2 * Copyright (c) 2003-2016 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * This module implements IPI message queueing and the MI portion of IPI
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/thread2.h>
49 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_zone.h>
65 #include <machine/stdarg.h>
66 #include <machine/smp.h>
67 #include <machine/clock.h>
68 #include <machine/atomic.h>
70 #ifdef _KERNEL_VIRTUAL
75 int64_t ipiq_count
; /* total calls to lwkt_send_ipiq*() */
76 int64_t ipiq_fifofull
; /* number of fifo full conditions detected */
77 int64_t ipiq_avoided
; /* interlock with target avoids cpu ipi */
78 int64_t ipiq_passive
; /* passive IPI messages */
79 int64_t ipiq_cscount
; /* number of cpu synchronizations */
82 static struct ipiq_stats ipiq_stats_percpu
[MAXCPU
];
83 #define ipiq_stat(gd) ipiq_stats_percpu[(gd)->gd_cpuid]
85 static int ipiq_debug
; /* set to 1 for debug */
87 static int panic_ipiq_cpu
= -1;
88 static int panic_ipiq_count
= 100;
91 SYSCTL_INT(_lwkt
, OID_AUTO
, ipiq_debug
, CTLFLAG_RW
, &ipiq_debug
, 0,
94 SYSCTL_INT(_lwkt
, OID_AUTO
, panic_ipiq_cpu
, CTLFLAG_RW
, &panic_ipiq_cpu
, 0, "");
95 SYSCTL_INT(_lwkt
, OID_AUTO
, panic_ipiq_count
, CTLFLAG_RW
, &panic_ipiq_count
, 0, "");
98 #define IPIQ_STRING "func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
99 #define IPIQ_ARGS void *func, void *arg1, int arg2, int scpu, int dcpu
101 #if !defined(KTR_IPIQ)
102 #define KTR_IPIQ KTR_ALL
104 KTR_INFO_MASTER(ipiq
);
105 KTR_INFO(KTR_IPIQ
, ipiq
, send_norm
, 0, IPIQ_STRING
, IPIQ_ARGS
);
106 KTR_INFO(KTR_IPIQ
, ipiq
, send_pasv
, 1, IPIQ_STRING
, IPIQ_ARGS
);
107 KTR_INFO(KTR_IPIQ
, ipiq
, receive
, 4, IPIQ_STRING
, IPIQ_ARGS
);
108 KTR_INFO(KTR_IPIQ
, ipiq
, sync_start
, 5, "cpumask=%08lx", unsigned long mask
);
109 KTR_INFO(KTR_IPIQ
, ipiq
, sync_end
, 6, "cpumask=%08lx", unsigned long mask
);
110 KTR_INFO(KTR_IPIQ
, ipiq
, cpu_send
, 7, IPIQ_STRING
, IPIQ_ARGS
);
111 KTR_INFO(KTR_IPIQ
, ipiq
, send_end
, 8, IPIQ_STRING
, IPIQ_ARGS
);
112 KTR_INFO(KTR_IPIQ
, ipiq
, sync_quick
, 9, "cpumask=%08lx", unsigned long mask
);
114 #define logipiq(name, func, arg1, arg2, sgd, dgd) \
115 KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
116 #define logipiq2(name, arg) \
117 KTR_LOG(ipiq_ ## name, arg)
119 static void lwkt_process_ipiq_nested(void);
120 static int lwkt_process_ipiq_core(globaldata_t sgd
, lwkt_ipiq_t ip
,
121 struct intrframe
*frame
, int limit
);
122 static void lwkt_cpusync_remote1(lwkt_cpusync_t cs
);
123 static void lwkt_cpusync_remote2(lwkt_cpusync_t cs
);
125 #define IPIQ_SYSCTL(name) \
127 sysctl_##name(SYSCTL_HANDLER_ARGS) \
132 for (cpu = 0; cpu < ncpus; ++cpu) \
133 val += ipiq_stats_percpu[cpu].name; \
135 error = sysctl_handle_quad(oidp, &val, 0, req); \
136 if (error || req->newptr == NULL) \
139 for (cpu = 0; cpu < ncpus; ++cpu) \
140 ipiq_stats_percpu[cpu].name = val; \
145 IPIQ_SYSCTL(ipiq_count
);
146 IPIQ_SYSCTL(ipiq_fifofull
);
147 IPIQ_SYSCTL(ipiq_avoided
);
148 IPIQ_SYSCTL(ipiq_passive
);
149 IPIQ_SYSCTL(ipiq_cscount
);
151 SYSCTL_PROC(_lwkt
, OID_AUTO
, ipiq_count
, (CTLTYPE_QUAD
| CTLFLAG_RW
),
152 0, 0, sysctl_ipiq_count
, "Q", "Number of IPI's sent");
153 SYSCTL_PROC(_lwkt
, OID_AUTO
, ipiq_fifofull
, (CTLTYPE_QUAD
| CTLFLAG_RW
),
154 0, 0, sysctl_ipiq_fifofull
, "Q",
155 "Number of fifo full conditions detected");
156 SYSCTL_PROC(_lwkt
, OID_AUTO
, ipiq_avoided
, (CTLTYPE_QUAD
| CTLFLAG_RW
),
157 0, 0, sysctl_ipiq_avoided
, "Q",
158 "Number of IPI's avoided by interlock with target cpu");
159 SYSCTL_PROC(_lwkt
, OID_AUTO
, ipiq_passive
, (CTLTYPE_QUAD
| CTLFLAG_RW
),
160 0, 0, sysctl_ipiq_passive
, "Q",
161 "Number of passive IPI messages sent");
162 SYSCTL_PROC(_lwkt
, OID_AUTO
, ipiq_cscount
, (CTLTYPE_QUAD
| CTLFLAG_RW
),
163 0, 0, sysctl_ipiq_cscount
, "Q",
164 "Number of cpu synchronizations");
167 * Send a function execution request to another cpu. The request is queued
168 * on the cpu<->cpu ipiq matrix. Each cpu owns a unique ipiq FIFO for every
169 * possible target cpu. The FIFO can be written.
171 * If the FIFO fills up we have to enable interrupts to avoid an APIC
172 * deadlock and process pending IPIQs while waiting for it to empty.
173 * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
175 * We can safely bump gd_intr_nesting_level because our crit_exit() at the
176 * end will take care of any pending interrupts.
178 * The actual hardware IPI is avoided if the target cpu is already processing
179 * the queue from a prior IPI. It is possible to pipeline IPI messages
180 * very quickly between cpus due to the FIFO hysteresis.
182 * Need not be called from a critical section.
185 lwkt_send_ipiq3(globaldata_t target
, ipifunc3_t func
, void *arg1
, int arg2
)
192 struct globaldata
*gd
= mycpu
;
194 logipiq(send_norm
, func
, arg1
, arg2
, gd
, target
);
197 func(arg1
, arg2
, NULL
);
198 logipiq(send_end
, func
, arg1
, arg2
, gd
, target
);
202 ++gd
->gd_intr_nesting_level
;
204 if (gd
->gd_intr_nesting_level
> 20)
205 panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
207 KKASSERT(curthread
->td_critcount
);
208 ++ipiq_stat(gd
).ipiq_count
;
209 ip
= &gd
->gd_ipiq
[target
->gd_cpuid
];
212 * Do not allow the FIFO to become full. Interrupts must be physically
213 * enabled while we liveloop to avoid deadlocking the APIC.
215 * When we are not nested inside a processing loop we allow the FIFO
216 * to get 1/2 full. Once it exceeds 1/2 full we must wait for it to
217 * drain, executing any incoming IPIs while we wait.
219 * When we are nested we allow the FIFO to get almost completely full.
220 * This allows us to queue IPIs sent from IPI callbacks. The processing
221 * code will only process incoming FIFOs that are trying to drain while
222 * we wait, and only to the only-slightly-less-full point, to avoid a
228 if (gd
->gd_processing_ipiq
== 0) {
229 level1
= MAXCPUFIFO
/ 2;
230 level2
= MAXCPUFIFO
/ 4;
232 level1
= MAXCPUFIFO
- 3;
233 level2
= MAXCPUFIFO
- 5;
236 if (ip
->ip_windex
- ip
->ip_rindex
> level1
) {
237 #ifndef _KERNEL_VIRTUAL
238 uint64_t tsc_base
= rdtsc();
243 rflags
= read_rflags();
245 ++ipiq_stat(gd
).ipiq_fifofull
;
246 DEBUG_PUSH_INFO("send_ipiq3");
247 olimit
= atomic_swap_int(&ip
->ip_drain
, level2
);
248 while (ip
->ip_windex
- ip
->ip_rindex
> level2
) {
249 KKASSERT(ip
->ip_windex
- ip
->ip_rindex
!= MAXCPUFIFO
- 1);
250 lwkt_process_ipiq_nested();
254 * Check for target not draining issue. This should be fixed but
255 * leave the code in-place anyway as it can recover an otherwise
258 #ifdef _KERNEL_VIRTUAL
259 if (repeating
++ > 10)
262 if (rdtsc() - tsc_base
> tsc_frequency
) {
264 if (repeating
> 10) {
265 kprintf("send_ipiq %d->%d tgt not draining (%d) sniff=%p,%p\n",
266 gd
->gd_cpuid
, target
->gd_cpuid
, repeating
,
267 target
->gd_sample_pc
, target
->gd_sample_sp
);
270 ATOMIC_CPUMASK_ORBIT(target
->gd_ipimask
, gd
->gd_cpuid
);
271 cpu_send_ipiq(target
->gd_cpuid
);
274 kprintf("send_ipiq %d->%d tgt not draining (%d)\n",
275 gd
->gd_cpuid
, target
->gd_cpuid
, repeating
);
282 atomic_swap_int(&ip
->ip_drain
, olimit
);
284 #if defined(__x86_64__)
285 write_rflags(rflags
);
287 #error "no write_*flags"
292 * Queue the new message and signal the target cpu. For now we need to
293 * physically disable interrupts because the target will not get signalled
294 * by other cpus once we set target->gd_npoll and we don't want to get
297 * XXX not sure why this is a problem, the critical section should prevent
298 * any stalls (incoming interrupts except Xinvltlb and Xsnoop will
299 * just be made pending).
301 rflags
= read_rflags();
302 #ifndef _KERNEL_VIRTUAL
306 windex
= ip
->ip_windex
& MAXCPUFIFO_MASK
;
307 ip
->ip_info
[windex
].func
= func
;
308 ip
->ip_info
[windex
].arg1
= arg1
;
309 ip
->ip_info
[windex
].arg2
= arg2
;
312 ATOMIC_CPUMASK_ORBIT(target
->gd_ipimask
, gd
->gd_cpuid
);
315 * signal the target cpu that there is work pending.
317 if (atomic_swap_int(&target
->gd_npoll
, 1) == 0) {
318 logipiq(cpu_send
, func
, arg1
, arg2
, gd
, target
);
319 cpu_send_ipiq(target
->gd_cpuid
);
321 ++ipiq_stat(gd
).ipiq_avoided
;
323 write_rflags(rflags
);
325 --gd
->gd_intr_nesting_level
;
327 logipiq(send_end
, func
, arg1
, arg2
, gd
, target
);
329 return(ip
->ip_windex
);
333 * Similar to lwkt_send_ipiq() but this function does not actually initiate
334 * the IPI to the target cpu unless the FIFO is greater than 1/4 full.
335 * This function is usually very fast.
337 * This function is used for non-critical IPI messages, such as memory
338 * deallocations. The queue will typically be flushed by the target cpu at
339 * the next clock interrupt.
341 * Need not be called from a critical section.
344 lwkt_send_ipiq3_passive(globaldata_t target
, ipifunc3_t func
,
345 void *arg1
, int arg2
)
349 struct globaldata
*gd
= mycpu
;
351 KKASSERT(target
!= gd
);
353 ++gd
->gd_intr_nesting_level
;
354 ip
= &gd
->gd_ipiq
[target
->gd_cpuid
];
357 * If the FIFO is too full send the IPI actively.
359 * WARNING! This level must be low enough not to trigger a wait loop
360 * in the active sending code since we are not signalling the
363 if (ip
->ip_windex
- ip
->ip_rindex
>= MAXCPUFIFO
/ 4) {
364 --gd
->gd_intr_nesting_level
;
366 return lwkt_send_ipiq3(target
, func
, arg1
, arg2
);
370 * Else we can do it passively.
372 logipiq(send_pasv
, func
, arg1
, arg2
, gd
, target
);
373 ++ipiq_stat(gd
).ipiq_count
;
374 ++ipiq_stat(gd
).ipiq_passive
;
377 * Queue the new message
379 windex
= ip
->ip_windex
& MAXCPUFIFO_MASK
;
380 ip
->ip_info
[windex
].func
= func
;
381 ip
->ip_info
[windex
].arg1
= arg1
;
382 ip
->ip_info
[windex
].arg2
= arg2
;
385 ATOMIC_CPUMASK_ORBIT(target
->gd_ipimask
, gd
->gd_cpuid
);
386 --gd
->gd_intr_nesting_level
;
389 * Do not signal the target cpu, it will pick up the IPI when it next
390 * polls (typically on the next tick).
393 logipiq(send_end
, func
, arg1
, arg2
, gd
, target
);
395 return(ip
->ip_windex
);
399 * deprecated, used only by fast int forwarding.
402 lwkt_send_ipiq3_bycpu(int dcpu
, ipifunc3_t func
, void *arg1
, int arg2
)
404 return(lwkt_send_ipiq3(globaldata_find(dcpu
), func
, arg1
, arg2
));
408 * Send a message to several target cpus. Typically used for scheduling.
409 * The message will not be sent to stopped cpus.
411 * To prevent treating low-numbered cpus as favored sons, the IPIs are
412 * issued in order starting at mycpu upward, then from 0 through mycpu.
413 * This is particularly important to prevent random scheduler pickups
414 * from favoring cpu 0.
417 lwkt_send_ipiq3_mask(cpumask_t mask
, ipifunc3_t func
, void *arg1
, int arg2
)
423 CPUMASK_NANDMASK(mask
, stopped_cpus
);
426 * All cpus in mask which are >= mycpu
428 CPUMASK_ASSBMASK(amask
, mycpu
->gd_cpuid
);
429 CPUMASK_INVMASK(amask
);
430 CPUMASK_ANDMASK(amask
, mask
);
431 while (CPUMASK_TESTNZERO(amask
)) {
432 cpuid
= BSFCPUMASK(amask
);
433 lwkt_send_ipiq3(globaldata_find(cpuid
), func
, arg1
, arg2
);
434 CPUMASK_NANDBIT(amask
, cpuid
);
439 * All cpus in mask which are < mycpu
441 CPUMASK_ASSBMASK(amask
, mycpu
->gd_cpuid
);
442 CPUMASK_ANDMASK(amask
, mask
);
443 while (CPUMASK_TESTNZERO(amask
)) {
444 cpuid
= BSFCPUMASK(amask
);
445 lwkt_send_ipiq3(globaldata_find(cpuid
), func
, arg1
, arg2
);
446 CPUMASK_NANDBIT(amask
, cpuid
);
453 * Wait for the remote cpu to finish processing a function.
455 * YYY we have to enable interrupts and process the IPIQ while waiting
456 * for it to empty or we may deadlock with another cpu. Create a CPU_*()
457 * function to do this! YYY we really should 'block' here.
459 * MUST be called from a critical section. This routine may be called
460 * from an interrupt (for example, if an interrupt wakes a foreign thread
464 lwkt_wait_ipiq(globaldata_t target
, int seq
)
468 if (target
!= mycpu
) {
469 ip
= &mycpu
->gd_ipiq
[target
->gd_cpuid
];
470 if ((int)(ip
->ip_xindex
- seq
) < 0) {
471 #if defined(__x86_64__)
472 unsigned long rflags
= read_rflags();
474 #error "no read_*flags"
476 int64_t time_tgt
= tsc_get_target(1000000000LL);
479 #ifdef _KERNEL_VIRTUAL
484 DEBUG_PUSH_INFO("wait_ipiq");
485 while ((int)(ip
->ip_xindex
- seq
) < 0) {
489 #ifdef _KERNEL_VIRTUAL
490 if (repeating
++ > 10)
495 * IPIQs must be handled within 10 seconds and this code
496 * will warn after one second.
498 if ((benice
& 255) == 0 && tsc_test_target(time_tgt
) > 0) {
499 kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n",
500 mycpu
->gd_cpuid
, target
->gd_cpuid
,
501 ip
->ip_xindex
- seq
);
502 if (--time_loops
== 0)
503 panic("LWKT_WAIT_IPIQ");
504 time_tgt
= tsc_get_target(1000000000LL);
509 * xindex may be modified by another cpu, use a load fence
510 * to ensure that the loop does not use a speculative value
511 * (which may improve performance).
517 #if defined(__x86_64__)
518 write_rflags(rflags
);
520 #error "no write_*flags"
527 * Called from IPI interrupt (like a fast interrupt), and numerous
528 * other locations, and might also be called recursively. Caller must
529 * hold a critical section across this call.
531 * When called from doreti, splz, or an IPI interrupt, npoll is cleared
532 * by the caller using an atomic xchgl, thus synchronizing the incoming
533 * ipimask against npoll. A new IPI will be received if new traffic
534 * occurs verses the windex we read.
536 * However, ipimask might not be synchronized when called from other
537 * locations. Our processing will be more heuristic.
539 * There are two versions, one where no interrupt frame is available (when
540 * called from the send code and from splz, and one where an interrupt
541 * frame is available.
543 * When the current cpu is mastering a cpusync we do NOT internally loop
544 * on the cpusyncq poll. We also do not re-flag a pending ipi due to
545 * the cpusyncq poll because this can cause doreti/splz to loop internally.
546 * The cpusync master's own loop must be allowed to run to avoid a deadlock.
549 lwkt_process_ipiq(void)
551 globaldata_t gd
= mycpu
;
557 ++gd
->gd_processing_ipiq
;
559 mask
= gd
->gd_ipimask
;
561 while (CPUMASK_TESTNZERO(mask
)) {
562 n
= BSFCPUMASK(mask
);
563 if (n
!= gd
->gd_cpuid
) {
564 sgd
= globaldata_find(n
);
568 while (lwkt_process_ipiq_core(sgd
, ip
, NULL
, 0))
571 * Can't NAND before-hand as it will prevent recursive
572 * processing. Sender will adjust windex before adjusting
575 ATOMIC_CPUMASK_NANDBIT(gd
->gd_ipimask
, n
);
576 if (ip
->ip_rindex
!= ip
->ip_windex
)
577 ATOMIC_CPUMASK_ORBIT(gd
->gd_ipimask
, n
);
580 CPUMASK_NANDBIT(mask
, n
);
584 * Process pending cpusyncs. If the current thread has a cpusync
585 * active cpusync we only run the list once and do not re-flag
586 * as the thread itself is processing its interlock.
588 if (lwkt_process_ipiq_core(gd
, &gd
->gd_cpusyncq
, NULL
, 0)) {
589 if (gd
->gd_curthread
->td_cscount
== 0)
591 /* need_ipiq(); do not reflag */
595 * Interlock to allow more IPI interrupts.
597 --gd
->gd_processing_ipiq
;
601 lwkt_process_ipiq_frame(struct intrframe
*frame
)
603 globaldata_t gd
= mycpu
;
609 ++gd
->gd_processing_ipiq
;
611 mask
= gd
->gd_ipimask
;
613 while (CPUMASK_TESTNZERO(mask
)) {
614 n
= BSFCPUMASK(mask
);
615 if (n
!= gd
->gd_cpuid
) {
616 sgd
= globaldata_find(n
);
620 while (lwkt_process_ipiq_core(sgd
, ip
, frame
, 0))
623 * Can't NAND before-hand as it will prevent recursive
624 * processing. Sender will adjust windex before adjusting
627 ATOMIC_CPUMASK_NANDBIT(gd
->gd_ipimask
, n
);
628 if (ip
->ip_rindex
!= ip
->ip_windex
)
629 ATOMIC_CPUMASK_ORBIT(gd
->gd_ipimask
, n
);
632 CPUMASK_NANDBIT(mask
, n
);
634 if (gd
->gd_cpusyncq
.ip_rindex
!= gd
->gd_cpusyncq
.ip_windex
) {
635 if (lwkt_process_ipiq_core(gd
, &gd
->gd_cpusyncq
, frame
, 0)) {
636 if (gd
->gd_curthread
->td_cscount
== 0)
638 /* need_ipiq(); do not reflag */
641 --gd
->gd_processing_ipiq
;
645 * Only process incoming IPIQs from draining senders and only process them
646 * to the point where the draining sender is able to continue. This is
647 * necessary to avoid deadlocking the IPI subsystem because we are acting on
648 * incoming messages and the callback may queue additional messages.
650 * We only want to have to act on senders that are blocked to limit the
651 * number of additional messages sent. At the same time, recipients are
652 * trying to drain our own queue. Theoretically this create a pipeline that
656 lwkt_process_ipiq_nested(void)
658 globaldata_t gd
= mycpu
;
665 ++gd
->gd_processing_ipiq
;
667 mask
= gd
->gd_ipimask
;
669 while (CPUMASK_TESTNZERO(mask
)) {
670 n
= BSFCPUMASK(mask
);
671 if (n
!= gd
->gd_cpuid
) {
672 sgd
= globaldata_find(n
);
676 * NOTE: We do not mess with the cpumask at all, instead we allow
677 * the top-level ipiq processor deal with it.
681 if ((limit
= ip
->ip_drain
) != 0) {
682 lwkt_process_ipiq_core(sgd
, ip
, NULL
, limit
);
683 /* no gd_ipimask when doing limited processing */
687 CPUMASK_NANDBIT(mask
, n
);
691 * Process pending cpusyncs. If the current thread has a cpusync
692 * active cpusync we only run the list once and do not re-flag
693 * as the thread itself is processing its interlock.
695 if (lwkt_process_ipiq_core(gd
, &gd
->gd_cpusyncq
, NULL
, 0)) {
696 if (gd
->gd_curthread
->td_cscount
== 0)
698 /* need_ipiq(); do not reflag */
700 --gd
->gd_processing_ipiq
;
704 * Process incoming IPI requests until only <limit> are left (0 to exhaust
705 * all incoming IPI requests).
708 lwkt_process_ipiq_core(globaldata_t sgd
, lwkt_ipiq_t ip
,
709 struct intrframe
*frame
, int limit
)
711 globaldata_t mygd
= mycpu
;
714 ipifunc3_t copy_func
;
719 * Clear the originating core from our ipimask, we will process all
722 * Obtain the current write index, which is modified by a remote cpu.
723 * Issue a load fence to prevent speculative reads of e.g. data written
724 * by the other cpu prior to them updating the windex.
726 KKASSERT(curthread
->td_critcount
);
729 ++mygd
->gd_intr_nesting_level
;
732 * NOTE: xindex is only updated after we are sure the function has
733 * finished execution. Beware lwkt_process_ipiq() reentrancy!
734 * The function may send an IPI which may block/drain.
736 * NOTE: Due to additional IPI operations that the callback function
737 * may make, it is possible for both rindex and windex to advance and
738 * thus for rindex to advance passed our cached windex.
740 * We must process only through our cached (wi) to ensure that
741 * speculative reads of ip_info[] content do not occur without
744 * NOTE: Single pass only. Returns non-zero if the queue is not empty
747 * NOTE: Our 'wi' guarantees that memory loads will not be out of order.
748 * Do NOT reload wi with windex in the below loop unless you also
749 * issue another lfence after reloading it.
751 while (wi
- (ri
= ip
->ip_rindex
) > limit
) {
752 ri
&= MAXCPUFIFO_MASK
;
753 copy_func
= ip
->ip_info
[ri
].func
;
754 copy_arg1
= ip
->ip_info
[ri
].arg1
;
755 copy_arg2
= ip
->ip_info
[ri
].arg2
;
758 logipiq(receive
, copy_func
, copy_arg1
, copy_arg2
, sgd
, mycpu
);
760 if (ipiq_debug
&& (ip
->ip_rindex
& 0xFFFFFF) == 0) {
761 kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
763 copy_func
, copy_arg1
, copy_arg2
,
764 #if defined(__x86_64__)
765 (frame
? (void *)frame
->if_rip
: NULL
));
771 copy_func(copy_arg1
, copy_arg2
, frame
);
773 ip
->ip_xindex
= ip
->ip_rindex
;
777 * Simulate panics during the processing of an IPI
779 if (mycpu
->gd_cpuid
== panic_ipiq_cpu
&& panic_ipiq_count
) {
780 if (--panic_ipiq_count
== 0) {
782 Debugger("PANIC_DEBUG");
784 panic("PANIC_DEBUG");
790 --mygd
->gd_intr_nesting_level
;
793 * Return non-zero if there is still more in the queue. Don't worry
794 * about fencing, we will get another interrupt if necessary.
796 return (ip
->ip_rindex
!= ip
->ip_windex
);
800 lwkt_sync_ipiq(void *arg
)
802 volatile cpumask_t
*cpumask
= arg
;
804 ATOMIC_CPUMASK_NANDBIT(*cpumask
, mycpu
->gd_cpuid
);
805 if (CPUMASK_TESTZERO(*cpumask
))
810 lwkt_synchronize_ipiqs(const char *wmesg
)
812 volatile cpumask_t other_cpumask
;
814 other_cpumask
= smp_active_mask
;
815 CPUMASK_ANDMASK(other_cpumask
, mycpu
->gd_other_cpus
);
816 lwkt_send_ipiq_mask(other_cpumask
, lwkt_sync_ipiq
,
817 __DEVOLATILE(void *, &other_cpumask
));
819 while (CPUMASK_TESTNZERO(other_cpumask
)) {
820 tsleep_interlock(&other_cpumask
, 0);
821 if (CPUMASK_TESTNZERO(other_cpumask
))
822 tsleep(&other_cpumask
, PINTERLOCKED
, wmesg
, 0);
827 * CPU Synchronization Support
829 * lwkt_cpusync_interlock() - Place specified cpus in a quiescent state.
830 * The current cpu is placed in a hard critical
833 * lwkt_cpusync_deinterlock() - Execute cs_func on specified cpus, including
834 * current cpu if specified, then return.
837 lwkt_cpusync_simple(cpumask_t mask
, cpusync_func_t func
, void *arg
)
839 struct lwkt_cpusync cs
;
841 lwkt_cpusync_init(&cs
, mask
, func
, arg
);
842 lwkt_cpusync_interlock(&cs
);
843 lwkt_cpusync_deinterlock(&cs
);
848 lwkt_cpusync_interlock(lwkt_cpusync_t cs
)
850 globaldata_t gd
= mycpu
;
854 * mask acknowledge (cs_mack): 0->mask for stage 1
856 * mack does not include the current cpu.
859 CPUMASK_ANDMASK(mask
, gd
->gd_other_cpus
);
860 CPUMASK_ANDMASK(mask
, smp_active_mask
);
861 CPUMASK_ASSZERO(cs
->cs_mack
);
863 crit_enter_id("cpusync");
864 if (CPUMASK_TESTNZERO(mask
)) {
865 DEBUG_PUSH_INFO("cpusync_interlock");
866 ++ipiq_stat(gd
).ipiq_cscount
;
867 ++gd
->gd_curthread
->td_cscount
;
868 lwkt_send_ipiq_mask(mask
, (ipifunc1_t
)lwkt_cpusync_remote1
, cs
);
869 logipiq2(sync_start
, (long)CPUMASK_LOWMASK(mask
));
870 while (CPUMASK_CMPMASKNEQ(cs
->cs_mack
, mask
)) {
873 #ifdef _KERNEL_VIRTUAL
882 * Interlocked cpus have executed remote1 and are polling in remote2.
883 * To deinterlock we clear cs_mack and wait for the cpus to execute
884 * the func and set their bit in cs_mack again.
888 lwkt_cpusync_deinterlock(lwkt_cpusync_t cs
)
890 globaldata_t gd
= mycpu
;
894 * mask acknowledge (cs_mack): mack->0->mack for stage 2
896 * Clearing cpu bits for polling cpus in cs_mack will cause them to
897 * execute stage 2, which executes the cs_func(cs_data) and then sets
898 * their bit in cs_mack again.
900 * mack does not include the current cpu.
904 CPUMASK_ASSZERO(cs
->cs_mack
);
906 if (cs
->cs_func
&& CPUMASK_TESTBIT(cs
->cs_mask
, gd
->gd_cpuid
))
907 cs
->cs_func(cs
->cs_data
);
908 if (CPUMASK_TESTNZERO(mask
)) {
909 DEBUG_PUSH_INFO("cpusync_deinterlock");
910 while (CPUMASK_CMPMASKNEQ(cs
->cs_mack
, mask
)) {
913 #ifdef _KERNEL_VIRTUAL
919 * cpusyncq ipis may be left queued without the RQF flag set due to
920 * a non-zero td_cscount, so be sure to process any laggards after
921 * decrementing td_cscount.
923 --gd
->gd_curthread
->td_cscount
;
925 logipiq2(sync_end
, (long)CPUMASK_LOWMASK(mask
));
927 crit_exit_id("cpusync");
931 * The quick version does not quiesce the target cpu(s) but instead executes
932 * the function on the target cpu(s) and waits for all to acknowledge. This
933 * avoids spinning on the target cpus.
935 * This function is typically only used for kernel_pmap updates. User pmaps
936 * have to be quiesced.
939 lwkt_cpusync_quick(lwkt_cpusync_t cs
)
941 globaldata_t gd
= mycpu
;
945 * stage-2 cs_mack only.
948 CPUMASK_ANDMASK(mask
, gd
->gd_other_cpus
);
949 CPUMASK_ANDMASK(mask
, smp_active_mask
);
950 CPUMASK_ASSZERO(cs
->cs_mack
);
952 crit_enter_id("cpusync");
953 if (CPUMASK_TESTNZERO(mask
)) {
954 DEBUG_PUSH_INFO("cpusync_interlock");
955 ++ipiq_stat(gd
).ipiq_cscount
;
956 ++gd
->gd_curthread
->td_cscount
;
957 lwkt_send_ipiq_mask(mask
, (ipifunc1_t
)lwkt_cpusync_remote2
, cs
);
958 logipiq2(sync_quick
, (long)CPUMASK_LOWMASK(mask
));
959 while (CPUMASK_CMPMASKNEQ(cs
->cs_mack
, mask
)) {
962 #ifdef _KERNEL_VIRTUAL
968 * cpusyncq ipis may be left queued without the RQF flag set due to
969 * a non-zero td_cscount, so be sure to process any laggards after
970 * decrementing td_cscount.
973 --gd
->gd_curthread
->td_cscount
;
976 if (cs
->cs_func
&& CPUMASK_TESTBIT(cs
->cs_mask
, gd
->gd_cpuid
))
977 cs
->cs_func(cs
->cs_data
);
978 crit_exit_id("cpusync");
982 * helper IPI remote messaging function.
984 * Called on remote cpu when a new cpu synchronization request has been
985 * sent to us. Execute the run function and adjust cs_count, then requeue
986 * the request so we spin on it.
989 lwkt_cpusync_remote1(lwkt_cpusync_t cs
)
991 globaldata_t gd
= mycpu
;
993 ATOMIC_CPUMASK_ORBIT(cs
->cs_mack
, gd
->gd_cpuid
);
994 lwkt_cpusync_remote2(cs
);
998 * helper IPI remote messaging function.
1000 * Poll for the originator telling us to finish. If it hasn't, requeue
1001 * our request so we spin on it.
1004 lwkt_cpusync_remote2(lwkt_cpusync_t cs
)
1006 globaldata_t gd
= mycpu
;
1008 if (CPUMASK_TESTMASK(cs
->cs_mack
, gd
->gd_cpumask
) == 0) {
1010 cs
->cs_func(cs
->cs_data
);
1011 ATOMIC_CPUMASK_ORBIT(cs
->cs_mack
, gd
->gd_cpuid
);
1012 /* cs can be ripped out at this point */
1018 #ifdef _KERNEL_VIRTUAL
1024 * Requeue our IPI to avoid a deep stack recursion. If no other
1025 * IPIs are pending we can just loop up, which should help VMs
1026 * better-detect spin loops.
1028 ip
= &gd
->gd_cpusyncq
;
1030 wi
= ip
->ip_windex
& MAXCPUFIFO_MASK
;
1031 ip
->ip_info
[wi
].func
= (ipifunc3_t
)(ipifunc1_t
)lwkt_cpusync_remote2
;
1032 ip
->ip_info
[wi
].arg1
= cs
;
1033 ip
->ip_info
[wi
].arg2
= 0;
1035 KKASSERT(ip
->ip_windex
- ip
->ip_rindex
< MAXCPUFIFO
);
1037 if (ipiq_debug
&& (ip
->ip_windex
& 0xFFFFFF) == 0) {
1038 kprintf("cpu %d cm=%016jx %016jx f=%p\n",
1040 (intmax_t)CPUMASK_LOWMASK(cs
->cs_mask
),
1041 (intmax_t)CPUMASK_LOWMASK(cs
->cs_mack
),
1047 #define LWKT_IPIQ_NLATENCY 8
1048 #define LWKT_IPIQ_NLATENCY_MASK (LWKT_IPIQ_NLATENCY - 1)
1050 struct lwkt_ipiq_latency_log
{
1051 int idx
; /* unmasked index */
1053 uint64_t latency
[LWKT_IPIQ_NLATENCY
];
1056 static struct lwkt_ipiq_latency_log lwkt_ipiq_latency_logs
[MAXCPU
];
1057 static uint64_t save_tsc
;
1060 * IPI callback (already in a critical section)
1063 lwkt_ipiq_latency_testfunc(void *arg __unused
)
1066 struct globaldata
*gd
;
1067 struct lwkt_ipiq_latency_log
*lat
;
1070 * Get delta TSC (assume TSCs are synchronized) as quickly as
1071 * possible and then convert to nanoseconds.
1073 delta_tsc
= rdtsc_ordered() - save_tsc
;
1074 delta_tsc
= delta_tsc
* 1000000000LU / tsc_frequency
;
1077 * Record in our save array.
1080 lat
= &lwkt_ipiq_latency_logs
[gd
->gd_cpuid
];
1081 lat
->latency
[lat
->idx
& LWKT_IPIQ_NLATENCY_MASK
] = delta_tsc
;
1086 * Send IPI from cpu0 to other cpus
1088 * NOTE: Machine must be idle for test to run dependably, and also probably
1089 * a good idea not to be running powerd.
1091 * NOTE: Caller should use 'usched :1 <command>' to lock itself to cpu 0.
1092 * See 'ipitest' script in /usr/src/test/sysperf/ipitest
1095 lwkt_ipiq_latency_test(SYSCTL_HANDLER_ARGS
)
1097 struct globaldata
*gd
;
1098 int cpu
= 0, orig_cpu
, error
;
1100 error
= sysctl_handle_int(oidp
, &cpu
, arg2
, req
);
1101 if (error
|| req
->newptr
== NULL
)
1106 else if (cpu
>= ncpus
|| cpu
< 0)
1112 gd
= globaldata_find(cpu
);
1114 save_tsc
= rdtsc_ordered();
1115 lwkt_send_ipiq(gd
, lwkt_ipiq_latency_testfunc
, NULL
);
1117 lwkt_migratecpu(orig_cpu
);
1121 SYSCTL_NODE(_debug
, OID_AUTO
, ipiq
, CTLFLAG_RW
, 0, "");
1122 SYSCTL_PROC(_debug_ipiq
, OID_AUTO
, latency_test
, CTLTYPE_INT
| CTLFLAG_RW
,
1123 NULL
, 0, lwkt_ipiq_latency_test
, "I",
1124 "ipi latency test, arg: remote cpuid");
1127 lwkt_ipiq_latency(SYSCTL_HANDLER_ARGS
)
1129 struct lwkt_ipiq_latency_log
*latency
= arg1
;
1130 uint64_t lat
[LWKT_IPIQ_NLATENCY
];
1133 for (i
= 0; i
< LWKT_IPIQ_NLATENCY
; ++i
)
1134 lat
[i
] = latency
->latency
[i
];
1136 return sysctl_handle_opaque(oidp
, lat
, sizeof(lat
), req
);
1140 lwkt_ipiq_latency_init(void *dummy __unused
)
1144 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
1147 ksnprintf(name
, sizeof(name
), "latency%d", cpu
);
1148 SYSCTL_ADD_PROC(NULL
, SYSCTL_STATIC_CHILDREN(_debug_ipiq
),
1149 OID_AUTO
, name
, CTLTYPE_OPAQUE
| CTLFLAG_RD
,
1150 &lwkt_ipiq_latency_logs
[cpu
], 0, lwkt_ipiq_latency
,
1151 "LU", "7 latest ipi latency measurement results");
1154 SYSINIT(lwkt_ipiq_latency
, SI_SUB_CONFIGURE
, SI_ORDER_ANY
,
1155 lwkt_ipiq_latency_init
, NULL
);