struct wmeParams
*chanp
, *bssp
;
963 enum ieee80211_phymode mode
;
967 * Set up the channel access parameters for the physical
968 * device. First populate the configured settings.
970 for (i
= 0; i
< WME_NUM_AC
; i
++) {
971 chanp
= &wme
->wme_chanParams
.cap_wmeParams
[i
];
972 wmep
= &wme
->wme_wmeChanParams
.cap_wmeParams
[i
];
973 chanp
->wmep_aifsn
= wmep
->wmep_aifsn
;
974 chanp
->wmep_logcwmin
= wmep
->wmep_logcwmin
;
975 chanp
->wmep_logcwmax
= wmep
->wmep_logcwmax
;
976 chanp
->wmep_txopLimit
= wmep
->wmep_txopLimit
;
978 chanp
= &wme
->wme_bssChanParams
.cap_wmeParams
[i
];
979 wmep
= &wme
->wme_wmeBssChanParams
.cap_wmeParams
[i
];
980 chanp
->wmep_aifsn
= wmep
->wmep_aifsn
;
981 chanp
->wmep_logcwmin
= wmep
->wmep_logcwmin
;
982 chanp
->wmep_logcwmax
= wmep
->wmep_logcwmax
;
983 chanp
->wmep_txopLimit
= wmep
->wmep_txopLimit
;
987 * Select mode; we can be called early in which case we
988 * always use auto mode. We know we'll be called when
989 * entering the RUN state with bsschan setup properly
990 * so state will eventually get set correctly
992 if (ic
->ic_bsschan
!= IEEE80211_CHAN_ANYC
)
993 mode
= ieee80211_chan2mode(ic
->ic_bsschan
);
995 mode
= IEEE80211_MODE_AUTO
;
998 * This implements agressive mode as found in certain
999 * vendors' AP's. When there is significant high
1000 * priority (VI/VO) traffic in the BSS throttle back BE
1001 * traffic by using conservative parameters. Otherwise
1002 * BE uses agressive params to optimize performance of
1003 * legacy/non-QoS traffic.
1005 if ((vap
->iv_opmode
== IEEE80211_M_HOSTAP
&&
1006 (wme
->wme_flags
& WME_F_AGGRMODE
) != 0) ||
1007 (vap
->iv_opmode
== IEEE80211_M_STA
&&
1008 (vap
->iv_bss
->ni_flags
& IEEE80211_NODE_QOS
) == 0) ||
1009 (vap
->iv_flags
& IEEE80211_F_WME
) == 0) {
1010 chanp
= &wme
->wme_chanParams
.cap_wmeParams
[WME_AC_BE
];
1011 bssp
= &wme
->wme_bssChanParams
.cap_wmeParams
[WME_AC_BE
];
1013 chanp
->wmep_aifsn
= bssp
->wmep_aifsn
= aggrParam
[mode
].aifsn
;
1014 chanp
->wmep_logcwmin
= bssp
->wmep_logcwmin
=
1015 aggrParam
[mode
].logcwmin
;
1016 chanp
->wmep_logcwmax
= bssp
->wmep_logcwmax
=
1017 aggrParam
[mode
].logcwmax
;
1018 chanp
->wmep_txopLimit
= bssp
->wmep_txopLimit
=
1019 (vap
->iv_flags
& IEEE80211_F_BURST
) ?
1020 aggrParam
[mode
].txopLimit
: 0;
1021 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_WME
,
1022 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1023 "logcwmax %u txop %u]\n", ieee80211_wme_acnames
[WME_AC_BE
],
1024 chanp
->wmep_acm
, chanp
->wmep_aifsn
, chanp
->wmep_logcwmin
,
1025 chanp
->wmep_logcwmax
, chanp
->wmep_txopLimit
);
1028 if (vap
->iv_opmode
== IEEE80211_M_HOSTAP
&&
1029 ic
->ic_sta_assoc
< 2 && (wme
->wme_flags
& WME_F_AGGRMODE
) != 0) {
1030 static const uint8_t logCwMin
[IEEE80211_MODE_MAX
] = {
1031 [IEEE80211_MODE_AUTO
] = 3,
1032 [IEEE80211_MODE_11A
] = 3,
1033 [IEEE80211_MODE_11B
] = 4,
1034 [IEEE80211_MODE_11G
] = 3,
1035 [IEEE80211_MODE_FH
] = 4,
1036 [IEEE80211_MODE_TURBO_A
] = 3,
1037 [IEEE80211_MODE_TURBO_G
] = 3,
1038 [IEEE80211_MODE_STURBO_A
] = 3,
1039 [IEEE80211_MODE_HALF
] = 3,
1040 [IEEE80211_MODE_QUARTER
] = 3,
1041 [IEEE80211_MODE_11NA
] = 3,
1042 [IEEE80211_MODE_11NG
] = 3,
1044 chanp
= &wme
->wme_chanParams
.cap_wmeParams
[WME_AC_BE
];
1045 bssp
= &wme
->wme_bssChanParams
.cap_wmeParams
[WME_AC_BE
];
1047 chanp
->wmep_logcwmin
= bssp
->wmep_logcwmin
= logCwMin
[mode
];
1048 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_WME
,
1049 "update %s (chan+bss) logcwmin %u\n",
1050 ieee80211_wme_acnames
[WME_AC_BE
], chanp
->wmep_logcwmin
);
1052 if (vap
->iv_opmode
== IEEE80211_M_HOSTAP
) { /* XXX ibss? */
1054 * Arrange for a beacon update and bump the parameter
1055 * set number so associated stations load the new values.
1057 wme
->wme_bssChanParams
.cap_info
=
1058 (wme
->wme_bssChanParams
.cap_info
+1) & WME_QOSINFO_COUNT
;
1059 ieee80211_beacon_notify(vap
, IEEE80211_BEACON_WME
);
1062 wme
->wme_update(ic
);
1064 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_WME
,
1065 "%s: WME params updated, cap_info 0x%x\n", __func__
,
1066 vap
->iv_opmode
== IEEE80211_M_STA
?
1067 wme
->wme_wmeChanParams
.cap_info
:
1068 wme
->wme_bssChanParams
.cap_info
);
1072 ieee80211_wme_updateparams(struct ieee80211vap
*vap
)
1074 struct ieee80211com
*ic
= vap
->iv_ic
;
1076 if (ic
->ic_caps
& IEEE80211_C_WME
) {
1077 ieee80211_wme_updateparams_locked(vap
);
1082 parent_updown_task(void *arg
, int npending
)
1084 struct ifnet
*parent
= arg
;
1086 wlan_serialize_enter();
1087 parent
->if_ioctl(parent
, SIOCSIFFLAGS
, NULL
, curthread
->td_ucred
);
1088 wlan_serialize_exit();
1092 update_mcast_task(void *arg
, int npending
)
1094 struct ieee80211com
*ic
= arg
;
1095 struct ifnet
*parent
= ic
->ic_ifp
;
1097 wlan_serialize_enter();
1098 ic
->ic_update_mcast(parent
);
1099 wlan_serialize_exit();
1103 update_promisc_task(void *arg
, int npending
)
1105 struct ieee80211com
*ic
= arg
;
1106 struct ifnet
*parent
= ic
->ic_ifp
;
1108 wlan_serialize_enter();
1109 ic
->ic_update_promisc(parent
);
1110 wlan_serialize_exit();
1114 update_channel_task(void *arg
, int npending
)
1116 struct ieee80211com
*ic
= arg
;
1118 wlan_serialize_enter();
1119 ic
->ic_set_channel(ic
);
1120 ieee80211_radiotap_chan_change(ic
);
1121 wlan_serialize_exit();
1125 * Block until the parent is in a known state. This is
1126 * used after any operations that dispatch a task (e.g.
1127 * to auto-configure the parent device up/down).
1130 ieee80211_waitfor_parent(struct ieee80211com
*ic
)
1132 wlan_assert_serialized();
1133 wlan_serialize_exit(); /* exit to block */
1134 taskqueue_block(ic
->ic_tq
);
1135 ieee80211_draintask(ic
, &ic
->ic_parent_task
);
1136 ieee80211_draintask(ic
, &ic
->ic_mcast_task
);
1137 ieee80211_draintask(ic
, &ic
->ic_promisc_task
);
1138 ieee80211_draintask(ic
, &ic
->ic_chan_task
);
1139 ieee80211_draintask(ic
, &ic
->ic_bmiss_task
);
1140 taskqueue_unblock(ic
->ic_tq
);
1141 wlan_serialize_enter(); /* then re-enter */
1145 * Start a vap running. If this is the first vap to be
1146 * set running on the underlying device then we
1147 * automatically bring the device up.
1150 ieee80211_start_locked(struct ieee80211vap
*vap
)
1152 struct ifnet
*ifp
= vap
->iv_ifp
;
1153 struct ieee80211com
*ic
= vap
->iv_ic
;
1154 struct ifnet
*parent
= ic
->ic_ifp
;
1156 IEEE80211_DPRINTF(vap
,
1157 IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1158 "start running, %d vaps running\n", ic
->ic_nrunning
);
1160 if ((ifp
->if_flags
& IFF_RUNNING
) == 0) {
1162 * Mark us running. Note that it's ok to do this first;
1163 * if we need to bring the parent device up we defer that
1164 * to avoid dropping the com lock. We expect the device
1165 * to respond to being marked up by calling back into us
1166 * through ieee80211_start_all at which point we'll come
1167 * back in here and complete the work.
1169 ifp
->if_flags
|= IFF_RUNNING
;
1171 * We are not running; if this we are the first vap
1172 * to be brought up auto-up the parent if necessary.
1174 if (ic
->ic_nrunning
++ == 0 &&
1175 (parent
->if_flags
& IFF_RUNNING
) == 0) {
1176 IEEE80211_DPRINTF(vap
,
1177 IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1178 "%s: up parent %s\n", __func__
, parent
->if_xname
);
1179 parent
->if_flags
|= IFF_UP
;
1180 ieee80211_runtask(ic
, &ic
->ic_parent_task
);
1185 * If the parent is up and running, then kick the
1186 * 802.11 state machine as appropriate.
1188 if ((parent
->if_flags
& IFF_RUNNING
) &&
1189 vap
->iv_roaming
!= IEEE80211_ROAMING_MANUAL
) {
1190 if (vap
->iv_opmode
== IEEE80211_M_STA
) {
1192 /* XXX bypasses scan too easily; disable for now */
1194 * Try to be intelligent about clocking the state
1195 * machine. If we're currently in RUN state then
1196 * we should be able to apply any new state/parameters
1197 * simply by re-associating. Otherwise we need to
1198 * re-scan to select an appropriate ap.
1200 if (vap
->iv_state
>= IEEE80211_S_RUN
)
1201 ieee80211_new_state_locked(vap
,
1202 IEEE80211_S_ASSOC
, 1);
1205 ieee80211_new_state_locked(vap
,
1206 IEEE80211_S_SCAN
, 0);
1209 * For monitor+wds mode there's nothing to do but
1210 * start running. Otherwise if this is the first
1211 * vap to be brought up, start a scan which may be
1212 * preempted if the station is locked to a particular
1215 vap
->iv_flags_ext
|= IEEE80211_FEXT_REINIT
;
1216 if (vap
->iv_opmode
== IEEE80211_M_MONITOR
||
1217 vap
->iv_opmode
== IEEE80211_M_WDS
)
1218 ieee80211_new_state_locked(vap
,
1219 IEEE80211_S_RUN
, -1);
1221 ieee80211_new_state_locked(vap
,
1222 IEEE80211_S_SCAN
, 0);
1228 * Start a single vap.
1231 ieee80211_init(void *arg
)
1233 struct ieee80211vap
*vap
= arg
;
1235 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1238 ieee80211_start_locked(vap
);
1242 * Start all runnable vap's on a device.
1245 ieee80211_start_all(struct ieee80211com
*ic
)
1247 struct ieee80211vap
*vap
;
1249 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1250 struct ifnet
*ifp
= vap
->iv_ifp
;
1251 if (IFNET_IS_UP_RUNNING(ifp
)) /* NB: avoid recursion */
1252 ieee80211_start_locked(vap
);
1257 * Stop a vap. We force it down using the state machine
1258 * then mark it's ifnet not running. If this is the last
1259 * vap running on the underlying device then we close it
1260 * too to insure it will be properly initialized when the
1261 * next vap is brought up.
1264 ieee80211_stop_locked(struct ieee80211vap
*vap
)
1266 struct ieee80211com
*ic
= vap
->iv_ic
;
1267 struct ifnet
*ifp
= vap
->iv_ifp
;
1268 struct ifnet
*parent
= ic
->ic_ifp
;
1270 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1271 "stop running, %d vaps running\n", ic
->ic_nrunning
);
1273 ieee80211_new_state_locked(vap
, IEEE80211_S_INIT
, -1);
1274 if (ifp
->if_flags
& IFF_RUNNING
) {
1275 ifp
->if_flags
&= ~IFF_RUNNING
; /* mark us stopped */
1276 if (--ic
->ic_nrunning
== 0 &&
1277 (parent
->if_flags
& IFF_RUNNING
)) {
1278 IEEE80211_DPRINTF(vap
,
1279 IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1280 "down parent %s\n", parent
->if_xname
);
1281 parent
->if_flags
&= ~IFF_UP
;
1282 ieee80211_runtask(ic
, &ic
->ic_parent_task
);
1288 ieee80211_stop(struct ieee80211vap
*vap
)
1290 struct ieee80211com
*ic
= vap
->iv_ic
;
1293 ieee80211_stop_locked(vap
);
1297 * Stop all vap's running on a device.
1300 ieee80211_stop_all(struct ieee80211com
*ic
)
1302 struct ieee80211vap
*vap
;
1304 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1305 struct ifnet
*ifp
= vap
->iv_ifp
;
1306 if (IFNET_IS_UP_RUNNING(ifp
)) /* NB: avoid recursion */
1307 ieee80211_stop_locked(vap
);
1310 ieee80211_waitfor_parent(ic
);
1314 * Stop all vap's running on a device and arrange
1315 * for those that were running to be resumed.
1318 ieee80211_suspend_all(struct ieee80211com
*ic
)
1320 struct ieee80211vap
*vap
;
1322 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1323 struct ifnet
*ifp
= vap
->iv_ifp
;
1324 if (IFNET_IS_UP_RUNNING(ifp
)) { /* NB: avoid recursion */
1325 vap
->iv_flags_ext
|= IEEE80211_FEXT_RESUME
;
1326 ieee80211_stop_locked(vap
);
1330 ieee80211_waitfor_parent(ic
);
1334 * Start all vap's marked for resume.
1337 ieee80211_resume_all(struct ieee80211com
*ic
)
1339 struct ieee80211vap
*vap
;
1341 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1342 struct ifnet
*ifp
= vap
->iv_ifp
;
1343 if (!IFNET_IS_UP_RUNNING(ifp
) &&
1344 (vap
->iv_flags_ext
& IEEE80211_FEXT_RESUME
)) {
1345 vap
->iv_flags_ext
&= ~IEEE80211_FEXT_RESUME
;
1346 ieee80211_start_locked(vap
);
1352 ieee80211_beacon_miss(struct ieee80211com
*ic
)
1354 if ((ic
->ic_flags
& IEEE80211_F_SCAN
) == 0) {
1355 /* Process in a taskq, the handler may reenter the driver */
1356 ieee80211_runtask(ic
, &ic
->ic_bmiss_task
);
1361 beacon_miss_task(void *arg
, int npending
)
1363 struct ieee80211com
*ic
= arg
;
1364 struct ieee80211vap
*vap
;
1366 wlan_serialize_enter();
1367 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1369 * We only pass events through for sta vap's in RUN state;
1370 * may be too restrictive but for now this saves all the
1371 * handlers duplicating these checks.
1373 if (vap
->iv_opmode
== IEEE80211_M_STA
&&
1374 vap
->iv_state
>= IEEE80211_S_RUN
&&
1375 vap
->iv_bmiss
!= NULL
)
1378 wlan_serialize_exit();
1382 beacon_swmiss_task(void *arg
, int npending
)
1384 struct ieee80211vap
*vap
= arg
;
1386 wlan_serialize_enter();
1387 if (vap
->iv_state
== IEEE80211_S_RUN
) {
1388 /* XXX Call multiple times if npending > zero? */
1391 wlan_serialize_exit();
1395 * Software beacon miss handling. Check if any beacons
1396 * were received in the last period. If not post a
1397 * beacon miss; otherwise reset the counter.
1400 ieee80211_swbmiss_callout(void *arg
)
1402 struct ieee80211vap
*vap
= arg
;
1403 struct ieee80211com
*ic
= vap
->iv_ic
;
1405 wlan_serialize_enter();
1406 KASSERT(vap
->iv_state
== IEEE80211_S_RUN
,
1407 ("wrong state %d", vap
->iv_state
));
1409 if (ic
->ic_flags
& IEEE80211_F_SCAN
) {
1411 * If scanning just ignore and reset state. If we get a
1412 * bmiss after coming out of scan because we haven't had
1413 * time to receive a beacon then we should probe the AP
1414 * before posting a real bmiss (unless iv_bmiss_max has
1415 * been artifiically lowered). A cleaner solution might
1416 * be to disable the timer on scan start/end but to handle
1417 * case of multiple sta vap's we'd need to disable the
1418 * timers of all affected vap's.
1420 vap
->iv_swbmiss_count
= 0;
1421 } else if (vap
->iv_swbmiss_count
== 0) {
1422 if (vap
->iv_bmiss
!= NULL
)
1423 ieee80211_runtask(ic
, &vap
->iv_swbmiss_task
);
1424 if (vap
->iv_bmiss_count
== 0) /* don't re-arm timer */
1427 vap
->iv_swbmiss_count
= 0;
1429 callout_reset(&vap
->iv_swbmiss
, vap
->iv_swbmiss_period
,
1430 ieee80211_swbmiss_callout
, vap
);
1432 wlan_serialize_exit();
1436 * Start an 802.11h channel switch. We record the parameters,
1437 * mark the operation pending, notify each vap through the
1438 * beacon update mechanism so it can update the beacon frame
1439 * contents, and then switch vap's to CSA state to block outbound
1440 * traffic. Devices that handle CSA directly can use the state
1441 * switch to do the right thing so long as they call
1442 * ieee80211_csa_completeswitch when it's time to complete the
1443 * channel change. Devices that depend on the net80211 layer can
1444 * use ieee80211_beacon_update to handle the countdown and the
1448 ieee80211_csa_startswitch(struct ieee80211com
*ic
,
1449 struct ieee80211_channel
*c
, int mode
, int count
)
1451 struct ieee80211vap
*vap
;
1453 ic
->ic_csa_newchan
= c
;
1454 ic
->ic_csa_mode
= mode
;
1455 ic
->ic_csa_count
= count
;
1456 ic
->ic_flags
|= IEEE80211_F_CSAPENDING
;
1457 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1458 if (vap
->iv_opmode
== IEEE80211_M_HOSTAP
||
1459 vap
->iv_opmode
== IEEE80211_M_IBSS
||
1460 vap
->iv_opmode
== IEEE80211_M_MBSS
)
1461 ieee80211_beacon_notify(vap
, IEEE80211_BEACON_CSA
);
1462 /* switch to CSA state to block outbound traffic */
1463 if (vap
->iv_state
== IEEE80211_S_RUN
)
1464 ieee80211_new_state_locked(vap
, IEEE80211_S_CSA
, 0);
1466 ieee80211_notify_csa(ic
, c
, mode
, count
);
1470 csa_completeswitch(struct ieee80211com
*ic
)
1472 struct ieee80211vap
*vap
;
1474 ic
->ic_csa_newchan
= NULL
;
1475 ic
->ic_flags
&= ~IEEE80211_F_CSAPENDING
;
1477 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
)
1478 if (vap
->iv_state
== IEEE80211_S_CSA
)
1479 ieee80211_new_state_locked(vap
, IEEE80211_S_RUN
, 0);
1483 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1484 * We clear state and move all vap's in CSA state to RUN state
1485 * so they can again transmit.
1488 ieee80211_csa_completeswitch(struct ieee80211com
*ic
)
1490 KASSERT(ic
->ic_flags
& IEEE80211_F_CSAPENDING
, ("csa not pending"));
1492 ieee80211_setcurchan(ic
, ic
->ic_csa_newchan
);
1493 csa_completeswitch(ic
);
1497 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1498 * We clear state and move all vap's in CSA state to RUN state
1499 * so they can again transmit.
1502 ieee80211_csa_cancelswitch(struct ieee80211com
*ic
)
1504 csa_completeswitch(ic
);
1508 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1509 * We clear state and move all vap's in CAC state to RUN state.
1512 ieee80211_cac_completeswitch(struct ieee80211vap
*vap0
)
1514 struct ieee80211com
*ic
= vap0
->iv_ic
;
1515 struct ieee80211vap
*vap
;
1518 * Complete CAC state change for lead vap first; then
1519 * clock all the other vap's waiting.
1521 KASSERT(vap0
->iv_state
== IEEE80211_S_CAC
,
1522 ("wrong state %d", vap0
->iv_state
));
1523 ieee80211_new_state_locked(vap0
, IEEE80211_S_RUN
, 0);
1525 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
)
1526 if (vap
->iv_state
== IEEE80211_S_CAC
)
1527 ieee80211_new_state_locked(vap
, IEEE80211_S_RUN
, 0);
1531 * Force all vap's other than the specified vap to the INIT state
1532 * and mark them as waiting for a scan to complete. These vaps
1533 * will be brought up when the scan completes and the scanning vap
1534 * reaches RUN state by wakeupwaiting.
1537 markwaiting(struct ieee80211vap
*vap0
)
1539 struct ieee80211com
*ic
= vap0
->iv_ic
;
1540 struct ieee80211vap
*vap
;
1543 * A vap list entry can not disappear since we are running on the
1544 * taskqueue and a vap destroy will queue and drain another state
1547 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1550 if (vap
->iv_state
!= IEEE80211_S_INIT
) {
1551 /* NB: iv_newstate may drop the lock */
1552 vap
->iv_newstate(vap
, IEEE80211_S_INIT
, 0);
1553 vap
->iv_flags_ext
|= IEEE80211_FEXT_SCANWAIT
;
1559 * Wakeup all vap's waiting for a scan to complete. This is the
1560 * companion to markwaiting (above) and is used to coordinate
1561 * multiple vaps scanning.
1562 * This is called from the state taskqueue.
1565 wakeupwaiting(struct ieee80211vap
*vap0
)
1567 struct ieee80211com
*ic
= vap0
->iv_ic
;
1568 struct ieee80211vap
*vap
;
1571 * A vap list entry can not disappear since we are running on the
1572 * taskqueue and a vap destroy will queue and drain another state
1575 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1578 if (vap
->iv_flags_ext
& IEEE80211_FEXT_SCANWAIT
) {
1579 vap
->iv_flags_ext
&= ~IEEE80211_FEXT_SCANWAIT
;
1580 /* NB: sta's cannot go INIT->RUN */
1581 /* NB: iv_newstate may drop the lock */
1582 vap
->iv_newstate(vap
,
1583 vap
->iv_opmode
== IEEE80211_M_STA
?
1584 IEEE80211_S_SCAN
: IEEE80211_S_RUN
, 0);
1590 * Handle post state change work common to all operating modes.
1593 ieee80211_newstate_task(void *xvap
, int npending
)
1595 struct ieee80211vap
*vap
= xvap
;
1596 struct ieee80211com
*ic
;
1597 enum ieee80211_state nstate
, ostate
;
1600 wlan_serialize_enter();
1603 nstate
= vap
->iv_nstate
;
1604 arg
= vap
->iv_nstate_arg
;
1606 if (vap
->iv_flags_ext
& IEEE80211_FEXT_REINIT
) {
1608 * We have been requested to drop back to the INIT before
1609 * proceeding to the new state.
1611 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1612 "%s: %s -> %s arg %d\n", __func__
,
1613 ieee80211_state_name
[vap
->iv_state
],
1614 ieee80211_state_name
[IEEE80211_S_INIT
], arg
);
1615 vap
->iv_newstate(vap
, IEEE80211_S_INIT
, arg
);
1616 vap
->iv_flags_ext
&= ~IEEE80211_FEXT_REINIT
;
1619 ostate
= vap
->iv_state
;
1620 if (nstate
== IEEE80211_S_SCAN
&& ostate
!= IEEE80211_S_INIT
) {
1622 * SCAN was forced; e.g. on beacon miss. Force other running
1623 * vap's to INIT state and mark them as waiting for the scan to
1624 * complete. This insures they don't interfere with our
1625 * scanning. Since we are single threaded the vaps can not
1626 * transition again while we are executing.
1628 * XXX not always right, assumes ap follows sta
1632 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1633 "%s: %s -> %s arg %d\n", __func__
,
1634 ieee80211_state_name
[ostate
], ieee80211_state_name
[nstate
], arg
);
1636 rc
= vap
->iv_newstate(vap
, nstate
, arg
);
1637 vap
->iv_flags_ext
&= ~IEEE80211_FEXT_STATEWAIT
;
1639 /* State transition failed */
1640 KASSERT(rc
!= EINPROGRESS
, ("iv_newstate was deferred"));
1641 KASSERT(nstate
!= IEEE80211_S_INIT
,
1642 ("INIT state change failed"));
1643 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1644 "%s: %s returned error %d\n", __func__
,
1645 ieee80211_state_name
[nstate
], rc
);
1649 /* No actual transition, skip post processing */
1650 if (ostate
== nstate
)
1653 if (nstate
== IEEE80211_S_RUN
) {
1655 * OACTIVE may be set on the vap if the upper layer
1656 * tried to transmit (e.g. IPv6 NDP) before we reach
1657 * RUN state. Clear it and restart xmit.
1659 * Note this can also happen as a result of SLEEP->RUN
1660 * (i.e. coming out of power save mode).
1662 vap
->iv_ifp
->if_flags
&= ~IFF_OACTIVE
;
1663 vap
->iv_ifp
->if_start(vap
->iv_ifp
);
1665 /* bring up any vaps waiting on us */
1667 } else if (nstate
== IEEE80211_S_INIT
) {
1669 * Flush the scan cache if we did the last scan (XXX?)
1670 * and flush any frames on send queues from this vap.
1671 * Note the mgt q is used only for legacy drivers and
1672 * will go away shortly.
1674 ieee80211_scan_flush(vap
);
1676 /* XXX NB: cast for altq */
1677 ieee80211_flush_ifq((struct ifqueue
*)&ic
->ic_ifp
->if_snd
, vap
);
1680 wlan_serialize_exit();
1684 * Public interface for initiating a state machine change.
1685 * This routine single-threads the request and coordinates
1686 * the scheduling of multiple vaps for the purpose of selecting
1687 * an operating channel. Specifically the following scenarios
1689 * o only one vap can be selecting a channel so on transition to
1690 * SCAN state if another vap is already scanning then
1691 * mark the caller for later processing and return without
1692 * doing anything (XXX? expectations by caller of synchronous operation)
1693 * o only one vap can be doing CAC of a channel so on transition to
1694 * CAC state if another vap is already scanning for radar then
1695 * mark the caller for later processing and return without
1696 * doing anything (XXX? expectations by caller of synchronous operation)
1697 * o if another vap is already running when a request is made
1698 * to SCAN then an operating channel has been chosen; bypass
1699 * the scan and just join the channel
1701 * Note that the state change call is done through the iv_newstate
1702 * method pointer so any driver routine gets invoked. The driver
1703 * will normally call back into operating mode-specific
1704 * ieee80211_newstate routines (below) unless it needs to completely
1705 * bypass the state machine (e.g. because the firmware has it's
1706 * own idea how things should work). Bypassing the net80211 layer
1707 * is usually a mistake and indicates lack of proper integration
1708 * with the net80211 layer.
1711 ieee80211_new_state_locked(struct ieee80211vap
*vap
,
1712 enum ieee80211_state nstate
, int arg
)
1714 struct ieee80211com
*ic
= vap
->iv_ic
;
1715 struct ieee80211vap
*vp
;
1716 enum ieee80211_state ostate
;
1717 int nrunning
, nscanning
;
1719 if (vap
->iv_flags_ext
& IEEE80211_FEXT_STATEWAIT
) {
1720 if (vap
->iv_nstate
== IEEE80211_S_INIT
) {
1722 * XXX The vap is being stopped, do no allow any other
1723 * state changes until this is completed.
1726 } else if (vap
->iv_state
!= vap
->iv_nstate
) {
1728 /* Warn if the previous state hasn't completed. */
1729 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1730 "%s: pending %s -> %s transition lost\n", __func__
,
1731 ieee80211_state_name
[vap
->iv_state
],
1732 ieee80211_state_name
[vap
->iv_nstate
]);
1734 /* XXX temporarily enable to identify issues */
1735 if_printf(vap
->iv_ifp
,
1736 "%s: pending %s -> %s transition lost\n",
1737 __func__
, ieee80211_state_name
[vap
->iv_state
],
1738 ieee80211_state_name
[vap
->iv_nstate
]);
1743 nrunning
= nscanning
= 0;
1744 /* XXX can track this state instead of calculating */
1745 TAILQ_FOREACH(vp
, &ic
->ic_vaps
, iv_next
) {
1747 if (vp
->iv_state
>= IEEE80211_S_RUN
)
1749 /* XXX doesn't handle bg scan */
1750 /* NB: CAC+AUTH+ASSOC treated like SCAN */
1751 else if (vp
->iv_state
> IEEE80211_S_INIT
)
1755 ostate
= vap
->iv_state
;
1756 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1757 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__
,
1758 ieee80211_state_name
[ostate
], ieee80211_state_name
[nstate
],
1759 nrunning
, nscanning
);
1761 case IEEE80211_S_SCAN
:
1762 if (ostate
== IEEE80211_S_INIT
) {
1764 * INIT -> SCAN happens on initial bringup.
1766 KASSERT(!(nscanning
&& nrunning
),
1767 ("%d scanning and %d running", nscanning
, nrunning
));
1770 * Someone is scanning, defer our state
1771 * change until the work has completed.
1773 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1774 "%s: defer %s -> %s\n",
1775 __func__
, ieee80211_state_name
[ostate
],
1776 ieee80211_state_name
[nstate
]);
1777 vap
->iv_flags_ext
|= IEEE80211_FEXT_SCANWAIT
;
1782 * Someone is operating; just join the channel
1786 /* XXX check each opmode, adhoc? */
1787 if (vap
->iv_opmode
== IEEE80211_M_STA
)
1788 nstate
= IEEE80211_S_SCAN
;
1790 nstate
= IEEE80211_S_RUN
;
1791 #ifdef IEEE80211_DEBUG
1792 if (nstate
!= IEEE80211_S_SCAN
) {
1793 IEEE80211_DPRINTF(vap
,
1794 IEEE80211_MSG_STATE
,
1795 "%s: override, now %s -> %s\n",
1797 ieee80211_state_name
[ostate
],
1798 ieee80211_state_name
[nstate
]);
1804 case IEEE80211_S_RUN
:
1805 if (vap
->iv_opmode
== IEEE80211_M_WDS
&&
1806 (vap
->iv_flags_ext
& IEEE80211_FEXT_WDSLEGACY
) &&
1809 * Legacy WDS with someone else scanning; don't
1810 * go online until that completes as we should
1811 * follow the other vap to the channel they choose.
1813 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1814 "%s: defer %s -> %s (legacy WDS)\n", __func__
,
1815 ieee80211_state_name
[ostate
],
1816 ieee80211_state_name
[nstate
]);
1817 vap
->iv_flags_ext
|= IEEE80211_FEXT_SCANWAIT
;
1820 if (vap
->iv_opmode
== IEEE80211_M_HOSTAP
&&
1821 IEEE80211_IS_CHAN_DFS(ic
->ic_bsschan
) &&
1822 (vap
->iv_flags_ext
& IEEE80211_FEXT_DFS
) &&
1823 !IEEE80211_IS_CHAN_CACDONE(ic
->ic_bsschan
)) {
1825 * This is a DFS channel, transition to CAC state
1826 * instead of RUN. This allows us to initiate
1827 * Channel Availability Check (CAC) as specified
1830 nstate
= IEEE80211_S_CAC
;
1831 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1832 "%s: override %s -> %s (DFS)\n", __func__
,
1833 ieee80211_state_name
[ostate
],
1834 ieee80211_state_name
[nstate
]);
1837 case IEEE80211_S_INIT
:
1838 /* cancel any scan in progress */
1839 ieee80211_cancel_scan(vap
);
1840 if (ostate
== IEEE80211_S_INIT
) {
1841 /* XXX don't believe this */
1842 /* INIT -> INIT. nothing to do */
1843 vap
->iv_flags_ext
&= ~IEEE80211_FEXT_SCANWAIT
;
1849 /* defer the state change to a thread */
1850 vap
->iv_nstate
= nstate
;
1851 vap
->iv_nstate_arg
= arg
;
1852 vap
->iv_flags_ext
|= IEEE80211_FEXT_STATEWAIT
;
1853 ieee80211_runtask(ic
, &vap
->iv_nstate_task
);
1858 ieee80211_new_state(struct ieee80211vap
*vap
,
1859 enum ieee80211_state nstate
, int arg
)
1861 struct ieee80211com
*ic
= vap
->iv_ic
;
1865 rc
= ieee80211_new_state_locked(vap
, nstate
, arg
);