Remove empty DragonFly CVS IDs.
[dragonfly.git] / sys / netproto / 802_11 / wlan / ieee80211_dragonfly.c
blob098598ebafe8610768f20d0b6dcbdcdc4c6a2b7b
1 /*-
2 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 * $FreeBSD: head/sys/net80211/ieee80211_freebsd.c 202612 2010-01-19 05:00:57Z thompsa $
29 * IEEE 802.11 support (DragonFlyBSD-specific code)
31 #include "opt_wlan.h"
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/linker.h>
37 #include <sys/mbuf.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/sysctl.h>
42 #include <sys/socket.h>
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_clone.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 #include <net/route.h>
52 #include <net/ifq_var.h>
54 #include <netproto/802_11/ieee80211_var.h>
55 #include <netproto/802_11/ieee80211_input.h>
57 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
59 #ifdef IEEE80211_DEBUG
60 int ieee80211_debug = 0;
61 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
62 0, "debugging printfs");
63 #endif
65 int ieee80211_force_swcrypto = 0;
66 SYSCTL_INT(_net_wlan, OID_AUTO, force_swcrypto, CTLFLAG_RW,
67 &ieee80211_force_swcrypto, 0, "force software crypto");
69 MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
72 static int wlan_clone_destroy(struct ifnet *);
73 static int wlan_clone_create(struct if_clone *, int, caddr_t);
75 static struct if_clone wlan_cloner =
76 IF_CLONE_INITIALIZER("wlan", wlan_clone_create, wlan_clone_destroy,
77 0, IF_MAXUNIT);
79 struct lwkt_serialize wlan_global_serializer = LWKT_SERIALIZE_INITIALIZER;
82 * Allocate/free com structure in conjunction with ifnet;
83 * these routines are registered with if_register_com_alloc
84 * below and are called automatically by the ifnet code
85 * when the ifnet of the parent device is created.
87 static void *
88 wlan_alloc(u_char type, struct ifnet *ifp)
90 struct ieee80211com *ic;
92 ic = kmalloc(sizeof(struct ieee80211com), M_80211_COM, M_WAITOK|M_ZERO);
93 ic->ic_ifp = ifp;
95 return (ic);
98 static void
99 wlan_free(void *ic, u_char type)
101 kfree(ic, M_80211_COM);
104 static int
105 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
107 struct ieee80211_clone_params cp;
108 struct ieee80211vap *vap;
109 struct ieee80211com *ic;
110 struct ifnet *ifp;
111 int error;
113 error = copyin(params, &cp, sizeof(cp));
114 if (error)
115 return error;
116 ifp = ifunit(cp.icp_parent);
117 if (ifp == NULL)
118 return ENXIO;
119 /* XXX move printfs to DIAGNOSTIC before release */
120 if (ifp->if_type != IFT_IEEE80211) {
121 if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__);
122 return ENXIO;
124 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
125 if_printf(ifp, "%s: invalid opmode %d\n",
126 __func__, cp.icp_opmode);
127 return EINVAL;
129 ic = ifp->if_l2com;
130 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
131 if_printf(ifp, "%s mode not supported\n",
132 ieee80211_opmode_name[cp.icp_opmode]);
133 return EOPNOTSUPP;
135 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
136 #ifdef IEEE80211_SUPPORT_TDMA
137 (ic->ic_caps & IEEE80211_C_TDMA) == 0
138 #else
140 #endif
142 if_printf(ifp, "TDMA not supported\n");
143 return EOPNOTSUPP;
145 vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
146 cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
147 cp.icp_flags & IEEE80211_CLONE_MACADDR ?
148 cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
149 return (vap == NULL ? EIO : 0);
152 static int
153 wlan_clone_destroy(struct ifnet *ifp)
155 struct ieee80211vap *vap = ifp->if_softc;
156 struct ieee80211com *ic = vap->iv_ic;
158 wlan_serialize_enter(); /* WARNING must be global serializer */
159 ic->ic_vap_delete(vap);
160 wlan_serialize_exit();
162 return 0;
165 const char *wlan_last_enter_func;
166 const char *wlan_last_exit_func;
168 * These serializer functions are used by wlan and all drivers.
170 void
171 _wlan_serialize_enter(const char *funcname)
173 lwkt_serialize_enter(&wlan_global_serializer);
174 wlan_last_enter_func = funcname;
177 void
178 _wlan_serialize_exit(const char *funcname)
180 lwkt_serialize_exit(&wlan_global_serializer);
181 wlan_last_exit_func = funcname;
185 wlan_serialize_sleep(void *ident, int flags, const char *wmesg, int timo)
187 return(zsleep(ident, &wlan_global_serializer, flags, wmesg, timo));
191 * condition-var functions which interlock the ic lock (which is now
192 * just wlan_global_serializer)
194 void
195 wlan_cv_init(struct cv *cv, const char *desc)
197 cv->cv_desc = desc;
198 cv->cv_waiters = 0;
202 wlan_cv_timedwait(struct cv *cv, int ticks)
204 int error;
206 ++cv->cv_waiters;
207 error = wlan_serialize_sleep(cv, 0, cv->cv_desc, ticks);
208 return (error);
211 void
212 wlan_cv_wait(struct cv *cv)
214 ++cv->cv_waiters;
215 wlan_serialize_sleep(cv, 0, cv->cv_desc, 0);
218 void
219 wlan_cv_signal(struct cv *cv, int broadcast)
221 if (cv->cv_waiters) {
222 if (broadcast) {
223 cv->cv_waiters = 0;
224 wakeup(cv);
225 } else {
226 --cv->cv_waiters;
227 wakeup_one(cv);
233 * Misc
235 void
236 ieee80211_vap_destroy(struct ieee80211vap *vap)
238 wlan_assert_serialized();
239 wlan_serialize_exit();
240 if_clone_destroy(vap->iv_ifp->if_xname);
241 wlan_serialize_enter();
245 * NOTE: This handler is used generally to convert milliseconds
246 * to ticks for various simple sysctl variables and does not
247 * need to be serialized.
250 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
252 int msecs = ticks_to_msecs(*(int *)arg1);
253 int error, t;
255 error = sysctl_handle_int(oidp, &msecs, 0, req);
256 if (error == 0 && req->newptr) {
257 t = msecs_to_ticks(msecs);
258 *(int *)arg1 = (t < 1) ? 1 : t;
261 return error;
264 static int
265 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
267 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
268 int error;
270 error = sysctl_handle_int(oidp, &inact, 0, req);
271 wlan_serialize_enter();
272 if (error == 0 && req->newptr)
273 *(int *)arg1 = inact / IEEE80211_INACT_WAIT;
274 wlan_serialize_exit();
276 return error;
279 static int
280 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
282 struct ieee80211com *ic = arg1;
283 const char *name = ic->ic_ifp->if_xname;
285 return SYSCTL_OUT(req, name, strlen(name));
288 static int
289 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
291 struct ieee80211com *ic = arg1;
292 int t = 0, error;
294 error = sysctl_handle_int(oidp, &t, 0, req);
295 wlan_serialize_enter();
296 if (error == 0 && req->newptr)
297 ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
298 wlan_serialize_exit();
300 return error;
303 void
304 ieee80211_sysctl_attach(struct ieee80211com *ic)
308 void
309 ieee80211_sysctl_detach(struct ieee80211com *ic)
313 void
314 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
316 struct ifnet *ifp = vap->iv_ifp;
317 struct sysctl_ctx_list *ctx;
318 struct sysctl_oid *oid;
319 char num[14]; /* sufficient for 32 bits */
321 ctx = (struct sysctl_ctx_list *) kmalloc(sizeof(struct sysctl_ctx_list),
322 M_DEVBUF, M_INTWAIT | M_ZERO);
323 if (ctx == NULL) {
324 if_printf(ifp, "%s: cannot allocate sysctl context!\n",
325 __func__);
326 return;
328 sysctl_ctx_init(ctx);
329 ksnprintf(num, sizeof(num), "%u", ifp->if_dunit);
330 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
331 OID_AUTO, num, CTLFLAG_RD, NULL, "");
332 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
333 "%parent", CTLFLAG_RD, vap->iv_ic, 0,
334 ieee80211_sysctl_parent, "A", "parent device");
335 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
336 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
337 "driver capabilities");
338 #ifdef IEEE80211_DEBUG
339 vap->iv_debug = ieee80211_debug;
340 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
341 "debug", CTLFLAG_RW, &vap->iv_debug, 0,
342 "control debugging printfs");
343 #endif
344 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
345 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
346 "consecutive beacon misses before scanning");
347 /* XXX inherit from tunables */
348 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
349 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
350 ieee80211_sysctl_inact, "I",
351 "station inactivity timeout (sec)");
352 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
353 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
354 ieee80211_sysctl_inact, "I",
355 "station inactivity probe timeout (sec)");
356 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
357 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
358 ieee80211_sysctl_inact, "I",
359 "station authentication timeout (sec)");
360 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
361 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
362 ieee80211_sysctl_inact, "I",
363 "station initial state timeout (sec)");
364 if (vap->iv_htcaps & IEEE80211_HTC_HT) {
365 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
366 "ampdu_mintraffic_bk", CTLFLAG_RW,
367 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
368 "BK traffic tx aggr threshold (pps)");
369 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
370 "ampdu_mintraffic_be", CTLFLAG_RW,
371 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
372 "BE traffic tx aggr threshold (pps)");
373 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
374 "ampdu_mintraffic_vo", CTLFLAG_RW,
375 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
376 "VO traffic tx aggr threshold (pps)");
377 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
378 "ampdu_mintraffic_vi", CTLFLAG_RW,
379 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
380 "VI traffic tx aggr threshold (pps)");
382 if (vap->iv_caps & IEEE80211_C_DFS) {
383 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
384 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
385 ieee80211_sysctl_radar, "I", "simulate radar event");
387 vap->iv_sysctl = ctx;
388 vap->iv_oid = oid;
391 void
392 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
395 if (vap->iv_sysctl != NULL) {
396 sysctl_ctx_free(vap->iv_sysctl);
397 kfree(vap->iv_sysctl, M_DEVBUF);
398 vap->iv_sysctl = NULL;
403 ieee80211_node_dectestref(struct ieee80211_node *ni)
405 /* XXX need equivalent of atomic_dec_and_test */
406 atomic_subtract_int(&ni->ni_refcnt, 1);
407 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
410 void
411 ieee80211_drain_ifq(struct ifqueue *ifq)
413 struct ieee80211_node *ni;
414 struct mbuf *m;
416 wlan_assert_serialized();
417 for (;;) {
418 IF_DEQUEUE(ifq, m);
419 if (m == NULL)
420 break;
422 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
423 KASSERT(ni != NULL, ("frame w/o node"));
424 ieee80211_free_node(ni);
425 m->m_pkthdr.rcvif = NULL;
427 m_freem(m);
431 void
432 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
434 struct ieee80211_node *ni;
435 struct mbuf *m, **mprev;
437 wlan_assert_serialized();
438 mprev = &ifq->ifq_head;
439 while ((m = *mprev) != NULL) {
440 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
441 if (ni != NULL && ni->ni_vap == vap) {
442 *mprev = m->m_nextpkt; /* remove from list */
443 ifq->ifq_len--;
445 m_freem(m);
446 ieee80211_free_node(ni); /* reclaim ref */
447 } else
448 mprev = &m->m_nextpkt;
450 /* recalculate tail ptr */
451 m = ifq->ifq_head;
452 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
454 ifq->ifq_tail = m;
458 * As above, for mbufs allocated with m_gethdr/MGETHDR
459 * or initialized by M_COPY_PKTHDR.
461 #define MC_ALIGN(m, len) \
462 do { \
463 (m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1); \
464 } while (/* CONSTCOND */ 0)
467 * Allocate and setup a management frame of the specified
468 * size. We return the mbuf and a pointer to the start
469 * of the contiguous data area that's been reserved based
470 * on the packet length. The data area is forced to 32-bit
471 * alignment and the buffer length to a multiple of 4 bytes.
472 * This is done mainly so beacon frames (that require this)
473 * can use this interface too.
475 struct mbuf *
476 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
478 struct mbuf *m;
479 u_int len;
482 * NB: we know the mbuf routines will align the data area
483 * so we don't need to do anything special.
485 len = roundup2(headroom + pktlen, 4);
486 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
487 if (len < MINCLSIZE) {
488 m = m_gethdr(MB_DONTWAIT, MT_DATA);
490 * Align the data in case additional headers are added.
491 * This should only happen when a WEP header is added
492 * which only happens for shared key authentication mgt
493 * frames which all fit in MHLEN.
495 if (m != NULL)
496 MH_ALIGN(m, len);
497 } else {
498 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
499 if (m != NULL)
500 MC_ALIGN(m, len);
502 if (m != NULL) {
503 m->m_data += headroom;
504 *frm = m->m_data;
506 return m;
510 * Re-align the payload in the mbuf. This is mainly used (right now)
511 * to handle IP header alignment requirements on certain architectures.
513 struct mbuf *
514 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
516 int pktlen, space;
517 struct mbuf *n = NULL;
519 pktlen = m->m_pkthdr.len;
520 space = pktlen + align;
521 if (space < MINCLSIZE)
522 n = m_gethdr(MB_DONTWAIT, MT_DATA);
523 #ifdef notyet
524 else {
525 n = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR,
526 space <= MCLBYTES ? MCLBYTES :
527 #if MJUMPAGESIZE != MCLBYTES
528 space <= MJUMPAGESIZE ? MJUMPAGESIZE :
529 #endif
530 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES);
532 #endif
533 if (__predict_true(n != NULL)) {
534 m_move_pkthdr(n, m);
535 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
536 m_copydata(m, 0, pktlen, mtod(n, caddr_t));
537 n->m_len = pktlen;
538 } else {
539 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
540 mtod(m, const struct ieee80211_frame *), NULL,
541 "%s", "no mbuf to realign");
542 vap->iv_stats.is_rx_badalign++;
544 m_freem(m);
545 return n;
549 ieee80211_add_callback(struct mbuf *m,
550 void (*func)(struct ieee80211_node *, void *, int), void *arg)
552 struct m_tag *mtag;
553 struct ieee80211_cb *cb;
555 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
556 sizeof(struct ieee80211_cb), M_INTWAIT);
557 if (mtag == NULL)
558 return 0;
560 cb = (struct ieee80211_cb *)(mtag+1);
561 cb->func = func;
562 cb->arg = arg;
563 m_tag_prepend(m, mtag);
564 m->m_flags |= M_TXCB;
565 return 1;
568 void
569 ieee80211_process_callback(struct ieee80211_node *ni,
570 struct mbuf *m, int status)
572 struct m_tag *mtag;
574 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
575 if (mtag != NULL) {
576 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
577 cb->func(ni, cb->arg, status);
581 #include <sys/libkern.h>
583 void
584 get_random_bytes(void *p, size_t n)
586 uint8_t *dp = p;
588 while (n > 0) {
589 uint32_t v = karc4random();
590 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
591 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
592 dp += sizeof(uint32_t), n -= nb;
597 * Helper function for events that pass just a single mac address.
599 static void
600 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
602 struct ieee80211_join_event iev;
604 memset(&iev, 0, sizeof(iev));
605 IEEE80211_ADDR_COPY(iev.iev_addr, mac);
606 rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
609 void
610 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
612 struct ieee80211vap *vap = ni->ni_vap;
613 struct ifnet *ifp = vap->iv_ifp;
615 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
616 (ni == vap->iv_bss) ? "bss " : "");
618 if (ni == vap->iv_bss) {
619 notify_macaddr(ifp, newassoc ?
620 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
621 if_link_state_change(ifp);
622 } else {
623 notify_macaddr(ifp, newassoc ?
624 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
628 void
629 ieee80211_notify_node_leave(struct ieee80211_node *ni)
631 struct ieee80211vap *vap = ni->ni_vap;
632 struct ifnet *ifp = vap->iv_ifp;
634 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
635 (ni == vap->iv_bss) ? "bss " : "");
637 if (ni == vap->iv_bss) {
638 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
639 if_link_state_change(ifp);
640 } else {
641 /* fire off wireless event station leaving */
642 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
646 void
647 ieee80211_notify_scan_done(struct ieee80211vap *vap)
649 struct ifnet *ifp = vap->iv_ifp;
651 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
653 /* dispatch wireless event indicating scan completed */
654 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
657 void
658 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
659 const struct ieee80211_frame *wh, const struct ieee80211_key *k,
660 u_int64_t rsc, int tid)
662 struct ifnet *ifp = vap->iv_ifp;
664 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
665 "%s replay detected <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
666 k->wk_cipher->ic_name, (intmax_t) rsc,
667 (intmax_t) k->wk_keyrsc[tid],
668 k->wk_keyix, k->wk_rxkeyix);
670 if (ifp != NULL) { /* NB: for cipher test modules */
671 struct ieee80211_replay_event iev;
673 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
674 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
675 iev.iev_cipher = k->wk_cipher->ic_cipher;
676 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
677 iev.iev_keyix = k->wk_rxkeyix;
678 else
679 iev.iev_keyix = k->wk_keyix;
680 iev.iev_keyrsc = k->wk_keyrsc[tid];
681 iev.iev_rsc = rsc;
682 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
686 void
687 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
688 const struct ieee80211_frame *wh, u_int keyix)
690 struct ifnet *ifp = vap->iv_ifp;
692 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
693 "michael MIC verification failed <keyix %u>", keyix);
694 vap->iv_stats.is_rx_tkipmic++;
696 if (ifp != NULL) { /* NB: for cipher test modules */
697 struct ieee80211_michael_event iev;
699 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
700 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
701 iev.iev_cipher = IEEE80211_CIPHER_TKIP;
702 iev.iev_keyix = keyix;
703 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
707 void
708 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
710 struct ieee80211vap *vap = ni->ni_vap;
711 struct ifnet *ifp = vap->iv_ifp;
713 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
716 void
717 ieee80211_notify_csa(struct ieee80211com *ic,
718 const struct ieee80211_channel *c, int mode, int count)
720 struct ifnet *ifp = ic->ic_ifp;
721 struct ieee80211_csa_event iev;
723 memset(&iev, 0, sizeof(iev));
724 iev.iev_flags = c->ic_flags;
725 iev.iev_freq = c->ic_freq;
726 iev.iev_ieee = c->ic_ieee;
727 iev.iev_mode = mode;
728 iev.iev_count = count;
729 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
732 void
733 ieee80211_notify_radar(struct ieee80211com *ic,
734 const struct ieee80211_channel *c)
736 struct ifnet *ifp = ic->ic_ifp;
737 struct ieee80211_radar_event iev;
739 memset(&iev, 0, sizeof(iev));
740 iev.iev_flags = c->ic_flags;
741 iev.iev_freq = c->ic_freq;
742 iev.iev_ieee = c->ic_ieee;
743 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
746 void
747 ieee80211_notify_cac(struct ieee80211com *ic,
748 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
750 struct ifnet *ifp = ic->ic_ifp;
751 struct ieee80211_cac_event iev;
753 memset(&iev, 0, sizeof(iev));
754 iev.iev_flags = c->ic_flags;
755 iev.iev_freq = c->ic_freq;
756 iev.iev_ieee = c->ic_ieee;
757 iev.iev_type = type;
758 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
761 void
762 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
764 struct ieee80211vap *vap = ni->ni_vap;
765 struct ifnet *ifp = vap->iv_ifp;
767 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
769 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
772 void
773 ieee80211_notify_node_auth(struct ieee80211_node *ni)
775 struct ieee80211vap *vap = ni->ni_vap;
776 struct ifnet *ifp = vap->iv_ifp;
778 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
780 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
783 void
784 ieee80211_notify_country(struct ieee80211vap *vap,
785 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
787 struct ifnet *ifp = vap->iv_ifp;
788 struct ieee80211_country_event iev;
790 memset(&iev, 0, sizeof(iev));
791 IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
792 iev.iev_cc[0] = cc[0];
793 iev.iev_cc[1] = cc[1];
794 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
797 void
798 ieee80211_notify_radio(struct ieee80211com *ic, int state)
800 struct ifnet *ifp = ic->ic_ifp;
801 struct ieee80211_radio_event iev;
803 memset(&iev, 0, sizeof(iev));
804 iev.iev_state = state;
805 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
809 ieee80211_handoff(struct ifnet *dst_ifp, struct mbuf *m)
811 struct mbuf *m0;
813 /* We may be sending a fragment so traverse the mbuf */
814 wlan_assert_serialized();
815 wlan_serialize_exit();
816 for (; m; m = m0) {
817 struct altq_pktattr pktattr;
819 m0 = m->m_nextpkt;
820 m->m_nextpkt = NULL;
822 if (ifq_is_enabled(&dst_ifp->if_snd))
823 altq_etherclassify(&dst_ifp->if_snd, m, &pktattr);
825 ifq_dispatch(dst_ifp, m, &pktattr);
827 wlan_serialize_enter();
829 return (0);
832 /* IEEE Std 802.11a-1999, page 9, table 79 */
833 #define IEEE80211_OFDM_SYM_TIME 4
834 #define IEEE80211_OFDM_PREAMBLE_TIME 16
835 #define IEEE80211_OFDM_SIGNAL_TIME 4
836 /* IEEE Std 802.11g-2003, page 44 */
837 #define IEEE80211_OFDM_SIGNAL_EXT_TIME 6
839 /* IEEE Std 802.11a-1999, page 7, figure 107 */
840 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS 16
841 #define IEEE80211_OFDM_TAIL_NBITS 6
843 #define IEEE80211_OFDM_NBITS(frmlen) \
844 (IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
845 ((frmlen) * NBBY) + \
846 IEEE80211_OFDM_TAIL_NBITS)
848 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
849 (((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
851 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
852 howmany(IEEE80211_OFDM_NBITS((frmlen)), \
853 IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
855 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
856 (IEEE80211_OFDM_PREAMBLE_TIME + \
857 IEEE80211_OFDM_SIGNAL_TIME + \
858 (IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
860 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
861 #define IEEE80211_CCK_PREAMBLE_LEN 144
862 #define IEEE80211_CCK_PLCP_HDR_TIME 48
863 #define IEEE80211_CCK_SHPREAMBLE_LEN 72
864 #define IEEE80211_CCK_SHPLCP_HDR_TIME 24
866 #define IEEE80211_CCK_NBITS(frmlen) ((frmlen) * NBBY)
867 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
868 (((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
870 uint16_t
871 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
872 uint32_t flags)
874 struct ieee80211vap *vap = ni->ni_vap;
875 uint16_t txtime;
876 int rate;
878 rs_rate &= IEEE80211_RATE_VAL;
879 rate = rs_rate * 500; /* ieee80211 rate -> kbps */
881 if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM) {
883 * IEEE Std 802.11a-1999, page 37, equation (29)
884 * IEEE Std 802.11g-2003, page 44, equation (42)
886 txtime = IEEE80211_OFDM_TXTIME(rate, len);
887 if (vap->iv_ic->ic_curmode == IEEE80211_MODE_11G)
888 txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
889 } else {
891 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
892 * IEEE Std 802.11g-2003, page 45, equation (43)
894 if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM_QUARTER+1)
895 ++len;
896 txtime = IEEE80211_CCK_TXTIME(rate, len);
899 * Short preamble is not applicable for DS 1Mbits/s
901 if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
902 txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
903 IEEE80211_CCK_SHPLCP_HDR_TIME;
904 } else {
905 txtime += IEEE80211_CCK_PREAMBLE_LEN +
906 IEEE80211_CCK_PLCP_HDR_TIME;
909 return txtime;
912 void
913 ieee80211_load_module(const char *modname)
916 #ifdef notyet
917 (void)kern_kldload(curthread, modname, NULL);
918 #else
919 kprintf("%s: load the %s module by hand for now.\n", __func__, modname);
920 #endif
923 static eventhandler_tag wlan_bpfevent;
924 static eventhandler_tag wlan_ifllevent;
926 static void
927 bpf_track_event(void *arg, struct ifnet *ifp, int dlt, int attach)
929 /* NB: identify vap's by if_start */
931 wlan_serialize_enter();
932 if (dlt == DLT_IEEE802_11_RADIO && ifp->if_start == ieee80211_start) {
933 struct ieee80211vap *vap = ifp->if_softc;
935 * Track bpf radiotap listener state. We mark the vap
936 * to indicate if any listener is present and the com
937 * to indicate if any listener exists on any associated
938 * vap. This flag is used by drivers to prepare radiotap
939 * state only when needed.
941 if (attach) {
942 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
943 if (vap->iv_opmode == IEEE80211_M_MONITOR)
944 atomic_add_int(&vap->iv_ic->ic_montaps, 1);
945 } else if (!vap->iv_rawbpf) {
946 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
947 if (vap->iv_opmode == IEEE80211_M_MONITOR)
948 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
951 wlan_serialize_exit();
954 static void
955 wlan_iflladdr_event(void *arg __unused, struct ifnet *ifp)
957 struct ieee80211com *ic = ifp->if_l2com;
958 struct ieee80211vap *vap, *next;
960 wlan_serialize_enter();
961 if (ifp->if_type != IFT_IEEE80211 || ic == NULL) {
962 wlan_serialize_exit();
963 return;
966 TAILQ_FOREACH_MUTABLE(vap, &ic->ic_vaps, iv_next, next) {
968 * If the MAC address has changed on the parent and it was
969 * copied to the vap on creation then re-sync.
971 if (vap->iv_ic == ic &&
972 (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) {
973 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
974 wlan_serialize_exit();
975 if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp),
976 IEEE80211_ADDR_LEN);
977 wlan_serialize_enter();
980 wlan_serialize_exit();
984 * Module glue.
986 * NB: the module name is "wlan" for compatibility with NetBSD.
988 static int
989 wlan_modevent(module_t mod, int type, void *unused)
991 int error;
993 wlan_serialize_enter();
995 switch (type) {
996 case MOD_LOAD:
997 if (bootverbose)
998 kprintf("wlan: <802.11 Link Layer>\n");
999 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1000 bpf_track_event, 0,
1001 EVENTHANDLER_PRI_ANY);
1002 if (wlan_bpfevent == NULL) {
1003 error = ENOMEM;
1004 break;
1006 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1007 wlan_iflladdr_event, NULL,
1008 EVENTHANDLER_PRI_ANY);
1009 if (wlan_ifllevent == NULL) {
1010 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1011 error = ENOMEM;
1012 break;
1014 if_clone_attach(&wlan_cloner);
1015 if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free);
1016 error = 0;
1017 break;
1018 case MOD_UNLOAD:
1019 if_deregister_com_alloc(IFT_IEEE80211);
1020 if_clone_detach(&wlan_cloner);
1021 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1022 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1023 error = 0;
1024 break;
1025 default:
1026 error = EINVAL;
1027 break;
1029 wlan_serialize_exit();
1031 return error;
1034 static moduledata_t wlan_mod = {
1035 "wlan",
1036 wlan_modevent,
1039 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1040 MODULE_VERSION(wlan, 1);
1041 MODULE_DEPEND(wlan, ether, 1, 1, 1);