Import 2.3.17
[davej-history.git] / drivers / atm / horizon.c
blob3a6538bcc9ac124aa0f8e5e5b83a4f309c2ceedb
1 /*
2 Madge Horizon ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
24 IMPORTANT NOTE: Madge Networks no longer makes the adapters
25 supported by this driver and makes no commitment to maintain it.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/ioport.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <asm/string.h>
47 #include <asm/byteorder.h>
49 #include "horizon.h"
51 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
52 #define description_string "Madge ATM Horizon [Ultra] driver"
53 #define version_string "1.1"
55 static void __init show_version (void) {
56 printk ("%s version %s\n", description_string, version_string);
61 CREDITS
63 Driver and documentation by:
65 Chris Aston Madge Networks
66 Giuliano Procida Madge Networks
67 Simon Benham Madge Networks
68 Simon Johnson Madge Networks
69 Various Others Madge Networks
71 Some inspiration taken from other drivers by:
73 Alexandru Cucos UTBv
74 Kari Mettinen University of Helsinki
75 Werner Almesberger EPFL LRC
77 Theory of Operation
79 I Hardware, detection, initialisation and shutdown.
81 1. Supported Hardware
83 This driver should handle all variants of the PCI Madge ATM adapters
84 with the Horizon chipset. These are all PCI cards supporting PIO, BM
85 DMA and a form of MMIO (registers only, not internal RAM).
87 The driver is only known to work with SONET and UTP Horizon Ultra
88 cards at 155Mb/s. However, code is in place to deal with both the
89 original Horizon and 35Mb/s.
91 There are two revisions of the Horizon ASIC: the original and the
92 Ultra. Details of hardware bugs are in section III.
94 The ASIC version can be distinguished by chip markings but is NOT
95 indicated by the PCI revision (all adapters seem to have PCI rev 1).
97 I believe that:
99 Horizon => Collage 25 PCI Adapter (UTP and STP)
100 Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
101 Ambassador x => Collage 155 PCI Server (completely different)
103 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
104 have a Madge B154 plus glue logic serializer. I have also found a
105 really ancient version of this with slightly different glue. It
106 comes with the revision 0 (140-025-01) ASIC.
108 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
109 output (UTP) or an HP HFBR 5205 output (SONET). It has either
110 Madge's SAMBA framer or a SUNI-lite device (early versions). It
111 comes with the revision 1 (140-027-01) ASIC.
113 2. Detection
115 All Horizon-based cards present with the same PCI Vendor and Device
116 IDs. The standard Linux 2.2 PCI API is used to locate any cards and
117 to enable bus-mastering (with appropriate latency).
119 ATM_LAYER_STATUS in the control register distinguishes between the
120 two possible physical layers (25 and 155). It is not clear whether
121 the 155 cards can also operate at 25Mbps. We rely on the fact that a
122 card operates at 155 if and only if it has the newer Horizon Ultra
123 ASIC.
125 For 155 cards the two possible framers are probed for and then set
126 up for loop-timing.
128 3. Initialisation
130 The card is reset and then put into a know state. The physical layer
131 is configured for normal operation at the appropriate speed; in the
132 case of the 155 cards, the framer is initialised with line-based
133 timing; the internal RAM is zeroed and the allocation of buffers for
134 RX and TX is made; the Burnt In Address is read and copied to the
135 ATM ESI; various policy settings for RX (VPI bits, unknown VCs, oam
136 cells) are made. Ideally all policy items should be configurable at
137 module load (if not actually on-demand), however, only the vpi vs
138 vci bit allocation can be specified at insmod.
140 4. Shutdown
142 This is in response to module_cleaup. No VCs are in use and the card
143 should be idle; it is reset.
145 II Driver software (as it should be)
147 0. Traffic Parameters
149 The traffic classes (not an enumeration) are currently: ATM_NONE (no
150 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
151 (compatible with everything). Together with (perhaps only some of)
152 the following items they make up the traffic specification.
154 struct atm_trafprm {
155 unsigned char traffic_class; traffic class (ATM_UBR, ...)
156 int max_pcr; maximum PCR in cells per second
157 int pcr; desired PCR in cells per second
158 int min_pcr; minimum PCR in cells per second
159 int max_cdv; maximum CDV in microseconds
160 int max_sdu; maximum SDU in bytes
163 Note that these denote bandwidth available not bandwidth used; the
164 possibilities according to ATMF are:
166 Real Time (cdv and max CDT given)
168 CBR(pcr) pcr bandwidth always available
169 rtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too
171 Non Real Time
173 nrtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too
174 UBR()
175 ABR(mcr,pcr) mcr bandwidth always available, upto pcr (depending) too
177 mbs is max burst size (bucket)
178 pcr and scr have associated cdvt values
179 mcr is like scr but has no cdtv
180 cdtv may differ at each hop
182 Some of the above items are qos items (as opposed to traffic
183 parameters). We have nothing to do with qos. All except ABR can have
184 their traffic parameters converted to GCRA parameters. The GCRA may
185 be implemented as a (real-number) leaky bucket. The GCRA can be used
186 in complicated ways by switches and in simpler ways by end-stations.
187 It can be used both to filter incoming cells and shape out-going
188 cells.
190 ATM Linux actually supports:
192 ATM_NONE() (no traffic in this direction)
193 ATM_UBR(max_frame_size)
194 ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
196 0 or ATM_MAX_PCR are used to indicate maximum available PCR
198 A traffic specification consists of the AAL type and separate
199 traffic specifications for either direction. In ATM Linux it is:
201 struct atm_qos {
202 struct atm_trafprm txtp;
203 struct atm_trafprm rxtp;
204 unsigned char aal;
207 AAL types are:
209 ATM_NO_AAL AAL not specified
210 ATM_AAL0 "raw" ATM cells
211 ATM_AAL1 AAL1 (CBR)
212 ATM_AAL2 AAL2 (VBR)
213 ATM_AAL34 AAL3/4 (data)
214 ATM_AAL5 AAL5 (data)
215 ATM_SAAL signaling AAL
217 The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
218 it does not implement AAL 3/4 SAR and it has a different notion of
219 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
220 supported by this driver.
222 The Horizon has (TX) support for ABR (including UBR), VBR and CBR.
223 Each TX channel has a bucket (containing up to 31 cell units) and
224 two timers (PCR and SCR) associated with it that can be used to
225 govern cell emissions and host notification (in the case of
226 ABR). The timers may either be disabled or may be set to any of 240
227 values (determined by the clock crystal, a fixed (?) per-device
228 divider, a configurable divider and a configurable timer preload
229 value).
231 At the moment only UBR and CBR are supported by the driver. This is
232 due to my not understanding ATM Linux VBR or Horizon's VBR support.
234 1. TX (TX channel setup and TX transfer)
236 The TX half of the driver owns the TX Horizon registers. The TX
237 component in the IRQ handler is the BM completion handler. This can
238 only be entered when tx_busy is true (enforced by hardware). The
239 other TX component can only be entered when tx_busy is false
240 (enforced by driver). So TX is single-threaded.
242 Apart from a minor optimisation to not re-select the last channel,
243 the TX send component works as follows:
245 Atomic test and set tx_busy until we succeed; we should implement
246 some sort of timeout so that tx_busy will never be stuck at true.
248 If no TX channel is setup for this VC we wait for an idle one (if
249 necessary) and set it up.
251 At this point we have a TX channel ready for use. We wait for enough
252 buffers to become available then start a TX transmit (set the TX
253 descriptor, schedule transfer, exit).
255 The IRQ component handles TX completion (stats, free buffer, tx_busy
256 unset, exit). We also re-schedule further transfers for the same
257 frame if needed.
259 TX setup in more detail:
261 TX open is a nop, the relevant information is held in the hrz_vcc
262 (vcc->dev_data) structure and is "cached" on the card.
264 TX close gets the TX lock and clears the channel from the "cache".
266 2. RX (Data Available and RX transfer)
268 The RX half of the driver owns the RX registers. There are two RX
269 components in the IRQ handler: the data available handler deals with
270 fresh data that has arrived on the card, the BM completion handler
271 is very similar to the TX completion handler. The data available
272 handler grabs the rx_lock and it is only released once the data has
273 been discarded or completely transferred to the host. The BM
274 completion handler only runs when the lock is held; the data
275 available handler is locked out over the same period.
277 Data available on the card triggers an interrupt. If the data is not
278 suitable for out existing RX channels or we cannot allocate a buffer
279 it is flushed. Otherwise an RX receive is scheduled. Multiple RX
280 transfers may be scheduled for the same frame.
282 RX setup in more detail:
284 RX open...
285 RX close...
287 III Hardware Bugs
289 0. Byte vs Word addressing of adapter RAM.
291 A design feature; see the .h file (especially the memory map).
293 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
295 The host must not start a transmit direction transfer at a
296 non-four-byte boundary in host memory. Instead the host should
297 perform a byte, or a two byte, or one byte followed by two byte
298 transfer in order to start the rest of the transfer on a four byte
299 boundary. RX is OK.
301 Simultaneous transmit and receive direction bus master transfers are
302 not allowed.
304 The simplest solution to these two is to always do PIO (never DMA)
305 in the TX direction on the original Horizon. More complicated
306 solutions are likely to hurt my brain.
308 3. Loss of buffer on close VC
310 When a VC is being closed, the buffer associated with it is not
311 returned to the pool. The host must store the reference to this
312 buffer and when opening a new VC then give it to that new VC.
314 The host intervention currently consists of stacking such a buffer
315 pointer at VC close and checking the stack at VC open.
317 4. Failure to close a VC
319 If a VC is currently receiving a frame then closing the VC may fail
320 and the frame continues to be received.
322 The solution is to make sure any received frames are flushed when
323 ready. This is currently done just before the solution to 3.
325 5. PCI bus (original Horizon only, fixed in Ultra)
327 Reading from the data port prior to initialisation will hang the PCI
328 bus. Just don't do that then! We don't.
330 IV To Do List
332 . Timer code may be broken.
334 . Allow users to specify buffer allocation split for TX and RX.
336 . Deal once and for all with buggy VC close.
338 . Handle interrupted and/or non-blocking operations.
340 . Change some macros to functions and move from .h to .c.
342 . Try to limit the number of TX frames each VC may have queued, in
343 order to reduce the chances of TX buffer exhaustion.
345 . Implement VBR (bucket and timers not understood) and ABR (need to
346 do RM cells manually); also no Linux support for either.
348 . Implement QoS changes on open VCs (involves extracting parts of VC open
349 and close into separate functions and using them to make changes).
353 /********** globals **********/
355 static hrz_dev * hrz_devs = NULL;
356 static struct timer_list housekeeping;
358 static unsigned short debug = 0;
359 static unsigned short vpi_bits = 0;
360 static unsigned short max_tx_size = 9000;
361 static unsigned short max_rx_size = 9000;
362 static unsigned char pci_lat = 0;
364 /********** access functions **********/
366 /* Read / Write Horizon registers */
367 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
368 outl (cpu_to_le32 (data), dev->iobase + reg);
371 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
372 return le32_to_cpu (inl (dev->iobase + reg));
375 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
376 outw (cpu_to_le16 (data), dev->iobase + reg);
379 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
380 return le16_to_cpu (inw (dev->iobase + reg));
383 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
384 outsb (dev->iobase + reg, addr, len);
387 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
388 insb (dev->iobase + reg, addr, len);
391 /* Read / Write to a given address in Horizon buffer memory. */
392 // Interrupts must be disabled between the address register and data port
393 // accesses as these must form an atomic operation.
395 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
396 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
397 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
398 wr_regl (dev, MEMORY_PORT_OFF, data);
401 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
402 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
403 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
404 return rd_regl(dev, MEMORY_PORT_OFF);
407 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
408 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
409 wr_regl (dev, MEMORY_PORT_OFF, data);
412 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
413 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
414 return rd_regl (dev, MEMORY_PORT_OFF);
417 /********** specialised access functions **********/
419 /* RX */
421 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
422 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
423 return;
426 static inline void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
427 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
429 return;
432 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
433 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
434 return;
437 static inline void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
438 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
440 return;
443 /* TX */
445 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
446 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
447 return;
450 /* Update or query one configuration parameter of a particular channel. */
452 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
453 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
454 chan * TX_CHANNEL_CONFIG_MULT | mode);
455 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
456 return;
459 static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
460 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
461 chan * TX_CHANNEL_CONFIG_MULT | mode);
462 return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
465 /********** dump functions **********/
467 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
468 #ifdef DEBUG_HORIZON
469 unsigned int i;
470 unsigned char * data = skb->data;
471 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
472 for (i=0; i<skb->len && i < 256;i++)
473 PRINTDM (DBG_DATA, "%02x ", data[i]);
474 PRINTDE (DBG_DATA,"");
475 #else
476 (void) prefix;
477 (void) vc;
478 (void) skb;
479 #endif
480 return;
483 static inline void dump_regs (hrz_dev * dev) {
484 #ifdef DEBUG_HORIZON
485 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
486 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
487 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
488 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
489 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
490 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
491 #else
492 (void) dev;
493 #endif
494 return;
497 static inline void dump_framer (hrz_dev * dev) {
498 #ifdef DEBUG_HORIZON
499 unsigned int i;
500 PRINTDB (DBG_REGS, "framer registers:");
501 for (i = 0; i < 0x10; ++i)
502 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
503 PRINTDE (DBG_REGS,"");
504 #else
505 (void) dev;
506 #endif
507 return;
510 /********** VPI/VCI <-> (RX) channel conversions **********/
512 /* RX channels are 10 bit integers, these fns are quite paranoid */
514 static inline int channel_to_vpci (const u16 channel, short * vpi, int * vci) {
515 unsigned short vci_bits = 10 - vpi_bits;
516 if ((channel & RX_CHANNEL_MASK) == channel) {
517 *vci = channel & ((~0)<<vci_bits);
518 *vpi = channel >> vci_bits;
519 return channel ? 0 : -EINVAL;
521 return -EINVAL;
524 static inline int vpci_to_channel (u16 * channel, const short vpi, const int vci) {
525 unsigned short vci_bits = 10 - vpi_bits;
526 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
527 *channel = vpi<<vci_bits | vci;
528 return *channel ? 0 : -EINVAL;
530 return -EINVAL;
533 /********** decode RX queue entries **********/
535 static inline u16 rx_q_entry_to_length (u32 x) {
536 return x & RX_Q_ENTRY_LENGTH_MASK;
539 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
540 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
543 /* Cell Transmit Rate Values
545 * the cell transmit rate (cells per sec) can be set to a variety of
546 * different values by specifying two parameters: a timer preload from
547 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
548 * an exponent from 0 to 14; the special value 15 disables the timer).
550 * cellrate = baserate / (preload * 2^divider)
552 * The maximum cell rate that can be specified is therefore just the
553 * base rate. Halving the preload is equivalent to adding 1 to the
554 * divider and so values 1 to 8 of the preload are redundant except
555 * in the case of a maximal divider (14).
557 * Given a desired cell rate, an algorithm to determine the preload
558 * and divider is:
560 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
561 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
562 * if x <= 16 then set p = x, d = 0 (high rates), done
563 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
564 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
565 * we find the range (n will be between 1 and 14), set d = n
566 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
568 * The algorithm used below is a minor variant of the above.
570 * The base rate is derived from the oscillator frequency (Hz) using a
571 * fixed divider:
573 * baserate = freq / 32 in the case of some Unknown Card
574 * baserate = freq / 8 in the case of the Horizon 25
575 * baserate = freq / 8 in the case of the Horizon Ultra 155
577 * The Horizon cards have oscillators and base rates as follows:
579 * Card Oscillator Base Rate
580 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
581 * Horizon 25 32 MHz 4 MHz
582 * Horizon Ultra 155 40 MHz 5 MHz
584 * The following defines give the base rates in Hz. These were
585 * previously a factor of 100 larger, no doubt someone was using
586 * cps*100.
589 #define BR_UKN 1031250l
590 #define BR_HRZ 4000000l
591 #define BR_ULT 5000000l
593 // d is an exponent
594 #define CR_MIND 0
595 #define CR_MAXD 14
597 // p ranges from 1 to a power of 2
598 #define CR_MAXPEXP 4
600 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
601 u16 * bits, unsigned int * actual) {
603 // note: rounding the rate down means rounding 'p' up
605 const unsigned long br = test_bit (ultra, &dev->flags) ? BR_ULT : BR_HRZ;
607 u32 div = CR_MIND;
608 u32 pre;
610 // local fn to build the timer bits
611 inline int set_cr (void) {
612 // paranoia
613 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
614 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
615 div, pre);
616 return -EINVAL;
617 } else {
618 if (bits)
619 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
620 if (actual) {
621 *actual = (br + (pre<<div) - 1) / (pre<<div);
622 PRINTD (DBG_QOS, "actual rate: %u", *actual);
624 return 0;
628 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
629 // the tests below. We could think harder about exact possibilities
630 // of failure...
632 unsigned long br_man = br;
633 unsigned int br_exp = 0;
635 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
636 (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest");
638 // avoid div by zero
639 if (!c) {
640 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
641 return -EINVAL;
644 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
645 br_man = br_man >> 1;
646 ++br_exp;
648 // (br >>br_exp) <<br_exp == br and
649 // br_exp <= CR_MAXPEXP+CR_MIND
651 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
652 // Equivalent to: B <= (c << (MAXPEXP+MIND))
653 // take care of rounding
654 switch (r) {
655 case round_down:
656 pre = (br+(c<<div)-1)/(c<<div);
657 // but p must be non-zero
658 if (!pre)
659 pre = 1;
660 break;
661 case round_nearest:
662 pre = (br+(c<<div)/2)/(c<<div);
663 // but p must be non-zero
664 if (!pre)
665 pre = 1;
666 break;
667 case round_up:
668 pre = br/(c<<div);
669 // but p must be non-zero
670 if (!pre)
671 return -EINVAL;
672 break;
674 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
675 return set_cr ();
678 // at this point we have
679 // d == MIND and (c << (MAXPEXP+MIND)) < B
680 while (div < CR_MAXD) {
681 div++;
682 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
683 // Equivalent to: B <= (c << (MAXPEXP+d))
684 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
685 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
686 // MAXP/2 < B/c2^d <= MAXP
687 // take care of rounding
688 switch (r) {
689 case round_down:
690 pre = (br+(c<<div)-1)/(c<<div);
691 break;
692 case round_nearest:
693 pre = (br+(c<<div)/2)/(c<<div);
694 break;
695 case round_up:
696 pre = br/(c<<div);
697 break;
699 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
700 return set_cr ();
703 // at this point we have
704 // d == MAXD and (c << (MAXPEXP+MAXD)) < B
705 // but we cannot go any higher
706 // take care of rounding
707 switch (r) {
708 case round_down:
709 return -EINVAL;
710 break;
711 case round_nearest:
712 break;
713 case round_up:
714 break;
716 pre = 1 << CR_MAXPEXP;
717 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
718 return set_cr ();
721 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
722 u16 * bit_pattern, unsigned int * actual) {
723 unsigned int my_actual;
725 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
726 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
728 if (!actual)
729 // actual rate is not returned
730 actual = &my_actual;
732 if (make_rate (dev, c, round_nearest, bit_pattern, actual))
733 // should never happen as round_nearest always succeeds
734 return -1;
736 if (c - tol <= *actual && *actual <= c + tol)
737 // within tolerance
738 return 0;
739 else
740 // intolerant, try rounding instead
741 return make_rate (dev, c, r, bit_pattern, actual);
744 /********** Listen on a VC **********/
746 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
747 // is there any guarantee that we don't get two simulataneous
748 // identical calls of this function from different processes? yes
749 // rates_lock
750 unsigned long flags;
751 u32 channel_type; // u16?
753 u16 buf_ptr = RX_CHANNEL_IDLE;
755 rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
757 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
759 spin_lock_irqsave (&dev->mem_lock, flags);
760 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
761 spin_unlock_irqrestore (&dev->mem_lock, flags);
763 // very serious error, should never occur
764 if (channel_type != RX_CHANNEL_DISABLED) {
765 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
766 return -EBUSY; // clean up?
769 // Give back spare buffer
770 if (dev->noof_spare_buffers) {
771 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
772 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
773 // should never occur
774 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
775 // but easy to recover from
776 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
777 buf_ptr = RX_CHANNEL_IDLE;
779 } else {
780 PRINTD (DBG_VCC, "using IDLE buffer pointer");
783 // Channel is currently disabled so change its status to idle
785 // do we really need to save the flags again?
786 spin_lock_irqsave (&dev->mem_lock, flags);
788 wr_mem (dev, &rx_desc->wr_buf_type,
789 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
790 if (buf_ptr != RX_CHANNEL_IDLE)
791 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
793 spin_unlock_irqrestore (&dev->mem_lock, flags);
795 // rxer->rate = make_rate (qos->peak_cells);
797 PRINTD (DBG_FLOW, "hrz_open_rx ok");
799 return 0;
802 #if 0
803 /********** change vc rate for a given vc **********/
805 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
806 rxer->rate = make_rate (qos->peak_cells);
808 #endif
810 /********** free an skb (as per ATM device driver documentation) **********/
812 static inline void hrz_kfree_skb (struct sk_buff * skb) {
813 if (ATM_SKB(skb)->vcc->pop) {
814 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
815 } else {
816 dev_kfree_skb (skb);
820 /********** cancel listen on a VC **********/
822 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
823 unsigned long flags;
825 u32 value;
827 u32 r1, r2;
829 rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
831 int was_idle = 0;
833 spin_lock_irqsave (&dev->mem_lock, flags);
834 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
835 spin_unlock_irqrestore (&dev->mem_lock, flags);
837 if (value == RX_CHANNEL_DISABLED) {
838 // I suppose this could happen once we deal with _NONE traffic properly
839 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
840 return;
842 if (value == RX_CHANNEL_IDLE)
843 was_idle = 1;
845 spin_lock_irqsave (&dev->mem_lock, flags);
847 for (;;) {
848 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
850 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
851 break;
853 was_idle = 0;
856 if (was_idle) {
857 spin_unlock_irqrestore (&dev->mem_lock, flags);
858 return;
861 WAIT_FLUSH_RX_COMPLETE(dev);
863 // XXX Is this all really necessary? We can rely on the rx_data_av
864 // handler to discard frames that remain queued for delivery. If the
865 // worry is that immediately reopening the channel (perhaps by a
866 // different process) may cause some data to be mis-delivered then
867 // there may still be a simpler solution (such as busy-waiting on
868 // rx_busy once the channel is disabled or before a new one is
869 // opened - does this leave any holes?). Arguably setting up and
870 // tearing down the TX and RX halves of each virtual circuit could
871 // most safely be done within ?x_busy protected regions.
873 // OK, current changes are that Simon's marker is disabled and we DO
874 // look for NULL rxer elsewhere. The code here seems flush frames
875 // and then remember the last dead cell belonging to the channel
876 // just disabled - the cell gets relinked at the next vc_open.
877 // However, when all VCs are closed or only a few opened there are a
878 // handful of buffers that are unusable.
880 // Does anyone feel like documenting spare_buffers properly?
881 // Does anyone feel like fixing this in a nicer way?
883 // Flush any data which is left in the channel
884 for (;;) {
885 // Change the rx channel port to something different to the RX
886 // channel we are trying to close to force Horizon to flush the rx
887 // channel read and write pointers.
889 u16 other = vc^(RX_CHANS/2);
891 SELECT_RX_CHANNEL (dev, other);
892 WAIT_UPDATE_COMPLETE (dev);
894 r1 = rd_mem (dev, &rx_desc->rd_buf_type);
896 // Select this RX channel. Flush doesn't seem to work unless we
897 // select an RX channel before hand
899 SELECT_RX_CHANNEL (dev, vc);
900 WAIT_UPDATE_COMPLETE (dev);
902 // Attempt to flush a frame on this RX channel
904 FLUSH_RX_CHANNEL (dev, vc);
905 WAIT_FLUSH_RX_COMPLETE (dev);
907 // Force Horizon to flush rx channel read and write pointers as before
909 SELECT_RX_CHANNEL (dev, other);
910 WAIT_UPDATE_COMPLETE (dev);
912 r2 = rd_mem (dev, &rx_desc->rd_buf_type);
914 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
916 if (r1 == r2) {
917 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
918 break;
922 #if 0
924 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
925 rx_q_entry * rd_ptr = dev->rx_q_entry;
927 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
929 while (rd_ptr != wr_ptr) {
930 u32 x = rd_mem (dev, (HDW *) rd_ptr);
932 if (vc == rx_q_entry_to_rx_channel (x)) {
933 x |= SIMONS_DODGEY_MARKER;
935 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
937 wr_mem (dev, (HDW *) rd_ptr, x);
940 if (rd_ptr == dev->rx_q_wrap)
941 rd_ptr = dev->rx_q_reset;
942 else
943 rd_ptr++;
946 #endif
948 spin_unlock_irqrestore (&dev->mem_lock, flags);
950 return;
953 /********** schedule RX transfers **********/
955 // Note on tail recursion: a GCC developer said that it is not likely
956 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
957 // are sure it does as you may otherwise overflow the kernel stack.
959 // giving this fn a return value would help GCC, alledgedly
961 static void rx_schedule (hrz_dev * dev, int irq) {
962 unsigned int rx_bytes;
964 int pio_instead;
965 #ifndef TAILRECURSIONWORKS
966 do {
967 #endif
968 pio_instead = 0;
970 // bytes waiting for RX transfer
971 rx_bytes = dev->rx_bytes;
973 #if 0
974 spin_count = 0;
975 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
976 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
977 if (++spin_count > 10) {
978 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
979 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
980 clear_bit (rx_busy, &dev->flags);
981 hrz_kfree_skb (dev->rx_skb);
982 return;
985 #endif
987 // this code follows the TX code but (at the moment) there is only
988 // one region - the skb itself. I don't know if this will change,
989 // but it doesn't hurt to have the code here, disabled.
991 if (rx_bytes) {
992 // start next transfer within same region
993 if (rx_bytes <= MAX_PIO_COUNT) {
994 PRINTD (DBG_RX|DBG_BUS, "(pio)");
995 pio_instead = 1;
997 if (rx_bytes <= MAX_TRANSFER_COUNT) {
998 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
999 dev->rx_bytes = 0;
1000 } else {
1001 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
1002 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1003 rx_bytes = MAX_TRANSFER_COUNT;
1005 } else {
1006 // rx_bytes == 0 -- we're between regions
1007 // regions remaining to transfer
1008 #if 0
1009 unsigned int rx_regions = dev->rx_regions;
1010 #else
1011 unsigned int rx_regions = 0;
1012 #endif
1014 if (rx_regions) {
1015 #if 0
1016 // start a new region
1017 dev->rx_addr = dev->rx_iovec->iov_base;
1018 rx_bytes = dev->rx_iovec->iov_len;
1019 ++dev->rx_iovec;
1020 dev->rx_regions = rx_regions - 1;
1022 if (rx_bytes <= MAX_PIO_COUNT) {
1023 PRINTD (DBG_RX|DBG_BUS, "(pio)");
1024 pio_instead = 1;
1026 if (rx_bytes <= MAX_TRANSFER_COUNT) {
1027 PRINTD (DBG_RX|DBG_BUS, "(full region)");
1028 dev->rx_bytes = 0;
1029 } else {
1030 PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1031 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1032 rx_bytes = MAX_TRANSFER_COUNT;
1034 #endif
1035 } else {
1036 // rx_regions == 0
1037 // that's all folks - end of frame
1038 struct sk_buff * skb = dev->rx_skb;
1039 // dev->rx_iovec = 0;
1041 FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1043 dump_skb ("<<<", dev->rx_channel, skb);
1045 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1048 struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1049 // VC layer stats
1050 vcc->stats->rx++;
1051 skb->stamp = xtime;
1052 // end of our responsability
1053 vcc->push (vcc, skb);
1058 // note: writing RX_COUNT clears any interrupt condition
1059 if (rx_bytes) {
1060 if (pio_instead) {
1061 if (irq)
1062 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1063 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1064 } else {
1065 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1066 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1068 dev->rx_addr += rx_bytes;
1069 } else {
1070 if (irq)
1071 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1072 // allow another RX thread to start
1073 YELLOW_LED_ON(dev);
1074 clear_bit (rx_busy, &dev->flags);
1075 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1078 #ifdef TAILRECURSIONWORKS
1079 // and we all bless optimised tail calls
1080 if (pio_instead)
1081 rx_schedule (dev, 0);
1082 return;
1083 #else
1084 // grrrrrrr!
1085 irq = 0;
1086 } while (pio_instead);
1087 return;
1088 #endif
1091 /********** handle RX bus master complete events **********/
1093 static inline void rx_bus_master_complete_handler (hrz_dev * dev) {
1094 if (test_bit (rx_busy, &dev->flags)) {
1095 rx_schedule (dev, 1);
1096 } else {
1097 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1098 // clear interrupt condition on adapter
1099 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1101 return;
1104 /********** (queue to) become the next TX thread **********/
1106 static inline int tx_hold (hrz_dev * dev) {
1107 while (test_and_set_bit (tx_busy, &dev->flags)) {
1108 PRINTD (DBG_TX, "sleeping at tx lock %p %u", dev, dev->flags);
1109 interruptible_sleep_on (&dev->tx_queue);
1110 PRINTD (DBG_TX, "woken at tx lock %p %u", dev, dev->flags);
1111 if (signal_pending (current))
1112 return -1;
1114 PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1115 return 0;
1118 /********** allow another TX thread to start **********/
1120 static inline void tx_release (hrz_dev * dev) {
1121 clear_bit (tx_busy, &dev->flags);
1122 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1123 wake_up_interruptible (&dev->tx_queue);
1126 /********** schedule TX transfers **********/
1128 static void tx_schedule (hrz_dev * const dev, int irq) {
1129 unsigned int tx_bytes;
1131 int append_desc = 0;
1133 int pio_instead;
1134 #ifndef TAILRECURSIONWORKS
1135 do {
1136 #endif
1137 pio_instead = 0;
1138 // bytes in current region waiting for TX transfer
1139 tx_bytes = dev->tx_bytes;
1141 #if 0
1142 spin_count = 0;
1143 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1144 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1145 if (++spin_count > 10) {
1146 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1147 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1148 tx_release (dev);
1149 hrz_kfree_skb (dev->tx_skb);
1150 return;
1153 #endif
1155 if (tx_bytes) {
1156 // start next transfer within same region
1157 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1158 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1159 pio_instead = 1;
1161 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1162 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1163 if (!dev->tx_iovec) {
1164 // end of last region
1165 append_desc = 1;
1167 dev->tx_bytes = 0;
1168 } else {
1169 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1170 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1171 tx_bytes = MAX_TRANSFER_COUNT;
1173 } else {
1174 // tx_bytes == 0 -- we're between regions
1175 // regions remaining to transfer
1176 unsigned int tx_regions = dev->tx_regions;
1178 if (tx_regions) {
1179 // start a new region
1180 dev->tx_addr = dev->tx_iovec->iov_base;
1181 tx_bytes = dev->tx_iovec->iov_len;
1182 ++dev->tx_iovec;
1183 dev->tx_regions = tx_regions - 1;
1185 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1186 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1187 pio_instead = 1;
1189 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1190 PRINTD (DBG_TX|DBG_BUS, "(full region)");
1191 dev->tx_bytes = 0;
1192 } else {
1193 PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1194 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1195 tx_bytes = MAX_TRANSFER_COUNT;
1197 } else {
1198 // tx_regions == 0
1199 // that's all folks - end of frame
1200 struct sk_buff * skb = dev->tx_skb;
1201 dev->tx_iovec = 0;
1203 // VC layer stats
1204 ATM_SKB(skb)->vcc->stats->tx++;
1206 // free the skb
1207 hrz_kfree_skb (skb);
1211 // note: writing TX_COUNT clears any interrupt condition
1212 if (tx_bytes) {
1213 if (pio_instead) {
1214 if (irq)
1215 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1216 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1217 if (append_desc)
1218 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1219 } else {
1220 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1221 if (append_desc)
1222 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1223 wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1224 append_desc
1225 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1226 : tx_bytes);
1228 dev->tx_addr += tx_bytes;
1229 } else {
1230 if (irq)
1231 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1232 YELLOW_LED_ON(dev);
1233 tx_release (dev);
1236 #ifdef TAILRECURSIONWORKS
1237 // and we all bless optimised tail calls
1238 if (pio_instead)
1239 tx_schedule (dev, 0);
1240 return;
1241 #else
1242 // grrrrrrr!
1243 irq = 0;
1244 } while (pio_instead);
1245 return;
1246 #endif
1249 /********** handle TX bus master complete events **********/
1251 static inline void tx_bus_master_complete_handler (hrz_dev * dev) {
1252 if (test_bit (tx_busy, &dev->flags)) {
1253 tx_schedule (dev, 1);
1254 } else {
1255 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1256 // clear interrupt condition on adapter
1257 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1259 return;
1262 /********** move RX Q pointer to next item in circular buffer **********/
1264 // called only from IRQ sub-handler
1265 static inline u32 rx_queue_entry_next (hrz_dev * dev) {
1266 u32 rx_queue_entry;
1267 spin_lock (&dev->mem_lock);
1268 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1269 if (dev->rx_q_entry == dev->rx_q_wrap)
1270 dev->rx_q_entry = dev->rx_q_reset;
1271 else
1272 dev->rx_q_entry++;
1273 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1274 spin_unlock (&dev->mem_lock);
1275 return rx_queue_entry;
1278 /********** handle RX disabled by device **********/
1280 static inline void rx_disabled_handler (hrz_dev * dev) {
1281 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1282 // count me please
1283 PRINTK (KERN_WARNING, "RX was disabled!");
1286 /********** handle RX data received by device **********/
1288 // called from IRQ handler
1289 static inline void rx_data_av_handler (hrz_dev * dev) {
1290 u32 rx_queue_entry;
1291 u32 rx_queue_entry_flags;
1292 u16 rx_len;
1293 u16 rx_channel;
1295 PRINTD (DBG_FLOW, "hrz_data_av_handler");
1297 // try to grab rx lock (not possible during RX bus mastering)
1298 if (test_and_set_bit (rx_busy, &dev->flags)) {
1299 PRINTD (DBG_RX, "locked out of rx lock");
1300 return;
1302 PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1303 // lock is cleared if we fail now, o/w after bus master completion
1305 YELLOW_LED_OFF(dev);
1307 rx_queue_entry = rx_queue_entry_next (dev);
1309 rx_len = rx_q_entry_to_length (rx_queue_entry);
1310 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1312 WAIT_FLUSH_RX_COMPLETE (dev);
1314 SELECT_RX_CHANNEL (dev, rx_channel);
1316 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1317 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1319 if (!rx_len) {
1320 // (at least) bus-mastering breaks if we try to handle a
1321 // zero-length frame, besides AAL5 does not support them
1322 PRINTK (KERN_ERR, "zero-length frame!");
1323 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1326 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1327 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1329 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1330 struct atm_vcc * atm_vcc;
1332 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1334 atm_vcc = dev->rxer[rx_channel];
1335 // if no vcc is assigned to this channel, we should drop the frame
1336 // (is this what SIMONS etc. was trying to achieve?)
1338 if (atm_vcc) {
1340 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1342 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1344 // If everyone has to call atm_pdu2... why isn't it part of
1345 // atm_charge? B'cos some people already have skb->truesize!
1346 if (atm_charge (atm_vcc, atm_pdu2truesize (rx_len))) {
1348 struct sk_buff * skb = alloc_skb (rx_len, GFP_ATOMIC);
1349 if (skb) {
1350 // remember this so we can push it later
1351 dev->rx_skb = skb;
1352 // remember this so we can flush it later
1353 dev->rx_channel = rx_channel;
1355 // prepare socket buffer
1356 skb_put (skb, rx_len);
1357 ATM_SKB(skb)->vcc = atm_vcc;
1359 // simple transfer
1360 // dev->rx_regions = 0;
1361 // dev->rx_iovec = 0;
1362 dev->rx_bytes = rx_len;
1363 dev->rx_addr = skb->data;
1364 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1365 skb->data, rx_len);
1367 // do the business
1368 rx_schedule (dev, 0);
1369 return;
1371 } else {
1372 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1373 atm_vcc->stats->rx_drop++;
1376 } else {
1377 // someone fix this (message), please!
1378 PRINTD (DBG_INFO, "dropped thanks to atm_charge");
1379 // drop stats incremented in atm_charge
1382 } else {
1383 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1384 // do we count this?
1387 } else {
1388 PRINTK (KERN_WARNING, "dropped over-size frame");
1389 // do we count this?
1392 } else {
1393 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1394 // do we count this?
1397 } else {
1398 // Wait update complete ? SPONG
1401 // RX was aborted
1402 YELLOW_LED_ON(dev);
1404 FLUSH_RX_CHANNEL (dev,rx_channel);
1405 clear_bit (rx_busy, &dev->flags);
1407 return;
1410 /********** interrupt handler **********/
1412 static void interrupt_handler (int irq, void * dev_id, struct pt_regs * pt_regs) {
1413 hrz_dev * dev = hrz_devs;
1414 u32 int_source;
1415 unsigned int irq_ok;
1416 (void) pt_regs;
1418 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1420 if (!dev_id) {
1421 PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq);
1422 return;
1424 // Did one of our cards generate the interrupt?
1425 while (dev) {
1426 if (dev == dev_id)
1427 break;
1428 dev = dev->prev;
1430 if (!dev) {
1431 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
1432 return;
1434 if (irq != dev->irq) {
1435 PRINTD (DBG_IRQ|DBG_ERR, "irq mismatch: %d", irq);
1436 return;
1439 // definitely for us
1440 irq_ok = 0;
1441 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1442 & INTERESTING_INTERRUPTS)) {
1443 // In the interests of fairness, the (inline) handlers below are
1444 // called in sequence and without immediate return to the head of
1445 // the while loop. This is only of issue for slow hosts (or when
1446 // debugging messages are on). Really slow hosts may find a fast
1447 // sender keeps them permanently in the IRQ handler. :(
1449 // (only an issue for slow hosts) RX completion goes before
1450 // rx_data_av as the former implies rx_busy and so the latter
1451 // would just abort. If it reschedules another transfer
1452 // (continuing the same frame) then it will not clear rx_busy.
1454 // (only an issue for slow hosts) TX completion goes before RX
1455 // data available as it is a much shorter routine - there is the
1456 // chance that any further transfers it schedules will be complete
1457 // by the time of the return to the head of the while loop
1459 if (int_source & RX_BUS_MASTER_COMPLETE) {
1460 ++irq_ok;
1461 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1462 rx_bus_master_complete_handler (dev);
1464 if (int_source & TX_BUS_MASTER_COMPLETE) {
1465 ++irq_ok;
1466 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1467 tx_bus_master_complete_handler (dev);
1469 if (int_source & RX_DATA_AV) {
1470 ++irq_ok;
1471 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1472 rx_data_av_handler (dev);
1475 if (irq_ok) {
1476 PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1477 } else {
1478 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1481 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1484 /********** housekeeping **********/
1486 static void set_timer (struct timer_list * timer, unsigned int delay) {
1487 timer->expires = jiffies + delay;
1488 add_timer (timer);
1489 return;
1492 static void do_housekeeping (unsigned long arg) {
1493 // just stats at the moment
1494 hrz_dev * dev = hrz_devs;
1495 (void) arg;
1496 // data is set to zero at module unload
1497 if (housekeeping.data) {
1498 while (dev) {
1499 // collect device-specific (not driver/atm-linux) stats here
1500 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1501 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1502 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1503 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1504 dev = dev->prev;
1506 set_timer (&housekeeping, HZ/10);
1508 return;
1511 /********** find an idle channel for TX and set it up **********/
1513 // called with tx_busy set
1514 static inline short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1515 unsigned short idle_channels;
1516 short tx_channel = -1;
1517 unsigned int spin_count;
1518 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1520 // better would be to fail immediately, the caller can then decide whether
1521 // to wait or drop (depending on whether this is UBR etc.)
1522 spin_count = 0;
1523 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1524 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1525 // delay a bit here
1526 if (++spin_count > 100) {
1527 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1528 return -EBUSY;
1532 // got an idle channel
1534 // tx_idle ensures we look for idle channels in RR order
1535 int chan = dev->tx_idle;
1537 int keep_going = 1;
1538 while (keep_going) {
1539 if (idle_channels & (1<<chan)) {
1540 tx_channel = chan;
1541 keep_going = 0;
1543 ++chan;
1544 if (chan == TX_CHANS)
1545 chan = 0;
1548 dev->tx_idle = chan;
1551 // set up the channel we found
1553 // Initialise the cell header in the transmit channel descriptor
1554 // a.k.a. prepare the channel and remember that we have done so.
1556 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1557 u16 rd_ptr;
1558 u16 wr_ptr;
1559 u16 channel = vcc->channel;
1561 unsigned long flags;
1562 spin_lock_irqsave (&dev->mem_lock, flags);
1564 // Update the transmit channel record.
1565 dev->tx_channel_record[tx_channel] = channel;
1567 // xBR channel
1568 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1569 vcc->tx_xbr_bits);
1571 // Update the PCR counter preload value etc.
1572 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1573 vcc->tx_pcr_bits);
1575 #if 0
1576 if (a vbr channel) {
1577 // SCR timer
1578 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1579 vcc->tx_scr_bits);
1581 // Bucket size...
1582 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1583 vcc->tx_bucket_bits);
1585 // ... and fullness
1586 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1587 vcc->tx_bucket_bits);
1589 #endif
1591 // Initialise the read and write buffer pointers
1592 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1593 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1595 // idle TX channels should have identical pointers
1596 if (rd_ptr != wr_ptr) {
1597 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1598 // spin_unlock... return -E...
1599 // I wonder if gcc would get rid of one of the pointer aliases
1601 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1602 rd_ptr, wr_ptr);
1604 switch (vcc->aal) {
1605 case aal0:
1606 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1607 rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1608 wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1609 break;
1610 case aal34:
1611 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1612 rd_ptr |= CHANNEL_TYPE_AAL3_4;
1613 wr_ptr |= CHANNEL_TYPE_AAL3_4;
1614 break;
1615 case aal5:
1616 rd_ptr |= CHANNEL_TYPE_AAL5;
1617 wr_ptr |= CHANNEL_TYPE_AAL5;
1618 // Initialise the CRC
1619 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1620 break;
1623 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1624 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1626 // Write the Cell Header
1627 // Payload Type, CLP and GFC would go here if non-zero
1628 wr_mem (dev, &tx_desc->cell_header, channel);
1630 spin_unlock_irqrestore (&dev->mem_lock, flags);
1633 return tx_channel;
1636 /********** send a frame **********/
1638 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1639 unsigned int spin_count;
1640 int free_buffers;
1641 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1642 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1643 u16 channel = vcc->channel;
1645 u32 buffers_required;
1647 /* signed for error return */
1648 short tx_channel;
1650 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1651 channel, skb->data, skb->len);
1653 dump_skb (">>>", channel, skb);
1655 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1656 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1657 hrz_kfree_skb (skb);
1658 return -EIO;
1661 // don't understand this
1662 ATM_SKB(skb)->vcc = atm_vcc;
1664 if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1665 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1666 hrz_kfree_skb (skb);
1667 return -EIO;
1670 if (!channel) {
1671 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1672 return -EIO;
1675 #if 0
1677 // where would be a better place for this? housekeeping?
1678 u16 status;
1679 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1680 if (status & PCI_STATUS_REC_MASTER_ABORT) {
1681 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1682 status &= ~PCI_STATUS_REC_MASTER_ABORT;
1683 pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1684 if (test_bit (tx_busy, &dev->flags)) {
1685 hrz_kfree_skb (dev->tx_skb);
1686 tx_release (dev);
1690 #endif
1692 #ifdef DEBUG_HORIZON
1693 /* wey-hey! */
1694 if (channel == 1023) {
1695 unsigned int i;
1696 unsigned short d = 0;
1697 char * s = skb->data;
1698 if (*s++ == 'D') {
1699 for (i = 0; i < 4; ++i) {
1700 d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10));
1701 ++s;
1703 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1706 #endif
1708 // wait until TX is free and grab lock
1709 if (tx_hold (dev))
1710 return -ERESTARTSYS;
1712 // Wait for enough space to be available in transmit buffer memory.
1714 // should be number of cells needed + 2 (according to hardware docs)
1715 // = ((framelen+8)+47) / 48 + 2
1716 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1717 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1719 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1720 spin_count = 0;
1721 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1722 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1723 free_buffers, buffers_required);
1724 // what is the appropriate delay? implement a timeout? (depending on line speed?)
1725 // mdelay (1);
1726 // what happens if kill (current_pid, SIGKILL) ?
1727 schedule();
1728 if (++spin_count > 1000) {
1729 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1730 free_buffers, buffers_required);
1731 tx_release (dev);
1732 return -ERESTARTSYS;
1736 // Select a channel to transmit the frame on.
1737 if (channel == dev->last_vc) {
1738 PRINTD (DBG_TX, "last vc hack: hit");
1739 tx_channel = dev->tx_last;
1740 } else {
1741 PRINTD (DBG_TX, "last vc hack: miss");
1742 // Are we currently transmitting this VC on one of the channels?
1743 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1744 if (dev->tx_channel_record[tx_channel] == channel) {
1745 PRINTD (DBG_TX, "vc already on channel: hit");
1746 break;
1748 if (tx_channel == TX_CHANS) {
1749 PRINTD (DBG_TX, "vc already on channel: miss");
1750 // Find and set up an idle channel.
1751 tx_channel = setup_idle_tx_channel (dev, vcc);
1752 if (tx_channel < 0) {
1753 PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1754 tx_release (dev);
1755 return tx_channel;
1759 PRINTD (DBG_TX, "got channel");
1760 SELECT_TX_CHANNEL(dev, tx_channel);
1762 dev->last_vc = channel;
1763 dev->tx_last = tx_channel;
1766 PRINTD (DBG_TX, "using channel %u", tx_channel);
1768 YELLOW_LED_OFF(dev);
1770 // TX start transfer
1773 unsigned int tx_len = skb->len;
1774 unsigned int tx_iovcnt = ATM_SKB(skb)->iovcnt;
1775 // remember this so we can free it later
1776 dev->tx_skb = skb;
1778 if (tx_iovcnt) {
1779 // scatter gather transfer
1780 dev->tx_regions = tx_iovcnt;
1781 dev->tx_iovec = (struct iovec *) skb->data;
1782 dev->tx_bytes = 0;
1783 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1784 skb->data, tx_len);
1785 } else {
1786 // simple transfer
1787 dev->tx_regions = 0;
1788 dev->tx_iovec = 0;
1789 dev->tx_bytes = tx_len;
1790 dev->tx_addr = skb->data;
1791 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1792 skb->data, tx_len);
1795 // and do the business
1796 tx_schedule (dev, 0);
1800 return 0;
1803 /********** reset a card **********/
1805 static void __init hrz_reset_card (const hrz_dev * dev) {
1806 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1808 // why not set RESET_HORIZON to one and wait for the card to
1809 // reassert that bit as zero? Like so:
1810 control_0_reg = control_0_reg & RESET_HORIZON;
1811 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1812 while (control_0_reg & RESET_HORIZON)
1813 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1815 // old reset code retained:
1816 wr_regl (dev, CONTROL_0_REG, control_0_reg |
1817 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1818 // just guessing here
1819 udelay (1000);
1821 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1824 /********** shutdown a card **********/
1826 #ifdef MODULE
1828 static void hrz_shutdown (const hrz_dev * dev) {
1829 hrz_reset_card (dev);
1831 GREEN_LED_OFF(dev);
1834 #endif
1836 /********** read the burnt in address **********/
1838 static u16 __init read_bia (const hrz_dev * dev, u16 addr) {
1840 u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1842 inline void WRITE_IT_WAIT (void) {
1843 wr_regl (dev, CONTROL_0_REG, ctrl);
1844 udelay (5);
1847 inline void CLOCK_IT (void) {
1848 // DI must be valid around rising SK edge
1849 ctrl &= ~SEEPROM_SK;
1850 WRITE_IT_WAIT();
1851 ctrl |= SEEPROM_SK;
1852 WRITE_IT_WAIT();
1855 const unsigned int addr_bits = 6;
1856 const unsigned int data_bits = 16;
1858 unsigned int i;
1860 u16 res;
1862 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1863 WRITE_IT_WAIT();
1865 // wake Serial EEPROM and send 110 (READ) command
1866 ctrl |= (SEEPROM_CS | SEEPROM_DI);
1867 CLOCK_IT();
1869 ctrl |= SEEPROM_DI;
1870 CLOCK_IT();
1872 ctrl &= ~SEEPROM_DI;
1873 CLOCK_IT();
1875 for (i=0; i<addr_bits; i++) {
1876 if (addr & (1 << (addr_bits-1)))
1877 ctrl |= SEEPROM_DI;
1878 else
1879 ctrl &= ~SEEPROM_DI;
1881 CLOCK_IT();
1883 addr = addr << 1;
1886 // we could check that we have DO = 0 here
1887 ctrl &= ~SEEPROM_DI;
1889 res = 0;
1890 for (i=0;i<data_bits;i++) {
1891 res = res >> 1;
1893 CLOCK_IT();
1895 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1896 res |= (1 << (data_bits-1));
1899 ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1900 WRITE_IT_WAIT();
1902 return res;
1905 /********** initialise a card **********/
1907 static int __init hrz_init (hrz_dev * dev) {
1908 int onefivefive;
1910 u16 chan;
1912 int buff_count;
1914 HDW * mem;
1916 cell_buf * tx_desc;
1917 cell_buf * rx_desc;
1919 u32 ctrl;
1921 ctrl = rd_regl (dev, CONTROL_0_REG);
1922 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1923 onefivefive = ctrl & ATM_LAYER_STATUS;
1925 if (onefivefive)
1926 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1927 else
1928 printk (DEV_LABEL ": Horizon (at 25 MBps)");
1930 printk (":");
1931 // Reset the card to get everything in a known state
1933 printk (" reset");
1934 hrz_reset_card (dev);
1936 // Clear all the buffer memory
1938 printk (" clearing memory");
1940 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1941 wr_mem (dev, mem, 0);
1943 printk (" tx channels");
1945 // All transmit eight channels are set up as AAL5 ABR channels with
1946 // a 16us cell spacing. Why?
1948 // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1949 // buffer at 110h etc.
1951 for (chan = 0; chan < TX_CHANS; ++chan) {
1952 tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1953 cell_buf * buf = &memmap->inittxbufs[chan];
1955 // initialise the read and write buffer pointers
1956 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1957 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1959 // set the status of the initial buffers to empty
1960 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1963 // Use space bufn3 at the moment for tx buffers
1965 printk (" tx buffers");
1967 tx_desc = memmap->bufn3;
1969 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1971 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1972 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1973 tx_desc++;
1976 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1978 // Initialise the transmit free buffer count
1979 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1981 printk (" rx channels");
1983 // Initialise all of the receive channels to be AAL5 disabled with
1984 // an interrupt threshold of 0
1986 for (chan = 0; chan < RX_CHANS; ++chan) {
1987 rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1989 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1992 printk (" rx buffers");
1994 // Use space bufn4 at the moment for rx buffers
1996 rx_desc = memmap->bufn4;
1998 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
2000 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
2001 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
2003 rx_desc++;
2006 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
2008 // Initialise the receive free buffer count
2009 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
2011 // Initialize Horizons registers
2013 // TX config
2014 wr_regw (dev, TX_CONFIG_OFF,
2015 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
2017 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
2018 wr_regw (dev, RX_CONFIG_OFF,
2019 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
2021 // RX line config
2022 wr_regw (dev, RX_LINE_CONFIG_OFF,
2023 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
2025 // Set the max AAL5 cell count to be just enough to contain the
2026 // largest AAL5 frame that the user wants to receive
2027 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
2028 (max_rx_size + ATM_AAL5_TRAILER + ATM_CELL_PAYLOAD - 1) / ATM_CELL_PAYLOAD);
2030 // Enable receive
2031 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
2033 printk (" control");
2035 // Drive the OE of the LEDs then turn the green LED on
2036 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
2037 wr_regl (dev, CONTROL_0_REG, ctrl);
2039 // Test for a 155-capable card
2041 if (onefivefive) {
2042 // Select 155 mode... make this a choice (or: how do we detect
2043 // external line speed and switch?)
2044 ctrl |= ATM_LAYER_SELECT;
2045 wr_regl (dev, CONTROL_0_REG, ctrl);
2047 // test SUNI-lite vs SAMBA
2049 // Register 0x00 in the SUNI will have some of bits 3-7 set, and
2050 // they will always be zero for the SAMBA. Ha! Bloody hardware
2051 // engineers. It'll never work.
2053 if (rd_framer (dev, 0) & 0x00f0) {
2054 // SUNI
2055 printk (" SUNI");
2057 // Reset, just in case
2058 wr_framer (dev, 0x00, 0x0080);
2059 wr_framer (dev, 0x00, 0x0000);
2061 // Configure transmit FIFO
2062 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2064 // Set line timed mode
2065 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2066 } else {
2067 // SAMBA
2068 printk (" SAMBA");
2070 // Reset, just in case
2071 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2072 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2074 // Turn off diagnostic loopback and enable line-timed mode
2075 wr_framer (dev, 0, 0x0002);
2077 // Turn on transmit outputs
2078 wr_framer (dev, 2, 0x0B80);
2080 } else {
2081 // Select 25 mode
2082 ctrl &= ~ATM_LAYER_SELECT;
2084 // Madge B154 setup
2085 // none required?
2088 printk (" LEDs");
2090 GREEN_LED_ON(dev);
2091 YELLOW_LED_ON(dev);
2093 printk (" ESI=");
2096 u16 b = 0;
2097 int i;
2098 u8 * esi = dev->atm_dev->esi;
2100 // in the card I have, EEPROM
2101 // addresses 0, 1, 2 contain 0
2102 // addresess 5, 6 etc. contain ffff
2103 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2104 // the read_bia routine gets the BIA in Ethernet bit order
2106 for (i=0; i < ESI_LEN; ++i) {
2107 if (i % 2 == 0)
2108 b = read_bia (dev, i/2 + 2);
2109 else
2110 b = b >> 8;
2111 esi[i] = b & 0xFF;
2112 printk ("%02x", esi[i]);
2116 // Enable RX_Q and ?X_COMPLETE interrupts only
2117 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2118 printk (" IRQ on");
2120 printk (".\n");
2122 return onefivefive;
2125 /********** check max_sdu **********/
2127 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2128 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2130 switch (aal) {
2131 case aal0:
2132 if (!(tp->max_sdu)) {
2133 PRINTD (DBG_QOS, "defaulting max_sdu");
2134 tp->max_sdu = ATM_AAL0_SDU;
2135 } else if (tp->max_sdu != ATM_AAL0_SDU) {
2136 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2137 return -EINVAL;
2139 break;
2140 case aal34:
2141 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2142 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2143 tp->max_sdu = ATM_MAX_AAL34_PDU;
2145 break;
2146 case aal5:
2147 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2148 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2149 tp->max_sdu = max_frame_size;
2151 break;
2153 return 0;
2156 /********** check pcr **********/
2158 // something like this should be part of ATM Linux
2159 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2160 // we are assuming non-UBR, and non-special values of pcr
2161 if (tp->min_pcr == ATM_MAX_PCR)
2162 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2163 else if (tp->min_pcr < 0)
2164 PRINTD (DBG_QOS, "luser gave negative min_pcr");
2165 else if (tp->min_pcr && tp->min_pcr > pcr)
2166 PRINTD (DBG_QOS, "pcr less than min_pcr");
2167 else
2168 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2169 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2170 // [this would get rid of next two conditionals]
2171 if ((0) && tp->max_pcr == ATM_MAX_PCR)
2172 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2173 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2174 PRINTD (DBG_QOS, "luser gave negative max_pcr");
2175 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2176 PRINTD (DBG_QOS, "pcr greater than max_pcr");
2177 else {
2178 // each limit unspecified or not violated
2179 PRINTD (DBG_QOS, "xBR(pcr) OK");
2180 return 0;
2182 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2183 pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2184 return -EINVAL;
2187 /********** open VC **********/
2189 static int hrz_open (struct atm_vcc * atm_vcc, short vpi, int vci) {
2190 int error;
2191 u16 channel;
2193 struct atm_qos * qos;
2194 struct atm_trafprm * txtp;
2195 struct atm_trafprm * rxtp;
2197 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2198 hrz_vcc vcc;
2199 hrz_vcc * vccp; // allocated late
2200 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2202 // UNSPEC is deprecated, remove this code eventually
2203 #if defined ATM_VPI_UNSPEC
2204 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2205 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2206 return -EINVAL;
2208 #endif
2210 // deal with possibly wildcarded VCs
2211 error = atm_find_ci (atm_vcc, &vpi, &vci);
2212 if (error) {
2213 PRINTD (DBG_WARN|DBG_VCC, "atm_find_ci failed!");
2214 return error;
2216 PRINTD (DBG_VCC, "atm_find_ci gives %x %x", vpi, vci);
2218 error = vpci_to_channel (&channel, vpi, vci);
2219 if (error) {
2220 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2221 return error;
2224 vcc.channel = channel;
2225 // max speed for the moment
2226 vcc.tx_rate = 0x0;
2228 qos = &atm_vcc->qos;
2230 // check AAL and remember it
2231 switch (qos->aal) {
2232 case ATM_AAL0:
2233 // we would if it were 48 bytes and not 52!
2234 PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2235 vcc.aal = aal0;
2236 break;
2237 case ATM_AAL34:
2238 // we would if I knew how do the SAR!
2239 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2240 vcc.aal = aal34;
2241 break;
2242 case ATM_AAL5:
2243 PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2244 vcc.aal = aal5;
2245 break;
2246 default:
2247 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2248 return -EINVAL;
2249 break;
2252 // TX traffic parameters
2254 // there are two, interrelated problems here: 1. the reservation of
2255 // PCR is not a binary choice, we are given bounds and/or a
2256 // desirable value; 2. the device is only capable of certain values,
2257 // most of which are not integers. It is almost certainly acceptable
2258 // to be off by a maximum of 1 to 10 cps.
2260 // Pragmatic choice: always store an integral PCR as that which has
2261 // been allocated, even if we allocate a little (or a lot) less,
2262 // after rounding. The actual allocation depends on what we can
2263 // manage with our rate selection algorithm. The rate selection
2264 // algorithm is given an integral PCR and a tolerance and told
2265 // whether it should round the value up or down if the tolerance is
2266 // exceeded; it returns: a) the actual rate selected (rounded up to
2267 // the nearest integer), b) a bit pattern to feed to the timer
2268 // register, and c) a failure value if no applicable rate exists.
2270 // Part of the job is done by atm_pcr_goal which gives us a PCR
2271 // specification which says: EITHER grab the maximum available PCR
2272 // (and perhaps a lower bound which we musn't pass), OR grab this
2273 // amount, rounding down if you have to (and perhaps a lower bound
2274 // which we musn't pass) OR grab this amount, rounding up if you
2275 // have to (and perhaps an upper bound which we musn't pass). If any
2276 // bounds ARE passed we fail. Note that rounding is only rounding to
2277 // match device limitations, we do not round down to satisfy
2278 // bandwidth availability even if this would not violate any given
2279 // lower bound.
2281 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2282 // (say) so this is not even a binary fixpoint cell rate (but this
2283 // device can do it). To avoid this sort of hassle we use a
2284 // tolerance parameter (currently fixed at 10 cps).
2286 PRINTD (DBG_QOS, "TX:");
2288 txtp = &qos->txtp;
2290 // set up defaults for no traffic
2291 vcc.tx_rate = 0;
2292 // who knows what would actually happen if you try and send on this?
2293 vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2294 vcc.tx_pcr_bits = CLOCK_DISABLE;
2295 #if 0
2296 vcc.tx_scr_bits = CLOCK_DISABLE;
2297 vcc.tx_bucket_bits = 0;
2298 #endif
2300 if (txtp->traffic_class != ATM_NONE) {
2301 error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2302 if (error) {
2303 PRINTD (DBG_QOS, "TX max_sdu check failed");
2304 return error;
2307 switch (txtp->traffic_class) {
2308 case ATM_UBR: {
2309 // we take "the PCR" as a rate-cap
2310 // not reserved
2311 vcc.tx_rate = 0;
2312 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2313 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2314 break;
2316 #if 0
2317 case ATM_ABR: {
2318 // reserve min, allow up to max
2319 vcc.tx_rate = 0; // ?
2320 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2321 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2322 break;
2324 #endif
2325 case ATM_CBR: {
2326 int pcr = atm_pcr_goal (txtp);
2327 rounding r;
2328 if (!pcr) {
2329 // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2330 // should really have: once someone gets unlimited bandwidth
2331 // that no more non-UBR channels can be opened until the
2332 // unlimited one closes?? For the moment, round_down means
2333 // greedy people actually get something and not nothing
2334 r = round_down;
2335 // slight race (no locking) here so we may get -EAGAIN
2336 // later; the greedy bastards would deserve it :)
2337 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2338 pcr = dev->tx_avail;
2339 } else if (pcr < 0) {
2340 r = round_down;
2341 pcr = -pcr;
2342 } else {
2343 r = round_up;
2345 error = make_rate_with_tolerance (dev, pcr, r, 10,
2346 &vcc.tx_pcr_bits, &vcc.tx_rate);
2347 if (error) {
2348 PRINTD (DBG_QOS, "could not make rate from TX PCR");
2349 return error;
2351 // not really clear what further checking is needed
2352 error = atm_pcr_check (txtp, vcc.tx_rate);
2353 if (error) {
2354 PRINTD (DBG_QOS, "TX PCR failed consistency check");
2355 return error;
2357 vcc.tx_xbr_bits = CBR_RATE_TYPE;
2358 break;
2360 #if 0
2361 case ATM_VBR: {
2362 int pcr = atm_pcr_goal (txtp);
2363 // int scr = atm_scr_goal (txtp);
2364 int scr = pcr/2; // just for fun
2365 unsigned int mbs = 60; // just for fun
2366 rounding pr;
2367 rounding sr;
2368 unsigned int bucket;
2369 if (!pcr) {
2370 pr = round_nearest;
2371 pcr = 1<<30;
2372 } else if (pcr < 0) {
2373 pr = round_down;
2374 pcr = -pcr;
2375 } else {
2376 pr = round_up;
2378 error = make_rate_with_tolerance (dev, pcr, pr, 10,
2379 &vcc.tx_pcr_bits, 0);
2380 if (!scr) {
2381 // see comments for PCR with CBR above
2382 sr = round_down;
2383 // slight race (no locking) here so we may get -EAGAIN
2384 // later; the greedy bastards would deserve it :)
2385 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2386 scr = dev->tx_avail;
2387 } else if (scr < 0) {
2388 sr = round_down;
2389 scr = -scr;
2390 } else {
2391 sr = round_up;
2393 error = make_rate_with_tolerance (dev, scr, sr, 10,
2394 &vcc.tx_scr_bits, &vcc.tx_rate);
2395 if (error) {
2396 PRINTD (DBG_QOS, "could not make rate from TX SCR");
2397 return error;
2399 // not really clear what further checking is needed
2400 // error = atm_scr_check (txtp, vcc.tx_rate);
2401 if (error) {
2402 PRINTD (DBG_QOS, "TX SCR failed consistency check");
2403 return error;
2405 // bucket calculations (from a piece of paper...) cell bucket
2406 // capacity must be largest integer smaller than m(p-s)/p + 1
2407 // where m = max burst size, p = pcr, s = scr
2408 bucket = mbs*(pcr-scr)/pcr;
2409 if (bucket*pcr != mbs*(pcr-scr))
2410 bucket += 1;
2411 if (bucket > BUCKET_MAX_SIZE) {
2412 PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2413 bucket, BUCKET_MAX_SIZE);
2414 bucket = BUCKET_MAX_SIZE;
2416 vcc.tx_xbr_bits = VBR_RATE_TYPE;
2417 vcc.tx_bucket_bits = bucket;
2418 break;
2420 #endif
2421 default: {
2422 PRINTD (DBG_QOS, "unsupported TX traffic class");
2423 return -EINVAL;
2424 break;
2429 // RX traffic parameters
2431 PRINTD (DBG_QOS, "RX:");
2433 rxtp = &qos->rxtp;
2435 // set up defaults for no traffic
2436 vcc.rx_rate = 0;
2438 if (rxtp->traffic_class != ATM_NONE) {
2439 error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2440 if (error) {
2441 PRINTD (DBG_QOS, "RX max_sdu check failed");
2442 return error;
2444 switch (rxtp->traffic_class) {
2445 case ATM_UBR: {
2446 // not reserved
2447 break;
2449 #if 0
2450 case ATM_ABR: {
2451 // reserve min
2452 vcc.rx_rate = 0; // ?
2453 break;
2455 #endif
2456 case ATM_CBR: {
2457 int pcr = atm_pcr_goal (rxtp);
2458 if (!pcr) {
2459 // slight race (no locking) here so we may get -EAGAIN
2460 // later; the greedy bastards would deserve it :)
2461 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2462 pcr = dev->tx_avail;
2463 } else if (pcr < 0) {
2464 pcr = -pcr;
2466 vcc.rx_rate = pcr;
2467 // not really clear what further checking is needed
2468 error = atm_pcr_check (rxtp, vcc.rx_rate);
2469 if (error) {
2470 PRINTD (DBG_QOS, "RX PCR failed consistency check");
2471 return error;
2473 break;
2475 case ATM_VBR: {
2476 // int scr = atm_scr_goal (txtp);
2477 int scr = 1<<16; // just for fun
2478 if (!scr) {
2479 // slight race (no locking) here so we may get -EAGAIN
2480 // later; the greedy bastards would deserve it :)
2481 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2482 scr = dev->tx_avail;
2483 } else if (scr < 0) {
2484 scr = -scr;
2486 vcc.rx_rate = scr;
2487 // not really clear what further checking is needed
2488 // error = atm_scr_check (rxtp, vcc.rx_rate);
2489 if (error) {
2490 PRINTD (DBG_QOS, "RX SCR failed consistency check");
2491 return error;
2493 break;
2495 default: {
2496 PRINTD (DBG_QOS, "unsupported RX traffic class");
2497 return -EINVAL;
2498 break;
2504 // late abort useful for diagnostics
2505 if (vcc.aal != aal5) {
2506 PRINTD (DBG_QOS, "AAL not supported");
2507 return -EINVAL;
2510 // get space for our vcc stuff and copy parameters into it
2511 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2512 if (!vccp) {
2513 PRINTK (KERN_ERR, "out of memory!");
2514 return -ENOMEM;
2516 *vccp = vcc;
2518 // clear error and grab cell rate resource lock
2519 error = 0;
2520 spin_lock (&dev->rate_lock);
2522 if (vcc.tx_rate > dev->tx_avail) {
2523 PRINTD (DBG_QOS, "not enough TX PCR left");
2524 error = -EAGAIN;
2527 if (vcc.rx_rate > dev->rx_avail) {
2528 PRINTD (DBG_QOS, "not enough RX PCR left");
2529 error = -EAGAIN;
2532 if (!error) {
2533 // really consume cell rates
2534 dev->tx_avail -= vcc.tx_rate;
2535 dev->rx_avail -= vcc.rx_rate;
2536 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2537 vcc.tx_rate, vcc.rx_rate);
2540 // release lock and exit on error
2541 spin_unlock (&dev->rate_lock);
2542 if (error) {
2543 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2544 kfree (vccp);
2545 return error;
2548 // this is "immediately before allocating the connection identifier
2549 // in hardware" - so long as the next call does not fail :)
2550 atm_vcc->flags |= ATM_VF_ADDR;
2552 // any errors here are very serious and should never occur
2554 if (rxtp->traffic_class != ATM_NONE) {
2555 if (dev->rxer[channel]) {
2556 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2557 return -EBUSY;
2559 error = hrz_open_rx (dev, channel);
2560 if (error) {
2561 kfree (vccp);
2562 return error;
2564 // this link allows RX frames through
2565 dev->rxer[channel] = atm_vcc;
2568 // success, set elements of atm_vcc
2569 atm_vcc->vpi = vpi;
2570 atm_vcc->vci = vci;
2571 atm_vcc->dev_data = (void *) vccp;
2573 // indicate readiness
2574 atm_vcc->flags |= ATM_VF_READY;
2576 MOD_INC_USE_COUNT;
2577 return 0;
2580 /********** close VC **********/
2582 static void hrz_close (struct atm_vcc * atm_vcc) {
2583 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2584 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2585 u16 channel = vcc->channel;
2586 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2588 // indicate unreadiness
2589 atm_vcc->flags &= ~ATM_VF_READY;
2591 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2592 unsigned int i;
2594 // let any TX on this channel that has started complete
2595 // no restart, just keep trying
2596 while (tx_hold (dev))
2598 // remove record of any tx_channel having been setup for this channel
2599 for (i = 0; i < TX_CHANS; ++i)
2600 if (dev->tx_channel_record[i] == channel) {
2601 dev->tx_channel_record[i] = -1;
2602 break;
2604 if (dev->last_vc == channel)
2605 dev->tx_last = -1;
2606 tx_release (dev);
2609 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2610 // disable RXing - it tries quite hard
2611 hrz_close_rx (dev, channel);
2612 // forget the vcc - no more skbs will be pushed
2613 if (atm_vcc != dev->rxer[channel])
2614 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2615 "arghhh! we're going to die!",
2616 atm_vcc, dev->rxer[channel]);
2617 dev->rxer[channel] = 0;
2620 // atomically release our rate reservation
2621 spin_lock (&dev->rate_lock);
2622 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2623 vcc->tx_rate, vcc->rx_rate);
2624 dev->tx_avail += vcc->tx_rate;
2625 dev->rx_avail += vcc->rx_rate;
2626 spin_unlock (&dev->rate_lock);
2628 // free our structure
2629 kfree (vcc);
2630 // say the VPI/VCI is free again
2631 atm_vcc->flags &= ~ATM_VF_ADDR;
2632 MOD_DEC_USE_COUNT;
2635 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2636 void *optval, int optlen) {
2637 PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2638 switch (level) {
2639 case SOL_SOCKET:
2640 switch (optname) {
2641 case SO_BCTXOPT:
2642 // return the right thing
2643 break;
2644 case SO_BCRXOPT:
2645 // return the right thing
2646 break;
2647 default:
2648 return -ENOPROTOOPT;
2649 break;
2651 break;
2653 return -EINVAL;
2656 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2657 void *optval, int optlen) {
2658 PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2659 switch (level) {
2660 case SOL_SOCKET:
2661 switch (optname) {
2662 case SO_BCTXOPT:
2663 // not settable
2664 break;
2665 case SO_BCRXOPT:
2666 // not settable
2667 break;
2668 default:
2669 return -ENOPROTOOPT;
2670 break;
2672 break;
2674 return -EINVAL;
2677 static int hrz_sg_send (struct atm_vcc * atm_vcc,
2678 unsigned long start,
2679 unsigned long size) {
2680 if (atm_vcc->qos.aal == ATM_AAL5) {
2681 PRINTD (DBG_FLOW|DBG_VCC, "hrz_sg_send: yes");
2682 return 1;
2683 } else {
2684 PRINTD (DBG_FLOW|DBG_VCC, "hrz_sg_send: no");
2685 return 0;
2689 #if 0
2690 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2691 hrz_dev * dev = HRZ_DEV(atm_dev);
2692 PRINTD (DBG_FLOW, "hrz_ioctl");
2693 return -1;
2696 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2697 hrz_dev * dev = HRZ_DEV(atm_dev);
2698 PRINTD (DBG_FLOW, "hrz_phy_get");
2699 return 0;
2702 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2703 unsigned long addr) {
2704 hrz_dev * dev = HRZ_DEV(atm_dev);
2705 PRINTD (DBG_FLOW, "hrz_phy_put");
2708 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2709 hrz_dev * dev = HRZ_DEV(vcc->dev);
2710 PRINTD (DBG_FLOW, "hrz_change_qos");
2711 return -1;
2713 #endif
2715 /********** proc file contents **********/
2717 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2718 hrz_dev * dev = HRZ_DEV(atm_dev);
2719 int left = *pos;
2720 PRINTD (DBG_FLOW, "hrz_proc_read");
2722 /* more diagnostics here? */
2724 #if 0
2726 // VBR temporary diags
2727 unsigned int i;
2728 for (i = 0; i < TX_CHANS; ++i) {
2729 if (!left--)
2730 return sprintf (page, "bucket %u: %u/%u\n", i,
2731 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2732 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2735 #endif
2737 if (!left--)
2738 return sprintf (page,
2739 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2740 dev->tx_cell_count, dev->rx_cell_count,
2741 dev->hec_error_count, dev->unassigned_cell_count);
2743 if (!left--)
2744 return sprintf (page,
2745 "free cell buffers: TX %hu, RX %hu+%hu.\n",
2746 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2747 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2748 dev->noof_spare_buffers);
2750 if (!left--)
2751 return sprintf (page,
2752 "cps remaining: TX %u, RX %u\n",
2753 dev->tx_avail, dev->rx_avail);
2755 return 0;
2758 static const struct atmdev_ops hrz_ops = {
2759 NULL, // no hrz_dev_close
2760 hrz_open,
2761 hrz_close,
2762 NULL, // no hrz_ioctl
2763 hrz_getsockopt,
2764 hrz_setsockopt,
2765 hrz_send,
2766 hrz_sg_send,
2767 NULL, // no send_oam - not in fact used yet
2768 NULL, // no hrz_phy_put - not needed in this driver
2769 NULL, // no hrz_phy_get - not needed in this driver
2770 NULL, // no feedback - feedback to the driver!
2771 NULL, // no hrz_change_qos
2772 NULL, // no free_rx_skb
2773 hrz_proc_read
2776 static int __init hrz_probe (void) {
2777 struct pci_dev * pci_dev;
2778 int devs;
2780 PRINTD (DBG_FLOW, "hrz_probe");
2782 if (!pci_present())
2783 return 0;
2785 devs = 0;
2786 pci_dev = NULL;
2787 while ((pci_dev = pci_find_device
2788 (PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, pci_dev)
2789 )) {
2790 hrz_dev * dev;
2792 // adapter slot free, read resources from PCI configuration space
2793 u32 iobase = pci_dev->resource[0].start;
2794 u32 * membase = bus_to_virt(pci_dev->resource[1].start);
2795 u8 irq = pci_dev->irq;
2797 // check IO region
2798 if (check_region (iobase, HRZ_IO_EXTENT)) {
2799 PRINTD (DBG_WARN, "IO range already in use");
2800 continue;
2803 dev = kmalloc (sizeof(hrz_dev), GFP_KERNEL);
2804 if (!dev) {
2805 // perhaps we should be nice: deregister all adapters and abort?
2806 PRINTD (DBG_ERR, "out of memory");
2807 continue;
2810 memset (dev, 0, sizeof(hrz_dev));
2812 // grab IRQ and install handler - move this someplace more sensible
2813 if (request_irq (irq,
2814 interrupt_handler,
2815 SA_SHIRQ, /* irqflags guess */
2816 DEV_LABEL, /* name guess */
2817 dev)) {
2818 PRINTD (DBG_WARN, "request IRQ failed!");
2819 // free_irq is at "endif"
2820 } else {
2822 PRINTD (DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2823 iobase, irq, membase);
2825 dev->atm_dev = atm_dev_register (DEV_LABEL, &hrz_ops, -1, 0);
2826 if (!(dev->atm_dev)) {
2827 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2828 } else {
2829 unsigned char lat;
2831 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2832 dev->atm_dev->number, dev, dev->atm_dev);
2833 dev->atm_dev->dev_data = (void *) dev;
2834 dev->pci_dev = pci_dev;
2836 /* XXX DEV_LABEL is a guess */
2837 request_region (iobase, HRZ_IO_EXTENT, DEV_LABEL);
2839 // enable bus master accesses
2840 pci_set_master (pci_dev);
2842 // frobnicate latency (upwards, usually)
2843 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2844 if (pci_lat) {
2845 PRINTD (DBG_INFO, "%s PCI latency timer from %hu to %hu",
2846 "changing", lat, pci_lat);
2847 pci_write_config_byte (pci_dev, PCI_LATENCY_TIMER, pci_lat);
2848 } else if (lat < MIN_PCI_LATENCY) {
2849 PRINTK (KERN_INFO, "%s PCI latency timer from %hu to %hu",
2850 "increasing", lat, MIN_PCI_LATENCY);
2851 pci_write_config_byte (pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2854 dev->iobase = iobase;
2855 dev->irq = irq;
2856 dev->membase = membase;
2858 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2859 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2861 // these next three are performance hacks
2862 dev->last_vc = -1;
2863 dev->tx_last = -1;
2864 dev->tx_idle = 0;
2866 dev->tx_regions = 0;
2867 dev->tx_bytes = 0;
2868 dev->tx_skb = 0;
2869 dev->tx_iovec = 0;
2871 dev->tx_cell_count = 0;
2872 dev->rx_cell_count = 0;
2873 dev->hec_error_count = 0;
2874 dev->unassigned_cell_count = 0;
2876 dev->noof_spare_buffers = 0;
2879 unsigned int i;
2880 for (i = 0; i < TX_CHANS; ++i)
2881 dev->tx_channel_record[i] = -1;
2884 dev->flags = 0;
2886 // Allocate cell rates and remember ASIC version
2887 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2888 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2889 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2891 if (hrz_init (dev)) {
2892 // to be really pedantic, this should be ATM_OC3c_PCR
2893 dev->tx_avail = ATM_OC3_PCR;
2894 dev->rx_avail = ATM_OC3_PCR;
2895 set_bit (ultra, &dev->flags); // NOT "|= ultra" !
2896 } else {
2897 dev->tx_avail = ((25600000/8)*26)/(27*53);
2898 dev->rx_avail = ((25600000/8)*26)/(27*53);
2899 PRINTD (DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2902 // rate changes spinlock
2903 spin_lock_init (&dev->rate_lock);
2905 // on-board memory access spinlock; we want atomic reads and
2906 // writes to adapter memory (handles IRQ and SMP)
2907 spin_lock_init (&dev->mem_lock);
2909 init_waitqueue_head(&dev->tx_queue);
2911 // vpi in 0..4, vci in 6..10
2912 dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2913 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2915 // update count and linked list
2916 ++devs;
2917 dev->prev = hrz_devs;
2918 hrz_devs = dev;
2919 // success
2920 continue;
2922 /* not currently reached */
2923 atm_dev_deregister (dev->atm_dev);
2924 } /* atm_dev_register */
2925 free_irq (irq, dev);
2926 } /* request_irq */
2927 kfree (dev);
2928 } /* kmalloc and while */
2929 return devs;
2932 static void __init hrz_check_args (void) {
2933 #ifdef DEBUG_HORIZON
2934 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2935 #else
2936 if (debug)
2937 PRINTK (KERN_NOTICE, "no debug support in this image");
2938 #endif
2940 if (vpi_bits > HRZ_MAX_VPI)
2941 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2942 vpi_bits = HRZ_MAX_VPI);
2944 if (max_tx_size > TX_AAL5_LIMIT)
2945 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2946 max_tx_size = TX_AAL5_LIMIT);
2948 if (max_rx_size > RX_AAL5_LIMIT)
2949 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2950 max_rx_size = RX_AAL5_LIMIT);
2952 return;
2955 #ifdef MODULE
2956 EXPORT_NO_SYMBOLS;
2958 MODULE_AUTHOR(maintainer_string);
2959 MODULE_DESCRIPTION(description_string);
2960 MODULE_PARM(debug, "h");
2961 MODULE_PARM(vpi_bits, "h");
2962 MODULE_PARM(max_tx_size, "h");
2963 MODULE_PARM(max_rx_size, "h");
2964 MODULE_PARM(pci_lat, "b");
2965 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2966 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2967 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2968 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2969 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2971 /********** module entry **********/
2973 int init_module (void) {
2974 int devs;
2976 // sanity check - cast is needed since printk does not support %Zu
2977 if (sizeof(struct MEMMAP) != 128*1024/4) {
2978 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2979 (unsigned long) sizeof(struct MEMMAP));
2980 return -ENOMEM;
2983 show_version();
2985 // check arguments
2986 hrz_check_args();
2988 // get the juice
2989 devs = hrz_probe();
2991 if (devs) {
2992 init_timer (&housekeeping);
2993 housekeeping.function = do_housekeeping;
2994 // paranoia
2995 housekeeping.data = 1;
2996 set_timer (&housekeeping, 0);
2997 } else {
2998 PRINTK (KERN_ERR, "no (usable) adapters found");
3001 return devs ? 0 : -ENODEV;
3004 /********** module exit **********/
3006 void cleanup_module (void) {
3007 hrz_dev * dev;
3008 PRINTD (DBG_FLOW, "cleanup_module");
3010 // paranoia
3011 housekeeping.data = 0;
3012 del_timer (&housekeeping);
3014 while (hrz_devs) {
3015 dev = hrz_devs;
3016 hrz_devs = dev->prev;
3018 PRINTD (DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
3019 hrz_shutdown (dev);
3020 atm_dev_deregister (dev->atm_dev);
3021 free_irq (dev->irq, dev);
3022 release_region (dev->iobase, HRZ_IO_EXTENT);
3023 kfree (dev);
3026 return;
3029 #else
3031 /********** monolithic entry **********/
3033 int __init hrz_detect (void) {
3034 int devs;
3036 // sanity check - cast is needed since printk does not support %Zu
3037 if (sizeof(struct MEMMAP) != 128*1024/4) {
3038 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
3039 (unsigned long) sizeof(struct MEMMAP));
3040 return 0;
3043 show_version();
3045 // what about command line arguments?
3046 // check arguments
3047 hrz_check_args();
3049 // get the juice
3050 devs = hrz_probe();
3052 if (devs) {
3053 init_timer (&housekeeping);
3054 housekeeping.function = do_housekeeping;
3055 // paranoia
3056 housekeeping.data = 1;
3057 set_timer (&housekeeping, 0);
3058 } else {
3059 PRINTK (KERN_ERR, "no (usable) adapters found");
3062 return devs;
3065 #endif