* src/dd.c (flags): noatime and nofollow now depend on
[coreutils/bo.git] / src / tr.c
blobfaa38be3745e94403758f6f10fe48f035f9b009f
1 /* tr -- a filter to translate characters
2 Copyright (C) 91, 1995-2006 Free Software Foundation, Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2, or (at your option)
7 any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software Foundation,
16 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
18 /* Written by Jim Meyering */
20 #include <config.h>
22 #include <stdio.h>
23 #include <assert.h>
24 #include <sys/types.h>
25 #include <getopt.h>
27 #include "system.h"
28 #include "error.h"
29 #include "quote.h"
30 #include "safe-read.h"
31 #include "xstrtol.h"
33 /* The official name of this program (e.g., no `g' prefix). */
34 #define PROGRAM_NAME "tr"
36 #define AUTHORS "Jim Meyering"
38 enum { N_CHARS = UCHAR_MAX + 1 };
40 /* An unsigned integer type big enough to hold a repeat count or an
41 unsigned character. POSIX requires support for repeat counts as
42 high as 2**31 - 1. Since repeat counts might need to expand to
43 match the length of an argument string, we need at least size_t to
44 avoid arbitrary internal limits. It doesn't cost much to use
45 uintmax_t, though. */
46 typedef uintmax_t count;
48 /* The value for Spec_list->state that indicates to
49 get_next that it should initialize the tail pointer.
50 Its value should be as large as possible to avoid conflict
51 a valid value for the state field -- and that may be as
52 large as any valid repeat_count. */
53 #define BEGIN_STATE (UINTMAX_MAX - 1)
55 /* The value for Spec_list->state that indicates to
56 get_next that the element pointed to by Spec_list->tail is
57 being considered for the first time on this pass through the
58 list -- it indicates that get_next should make any necessary
59 initializations. */
60 #define NEW_ELEMENT (BEGIN_STATE + 1)
62 /* The maximum possible repeat count. Due to how the states are
63 implemented, it can be as much as BEGIN_STATE. */
64 #define REPEAT_COUNT_MAXIMUM BEGIN_STATE
66 /* The following (but not CC_NO_CLASS) are indices into the array of
67 valid character class strings. */
68 enum Char_class
70 CC_ALNUM = 0, CC_ALPHA = 1, CC_BLANK = 2, CC_CNTRL = 3,
71 CC_DIGIT = 4, CC_GRAPH = 5, CC_LOWER = 6, CC_PRINT = 7,
72 CC_PUNCT = 8, CC_SPACE = 9, CC_UPPER = 10, CC_XDIGIT = 11,
73 CC_NO_CLASS = 9999
76 /* Character class to which a character (returned by get_next) belonged;
77 but it is set only if the construct from which the character was obtained
78 was one of the character classes [:upper:] or [:lower:]. The value
79 is used only when translating and then, only to make sure that upper
80 and lower class constructs have the same relative positions in string1
81 and string2. */
82 enum Upper_Lower_class
84 UL_LOWER,
85 UL_UPPER,
86 UL_NONE
89 /* The type of a List_element. See build_spec_list for more details. */
90 enum Range_element_type
92 RE_NORMAL_CHAR,
93 RE_RANGE,
94 RE_CHAR_CLASS,
95 RE_EQUIV_CLASS,
96 RE_REPEATED_CHAR
99 /* One construct in one of tr's argument strings.
100 For example, consider the POSIX version of the classic tr command:
101 tr -cs 'a-zA-Z_' '[\n*]'
102 String1 has 3 constructs, two of which are ranges (a-z and A-Z),
103 and a single normal character, `_'. String2 has one construct. */
104 struct List_element
106 enum Range_element_type type;
107 struct List_element *next;
108 union
110 unsigned char normal_char;
111 struct /* unnamed */
113 unsigned char first_char;
114 unsigned char last_char;
116 range;
117 enum Char_class char_class;
118 unsigned char equiv_code;
119 struct /* unnamed */
121 unsigned char the_repeated_char;
122 count repeat_count;
124 repeated_char;
129 /* Each of tr's argument strings is parsed into a form that is easier
130 to work with: a linked list of constructs (struct List_element).
131 Each Spec_list structure also encapsulates various attributes of
132 the corresponding argument string. The attributes are used mainly
133 to verify that the strings are valid in the context of any options
134 specified (like -s, -d, or -c). The main exception is the member
135 `tail', which is first used to construct the list. After construction,
136 it is used by get_next to save its state when traversing the list.
137 The member `state' serves a similar function. */
138 struct Spec_list
140 /* Points to the head of the list of range elements.
141 The first struct is a dummy; its members are never used. */
142 struct List_element *head;
144 /* When appending, points to the last element. When traversing via
145 get_next(), points to the element to process next. Setting
146 Spec_list.state to the value BEGIN_STATE before calling get_next
147 signals get_next to initialize tail to point to head->next. */
148 struct List_element *tail;
150 /* Used to save state between calls to get_next. */
151 count state;
153 /* Length, in the sense that length ('a-z[:digit:]123abc')
154 is 42 ( = 26 + 10 + 6). */
155 count length;
157 /* The number of [c*] and [c*0] constructs that appear in this spec. */
158 size_t n_indefinite_repeats;
160 /* If n_indefinite_repeats is nonzero, this points to the List_element
161 corresponding to the last [c*] or [c*0] construct encountered in
162 this spec. Otherwise it is undefined. */
163 struct List_element *indefinite_repeat_element;
165 /* True if this spec contains at least one equivalence
166 class construct e.g. [=c=]. */
167 bool has_equiv_class;
169 /* True if this spec contains at least one character class
170 construct. E.g. [:digit:]. */
171 bool has_char_class;
173 /* True if this spec contains at least one of the character class
174 constructs (all but upper and lower) that aren't allowed in s2. */
175 bool has_restricted_char_class;
178 /* A representation for escaped string1 or string2. As a string is parsed,
179 any backslash-escaped characters (other than octal or \a, \b, \f, \n,
180 etc.) are marked as such in this structure by setting the corresponding
181 entry in the ESCAPED vector. */
182 struct E_string
184 char *s;
185 bool *escaped;
186 size_t len;
189 /* Return nonzero if the Ith character of escaped string ES matches C
190 and is not escaped itself. */
191 static inline bool
192 es_match (struct E_string const *es, size_t i, char c)
194 return es->s[i] == c && !es->escaped[i];
197 /* The name by which this program was run. */
198 char *program_name;
200 /* When true, each sequence in the input of a repeated character
201 (call it c) is replaced (in the output) by a single occurrence of c
202 for every c in the squeeze set. */
203 static bool squeeze_repeats = false;
205 /* When true, removes characters in the delete set from input. */
206 static bool delete = false;
208 /* Use the complement of set1 in place of set1. */
209 static bool complement = false;
211 /* When tr is performing translation and string1 is longer than string2,
212 POSIX says that the result is unspecified. That gives the implementor
213 of a POSIX conforming version of tr two reasonable choices for the
214 semantics of this case.
216 * The BSD tr pads string2 to the length of string1 by
217 repeating the last character in string2.
219 * System V tr ignores characters in string1 that have no
220 corresponding character in string2. That is, string1 is effectively
221 truncated to the length of string2.
223 When nonzero, this flag causes GNU tr to imitate the behavior
224 of System V tr when translating with string1 longer than string2.
225 The default is to emulate BSD tr. This flag is ignored in modes where
226 no translation is performed. Emulating the System V tr
227 in this exceptional case causes the relatively common BSD idiom:
229 tr -cs A-Za-z0-9 '\012'
231 to break (it would convert only zero bytes, rather than all
232 non-alphanumerics, to newlines).
234 WARNING: This switch does not provide general BSD or System V
235 compatibility. For example, it doesn't disable the interpretation
236 of the POSIX constructs [:alpha:], [=c=], and [c*10], so if by
237 some unfortunate coincidence you use such constructs in scripts
238 expecting to use some other version of tr, the scripts will break. */
239 static bool truncate_set1 = false;
241 /* An alias for (!delete && non_option_args == 2).
242 It is set in main and used there and in validate(). */
243 static bool translating;
245 static char io_buf[BUFSIZ];
247 static char const *const char_class_name[] =
249 "alnum", "alpha", "blank", "cntrl", "digit", "graph",
250 "lower", "print", "punct", "space", "upper", "xdigit"
252 enum { N_CHAR_CLASSES = sizeof char_class_name / sizeof char_class_name[0] };
254 /* Array of boolean values. A character `c' is a member of the
255 squeeze set if and only if in_squeeze_set[c] is true. The squeeze
256 set is defined by the last (possibly, the only) string argument
257 on the command line when the squeeze option is given. */
258 static bool in_squeeze_set[N_CHARS];
260 /* Array of boolean values. A character `c' is a member of the
261 delete set if and only if in_delete_set[c] is true. The delete
262 set is defined by the first (or only) string argument on the
263 command line when the delete option is given. */
264 static bool in_delete_set[N_CHARS];
266 /* Array of character values defining the translation (if any) that
267 tr is to perform. Translation is performed only when there are
268 two specification strings and the delete switch is not given. */
269 static char xlate[N_CHARS];
271 static struct option const long_options[] =
273 {"complement", no_argument, NULL, 'c'},
274 {"delete", no_argument, NULL, 'd'},
275 {"squeeze-repeats", no_argument, NULL, 's'},
276 {"truncate-set1", no_argument, NULL, 't'},
277 {GETOPT_HELP_OPTION_DECL},
278 {GETOPT_VERSION_OPTION_DECL},
279 {NULL, 0, NULL, 0}
282 void
283 usage (int status)
285 if (status != EXIT_SUCCESS)
286 fprintf (stderr, _("Try `%s --help' for more information.\n"),
287 program_name);
288 else
290 printf (_("\
291 Usage: %s [OPTION]... SET1 [SET2]\n\
293 program_name);
294 fputs (_("\
295 Translate, squeeze, and/or delete characters from standard input,\n\
296 writing to standard output.\n\
298 -c, -C, --complement first complement SET1\n\
299 -d, --delete delete characters in SET1, do not translate\n\
300 -s, --squeeze-repeats replace each input sequence of a repeated character\n\
301 that is listed in SET1 with a single occurrence\n\
302 of that character\n\
303 -t, --truncate-set1 first truncate SET1 to length of SET2\n\
304 "), stdout);
305 fputs (HELP_OPTION_DESCRIPTION, stdout);
306 fputs (VERSION_OPTION_DESCRIPTION, stdout);
307 fputs (_("\
309 SETs are specified as strings of characters. Most represent themselves.\n\
310 Interpreted sequences are:\n\
312 \\NNN character with octal value NNN (1 to 3 octal digits)\n\
313 \\\\ backslash\n\
314 \\a audible BEL\n\
315 \\b backspace\n\
316 \\f form feed\n\
317 \\n new line\n\
318 \\r return\n\
319 \\t horizontal tab\n\
320 "), stdout);
321 fputs (_("\
322 \\v vertical tab\n\
323 CHAR1-CHAR2 all characters from CHAR1 to CHAR2 in ascending order\n\
324 [CHAR*] in SET2, copies of CHAR until length of SET1\n\
325 [CHAR*REPEAT] REPEAT copies of CHAR, REPEAT octal if starting with 0\n\
326 [:alnum:] all letters and digits\n\
327 [:alpha:] all letters\n\
328 [:blank:] all horizontal whitespace\n\
329 [:cntrl:] all control characters\n\
330 [:digit:] all digits\n\
331 "), stdout);
332 fputs (_("\
333 [:graph:] all printable characters, not including space\n\
334 [:lower:] all lower case letters\n\
335 [:print:] all printable characters, including space\n\
336 [:punct:] all punctuation characters\n\
337 [:space:] all horizontal or vertical whitespace\n\
338 [:upper:] all upper case letters\n\
339 [:xdigit:] all hexadecimal digits\n\
340 [=CHAR=] all characters which are equivalent to CHAR\n\
341 "), stdout);
342 fputs (_("\
344 Translation occurs if -d is not given and both SET1 and SET2 appear.\n\
345 -t may be used only when translating. SET2 is extended to length of\n\
346 SET1 by repeating its last character as necessary. \
347 "), stdout);
348 fputs (_("\
349 Excess characters\n\
350 of SET2 are ignored. Only [:lower:] and [:upper:] are guaranteed to\n\
351 expand in ascending order; used in SET2 while translating, they may\n\
352 only be used in pairs to specify case conversion. \
353 "), stdout);
354 fputs (_("\
355 -s uses SET1 if not\n\
356 translating nor deleting; else squeezing uses SET2 and occurs after\n\
357 translation or deletion.\n\
358 "), stdout);
359 printf (_("\nReport bugs to <%s>.\n"), PACKAGE_BUGREPORT);
361 exit (status);
364 /* Return nonzero if the character C is a member of the
365 equivalence class containing the character EQUIV_CLASS. */
367 static inline bool
368 is_equiv_class_member (unsigned char equiv_class, unsigned char c)
370 return (equiv_class == c);
373 /* Return true if the character C is a member of the
374 character class CHAR_CLASS. */
376 static bool
377 is_char_class_member (enum Char_class char_class, unsigned char c)
379 int result;
381 switch (char_class)
383 case CC_ALNUM:
384 result = isalnum (c);
385 break;
386 case CC_ALPHA:
387 result = isalpha (c);
388 break;
389 case CC_BLANK:
390 result = isblank (c);
391 break;
392 case CC_CNTRL:
393 result = iscntrl (c);
394 break;
395 case CC_DIGIT:
396 result = isdigit (c);
397 break;
398 case CC_GRAPH:
399 result = isgraph (c);
400 break;
401 case CC_LOWER:
402 result = islower (c);
403 break;
404 case CC_PRINT:
405 result = isprint (c);
406 break;
407 case CC_PUNCT:
408 result = ispunct (c);
409 break;
410 case CC_SPACE:
411 result = isspace (c);
412 break;
413 case CC_UPPER:
414 result = isupper (c);
415 break;
416 case CC_XDIGIT:
417 result = isxdigit (c);
418 break;
419 default:
420 abort ();
421 break;
424 return !! result;
427 static void
428 es_free (struct E_string *es)
430 free (es->s);
431 free (es->escaped);
434 /* Perform the first pass over each range-spec argument S, converting all
435 \c and \ddd escapes to their one-byte representations. If an invalid
436 quote sequence is found print an error message and return false;
437 Otherwise set *ES to the resulting string and return true.
438 The resulting array of characters may contain zero-bytes;
439 however, on input, S is assumed to be null-terminated, and hence
440 cannot contain actual (non-escaped) zero bytes. */
442 static bool
443 unquote (char const *s, struct E_string *es)
445 size_t i, j;
446 size_t len = strlen (s);
448 es->s = xmalloc (len);
449 es->escaped = xcalloc (len, sizeof es->escaped[0]);
451 j = 0;
452 for (i = 0; s[i]; i++)
454 unsigned char c;
455 int oct_digit;
457 switch (s[i])
459 case '\\':
460 es->escaped[j] = true;
461 switch (s[i + 1])
463 case '\\':
464 c = '\\';
465 break;
466 case 'a':
467 c = '\a';
468 break;
469 case 'b':
470 c = '\b';
471 break;
472 case 'f':
473 c = '\f';
474 break;
475 case 'n':
476 c = '\n';
477 break;
478 case 'r':
479 c = '\r';
480 break;
481 case 't':
482 c = '\t';
483 break;
484 case 'v':
485 c = '\v';
486 break;
487 case '0':
488 case '1':
489 case '2':
490 case '3':
491 case '4':
492 case '5':
493 case '6':
494 case '7':
495 c = s[i + 1] - '0';
496 oct_digit = s[i + 2] - '0';
497 if (0 <= oct_digit && oct_digit <= 7)
499 c = 8 * c + oct_digit;
500 ++i;
501 oct_digit = s[i + 2] - '0';
502 if (0 <= oct_digit && oct_digit <= 7)
504 if (8 * c + oct_digit < N_CHARS)
506 c = 8 * c + oct_digit;
507 ++i;
509 else
511 /* A 3-digit octal number larger than \377 won't
512 fit in 8 bits. So we stop when adding the
513 next digit would put us over the limit and
514 give a warning about the ambiguity. POSIX
515 isn't clear on this, and we interpret this
516 lack of clarity as meaning the resulting behavior
517 is undefined, which means we're allowed to issue
518 a warning. */
519 error (0, 0, _("warning: the ambiguous octal escape \
520 \\%c%c%c is being\n\tinterpreted as the 2-byte sequence \\0%c%c, %c"),
521 s[i], s[i + 1], s[i + 2],
522 s[i], s[i + 1], s[i + 2]);
526 break;
527 case '\0':
528 /* POSIX seems to require that a trailing backslash must
529 stand for itself. Weird. */
530 es->escaped[j] = false;
531 i--;
532 c = '\\';
533 break;
534 default:
535 c = s[i + 1];
536 break;
538 ++i;
539 es->s[j++] = c;
540 break;
541 default:
542 es->s[j++] = s[i];
543 break;
546 es->len = j;
547 return true;
550 /* If CLASS_STR is a valid character class string, return its index
551 in the global char_class_name array. Otherwise, return CC_NO_CLASS. */
553 static enum Char_class
554 look_up_char_class (char const *class_str, size_t len)
556 enum Char_class i;
558 for (i = 0; i < N_CHAR_CLASSES; i++)
559 if (strncmp (class_str, char_class_name[i], len) == 0
560 && strlen (char_class_name[i]) == len)
561 return i;
562 return CC_NO_CLASS;
565 /* Return a newly allocated string with a printable version of C.
566 This function is used solely for formatting error messages. */
568 static char *
569 make_printable_char (unsigned char c)
571 char *buf = xmalloc (5);
573 if (isprint (c))
575 buf[0] = c;
576 buf[1] = '\0';
578 else
580 sprintf (buf, "\\%03o", c);
582 return buf;
585 /* Return a newly allocated copy of S which is suitable for printing.
586 LEN is the number of characters in S. Most non-printing
587 (isprint) characters are represented by a backslash followed by
588 3 octal digits. However, the characters represented by \c escapes
589 where c is one of [abfnrtv] are represented by their 2-character \c
590 sequences. This function is used solely for printing error messages. */
592 static char *
593 make_printable_str (char const *s, size_t len)
595 /* Worst case is that every character expands to a backslash
596 followed by a 3-character octal escape sequence. */
597 char *printable_buf = xnmalloc (len + 1, 4);
598 char *p = printable_buf;
599 size_t i;
601 for (i = 0; i < len; i++)
603 char buf[5];
604 char *tmp = NULL;
605 unsigned char c = s[i];
607 switch (c)
609 case '\\':
610 tmp = "\\";
611 break;
612 case '\a':
613 tmp = "\\a";
614 break;
615 case '\b':
616 tmp = "\\b";
617 break;
618 case '\f':
619 tmp = "\\f";
620 break;
621 case '\n':
622 tmp = "\\n";
623 break;
624 case '\r':
625 tmp = "\\r";
626 break;
627 case '\t':
628 tmp = "\\t";
629 break;
630 case '\v':
631 tmp = "\\v";
632 break;
633 default:
634 if (isprint (c))
636 buf[0] = c;
637 buf[1] = '\0';
639 else
640 sprintf (buf, "\\%03o", c);
641 tmp = buf;
642 break;
644 p = stpcpy (p, tmp);
646 return printable_buf;
649 /* Append a newly allocated structure representing a
650 character C to the specification list LIST. */
652 static void
653 append_normal_char (struct Spec_list *list, unsigned char c)
655 struct List_element *new;
657 new = xmalloc (sizeof *new);
658 new->next = NULL;
659 new->type = RE_NORMAL_CHAR;
660 new->u.normal_char = c;
661 assert (list->tail);
662 list->tail->next = new;
663 list->tail = new;
666 /* Append a newly allocated structure representing the range
667 of characters from FIRST to LAST to the specification list LIST.
668 Return false if LAST precedes FIRST in the collating sequence,
669 true otherwise. This means that '[c-c]' is acceptable. */
671 static bool
672 append_range (struct Spec_list *list, unsigned char first, unsigned char last)
674 struct List_element *new;
676 if (last < first)
678 char *tmp1 = make_printable_char (first);
679 char *tmp2 = make_printable_char (last);
681 error (0, 0,
682 _("range-endpoints of `%s-%s' are in reverse collating sequence order"),
683 tmp1, tmp2);
684 free (tmp1);
685 free (tmp2);
686 return false;
688 new = xmalloc (sizeof *new);
689 new->next = NULL;
690 new->type = RE_RANGE;
691 new->u.range.first_char = first;
692 new->u.range.last_char = last;
693 assert (list->tail);
694 list->tail->next = new;
695 list->tail = new;
696 return true;
699 /* If CHAR_CLASS_STR is a valid character class string, append a
700 newly allocated structure representing that character class to the end
701 of the specification list LIST and return true. If CHAR_CLASS_STR is not
702 a valid string return false. */
704 static bool
705 append_char_class (struct Spec_list *list,
706 char const *char_class_str, size_t len)
708 enum Char_class char_class;
709 struct List_element *new;
711 char_class = look_up_char_class (char_class_str, len);
712 if (char_class == CC_NO_CLASS)
713 return false;
714 new = xmalloc (sizeof *new);
715 new->next = NULL;
716 new->type = RE_CHAR_CLASS;
717 new->u.char_class = char_class;
718 assert (list->tail);
719 list->tail->next = new;
720 list->tail = new;
721 return true;
724 /* Append a newly allocated structure representing a [c*n]
725 repeated character construct to the specification list LIST.
726 THE_CHAR is the single character to be repeated, and REPEAT_COUNT
727 is a non-negative repeat count. */
729 static void
730 append_repeated_char (struct Spec_list *list, unsigned char the_char,
731 count repeat_count)
733 struct List_element *new;
735 new = xmalloc (sizeof *new);
736 new->next = NULL;
737 new->type = RE_REPEATED_CHAR;
738 new->u.repeated_char.the_repeated_char = the_char;
739 new->u.repeated_char.repeat_count = repeat_count;
740 assert (list->tail);
741 list->tail->next = new;
742 list->tail = new;
745 /* Given a string, EQUIV_CLASS_STR, from a [=str=] context and
746 the length of that string, LEN, if LEN is exactly one, append
747 a newly allocated structure representing the specified
748 equivalence class to the specification list, LIST and return true.
749 If LEN is not 1, return false. */
751 static bool
752 append_equiv_class (struct Spec_list *list,
753 char const *equiv_class_str, size_t len)
755 struct List_element *new;
757 if (len != 1)
758 return false;
759 new = xmalloc (sizeof *new);
760 new->next = NULL;
761 new->type = RE_EQUIV_CLASS;
762 new->u.equiv_code = *equiv_class_str;
763 assert (list->tail);
764 list->tail->next = new;
765 list->tail = new;
766 return true;
769 /* Search forward starting at START_IDX for the 2-char sequence
770 (PRE_BRACKET_CHAR,']') in the string P of length P_LEN. If such
771 a sequence is found, set *RESULT_IDX to the index of the first
772 character and return true. Otherwise return false. P may contain
773 zero bytes. */
775 static bool
776 find_closing_delim (const struct E_string *es, size_t start_idx,
777 char pre_bracket_char, size_t *result_idx)
779 size_t i;
781 for (i = start_idx; i < es->len - 1; i++)
782 if (es->s[i] == pre_bracket_char && es->s[i + 1] == ']'
783 && !es->escaped[i] && !es->escaped[i + 1])
785 *result_idx = i;
786 return true;
788 return false;
791 /* Parse the bracketed repeat-char syntax. If the P_LEN characters
792 beginning with P[ START_IDX ] comprise a valid [c*n] construct,
793 then set *CHAR_TO_REPEAT, *REPEAT_COUNT, and *CLOSING_BRACKET_IDX
794 and return zero. If the second character following
795 the opening bracket is not `*' or if no closing bracket can be
796 found, return -1. If a closing bracket is found and the
797 second char is `*', but the string between the `*' and `]' isn't
798 empty, an octal number, or a decimal number, print an error message
799 and return -2. */
801 static int
802 find_bracketed_repeat (const struct E_string *es, size_t start_idx,
803 unsigned char *char_to_repeat, count *repeat_count,
804 size_t *closing_bracket_idx)
806 size_t i;
808 assert (start_idx + 1 < es->len);
809 if (!es_match (es, start_idx + 1, '*'))
810 return -1;
812 for (i = start_idx + 2; i < es->len && !es->escaped[i]; i++)
814 if (es->s[i] == ']')
816 size_t digit_str_len = i - start_idx - 2;
818 *char_to_repeat = es->s[start_idx];
819 if (digit_str_len == 0)
821 /* We've matched [c*] -- no explicit repeat count. */
822 *repeat_count = 0;
824 else
826 /* Here, we have found [c*s] where s should be a string
827 of octal (if it starts with `0') or decimal digits. */
828 char const *digit_str = &es->s[start_idx + 2];
829 char *d_end;
830 if ((xstrtoumax (digit_str, &d_end, *digit_str == '0' ? 8 : 10,
831 repeat_count, NULL)
832 != LONGINT_OK)
833 || REPEAT_COUNT_MAXIMUM < *repeat_count
834 || digit_str + digit_str_len != d_end)
836 char *tmp = make_printable_str (digit_str, digit_str_len);
837 error (0, 0,
838 _("invalid repeat count %s in [c*n] construct"),
839 quote (tmp));
840 free (tmp);
841 return -2;
844 *closing_bracket_idx = i;
845 return 0;
848 return -1; /* No bracket found. */
851 /* Return true if the string at ES->s[IDX] matches the regular
852 expression `\*[0-9]*\]', false otherwise. The string does not
853 match if any of its characters are escaped. */
855 static bool
856 star_digits_closebracket (const struct E_string *es, size_t idx)
858 size_t i;
860 if (!es_match (es, idx, '*'))
861 return false;
863 for (i = idx + 1; i < es->len; i++)
864 if (!ISDIGIT (to_uchar (es->s[i])) || es->escaped[i])
865 return es_match (es, i, ']');
866 return false;
869 /* Convert string UNESCAPED_STRING (which has been preprocessed to
870 convert backslash-escape sequences) of length LEN characters into
871 a linked list of the following 5 types of constructs:
872 - [:str:] Character class where `str' is one of the 12 valid strings.
873 - [=c=] Equivalence class where `c' is any single character.
874 - [c*n] Repeat the single character `c' `n' times. n may be omitted.
875 However, if `n' is present, it must be a non-negative octal or
876 decimal integer.
877 - r-s Range of characters from `r' to `s'. The second endpoint must
878 not precede the first in the current collating sequence.
879 - c Any other character is interpreted as itself. */
881 static bool
882 build_spec_list (const struct E_string *es, struct Spec_list *result)
884 char const *p;
885 size_t i;
887 p = es->s;
889 /* The main for-loop below recognizes the 4 multi-character constructs.
890 A character that matches (in its context) none of the multi-character
891 constructs is classified as `normal'. Since all multi-character
892 constructs have at least 3 characters, any strings of length 2 or
893 less are composed solely of normal characters. Hence, the index of
894 the outer for-loop runs only as far as LEN-2. */
896 for (i = 0; i + 2 < es->len; /* empty */)
898 if (es_match (es, i, '['))
900 bool matched_multi_char_construct;
901 size_t closing_bracket_idx;
902 unsigned char char_to_repeat;
903 count repeat_count;
904 int err;
906 matched_multi_char_construct = true;
907 if (es_match (es, i + 1, ':') || es_match (es, i + 1, '='))
909 size_t closing_delim_idx;
911 if (find_closing_delim (es, i + 2, p[i + 1], &closing_delim_idx))
913 size_t opnd_str_len = closing_delim_idx - 1 - (i + 2) + 1;
914 char const *opnd_str = p + i + 2;
916 if (opnd_str_len == 0)
918 if (p[i + 1] == ':')
919 error (0, 0, _("missing character class name `[::]'"));
920 else
921 error (0, 0,
922 _("missing equivalence class character `[==]'"));
923 return false;
926 if (p[i + 1] == ':')
928 /* FIXME: big comment. */
929 if (!append_char_class (result, opnd_str, opnd_str_len))
931 if (star_digits_closebracket (es, i + 2))
932 goto try_bracketed_repeat;
933 else
935 char *tmp = make_printable_str (opnd_str,
936 opnd_str_len);
937 error (0, 0, _("invalid character class %s"),
938 quote (tmp));
939 free (tmp);
940 return false;
944 else
946 /* FIXME: big comment. */
947 if (!append_equiv_class (result, opnd_str, opnd_str_len))
949 if (star_digits_closebracket (es, i + 2))
950 goto try_bracketed_repeat;
951 else
953 char *tmp = make_printable_str (opnd_str,
954 opnd_str_len);
955 error (0, 0,
956 _("%s: equivalence class operand must be a single character"),
957 tmp);
958 free (tmp);
959 return false;
964 i = closing_delim_idx + 2;
965 continue;
967 /* Else fall through. This could be [:*] or [=*]. */
970 try_bracketed_repeat:
972 /* Determine whether this is a bracketed repeat range
973 matching the RE \[.\*(dec_or_oct_number)?\]. */
974 err = find_bracketed_repeat (es, i + 1, &char_to_repeat,
975 &repeat_count,
976 &closing_bracket_idx);
977 if (err == 0)
979 append_repeated_char (result, char_to_repeat, repeat_count);
980 i = closing_bracket_idx + 1;
982 else if (err == -1)
984 matched_multi_char_construct = false;
986 else
988 /* Found a string that looked like [c*n] but the
989 numeric part was invalid. */
990 return false;
993 if (matched_multi_char_construct)
994 continue;
996 /* We reach this point if P does not match [:str:], [=c=],
997 [c*n], or [c*]. Now, see if P looks like a range `[-c'
998 (from `[' to `c'). */
1001 /* Look ahead one char for ranges like a-z. */
1002 if (es_match (es, i + 1, '-'))
1004 if (!append_range (result, p[i], p[i + 2]))
1005 return false;
1006 i += 3;
1008 else
1010 append_normal_char (result, p[i]);
1011 ++i;
1015 /* Now handle the (2 or fewer) remaining characters p[i]..p[es->len - 1]. */
1016 for (; i < es->len; i++)
1017 append_normal_char (result, p[i]);
1019 return true;
1022 /* Given a Spec_list S (with its saved state implicit in the values
1023 of its members `tail' and `state'), return the next single character
1024 in the expansion of S's constructs. If the last character of S was
1025 returned on the previous call or if S was empty, this function
1026 returns -1. For example, successive calls to get_next where S
1027 represents the spec-string 'a-d[y*3]' will return the sequence
1028 of values a, b, c, d, y, y, y, -1. Finally, if the construct from
1029 which the returned character comes is [:upper:] or [:lower:], the
1030 parameter CLASS is given a value to indicate which it was. Otherwise
1031 CLASS is set to UL_NONE. This value is used only when constructing
1032 the translation table to verify that any occurrences of upper and
1033 lower class constructs in the spec-strings appear in the same relative
1034 positions. */
1036 static int
1037 get_next (struct Spec_list *s, enum Upper_Lower_class *class)
1039 struct List_element *p;
1040 int return_val;
1041 int i;
1043 if (class)
1044 *class = UL_NONE;
1046 if (s->state == BEGIN_STATE)
1048 s->tail = s->head->next;
1049 s->state = NEW_ELEMENT;
1052 p = s->tail;
1053 if (p == NULL)
1054 return -1;
1056 switch (p->type)
1058 case RE_NORMAL_CHAR:
1059 return_val = p->u.normal_char;
1060 s->state = NEW_ELEMENT;
1061 s->tail = p->next;
1062 break;
1064 case RE_RANGE:
1065 if (s->state == NEW_ELEMENT)
1066 s->state = p->u.range.first_char;
1067 else
1068 ++(s->state);
1069 return_val = s->state;
1070 if (s->state == p->u.range.last_char)
1072 s->tail = p->next;
1073 s->state = NEW_ELEMENT;
1075 break;
1077 case RE_CHAR_CLASS:
1078 if (class)
1080 bool upper_or_lower;
1081 switch (p->u.char_class)
1083 case CC_LOWER:
1084 *class = UL_LOWER;
1085 upper_or_lower = true;
1086 break;
1087 case CC_UPPER:
1088 *class = UL_UPPER;
1089 upper_or_lower = true;
1090 break;
1091 default:
1092 upper_or_lower = false;
1093 break;
1096 if (upper_or_lower)
1098 s->tail = p->next;
1099 s->state = NEW_ELEMENT;
1100 return_val = 0;
1101 break;
1105 if (s->state == NEW_ELEMENT)
1107 for (i = 0; i < N_CHARS; i++)
1108 if (is_char_class_member (p->u.char_class, i))
1109 break;
1110 assert (i < N_CHARS);
1111 s->state = i;
1113 assert (is_char_class_member (p->u.char_class, s->state));
1114 return_val = s->state;
1115 for (i = s->state + 1; i < N_CHARS; i++)
1116 if (is_char_class_member (p->u.char_class, i))
1117 break;
1118 if (i < N_CHARS)
1119 s->state = i;
1120 else
1122 s->tail = p->next;
1123 s->state = NEW_ELEMENT;
1125 break;
1127 case RE_EQUIV_CLASS:
1128 /* FIXME: this assumes that each character is alone in its own
1129 equivalence class (which appears to be correct for my
1130 LC_COLLATE. But I don't know of any function that allows
1131 one to determine a character's equivalence class. */
1133 return_val = p->u.equiv_code;
1134 s->state = NEW_ELEMENT;
1135 s->tail = p->next;
1136 break;
1138 case RE_REPEATED_CHAR:
1139 /* Here, a repeat count of n == 0 means don't repeat at all. */
1140 if (p->u.repeated_char.repeat_count == 0)
1142 s->tail = p->next;
1143 s->state = NEW_ELEMENT;
1144 return_val = get_next (s, class);
1146 else
1148 if (s->state == NEW_ELEMENT)
1150 s->state = 0;
1152 ++(s->state);
1153 return_val = p->u.repeated_char.the_repeated_char;
1154 if (s->state == p->u.repeated_char.repeat_count)
1156 s->tail = p->next;
1157 s->state = NEW_ELEMENT;
1160 break;
1162 default:
1163 abort ();
1164 break;
1167 return return_val;
1170 /* This is a minor kludge. This function is called from
1171 get_spec_stats to determine the cardinality of a set derived
1172 from a complemented string. It's a kludge in that some of the
1173 same operations are (duplicated) performed in set_initialize. */
1175 static int
1176 card_of_complement (struct Spec_list *s)
1178 int c;
1179 int cardinality = N_CHARS;
1180 bool in_set[N_CHARS];
1182 memset (in_set, 0, sizeof in_set);
1183 s->state = BEGIN_STATE;
1184 while ((c = get_next (s, NULL)) != -1)
1186 cardinality -= (!in_set[c]);
1187 in_set[c] = true;
1189 return cardinality;
1192 /* Gather statistics about the spec-list S in preparation for the tests
1193 in validate that determine the consistency of the specs. This function
1194 is called at most twice; once for string1, and again for any string2.
1195 LEN_S1 < 0 indicates that this is the first call and that S represents
1196 string1. When LEN_S1 >= 0, it is the length of the expansion of the
1197 constructs in string1, and we can use its value to resolve any
1198 indefinite repeat construct in S (which represents string2). Hence,
1199 this function has the side-effect that it converts a valid [c*]
1200 construct in string2 to [c*n] where n is large enough (or 0) to give
1201 string2 the same length as string1. For example, with the command
1202 tr a-z 'A[\n*]Z' on the second call to get_spec_stats, LEN_S1 would
1203 be 26 and S (representing string2) would be converted to 'A[\n*24]Z'. */
1205 static void
1206 get_spec_stats (struct Spec_list *s)
1208 struct List_element *p;
1209 count length = 0;
1211 s->n_indefinite_repeats = 0;
1212 s->has_equiv_class = false;
1213 s->has_restricted_char_class = false;
1214 s->has_char_class = false;
1215 for (p = s->head->next; p; p = p->next)
1217 int i;
1218 count len = 0;
1219 count new_length;
1221 switch (p->type)
1223 case RE_NORMAL_CHAR:
1224 len = 1;
1225 break;
1227 case RE_RANGE:
1228 assert (p->u.range.last_char >= p->u.range.first_char);
1229 len = p->u.range.last_char - p->u.range.first_char + 1;
1230 break;
1232 case RE_CHAR_CLASS:
1233 s->has_char_class = true;
1234 for (i = 0; i < N_CHARS; i++)
1235 if (is_char_class_member (p->u.char_class, i))
1236 ++len;
1237 switch (p->u.char_class)
1239 case CC_UPPER:
1240 case CC_LOWER:
1241 break;
1242 default:
1243 s->has_restricted_char_class = true;
1244 break;
1246 break;
1248 case RE_EQUIV_CLASS:
1249 for (i = 0; i < N_CHARS; i++)
1250 if (is_equiv_class_member (p->u.equiv_code, i))
1251 ++len;
1252 s->has_equiv_class = true;
1253 break;
1255 case RE_REPEATED_CHAR:
1256 if (p->u.repeated_char.repeat_count > 0)
1257 len = p->u.repeated_char.repeat_count;
1258 else
1260 s->indefinite_repeat_element = p;
1261 ++(s->n_indefinite_repeats);
1263 break;
1265 default:
1266 abort ();
1267 break;
1270 /* Check for arithmetic overflow in computing length. Also, reject
1271 any length greater than the maximum repeat count, in case the
1272 length is later used to compute the repeat count for an
1273 indefinite element. */
1274 new_length = length + len;
1275 if (! (length <= new_length && new_length <= REPEAT_COUNT_MAXIMUM))
1276 error (EXIT_FAILURE, 0, _("too many characters in set"));
1277 length = new_length;
1280 s->length = length;
1283 static void
1284 get_s1_spec_stats (struct Spec_list *s1)
1286 get_spec_stats (s1);
1287 if (complement)
1288 s1->length = card_of_complement (s1);
1291 static void
1292 get_s2_spec_stats (struct Spec_list *s2, count len_s1)
1294 get_spec_stats (s2);
1295 if (len_s1 >= s2->length && s2->n_indefinite_repeats == 1)
1297 s2->indefinite_repeat_element->u.repeated_char.repeat_count =
1298 len_s1 - s2->length;
1299 s2->length = len_s1;
1303 static void
1304 spec_init (struct Spec_list *spec_list)
1306 struct List_element *new = xmalloc (sizeof *new);
1307 spec_list->head = spec_list->tail = new;
1308 spec_list->head->next = NULL;
1311 /* This function makes two passes over the argument string S. The first
1312 one converts all \c and \ddd escapes to their one-byte representations.
1313 The second constructs a linked specification list, SPEC_LIST, of the
1314 characters and constructs that comprise the argument string. If either
1315 of these passes detects an error, this function returns false. */
1317 static bool
1318 parse_str (char const *s, struct Spec_list *spec_list)
1320 struct E_string es;
1321 bool ok = unquote (s, &es) && build_spec_list (&es, spec_list);
1322 es_free (&es);
1323 return ok;
1326 /* Given two specification lists, S1 and S2, and assuming that
1327 S1->length > S2->length, append a single [c*n] element to S2 where c
1328 is the last character in the expansion of S2 and n is the difference
1329 between the two lengths.
1330 Upon successful completion, S2->length is set to S1->length. The only
1331 way this function can fail to make S2 as long as S1 is when S2 has
1332 zero-length, since in that case, there is no last character to repeat.
1333 So S2->length is required to be at least 1.
1335 Providing this functionality allows the user to do some pretty
1336 non-BSD (and non-portable) things: For example, the command
1337 tr -cs '[:upper:]0-9' '[:lower:]'
1338 is almost guaranteed to give results that depend on your collating
1339 sequence. */
1341 static void
1342 string2_extend (const struct Spec_list *s1, struct Spec_list *s2)
1344 struct List_element *p;
1345 unsigned char char_to_repeat;
1346 int i;
1348 assert (translating);
1349 assert (s1->length > s2->length);
1350 assert (s2->length > 0);
1352 p = s2->tail;
1353 switch (p->type)
1355 case RE_NORMAL_CHAR:
1356 char_to_repeat = p->u.normal_char;
1357 break;
1358 case RE_RANGE:
1359 char_to_repeat = p->u.range.last_char;
1360 break;
1361 case RE_CHAR_CLASS:
1362 for (i = N_CHARS - 1; i >= 0; i--)
1363 if (is_char_class_member (p->u.char_class, i))
1364 break;
1365 assert (i >= 0);
1366 char_to_repeat = i;
1367 break;
1369 case RE_REPEATED_CHAR:
1370 char_to_repeat = p->u.repeated_char.the_repeated_char;
1371 break;
1373 case RE_EQUIV_CLASS:
1374 /* This shouldn't happen, because validate exits with an error
1375 if it finds an equiv class in string2 when translating. */
1376 abort ();
1377 break;
1379 default:
1380 abort ();
1381 break;
1384 append_repeated_char (s2, char_to_repeat, s1->length - s2->length);
1385 s2->length = s1->length;
1388 /* Return true if S is a non-empty list in which exactly one
1389 character (but potentially, many instances of it) appears.
1390 E.g., [X*] or xxxxxxxx. */
1392 static bool
1393 homogeneous_spec_list (struct Spec_list *s)
1395 int b, c;
1397 s->state = BEGIN_STATE;
1399 if ((b = get_next (s, NULL)) == -1)
1400 return false;
1402 while ((c = get_next (s, NULL)) != -1)
1403 if (c != b)
1404 return false;
1406 return true;
1409 /* Die with an error message if S1 and S2 describe strings that
1410 are not valid with the given command line switches.
1411 A side effect of this function is that if a valid [c*] or
1412 [c*0] construct appears in string2, it is converted to [c*n]
1413 with a value for n that makes s2->length == s1->length. By
1414 the same token, if the --truncate-set1 option is not
1415 given, S2 may be extended. */
1417 static void
1418 validate (struct Spec_list *s1, struct Spec_list *s2)
1420 get_s1_spec_stats (s1);
1421 if (s1->n_indefinite_repeats > 0)
1423 error (EXIT_FAILURE, 0,
1424 _("the [c*] repeat construct may not appear in string1"));
1427 if (s2)
1429 get_s2_spec_stats (s2, s1->length);
1431 if (s2->n_indefinite_repeats > 1)
1433 error (EXIT_FAILURE, 0,
1434 _("only one [c*] repeat construct may appear in string2"));
1437 if (translating)
1439 if (s2->has_equiv_class)
1441 error (EXIT_FAILURE, 0,
1442 _("[=c=] expressions may not appear in string2 \
1443 when translating"));
1446 if (s1->length > s2->length)
1448 if (!truncate_set1)
1450 /* string2 must be non-empty unless --truncate-set1 is
1451 given or string1 is empty. */
1453 if (s2->length == 0)
1454 error (EXIT_FAILURE, 0,
1455 _("when not truncating set1, string2 must be non-empty"));
1456 string2_extend (s1, s2);
1460 if (complement && s1->has_char_class
1461 && ! (s2->length == s1->length && homogeneous_spec_list (s2)))
1463 error (EXIT_FAILURE, 0,
1464 _("when translating with complemented character classes,\
1465 \nstring2 must map all characters in the domain to one"));
1468 if (s2->has_restricted_char_class)
1470 error (EXIT_FAILURE, 0,
1471 _("when translating, the only character classes that may \
1472 appear in\nstring2 are `upper' and `lower'"));
1475 else
1476 /* Not translating. */
1478 if (s2->n_indefinite_repeats > 0)
1479 error (EXIT_FAILURE, 0,
1480 _("the [c*] construct may appear in string2 only \
1481 when translating"));
1486 /* Read buffers of SIZE bytes via the function READER (if READER is
1487 NULL, read from stdin) until EOF. When non-NULL, READER is either
1488 read_and_delete or read_and_xlate. After each buffer is read, it is
1489 processed and written to stdout. The buffers are processed so that
1490 multiple consecutive occurrences of the same character in the input
1491 stream are replaced by a single occurrence of that character if the
1492 character is in the squeeze set. */
1494 static void
1495 squeeze_filter (char *buf, size_t size, size_t (*reader) (char *, size_t))
1497 /* A value distinct from any character that may have been stored in a
1498 buffer as the result of a block-read in the function squeeze_filter. */
1499 enum { NOT_A_CHAR = CHAR_MAX + 1 };
1501 int char_to_squeeze = NOT_A_CHAR;
1502 size_t i = 0;
1503 size_t nr = 0;
1505 for (;;)
1507 size_t begin;
1509 if (i >= nr)
1511 nr = reader (buf, size);
1512 if (nr == 0)
1513 break;
1514 i = 0;
1517 begin = i;
1519 if (char_to_squeeze == NOT_A_CHAR)
1521 size_t out_len;
1522 /* Here, by being a little tricky, we can get a significant
1523 performance increase in most cases when the input is
1524 reasonably large. Since tr will modify the input only
1525 if two consecutive (and identical) input characters are
1526 in the squeeze set, we can step by two through the data
1527 when searching for a character in the squeeze set. This
1528 means there may be a little more work in a few cases and
1529 perhaps twice as much work in the worst cases where most
1530 of the input is removed by squeezing repeats. But most
1531 uses of this functionality seem to remove less than 20-30%
1532 of the input. */
1533 for (; i < nr && !in_squeeze_set[to_uchar (buf[i])]; i += 2)
1534 continue;
1536 /* There is a special case when i == nr and we've just
1537 skipped a character (the last one in buf) that is in
1538 the squeeze set. */
1539 if (i == nr && in_squeeze_set[to_uchar (buf[i - 1])])
1540 --i;
1542 if (i >= nr)
1543 out_len = nr - begin;
1544 else
1546 char_to_squeeze = buf[i];
1547 /* We're about to output buf[begin..i]. */
1548 out_len = i - begin + 1;
1550 /* But since we stepped by 2 in the loop above,
1551 out_len may be one too large. */
1552 if (i > 0 && buf[i - 1] == char_to_squeeze)
1553 --out_len;
1555 /* Advance i to the index of first character to be
1556 considered when looking for a char different from
1557 char_to_squeeze. */
1558 ++i;
1560 if (out_len > 0
1561 && fwrite (&buf[begin], 1, out_len, stdout) != out_len)
1562 error (EXIT_FAILURE, errno, _("write error"));
1565 if (char_to_squeeze != NOT_A_CHAR)
1567 /* Advance i to index of first char != char_to_squeeze
1568 (or to nr if all the rest of the characters in this
1569 buffer are the same as char_to_squeeze). */
1570 for (; i < nr && buf[i] == char_to_squeeze; i++)
1571 continue;
1572 if (i < nr)
1573 char_to_squeeze = NOT_A_CHAR;
1574 /* If (i >= nr) we've squeezed the last character in this buffer.
1575 So now we have to read a new buffer and continue comparing
1576 characters against char_to_squeeze. */
1581 static size_t
1582 plain_read (char *buf, size_t size)
1584 size_t nr = safe_read (STDIN_FILENO, buf, size);
1585 if (nr == SAFE_READ_ERROR)
1586 error (EXIT_FAILURE, errno, _("read error"));
1587 return nr;
1590 /* Read buffers of SIZE bytes from stdin until one is found that
1591 contains at least one character not in the delete set. Store
1592 in the array BUF, all characters from that buffer that are not
1593 in the delete set, and return the number of characters saved
1594 or 0 upon EOF. */
1596 static size_t
1597 read_and_delete (char *buf, size_t size)
1599 size_t n_saved;
1601 /* This enclosing do-while loop is to make sure that
1602 we don't return zero (indicating EOF) when we've
1603 just deleted all the characters in a buffer. */
1606 size_t i;
1607 size_t nr = plain_read (buf, size);
1609 if (nr == 0)
1610 return 0;
1612 /* This first loop may be a waste of code, but gives much
1613 better performance when no characters are deleted in
1614 the beginning of a buffer. It just avoids the copying
1615 of buf[i] into buf[n_saved] when it would be a NOP. */
1617 for (i = 0; i < nr && !in_delete_set[to_uchar (buf[i])]; i++)
1618 continue;
1619 n_saved = i;
1621 for (++i; i < nr; i++)
1622 if (!in_delete_set[to_uchar (buf[i])])
1623 buf[n_saved++] = buf[i];
1625 while (n_saved == 0);
1627 return n_saved;
1630 /* Read at most SIZE bytes from stdin into the array BUF. Then
1631 perform the in-place and one-to-one mapping specified by the global
1632 array `xlate'. Return the number of characters read, or 0 upon EOF. */
1634 static size_t
1635 read_and_xlate (char *buf, size_t size)
1637 size_t bytes_read = plain_read (buf, size);
1638 size_t i;
1640 for (i = 0; i < bytes_read; i++)
1641 buf[i] = xlate[to_uchar (buf[i])];
1643 return bytes_read;
1646 /* Initialize a boolean membership set, IN_SET, with the character
1647 values obtained by traversing the linked list of constructs S
1648 using the function `get_next'. IN_SET is expected to have been
1649 initialized to all zeros by the caller. If COMPLEMENT_THIS_SET
1650 is true the resulting set is complemented. */
1652 static void
1653 set_initialize (struct Spec_list *s, bool complement_this_set, bool *in_set)
1655 int c;
1656 size_t i;
1658 s->state = BEGIN_STATE;
1659 while ((c = get_next (s, NULL)) != -1)
1660 in_set[c] = true;
1661 if (complement_this_set)
1662 for (i = 0; i < N_CHARS; i++)
1663 in_set[i] = (!in_set[i]);
1667 main (int argc, char **argv)
1669 int c;
1670 int non_option_args;
1671 int min_operands;
1672 int max_operands;
1673 struct Spec_list buf1, buf2;
1674 struct Spec_list *s1 = &buf1;
1675 struct Spec_list *s2 = &buf2;
1677 initialize_main (&argc, &argv);
1678 program_name = argv[0];
1679 setlocale (LC_ALL, "");
1680 bindtextdomain (PACKAGE, LOCALEDIR);
1681 textdomain (PACKAGE);
1683 atexit (close_stdout);
1685 while ((c = getopt_long (argc, argv, "+cCdst", long_options, NULL)) != -1)
1687 switch (c)
1689 case 'c':
1690 case 'C':
1691 complement = true;
1692 break;
1694 case 'd':
1695 delete = true;
1696 break;
1698 case 's':
1699 squeeze_repeats = true;
1700 break;
1702 case 't':
1703 truncate_set1 = true;
1704 break;
1706 case_GETOPT_HELP_CHAR;
1708 case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
1710 default:
1711 usage (EXIT_FAILURE);
1712 break;
1716 non_option_args = argc - optind;
1717 translating = (non_option_args == 2 && !delete);
1718 min_operands = 1 + (delete == squeeze_repeats);
1719 max_operands = 1 + (delete <= squeeze_repeats);
1721 if (non_option_args < min_operands)
1723 if (non_option_args == 0)
1724 error (0, 0, _("missing operand"));
1725 else
1727 error (0, 0, _("missing operand after %s"), quote (argv[argc - 1]));
1728 fprintf (stderr, "%s\n",
1729 _(squeeze_repeats
1730 ? ("Two strings must be given when "
1731 "both deleting and squeezing repeats.")
1732 : "Two strings must be given when translating."));
1734 usage (EXIT_FAILURE);
1737 if (max_operands < non_option_args)
1739 error (0, 0, _("extra operand %s"), quote (argv[optind + max_operands]));
1740 if (non_option_args == 2)
1741 fprintf (stderr, "%s\n",
1742 _("Only one string may be given when "
1743 "deleting without squeezing repeats."));
1744 usage (EXIT_FAILURE);
1747 spec_init (s1);
1748 if (!parse_str (argv[optind], s1))
1749 exit (EXIT_FAILURE);
1751 if (non_option_args == 2)
1753 spec_init (s2);
1754 if (!parse_str (argv[optind + 1], s2))
1755 exit (EXIT_FAILURE);
1757 else
1758 s2 = NULL;
1760 validate (s1, s2);
1762 /* Use binary I/O, since `tr' is sometimes used to transliterate
1763 non-printable characters, or characters which are stripped away
1764 by text-mode reads (like CR and ^Z). */
1765 if (O_BINARY && ! isatty (STDIN_FILENO))
1766 freopen (NULL, "rb", stdin);
1767 if (O_BINARY && ! isatty (STDOUT_FILENO))
1768 freopen (NULL, "wb", stdout);
1770 if (squeeze_repeats && non_option_args == 1)
1772 set_initialize (s1, complement, in_squeeze_set);
1773 squeeze_filter (io_buf, sizeof io_buf, plain_read);
1775 else if (delete && non_option_args == 1)
1777 set_initialize (s1, complement, in_delete_set);
1779 for (;;)
1781 size_t nr = read_and_delete (io_buf, sizeof io_buf);
1782 if (nr == 0)
1783 break;
1784 if (fwrite (io_buf, 1, nr, stdout) != nr)
1785 error (EXIT_FAILURE, errno, _("write error"));
1788 else if (squeeze_repeats && delete && non_option_args == 2)
1790 set_initialize (s1, complement, in_delete_set);
1791 set_initialize (s2, false, in_squeeze_set);
1792 squeeze_filter (io_buf, sizeof io_buf, read_and_delete);
1794 else if (translating)
1796 if (complement)
1798 int i;
1799 bool *in_s1 = in_delete_set;
1801 set_initialize (s1, false, in_s1);
1802 s2->state = BEGIN_STATE;
1803 for (i = 0; i < N_CHARS; i++)
1804 xlate[i] = i;
1805 for (i = 0; i < N_CHARS; i++)
1807 if (!in_s1[i])
1809 int ch = get_next (s2, NULL);
1810 assert (ch != -1 || truncate_set1);
1811 if (ch == -1)
1813 /* This will happen when tr is invoked like e.g.
1814 tr -cs A-Za-z0-9 '\012'. */
1815 break;
1817 xlate[i] = ch;
1820 assert (get_next (s2, NULL) == -1 || truncate_set1);
1822 else
1824 int c1, c2;
1825 int i;
1826 enum Upper_Lower_class class_s1;
1827 enum Upper_Lower_class class_s2;
1829 for (i = 0; i < N_CHARS; i++)
1830 xlate[i] = i;
1831 s1->state = BEGIN_STATE;
1832 s2->state = BEGIN_STATE;
1833 for (;;)
1835 c1 = get_next (s1, &class_s1);
1836 c2 = get_next (s2, &class_s2);
1838 /* When constructing the translation array, either one of the
1839 values returned by paired calls to get_next must be from
1840 [:upper:] and the other is [:lower:], or neither can be from
1841 upper or lower. */
1843 if ((class_s1 == UL_NONE) != (class_s2 == UL_NONE))
1844 error (EXIT_FAILURE, 0,
1845 _("misaligned [:upper:] and/or [:lower:] construct"));
1847 if (class_s1 == UL_LOWER && class_s2 == UL_UPPER)
1849 for (i = 0; i < N_CHARS; i++)
1850 if (islower (i))
1851 xlate[i] = toupper (i);
1853 else if (class_s1 == UL_UPPER && class_s2 == UL_LOWER)
1855 for (i = 0; i < N_CHARS; i++)
1856 if (isupper (i))
1857 xlate[i] = tolower (i);
1859 else if ((class_s1 == UL_LOWER && class_s2 == UL_LOWER)
1860 || (class_s1 == UL_UPPER && class_s2 == UL_UPPER))
1862 /* POSIX says the behavior of `tr "[:upper:]" "[:upper:]"'
1863 is undefined. Treat it as a no-op. */
1865 else
1867 /* The following should have been checked by validate... */
1868 if (c1 == -1 || c2 == -1)
1869 break;
1870 xlate[c1] = c2;
1873 assert (c1 == -1 || truncate_set1);
1875 if (squeeze_repeats)
1877 set_initialize (s2, false, in_squeeze_set);
1878 squeeze_filter (io_buf, sizeof io_buf, read_and_xlate);
1880 else
1882 for (;;)
1884 size_t bytes_read = read_and_xlate (io_buf, sizeof io_buf);
1885 if (bytes_read == 0)
1886 break;
1887 if (fwrite (io_buf, 1, bytes_read, stdout) != bytes_read)
1888 error (EXIT_FAILURE, errno, _("write error"));
1893 if (close (STDIN_FILENO) != 0)
1894 error (EXIT_FAILURE, errno, _("standard input"));
1896 exit (EXIT_SUCCESS);