ls: --color now highlights hard linked files, too
[coreutils/bo.git] / src / tr.c
blob0f94eef845f2abcc4afcfb1001007a5c58fe8248
1 /* tr -- a filter to translate characters
2 Copyright (C) 91, 1995-2008 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17 /* Written by Jim Meyering */
19 #include <config.h>
21 #include <stdio.h>
22 #include <assert.h>
23 #include <sys/types.h>
24 #include <getopt.h>
26 #include "system.h"
27 #include "error.h"
28 #include "quote.h"
29 #include "safe-read.h"
30 #include "xstrtol.h"
32 /* The official name of this program (e.g., no `g' prefix). */
33 #define PROGRAM_NAME "tr"
35 #define AUTHORS proper_name ("Jim Meyering")
37 enum { N_CHARS = UCHAR_MAX + 1 };
39 /* An unsigned integer type big enough to hold a repeat count or an
40 unsigned character. POSIX requires support for repeat counts as
41 high as 2**31 - 1. Since repeat counts might need to expand to
42 match the length of an argument string, we need at least size_t to
43 avoid arbitrary internal limits. It doesn't cost much to use
44 uintmax_t, though. */
45 typedef uintmax_t count;
47 /* The value for Spec_list->state that indicates to
48 get_next that it should initialize the tail pointer.
49 Its value should be as large as possible to avoid conflict
50 a valid value for the state field -- and that may be as
51 large as any valid repeat_count. */
52 #define BEGIN_STATE (UINTMAX_MAX - 1)
54 /* The value for Spec_list->state that indicates to
55 get_next that the element pointed to by Spec_list->tail is
56 being considered for the first time on this pass through the
57 list -- it indicates that get_next should make any necessary
58 initializations. */
59 #define NEW_ELEMENT (BEGIN_STATE + 1)
61 /* The maximum possible repeat count. Due to how the states are
62 implemented, it can be as much as BEGIN_STATE. */
63 #define REPEAT_COUNT_MAXIMUM BEGIN_STATE
65 /* The following (but not CC_NO_CLASS) are indices into the array of
66 valid character class strings. */
67 enum Char_class
69 CC_ALNUM = 0, CC_ALPHA = 1, CC_BLANK = 2, CC_CNTRL = 3,
70 CC_DIGIT = 4, CC_GRAPH = 5, CC_LOWER = 6, CC_PRINT = 7,
71 CC_PUNCT = 8, CC_SPACE = 9, CC_UPPER = 10, CC_XDIGIT = 11,
72 CC_NO_CLASS = 9999
75 /* Character class to which a character (returned by get_next) belonged;
76 but it is set only if the construct from which the character was obtained
77 was one of the character classes [:upper:] or [:lower:]. The value
78 is used only when translating and then, only to make sure that upper
79 and lower class constructs have the same relative positions in string1
80 and string2. */
81 enum Upper_Lower_class
83 UL_LOWER,
84 UL_UPPER,
85 UL_NONE
88 /* The type of a List_element. See build_spec_list for more details. */
89 enum Range_element_type
91 RE_NORMAL_CHAR,
92 RE_RANGE,
93 RE_CHAR_CLASS,
94 RE_EQUIV_CLASS,
95 RE_REPEATED_CHAR
98 /* One construct in one of tr's argument strings.
99 For example, consider the POSIX version of the classic tr command:
100 tr -cs 'a-zA-Z_' '[\n*]'
101 String1 has 3 constructs, two of which are ranges (a-z and A-Z),
102 and a single normal character, `_'. String2 has one construct. */
103 struct List_element
105 enum Range_element_type type;
106 struct List_element *next;
107 union
109 unsigned char normal_char;
110 struct /* unnamed */
112 unsigned char first_char;
113 unsigned char last_char;
115 range;
116 enum Char_class char_class;
117 unsigned char equiv_code;
118 struct /* unnamed */
120 unsigned char the_repeated_char;
121 count repeat_count;
123 repeated_char;
128 /* Each of tr's argument strings is parsed into a form that is easier
129 to work with: a linked list of constructs (struct List_element).
130 Each Spec_list structure also encapsulates various attributes of
131 the corresponding argument string. The attributes are used mainly
132 to verify that the strings are valid in the context of any options
133 specified (like -s, -d, or -c). The main exception is the member
134 `tail', which is first used to construct the list. After construction,
135 it is used by get_next to save its state when traversing the list.
136 The member `state' serves a similar function. */
137 struct Spec_list
139 /* Points to the head of the list of range elements.
140 The first struct is a dummy; its members are never used. */
141 struct List_element *head;
143 /* When appending, points to the last element. When traversing via
144 get_next(), points to the element to process next. Setting
145 Spec_list.state to the value BEGIN_STATE before calling get_next
146 signals get_next to initialize tail to point to head->next. */
147 struct List_element *tail;
149 /* Used to save state between calls to get_next. */
150 count state;
152 /* Length, in the sense that length ('a-z[:digit:]123abc')
153 is 42 ( = 26 + 10 + 6). */
154 count length;
156 /* The number of [c*] and [c*0] constructs that appear in this spec. */
157 size_t n_indefinite_repeats;
159 /* If n_indefinite_repeats is nonzero, this points to the List_element
160 corresponding to the last [c*] or [c*0] construct encountered in
161 this spec. Otherwise it is undefined. */
162 struct List_element *indefinite_repeat_element;
164 /* True if this spec contains at least one equivalence
165 class construct e.g. [=c=]. */
166 bool has_equiv_class;
168 /* True if this spec contains at least one character class
169 construct. E.g. [:digit:]. */
170 bool has_char_class;
172 /* True if this spec contains at least one of the character class
173 constructs (all but upper and lower) that aren't allowed in s2. */
174 bool has_restricted_char_class;
177 /* A representation for escaped string1 or string2. As a string is parsed,
178 any backslash-escaped characters (other than octal or \a, \b, \f, \n,
179 etc.) are marked as such in this structure by setting the corresponding
180 entry in the ESCAPED vector. */
181 struct E_string
183 char *s;
184 bool *escaped;
185 size_t len;
188 /* Return nonzero if the Ith character of escaped string ES matches C
189 and is not escaped itself. */
190 static inline bool
191 es_match (struct E_string const *es, size_t i, char c)
193 return es->s[i] == c && !es->escaped[i];
196 /* When true, each sequence in the input of a repeated character
197 (call it c) is replaced (in the output) by a single occurrence of c
198 for every c in the squeeze set. */
199 static bool squeeze_repeats = false;
201 /* When true, removes characters in the delete set from input. */
202 static bool delete = false;
204 /* Use the complement of set1 in place of set1. */
205 static bool complement = false;
207 /* When tr is performing translation and string1 is longer than string2,
208 POSIX says that the result is unspecified. That gives the implementor
209 of a POSIX conforming version of tr two reasonable choices for the
210 semantics of this case.
212 * The BSD tr pads string2 to the length of string1 by
213 repeating the last character in string2.
215 * System V tr ignores characters in string1 that have no
216 corresponding character in string2. That is, string1 is effectively
217 truncated to the length of string2.
219 When nonzero, this flag causes GNU tr to imitate the behavior
220 of System V tr when translating with string1 longer than string2.
221 The default is to emulate BSD tr. This flag is ignored in modes where
222 no translation is performed. Emulating the System V tr
223 in this exceptional case causes the relatively common BSD idiom:
225 tr -cs A-Za-z0-9 '\012'
227 to break (it would convert only zero bytes, rather than all
228 non-alphanumerics, to newlines).
230 WARNING: This switch does not provide general BSD or System V
231 compatibility. For example, it doesn't disable the interpretation
232 of the POSIX constructs [:alpha:], [=c=], and [c*10], so if by
233 some unfortunate coincidence you use such constructs in scripts
234 expecting to use some other version of tr, the scripts will break. */
235 static bool truncate_set1 = false;
237 /* An alias for (!delete && non_option_args == 2).
238 It is set in main and used there and in validate(). */
239 static bool translating;
241 static char io_buf[BUFSIZ];
243 static char const *const char_class_name[] =
245 "alnum", "alpha", "blank", "cntrl", "digit", "graph",
246 "lower", "print", "punct", "space", "upper", "xdigit"
248 enum { N_CHAR_CLASSES = sizeof char_class_name / sizeof char_class_name[0] };
250 /* Array of boolean values. A character `c' is a member of the
251 squeeze set if and only if in_squeeze_set[c] is true. The squeeze
252 set is defined by the last (possibly, the only) string argument
253 on the command line when the squeeze option is given. */
254 static bool in_squeeze_set[N_CHARS];
256 /* Array of boolean values. A character `c' is a member of the
257 delete set if and only if in_delete_set[c] is true. The delete
258 set is defined by the first (or only) string argument on the
259 command line when the delete option is given. */
260 static bool in_delete_set[N_CHARS];
262 /* Array of character values defining the translation (if any) that
263 tr is to perform. Translation is performed only when there are
264 two specification strings and the delete switch is not given. */
265 static char xlate[N_CHARS];
267 static struct option const long_options[] =
269 {"complement", no_argument, NULL, 'c'},
270 {"delete", no_argument, NULL, 'd'},
271 {"squeeze-repeats", no_argument, NULL, 's'},
272 {"truncate-set1", no_argument, NULL, 't'},
273 {GETOPT_HELP_OPTION_DECL},
274 {GETOPT_VERSION_OPTION_DECL},
275 {NULL, 0, NULL, 0}
278 void
279 usage (int status)
281 if (status != EXIT_SUCCESS)
282 fprintf (stderr, _("Try `%s --help' for more information.\n"),
283 program_name);
284 else
286 printf (_("\
287 Usage: %s [OPTION]... SET1 [SET2]\n\
289 program_name);
290 fputs (_("\
291 Translate, squeeze, and/or delete characters from standard input,\n\
292 writing to standard output.\n\
294 -c, -C, --complement first complement SET1\n\
295 -d, --delete delete characters in SET1, do not translate\n\
296 -s, --squeeze-repeats replace each input sequence of a repeated character\n\
297 that is listed in SET1 with a single occurrence\n\
298 of that character\n\
299 -t, --truncate-set1 first truncate SET1 to length of SET2\n\
300 "), stdout);
301 fputs (HELP_OPTION_DESCRIPTION, stdout);
302 fputs (VERSION_OPTION_DESCRIPTION, stdout);
303 fputs (_("\
305 SETs are specified as strings of characters. Most represent themselves.\n\
306 Interpreted sequences are:\n\
308 \\NNN character with octal value NNN (1 to 3 octal digits)\n\
309 \\\\ backslash\n\
310 \\a audible BEL\n\
311 \\b backspace\n\
312 \\f form feed\n\
313 \\n new line\n\
314 \\r return\n\
315 \\t horizontal tab\n\
316 "), stdout);
317 fputs (_("\
318 \\v vertical tab\n\
319 CHAR1-CHAR2 all characters from CHAR1 to CHAR2 in ascending order\n\
320 [CHAR*] in SET2, copies of CHAR until length of SET1\n\
321 [CHAR*REPEAT] REPEAT copies of CHAR, REPEAT octal if starting with 0\n\
322 [:alnum:] all letters and digits\n\
323 [:alpha:] all letters\n\
324 [:blank:] all horizontal whitespace\n\
325 [:cntrl:] all control characters\n\
326 [:digit:] all digits\n\
327 "), stdout);
328 fputs (_("\
329 [:graph:] all printable characters, not including space\n\
330 [:lower:] all lower case letters\n\
331 [:print:] all printable characters, including space\n\
332 [:punct:] all punctuation characters\n\
333 [:space:] all horizontal or vertical whitespace\n\
334 [:upper:] all upper case letters\n\
335 [:xdigit:] all hexadecimal digits\n\
336 [=CHAR=] all characters which are equivalent to CHAR\n\
337 "), stdout);
338 fputs (_("\
340 Translation occurs if -d is not given and both SET1 and SET2 appear.\n\
341 -t may be used only when translating. SET2 is extended to length of\n\
342 SET1 by repeating its last character as necessary. Excess characters\n\
343 of SET2 are ignored. Only [:lower:] and [:upper:] are guaranteed to\n\
344 expand in ascending order; used in SET2 while translating, they may\n\
345 only be used in pairs to specify case conversion. -s uses SET1 if not\n\
346 translating nor deleting; else squeezing uses SET2 and occurs after\n\
347 translation or deletion.\n\
348 "), stdout);
349 emit_bug_reporting_address ();
351 exit (status);
354 /* Return nonzero if the character C is a member of the
355 equivalence class containing the character EQUIV_CLASS. */
357 static inline bool
358 is_equiv_class_member (unsigned char equiv_class, unsigned char c)
360 return (equiv_class == c);
363 /* Return true if the character C is a member of the
364 character class CHAR_CLASS. */
366 static bool
367 is_char_class_member (enum Char_class char_class, unsigned char c)
369 int result;
371 switch (char_class)
373 case CC_ALNUM:
374 result = isalnum (c);
375 break;
376 case CC_ALPHA:
377 result = isalpha (c);
378 break;
379 case CC_BLANK:
380 result = isblank (c);
381 break;
382 case CC_CNTRL:
383 result = iscntrl (c);
384 break;
385 case CC_DIGIT:
386 result = isdigit (c);
387 break;
388 case CC_GRAPH:
389 result = isgraph (c);
390 break;
391 case CC_LOWER:
392 result = islower (c);
393 break;
394 case CC_PRINT:
395 result = isprint (c);
396 break;
397 case CC_PUNCT:
398 result = ispunct (c);
399 break;
400 case CC_SPACE:
401 result = isspace (c);
402 break;
403 case CC_UPPER:
404 result = isupper (c);
405 break;
406 case CC_XDIGIT:
407 result = isxdigit (c);
408 break;
409 default:
410 abort ();
411 break;
414 return !! result;
417 static void
418 es_free (struct E_string *es)
420 free (es->s);
421 free (es->escaped);
424 /* Perform the first pass over each range-spec argument S, converting all
425 \c and \ddd escapes to their one-byte representations. If an invalid
426 quote sequence is found print an error message and return false;
427 Otherwise set *ES to the resulting string and return true.
428 The resulting array of characters may contain zero-bytes;
429 however, on input, S is assumed to be null-terminated, and hence
430 cannot contain actual (non-escaped) zero bytes. */
432 static bool
433 unquote (char const *s, struct E_string *es)
435 size_t i, j;
436 size_t len = strlen (s);
438 es->s = xmalloc (len);
439 es->escaped = xcalloc (len, sizeof es->escaped[0]);
441 j = 0;
442 for (i = 0; s[i]; i++)
444 unsigned char c;
445 int oct_digit;
447 switch (s[i])
449 case '\\':
450 es->escaped[j] = true;
451 switch (s[i + 1])
453 case '\\':
454 c = '\\';
455 break;
456 case 'a':
457 c = '\a';
458 break;
459 case 'b':
460 c = '\b';
461 break;
462 case 'f':
463 c = '\f';
464 break;
465 case 'n':
466 c = '\n';
467 break;
468 case 'r':
469 c = '\r';
470 break;
471 case 't':
472 c = '\t';
473 break;
474 case 'v':
475 c = '\v';
476 break;
477 case '0':
478 case '1':
479 case '2':
480 case '3':
481 case '4':
482 case '5':
483 case '6':
484 case '7':
485 c = s[i + 1] - '0';
486 oct_digit = s[i + 2] - '0';
487 if (0 <= oct_digit && oct_digit <= 7)
489 c = 8 * c + oct_digit;
490 ++i;
491 oct_digit = s[i + 2] - '0';
492 if (0 <= oct_digit && oct_digit <= 7)
494 if (8 * c + oct_digit < N_CHARS)
496 c = 8 * c + oct_digit;
497 ++i;
499 else
501 /* A 3-digit octal number larger than \377 won't
502 fit in 8 bits. So we stop when adding the
503 next digit would put us over the limit and
504 give a warning about the ambiguity. POSIX
505 isn't clear on this, and we interpret this
506 lack of clarity as meaning the resulting behavior
507 is undefined, which means we're allowed to issue
508 a warning. */
509 error (0, 0, _("warning: the ambiguous octal escape \
510 \\%c%c%c is being\n\tinterpreted as the 2-byte sequence \\0%c%c, %c"),
511 s[i], s[i + 1], s[i + 2],
512 s[i], s[i + 1], s[i + 2]);
516 break;
517 case '\0':
518 error (0, 0, _("warning: an unescaped backslash "
519 "at end of string is not portable"));
520 /* POSIX is not clear about this. */
521 es->escaped[j] = false;
522 i--;
523 c = '\\';
524 break;
525 default:
526 c = s[i + 1];
527 break;
529 ++i;
530 es->s[j++] = c;
531 break;
532 default:
533 es->s[j++] = s[i];
534 break;
537 es->len = j;
538 return true;
541 /* If CLASS_STR is a valid character class string, return its index
542 in the global char_class_name array. Otherwise, return CC_NO_CLASS. */
544 static enum Char_class
545 look_up_char_class (char const *class_str, size_t len)
547 enum Char_class i;
549 for (i = 0; i < N_CHAR_CLASSES; i++)
550 if (strncmp (class_str, char_class_name[i], len) == 0
551 && strlen (char_class_name[i]) == len)
552 return i;
553 return CC_NO_CLASS;
556 /* Return a newly allocated string with a printable version of C.
557 This function is used solely for formatting error messages. */
559 static char *
560 make_printable_char (unsigned char c)
562 char *buf = xmalloc (5);
564 if (isprint (c))
566 buf[0] = c;
567 buf[1] = '\0';
569 else
571 sprintf (buf, "\\%03o", c);
573 return buf;
576 /* Return a newly allocated copy of S which is suitable for printing.
577 LEN is the number of characters in S. Most non-printing
578 (isprint) characters are represented by a backslash followed by
579 3 octal digits. However, the characters represented by \c escapes
580 where c is one of [abfnrtv] are represented by their 2-character \c
581 sequences. This function is used solely for printing error messages. */
583 static char *
584 make_printable_str (char const *s, size_t len)
586 /* Worst case is that every character expands to a backslash
587 followed by a 3-character octal escape sequence. */
588 char *printable_buf = xnmalloc (len + 1, 4);
589 char *p = printable_buf;
590 size_t i;
592 for (i = 0; i < len; i++)
594 char buf[5];
595 char const *tmp = NULL;
596 unsigned char c = s[i];
598 switch (c)
600 case '\\':
601 tmp = "\\";
602 break;
603 case '\a':
604 tmp = "\\a";
605 break;
606 case '\b':
607 tmp = "\\b";
608 break;
609 case '\f':
610 tmp = "\\f";
611 break;
612 case '\n':
613 tmp = "\\n";
614 break;
615 case '\r':
616 tmp = "\\r";
617 break;
618 case '\t':
619 tmp = "\\t";
620 break;
621 case '\v':
622 tmp = "\\v";
623 break;
624 default:
625 if (isprint (c))
627 buf[0] = c;
628 buf[1] = '\0';
630 else
631 sprintf (buf, "\\%03o", c);
632 tmp = buf;
633 break;
635 p = stpcpy (p, tmp);
637 return printable_buf;
640 /* Append a newly allocated structure representing a
641 character C to the specification list LIST. */
643 static void
644 append_normal_char (struct Spec_list *list, unsigned char c)
646 struct List_element *new;
648 new = xmalloc (sizeof *new);
649 new->next = NULL;
650 new->type = RE_NORMAL_CHAR;
651 new->u.normal_char = c;
652 assert (list->tail);
653 list->tail->next = new;
654 list->tail = new;
657 /* Append a newly allocated structure representing the range
658 of characters from FIRST to LAST to the specification list LIST.
659 Return false if LAST precedes FIRST in the collating sequence,
660 true otherwise. This means that '[c-c]' is acceptable. */
662 static bool
663 append_range (struct Spec_list *list, unsigned char first, unsigned char last)
665 struct List_element *new;
667 if (last < first)
669 char *tmp1 = make_printable_char (first);
670 char *tmp2 = make_printable_char (last);
672 error (0, 0,
673 _("range-endpoints of `%s-%s' are in reverse collating sequence order"),
674 tmp1, tmp2);
675 free (tmp1);
676 free (tmp2);
677 return false;
679 new = xmalloc (sizeof *new);
680 new->next = NULL;
681 new->type = RE_RANGE;
682 new->u.range.first_char = first;
683 new->u.range.last_char = last;
684 assert (list->tail);
685 list->tail->next = new;
686 list->tail = new;
687 return true;
690 /* If CHAR_CLASS_STR is a valid character class string, append a
691 newly allocated structure representing that character class to the end
692 of the specification list LIST and return true. If CHAR_CLASS_STR is not
693 a valid string return false. */
695 static bool
696 append_char_class (struct Spec_list *list,
697 char const *char_class_str, size_t len)
699 enum Char_class char_class;
700 struct List_element *new;
702 char_class = look_up_char_class (char_class_str, len);
703 if (char_class == CC_NO_CLASS)
704 return false;
705 new = xmalloc (sizeof *new);
706 new->next = NULL;
707 new->type = RE_CHAR_CLASS;
708 new->u.char_class = char_class;
709 assert (list->tail);
710 list->tail->next = new;
711 list->tail = new;
712 return true;
715 /* Append a newly allocated structure representing a [c*n]
716 repeated character construct to the specification list LIST.
717 THE_CHAR is the single character to be repeated, and REPEAT_COUNT
718 is a non-negative repeat count. */
720 static void
721 append_repeated_char (struct Spec_list *list, unsigned char the_char,
722 count repeat_count)
724 struct List_element *new;
726 new = xmalloc (sizeof *new);
727 new->next = NULL;
728 new->type = RE_REPEATED_CHAR;
729 new->u.repeated_char.the_repeated_char = the_char;
730 new->u.repeated_char.repeat_count = repeat_count;
731 assert (list->tail);
732 list->tail->next = new;
733 list->tail = new;
736 /* Given a string, EQUIV_CLASS_STR, from a [=str=] context and
737 the length of that string, LEN, if LEN is exactly one, append
738 a newly allocated structure representing the specified
739 equivalence class to the specification list, LIST and return true.
740 If LEN is not 1, return false. */
742 static bool
743 append_equiv_class (struct Spec_list *list,
744 char const *equiv_class_str, size_t len)
746 struct List_element *new;
748 if (len != 1)
749 return false;
750 new = xmalloc (sizeof *new);
751 new->next = NULL;
752 new->type = RE_EQUIV_CLASS;
753 new->u.equiv_code = *equiv_class_str;
754 assert (list->tail);
755 list->tail->next = new;
756 list->tail = new;
757 return true;
760 /* Search forward starting at START_IDX for the 2-char sequence
761 (PRE_BRACKET_CHAR,']') in the string P of length P_LEN. If such
762 a sequence is found, set *RESULT_IDX to the index of the first
763 character and return true. Otherwise return false. P may contain
764 zero bytes. */
766 static bool
767 find_closing_delim (const struct E_string *es, size_t start_idx,
768 char pre_bracket_char, size_t *result_idx)
770 size_t i;
772 for (i = start_idx; i < es->len - 1; i++)
773 if (es->s[i] == pre_bracket_char && es->s[i + 1] == ']'
774 && !es->escaped[i] && !es->escaped[i + 1])
776 *result_idx = i;
777 return true;
779 return false;
782 /* Parse the bracketed repeat-char syntax. If the P_LEN characters
783 beginning with P[ START_IDX ] comprise a valid [c*n] construct,
784 then set *CHAR_TO_REPEAT, *REPEAT_COUNT, and *CLOSING_BRACKET_IDX
785 and return zero. If the second character following
786 the opening bracket is not `*' or if no closing bracket can be
787 found, return -1. If a closing bracket is found and the
788 second char is `*', but the string between the `*' and `]' isn't
789 empty, an octal number, or a decimal number, print an error message
790 and return -2. */
792 static int
793 find_bracketed_repeat (const struct E_string *es, size_t start_idx,
794 unsigned char *char_to_repeat, count *repeat_count,
795 size_t *closing_bracket_idx)
797 size_t i;
799 assert (start_idx + 1 < es->len);
800 if (!es_match (es, start_idx + 1, '*'))
801 return -1;
803 for (i = start_idx + 2; i < es->len && !es->escaped[i]; i++)
805 if (es->s[i] == ']')
807 size_t digit_str_len = i - start_idx - 2;
809 *char_to_repeat = es->s[start_idx];
810 if (digit_str_len == 0)
812 /* We've matched [c*] -- no explicit repeat count. */
813 *repeat_count = 0;
815 else
817 /* Here, we have found [c*s] where s should be a string
818 of octal (if it starts with `0') or decimal digits. */
819 char const *digit_str = &es->s[start_idx + 2];
820 char *d_end;
821 if ((xstrtoumax (digit_str, &d_end, *digit_str == '0' ? 8 : 10,
822 repeat_count, NULL)
823 != LONGINT_OK)
824 || REPEAT_COUNT_MAXIMUM < *repeat_count
825 || digit_str + digit_str_len != d_end)
827 char *tmp = make_printable_str (digit_str, digit_str_len);
828 error (0, 0,
829 _("invalid repeat count %s in [c*n] construct"),
830 quote (tmp));
831 free (tmp);
832 return -2;
835 *closing_bracket_idx = i;
836 return 0;
839 return -1; /* No bracket found. */
842 /* Return true if the string at ES->s[IDX] matches the regular
843 expression `\*[0-9]*\]', false otherwise. The string does not
844 match if any of its characters are escaped. */
846 static bool
847 star_digits_closebracket (const struct E_string *es, size_t idx)
849 size_t i;
851 if (!es_match (es, idx, '*'))
852 return false;
854 for (i = idx + 1; i < es->len; i++)
855 if (!ISDIGIT (to_uchar (es->s[i])) || es->escaped[i])
856 return es_match (es, i, ']');
857 return false;
860 /* Convert string UNESCAPED_STRING (which has been preprocessed to
861 convert backslash-escape sequences) of length LEN characters into
862 a linked list of the following 5 types of constructs:
863 - [:str:] Character class where `str' is one of the 12 valid strings.
864 - [=c=] Equivalence class where `c' is any single character.
865 - [c*n] Repeat the single character `c' `n' times. n may be omitted.
866 However, if `n' is present, it must be a non-negative octal or
867 decimal integer.
868 - r-s Range of characters from `r' to `s'. The second endpoint must
869 not precede the first in the current collating sequence.
870 - c Any other character is interpreted as itself. */
872 static bool
873 build_spec_list (const struct E_string *es, struct Spec_list *result)
875 char const *p;
876 size_t i;
878 p = es->s;
880 /* The main for-loop below recognizes the 4 multi-character constructs.
881 A character that matches (in its context) none of the multi-character
882 constructs is classified as `normal'. Since all multi-character
883 constructs have at least 3 characters, any strings of length 2 or
884 less are composed solely of normal characters. Hence, the index of
885 the outer for-loop runs only as far as LEN-2. */
887 for (i = 0; i + 2 < es->len; /* empty */)
889 if (es_match (es, i, '['))
891 bool matched_multi_char_construct;
892 size_t closing_bracket_idx;
893 unsigned char char_to_repeat;
894 count repeat_count;
895 int err;
897 matched_multi_char_construct = true;
898 if (es_match (es, i + 1, ':') || es_match (es, i + 1, '='))
900 size_t closing_delim_idx;
902 if (find_closing_delim (es, i + 2, p[i + 1], &closing_delim_idx))
904 size_t opnd_str_len = closing_delim_idx - 1 - (i + 2) + 1;
905 char const *opnd_str = p + i + 2;
907 if (opnd_str_len == 0)
909 if (p[i + 1] == ':')
910 error (0, 0, _("missing character class name `[::]'"));
911 else
912 error (0, 0,
913 _("missing equivalence class character `[==]'"));
914 return false;
917 if (p[i + 1] == ':')
919 /* FIXME: big comment. */
920 if (!append_char_class (result, opnd_str, opnd_str_len))
922 if (star_digits_closebracket (es, i + 2))
923 goto try_bracketed_repeat;
924 else
926 char *tmp = make_printable_str (opnd_str,
927 opnd_str_len);
928 error (0, 0, _("invalid character class %s"),
929 quote (tmp));
930 free (tmp);
931 return false;
935 else
937 /* FIXME: big comment. */
938 if (!append_equiv_class (result, opnd_str, opnd_str_len))
940 if (star_digits_closebracket (es, i + 2))
941 goto try_bracketed_repeat;
942 else
944 char *tmp = make_printable_str (opnd_str,
945 opnd_str_len);
946 error (0, 0,
947 _("%s: equivalence class operand must be a single character"),
948 tmp);
949 free (tmp);
950 return false;
955 i = closing_delim_idx + 2;
956 continue;
958 /* Else fall through. This could be [:*] or [=*]. */
961 try_bracketed_repeat:
963 /* Determine whether this is a bracketed repeat range
964 matching the RE \[.\*(dec_or_oct_number)?\]. */
965 err = find_bracketed_repeat (es, i + 1, &char_to_repeat,
966 &repeat_count,
967 &closing_bracket_idx);
968 if (err == 0)
970 append_repeated_char (result, char_to_repeat, repeat_count);
971 i = closing_bracket_idx + 1;
973 else if (err == -1)
975 matched_multi_char_construct = false;
977 else
979 /* Found a string that looked like [c*n] but the
980 numeric part was invalid. */
981 return false;
984 if (matched_multi_char_construct)
985 continue;
987 /* We reach this point if P does not match [:str:], [=c=],
988 [c*n], or [c*]. Now, see if P looks like a range `[-c'
989 (from `[' to `c'). */
992 /* Look ahead one char for ranges like a-z. */
993 if (es_match (es, i + 1, '-'))
995 if (!append_range (result, p[i], p[i + 2]))
996 return false;
997 i += 3;
999 else
1001 append_normal_char (result, p[i]);
1002 ++i;
1006 /* Now handle the (2 or fewer) remaining characters p[i]..p[es->len - 1]. */
1007 for (; i < es->len; i++)
1008 append_normal_char (result, p[i]);
1010 return true;
1013 /* Advance past the current construct.
1014 S->tail must be non-NULL. */
1015 static void
1016 skip_construct (struct Spec_list *s)
1018 s->tail = s->tail->next;
1019 s->state = NEW_ELEMENT;
1022 /* Given a Spec_list S (with its saved state implicit in the values
1023 of its members `tail' and `state'), return the next single character
1024 in the expansion of S's constructs. If the last character of S was
1025 returned on the previous call or if S was empty, this function
1026 returns -1. For example, successive calls to get_next where S
1027 represents the spec-string 'a-d[y*3]' will return the sequence
1028 of values a, b, c, d, y, y, y, -1. Finally, if the construct from
1029 which the returned character comes is [:upper:] or [:lower:], the
1030 parameter CLASS is given a value to indicate which it was. Otherwise
1031 CLASS is set to UL_NONE. This value is used only when constructing
1032 the translation table to verify that any occurrences of upper and
1033 lower class constructs in the spec-strings appear in the same relative
1034 positions. */
1036 static int
1037 get_next (struct Spec_list *s, enum Upper_Lower_class *class)
1039 struct List_element *p;
1040 int return_val;
1041 int i;
1043 if (class)
1044 *class = UL_NONE;
1046 if (s->state == BEGIN_STATE)
1048 s->tail = s->head->next;
1049 s->state = NEW_ELEMENT;
1052 p = s->tail;
1053 if (p == NULL)
1054 return -1;
1056 switch (p->type)
1058 case RE_NORMAL_CHAR:
1059 return_val = p->u.normal_char;
1060 s->state = NEW_ELEMENT;
1061 s->tail = p->next;
1062 break;
1064 case RE_RANGE:
1065 if (s->state == NEW_ELEMENT)
1066 s->state = p->u.range.first_char;
1067 else
1068 ++(s->state);
1069 return_val = s->state;
1070 if (s->state == p->u.range.last_char)
1072 s->tail = p->next;
1073 s->state = NEW_ELEMENT;
1075 break;
1077 case RE_CHAR_CLASS:
1078 if (class)
1080 switch (p->u.char_class)
1082 case CC_LOWER:
1083 *class = UL_LOWER;
1084 break;
1085 case CC_UPPER:
1086 *class = UL_UPPER;
1087 break;
1088 default:
1089 break;
1093 if (s->state == NEW_ELEMENT)
1095 for (i = 0; i < N_CHARS; i++)
1096 if (is_char_class_member (p->u.char_class, i))
1097 break;
1098 assert (i < N_CHARS);
1099 s->state = i;
1101 assert (is_char_class_member (p->u.char_class, s->state));
1102 return_val = s->state;
1103 for (i = s->state + 1; i < N_CHARS; i++)
1104 if (is_char_class_member (p->u.char_class, i))
1105 break;
1106 if (i < N_CHARS)
1107 s->state = i;
1108 else
1110 s->tail = p->next;
1111 s->state = NEW_ELEMENT;
1113 break;
1115 case RE_EQUIV_CLASS:
1116 /* FIXME: this assumes that each character is alone in its own
1117 equivalence class (which appears to be correct for my
1118 LC_COLLATE. But I don't know of any function that allows
1119 one to determine a character's equivalence class. */
1121 return_val = p->u.equiv_code;
1122 s->state = NEW_ELEMENT;
1123 s->tail = p->next;
1124 break;
1126 case RE_REPEATED_CHAR:
1127 /* Here, a repeat count of n == 0 means don't repeat at all. */
1128 if (p->u.repeated_char.repeat_count == 0)
1130 s->tail = p->next;
1131 s->state = NEW_ELEMENT;
1132 return_val = get_next (s, class);
1134 else
1136 if (s->state == NEW_ELEMENT)
1138 s->state = 0;
1140 ++(s->state);
1141 return_val = p->u.repeated_char.the_repeated_char;
1142 if (s->state == p->u.repeated_char.repeat_count)
1144 s->tail = p->next;
1145 s->state = NEW_ELEMENT;
1148 break;
1150 default:
1151 abort ();
1152 break;
1155 return return_val;
1158 /* This is a minor kludge. This function is called from
1159 get_spec_stats to determine the cardinality of a set derived
1160 from a complemented string. It's a kludge in that some of the
1161 same operations are (duplicated) performed in set_initialize. */
1163 static int
1164 card_of_complement (struct Spec_list *s)
1166 int c;
1167 int cardinality = N_CHARS;
1168 bool in_set[N_CHARS] = { 0, };
1170 s->state = BEGIN_STATE;
1171 while ((c = get_next (s, NULL)) != -1)
1173 cardinality -= (!in_set[c]);
1174 in_set[c] = true;
1176 return cardinality;
1179 /* Gather statistics about the spec-list S in preparation for the tests
1180 in validate that determine the consistency of the specs. This function
1181 is called at most twice; once for string1, and again for any string2.
1182 LEN_S1 < 0 indicates that this is the first call and that S represents
1183 string1. When LEN_S1 >= 0, it is the length of the expansion of the
1184 constructs in string1, and we can use its value to resolve any
1185 indefinite repeat construct in S (which represents string2). Hence,
1186 this function has the side-effect that it converts a valid [c*]
1187 construct in string2 to [c*n] where n is large enough (or 0) to give
1188 string2 the same length as string1. For example, with the command
1189 tr a-z 'A[\n*]Z' on the second call to get_spec_stats, LEN_S1 would
1190 be 26 and S (representing string2) would be converted to 'A[\n*24]Z'. */
1192 static void
1193 get_spec_stats (struct Spec_list *s)
1195 struct List_element *p;
1196 count length = 0;
1198 s->n_indefinite_repeats = 0;
1199 s->has_equiv_class = false;
1200 s->has_restricted_char_class = false;
1201 s->has_char_class = false;
1202 for (p = s->head->next; p; p = p->next)
1204 int i;
1205 count len = 0;
1206 count new_length;
1208 switch (p->type)
1210 case RE_NORMAL_CHAR:
1211 len = 1;
1212 break;
1214 case RE_RANGE:
1215 assert (p->u.range.last_char >= p->u.range.first_char);
1216 len = p->u.range.last_char - p->u.range.first_char + 1;
1217 break;
1219 case RE_CHAR_CLASS:
1220 s->has_char_class = true;
1221 for (i = 0; i < N_CHARS; i++)
1222 if (is_char_class_member (p->u.char_class, i))
1223 ++len;
1224 switch (p->u.char_class)
1226 case CC_UPPER:
1227 case CC_LOWER:
1228 break;
1229 default:
1230 s->has_restricted_char_class = true;
1231 break;
1233 break;
1235 case RE_EQUIV_CLASS:
1236 for (i = 0; i < N_CHARS; i++)
1237 if (is_equiv_class_member (p->u.equiv_code, i))
1238 ++len;
1239 s->has_equiv_class = true;
1240 break;
1242 case RE_REPEATED_CHAR:
1243 if (p->u.repeated_char.repeat_count > 0)
1244 len = p->u.repeated_char.repeat_count;
1245 else
1247 s->indefinite_repeat_element = p;
1248 ++(s->n_indefinite_repeats);
1250 break;
1252 default:
1253 abort ();
1254 break;
1257 /* Check for arithmetic overflow in computing length. Also, reject
1258 any length greater than the maximum repeat count, in case the
1259 length is later used to compute the repeat count for an
1260 indefinite element. */
1261 new_length = length + len;
1262 if (! (length <= new_length && new_length <= REPEAT_COUNT_MAXIMUM))
1263 error (EXIT_FAILURE, 0, _("too many characters in set"));
1264 length = new_length;
1267 s->length = length;
1270 static void
1271 get_s1_spec_stats (struct Spec_list *s1)
1273 get_spec_stats (s1);
1274 if (complement)
1275 s1->length = card_of_complement (s1);
1278 static void
1279 get_s2_spec_stats (struct Spec_list *s2, count len_s1)
1281 get_spec_stats (s2);
1282 if (len_s1 >= s2->length && s2->n_indefinite_repeats == 1)
1284 s2->indefinite_repeat_element->u.repeated_char.repeat_count =
1285 len_s1 - s2->length;
1286 s2->length = len_s1;
1290 static void
1291 spec_init (struct Spec_list *spec_list)
1293 struct List_element *new = xmalloc (sizeof *new);
1294 spec_list->head = spec_list->tail = new;
1295 spec_list->head->next = NULL;
1298 /* This function makes two passes over the argument string S. The first
1299 one converts all \c and \ddd escapes to their one-byte representations.
1300 The second constructs a linked specification list, SPEC_LIST, of the
1301 characters and constructs that comprise the argument string. If either
1302 of these passes detects an error, this function returns false. */
1304 static bool
1305 parse_str (char const *s, struct Spec_list *spec_list)
1307 struct E_string es;
1308 bool ok = unquote (s, &es) && build_spec_list (&es, spec_list);
1309 es_free (&es);
1310 return ok;
1313 /* Given two specification lists, S1 and S2, and assuming that
1314 S1->length > S2->length, append a single [c*n] element to S2 where c
1315 is the last character in the expansion of S2 and n is the difference
1316 between the two lengths.
1317 Upon successful completion, S2->length is set to S1->length. The only
1318 way this function can fail to make S2 as long as S1 is when S2 has
1319 zero-length, since in that case, there is no last character to repeat.
1320 So S2->length is required to be at least 1.
1322 Providing this functionality allows the user to do some pretty
1323 non-BSD (and non-portable) things: For example, the command
1324 tr -cs '[:upper:]0-9' '[:lower:]'
1325 is almost guaranteed to give results that depend on your collating
1326 sequence. */
1328 static void
1329 string2_extend (const struct Spec_list *s1, struct Spec_list *s2)
1331 struct List_element *p;
1332 unsigned char char_to_repeat;
1333 int i;
1335 assert (translating);
1336 assert (s1->length > s2->length);
1337 assert (s2->length > 0);
1339 p = s2->tail;
1340 switch (p->type)
1342 case RE_NORMAL_CHAR:
1343 char_to_repeat = p->u.normal_char;
1344 break;
1345 case RE_RANGE:
1346 char_to_repeat = p->u.range.last_char;
1347 break;
1348 case RE_CHAR_CLASS:
1349 for (i = N_CHARS - 1; i >= 0; i--)
1350 if (is_char_class_member (p->u.char_class, i))
1351 break;
1352 assert (i >= 0);
1353 char_to_repeat = i;
1354 break;
1356 case RE_REPEATED_CHAR:
1357 char_to_repeat = p->u.repeated_char.the_repeated_char;
1358 break;
1360 case RE_EQUIV_CLASS:
1361 /* This shouldn't happen, because validate exits with an error
1362 if it finds an equiv class in string2 when translating. */
1363 abort ();
1364 break;
1366 default:
1367 abort ();
1368 break;
1371 append_repeated_char (s2, char_to_repeat, s1->length - s2->length);
1372 s2->length = s1->length;
1375 /* Return true if S is a non-empty list in which exactly one
1376 character (but potentially, many instances of it) appears.
1377 E.g., [X*] or xxxxxxxx. */
1379 static bool
1380 homogeneous_spec_list (struct Spec_list *s)
1382 int b, c;
1384 s->state = BEGIN_STATE;
1386 if ((b = get_next (s, NULL)) == -1)
1387 return false;
1389 while ((c = get_next (s, NULL)) != -1)
1390 if (c != b)
1391 return false;
1393 return true;
1396 /* Die with an error message if S1 and S2 describe strings that
1397 are not valid with the given command line switches.
1398 A side effect of this function is that if a valid [c*] or
1399 [c*0] construct appears in string2, it is converted to [c*n]
1400 with a value for n that makes s2->length == s1->length. By
1401 the same token, if the --truncate-set1 option is not
1402 given, S2 may be extended. */
1404 static void
1405 validate (struct Spec_list *s1, struct Spec_list *s2)
1407 get_s1_spec_stats (s1);
1408 if (s1->n_indefinite_repeats > 0)
1410 error (EXIT_FAILURE, 0,
1411 _("the [c*] repeat construct may not appear in string1"));
1414 if (s2)
1416 get_s2_spec_stats (s2, s1->length);
1418 if (s2->n_indefinite_repeats > 1)
1420 error (EXIT_FAILURE, 0,
1421 _("only one [c*] repeat construct may appear in string2"));
1424 if (translating)
1426 if (s2->has_equiv_class)
1428 error (EXIT_FAILURE, 0,
1429 _("[=c=] expressions may not appear in string2 \
1430 when translating"));
1433 if (s1->length > s2->length)
1435 if (!truncate_set1)
1437 /* string2 must be non-empty unless --truncate-set1 is
1438 given or string1 is empty. */
1440 if (s2->length == 0)
1441 error (EXIT_FAILURE, 0,
1442 _("when not truncating set1, string2 must be non-empty"));
1443 string2_extend (s1, s2);
1447 if (complement && s1->has_char_class
1448 && ! (s2->length == s1->length && homogeneous_spec_list (s2)))
1450 error (EXIT_FAILURE, 0,
1451 _("when translating with complemented character classes,\
1452 \nstring2 must map all characters in the domain to one"));
1455 if (s2->has_restricted_char_class)
1457 error (EXIT_FAILURE, 0,
1458 _("when translating, the only character classes that may \
1459 appear in\nstring2 are `upper' and `lower'"));
1462 else
1463 /* Not translating. */
1465 if (s2->n_indefinite_repeats > 0)
1466 error (EXIT_FAILURE, 0,
1467 _("the [c*] construct may appear in string2 only \
1468 when translating"));
1473 /* Read buffers of SIZE bytes via the function READER (if READER is
1474 NULL, read from stdin) until EOF. When non-NULL, READER is either
1475 read_and_delete or read_and_xlate. After each buffer is read, it is
1476 processed and written to stdout. The buffers are processed so that
1477 multiple consecutive occurrences of the same character in the input
1478 stream are replaced by a single occurrence of that character if the
1479 character is in the squeeze set. */
1481 static void
1482 squeeze_filter (char *buf, size_t size, size_t (*reader) (char *, size_t))
1484 /* A value distinct from any character that may have been stored in a
1485 buffer as the result of a block-read in the function squeeze_filter. */
1486 enum { NOT_A_CHAR = CHAR_MAX + 1 };
1488 int char_to_squeeze = NOT_A_CHAR;
1489 size_t i = 0;
1490 size_t nr = 0;
1492 for (;;)
1494 size_t begin;
1496 if (i >= nr)
1498 nr = reader (buf, size);
1499 if (nr == 0)
1500 break;
1501 i = 0;
1504 begin = i;
1506 if (char_to_squeeze == NOT_A_CHAR)
1508 size_t out_len;
1509 /* Here, by being a little tricky, we can get a significant
1510 performance increase in most cases when the input is
1511 reasonably large. Since tr will modify the input only
1512 if two consecutive (and identical) input characters are
1513 in the squeeze set, we can step by two through the data
1514 when searching for a character in the squeeze set. This
1515 means there may be a little more work in a few cases and
1516 perhaps twice as much work in the worst cases where most
1517 of the input is removed by squeezing repeats. But most
1518 uses of this functionality seem to remove less than 20-30%
1519 of the input. */
1520 for (; i < nr && !in_squeeze_set[to_uchar (buf[i])]; i += 2)
1521 continue;
1523 /* There is a special case when i == nr and we've just
1524 skipped a character (the last one in buf) that is in
1525 the squeeze set. */
1526 if (i == nr && in_squeeze_set[to_uchar (buf[i - 1])])
1527 --i;
1529 if (i >= nr)
1530 out_len = nr - begin;
1531 else
1533 char_to_squeeze = buf[i];
1534 /* We're about to output buf[begin..i]. */
1535 out_len = i - begin + 1;
1537 /* But since we stepped by 2 in the loop above,
1538 out_len may be one too large. */
1539 if (i > 0 && buf[i - 1] == char_to_squeeze)
1540 --out_len;
1542 /* Advance i to the index of first character to be
1543 considered when looking for a char different from
1544 char_to_squeeze. */
1545 ++i;
1547 if (out_len > 0
1548 && fwrite (&buf[begin], 1, out_len, stdout) != out_len)
1549 error (EXIT_FAILURE, errno, _("write error"));
1552 if (char_to_squeeze != NOT_A_CHAR)
1554 /* Advance i to index of first char != char_to_squeeze
1555 (or to nr if all the rest of the characters in this
1556 buffer are the same as char_to_squeeze). */
1557 for (; i < nr && buf[i] == char_to_squeeze; i++)
1558 continue;
1559 if (i < nr)
1560 char_to_squeeze = NOT_A_CHAR;
1561 /* If (i >= nr) we've squeezed the last character in this buffer.
1562 So now we have to read a new buffer and continue comparing
1563 characters against char_to_squeeze. */
1568 static size_t
1569 plain_read (char *buf, size_t size)
1571 size_t nr = safe_read (STDIN_FILENO, buf, size);
1572 if (nr == SAFE_READ_ERROR)
1573 error (EXIT_FAILURE, errno, _("read error"));
1574 return nr;
1577 /* Read buffers of SIZE bytes from stdin until one is found that
1578 contains at least one character not in the delete set. Store
1579 in the array BUF, all characters from that buffer that are not
1580 in the delete set, and return the number of characters saved
1581 or 0 upon EOF. */
1583 static size_t
1584 read_and_delete (char *buf, size_t size)
1586 size_t n_saved;
1588 /* This enclosing do-while loop is to make sure that
1589 we don't return zero (indicating EOF) when we've
1590 just deleted all the characters in a buffer. */
1593 size_t i;
1594 size_t nr = plain_read (buf, size);
1596 if (nr == 0)
1597 return 0;
1599 /* This first loop may be a waste of code, but gives much
1600 better performance when no characters are deleted in
1601 the beginning of a buffer. It just avoids the copying
1602 of buf[i] into buf[n_saved] when it would be a NOP. */
1604 for (i = 0; i < nr && !in_delete_set[to_uchar (buf[i])]; i++)
1605 continue;
1606 n_saved = i;
1608 for (++i; i < nr; i++)
1609 if (!in_delete_set[to_uchar (buf[i])])
1610 buf[n_saved++] = buf[i];
1612 while (n_saved == 0);
1614 return n_saved;
1617 /* Read at most SIZE bytes from stdin into the array BUF. Then
1618 perform the in-place and one-to-one mapping specified by the global
1619 array `xlate'. Return the number of characters read, or 0 upon EOF. */
1621 static size_t
1622 read_and_xlate (char *buf, size_t size)
1624 size_t bytes_read = plain_read (buf, size);
1625 size_t i;
1627 for (i = 0; i < bytes_read; i++)
1628 buf[i] = xlate[to_uchar (buf[i])];
1630 return bytes_read;
1633 /* Initialize a boolean membership set, IN_SET, with the character
1634 values obtained by traversing the linked list of constructs S
1635 using the function `get_next'. IN_SET is expected to have been
1636 initialized to all zeros by the caller. If COMPLEMENT_THIS_SET
1637 is true the resulting set is complemented. */
1639 static void
1640 set_initialize (struct Spec_list *s, bool complement_this_set, bool *in_set)
1642 int c;
1643 size_t i;
1645 s->state = BEGIN_STATE;
1646 while ((c = get_next (s, NULL)) != -1)
1647 in_set[c] = true;
1648 if (complement_this_set)
1649 for (i = 0; i < N_CHARS; i++)
1650 in_set[i] = (!in_set[i]);
1654 main (int argc, char **argv)
1656 int c;
1657 int non_option_args;
1658 int min_operands;
1659 int max_operands;
1660 struct Spec_list buf1, buf2;
1661 struct Spec_list *s1 = &buf1;
1662 struct Spec_list *s2 = &buf2;
1664 initialize_main (&argc, &argv);
1665 set_program_name (argv[0]);
1666 setlocale (LC_ALL, "");
1667 bindtextdomain (PACKAGE, LOCALEDIR);
1668 textdomain (PACKAGE);
1670 atexit (close_stdout);
1672 while ((c = getopt_long (argc, argv, "+cCdst", long_options, NULL)) != -1)
1674 switch (c)
1676 case 'c':
1677 case 'C':
1678 complement = true;
1679 break;
1681 case 'd':
1682 delete = true;
1683 break;
1685 case 's':
1686 squeeze_repeats = true;
1687 break;
1689 case 't':
1690 truncate_set1 = true;
1691 break;
1693 case_GETOPT_HELP_CHAR;
1695 case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
1697 default:
1698 usage (EXIT_FAILURE);
1699 break;
1703 non_option_args = argc - optind;
1704 translating = (non_option_args == 2 && !delete);
1705 min_operands = 1 + (delete == squeeze_repeats);
1706 max_operands = 1 + (delete <= squeeze_repeats);
1708 if (non_option_args < min_operands)
1710 if (non_option_args == 0)
1711 error (0, 0, _("missing operand"));
1712 else
1714 error (0, 0, _("missing operand after %s"), quote (argv[argc - 1]));
1715 fprintf (stderr, "%s\n",
1716 _(squeeze_repeats
1717 ? N_("Two strings must be given when "
1718 "both deleting and squeezing repeats.")
1719 : N_("Two strings must be given when translating.")));
1721 usage (EXIT_FAILURE);
1724 if (max_operands < non_option_args)
1726 error (0, 0, _("extra operand %s"), quote (argv[optind + max_operands]));
1727 if (non_option_args == 2)
1728 fprintf (stderr, "%s\n",
1729 _("Only one string may be given when "
1730 "deleting without squeezing repeats."));
1731 usage (EXIT_FAILURE);
1734 spec_init (s1);
1735 if (!parse_str (argv[optind], s1))
1736 exit (EXIT_FAILURE);
1738 if (non_option_args == 2)
1740 spec_init (s2);
1741 if (!parse_str (argv[optind + 1], s2))
1742 exit (EXIT_FAILURE);
1744 else
1745 s2 = NULL;
1747 validate (s1, s2);
1749 /* Use binary I/O, since `tr' is sometimes used to transliterate
1750 non-printable characters, or characters which are stripped away
1751 by text-mode reads (like CR and ^Z). */
1752 if (O_BINARY && ! isatty (STDIN_FILENO))
1753 freopen (NULL, "rb", stdin);
1754 if (O_BINARY && ! isatty (STDOUT_FILENO))
1755 freopen (NULL, "wb", stdout);
1757 if (squeeze_repeats && non_option_args == 1)
1759 set_initialize (s1, complement, in_squeeze_set);
1760 squeeze_filter (io_buf, sizeof io_buf, plain_read);
1762 else if (delete && non_option_args == 1)
1764 set_initialize (s1, complement, in_delete_set);
1766 for (;;)
1768 size_t nr = read_and_delete (io_buf, sizeof io_buf);
1769 if (nr == 0)
1770 break;
1771 if (fwrite (io_buf, 1, nr, stdout) != nr)
1772 error (EXIT_FAILURE, errno, _("write error"));
1775 else if (squeeze_repeats && delete && non_option_args == 2)
1777 set_initialize (s1, complement, in_delete_set);
1778 set_initialize (s2, false, in_squeeze_set);
1779 squeeze_filter (io_buf, sizeof io_buf, read_and_delete);
1781 else if (translating)
1783 if (complement)
1785 int i;
1786 bool *in_s1 = in_delete_set;
1788 set_initialize (s1, false, in_s1);
1789 s2->state = BEGIN_STATE;
1790 for (i = 0; i < N_CHARS; i++)
1791 xlate[i] = i;
1792 for (i = 0; i < N_CHARS; i++)
1794 if (!in_s1[i])
1796 int ch = get_next (s2, NULL);
1797 assert (ch != -1 || truncate_set1);
1798 if (ch == -1)
1800 /* This will happen when tr is invoked like e.g.
1801 tr -cs A-Za-z0-9 '\012'. */
1802 break;
1804 xlate[i] = ch;
1808 else
1810 int c1, c2;
1811 int i;
1812 bool case_convert = false;
1813 enum Upper_Lower_class class_s1;
1814 enum Upper_Lower_class class_s2;
1816 for (i = 0; i < N_CHARS; i++)
1817 xlate[i] = i;
1818 s1->state = BEGIN_STATE;
1819 s2->state = BEGIN_STATE;
1820 for (;;)
1822 /* When the previous pair identified case-converting classes,
1823 advance S1 and S2 so that each points to the following
1824 construct. */
1825 if (case_convert)
1827 skip_construct (s1);
1828 skip_construct (s2);
1829 case_convert = false;
1832 c1 = get_next (s1, &class_s1);
1833 c2 = get_next (s2, &class_s2);
1835 /* When translating and there is an [:upper:] or [:lower:]
1836 class in SET2, then there must be a corresponding [:lower:]
1837 or [:upper:] class in SET1. */
1838 if (class_s1 == UL_NONE
1839 && (class_s2 == UL_LOWER || class_s2 == UL_UPPER))
1840 error (EXIT_FAILURE, 0,
1841 _("misaligned [:upper:] and/or [:lower:] construct"));
1843 if (class_s1 == UL_LOWER && class_s2 == UL_UPPER)
1845 case_convert = true;
1846 for (i = 0; i < N_CHARS; i++)
1847 if (islower (i))
1848 xlate[i] = toupper (i);
1850 else if (class_s1 == UL_UPPER && class_s2 == UL_LOWER)
1852 case_convert = true;
1853 for (i = 0; i < N_CHARS; i++)
1854 if (isupper (i))
1855 xlate[i] = tolower (i);
1857 else if ((class_s1 == UL_LOWER && class_s2 == UL_LOWER)
1858 || (class_s1 == UL_UPPER && class_s2 == UL_UPPER))
1860 /* POSIX says the behavior of `tr "[:upper:]" "[:upper:]"'
1861 is undefined. Treat it as a no-op. */
1863 else
1865 /* The following should have been checked by validate... */
1866 if (c1 == -1 || c2 == -1)
1867 break;
1868 xlate[c1] = c2;
1871 assert (c1 == -1 || truncate_set1);
1873 if (squeeze_repeats)
1875 set_initialize (s2, false, in_squeeze_set);
1876 squeeze_filter (io_buf, sizeof io_buf, read_and_xlate);
1878 else
1880 for (;;)
1882 size_t bytes_read = read_and_xlate (io_buf, sizeof io_buf);
1883 if (bytes_read == 0)
1884 break;
1885 if (fwrite (io_buf, 1, bytes_read, stdout) != bytes_read)
1886 error (EXIT_FAILURE, errno, _("write error"));
1891 if (close (STDIN_FILENO) != 0)
1892 error (EXIT_FAILURE, errno, _("standard input"));
1894 exit (EXIT_SUCCESS);