Only apply the parameter pack matching of C++0x [temp.arg.template]p3
[clang.git] / lib / Sema / SemaTemplate.cpp
blob868458c2a98ce5f5b5118158abee0cb07895bcbe
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
12 #include "clang/Sema/SemaInternal.h"
13 #include "clang/Sema/Lookup.h"
14 #include "clang/Sema/Scope.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "TreeTransform.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/TypeVisitor.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Basic/LangOptions.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/StringExtras.h"
30 using namespace clang;
31 using namespace sema;
33 // Exported for use by Parser.
34 SourceRange
35 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36 unsigned N) {
37 if (!N) return SourceRange();
38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41 /// \brief Determine whether the declaration found is acceptable as the name
42 /// of a template and, if so, return that template declaration. Otherwise,
43 /// returns NULL.
44 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45 NamedDecl *Orig) {
46 NamedDecl *D = Orig->getUnderlyingDecl();
48 if (isa<TemplateDecl>(D))
49 return Orig;
51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52 // C++ [temp.local]p1:
53 // Like normal (non-template) classes, class templates have an
54 // injected-class-name (Clause 9). The injected-class-name
55 // can be used with or without a template-argument-list. When
56 // it is used without a template-argument-list, it is
57 // equivalent to the injected-class-name followed by the
58 // template-parameters of the class template enclosed in
59 // <>. When it is used with a template-argument-list, it
60 // refers to the specified class template specialization,
61 // which could be the current specialization or another
62 // specialization.
63 if (Record->isInjectedClassName()) {
64 Record = cast<CXXRecordDecl>(Record->getDeclContext());
65 if (Record->getDescribedClassTemplate())
66 return Record->getDescribedClassTemplate();
68 if (ClassTemplateSpecializationDecl *Spec
69 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70 return Spec->getSpecializedTemplate();
73 return 0;
76 return 0;
79 static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80 // The set of class templates we've already seen.
81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82 LookupResult::Filter filter = R.makeFilter();
83 while (filter.hasNext()) {
84 NamedDecl *Orig = filter.next();
85 NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86 if (!Repl)
87 filter.erase();
88 else if (Repl != Orig) {
90 // C++ [temp.local]p3:
91 // A lookup that finds an injected-class-name (10.2) can result in an
92 // ambiguity in certain cases (for example, if it is found in more than
93 // one base class). If all of the injected-class-names that are found
94 // refer to specializations of the same class template, and if the name
95 // is followed by a template-argument-list, the reference refers to the
96 // class template itself and not a specialization thereof, and is not
97 // ambiguous.
99 // FIXME: Will we eventually have to do the same for alias templates?
100 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101 if (!ClassTemplates.insert(ClassTmpl)) {
102 filter.erase();
103 continue;
106 // FIXME: we promote access to public here as a workaround to
107 // the fact that LookupResult doesn't let us remember that we
108 // found this template through a particular injected class name,
109 // which means we end up doing nasty things to the invariants.
110 // Pretending that access is public is *much* safer.
111 filter.replace(Repl, AS_public);
114 filter.done();
117 TemplateNameKind Sema::isTemplateName(Scope *S,
118 CXXScopeSpec &SS,
119 bool hasTemplateKeyword,
120 UnqualifiedId &Name,
121 ParsedType ObjectTypePtr,
122 bool EnteringContext,
123 TemplateTy &TemplateResult,
124 bool &MemberOfUnknownSpecialization) {
125 assert(getLangOptions().CPlusPlus && "No template names in C!");
127 DeclarationName TName;
128 MemberOfUnknownSpecialization = false;
130 switch (Name.getKind()) {
131 case UnqualifiedId::IK_Identifier:
132 TName = DeclarationName(Name.Identifier);
133 break;
135 case UnqualifiedId::IK_OperatorFunctionId:
136 TName = Context.DeclarationNames.getCXXOperatorName(
137 Name.OperatorFunctionId.Operator);
138 break;
140 case UnqualifiedId::IK_LiteralOperatorId:
141 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142 break;
144 default:
145 return TNK_Non_template;
148 QualType ObjectType = ObjectTypePtr.get();
150 LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151 LookupOrdinaryName);
152 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153 MemberOfUnknownSpecialization);
154 if (R.empty()) return TNK_Non_template;
155 if (R.isAmbiguous()) {
156 // Suppress diagnostics; we'll redo this lookup later.
157 R.suppressDiagnostics();
159 // FIXME: we might have ambiguous templates, in which case we
160 // should at least parse them properly!
161 return TNK_Non_template;
164 TemplateName Template;
165 TemplateNameKind TemplateKind;
167 unsigned ResultCount = R.end() - R.begin();
168 if (ResultCount > 1) {
169 // We assume that we'll preserve the qualifier from a function
170 // template name in other ways.
171 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172 TemplateKind = TNK_Function_template;
174 // We'll do this lookup again later.
175 R.suppressDiagnostics();
176 } else {
177 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
179 if (SS.isSet() && !SS.isInvalid()) {
180 NestedNameSpecifier *Qualifier
181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182 Template = Context.getQualifiedTemplateName(Qualifier,
183 hasTemplateKeyword, TD);
184 } else {
185 Template = TemplateName(TD);
188 if (isa<FunctionTemplateDecl>(TD)) {
189 TemplateKind = TNK_Function_template;
191 // We'll do this lookup again later.
192 R.suppressDiagnostics();
193 } else {
194 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195 TemplateKind = TNK_Type_template;
199 TemplateResult = TemplateTy::make(Template);
200 return TemplateKind;
203 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204 SourceLocation IILoc,
205 Scope *S,
206 const CXXScopeSpec *SS,
207 TemplateTy &SuggestedTemplate,
208 TemplateNameKind &SuggestedKind) {
209 // We can't recover unless there's a dependent scope specifier preceding the
210 // template name.
211 // FIXME: Typo correction?
212 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213 computeDeclContext(*SS))
214 return false;
216 // The code is missing a 'template' keyword prior to the dependent template
217 // name.
218 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219 Diag(IILoc, diag::err_template_kw_missing)
220 << Qualifier << II.getName()
221 << FixItHint::CreateInsertion(IILoc, "template ");
222 SuggestedTemplate
223 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224 SuggestedKind = TNK_Dependent_template_name;
225 return true;
228 void Sema::LookupTemplateName(LookupResult &Found,
229 Scope *S, CXXScopeSpec &SS,
230 QualType ObjectType,
231 bool EnteringContext,
232 bool &MemberOfUnknownSpecialization) {
233 // Determine where to perform name lookup
234 MemberOfUnknownSpecialization = false;
235 DeclContext *LookupCtx = 0;
236 bool isDependent = false;
237 if (!ObjectType.isNull()) {
238 // This nested-name-specifier occurs in a member access expression, e.g.,
239 // x->B::f, and we are looking into the type of the object.
240 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241 LookupCtx = computeDeclContext(ObjectType);
242 isDependent = ObjectType->isDependentType();
243 assert((isDependent || !ObjectType->isIncompleteType()) &&
244 "Caller should have completed object type");
245 } else if (SS.isSet()) {
246 // This nested-name-specifier occurs after another nested-name-specifier,
247 // so long into the context associated with the prior nested-name-specifier.
248 LookupCtx = computeDeclContext(SS, EnteringContext);
249 isDependent = isDependentScopeSpecifier(SS);
251 // The declaration context must be complete.
252 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253 return;
256 bool ObjectTypeSearchedInScope = false;
257 if (LookupCtx) {
258 // Perform "qualified" name lookup into the declaration context we
259 // computed, which is either the type of the base of a member access
260 // expression or the declaration context associated with a prior
261 // nested-name-specifier.
262 LookupQualifiedName(Found, LookupCtx);
264 if (!ObjectType.isNull() && Found.empty()) {
265 // C++ [basic.lookup.classref]p1:
266 // In a class member access expression (5.2.5), if the . or -> token is
267 // immediately followed by an identifier followed by a <, the
268 // identifier must be looked up to determine whether the < is the
269 // beginning of a template argument list (14.2) or a less-than operator.
270 // The identifier is first looked up in the class of the object
271 // expression. If the identifier is not found, it is then looked up in
272 // the context of the entire postfix-expression and shall name a class
273 // or function template.
274 if (S) LookupName(Found, S);
275 ObjectTypeSearchedInScope = true;
277 } else if (isDependent && (!S || ObjectType.isNull())) {
278 // We cannot look into a dependent object type or nested nme
279 // specifier.
280 MemberOfUnknownSpecialization = true;
281 return;
282 } else {
283 // Perform unqualified name lookup in the current scope.
284 LookupName(Found, S);
287 if (Found.empty() && !isDependent) {
288 // If we did not find any names, attempt to correct any typos.
289 DeclarationName Name = Found.getLookupName();
290 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291 false, CTC_CXXCasts)) {
292 FilterAcceptableTemplateNames(Context, Found);
293 if (!Found.empty()) {
294 if (LookupCtx)
295 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296 << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297 << FixItHint::CreateReplacement(Found.getNameLoc(),
298 Found.getLookupName().getAsString());
299 else
300 Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301 << Name << Found.getLookupName()
302 << FixItHint::CreateReplacement(Found.getNameLoc(),
303 Found.getLookupName().getAsString());
304 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305 Diag(Template->getLocation(), diag::note_previous_decl)
306 << Template->getDeclName();
308 } else {
309 Found.clear();
310 Found.setLookupName(Name);
314 FilterAcceptableTemplateNames(Context, Found);
315 if (Found.empty()) {
316 if (isDependent)
317 MemberOfUnknownSpecialization = true;
318 return;
321 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322 // C++ [basic.lookup.classref]p1:
323 // [...] If the lookup in the class of the object expression finds a
324 // template, the name is also looked up in the context of the entire
325 // postfix-expression and [...]
327 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328 LookupOrdinaryName);
329 LookupName(FoundOuter, S);
330 FilterAcceptableTemplateNames(Context, FoundOuter);
332 if (FoundOuter.empty()) {
333 // - if the name is not found, the name found in the class of the
334 // object expression is used, otherwise
335 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336 // - if the name is found in the context of the entire
337 // postfix-expression and does not name a class template, the name
338 // found in the class of the object expression is used, otherwise
339 } else if (!Found.isSuppressingDiagnostics()) {
340 // - if the name found is a class template, it must refer to the same
341 // entity as the one found in the class of the object expression,
342 // otherwise the program is ill-formed.
343 if (!Found.isSingleResult() ||
344 Found.getFoundDecl()->getCanonicalDecl()
345 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346 Diag(Found.getNameLoc(),
347 diag::ext_nested_name_member_ref_lookup_ambiguous)
348 << Found.getLookupName()
349 << ObjectType;
350 Diag(Found.getRepresentativeDecl()->getLocation(),
351 diag::note_ambig_member_ref_object_type)
352 << ObjectType;
353 Diag(FoundOuter.getFoundDecl()->getLocation(),
354 diag::note_ambig_member_ref_scope);
356 // Recover by taking the template that we found in the object
357 // expression's type.
363 /// ActOnDependentIdExpression - Handle a dependent id-expression that
364 /// was just parsed. This is only possible with an explicit scope
365 /// specifier naming a dependent type.
366 ExprResult
367 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368 const DeclarationNameInfo &NameInfo,
369 bool isAddressOfOperand,
370 const TemplateArgumentListInfo *TemplateArgs) {
371 NestedNameSpecifier *Qualifier
372 = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
374 DeclContext *DC = getFunctionLevelDeclContext();
376 if (!isAddressOfOperand &&
377 isa<CXXMethodDecl>(DC) &&
378 cast<CXXMethodDecl>(DC)->isInstance()) {
379 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
381 // Since the 'this' expression is synthesized, we don't need to
382 // perform the double-lookup check.
383 NamedDecl *FirstQualifierInScope = 0;
385 return Owned(CXXDependentScopeMemberExpr::Create(Context,
386 /*This*/ 0, ThisType,
387 /*IsArrow*/ true,
388 /*Op*/ SourceLocation(),
389 Qualifier, SS.getRange(),
390 FirstQualifierInScope,
391 NameInfo,
392 TemplateArgs));
395 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
398 ExprResult
399 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400 const DeclarationNameInfo &NameInfo,
401 const TemplateArgumentListInfo *TemplateArgs) {
402 return Owned(DependentScopeDeclRefExpr::Create(Context,
403 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404 SS.getRange(),
405 NameInfo,
406 TemplateArgs));
409 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410 /// that the template parameter 'PrevDecl' is being shadowed by a new
411 /// declaration at location Loc. Returns true to indicate that this is
412 /// an error, and false otherwise.
413 bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
416 // Microsoft Visual C++ permits template parameters to be shadowed.
417 if (getLangOptions().Microsoft)
418 return false;
420 // C++ [temp.local]p4:
421 // A template-parameter shall not be redeclared within its
422 // scope (including nested scopes).
423 Diag(Loc, diag::err_template_param_shadow)
424 << cast<NamedDecl>(PrevDecl)->getDeclName();
425 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426 return true;
429 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430 /// the parameter D to reference the templated declaration and return a pointer
431 /// to the template declaration. Otherwise, do nothing to D and return null.
432 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434 D = Temp->getTemplatedDecl();
435 return Temp;
437 return 0;
440 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
441 SourceLocation EllipsisLoc) const {
442 assert(Kind == Template &&
443 "Only template template arguments can be pack expansions here");
444 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
445 "Template template argument pack expansion without packs");
446 ParsedTemplateArgument Result(*this);
447 Result.EllipsisLoc = EllipsisLoc;
448 return Result;
451 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
452 const ParsedTemplateArgument &Arg) {
454 switch (Arg.getKind()) {
455 case ParsedTemplateArgument::Type: {
456 TypeSourceInfo *DI;
457 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
458 if (!DI)
459 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
460 return TemplateArgumentLoc(TemplateArgument(T), DI);
463 case ParsedTemplateArgument::NonType: {
464 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
465 return TemplateArgumentLoc(TemplateArgument(E), E);
468 case ParsedTemplateArgument::Template: {
469 TemplateName Template = Arg.getAsTemplate().get();
470 return TemplateArgumentLoc(TemplateArgument(Template,
471 Arg.getEllipsisLoc().isValid()),
472 Arg.getScopeSpec().getRange(),
473 Arg.getLocation(),
474 Arg.getEllipsisLoc());
478 llvm_unreachable("Unhandled parsed template argument");
479 return TemplateArgumentLoc();
482 /// \brief Translates template arguments as provided by the parser
483 /// into template arguments used by semantic analysis.
484 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
485 TemplateArgumentListInfo &TemplateArgs) {
486 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
487 TemplateArgs.addArgument(translateTemplateArgument(*this,
488 TemplateArgsIn[I]));
491 /// ActOnTypeParameter - Called when a C++ template type parameter
492 /// (e.g., "typename T") has been parsed. Typename specifies whether
493 /// the keyword "typename" was used to declare the type parameter
494 /// (otherwise, "class" was used), and KeyLoc is the location of the
495 /// "class" or "typename" keyword. ParamName is the name of the
496 /// parameter (NULL indicates an unnamed template parameter) and
497 /// ParamName is the location of the parameter name (if any).
498 /// If the type parameter has a default argument, it will be added
499 /// later via ActOnTypeParameterDefault.
500 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
501 SourceLocation EllipsisLoc,
502 SourceLocation KeyLoc,
503 IdentifierInfo *ParamName,
504 SourceLocation ParamNameLoc,
505 unsigned Depth, unsigned Position,
506 SourceLocation EqualLoc,
507 ParsedType DefaultArg) {
508 assert(S->isTemplateParamScope() &&
509 "Template type parameter not in template parameter scope!");
510 bool Invalid = false;
512 if (ParamName) {
513 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
514 LookupOrdinaryName,
515 ForRedeclaration);
516 if (PrevDecl && PrevDecl->isTemplateParameter())
517 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
518 PrevDecl);
521 SourceLocation Loc = ParamNameLoc;
522 if (!ParamName)
523 Loc = KeyLoc;
525 TemplateTypeParmDecl *Param
526 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
527 Loc, Depth, Position, ParamName, Typename,
528 Ellipsis);
529 if (Invalid)
530 Param->setInvalidDecl();
532 if (ParamName) {
533 // Add the template parameter into the current scope.
534 S->AddDecl(Param);
535 IdResolver.AddDecl(Param);
538 // C++0x [temp.param]p9:
539 // A default template-argument may be specified for any kind of
540 // template-parameter that is not a template parameter pack.
541 if (DefaultArg && Ellipsis) {
542 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
543 DefaultArg = ParsedType();
546 // Handle the default argument, if provided.
547 if (DefaultArg) {
548 TypeSourceInfo *DefaultTInfo;
549 GetTypeFromParser(DefaultArg, &DefaultTInfo);
551 assert(DefaultTInfo && "expected source information for type");
553 // Check for unexpanded parameter packs.
554 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
555 UPPC_DefaultArgument))
556 return Param;
558 // Check the template argument itself.
559 if (CheckTemplateArgument(Param, DefaultTInfo)) {
560 Param->setInvalidDecl();
561 return Param;
564 Param->setDefaultArgument(DefaultTInfo, false);
567 return Param;
570 /// \brief Check that the type of a non-type template parameter is
571 /// well-formed.
573 /// \returns the (possibly-promoted) parameter type if valid;
574 /// otherwise, produces a diagnostic and returns a NULL type.
575 QualType
576 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
577 // We don't allow variably-modified types as the type of non-type template
578 // parameters.
579 if (T->isVariablyModifiedType()) {
580 Diag(Loc, diag::err_variably_modified_nontype_template_param)
581 << T;
582 return QualType();
585 // C++ [temp.param]p4:
587 // A non-type template-parameter shall have one of the following
588 // (optionally cv-qualified) types:
590 // -- integral or enumeration type,
591 if (T->isIntegralOrEnumerationType() ||
592 // -- pointer to object or pointer to function,
593 T->isPointerType() ||
594 // -- reference to object or reference to function,
595 T->isReferenceType() ||
596 // -- pointer to member.
597 T->isMemberPointerType() ||
598 // If T is a dependent type, we can't do the check now, so we
599 // assume that it is well-formed.
600 T->isDependentType())
601 return T;
602 // C++ [temp.param]p8:
604 // A non-type template-parameter of type "array of T" or
605 // "function returning T" is adjusted to be of type "pointer to
606 // T" or "pointer to function returning T", respectively.
607 else if (T->isArrayType())
608 // FIXME: Keep the type prior to promotion?
609 return Context.getArrayDecayedType(T);
610 else if (T->isFunctionType())
611 // FIXME: Keep the type prior to promotion?
612 return Context.getPointerType(T);
614 Diag(Loc, diag::err_template_nontype_parm_bad_type)
615 << T;
617 return QualType();
620 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
621 unsigned Depth,
622 unsigned Position,
623 SourceLocation EqualLoc,
624 Expr *Default) {
625 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
626 QualType T = TInfo->getType();
628 assert(S->isTemplateParamScope() &&
629 "Non-type template parameter not in template parameter scope!");
630 bool Invalid = false;
632 IdentifierInfo *ParamName = D.getIdentifier();
633 if (ParamName) {
634 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
635 LookupOrdinaryName,
636 ForRedeclaration);
637 if (PrevDecl && PrevDecl->isTemplateParameter())
638 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
639 PrevDecl);
642 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
643 if (T.isNull()) {
644 T = Context.IntTy; // Recover with an 'int' type.
645 Invalid = true;
648 bool IsParameterPack = D.hasEllipsis();
649 NonTypeTemplateParmDecl *Param
650 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
651 D.getIdentifierLoc(),
652 Depth, Position, ParamName, T,
653 IsParameterPack, TInfo);
654 if (Invalid)
655 Param->setInvalidDecl();
657 if (D.getIdentifier()) {
658 // Add the template parameter into the current scope.
659 S->AddDecl(Param);
660 IdResolver.AddDecl(Param);
663 // C++0x [temp.param]p9:
664 // A default template-argument may be specified for any kind of
665 // template-parameter that is not a template parameter pack.
666 if (Default && IsParameterPack) {
667 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
668 Default = 0;
671 // Check the well-formedness of the default template argument, if provided.
672 if (Default) {
673 // Check for unexpanded parameter packs.
674 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
675 return Param;
677 TemplateArgument Converted;
678 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
679 Param->setInvalidDecl();
680 return Param;
683 Param->setDefaultArgument(Default, false);
686 return Param;
689 /// ActOnTemplateTemplateParameter - Called when a C++ template template
690 /// parameter (e.g. T in template <template <typename> class T> class array)
691 /// has been parsed. S is the current scope.
692 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
693 SourceLocation TmpLoc,
694 TemplateParamsTy *Params,
695 SourceLocation EllipsisLoc,
696 IdentifierInfo *Name,
697 SourceLocation NameLoc,
698 unsigned Depth,
699 unsigned Position,
700 SourceLocation EqualLoc,
701 ParsedTemplateArgument Default) {
702 assert(S->isTemplateParamScope() &&
703 "Template template parameter not in template parameter scope!");
705 // Construct the parameter object.
706 bool IsParameterPack = EllipsisLoc.isValid();
707 // FIXME: Pack-ness is dropped
708 TemplateTemplateParmDecl *Param =
709 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
710 NameLoc.isInvalid()? TmpLoc : NameLoc,
711 Depth, Position, IsParameterPack,
712 Name, Params);
714 // If the template template parameter has a name, then link the identifier
715 // into the scope and lookup mechanisms.
716 if (Name) {
717 S->AddDecl(Param);
718 IdResolver.AddDecl(Param);
721 if (Params->size() == 0) {
722 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
723 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
724 Param->setInvalidDecl();
727 // C++0x [temp.param]p9:
728 // A default template-argument may be specified for any kind of
729 // template-parameter that is not a template parameter pack.
730 if (IsParameterPack && !Default.isInvalid()) {
731 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
732 Default = ParsedTemplateArgument();
735 if (!Default.isInvalid()) {
736 // Check only that we have a template template argument. We don't want to
737 // try to check well-formedness now, because our template template parameter
738 // might have dependent types in its template parameters, which we wouldn't
739 // be able to match now.
741 // If none of the template template parameter's template arguments mention
742 // other template parameters, we could actually perform more checking here.
743 // However, it isn't worth doing.
744 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
745 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
746 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
747 << DefaultArg.getSourceRange();
748 return Param;
751 // Check for unexpanded parameter packs.
752 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
753 DefaultArg.getArgument().getAsTemplate(),
754 UPPC_DefaultArgument))
755 return Param;
757 Param->setDefaultArgument(DefaultArg, false);
760 return Param;
763 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
764 /// contains the template parameters in Params/NumParams.
765 Sema::TemplateParamsTy *
766 Sema::ActOnTemplateParameterList(unsigned Depth,
767 SourceLocation ExportLoc,
768 SourceLocation TemplateLoc,
769 SourceLocation LAngleLoc,
770 Decl **Params, unsigned NumParams,
771 SourceLocation RAngleLoc) {
772 if (ExportLoc.isValid())
773 Diag(ExportLoc, diag::warn_template_export_unsupported);
775 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
776 (NamedDecl**)Params, NumParams,
777 RAngleLoc);
780 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
781 if (SS.isSet())
782 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
783 SS.getRange());
786 DeclResult
787 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
788 SourceLocation KWLoc, CXXScopeSpec &SS,
789 IdentifierInfo *Name, SourceLocation NameLoc,
790 AttributeList *Attr,
791 TemplateParameterList *TemplateParams,
792 AccessSpecifier AS) {
793 assert(TemplateParams && TemplateParams->size() > 0 &&
794 "No template parameters");
795 assert(TUK != TUK_Reference && "Can only declare or define class templates");
796 bool Invalid = false;
798 // Check that we can declare a template here.
799 if (CheckTemplateDeclScope(S, TemplateParams))
800 return true;
802 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
803 assert(Kind != TTK_Enum && "can't build template of enumerated type");
805 // There is no such thing as an unnamed class template.
806 if (!Name) {
807 Diag(KWLoc, diag::err_template_unnamed_class);
808 return true;
811 // Find any previous declaration with this name.
812 DeclContext *SemanticContext;
813 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
814 ForRedeclaration);
815 if (SS.isNotEmpty() && !SS.isInvalid()) {
816 SemanticContext = computeDeclContext(SS, true);
817 if (!SemanticContext) {
818 // FIXME: Produce a reasonable diagnostic here
819 return true;
822 if (RequireCompleteDeclContext(SS, SemanticContext))
823 return true;
825 LookupQualifiedName(Previous, SemanticContext);
826 } else {
827 SemanticContext = CurContext;
828 LookupName(Previous, S);
831 if (Previous.isAmbiguous())
832 return true;
834 NamedDecl *PrevDecl = 0;
835 if (Previous.begin() != Previous.end())
836 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
838 // If there is a previous declaration with the same name, check
839 // whether this is a valid redeclaration.
840 ClassTemplateDecl *PrevClassTemplate
841 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
843 // We may have found the injected-class-name of a class template,
844 // class template partial specialization, or class template specialization.
845 // In these cases, grab the template that is being defined or specialized.
846 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
847 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
848 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
849 PrevClassTemplate
850 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
851 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
852 PrevClassTemplate
853 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
854 ->getSpecializedTemplate();
858 if (TUK == TUK_Friend) {
859 // C++ [namespace.memdef]p3:
860 // [...] When looking for a prior declaration of a class or a function
861 // declared as a friend, and when the name of the friend class or
862 // function is neither a qualified name nor a template-id, scopes outside
863 // the innermost enclosing namespace scope are not considered.
864 if (!SS.isSet()) {
865 DeclContext *OutermostContext = CurContext;
866 while (!OutermostContext->isFileContext())
867 OutermostContext = OutermostContext->getLookupParent();
869 if (PrevDecl &&
870 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
871 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
872 SemanticContext = PrevDecl->getDeclContext();
873 } else {
874 // Declarations in outer scopes don't matter. However, the outermost
875 // context we computed is the semantic context for our new
876 // declaration.
877 PrevDecl = PrevClassTemplate = 0;
878 SemanticContext = OutermostContext;
882 if (CurContext->isDependentContext()) {
883 // If this is a dependent context, we don't want to link the friend
884 // class template to the template in scope, because that would perform
885 // checking of the template parameter lists that can't be performed
886 // until the outer context is instantiated.
887 PrevDecl = PrevClassTemplate = 0;
889 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
890 PrevDecl = PrevClassTemplate = 0;
892 if (PrevClassTemplate) {
893 // Ensure that the template parameter lists are compatible.
894 if (!TemplateParameterListsAreEqual(TemplateParams,
895 PrevClassTemplate->getTemplateParameters(),
896 /*Complain=*/true,
897 TPL_TemplateMatch))
898 return true;
900 // C++ [temp.class]p4:
901 // In a redeclaration, partial specialization, explicit
902 // specialization or explicit instantiation of a class template,
903 // the class-key shall agree in kind with the original class
904 // template declaration (7.1.5.3).
905 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
906 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
907 Diag(KWLoc, diag::err_use_with_wrong_tag)
908 << Name
909 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
910 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
911 Kind = PrevRecordDecl->getTagKind();
914 // Check for redefinition of this class template.
915 if (TUK == TUK_Definition) {
916 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
917 Diag(NameLoc, diag::err_redefinition) << Name;
918 Diag(Def->getLocation(), diag::note_previous_definition);
919 // FIXME: Would it make sense to try to "forget" the previous
920 // definition, as part of error recovery?
921 return true;
924 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
925 // Maybe we will complain about the shadowed template parameter.
926 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
927 // Just pretend that we didn't see the previous declaration.
928 PrevDecl = 0;
929 } else if (PrevDecl) {
930 // C++ [temp]p5:
931 // A class template shall not have the same name as any other
932 // template, class, function, object, enumeration, enumerator,
933 // namespace, or type in the same scope (3.3), except as specified
934 // in (14.5.4).
935 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
936 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
937 return true;
940 // Check the template parameter list of this declaration, possibly
941 // merging in the template parameter list from the previous class
942 // template declaration.
943 if (CheckTemplateParameterList(TemplateParams,
944 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
945 TPC_ClassTemplate))
946 Invalid = true;
948 if (SS.isSet()) {
949 // If the name of the template was qualified, we must be defining the
950 // template out-of-line.
951 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
952 !(TUK == TUK_Friend && CurContext->isDependentContext()))
953 Diag(NameLoc, diag::err_member_def_does_not_match)
954 << Name << SemanticContext << SS.getRange();
957 CXXRecordDecl *NewClass =
958 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
959 PrevClassTemplate?
960 PrevClassTemplate->getTemplatedDecl() : 0,
961 /*DelayTypeCreation=*/true);
962 SetNestedNameSpecifier(NewClass, SS);
964 ClassTemplateDecl *NewTemplate
965 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
966 DeclarationName(Name), TemplateParams,
967 NewClass, PrevClassTemplate);
968 NewClass->setDescribedClassTemplate(NewTemplate);
970 // Build the type for the class template declaration now.
971 QualType T = NewTemplate->getInjectedClassNameSpecialization();
972 T = Context.getInjectedClassNameType(NewClass, T);
973 assert(T->isDependentType() && "Class template type is not dependent?");
974 (void)T;
976 // If we are providing an explicit specialization of a member that is a
977 // class template, make a note of that.
978 if (PrevClassTemplate &&
979 PrevClassTemplate->getInstantiatedFromMemberTemplate())
980 PrevClassTemplate->setMemberSpecialization();
982 // Set the access specifier.
983 if (!Invalid && TUK != TUK_Friend)
984 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
986 // Set the lexical context of these templates
987 NewClass->setLexicalDeclContext(CurContext);
988 NewTemplate->setLexicalDeclContext(CurContext);
990 if (TUK == TUK_Definition)
991 NewClass->startDefinition();
993 if (Attr)
994 ProcessDeclAttributeList(S, NewClass, Attr);
996 if (TUK != TUK_Friend)
997 PushOnScopeChains(NewTemplate, S);
998 else {
999 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1000 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1001 NewClass->setAccess(PrevClassTemplate->getAccess());
1004 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1005 PrevClassTemplate != NULL);
1007 // Friend templates are visible in fairly strange ways.
1008 if (!CurContext->isDependentContext()) {
1009 DeclContext *DC = SemanticContext->getRedeclContext();
1010 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1011 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1012 PushOnScopeChains(NewTemplate, EnclosingScope,
1013 /* AddToContext = */ false);
1016 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1017 NewClass->getLocation(),
1018 NewTemplate,
1019 /*FIXME:*/NewClass->getLocation());
1020 Friend->setAccess(AS_public);
1021 CurContext->addDecl(Friend);
1024 if (Invalid) {
1025 NewTemplate->setInvalidDecl();
1026 NewClass->setInvalidDecl();
1028 return NewTemplate;
1031 /// \brief Diagnose the presence of a default template argument on a
1032 /// template parameter, which is ill-formed in certain contexts.
1034 /// \returns true if the default template argument should be dropped.
1035 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1036 Sema::TemplateParamListContext TPC,
1037 SourceLocation ParamLoc,
1038 SourceRange DefArgRange) {
1039 switch (TPC) {
1040 case Sema::TPC_ClassTemplate:
1041 return false;
1043 case Sema::TPC_FunctionTemplate:
1044 // C++ [temp.param]p9:
1045 // A default template-argument shall not be specified in a
1046 // function template declaration or a function template
1047 // definition [...]
1048 // (This sentence is not in C++0x, per DR226).
1049 if (!S.getLangOptions().CPlusPlus0x)
1050 S.Diag(ParamLoc,
1051 diag::err_template_parameter_default_in_function_template)
1052 << DefArgRange;
1053 return false;
1055 case Sema::TPC_ClassTemplateMember:
1056 // C++0x [temp.param]p9:
1057 // A default template-argument shall not be specified in the
1058 // template-parameter-lists of the definition of a member of a
1059 // class template that appears outside of the member's class.
1060 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1061 << DefArgRange;
1062 return true;
1064 case Sema::TPC_FriendFunctionTemplate:
1065 // C++ [temp.param]p9:
1066 // A default template-argument shall not be specified in a
1067 // friend template declaration.
1068 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1069 << DefArgRange;
1070 return true;
1072 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1073 // for friend function templates if there is only a single
1074 // declaration (and it is a definition). Strange!
1077 return false;
1080 /// \brief Check for unexpanded parameter packs within the template parameters
1081 /// of a template template parameter, recursively.
1082 bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1083 TemplateParameterList *Params = TTP->getTemplateParameters();
1084 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1085 NamedDecl *P = Params->getParam(I);
1086 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1087 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1088 NTTP->getTypeSourceInfo(),
1089 Sema::UPPC_NonTypeTemplateParameterType))
1090 return true;
1092 continue;
1095 if (TemplateTemplateParmDecl *InnerTTP
1096 = dyn_cast<TemplateTemplateParmDecl>(P))
1097 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1098 return true;
1101 return false;
1104 /// \brief Checks the validity of a template parameter list, possibly
1105 /// considering the template parameter list from a previous
1106 /// declaration.
1108 /// If an "old" template parameter list is provided, it must be
1109 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1110 /// template parameter list.
1112 /// \param NewParams Template parameter list for a new template
1113 /// declaration. This template parameter list will be updated with any
1114 /// default arguments that are carried through from the previous
1115 /// template parameter list.
1117 /// \param OldParams If provided, template parameter list from a
1118 /// previous declaration of the same template. Default template
1119 /// arguments will be merged from the old template parameter list to
1120 /// the new template parameter list.
1122 /// \param TPC Describes the context in which we are checking the given
1123 /// template parameter list.
1125 /// \returns true if an error occurred, false otherwise.
1126 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1127 TemplateParameterList *OldParams,
1128 TemplateParamListContext TPC) {
1129 bool Invalid = false;
1131 // C++ [temp.param]p10:
1132 // The set of default template-arguments available for use with a
1133 // template declaration or definition is obtained by merging the
1134 // default arguments from the definition (if in scope) and all
1135 // declarations in scope in the same way default function
1136 // arguments are (8.3.6).
1137 bool SawDefaultArgument = false;
1138 SourceLocation PreviousDefaultArgLoc;
1140 bool SawParameterPack = false;
1141 SourceLocation ParameterPackLoc;
1143 // Dummy initialization to avoid warnings.
1144 TemplateParameterList::iterator OldParam = NewParams->end();
1145 if (OldParams)
1146 OldParam = OldParams->begin();
1148 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1149 NewParamEnd = NewParams->end();
1150 NewParam != NewParamEnd; ++NewParam) {
1151 // Variables used to diagnose redundant default arguments
1152 bool RedundantDefaultArg = false;
1153 SourceLocation OldDefaultLoc;
1154 SourceLocation NewDefaultLoc;
1156 // Variables used to diagnose missing default arguments
1157 bool MissingDefaultArg = false;
1159 // C++0x [temp.param]p11:
1160 // If a template parameter of a primary class template is a template
1161 // parameter pack, it shall be the last template parameter.
1162 if (SawParameterPack && TPC == TPC_ClassTemplate) {
1163 Diag(ParameterPackLoc,
1164 diag::err_template_param_pack_must_be_last_template_parameter);
1165 Invalid = true;
1168 if (TemplateTypeParmDecl *NewTypeParm
1169 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1170 // Check the presence of a default argument here.
1171 if (NewTypeParm->hasDefaultArgument() &&
1172 DiagnoseDefaultTemplateArgument(*this, TPC,
1173 NewTypeParm->getLocation(),
1174 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1175 .getSourceRange()))
1176 NewTypeParm->removeDefaultArgument();
1178 // Merge default arguments for template type parameters.
1179 TemplateTypeParmDecl *OldTypeParm
1180 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1182 if (NewTypeParm->isParameterPack()) {
1183 assert(!NewTypeParm->hasDefaultArgument() &&
1184 "Parameter packs can't have a default argument!");
1185 SawParameterPack = true;
1186 ParameterPackLoc = NewTypeParm->getLocation();
1187 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1188 NewTypeParm->hasDefaultArgument()) {
1189 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1190 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1191 SawDefaultArgument = true;
1192 RedundantDefaultArg = true;
1193 PreviousDefaultArgLoc = NewDefaultLoc;
1194 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1195 // Merge the default argument from the old declaration to the
1196 // new declaration.
1197 SawDefaultArgument = true;
1198 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1199 true);
1200 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1201 } else if (NewTypeParm->hasDefaultArgument()) {
1202 SawDefaultArgument = true;
1203 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1204 } else if (SawDefaultArgument)
1205 MissingDefaultArg = true;
1206 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1207 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1208 // Check for unexpanded parameter packs.
1209 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1210 NewNonTypeParm->getTypeSourceInfo(),
1211 UPPC_NonTypeTemplateParameterType)) {
1212 Invalid = true;
1213 continue;
1216 // Check the presence of a default argument here.
1217 if (NewNonTypeParm->hasDefaultArgument() &&
1218 DiagnoseDefaultTemplateArgument(*this, TPC,
1219 NewNonTypeParm->getLocation(),
1220 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1221 NewNonTypeParm->removeDefaultArgument();
1224 // Merge default arguments for non-type template parameters
1225 NonTypeTemplateParmDecl *OldNonTypeParm
1226 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1227 if (NewNonTypeParm->isParameterPack()) {
1228 assert(!NewNonTypeParm->hasDefaultArgument() &&
1229 "Parameter packs can't have a default argument!");
1230 SawParameterPack = true;
1231 ParameterPackLoc = NewNonTypeParm->getLocation();
1232 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1233 NewNonTypeParm->hasDefaultArgument()) {
1234 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1235 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1236 SawDefaultArgument = true;
1237 RedundantDefaultArg = true;
1238 PreviousDefaultArgLoc = NewDefaultLoc;
1239 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1240 // Merge the default argument from the old declaration to the
1241 // new declaration.
1242 SawDefaultArgument = true;
1243 // FIXME: We need to create a new kind of "default argument"
1244 // expression that points to a previous non-type template
1245 // parameter.
1246 NewNonTypeParm->setDefaultArgument(
1247 OldNonTypeParm->getDefaultArgument(),
1248 /*Inherited=*/ true);
1249 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1250 } else if (NewNonTypeParm->hasDefaultArgument()) {
1251 SawDefaultArgument = true;
1252 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1253 } else if (SawDefaultArgument)
1254 MissingDefaultArg = true;
1255 } else {
1256 // Check the presence of a default argument here.
1257 TemplateTemplateParmDecl *NewTemplateParm
1258 = cast<TemplateTemplateParmDecl>(*NewParam);
1260 // Check for unexpanded parameter packs, recursively.
1261 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1262 Invalid = true;
1263 continue;
1266 if (NewTemplateParm->hasDefaultArgument() &&
1267 DiagnoseDefaultTemplateArgument(*this, TPC,
1268 NewTemplateParm->getLocation(),
1269 NewTemplateParm->getDefaultArgument().getSourceRange()))
1270 NewTemplateParm->removeDefaultArgument();
1272 // Merge default arguments for template template parameters
1273 TemplateTemplateParmDecl *OldTemplateParm
1274 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1275 if (NewTemplateParm->isParameterPack()) {
1276 assert(!NewTemplateParm->hasDefaultArgument() &&
1277 "Parameter packs can't have a default argument!");
1278 SawParameterPack = true;
1279 ParameterPackLoc = NewTemplateParm->getLocation();
1280 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1281 NewTemplateParm->hasDefaultArgument()) {
1282 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1283 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1284 SawDefaultArgument = true;
1285 RedundantDefaultArg = true;
1286 PreviousDefaultArgLoc = NewDefaultLoc;
1287 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1288 // Merge the default argument from the old declaration to the
1289 // new declaration.
1290 SawDefaultArgument = true;
1291 // FIXME: We need to create a new kind of "default argument" expression
1292 // that points to a previous template template parameter.
1293 NewTemplateParm->setDefaultArgument(
1294 OldTemplateParm->getDefaultArgument(),
1295 /*Inherited=*/ true);
1296 PreviousDefaultArgLoc
1297 = OldTemplateParm->getDefaultArgument().getLocation();
1298 } else if (NewTemplateParm->hasDefaultArgument()) {
1299 SawDefaultArgument = true;
1300 PreviousDefaultArgLoc
1301 = NewTemplateParm->getDefaultArgument().getLocation();
1302 } else if (SawDefaultArgument)
1303 MissingDefaultArg = true;
1306 if (RedundantDefaultArg) {
1307 // C++ [temp.param]p12:
1308 // A template-parameter shall not be given default arguments
1309 // by two different declarations in the same scope.
1310 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1311 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1312 Invalid = true;
1313 } else if (MissingDefaultArg) {
1314 // C++ [temp.param]p11:
1315 // If a template-parameter of a class template has a default
1316 // template-argument, each subsequent template- parameter shall either
1317 // have a default template-argument supplied or be a template parameter
1318 // pack.
1319 Diag((*NewParam)->getLocation(),
1320 diag::err_template_param_default_arg_missing);
1321 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1322 Invalid = true;
1325 // If we have an old template parameter list that we're merging
1326 // in, move on to the next parameter.
1327 if (OldParams)
1328 ++OldParam;
1331 return Invalid;
1334 namespace {
1336 /// A class which looks for a use of a certain level of template
1337 /// parameter.
1338 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1339 typedef RecursiveASTVisitor<DependencyChecker> super;
1341 unsigned Depth;
1342 bool Match;
1344 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1345 NamedDecl *ND = Params->getParam(0);
1346 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1347 Depth = PD->getDepth();
1348 } else if (NonTypeTemplateParmDecl *PD =
1349 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1350 Depth = PD->getDepth();
1351 } else {
1352 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1356 bool Matches(unsigned ParmDepth) {
1357 if (ParmDepth >= Depth) {
1358 Match = true;
1359 return true;
1361 return false;
1364 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1365 return !Matches(T->getDepth());
1368 bool TraverseTemplateName(TemplateName N) {
1369 if (TemplateTemplateParmDecl *PD =
1370 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1371 if (Matches(PD->getDepth())) return false;
1372 return super::TraverseTemplateName(N);
1375 bool VisitDeclRefExpr(DeclRefExpr *E) {
1376 if (NonTypeTemplateParmDecl *PD =
1377 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1378 if (PD->getDepth() == Depth) {
1379 Match = true;
1380 return false;
1383 return super::VisitDeclRefExpr(E);
1388 /// Determines whether a template-id depends on the given parameter
1389 /// list.
1390 static bool
1391 DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1392 TemplateParameterList *Params) {
1393 DependencyChecker Checker(Params);
1394 Checker.TraverseType(QualType(TemplateId, 0));
1395 return Checker.Match;
1398 /// \brief Match the given template parameter lists to the given scope
1399 /// specifier, returning the template parameter list that applies to the
1400 /// name.
1402 /// \param DeclStartLoc the start of the declaration that has a scope
1403 /// specifier or a template parameter list.
1405 /// \param SS the scope specifier that will be matched to the given template
1406 /// parameter lists. This scope specifier precedes a qualified name that is
1407 /// being declared.
1409 /// \param ParamLists the template parameter lists, from the outermost to the
1410 /// innermost template parameter lists.
1412 /// \param NumParamLists the number of template parameter lists in ParamLists.
1414 /// \param IsFriend Whether to apply the slightly different rules for
1415 /// matching template parameters to scope specifiers in friend
1416 /// declarations.
1418 /// \param IsExplicitSpecialization will be set true if the entity being
1419 /// declared is an explicit specialization, false otherwise.
1421 /// \returns the template parameter list, if any, that corresponds to the
1422 /// name that is preceded by the scope specifier @p SS. This template
1423 /// parameter list may be have template parameters (if we're declaring a
1424 /// template) or may have no template parameters (if we're declaring a
1425 /// template specialization), or may be NULL (if we were's declaring isn't
1426 /// itself a template).
1427 TemplateParameterList *
1428 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1429 const CXXScopeSpec &SS,
1430 TemplateParameterList **ParamLists,
1431 unsigned NumParamLists,
1432 bool IsFriend,
1433 bool &IsExplicitSpecialization,
1434 bool &Invalid) {
1435 IsExplicitSpecialization = false;
1437 // Find the template-ids that occur within the nested-name-specifier. These
1438 // template-ids will match up with the template parameter lists.
1439 llvm::SmallVector<const TemplateSpecializationType *, 4>
1440 TemplateIdsInSpecifier;
1441 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1442 ExplicitSpecializationsInSpecifier;
1443 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1444 NNS; NNS = NNS->getPrefix()) {
1445 const Type *T = NNS->getAsType();
1446 if (!T) break;
1448 // C++0x [temp.expl.spec]p17:
1449 // A member or a member template may be nested within many
1450 // enclosing class templates. In an explicit specialization for
1451 // such a member, the member declaration shall be preceded by a
1452 // template<> for each enclosing class template that is
1453 // explicitly specialized.
1455 // Following the existing practice of GNU and EDG, we allow a typedef of a
1456 // template specialization type.
1457 while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1458 T = TT->getDecl()->getUnderlyingType().getTypePtr();
1460 if (const TemplateSpecializationType *SpecType
1461 = dyn_cast<TemplateSpecializationType>(T)) {
1462 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1463 if (!Template)
1464 continue; // FIXME: should this be an error? probably...
1466 if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1467 ClassTemplateSpecializationDecl *SpecDecl
1468 = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1469 // If the nested name specifier refers to an explicit specialization,
1470 // we don't need a template<> header.
1471 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1472 ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1473 continue;
1477 TemplateIdsInSpecifier.push_back(SpecType);
1481 // Reverse the list of template-ids in the scope specifier, so that we can
1482 // more easily match up the template-ids and the template parameter lists.
1483 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1485 SourceLocation FirstTemplateLoc = DeclStartLoc;
1486 if (NumParamLists)
1487 FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1489 // Match the template-ids found in the specifier to the template parameter
1490 // lists.
1491 unsigned ParamIdx = 0, TemplateIdx = 0;
1492 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1493 TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1494 const TemplateSpecializationType *TemplateId
1495 = TemplateIdsInSpecifier[TemplateIdx];
1496 bool DependentTemplateId = TemplateId->isDependentType();
1498 // In friend declarations we can have template-ids which don't
1499 // depend on the corresponding template parameter lists. But
1500 // assume that empty parameter lists are supposed to match this
1501 // template-id.
1502 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1503 if (!DependentTemplateId ||
1504 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1505 continue;
1508 if (ParamIdx >= NumParamLists) {
1509 // We have a template-id without a corresponding template parameter
1510 // list.
1512 // ...which is fine if this is a friend declaration.
1513 if (IsFriend) {
1514 IsExplicitSpecialization = true;
1515 break;
1518 if (DependentTemplateId) {
1519 // FIXME: the location information here isn't great.
1520 Diag(SS.getRange().getBegin(),
1521 diag::err_template_spec_needs_template_parameters)
1522 << QualType(TemplateId, 0)
1523 << SS.getRange();
1524 Invalid = true;
1525 } else {
1526 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1527 << SS.getRange()
1528 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1529 IsExplicitSpecialization = true;
1531 return 0;
1534 // Check the template parameter list against its corresponding template-id.
1535 if (DependentTemplateId) {
1536 TemplateParameterList *ExpectedTemplateParams = 0;
1538 // Are there cases in (e.g.) friends where this won't match?
1539 if (const InjectedClassNameType *Injected
1540 = TemplateId->getAs<InjectedClassNameType>()) {
1541 CXXRecordDecl *Record = Injected->getDecl();
1542 if (ClassTemplatePartialSpecializationDecl *Partial =
1543 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1544 ExpectedTemplateParams = Partial->getTemplateParameters();
1545 else
1546 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1547 ->getTemplateParameters();
1550 if (ExpectedTemplateParams)
1551 TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1552 ExpectedTemplateParams,
1553 true, TPL_TemplateMatch);
1555 CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1556 TPC_ClassTemplateMember);
1557 } else if (ParamLists[ParamIdx]->size() > 0)
1558 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1559 diag::err_template_param_list_matches_nontemplate)
1560 << TemplateId
1561 << ParamLists[ParamIdx]->getSourceRange();
1562 else
1563 IsExplicitSpecialization = true;
1565 ++ParamIdx;
1568 // If there were at least as many template-ids as there were template
1569 // parameter lists, then there are no template parameter lists remaining for
1570 // the declaration itself.
1571 if (ParamIdx >= NumParamLists)
1572 return 0;
1574 // If there were too many template parameter lists, complain about that now.
1575 if (ParamIdx != NumParamLists - 1) {
1576 while (ParamIdx < NumParamLists - 1) {
1577 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1578 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1579 isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1580 : diag::err_template_spec_extra_headers)
1581 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1582 ParamLists[ParamIdx]->getRAngleLoc());
1584 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1585 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1586 diag::note_explicit_template_spec_does_not_need_header)
1587 << ExplicitSpecializationsInSpecifier.back();
1588 ExplicitSpecializationsInSpecifier.pop_back();
1591 // We have a template parameter list with no corresponding scope, which
1592 // means that the resulting template declaration can't be instantiated
1593 // properly (we'll end up with dependent nodes when we shouldn't).
1594 if (!isExplicitSpecHeader)
1595 Invalid = true;
1597 ++ParamIdx;
1601 // Return the last template parameter list, which corresponds to the
1602 // entity being declared.
1603 return ParamLists[NumParamLists - 1];
1606 QualType Sema::CheckTemplateIdType(TemplateName Name,
1607 SourceLocation TemplateLoc,
1608 const TemplateArgumentListInfo &TemplateArgs) {
1609 TemplateDecl *Template = Name.getAsTemplateDecl();
1610 if (!Template) {
1611 // The template name does not resolve to a template, so we just
1612 // build a dependent template-id type.
1613 return Context.getTemplateSpecializationType(Name, TemplateArgs);
1616 // Check that the template argument list is well-formed for this
1617 // template.
1618 llvm::SmallVector<TemplateArgument, 4> Converted;
1619 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1620 false, Converted))
1621 return QualType();
1623 assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1624 "Converted template argument list is too short!");
1626 QualType CanonType;
1628 if (Name.isDependent() ||
1629 TemplateSpecializationType::anyDependentTemplateArguments(
1630 TemplateArgs)) {
1631 // This class template specialization is a dependent
1632 // type. Therefore, its canonical type is another class template
1633 // specialization type that contains all of the converted
1634 // arguments in canonical form. This ensures that, e.g., A<T> and
1635 // A<T, T> have identical types when A is declared as:
1637 // template<typename T, typename U = T> struct A;
1638 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1639 CanonType = Context.getTemplateSpecializationType(CanonName,
1640 Converted.data(),
1641 Converted.size());
1643 // FIXME: CanonType is not actually the canonical type, and unfortunately
1644 // it is a TemplateSpecializationType that we will never use again.
1645 // In the future, we need to teach getTemplateSpecializationType to only
1646 // build the canonical type and return that to us.
1647 CanonType = Context.getCanonicalType(CanonType);
1649 // This might work out to be a current instantiation, in which
1650 // case the canonical type needs to be the InjectedClassNameType.
1652 // TODO: in theory this could be a simple hashtable lookup; most
1653 // changes to CurContext don't change the set of current
1654 // instantiations.
1655 if (isa<ClassTemplateDecl>(Template)) {
1656 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1657 // If we get out to a namespace, we're done.
1658 if (Ctx->isFileContext()) break;
1660 // If this isn't a record, keep looking.
1661 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1662 if (!Record) continue;
1664 // Look for one of the two cases with InjectedClassNameTypes
1665 // and check whether it's the same template.
1666 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1667 !Record->getDescribedClassTemplate())
1668 continue;
1670 // Fetch the injected class name type and check whether its
1671 // injected type is equal to the type we just built.
1672 QualType ICNT = Context.getTypeDeclType(Record);
1673 QualType Injected = cast<InjectedClassNameType>(ICNT)
1674 ->getInjectedSpecializationType();
1676 if (CanonType != Injected->getCanonicalTypeInternal())
1677 continue;
1679 // If so, the canonical type of this TST is the injected
1680 // class name type of the record we just found.
1681 assert(ICNT.isCanonical());
1682 CanonType = ICNT;
1683 break;
1686 } else if (ClassTemplateDecl *ClassTemplate
1687 = dyn_cast<ClassTemplateDecl>(Template)) {
1688 // Find the class template specialization declaration that
1689 // corresponds to these arguments.
1690 void *InsertPos = 0;
1691 ClassTemplateSpecializationDecl *Decl
1692 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1693 InsertPos);
1694 if (!Decl) {
1695 // This is the first time we have referenced this class template
1696 // specialization. Create the canonical declaration and add it to
1697 // the set of specializations.
1698 Decl = ClassTemplateSpecializationDecl::Create(Context,
1699 ClassTemplate->getTemplatedDecl()->getTagKind(),
1700 ClassTemplate->getDeclContext(),
1701 ClassTemplate->getLocation(),
1702 ClassTemplate,
1703 Converted.data(),
1704 Converted.size(), 0);
1705 ClassTemplate->AddSpecialization(Decl, InsertPos);
1706 Decl->setLexicalDeclContext(CurContext);
1709 CanonType = Context.getTypeDeclType(Decl);
1710 assert(isa<RecordType>(CanonType) &&
1711 "type of non-dependent specialization is not a RecordType");
1714 // Build the fully-sugared type for this class template
1715 // specialization, which refers back to the class template
1716 // specialization we created or found.
1717 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1720 TypeResult
1721 Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1722 SourceLocation LAngleLoc,
1723 ASTTemplateArgsPtr TemplateArgsIn,
1724 SourceLocation RAngleLoc) {
1725 TemplateName Template = TemplateD.getAsVal<TemplateName>();
1727 // Translate the parser's template argument list in our AST format.
1728 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1729 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1731 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1732 TemplateArgsIn.release();
1734 if (Result.isNull())
1735 return true;
1737 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1738 TemplateSpecializationTypeLoc TL
1739 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1740 TL.setTemplateNameLoc(TemplateLoc);
1741 TL.setLAngleLoc(LAngleLoc);
1742 TL.setRAngleLoc(RAngleLoc);
1743 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1744 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1746 return CreateParsedType(Result, DI);
1749 TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1750 TypeResult TypeResult,
1751 TagUseKind TUK,
1752 TypeSpecifierType TagSpec,
1753 SourceLocation TagLoc) {
1754 if (TypeResult.isInvalid())
1755 return ::TypeResult();
1757 TypeSourceInfo *DI;
1758 QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1760 // Verify the tag specifier.
1761 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1763 if (const RecordType *RT = Type->getAs<RecordType>()) {
1764 RecordDecl *D = RT->getDecl();
1766 IdentifierInfo *Id = D->getIdentifier();
1767 assert(Id && "templated class must have an identifier");
1769 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1770 Diag(TagLoc, diag::err_use_with_wrong_tag)
1771 << Type
1772 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1773 Diag(D->getLocation(), diag::note_previous_use);
1777 ElaboratedTypeKeyword Keyword
1778 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1779 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1781 TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1782 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1783 TL.setKeywordLoc(TagLoc);
1784 TL.setQualifierRange(SS.getRange());
1785 TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1786 return CreateParsedType(ElabType, ElabDI);
1789 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1790 LookupResult &R,
1791 bool RequiresADL,
1792 const TemplateArgumentListInfo &TemplateArgs) {
1793 // FIXME: Can we do any checking at this point? I guess we could check the
1794 // template arguments that we have against the template name, if the template
1795 // name refers to a single template. That's not a terribly common case,
1796 // though.
1798 // These should be filtered out by our callers.
1799 assert(!R.empty() && "empty lookup results when building templateid");
1800 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1802 NestedNameSpecifier *Qualifier = 0;
1803 SourceRange QualifierRange;
1804 if (SS.isSet()) {
1805 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1806 QualifierRange = SS.getRange();
1809 // We don't want lookup warnings at this point.
1810 R.suppressDiagnostics();
1812 UnresolvedLookupExpr *ULE
1813 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1814 Qualifier, QualifierRange,
1815 R.getLookupNameInfo(),
1816 RequiresADL, TemplateArgs,
1817 R.begin(), R.end());
1819 return Owned(ULE);
1822 // We actually only call this from template instantiation.
1823 ExprResult
1824 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1825 const DeclarationNameInfo &NameInfo,
1826 const TemplateArgumentListInfo &TemplateArgs) {
1827 DeclContext *DC;
1828 if (!(DC = computeDeclContext(SS, false)) ||
1829 DC->isDependentContext() ||
1830 RequireCompleteDeclContext(SS, DC))
1831 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1833 bool MemberOfUnknownSpecialization;
1834 LookupResult R(*this, NameInfo, LookupOrdinaryName);
1835 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1836 MemberOfUnknownSpecialization);
1838 if (R.isAmbiguous())
1839 return ExprError();
1841 if (R.empty()) {
1842 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1843 << NameInfo.getName() << SS.getRange();
1844 return ExprError();
1847 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1848 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1849 << (NestedNameSpecifier*) SS.getScopeRep()
1850 << NameInfo.getName() << SS.getRange();
1851 Diag(Temp->getLocation(), diag::note_referenced_class_template);
1852 return ExprError();
1855 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1858 /// \brief Form a dependent template name.
1860 /// This action forms a dependent template name given the template
1861 /// name and its (presumably dependent) scope specifier. For
1862 /// example, given "MetaFun::template apply", the scope specifier \p
1863 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1864 /// of the "template" keyword, and "apply" is the \p Name.
1865 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1866 SourceLocation TemplateKWLoc,
1867 CXXScopeSpec &SS,
1868 UnqualifiedId &Name,
1869 ParsedType ObjectType,
1870 bool EnteringContext,
1871 TemplateTy &Result) {
1872 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1873 !getLangOptions().CPlusPlus0x)
1874 Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1875 << FixItHint::CreateRemoval(TemplateKWLoc);
1877 DeclContext *LookupCtx = 0;
1878 if (SS.isSet())
1879 LookupCtx = computeDeclContext(SS, EnteringContext);
1880 if (!LookupCtx && ObjectType)
1881 LookupCtx = computeDeclContext(ObjectType.get());
1882 if (LookupCtx) {
1883 // C++0x [temp.names]p5:
1884 // If a name prefixed by the keyword template is not the name of
1885 // a template, the program is ill-formed. [Note: the keyword
1886 // template may not be applied to non-template members of class
1887 // templates. -end note ] [ Note: as is the case with the
1888 // typename prefix, the template prefix is allowed in cases
1889 // where it is not strictly necessary; i.e., when the
1890 // nested-name-specifier or the expression on the left of the ->
1891 // or . is not dependent on a template-parameter, or the use
1892 // does not appear in the scope of a template. -end note]
1894 // Note: C++03 was more strict here, because it banned the use of
1895 // the "template" keyword prior to a template-name that was not a
1896 // dependent name. C++ DR468 relaxed this requirement (the
1897 // "template" keyword is now permitted). We follow the C++0x
1898 // rules, even in C++03 mode with a warning, retroactively applying the DR.
1899 bool MemberOfUnknownSpecialization;
1900 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1901 ObjectType, EnteringContext, Result,
1902 MemberOfUnknownSpecialization);
1903 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1904 isa<CXXRecordDecl>(LookupCtx) &&
1905 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1906 // This is a dependent template. Handle it below.
1907 } else if (TNK == TNK_Non_template) {
1908 Diag(Name.getSourceRange().getBegin(),
1909 diag::err_template_kw_refers_to_non_template)
1910 << GetNameFromUnqualifiedId(Name).getName()
1911 << Name.getSourceRange()
1912 << TemplateKWLoc;
1913 return TNK_Non_template;
1914 } else {
1915 // We found something; return it.
1916 return TNK;
1920 NestedNameSpecifier *Qualifier
1921 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1923 switch (Name.getKind()) {
1924 case UnqualifiedId::IK_Identifier:
1925 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1926 Name.Identifier));
1927 return TNK_Dependent_template_name;
1929 case UnqualifiedId::IK_OperatorFunctionId:
1930 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1931 Name.OperatorFunctionId.Operator));
1932 return TNK_Dependent_template_name;
1934 case UnqualifiedId::IK_LiteralOperatorId:
1935 assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1937 default:
1938 break;
1941 Diag(Name.getSourceRange().getBegin(),
1942 diag::err_template_kw_refers_to_non_template)
1943 << GetNameFromUnqualifiedId(Name).getName()
1944 << Name.getSourceRange()
1945 << TemplateKWLoc;
1946 return TNK_Non_template;
1949 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1950 const TemplateArgumentLoc &AL,
1951 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1952 const TemplateArgument &Arg = AL.getArgument();
1954 // Check template type parameter.
1955 switch(Arg.getKind()) {
1956 case TemplateArgument::Type:
1957 // C++ [temp.arg.type]p1:
1958 // A template-argument for a template-parameter which is a
1959 // type shall be a type-id.
1960 break;
1961 case TemplateArgument::Template: {
1962 // We have a template type parameter but the template argument
1963 // is a template without any arguments.
1964 SourceRange SR = AL.getSourceRange();
1965 TemplateName Name = Arg.getAsTemplate();
1966 Diag(SR.getBegin(), diag::err_template_missing_args)
1967 << Name << SR;
1968 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1969 Diag(Decl->getLocation(), diag::note_template_decl_here);
1971 return true;
1973 default: {
1974 // We have a template type parameter but the template argument
1975 // is not a type.
1976 SourceRange SR = AL.getSourceRange();
1977 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1978 Diag(Param->getLocation(), diag::note_template_param_here);
1980 return true;
1984 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1985 return true;
1987 // Add the converted template type argument.
1988 Converted.push_back(
1989 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1990 return false;
1993 /// \brief Substitute template arguments into the default template argument for
1994 /// the given template type parameter.
1996 /// \param SemaRef the semantic analysis object for which we are performing
1997 /// the substitution.
1999 /// \param Template the template that we are synthesizing template arguments
2000 /// for.
2002 /// \param TemplateLoc the location of the template name that started the
2003 /// template-id we are checking.
2005 /// \param RAngleLoc the location of the right angle bracket ('>') that
2006 /// terminates the template-id.
2008 /// \param Param the template template parameter whose default we are
2009 /// substituting into.
2011 /// \param Converted the list of template arguments provided for template
2012 /// parameters that precede \p Param in the template parameter list.
2014 /// \returns the substituted template argument, or NULL if an error occurred.
2015 static TypeSourceInfo *
2016 SubstDefaultTemplateArgument(Sema &SemaRef,
2017 TemplateDecl *Template,
2018 SourceLocation TemplateLoc,
2019 SourceLocation RAngleLoc,
2020 TemplateTypeParmDecl *Param,
2021 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2022 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2024 // If the argument type is dependent, instantiate it now based
2025 // on the previously-computed template arguments.
2026 if (ArgType->getType()->isDependentType()) {
2027 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2028 Converted.data(), Converted.size());
2030 MultiLevelTemplateArgumentList AllTemplateArgs
2031 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2033 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2034 Template, Converted.data(),
2035 Converted.size(),
2036 SourceRange(TemplateLoc, RAngleLoc));
2038 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2039 Param->getDefaultArgumentLoc(),
2040 Param->getDeclName());
2043 return ArgType;
2046 /// \brief Substitute template arguments into the default template argument for
2047 /// the given non-type template parameter.
2049 /// \param SemaRef the semantic analysis object for which we are performing
2050 /// the substitution.
2052 /// \param Template the template that we are synthesizing template arguments
2053 /// for.
2055 /// \param TemplateLoc the location of the template name that started the
2056 /// template-id we are checking.
2058 /// \param RAngleLoc the location of the right angle bracket ('>') that
2059 /// terminates the template-id.
2061 /// \param Param the non-type template parameter whose default we are
2062 /// substituting into.
2064 /// \param Converted the list of template arguments provided for template
2065 /// parameters that precede \p Param in the template parameter list.
2067 /// \returns the substituted template argument, or NULL if an error occurred.
2068 static ExprResult
2069 SubstDefaultTemplateArgument(Sema &SemaRef,
2070 TemplateDecl *Template,
2071 SourceLocation TemplateLoc,
2072 SourceLocation RAngleLoc,
2073 NonTypeTemplateParmDecl *Param,
2074 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2075 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2076 Converted.data(), Converted.size());
2078 MultiLevelTemplateArgumentList AllTemplateArgs
2079 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2081 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2082 Template, Converted.data(),
2083 Converted.size(),
2084 SourceRange(TemplateLoc, RAngleLoc));
2086 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2089 /// \brief Substitute template arguments into the default template argument for
2090 /// the given template template parameter.
2092 /// \param SemaRef the semantic analysis object for which we are performing
2093 /// the substitution.
2095 /// \param Template the template that we are synthesizing template arguments
2096 /// for.
2098 /// \param TemplateLoc the location of the template name that started the
2099 /// template-id we are checking.
2101 /// \param RAngleLoc the location of the right angle bracket ('>') that
2102 /// terminates the template-id.
2104 /// \param Param the template template parameter whose default we are
2105 /// substituting into.
2107 /// \param Converted the list of template arguments provided for template
2108 /// parameters that precede \p Param in the template parameter list.
2110 /// \returns the substituted template argument, or NULL if an error occurred.
2111 static TemplateName
2112 SubstDefaultTemplateArgument(Sema &SemaRef,
2113 TemplateDecl *Template,
2114 SourceLocation TemplateLoc,
2115 SourceLocation RAngleLoc,
2116 TemplateTemplateParmDecl *Param,
2117 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2118 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2119 Converted.data(), Converted.size());
2121 MultiLevelTemplateArgumentList AllTemplateArgs
2122 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2124 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2125 Template, Converted.data(),
2126 Converted.size(),
2127 SourceRange(TemplateLoc, RAngleLoc));
2129 return SemaRef.SubstTemplateName(
2130 Param->getDefaultArgument().getArgument().getAsTemplate(),
2131 Param->getDefaultArgument().getTemplateNameLoc(),
2132 AllTemplateArgs);
2135 /// \brief If the given template parameter has a default template
2136 /// argument, substitute into that default template argument and
2137 /// return the corresponding template argument.
2138 TemplateArgumentLoc
2139 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2140 SourceLocation TemplateLoc,
2141 SourceLocation RAngleLoc,
2142 Decl *Param,
2143 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2144 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2145 if (!TypeParm->hasDefaultArgument())
2146 return TemplateArgumentLoc();
2148 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2149 TemplateLoc,
2150 RAngleLoc,
2151 TypeParm,
2152 Converted);
2153 if (DI)
2154 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2156 return TemplateArgumentLoc();
2159 if (NonTypeTemplateParmDecl *NonTypeParm
2160 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2161 if (!NonTypeParm->hasDefaultArgument())
2162 return TemplateArgumentLoc();
2164 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2165 TemplateLoc,
2166 RAngleLoc,
2167 NonTypeParm,
2168 Converted);
2169 if (Arg.isInvalid())
2170 return TemplateArgumentLoc();
2172 Expr *ArgE = Arg.takeAs<Expr>();
2173 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2176 TemplateTemplateParmDecl *TempTempParm
2177 = cast<TemplateTemplateParmDecl>(Param);
2178 if (!TempTempParm->hasDefaultArgument())
2179 return TemplateArgumentLoc();
2181 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2182 TemplateLoc,
2183 RAngleLoc,
2184 TempTempParm,
2185 Converted);
2186 if (TName.isNull())
2187 return TemplateArgumentLoc();
2189 return TemplateArgumentLoc(TemplateArgument(TName),
2190 TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2191 TempTempParm->getDefaultArgument().getTemplateNameLoc());
2194 /// \brief Check that the given template argument corresponds to the given
2195 /// template parameter.
2196 bool Sema::CheckTemplateArgument(NamedDecl *Param,
2197 const TemplateArgumentLoc &Arg,
2198 NamedDecl *Template,
2199 SourceLocation TemplateLoc,
2200 SourceLocation RAngleLoc,
2201 llvm::SmallVectorImpl<TemplateArgument> &Converted,
2202 CheckTemplateArgumentKind CTAK) {
2203 // Check template type parameters.
2204 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2205 return CheckTemplateTypeArgument(TTP, Arg, Converted);
2207 // Check non-type template parameters.
2208 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2209 // Do substitution on the type of the non-type template parameter
2210 // with the template arguments we've seen thus far. But if the
2211 // template has a dependent context then we cannot substitute yet.
2212 QualType NTTPType = NTTP->getType();
2213 if (NTTPType->isDependentType() &&
2214 !isa<TemplateTemplateParmDecl>(Template) &&
2215 !Template->getDeclContext()->isDependentContext()) {
2216 // Do substitution on the type of the non-type template parameter.
2217 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2218 NTTP, Converted.data(), Converted.size(),
2219 SourceRange(TemplateLoc, RAngleLoc));
2221 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2222 Converted.data(), Converted.size());
2223 NTTPType = SubstType(NTTPType,
2224 MultiLevelTemplateArgumentList(TemplateArgs),
2225 NTTP->getLocation(),
2226 NTTP->getDeclName());
2227 // If that worked, check the non-type template parameter type
2228 // for validity.
2229 if (!NTTPType.isNull())
2230 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2231 NTTP->getLocation());
2232 if (NTTPType.isNull())
2233 return true;
2236 switch (Arg.getArgument().getKind()) {
2237 case TemplateArgument::Null:
2238 assert(false && "Should never see a NULL template argument here");
2239 return true;
2241 case TemplateArgument::Expression: {
2242 Expr *E = Arg.getArgument().getAsExpr();
2243 TemplateArgument Result;
2244 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2245 return true;
2247 Converted.push_back(Result);
2248 break;
2251 case TemplateArgument::Declaration:
2252 case TemplateArgument::Integral:
2253 // We've already checked this template argument, so just copy
2254 // it to the list of converted arguments.
2255 Converted.push_back(Arg.getArgument());
2256 break;
2258 case TemplateArgument::Template:
2259 case TemplateArgument::TemplateExpansion:
2260 // We were given a template template argument. It may not be ill-formed;
2261 // see below.
2262 if (DependentTemplateName *DTN
2263 = Arg.getArgument().getAsTemplateOrTemplatePattern()
2264 .getAsDependentTemplateName()) {
2265 // We have a template argument such as \c T::template X, which we
2266 // parsed as a template template argument. However, since we now
2267 // know that we need a non-type template argument, convert this
2268 // template name into an expression.
2270 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2271 Arg.getTemplateNameLoc());
2273 Expr *E = DependentScopeDeclRefExpr::Create(Context,
2274 DTN->getQualifier(),
2275 Arg.getTemplateQualifierRange(),
2276 NameInfo);
2278 // If we parsed the template argument as a pack expansion, create a
2279 // pack expansion expression.
2280 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2281 ExprResult Expansion = ActOnPackExpansion(E,
2282 Arg.getTemplateEllipsisLoc());
2283 if (Expansion.isInvalid())
2284 return true;
2286 E = Expansion.get();
2289 TemplateArgument Result;
2290 if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2291 return true;
2293 Converted.push_back(Result);
2294 break;
2297 // We have a template argument that actually does refer to a class
2298 // template, template alias, or template template parameter, and
2299 // therefore cannot be a non-type template argument.
2300 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2301 << Arg.getSourceRange();
2303 Diag(Param->getLocation(), diag::note_template_param_here);
2304 return true;
2306 case TemplateArgument::Type: {
2307 // We have a non-type template parameter but the template
2308 // argument is a type.
2310 // C++ [temp.arg]p2:
2311 // In a template-argument, an ambiguity between a type-id and
2312 // an expression is resolved to a type-id, regardless of the
2313 // form of the corresponding template-parameter.
2315 // We warn specifically about this case, since it can be rather
2316 // confusing for users.
2317 QualType T = Arg.getArgument().getAsType();
2318 SourceRange SR = Arg.getSourceRange();
2319 if (T->isFunctionType())
2320 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2321 else
2322 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2323 Diag(Param->getLocation(), diag::note_template_param_here);
2324 return true;
2327 case TemplateArgument::Pack:
2328 llvm_unreachable("Caller must expand template argument packs");
2329 break;
2332 return false;
2336 // Check template template parameters.
2337 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2339 // Substitute into the template parameter list of the template
2340 // template parameter, since previously-supplied template arguments
2341 // may appear within the template template parameter.
2343 // Set up a template instantiation context.
2344 LocalInstantiationScope Scope(*this);
2345 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2346 TempParm, Converted.data(), Converted.size(),
2347 SourceRange(TemplateLoc, RAngleLoc));
2349 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2350 Converted.data(), Converted.size());
2351 TempParm = cast_or_null<TemplateTemplateParmDecl>(
2352 SubstDecl(TempParm, CurContext,
2353 MultiLevelTemplateArgumentList(TemplateArgs)));
2354 if (!TempParm)
2355 return true;
2358 switch (Arg.getArgument().getKind()) {
2359 case TemplateArgument::Null:
2360 assert(false && "Should never see a NULL template argument here");
2361 return true;
2363 case TemplateArgument::Template:
2364 case TemplateArgument::TemplateExpansion:
2365 if (CheckTemplateArgument(TempParm, Arg))
2366 return true;
2368 Converted.push_back(Arg.getArgument());
2369 break;
2371 case TemplateArgument::Expression:
2372 case TemplateArgument::Type:
2373 // We have a template template parameter but the template
2374 // argument does not refer to a template.
2375 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2376 return true;
2378 case TemplateArgument::Declaration:
2379 llvm_unreachable(
2380 "Declaration argument with template template parameter");
2381 break;
2382 case TemplateArgument::Integral:
2383 llvm_unreachable(
2384 "Integral argument with template template parameter");
2385 break;
2387 case TemplateArgument::Pack:
2388 llvm_unreachable("Caller must expand template argument packs");
2389 break;
2392 return false;
2395 /// \brief Check that the given template argument list is well-formed
2396 /// for specializing the given template.
2397 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2398 SourceLocation TemplateLoc,
2399 const TemplateArgumentListInfo &TemplateArgs,
2400 bool PartialTemplateArgs,
2401 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2402 TemplateParameterList *Params = Template->getTemplateParameters();
2403 unsigned NumParams = Params->size();
2404 unsigned NumArgs = TemplateArgs.size();
2405 bool Invalid = false;
2407 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2409 bool HasParameterPack =
2410 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2412 if ((NumArgs > NumParams && !HasParameterPack) ||
2413 (NumArgs < Params->getMinRequiredArguments() &&
2414 !PartialTemplateArgs)) {
2415 // FIXME: point at either the first arg beyond what we can handle,
2416 // or the '>', depending on whether we have too many or too few
2417 // arguments.
2418 SourceRange Range;
2419 if (NumArgs > NumParams)
2420 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2421 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2422 << (NumArgs > NumParams)
2423 << (isa<ClassTemplateDecl>(Template)? 0 :
2424 isa<FunctionTemplateDecl>(Template)? 1 :
2425 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2426 << Template << Range;
2427 Diag(Template->getLocation(), diag::note_template_decl_here)
2428 << Params->getSourceRange();
2429 Invalid = true;
2432 // C++ [temp.arg]p1:
2433 // [...] The type and form of each template-argument specified in
2434 // a template-id shall match the type and form specified for the
2435 // corresponding parameter declared by the template in its
2436 // template-parameter-list.
2437 llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2438 TemplateParameterList::iterator Param = Params->begin(),
2439 ParamEnd = Params->end();
2440 unsigned ArgIdx = 0;
2441 while (Param != ParamEnd) {
2442 if (ArgIdx > NumArgs && PartialTemplateArgs)
2443 break;
2445 if (ArgIdx < NumArgs) {
2446 // Check the template argument we were given.
2447 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2448 TemplateLoc, RAngleLoc, Converted))
2449 return true;
2451 if ((*Param)->isTemplateParameterPack()) {
2452 // The template parameter was a template parameter pack, so take the
2453 // deduced argument and place it on the argument pack. Note that we
2454 // stay on the same template parameter so that we can deduce more
2455 // arguments.
2456 ArgumentPack.push_back(Converted.back());
2457 Converted.pop_back();
2458 } else {
2459 // Move to the next template parameter.
2460 ++Param;
2462 ++ArgIdx;
2463 continue;
2466 // If we have a template parameter pack with no more corresponding
2467 // arguments, just break out now and we'll fill in the argument pack below.
2468 if ((*Param)->isTemplateParameterPack())
2469 break;
2471 // We have a default template argument that we will use.
2472 TemplateArgumentLoc Arg;
2474 // Retrieve the default template argument from the template
2475 // parameter. For each kind of template parameter, we substitute the
2476 // template arguments provided thus far and any "outer" template arguments
2477 // (when the template parameter was part of a nested template) into
2478 // the default argument.
2479 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2480 if (!TTP->hasDefaultArgument()) {
2481 assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2482 break;
2485 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2486 Template,
2487 TemplateLoc,
2488 RAngleLoc,
2489 TTP,
2490 Converted);
2491 if (!ArgType)
2492 return true;
2494 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2495 ArgType);
2496 } else if (NonTypeTemplateParmDecl *NTTP
2497 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2498 if (!NTTP->hasDefaultArgument()) {
2499 assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2500 break;
2503 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2504 TemplateLoc,
2505 RAngleLoc,
2506 NTTP,
2507 Converted);
2508 if (E.isInvalid())
2509 return true;
2511 Expr *Ex = E.takeAs<Expr>();
2512 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2513 } else {
2514 TemplateTemplateParmDecl *TempParm
2515 = cast<TemplateTemplateParmDecl>(*Param);
2517 if (!TempParm->hasDefaultArgument()) {
2518 assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2519 break;
2522 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2523 TemplateLoc,
2524 RAngleLoc,
2525 TempParm,
2526 Converted);
2527 if (Name.isNull())
2528 return true;
2530 Arg = TemplateArgumentLoc(TemplateArgument(Name),
2531 TempParm->getDefaultArgument().getTemplateQualifierRange(),
2532 TempParm->getDefaultArgument().getTemplateNameLoc());
2535 // Introduce an instantiation record that describes where we are using
2536 // the default template argument.
2537 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2538 Converted.data(), Converted.size(),
2539 SourceRange(TemplateLoc, RAngleLoc));
2541 // Check the default template argument.
2542 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2543 RAngleLoc, Converted))
2544 return true;
2546 // Move to the next template parameter and argument.
2547 ++Param;
2548 ++ArgIdx;
2551 // Form argument packs for each of the parameter packs remaining.
2552 while (Param != ParamEnd) {
2553 // If we're checking a partial list of template arguments, don't fill
2554 // in arguments for non-template parameter packs.
2556 if ((*Param)->isTemplateParameterPack()) {
2557 if (PartialTemplateArgs && ArgumentPack.empty()) {
2558 Converted.push_back(TemplateArgument());
2559 } else if (ArgumentPack.empty())
2560 Converted.push_back(TemplateArgument(0, 0));
2561 else {
2562 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2563 ArgumentPack.data(),
2564 ArgumentPack.size()));
2565 ArgumentPack.clear();
2569 ++Param;
2572 return Invalid;
2575 namespace {
2576 class UnnamedLocalNoLinkageFinder
2577 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2579 Sema &S;
2580 SourceRange SR;
2582 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2584 public:
2585 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2587 bool Visit(QualType T) {
2588 return inherited::Visit(T.getTypePtr());
2591 #define TYPE(Class, Parent) \
2592 bool Visit##Class##Type(const Class##Type *);
2593 #define ABSTRACT_TYPE(Class, Parent) \
2594 bool Visit##Class##Type(const Class##Type *) { return false; }
2595 #define NON_CANONICAL_TYPE(Class, Parent) \
2596 bool Visit##Class##Type(const Class##Type *) { return false; }
2597 #include "clang/AST/TypeNodes.def"
2599 bool VisitTagDecl(const TagDecl *Tag);
2600 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2604 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2605 return false;
2608 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2609 return Visit(T->getElementType());
2612 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2613 return Visit(T->getPointeeType());
2616 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2617 const BlockPointerType* T) {
2618 return Visit(T->getPointeeType());
2621 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2622 const LValueReferenceType* T) {
2623 return Visit(T->getPointeeType());
2626 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2627 const RValueReferenceType* T) {
2628 return Visit(T->getPointeeType());
2631 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2632 const MemberPointerType* T) {
2633 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2636 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2637 const ConstantArrayType* T) {
2638 return Visit(T->getElementType());
2641 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2642 const IncompleteArrayType* T) {
2643 return Visit(T->getElementType());
2646 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2647 const VariableArrayType* T) {
2648 return Visit(T->getElementType());
2651 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2652 const DependentSizedArrayType* T) {
2653 return Visit(T->getElementType());
2656 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2657 const DependentSizedExtVectorType* T) {
2658 return Visit(T->getElementType());
2661 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2662 return Visit(T->getElementType());
2665 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2666 return Visit(T->getElementType());
2669 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2670 const FunctionProtoType* T) {
2671 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2672 AEnd = T->arg_type_end();
2673 A != AEnd; ++A) {
2674 if (Visit(*A))
2675 return true;
2678 return Visit(T->getResultType());
2681 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2682 const FunctionNoProtoType* T) {
2683 return Visit(T->getResultType());
2686 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2687 const UnresolvedUsingType*) {
2688 return false;
2691 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2692 return false;
2695 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2696 return Visit(T->getUnderlyingType());
2699 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2700 return false;
2703 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2704 return VisitTagDecl(T->getDecl());
2707 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2708 return VisitTagDecl(T->getDecl());
2711 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2712 const TemplateTypeParmType*) {
2713 return false;
2716 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2717 const TemplateSpecializationType*) {
2718 return false;
2721 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2722 const InjectedClassNameType* T) {
2723 return VisitTagDecl(T->getDecl());
2726 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2727 const DependentNameType* T) {
2728 return VisitNestedNameSpecifier(T->getQualifier());
2731 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2732 const DependentTemplateSpecializationType* T) {
2733 return VisitNestedNameSpecifier(T->getQualifier());
2736 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2737 const PackExpansionType* T) {
2738 return Visit(T->getPattern());
2741 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2742 return false;
2745 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2746 const ObjCInterfaceType *) {
2747 return false;
2750 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2751 const ObjCObjectPointerType *) {
2752 return false;
2755 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2756 if (Tag->getDeclContext()->isFunctionOrMethod()) {
2757 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2758 << S.Context.getTypeDeclType(Tag) << SR;
2759 return true;
2762 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2763 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2764 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2765 return true;
2768 return false;
2771 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2772 NestedNameSpecifier *NNS) {
2773 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2774 return true;
2776 switch (NNS->getKind()) {
2777 case NestedNameSpecifier::Identifier:
2778 case NestedNameSpecifier::Namespace:
2779 case NestedNameSpecifier::Global:
2780 return false;
2782 case NestedNameSpecifier::TypeSpec:
2783 case NestedNameSpecifier::TypeSpecWithTemplate:
2784 return Visit(QualType(NNS->getAsType(), 0));
2786 return false;
2790 /// \brief Check a template argument against its corresponding
2791 /// template type parameter.
2793 /// This routine implements the semantics of C++ [temp.arg.type]. It
2794 /// returns true if an error occurred, and false otherwise.
2795 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2796 TypeSourceInfo *ArgInfo) {
2797 assert(ArgInfo && "invalid TypeSourceInfo");
2798 QualType Arg = ArgInfo->getType();
2799 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2801 if (Arg->isVariablyModifiedType()) {
2802 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2803 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2804 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2807 // C++03 [temp.arg.type]p2:
2808 // A local type, a type with no linkage, an unnamed type or a type
2809 // compounded from any of these types shall not be used as a
2810 // template-argument for a template type-parameter.
2812 // C++0x allows these, and even in C++03 we allow them as an extension with
2813 // a warning.
2814 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2815 UnnamedLocalNoLinkageFinder Finder(*this, SR);
2816 (void)Finder.Visit(Context.getCanonicalType(Arg));
2819 return false;
2822 /// \brief Checks whether the given template argument is the address
2823 /// of an object or function according to C++ [temp.arg.nontype]p1.
2824 static bool
2825 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2826 NonTypeTemplateParmDecl *Param,
2827 QualType ParamType,
2828 Expr *ArgIn,
2829 TemplateArgument &Converted) {
2830 bool Invalid = false;
2831 Expr *Arg = ArgIn;
2832 QualType ArgType = Arg->getType();
2834 // See through any implicit casts we added to fix the type.
2835 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2836 Arg = Cast->getSubExpr();
2838 // C++ [temp.arg.nontype]p1:
2840 // A template-argument for a non-type, non-template
2841 // template-parameter shall be one of: [...]
2843 // -- the address of an object or function with external
2844 // linkage, including function templates and function
2845 // template-ids but excluding non-static class members,
2846 // expressed as & id-expression where the & is optional if
2847 // the name refers to a function or array, or if the
2848 // corresponding template-parameter is a reference; or
2849 DeclRefExpr *DRE = 0;
2851 // In C++98/03 mode, give an extension warning on any extra parentheses.
2852 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2853 bool ExtraParens = false;
2854 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2855 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2856 S.Diag(Arg->getSourceRange().getBegin(),
2857 diag::ext_template_arg_extra_parens)
2858 << Arg->getSourceRange();
2859 ExtraParens = true;
2862 Arg = Parens->getSubExpr();
2865 bool AddressTaken = false;
2866 SourceLocation AddrOpLoc;
2867 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2868 if (UnOp->getOpcode() == UO_AddrOf) {
2869 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2870 AddressTaken = true;
2871 AddrOpLoc = UnOp->getOperatorLoc();
2873 } else
2874 DRE = dyn_cast<DeclRefExpr>(Arg);
2876 if (!DRE) {
2877 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2878 << Arg->getSourceRange();
2879 S.Diag(Param->getLocation(), diag::note_template_param_here);
2880 return true;
2883 // Stop checking the precise nature of the argument if it is value dependent,
2884 // it should be checked when instantiated.
2885 if (Arg->isValueDependent()) {
2886 Converted = TemplateArgument(ArgIn);
2887 return false;
2890 if (!isa<ValueDecl>(DRE->getDecl())) {
2891 S.Diag(Arg->getSourceRange().getBegin(),
2892 diag::err_template_arg_not_object_or_func_form)
2893 << Arg->getSourceRange();
2894 S.Diag(Param->getLocation(), diag::note_template_param_here);
2895 return true;
2898 NamedDecl *Entity = 0;
2900 // Cannot refer to non-static data members
2901 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2902 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2903 << Field << Arg->getSourceRange();
2904 S.Diag(Param->getLocation(), diag::note_template_param_here);
2905 return true;
2908 // Cannot refer to non-static member functions
2909 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2910 if (!Method->isStatic()) {
2911 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2912 << Method << Arg->getSourceRange();
2913 S.Diag(Param->getLocation(), diag::note_template_param_here);
2914 return true;
2917 // Functions must have external linkage.
2918 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2919 if (!isExternalLinkage(Func->getLinkage())) {
2920 S.Diag(Arg->getSourceRange().getBegin(),
2921 diag::err_template_arg_function_not_extern)
2922 << Func << Arg->getSourceRange();
2923 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2924 << true;
2925 return true;
2928 // Okay: we've named a function with external linkage.
2929 Entity = Func;
2931 // If the template parameter has pointer type, the function decays.
2932 if (ParamType->isPointerType() && !AddressTaken)
2933 ArgType = S.Context.getPointerType(Func->getType());
2934 else if (AddressTaken && ParamType->isReferenceType()) {
2935 // If we originally had an address-of operator, but the
2936 // parameter has reference type, complain and (if things look
2937 // like they will work) drop the address-of operator.
2938 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2939 ParamType.getNonReferenceType())) {
2940 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2941 << ParamType;
2942 S.Diag(Param->getLocation(), diag::note_template_param_here);
2943 return true;
2946 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2947 << ParamType
2948 << FixItHint::CreateRemoval(AddrOpLoc);
2949 S.Diag(Param->getLocation(), diag::note_template_param_here);
2951 ArgType = Func->getType();
2953 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2954 if (!isExternalLinkage(Var->getLinkage())) {
2955 S.Diag(Arg->getSourceRange().getBegin(),
2956 diag::err_template_arg_object_not_extern)
2957 << Var << Arg->getSourceRange();
2958 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2959 << true;
2960 return true;
2963 // A value of reference type is not an object.
2964 if (Var->getType()->isReferenceType()) {
2965 S.Diag(Arg->getSourceRange().getBegin(),
2966 diag::err_template_arg_reference_var)
2967 << Var->getType() << Arg->getSourceRange();
2968 S.Diag(Param->getLocation(), diag::note_template_param_here);
2969 return true;
2972 // Okay: we've named an object with external linkage
2973 Entity = Var;
2975 // If the template parameter has pointer type, we must have taken
2976 // the address of this object.
2977 if (ParamType->isReferenceType()) {
2978 if (AddressTaken) {
2979 // If we originally had an address-of operator, but the
2980 // parameter has reference type, complain and (if things look
2981 // like they will work) drop the address-of operator.
2982 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2983 ParamType.getNonReferenceType())) {
2984 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2985 << ParamType;
2986 S.Diag(Param->getLocation(), diag::note_template_param_here);
2987 return true;
2990 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2991 << ParamType
2992 << FixItHint::CreateRemoval(AddrOpLoc);
2993 S.Diag(Param->getLocation(), diag::note_template_param_here);
2995 ArgType = Var->getType();
2997 } else if (!AddressTaken && ParamType->isPointerType()) {
2998 if (Var->getType()->isArrayType()) {
2999 // Array-to-pointer decay.
3000 ArgType = S.Context.getArrayDecayedType(Var->getType());
3001 } else {
3002 // If the template parameter has pointer type but the address of
3003 // this object was not taken, complain and (possibly) recover by
3004 // taking the address of the entity.
3005 ArgType = S.Context.getPointerType(Var->getType());
3006 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3007 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3008 << ParamType;
3009 S.Diag(Param->getLocation(), diag::note_template_param_here);
3010 return true;
3013 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3014 << ParamType
3015 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3017 S.Diag(Param->getLocation(), diag::note_template_param_here);
3020 } else {
3021 // We found something else, but we don't know specifically what it is.
3022 S.Diag(Arg->getSourceRange().getBegin(),
3023 diag::err_template_arg_not_object_or_func)
3024 << Arg->getSourceRange();
3025 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3026 return true;
3029 if (ParamType->isPointerType() &&
3030 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3031 S.IsQualificationConversion(ArgType, ParamType)) {
3032 // For pointer-to-object types, qualification conversions are
3033 // permitted.
3034 } else {
3035 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3036 if (!ParamRef->getPointeeType()->isFunctionType()) {
3037 // C++ [temp.arg.nontype]p5b3:
3038 // For a non-type template-parameter of type reference to
3039 // object, no conversions apply. The type referred to by the
3040 // reference may be more cv-qualified than the (otherwise
3041 // identical) type of the template- argument. The
3042 // template-parameter is bound directly to the
3043 // template-argument, which shall be an lvalue.
3045 // FIXME: Other qualifiers?
3046 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3047 unsigned ArgQuals = ArgType.getCVRQualifiers();
3049 if ((ParamQuals | ArgQuals) != ParamQuals) {
3050 S.Diag(Arg->getSourceRange().getBegin(),
3051 diag::err_template_arg_ref_bind_ignores_quals)
3052 << ParamType << Arg->getType()
3053 << Arg->getSourceRange();
3054 S.Diag(Param->getLocation(), diag::note_template_param_here);
3055 return true;
3060 // At this point, the template argument refers to an object or
3061 // function with external linkage. We now need to check whether the
3062 // argument and parameter types are compatible.
3063 if (!S.Context.hasSameUnqualifiedType(ArgType,
3064 ParamType.getNonReferenceType())) {
3065 // We can't perform this conversion or binding.
3066 if (ParamType->isReferenceType())
3067 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3068 << ParamType << Arg->getType() << Arg->getSourceRange();
3069 else
3070 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3071 << Arg->getType() << ParamType << Arg->getSourceRange();
3072 S.Diag(Param->getLocation(), diag::note_template_param_here);
3073 return true;
3077 // Create the template argument.
3078 Converted = TemplateArgument(Entity->getCanonicalDecl());
3079 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3080 return false;
3083 /// \brief Checks whether the given template argument is a pointer to
3084 /// member constant according to C++ [temp.arg.nontype]p1.
3085 bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3086 TemplateArgument &Converted) {
3087 bool Invalid = false;
3089 // See through any implicit casts we added to fix the type.
3090 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3091 Arg = Cast->getSubExpr();
3093 // C++ [temp.arg.nontype]p1:
3095 // A template-argument for a non-type, non-template
3096 // template-parameter shall be one of: [...]
3098 // -- a pointer to member expressed as described in 5.3.1.
3099 DeclRefExpr *DRE = 0;
3101 // In C++98/03 mode, give an extension warning on any extra parentheses.
3102 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3103 bool ExtraParens = false;
3104 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3105 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3106 Diag(Arg->getSourceRange().getBegin(),
3107 diag::ext_template_arg_extra_parens)
3108 << Arg->getSourceRange();
3109 ExtraParens = true;
3112 Arg = Parens->getSubExpr();
3115 // A pointer-to-member constant written &Class::member.
3116 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3117 if (UnOp->getOpcode() == UO_AddrOf) {
3118 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3119 if (DRE && !DRE->getQualifier())
3120 DRE = 0;
3123 // A constant of pointer-to-member type.
3124 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3125 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3126 if (VD->getType()->isMemberPointerType()) {
3127 if (isa<NonTypeTemplateParmDecl>(VD) ||
3128 (isa<VarDecl>(VD) &&
3129 Context.getCanonicalType(VD->getType()).isConstQualified())) {
3130 if (Arg->isTypeDependent() || Arg->isValueDependent())
3131 Converted = TemplateArgument(Arg);
3132 else
3133 Converted = TemplateArgument(VD->getCanonicalDecl());
3134 return Invalid;
3139 DRE = 0;
3142 if (!DRE)
3143 return Diag(Arg->getSourceRange().getBegin(),
3144 diag::err_template_arg_not_pointer_to_member_form)
3145 << Arg->getSourceRange();
3147 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3148 assert((isa<FieldDecl>(DRE->getDecl()) ||
3149 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3150 "Only non-static member pointers can make it here");
3152 // Okay: this is the address of a non-static member, and therefore
3153 // a member pointer constant.
3154 if (Arg->isTypeDependent() || Arg->isValueDependent())
3155 Converted = TemplateArgument(Arg);
3156 else
3157 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3158 return Invalid;
3161 // We found something else, but we don't know specifically what it is.
3162 Diag(Arg->getSourceRange().getBegin(),
3163 diag::err_template_arg_not_pointer_to_member_form)
3164 << Arg->getSourceRange();
3165 Diag(DRE->getDecl()->getLocation(),
3166 diag::note_template_arg_refers_here);
3167 return true;
3170 /// \brief Check a template argument against its corresponding
3171 /// non-type template parameter.
3173 /// This routine implements the semantics of C++ [temp.arg.nontype].
3174 /// It returns true if an error occurred, and false otherwise. \p
3175 /// InstantiatedParamType is the type of the non-type template
3176 /// parameter after it has been instantiated.
3178 /// If no error was detected, Converted receives the converted template argument.
3179 bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3180 QualType InstantiatedParamType, Expr *&Arg,
3181 TemplateArgument &Converted,
3182 CheckTemplateArgumentKind CTAK) {
3183 SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3185 // If either the parameter has a dependent type or the argument is
3186 // type-dependent, there's nothing we can check now.
3187 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3188 // FIXME: Produce a cloned, canonical expression?
3189 Converted = TemplateArgument(Arg);
3190 return false;
3193 // C++ [temp.arg.nontype]p5:
3194 // The following conversions are performed on each expression used
3195 // as a non-type template-argument. If a non-type
3196 // template-argument cannot be converted to the type of the
3197 // corresponding template-parameter then the program is
3198 // ill-formed.
3200 // -- for a non-type template-parameter of integral or
3201 // enumeration type, integral promotions (4.5) and integral
3202 // conversions (4.7) are applied.
3203 QualType ParamType = InstantiatedParamType;
3204 QualType ArgType = Arg->getType();
3205 if (ParamType->isIntegralOrEnumerationType()) {
3206 // C++ [temp.arg.nontype]p1:
3207 // A template-argument for a non-type, non-template
3208 // template-parameter shall be one of:
3210 // -- an integral constant-expression of integral or enumeration
3211 // type; or
3212 // -- the name of a non-type template-parameter; or
3213 SourceLocation NonConstantLoc;
3214 llvm::APSInt Value;
3215 if (!ArgType->isIntegralOrEnumerationType()) {
3216 Diag(Arg->getSourceRange().getBegin(),
3217 diag::err_template_arg_not_integral_or_enumeral)
3218 << ArgType << Arg->getSourceRange();
3219 Diag(Param->getLocation(), diag::note_template_param_here);
3220 return true;
3221 } else if (!Arg->isValueDependent() &&
3222 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3223 Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3224 << ArgType << Arg->getSourceRange();
3225 return true;
3228 // From here on out, all we care about are the unqualified forms
3229 // of the parameter and argument types.
3230 ParamType = ParamType.getUnqualifiedType();
3231 ArgType = ArgType.getUnqualifiedType();
3233 // Try to convert the argument to the parameter's type.
3234 if (Context.hasSameType(ParamType, ArgType)) {
3235 // Okay: no conversion necessary
3236 } else if (CTAK == CTAK_Deduced) {
3237 // C++ [temp.deduct.type]p17:
3238 // If, in the declaration of a function template with a non-type
3239 // template-parameter, the non-type template- parameter is used
3240 // in an expression in the function parameter-list and, if the
3241 // corresponding template-argument is deduced, the
3242 // template-argument type shall match the type of the
3243 // template-parameter exactly, except that a template-argument
3244 // deduced from an array bound may be of any integral type.
3245 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3246 << ArgType << ParamType;
3247 Diag(Param->getLocation(), diag::note_template_param_here);
3248 return true;
3249 } else if (ParamType->isBooleanType()) {
3250 // This is an integral-to-boolean conversion.
3251 ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3252 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3253 !ParamType->isEnumeralType()) {
3254 // This is an integral promotion or conversion.
3255 ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3256 } else {
3257 // We can't perform this conversion.
3258 Diag(Arg->getSourceRange().getBegin(),
3259 diag::err_template_arg_not_convertible)
3260 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3261 Diag(Param->getLocation(), diag::note_template_param_here);
3262 return true;
3265 QualType IntegerType = Context.getCanonicalType(ParamType);
3266 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3267 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3269 if (!Arg->isValueDependent()) {
3270 llvm::APSInt OldValue = Value;
3272 // Coerce the template argument's value to the value it will have
3273 // based on the template parameter's type.
3274 unsigned AllowedBits = Context.getTypeSize(IntegerType);
3275 if (Value.getBitWidth() != AllowedBits)
3276 Value = Value.extOrTrunc(AllowedBits);
3277 Value.setIsSigned(IntegerType->isSignedIntegerType());
3279 // Complain if an unsigned parameter received a negative value.
3280 if (IntegerType->isUnsignedIntegerType()
3281 && (OldValue.isSigned() && OldValue.isNegative())) {
3282 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3283 << OldValue.toString(10) << Value.toString(10) << Param->getType()
3284 << Arg->getSourceRange();
3285 Diag(Param->getLocation(), diag::note_template_param_here);
3288 // Complain if we overflowed the template parameter's type.
3289 unsigned RequiredBits;
3290 if (IntegerType->isUnsignedIntegerType())
3291 RequiredBits = OldValue.getActiveBits();
3292 else if (OldValue.isUnsigned())
3293 RequiredBits = OldValue.getActiveBits() + 1;
3294 else
3295 RequiredBits = OldValue.getMinSignedBits();
3296 if (RequiredBits > AllowedBits) {
3297 Diag(Arg->getSourceRange().getBegin(),
3298 diag::warn_template_arg_too_large)
3299 << OldValue.toString(10) << Value.toString(10) << Param->getType()
3300 << Arg->getSourceRange();
3301 Diag(Param->getLocation(), diag::note_template_param_here);
3305 // Add the value of this argument to the list of converted
3306 // arguments. We use the bitwidth and signedness of the template
3307 // parameter.
3308 if (Arg->isValueDependent()) {
3309 // The argument is value-dependent. Create a new
3310 // TemplateArgument with the converted expression.
3311 Converted = TemplateArgument(Arg);
3312 return false;
3315 Converted = TemplateArgument(Value,
3316 ParamType->isEnumeralType() ? ParamType
3317 : IntegerType);
3318 return false;
3321 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3323 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3324 // from a template argument of type std::nullptr_t to a non-type
3325 // template parameter of type pointer to object, pointer to
3326 // function, or pointer-to-member, respectively.
3327 if (ArgType->isNullPtrType() &&
3328 (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3329 Converted = TemplateArgument((NamedDecl *)0);
3330 return false;
3333 // Handle pointer-to-function, reference-to-function, and
3334 // pointer-to-member-function all in (roughly) the same way.
3335 if (// -- For a non-type template-parameter of type pointer to
3336 // function, only the function-to-pointer conversion (4.3) is
3337 // applied. If the template-argument represents a set of
3338 // overloaded functions (or a pointer to such), the matching
3339 // function is selected from the set (13.4).
3340 (ParamType->isPointerType() &&
3341 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3342 // -- For a non-type template-parameter of type reference to
3343 // function, no conversions apply. If the template-argument
3344 // represents a set of overloaded functions, the matching
3345 // function is selected from the set (13.4).
3346 (ParamType->isReferenceType() &&
3347 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3348 // -- For a non-type template-parameter of type pointer to
3349 // member function, no conversions apply. If the
3350 // template-argument represents a set of overloaded member
3351 // functions, the matching member function is selected from
3352 // the set (13.4).
3353 (ParamType->isMemberPointerType() &&
3354 ParamType->getAs<MemberPointerType>()->getPointeeType()
3355 ->isFunctionType())) {
3357 if (Arg->getType() == Context.OverloadTy) {
3358 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3359 true,
3360 FoundResult)) {
3361 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3362 return true;
3364 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3365 ArgType = Arg->getType();
3366 } else
3367 return true;
3370 if (!ParamType->isMemberPointerType())
3371 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3372 ParamType,
3373 Arg, Converted);
3375 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3376 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3377 } else if (!Context.hasSameUnqualifiedType(ArgType,
3378 ParamType.getNonReferenceType())) {
3379 // We can't perform this conversion.
3380 Diag(Arg->getSourceRange().getBegin(),
3381 diag::err_template_arg_not_convertible)
3382 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3383 Diag(Param->getLocation(), diag::note_template_param_here);
3384 return true;
3387 return CheckTemplateArgumentPointerToMember(Arg, Converted);
3390 if (ParamType->isPointerType()) {
3391 // -- for a non-type template-parameter of type pointer to
3392 // object, qualification conversions (4.4) and the
3393 // array-to-pointer conversion (4.2) are applied.
3394 // C++0x also allows a value of std::nullptr_t.
3395 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3396 "Only object pointers allowed here");
3398 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3399 ParamType,
3400 Arg, Converted);
3403 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3404 // -- For a non-type template-parameter of type reference to
3405 // object, no conversions apply. The type referred to by the
3406 // reference may be more cv-qualified than the (otherwise
3407 // identical) type of the template-argument. The
3408 // template-parameter is bound directly to the
3409 // template-argument, which must be an lvalue.
3410 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3411 "Only object references allowed here");
3413 if (Arg->getType() == Context.OverloadTy) {
3414 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3415 ParamRefType->getPointeeType(),
3416 true,
3417 FoundResult)) {
3418 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3419 return true;
3421 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3422 ArgType = Arg->getType();
3423 } else
3424 return true;
3427 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3428 ParamType,
3429 Arg, Converted);
3432 // -- For a non-type template-parameter of type pointer to data
3433 // member, qualification conversions (4.4) are applied.
3434 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3436 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3437 // Types match exactly: nothing more to do here.
3438 } else if (IsQualificationConversion(ArgType, ParamType)) {
3439 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3440 } else {
3441 // We can't perform this conversion.
3442 Diag(Arg->getSourceRange().getBegin(),
3443 diag::err_template_arg_not_convertible)
3444 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3445 Diag(Param->getLocation(), diag::note_template_param_here);
3446 return true;
3449 return CheckTemplateArgumentPointerToMember(Arg, Converted);
3452 /// \brief Check a template argument against its corresponding
3453 /// template template parameter.
3455 /// This routine implements the semantics of C++ [temp.arg.template].
3456 /// It returns true if an error occurred, and false otherwise.
3457 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3458 const TemplateArgumentLoc &Arg) {
3459 TemplateName Name = Arg.getArgument().getAsTemplate();
3460 TemplateDecl *Template = Name.getAsTemplateDecl();
3461 if (!Template) {
3462 // Any dependent template name is fine.
3463 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3464 return false;
3467 // C++ [temp.arg.template]p1:
3468 // A template-argument for a template template-parameter shall be
3469 // the name of a class template, expressed as id-expression. Only
3470 // primary class templates are considered when matching the
3471 // template template argument with the corresponding parameter;
3472 // partial specializations are not considered even if their
3473 // parameter lists match that of the template template parameter.
3475 // Note that we also allow template template parameters here, which
3476 // will happen when we are dealing with, e.g., class template
3477 // partial specializations.
3478 if (!isa<ClassTemplateDecl>(Template) &&
3479 !isa<TemplateTemplateParmDecl>(Template)) {
3480 assert(isa<FunctionTemplateDecl>(Template) &&
3481 "Only function templates are possible here");
3482 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3483 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3484 << Template;
3487 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3488 Param->getTemplateParameters(),
3489 true,
3490 TPL_TemplateTemplateArgumentMatch,
3491 Arg.getLocation());
3494 /// \brief Given a non-type template argument that refers to a
3495 /// declaration and the type of its corresponding non-type template
3496 /// parameter, produce an expression that properly refers to that
3497 /// declaration.
3498 ExprResult
3499 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3500 QualType ParamType,
3501 SourceLocation Loc) {
3502 assert(Arg.getKind() == TemplateArgument::Declaration &&
3503 "Only declaration template arguments permitted here");
3504 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3506 if (VD->getDeclContext()->isRecord() &&
3507 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3508 // If the value is a class member, we might have a pointer-to-member.
3509 // Determine whether the non-type template template parameter is of
3510 // pointer-to-member type. If so, we need to build an appropriate
3511 // expression for a pointer-to-member, since a "normal" DeclRefExpr
3512 // would refer to the member itself.
3513 if (ParamType->isMemberPointerType()) {
3514 QualType ClassType
3515 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3516 NestedNameSpecifier *Qualifier
3517 = NestedNameSpecifier::Create(Context, 0, false,
3518 ClassType.getTypePtr());
3519 CXXScopeSpec SS;
3520 SS.setScopeRep(Qualifier);
3522 // The actual value-ness of this is unimportant, but for
3523 // internal consistency's sake, references to instance methods
3524 // are r-values.
3525 ExprValueKind VK = VK_LValue;
3526 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3527 VK = VK_RValue;
3529 ExprResult RefExpr = BuildDeclRefExpr(VD,
3530 VD->getType().getNonReferenceType(),
3532 Loc,
3533 &SS);
3534 if (RefExpr.isInvalid())
3535 return ExprError();
3537 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3539 // We might need to perform a trailing qualification conversion, since
3540 // the element type on the parameter could be more qualified than the
3541 // element type in the expression we constructed.
3542 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3543 ParamType.getUnqualifiedType())) {
3544 Expr *RefE = RefExpr.takeAs<Expr>();
3545 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3546 RefExpr = Owned(RefE);
3549 assert(!RefExpr.isInvalid() &&
3550 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3551 ParamType.getUnqualifiedType()));
3552 return move(RefExpr);
3556 QualType T = VD->getType().getNonReferenceType();
3557 if (ParamType->isPointerType()) {
3558 // When the non-type template parameter is a pointer, take the
3559 // address of the declaration.
3560 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3561 if (RefExpr.isInvalid())
3562 return ExprError();
3564 if (T->isFunctionType() || T->isArrayType()) {
3565 // Decay functions and arrays.
3566 Expr *RefE = (Expr *)RefExpr.get();
3567 DefaultFunctionArrayConversion(RefE);
3568 if (RefE != RefExpr.get()) {
3569 RefExpr.release();
3570 RefExpr = Owned(RefE);
3573 return move(RefExpr);
3576 // Take the address of everything else
3577 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3580 ExprValueKind VK = VK_RValue;
3582 // If the non-type template parameter has reference type, qualify the
3583 // resulting declaration reference with the extra qualifiers on the
3584 // type that the reference refers to.
3585 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3586 VK = VK_LValue;
3587 T = Context.getQualifiedType(T,
3588 TargetRef->getPointeeType().getQualifiers());
3591 return BuildDeclRefExpr(VD, T, VK, Loc);
3594 /// \brief Construct a new expression that refers to the given
3595 /// integral template argument with the given source-location
3596 /// information.
3598 /// This routine takes care of the mapping from an integral template
3599 /// argument (which may have any integral type) to the appropriate
3600 /// literal value.
3601 ExprResult
3602 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3603 SourceLocation Loc) {
3604 assert(Arg.getKind() == TemplateArgument::Integral &&
3605 "Operation is only valid for integral template arguments");
3606 QualType T = Arg.getIntegralType();
3607 if (T->isCharType() || T->isWideCharType())
3608 return Owned(new (Context) CharacterLiteral(
3609 Arg.getAsIntegral()->getZExtValue(),
3610 T->isWideCharType(),
3612 Loc));
3613 if (T->isBooleanType())
3614 return Owned(new (Context) CXXBoolLiteralExpr(
3615 Arg.getAsIntegral()->getBoolValue(),
3617 Loc));
3619 QualType BT;
3620 if (const EnumType *ET = T->getAs<EnumType>())
3621 BT = ET->getDecl()->getPromotionType();
3622 else
3623 BT = T;
3625 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3626 ImpCastExprToType(E, T, CK_IntegralCast);
3628 return Owned(E);
3631 /// \brief Match two template parameters within template parameter lists.
3632 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
3633 bool Complain,
3634 Sema::TemplateParameterListEqualKind Kind,
3635 SourceLocation TemplateArgLoc) {
3636 // Check the actual kind (type, non-type, template).
3637 if (Old->getKind() != New->getKind()) {
3638 if (Complain) {
3639 unsigned NextDiag = diag::err_template_param_different_kind;
3640 if (TemplateArgLoc.isValid()) {
3641 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3642 NextDiag = diag::note_template_param_different_kind;
3644 S.Diag(New->getLocation(), NextDiag)
3645 << (Kind != Sema::TPL_TemplateMatch);
3646 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
3647 << (Kind != Sema::TPL_TemplateMatch);
3650 return false;
3653 // Check that both are parameter packs are neither are parameter packs.
3654 // However, if we are matching a template template argument to a
3655 // template template parameter, the template template parameter can have
3656 // a parameter pack where the template template argument does not.
3657 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
3658 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3659 Old->isTemplateParameterPack())) {
3660 if (Complain) {
3661 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3662 if (TemplateArgLoc.isValid()) {
3663 S.Diag(TemplateArgLoc,
3664 diag::err_template_arg_template_params_mismatch);
3665 NextDiag = diag::note_template_parameter_pack_non_pack;
3668 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
3669 : isa<NonTypeTemplateParmDecl>(New)? 1
3670 : 2;
3671 S.Diag(New->getLocation(), NextDiag)
3672 << ParamKind << New->isParameterPack();
3673 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
3674 << ParamKind << Old->isParameterPack();
3677 return false;
3680 // For non-type template parameters, check the type of the parameter.
3681 if (NonTypeTemplateParmDecl *OldNTTP
3682 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
3683 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
3685 // If we are matching a template template argument to a template
3686 // template parameter and one of the non-type template parameter types
3687 // is dependent, then we must wait until template instantiation time
3688 // to actually compare the arguments.
3689 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3690 (OldNTTP->getType()->isDependentType() ||
3691 NewNTTP->getType()->isDependentType()))
3692 return true;
3694 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
3695 if (Complain) {
3696 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3697 if (TemplateArgLoc.isValid()) {
3698 S.Diag(TemplateArgLoc,
3699 diag::err_template_arg_template_params_mismatch);
3700 NextDiag = diag::note_template_nontype_parm_different_type;
3702 S.Diag(NewNTTP->getLocation(), NextDiag)
3703 << NewNTTP->getType()
3704 << (Kind != Sema::TPL_TemplateMatch);
3705 S.Diag(OldNTTP->getLocation(),
3706 diag::note_template_nontype_parm_prev_declaration)
3707 << OldNTTP->getType();
3710 return false;
3713 return true;
3716 // For template template parameters, check the template parameter types.
3717 // The template parameter lists of template template
3718 // parameters must agree.
3719 if (TemplateTemplateParmDecl *OldTTP
3720 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
3721 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
3722 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3723 OldTTP->getTemplateParameters(),
3724 Complain,
3725 (Kind == Sema::TPL_TemplateMatch
3726 ? Sema::TPL_TemplateTemplateParmMatch
3727 : Kind),
3728 TemplateArgLoc);
3731 return true;
3734 /// \brief Diagnose a known arity mismatch when comparing template argument
3735 /// lists.
3736 static
3737 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
3738 TemplateParameterList *New,
3739 TemplateParameterList *Old,
3740 Sema::TemplateParameterListEqualKind Kind,
3741 SourceLocation TemplateArgLoc) {
3742 unsigned NextDiag = diag::err_template_param_list_different_arity;
3743 if (TemplateArgLoc.isValid()) {
3744 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3745 NextDiag = diag::note_template_param_list_different_arity;
3747 S.Diag(New->getTemplateLoc(), NextDiag)
3748 << (New->size() > Old->size())
3749 << (Kind != Sema::TPL_TemplateMatch)
3750 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3751 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3752 << (Kind != Sema::TPL_TemplateMatch)
3753 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3756 /// \brief Determine whether the given template parameter lists are
3757 /// equivalent.
3759 /// \param New The new template parameter list, typically written in the
3760 /// source code as part of a new template declaration.
3762 /// \param Old The old template parameter list, typically found via
3763 /// name lookup of the template declared with this template parameter
3764 /// list.
3766 /// \param Complain If true, this routine will produce a diagnostic if
3767 /// the template parameter lists are not equivalent.
3769 /// \param Kind describes how we are to match the template parameter lists.
3771 /// \param TemplateArgLoc If this source location is valid, then we
3772 /// are actually checking the template parameter list of a template
3773 /// argument (New) against the template parameter list of its
3774 /// corresponding template template parameter (Old). We produce
3775 /// slightly different diagnostics in this scenario.
3777 /// \returns True if the template parameter lists are equal, false
3778 /// otherwise.
3779 bool
3780 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3781 TemplateParameterList *Old,
3782 bool Complain,
3783 TemplateParameterListEqualKind Kind,
3784 SourceLocation TemplateArgLoc) {
3785 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
3786 if (Complain)
3787 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3788 TemplateArgLoc);
3790 return false;
3793 // C++0x [temp.arg.template]p3:
3794 // A template-argument matches a template template-parameter (call it P)
3795 // when each of the template parameters in the template-parameter-list of
3796 // the template-argument’s corresponding class template or template alias
3797 // (call it A) matches the corresponding template parameter in the
3798 // template-parameter-list of P. [...]
3799 TemplateParameterList::iterator NewParm = New->begin();
3800 TemplateParameterList::iterator NewParmEnd = New->end();
3801 for (TemplateParameterList::iterator OldParm = Old->begin(),
3802 OldParmEnd = Old->end();
3803 OldParm != OldParmEnd; ++OldParm) {
3804 if (Kind != TPL_TemplateTemplateArgumentMatch ||
3805 !(*OldParm)->isTemplateParameterPack()) {
3806 if (NewParm == NewParmEnd) {
3807 if (Complain)
3808 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3809 TemplateArgLoc);
3811 return false;
3814 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3815 Kind, TemplateArgLoc))
3816 return false;
3818 ++NewParm;
3819 continue;
3822 // C++0x [temp.arg.template]p3:
3823 // [...] When P’s template- parameter-list contains a template parameter
3824 // pack (14.5.3), the template parameter pack will match zero or more
3825 // template parameters or template parameter packs in the
3826 // template-parameter-list of A with the same type and form as the
3827 // template parameter pack in P (ignoring whether those template
3828 // parameters are template parameter packs).
3829 for (; NewParm != NewParmEnd; ++NewParm) {
3830 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3831 Kind, TemplateArgLoc))
3832 return false;
3836 // Make sure we exhausted all of the arguments.
3837 if (NewParm != NewParmEnd) {
3838 if (Complain)
3839 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3840 TemplateArgLoc);
3842 return false;
3845 return true;
3848 /// \brief Check whether a template can be declared within this scope.
3850 /// If the template declaration is valid in this scope, returns
3851 /// false. Otherwise, issues a diagnostic and returns true.
3852 bool
3853 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3854 // Find the nearest enclosing declaration scope.
3855 while ((S->getFlags() & Scope::DeclScope) == 0 ||
3856 (S->getFlags() & Scope::TemplateParamScope) != 0)
3857 S = S->getParent();
3859 // C++ [temp]p2:
3860 // A template-declaration can appear only as a namespace scope or
3861 // class scope declaration.
3862 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3863 if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3864 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3865 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3866 << TemplateParams->getSourceRange();
3868 while (Ctx && isa<LinkageSpecDecl>(Ctx))
3869 Ctx = Ctx->getParent();
3871 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3872 return false;
3874 return Diag(TemplateParams->getTemplateLoc(),
3875 diag::err_template_outside_namespace_or_class_scope)
3876 << TemplateParams->getSourceRange();
3879 /// \brief Determine what kind of template specialization the given declaration
3880 /// is.
3881 static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3882 if (!D)
3883 return TSK_Undeclared;
3885 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3886 return Record->getTemplateSpecializationKind();
3887 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3888 return Function->getTemplateSpecializationKind();
3889 if (VarDecl *Var = dyn_cast<VarDecl>(D))
3890 return Var->getTemplateSpecializationKind();
3892 return TSK_Undeclared;
3895 /// \brief Check whether a specialization is well-formed in the current
3896 /// context.
3898 /// This routine determines whether a template specialization can be declared
3899 /// in the current context (C++ [temp.expl.spec]p2).
3901 /// \param S the semantic analysis object for which this check is being
3902 /// performed.
3904 /// \param Specialized the entity being specialized or instantiated, which
3905 /// may be a kind of template (class template, function template, etc.) or
3906 /// a member of a class template (member function, static data member,
3907 /// member class).
3909 /// \param PrevDecl the previous declaration of this entity, if any.
3911 /// \param Loc the location of the explicit specialization or instantiation of
3912 /// this entity.
3914 /// \param IsPartialSpecialization whether this is a partial specialization of
3915 /// a class template.
3917 /// \returns true if there was an error that we cannot recover from, false
3918 /// otherwise.
3919 static bool CheckTemplateSpecializationScope(Sema &S,
3920 NamedDecl *Specialized,
3921 NamedDecl *PrevDecl,
3922 SourceLocation Loc,
3923 bool IsPartialSpecialization) {
3924 // Keep these "kind" numbers in sync with the %select statements in the
3925 // various diagnostics emitted by this routine.
3926 int EntityKind = 0;
3927 bool isTemplateSpecialization = false;
3928 if (isa<ClassTemplateDecl>(Specialized)) {
3929 EntityKind = IsPartialSpecialization? 1 : 0;
3930 isTemplateSpecialization = true;
3931 } else if (isa<FunctionTemplateDecl>(Specialized)) {
3932 EntityKind = 2;
3933 isTemplateSpecialization = true;
3934 } else if (isa<CXXMethodDecl>(Specialized))
3935 EntityKind = 3;
3936 else if (isa<VarDecl>(Specialized))
3937 EntityKind = 4;
3938 else if (isa<RecordDecl>(Specialized))
3939 EntityKind = 5;
3940 else {
3941 S.Diag(Loc, diag::err_template_spec_unknown_kind);
3942 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3943 return true;
3946 // C++ [temp.expl.spec]p2:
3947 // An explicit specialization shall be declared in the namespace
3948 // of which the template is a member, or, for member templates, in
3949 // the namespace of which the enclosing class or enclosing class
3950 // template is a member. An explicit specialization of a member
3951 // function, member class or static data member of a class
3952 // template shall be declared in the namespace of which the class
3953 // template is a member. Such a declaration may also be a
3954 // definition. If the declaration is not a definition, the
3955 // specialization may be defined later in the name- space in which
3956 // the explicit specialization was declared, or in a namespace
3957 // that encloses the one in which the explicit specialization was
3958 // declared.
3959 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3960 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3961 << Specialized;
3962 return true;
3965 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3966 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3967 << Specialized;
3968 return true;
3971 // C++ [temp.class.spec]p6:
3972 // A class template partial specialization may be declared or redeclared
3973 // in any namespace scope in which its definition may be defined (14.5.1
3974 // and 14.5.2).
3975 bool ComplainedAboutScope = false;
3976 DeclContext *SpecializedContext
3977 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3978 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3979 if ((!PrevDecl ||
3980 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3981 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3982 // C++ [temp.exp.spec]p2:
3983 // An explicit specialization shall be declared in the namespace of which
3984 // the template is a member, or, for member templates, in the namespace
3985 // of which the enclosing class or enclosing class template is a member.
3986 // An explicit specialization of a member function, member class or
3987 // static data member of a class template shall be declared in the
3988 // namespace of which the class template is a member.
3990 // C++0x [temp.expl.spec]p2:
3991 // An explicit specialization shall be declared in a namespace enclosing
3992 // the specialized template.
3993 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3994 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3995 bool IsCPlusPlus0xExtension
3996 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3997 if (isa<TranslationUnitDecl>(SpecializedContext))
3998 S.Diag(Loc, IsCPlusPlus0xExtension
3999 ? diag::ext_template_spec_decl_out_of_scope_global
4000 : diag::err_template_spec_decl_out_of_scope_global)
4001 << EntityKind << Specialized;
4002 else if (isa<NamespaceDecl>(SpecializedContext))
4003 S.Diag(Loc, IsCPlusPlus0xExtension
4004 ? diag::ext_template_spec_decl_out_of_scope
4005 : diag::err_template_spec_decl_out_of_scope)
4006 << EntityKind << Specialized
4007 << cast<NamedDecl>(SpecializedContext);
4009 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4010 ComplainedAboutScope = true;
4014 // Make sure that this redeclaration (or definition) occurs in an enclosing
4015 // namespace.
4016 // Note that HandleDeclarator() performs this check for explicit
4017 // specializations of function templates, static data members, and member
4018 // functions, so we skip the check here for those kinds of entities.
4019 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4020 // Should we refactor that check, so that it occurs later?
4021 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4022 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4023 isa<FunctionDecl>(Specialized))) {
4024 if (isa<TranslationUnitDecl>(SpecializedContext))
4025 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4026 << EntityKind << Specialized;
4027 else if (isa<NamespaceDecl>(SpecializedContext))
4028 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4029 << EntityKind << Specialized
4030 << cast<NamedDecl>(SpecializedContext);
4032 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4035 // FIXME: check for specialization-after-instantiation errors and such.
4037 return false;
4040 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4041 /// that checks non-type template partial specialization arguments.
4042 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4043 NonTypeTemplateParmDecl *Param,
4044 const TemplateArgument *Args,
4045 unsigned NumArgs) {
4046 for (unsigned I = 0; I != NumArgs; ++I) {
4047 if (Args[I].getKind() == TemplateArgument::Pack) {
4048 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4049 Args[I].pack_begin(),
4050 Args[I].pack_size()))
4051 return true;
4053 continue;
4056 Expr *ArgExpr = Args[I].getAsExpr();
4057 if (!ArgExpr) {
4058 continue;
4061 // We can have a pack expansion of any of the bullets below.
4062 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4063 ArgExpr = Expansion->getPattern();
4065 // Strip off any implicit casts we added as part of type checking.
4066 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4067 ArgExpr = ICE->getSubExpr();
4069 // C++ [temp.class.spec]p8:
4070 // A non-type argument is non-specialized if it is the name of a
4071 // non-type parameter. All other non-type arguments are
4072 // specialized.
4074 // Below, we check the two conditions that only apply to
4075 // specialized non-type arguments, so skip any non-specialized
4076 // arguments.
4077 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4078 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4079 continue;
4081 // C++ [temp.class.spec]p9:
4082 // Within the argument list of a class template partial
4083 // specialization, the following restrictions apply:
4084 // -- A partially specialized non-type argument expression
4085 // shall not involve a template parameter of the partial
4086 // specialization except when the argument expression is a
4087 // simple identifier.
4088 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4089 S.Diag(ArgExpr->getLocStart(),
4090 diag::err_dependent_non_type_arg_in_partial_spec)
4091 << ArgExpr->getSourceRange();
4092 return true;
4095 // -- The type of a template parameter corresponding to a
4096 // specialized non-type argument shall not be dependent on a
4097 // parameter of the specialization.
4098 if (Param->getType()->isDependentType()) {
4099 S.Diag(ArgExpr->getLocStart(),
4100 diag::err_dependent_typed_non_type_arg_in_partial_spec)
4101 << Param->getType()
4102 << ArgExpr->getSourceRange();
4103 S.Diag(Param->getLocation(), diag::note_template_param_here);
4104 return true;
4108 return false;
4111 /// \brief Check the non-type template arguments of a class template
4112 /// partial specialization according to C++ [temp.class.spec]p9.
4114 /// \param TemplateParams the template parameters of the primary class
4115 /// template.
4117 /// \param TemplateArg the template arguments of the class template
4118 /// partial specialization.
4120 /// \returns true if there was an error, false otherwise.
4121 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4122 TemplateParameterList *TemplateParams,
4123 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4124 const TemplateArgument *ArgList = TemplateArgs.data();
4126 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4127 NonTypeTemplateParmDecl *Param
4128 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4129 if (!Param)
4130 continue;
4132 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4133 &ArgList[I], 1))
4134 return true;
4137 return false;
4140 /// \brief Retrieve the previous declaration of the given declaration.
4141 static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4142 if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4143 return VD->getPreviousDeclaration();
4144 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4145 return FD->getPreviousDeclaration();
4146 if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4147 return TD->getPreviousDeclaration();
4148 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4149 return TD->getPreviousDeclaration();
4150 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4151 return FTD->getPreviousDeclaration();
4152 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4153 return CTD->getPreviousDeclaration();
4154 return 0;
4157 DeclResult
4158 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4159 TagUseKind TUK,
4160 SourceLocation KWLoc,
4161 CXXScopeSpec &SS,
4162 TemplateTy TemplateD,
4163 SourceLocation TemplateNameLoc,
4164 SourceLocation LAngleLoc,
4165 ASTTemplateArgsPtr TemplateArgsIn,
4166 SourceLocation RAngleLoc,
4167 AttributeList *Attr,
4168 MultiTemplateParamsArg TemplateParameterLists) {
4169 assert(TUK != TUK_Reference && "References are not specializations");
4171 // Find the class template we're specializing
4172 TemplateName Name = TemplateD.getAsVal<TemplateName>();
4173 ClassTemplateDecl *ClassTemplate
4174 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4176 if (!ClassTemplate) {
4177 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4178 << (Name.getAsTemplateDecl() &&
4179 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4180 return true;
4183 bool isExplicitSpecialization = false;
4184 bool isPartialSpecialization = false;
4186 // Check the validity of the template headers that introduce this
4187 // template.
4188 // FIXME: We probably shouldn't complain about these headers for
4189 // friend declarations.
4190 bool Invalid = false;
4191 TemplateParameterList *TemplateParams
4192 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4193 (TemplateParameterList**)TemplateParameterLists.get(),
4194 TemplateParameterLists.size(),
4195 TUK == TUK_Friend,
4196 isExplicitSpecialization,
4197 Invalid);
4198 if (Invalid)
4199 return true;
4201 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4202 if (TemplateParams)
4203 --NumMatchedTemplateParamLists;
4205 if (TemplateParams && TemplateParams->size() > 0) {
4206 isPartialSpecialization = true;
4208 if (TUK == TUK_Friend) {
4209 Diag(KWLoc, diag::err_partial_specialization_friend)
4210 << SourceRange(LAngleLoc, RAngleLoc);
4211 return true;
4214 // C++ [temp.class.spec]p10:
4215 // The template parameter list of a specialization shall not
4216 // contain default template argument values.
4217 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4218 Decl *Param = TemplateParams->getParam(I);
4219 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4220 if (TTP->hasDefaultArgument()) {
4221 Diag(TTP->getDefaultArgumentLoc(),
4222 diag::err_default_arg_in_partial_spec);
4223 TTP->removeDefaultArgument();
4225 } else if (NonTypeTemplateParmDecl *NTTP
4226 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4227 if (Expr *DefArg = NTTP->getDefaultArgument()) {
4228 Diag(NTTP->getDefaultArgumentLoc(),
4229 diag::err_default_arg_in_partial_spec)
4230 << DefArg->getSourceRange();
4231 NTTP->removeDefaultArgument();
4233 } else {
4234 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4235 if (TTP->hasDefaultArgument()) {
4236 Diag(TTP->getDefaultArgument().getLocation(),
4237 diag::err_default_arg_in_partial_spec)
4238 << TTP->getDefaultArgument().getSourceRange();
4239 TTP->removeDefaultArgument();
4243 } else if (TemplateParams) {
4244 if (TUK == TUK_Friend)
4245 Diag(KWLoc, diag::err_template_spec_friend)
4246 << FixItHint::CreateRemoval(
4247 SourceRange(TemplateParams->getTemplateLoc(),
4248 TemplateParams->getRAngleLoc()))
4249 << SourceRange(LAngleLoc, RAngleLoc);
4250 else
4251 isExplicitSpecialization = true;
4252 } else if (TUK != TUK_Friend) {
4253 Diag(KWLoc, diag::err_template_spec_needs_header)
4254 << FixItHint::CreateInsertion(KWLoc, "template<> ");
4255 isExplicitSpecialization = true;
4258 // Check that the specialization uses the same tag kind as the
4259 // original template.
4260 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4261 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4262 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4263 Kind, KWLoc,
4264 *ClassTemplate->getIdentifier())) {
4265 Diag(KWLoc, diag::err_use_with_wrong_tag)
4266 << ClassTemplate
4267 << FixItHint::CreateReplacement(KWLoc,
4268 ClassTemplate->getTemplatedDecl()->getKindName());
4269 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4270 diag::note_previous_use);
4271 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4274 // Translate the parser's template argument list in our AST format.
4275 TemplateArgumentListInfo TemplateArgs;
4276 TemplateArgs.setLAngleLoc(LAngleLoc);
4277 TemplateArgs.setRAngleLoc(RAngleLoc);
4278 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4280 // Check for unexpanded parameter packs in any of the template arguments.
4281 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4282 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4283 UPPC_PartialSpecialization))
4284 return true;
4286 // Check that the template argument list is well-formed for this
4287 // template.
4288 llvm::SmallVector<TemplateArgument, 4> Converted;
4289 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4290 TemplateArgs, false, Converted))
4291 return true;
4293 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4294 "Converted template argument list is too short!");
4296 // Find the class template (partial) specialization declaration that
4297 // corresponds to these arguments.
4298 if (isPartialSpecialization) {
4299 if (CheckClassTemplatePartialSpecializationArgs(*this,
4300 ClassTemplate->getTemplateParameters(),
4301 Converted))
4302 return true;
4304 if (!Name.isDependent() &&
4305 !TemplateSpecializationType::anyDependentTemplateArguments(
4306 TemplateArgs.getArgumentArray(),
4307 TemplateArgs.size())) {
4308 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4309 << ClassTemplate->getDeclName();
4310 isPartialSpecialization = false;
4314 void *InsertPos = 0;
4315 ClassTemplateSpecializationDecl *PrevDecl = 0;
4317 if (isPartialSpecialization)
4318 // FIXME: Template parameter list matters, too
4319 PrevDecl
4320 = ClassTemplate->findPartialSpecialization(Converted.data(),
4321 Converted.size(),
4322 InsertPos);
4323 else
4324 PrevDecl
4325 = ClassTemplate->findSpecialization(Converted.data(),
4326 Converted.size(), InsertPos);
4328 ClassTemplateSpecializationDecl *Specialization = 0;
4330 // Check whether we can declare a class template specialization in
4331 // the current scope.
4332 if (TUK != TUK_Friend &&
4333 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4334 TemplateNameLoc,
4335 isPartialSpecialization))
4336 return true;
4338 // The canonical type
4339 QualType CanonType;
4340 if (PrevDecl &&
4341 (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4342 TUK == TUK_Friend)) {
4343 // Since the only prior class template specialization with these
4344 // arguments was referenced but not declared, or we're only
4345 // referencing this specialization as a friend, reuse that
4346 // declaration node as our own, updating its source location to
4347 // reflect our new declaration.
4348 Specialization = PrevDecl;
4349 Specialization->setLocation(TemplateNameLoc);
4350 PrevDecl = 0;
4351 CanonType = Context.getTypeDeclType(Specialization);
4352 } else if (isPartialSpecialization) {
4353 // Build the canonical type that describes the converted template
4354 // arguments of the class template partial specialization.
4355 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4356 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4357 Converted.data(),
4358 Converted.size());
4360 if (Context.hasSameType(CanonType,
4361 ClassTemplate->getInjectedClassNameSpecialization())) {
4362 // C++ [temp.class.spec]p9b3:
4364 // -- The argument list of the specialization shall not be identical
4365 // to the implicit argument list of the primary template.
4366 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4367 << (TUK == TUK_Definition)
4368 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4369 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4370 ClassTemplate->getIdentifier(),
4371 TemplateNameLoc,
4372 Attr,
4373 TemplateParams,
4374 AS_none);
4377 // Create a new class template partial specialization declaration node.
4378 ClassTemplatePartialSpecializationDecl *PrevPartial
4379 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4380 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4381 : ClassTemplate->getNextPartialSpecSequenceNumber();
4382 ClassTemplatePartialSpecializationDecl *Partial
4383 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4384 ClassTemplate->getDeclContext(),
4385 TemplateNameLoc,
4386 TemplateParams,
4387 ClassTemplate,
4388 Converted.data(),
4389 Converted.size(),
4390 TemplateArgs,
4391 CanonType,
4392 PrevPartial,
4393 SequenceNumber);
4394 SetNestedNameSpecifier(Partial, SS);
4395 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4396 Partial->setTemplateParameterListsInfo(Context,
4397 NumMatchedTemplateParamLists,
4398 (TemplateParameterList**) TemplateParameterLists.release());
4401 if (!PrevPartial)
4402 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4403 Specialization = Partial;
4405 // If we are providing an explicit specialization of a member class
4406 // template specialization, make a note of that.
4407 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4408 PrevPartial->setMemberSpecialization();
4410 // Check that all of the template parameters of the class template
4411 // partial specialization are deducible from the template
4412 // arguments. If not, this class template partial specialization
4413 // will never be used.
4414 llvm::SmallVector<bool, 8> DeducibleParams;
4415 DeducibleParams.resize(TemplateParams->size());
4416 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4417 TemplateParams->getDepth(),
4418 DeducibleParams);
4419 unsigned NumNonDeducible = 0;
4420 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4421 if (!DeducibleParams[I])
4422 ++NumNonDeducible;
4424 if (NumNonDeducible) {
4425 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4426 << (NumNonDeducible > 1)
4427 << SourceRange(TemplateNameLoc, RAngleLoc);
4428 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4429 if (!DeducibleParams[I]) {
4430 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4431 if (Param->getDeclName())
4432 Diag(Param->getLocation(),
4433 diag::note_partial_spec_unused_parameter)
4434 << Param->getDeclName();
4435 else
4436 Diag(Param->getLocation(),
4437 diag::note_partial_spec_unused_parameter)
4438 << "<anonymous>";
4442 } else {
4443 // Create a new class template specialization declaration node for
4444 // this explicit specialization or friend declaration.
4445 Specialization
4446 = ClassTemplateSpecializationDecl::Create(Context, Kind,
4447 ClassTemplate->getDeclContext(),
4448 TemplateNameLoc,
4449 ClassTemplate,
4450 Converted.data(),
4451 Converted.size(),
4452 PrevDecl);
4453 SetNestedNameSpecifier(Specialization, SS);
4454 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4455 Specialization->setTemplateParameterListsInfo(Context,
4456 NumMatchedTemplateParamLists,
4457 (TemplateParameterList**) TemplateParameterLists.release());
4460 if (!PrevDecl)
4461 ClassTemplate->AddSpecialization(Specialization, InsertPos);
4463 CanonType = Context.getTypeDeclType(Specialization);
4466 // C++ [temp.expl.spec]p6:
4467 // If a template, a member template or the member of a class template is
4468 // explicitly specialized then that specialization shall be declared
4469 // before the first use of that specialization that would cause an implicit
4470 // instantiation to take place, in every translation unit in which such a
4471 // use occurs; no diagnostic is required.
4472 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4473 bool Okay = false;
4474 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4475 // Is there any previous explicit specialization declaration?
4476 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4477 Okay = true;
4478 break;
4482 if (!Okay) {
4483 SourceRange Range(TemplateNameLoc, RAngleLoc);
4484 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4485 << Context.getTypeDeclType(Specialization) << Range;
4487 Diag(PrevDecl->getPointOfInstantiation(),
4488 diag::note_instantiation_required_here)
4489 << (PrevDecl->getTemplateSpecializationKind()
4490 != TSK_ImplicitInstantiation);
4491 return true;
4495 // If this is not a friend, note that this is an explicit specialization.
4496 if (TUK != TUK_Friend)
4497 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4499 // Check that this isn't a redefinition of this specialization.
4500 if (TUK == TUK_Definition) {
4501 if (RecordDecl *Def = Specialization->getDefinition()) {
4502 SourceRange Range(TemplateNameLoc, RAngleLoc);
4503 Diag(TemplateNameLoc, diag::err_redefinition)
4504 << Context.getTypeDeclType(Specialization) << Range;
4505 Diag(Def->getLocation(), diag::note_previous_definition);
4506 Specialization->setInvalidDecl();
4507 return true;
4511 if (Attr)
4512 ProcessDeclAttributeList(S, Specialization, Attr);
4514 // Build the fully-sugared type for this class template
4515 // specialization as the user wrote in the specialization
4516 // itself. This means that we'll pretty-print the type retrieved
4517 // from the specialization's declaration the way that the user
4518 // actually wrote the specialization, rather than formatting the
4519 // name based on the "canonical" representation used to store the
4520 // template arguments in the specialization.
4521 TypeSourceInfo *WrittenTy
4522 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4523 TemplateArgs, CanonType);
4524 if (TUK != TUK_Friend) {
4525 Specialization->setTypeAsWritten(WrittenTy);
4526 if (TemplateParams)
4527 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4529 TemplateArgsIn.release();
4531 // C++ [temp.expl.spec]p9:
4532 // A template explicit specialization is in the scope of the
4533 // namespace in which the template was defined.
4535 // We actually implement this paragraph where we set the semantic
4536 // context (in the creation of the ClassTemplateSpecializationDecl),
4537 // but we also maintain the lexical context where the actual
4538 // definition occurs.
4539 Specialization->setLexicalDeclContext(CurContext);
4541 // We may be starting the definition of this specialization.
4542 if (TUK == TUK_Definition)
4543 Specialization->startDefinition();
4545 if (TUK == TUK_Friend) {
4546 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4547 TemplateNameLoc,
4548 WrittenTy,
4549 /*FIXME:*/KWLoc);
4550 Friend->setAccess(AS_public);
4551 CurContext->addDecl(Friend);
4552 } else {
4553 // Add the specialization into its lexical context, so that it can
4554 // be seen when iterating through the list of declarations in that
4555 // context. However, specializations are not found by name lookup.
4556 CurContext->addDecl(Specialization);
4558 return Specialization;
4561 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4562 MultiTemplateParamsArg TemplateParameterLists,
4563 Declarator &D) {
4564 return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4567 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4568 MultiTemplateParamsArg TemplateParameterLists,
4569 Declarator &D) {
4570 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4571 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4573 if (FTI.hasPrototype) {
4574 // FIXME: Diagnose arguments without names in C.
4577 Scope *ParentScope = FnBodyScope->getParent();
4579 Decl *DP = HandleDeclarator(ParentScope, D,
4580 move(TemplateParameterLists),
4581 /*IsFunctionDefinition=*/true);
4582 if (FunctionTemplateDecl *FunctionTemplate
4583 = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4584 return ActOnStartOfFunctionDef(FnBodyScope,
4585 FunctionTemplate->getTemplatedDecl());
4586 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4587 return ActOnStartOfFunctionDef(FnBodyScope, Function);
4588 return 0;
4591 /// \brief Strips various properties off an implicit instantiation
4592 /// that has just been explicitly specialized.
4593 static void StripImplicitInstantiation(NamedDecl *D) {
4594 D->dropAttrs();
4596 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4597 FD->setInlineSpecified(false);
4601 /// \brief Diagnose cases where we have an explicit template specialization
4602 /// before/after an explicit template instantiation, producing diagnostics
4603 /// for those cases where they are required and determining whether the
4604 /// new specialization/instantiation will have any effect.
4606 /// \param NewLoc the location of the new explicit specialization or
4607 /// instantiation.
4609 /// \param NewTSK the kind of the new explicit specialization or instantiation.
4611 /// \param PrevDecl the previous declaration of the entity.
4613 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4615 /// \param PrevPointOfInstantiation if valid, indicates where the previus
4616 /// declaration was instantiated (either implicitly or explicitly).
4618 /// \param HasNoEffect will be set to true to indicate that the new
4619 /// specialization or instantiation has no effect and should be ignored.
4621 /// \returns true if there was an error that should prevent the introduction of
4622 /// the new declaration into the AST, false otherwise.
4623 bool
4624 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4625 TemplateSpecializationKind NewTSK,
4626 NamedDecl *PrevDecl,
4627 TemplateSpecializationKind PrevTSK,
4628 SourceLocation PrevPointOfInstantiation,
4629 bool &HasNoEffect) {
4630 HasNoEffect = false;
4632 switch (NewTSK) {
4633 case TSK_Undeclared:
4634 case TSK_ImplicitInstantiation:
4635 assert(false && "Don't check implicit instantiations here");
4636 return false;
4638 case TSK_ExplicitSpecialization:
4639 switch (PrevTSK) {
4640 case TSK_Undeclared:
4641 case TSK_ExplicitSpecialization:
4642 // Okay, we're just specializing something that is either already
4643 // explicitly specialized or has merely been mentioned without any
4644 // instantiation.
4645 return false;
4647 case TSK_ImplicitInstantiation:
4648 if (PrevPointOfInstantiation.isInvalid()) {
4649 // The declaration itself has not actually been instantiated, so it is
4650 // still okay to specialize it.
4651 StripImplicitInstantiation(PrevDecl);
4652 return false;
4654 // Fall through
4656 case TSK_ExplicitInstantiationDeclaration:
4657 case TSK_ExplicitInstantiationDefinition:
4658 assert((PrevTSK == TSK_ImplicitInstantiation ||
4659 PrevPointOfInstantiation.isValid()) &&
4660 "Explicit instantiation without point of instantiation?");
4662 // C++ [temp.expl.spec]p6:
4663 // If a template, a member template or the member of a class template
4664 // is explicitly specialized then that specialization shall be declared
4665 // before the first use of that specialization that would cause an
4666 // implicit instantiation to take place, in every translation unit in
4667 // which such a use occurs; no diagnostic is required.
4668 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4669 // Is there any previous explicit specialization declaration?
4670 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4671 return false;
4674 Diag(NewLoc, diag::err_specialization_after_instantiation)
4675 << PrevDecl;
4676 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4677 << (PrevTSK != TSK_ImplicitInstantiation);
4679 return true;
4681 break;
4683 case TSK_ExplicitInstantiationDeclaration:
4684 switch (PrevTSK) {
4685 case TSK_ExplicitInstantiationDeclaration:
4686 // This explicit instantiation declaration is redundant (that's okay).
4687 HasNoEffect = true;
4688 return false;
4690 case TSK_Undeclared:
4691 case TSK_ImplicitInstantiation:
4692 // We're explicitly instantiating something that may have already been
4693 // implicitly instantiated; that's fine.
4694 return false;
4696 case TSK_ExplicitSpecialization:
4697 // C++0x [temp.explicit]p4:
4698 // For a given set of template parameters, if an explicit instantiation
4699 // of a template appears after a declaration of an explicit
4700 // specialization for that template, the explicit instantiation has no
4701 // effect.
4702 HasNoEffect = true;
4703 return false;
4705 case TSK_ExplicitInstantiationDefinition:
4706 // C++0x [temp.explicit]p10:
4707 // If an entity is the subject of both an explicit instantiation
4708 // declaration and an explicit instantiation definition in the same
4709 // translation unit, the definition shall follow the declaration.
4710 Diag(NewLoc,
4711 diag::err_explicit_instantiation_declaration_after_definition);
4712 Diag(PrevPointOfInstantiation,
4713 diag::note_explicit_instantiation_definition_here);
4714 assert(PrevPointOfInstantiation.isValid() &&
4715 "Explicit instantiation without point of instantiation?");
4716 HasNoEffect = true;
4717 return false;
4719 break;
4721 case TSK_ExplicitInstantiationDefinition:
4722 switch (PrevTSK) {
4723 case TSK_Undeclared:
4724 case TSK_ImplicitInstantiation:
4725 // We're explicitly instantiating something that may have already been
4726 // implicitly instantiated; that's fine.
4727 return false;
4729 case TSK_ExplicitSpecialization:
4730 // C++ DR 259, C++0x [temp.explicit]p4:
4731 // For a given set of template parameters, if an explicit
4732 // instantiation of a template appears after a declaration of
4733 // an explicit specialization for that template, the explicit
4734 // instantiation has no effect.
4736 // In C++98/03 mode, we only give an extension warning here, because it
4737 // is not harmful to try to explicitly instantiate something that
4738 // has been explicitly specialized.
4739 if (!getLangOptions().CPlusPlus0x) {
4740 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4741 << PrevDecl;
4742 Diag(PrevDecl->getLocation(),
4743 diag::note_previous_template_specialization);
4745 HasNoEffect = true;
4746 return false;
4748 case TSK_ExplicitInstantiationDeclaration:
4749 // We're explicity instantiating a definition for something for which we
4750 // were previously asked to suppress instantiations. That's fine.
4751 return false;
4753 case TSK_ExplicitInstantiationDefinition:
4754 // C++0x [temp.spec]p5:
4755 // For a given template and a given set of template-arguments,
4756 // - an explicit instantiation definition shall appear at most once
4757 // in a program,
4758 Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4759 << PrevDecl;
4760 Diag(PrevPointOfInstantiation,
4761 diag::note_previous_explicit_instantiation);
4762 HasNoEffect = true;
4763 return false;
4765 break;
4768 assert(false && "Missing specialization/instantiation case?");
4770 return false;
4773 /// \brief Perform semantic analysis for the given dependent function
4774 /// template specialization. The only possible way to get a dependent
4775 /// function template specialization is with a friend declaration,
4776 /// like so:
4778 /// template <class T> void foo(T);
4779 /// template <class T> class A {
4780 /// friend void foo<>(T);
4781 /// };
4783 /// There really isn't any useful analysis we can do here, so we
4784 /// just store the information.
4785 bool
4786 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4787 const TemplateArgumentListInfo &ExplicitTemplateArgs,
4788 LookupResult &Previous) {
4789 // Remove anything from Previous that isn't a function template in
4790 // the correct context.
4791 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4792 LookupResult::Filter F = Previous.makeFilter();
4793 while (F.hasNext()) {
4794 NamedDecl *D = F.next()->getUnderlyingDecl();
4795 if (!isa<FunctionTemplateDecl>(D) ||
4796 !FDLookupContext->InEnclosingNamespaceSetOf(
4797 D->getDeclContext()->getRedeclContext()))
4798 F.erase();
4800 F.done();
4802 // Should this be diagnosed here?
4803 if (Previous.empty()) return true;
4805 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4806 ExplicitTemplateArgs);
4807 return false;
4810 /// \brief Perform semantic analysis for the given function template
4811 /// specialization.
4813 /// This routine performs all of the semantic analysis required for an
4814 /// explicit function template specialization. On successful completion,
4815 /// the function declaration \p FD will become a function template
4816 /// specialization.
4818 /// \param FD the function declaration, which will be updated to become a
4819 /// function template specialization.
4821 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4822 /// if any. Note that this may be valid info even when 0 arguments are
4823 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4824 /// as it anyway contains info on the angle brackets locations.
4826 /// \param PrevDecl the set of declarations that may be specialized by
4827 /// this function specialization.
4828 bool
4829 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4830 const TemplateArgumentListInfo *ExplicitTemplateArgs,
4831 LookupResult &Previous) {
4832 // The set of function template specializations that could match this
4833 // explicit function template specialization.
4834 UnresolvedSet<8> Candidates;
4836 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4837 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4838 I != E; ++I) {
4839 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4840 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4841 // Only consider templates found within the same semantic lookup scope as
4842 // FD.
4843 if (!FDLookupContext->InEnclosingNamespaceSetOf(
4844 Ovl->getDeclContext()->getRedeclContext()))
4845 continue;
4847 // C++ [temp.expl.spec]p11:
4848 // A trailing template-argument can be left unspecified in the
4849 // template-id naming an explicit function template specialization
4850 // provided it can be deduced from the function argument type.
4851 // Perform template argument deduction to determine whether we may be
4852 // specializing this template.
4853 // FIXME: It is somewhat wasteful to build
4854 TemplateDeductionInfo Info(Context, FD->getLocation());
4855 FunctionDecl *Specialization = 0;
4856 if (TemplateDeductionResult TDK
4857 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4858 FD->getType(),
4859 Specialization,
4860 Info)) {
4861 // FIXME: Template argument deduction failed; record why it failed, so
4862 // that we can provide nifty diagnostics.
4863 (void)TDK;
4864 continue;
4867 // Record this candidate.
4868 Candidates.addDecl(Specialization, I.getAccess());
4872 // Find the most specialized function template.
4873 UnresolvedSetIterator Result
4874 = getMostSpecialized(Candidates.begin(), Candidates.end(),
4875 TPOC_Other, 0, FD->getLocation(),
4876 PDiag(diag::err_function_template_spec_no_match)
4877 << FD->getDeclName(),
4878 PDiag(diag::err_function_template_spec_ambiguous)
4879 << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4880 PDiag(diag::note_function_template_spec_matched));
4881 if (Result == Candidates.end())
4882 return true;
4884 // Ignore access information; it doesn't figure into redeclaration checking.
4885 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4886 Specialization->setLocation(FD->getLocation());
4888 // FIXME: Check if the prior specialization has a point of instantiation.
4889 // If so, we have run afoul of .
4891 // If this is a friend declaration, then we're not really declaring
4892 // an explicit specialization.
4893 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4895 // Check the scope of this explicit specialization.
4896 if (!isFriend &&
4897 CheckTemplateSpecializationScope(*this,
4898 Specialization->getPrimaryTemplate(),
4899 Specialization, FD->getLocation(),
4900 false))
4901 return true;
4903 // C++ [temp.expl.spec]p6:
4904 // If a template, a member template or the member of a class template is
4905 // explicitly specialized then that specialization shall be declared
4906 // before the first use of that specialization that would cause an implicit
4907 // instantiation to take place, in every translation unit in which such a
4908 // use occurs; no diagnostic is required.
4909 FunctionTemplateSpecializationInfo *SpecInfo
4910 = Specialization->getTemplateSpecializationInfo();
4911 assert(SpecInfo && "Function template specialization info missing?");
4913 bool HasNoEffect = false;
4914 if (!isFriend &&
4915 CheckSpecializationInstantiationRedecl(FD->getLocation(),
4916 TSK_ExplicitSpecialization,
4917 Specialization,
4918 SpecInfo->getTemplateSpecializationKind(),
4919 SpecInfo->getPointOfInstantiation(),
4920 HasNoEffect))
4921 return true;
4923 // Mark the prior declaration as an explicit specialization, so that later
4924 // clients know that this is an explicit specialization.
4925 if (!isFriend) {
4926 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4927 MarkUnusedFileScopedDecl(Specialization);
4930 // Turn the given function declaration into a function template
4931 // specialization, with the template arguments from the previous
4932 // specialization.
4933 // Take copies of (semantic and syntactic) template argument lists.
4934 const TemplateArgumentList* TemplArgs = new (Context)
4935 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4936 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4937 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4938 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4939 TemplArgs, /*InsertPos=*/0,
4940 SpecInfo->getTemplateSpecializationKind(),
4941 TemplArgsAsWritten);
4943 // The "previous declaration" for this function template specialization is
4944 // the prior function template specialization.
4945 Previous.clear();
4946 Previous.addDecl(Specialization);
4947 return false;
4950 /// \brief Perform semantic analysis for the given non-template member
4951 /// specialization.
4953 /// This routine performs all of the semantic analysis required for an
4954 /// explicit member function specialization. On successful completion,
4955 /// the function declaration \p FD will become a member function
4956 /// specialization.
4958 /// \param Member the member declaration, which will be updated to become a
4959 /// specialization.
4961 /// \param Previous the set of declarations, one of which may be specialized
4962 /// by this function specialization; the set will be modified to contain the
4963 /// redeclared member.
4964 bool
4965 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4966 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4968 // Try to find the member we are instantiating.
4969 NamedDecl *Instantiation = 0;
4970 NamedDecl *InstantiatedFrom = 0;
4971 MemberSpecializationInfo *MSInfo = 0;
4973 if (Previous.empty()) {
4974 // Nowhere to look anyway.
4975 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4976 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4977 I != E; ++I) {
4978 NamedDecl *D = (*I)->getUnderlyingDecl();
4979 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4980 if (Context.hasSameType(Function->getType(), Method->getType())) {
4981 Instantiation = Method;
4982 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4983 MSInfo = Method->getMemberSpecializationInfo();
4984 break;
4988 } else if (isa<VarDecl>(Member)) {
4989 VarDecl *PrevVar;
4990 if (Previous.isSingleResult() &&
4991 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4992 if (PrevVar->isStaticDataMember()) {
4993 Instantiation = PrevVar;
4994 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4995 MSInfo = PrevVar->getMemberSpecializationInfo();
4997 } else if (isa<RecordDecl>(Member)) {
4998 CXXRecordDecl *PrevRecord;
4999 if (Previous.isSingleResult() &&
5000 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5001 Instantiation = PrevRecord;
5002 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5003 MSInfo = PrevRecord->getMemberSpecializationInfo();
5007 if (!Instantiation) {
5008 // There is no previous declaration that matches. Since member
5009 // specializations are always out-of-line, the caller will complain about
5010 // this mismatch later.
5011 return false;
5014 // If this is a friend, just bail out here before we start turning
5015 // things into explicit specializations.
5016 if (Member->getFriendObjectKind() != Decl::FOK_None) {
5017 // Preserve instantiation information.
5018 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5019 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5020 cast<CXXMethodDecl>(InstantiatedFrom),
5021 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5022 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5023 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5024 cast<CXXRecordDecl>(InstantiatedFrom),
5025 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5028 Previous.clear();
5029 Previous.addDecl(Instantiation);
5030 return false;
5033 // Make sure that this is a specialization of a member.
5034 if (!InstantiatedFrom) {
5035 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5036 << Member;
5037 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5038 return true;
5041 // C++ [temp.expl.spec]p6:
5042 // If a template, a member template or the member of a class template is
5043 // explicitly specialized then that spe- cialization shall be declared
5044 // before the first use of that specialization that would cause an implicit
5045 // instantiation to take place, in every translation unit in which such a
5046 // use occurs; no diagnostic is required.
5047 assert(MSInfo && "Member specialization info missing?");
5049 bool HasNoEffect = false;
5050 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5051 TSK_ExplicitSpecialization,
5052 Instantiation,
5053 MSInfo->getTemplateSpecializationKind(),
5054 MSInfo->getPointOfInstantiation(),
5055 HasNoEffect))
5056 return true;
5058 // Check the scope of this explicit specialization.
5059 if (CheckTemplateSpecializationScope(*this,
5060 InstantiatedFrom,
5061 Instantiation, Member->getLocation(),
5062 false))
5063 return true;
5065 // Note that this is an explicit instantiation of a member.
5066 // the original declaration to note that it is an explicit specialization
5067 // (if it was previously an implicit instantiation). This latter step
5068 // makes bookkeeping easier.
5069 if (isa<FunctionDecl>(Member)) {
5070 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5071 if (InstantiationFunction->getTemplateSpecializationKind() ==
5072 TSK_ImplicitInstantiation) {
5073 InstantiationFunction->setTemplateSpecializationKind(
5074 TSK_ExplicitSpecialization);
5075 InstantiationFunction->setLocation(Member->getLocation());
5078 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5079 cast<CXXMethodDecl>(InstantiatedFrom),
5080 TSK_ExplicitSpecialization);
5081 MarkUnusedFileScopedDecl(InstantiationFunction);
5082 } else if (isa<VarDecl>(Member)) {
5083 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5084 if (InstantiationVar->getTemplateSpecializationKind() ==
5085 TSK_ImplicitInstantiation) {
5086 InstantiationVar->setTemplateSpecializationKind(
5087 TSK_ExplicitSpecialization);
5088 InstantiationVar->setLocation(Member->getLocation());
5091 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5092 cast<VarDecl>(InstantiatedFrom),
5093 TSK_ExplicitSpecialization);
5094 MarkUnusedFileScopedDecl(InstantiationVar);
5095 } else {
5096 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5097 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5098 if (InstantiationClass->getTemplateSpecializationKind() ==
5099 TSK_ImplicitInstantiation) {
5100 InstantiationClass->setTemplateSpecializationKind(
5101 TSK_ExplicitSpecialization);
5102 InstantiationClass->setLocation(Member->getLocation());
5105 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5106 cast<CXXRecordDecl>(InstantiatedFrom),
5107 TSK_ExplicitSpecialization);
5110 // Save the caller the trouble of having to figure out which declaration
5111 // this specialization matches.
5112 Previous.clear();
5113 Previous.addDecl(Instantiation);
5114 return false;
5117 /// \brief Check the scope of an explicit instantiation.
5119 /// \returns true if a serious error occurs, false otherwise.
5120 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5121 SourceLocation InstLoc,
5122 bool WasQualifiedName) {
5123 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5124 DeclContext *CurContext = S.CurContext->getRedeclContext();
5126 if (CurContext->isRecord()) {
5127 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5128 << D;
5129 return true;
5132 // C++0x [temp.explicit]p2:
5133 // An explicit instantiation shall appear in an enclosing namespace of its
5134 // template.
5136 // This is DR275, which we do not retroactively apply to C++98/03.
5137 if (S.getLangOptions().CPlusPlus0x &&
5138 !CurContext->Encloses(OrigContext)) {
5139 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5140 S.Diag(InstLoc,
5141 S.getLangOptions().CPlusPlus0x?
5142 diag::err_explicit_instantiation_out_of_scope
5143 : diag::warn_explicit_instantiation_out_of_scope_0x)
5144 << D << NS;
5145 else
5146 S.Diag(InstLoc,
5147 S.getLangOptions().CPlusPlus0x?
5148 diag::err_explicit_instantiation_must_be_global
5149 : diag::warn_explicit_instantiation_out_of_scope_0x)
5150 << D;
5151 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5152 return false;
5155 // C++0x [temp.explicit]p2:
5156 // If the name declared in the explicit instantiation is an unqualified
5157 // name, the explicit instantiation shall appear in the namespace where
5158 // its template is declared or, if that namespace is inline (7.3.1), any
5159 // namespace from its enclosing namespace set.
5160 if (WasQualifiedName)
5161 return false;
5163 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5164 return false;
5166 S.Diag(InstLoc,
5167 S.getLangOptions().CPlusPlus0x?
5168 diag::err_explicit_instantiation_unqualified_wrong_namespace
5169 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5170 << D << OrigContext;
5171 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5172 return false;
5175 /// \brief Determine whether the given scope specifier has a template-id in it.
5176 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5177 if (!SS.isSet())
5178 return false;
5180 // C++0x [temp.explicit]p2:
5181 // If the explicit instantiation is for a member function, a member class
5182 // or a static data member of a class template specialization, the name of
5183 // the class template specialization in the qualified-id for the member
5184 // name shall be a simple-template-id.
5186 // C++98 has the same restriction, just worded differently.
5187 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5188 NNS; NNS = NNS->getPrefix())
5189 if (Type *T = NNS->getAsType())
5190 if (isa<TemplateSpecializationType>(T))
5191 return true;
5193 return false;
5196 // Explicit instantiation of a class template specialization
5197 DeclResult
5198 Sema::ActOnExplicitInstantiation(Scope *S,
5199 SourceLocation ExternLoc,
5200 SourceLocation TemplateLoc,
5201 unsigned TagSpec,
5202 SourceLocation KWLoc,
5203 const CXXScopeSpec &SS,
5204 TemplateTy TemplateD,
5205 SourceLocation TemplateNameLoc,
5206 SourceLocation LAngleLoc,
5207 ASTTemplateArgsPtr TemplateArgsIn,
5208 SourceLocation RAngleLoc,
5209 AttributeList *Attr) {
5210 // Find the class template we're specializing
5211 TemplateName Name = TemplateD.getAsVal<TemplateName>();
5212 ClassTemplateDecl *ClassTemplate
5213 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5215 // Check that the specialization uses the same tag kind as the
5216 // original template.
5217 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5218 assert(Kind != TTK_Enum &&
5219 "Invalid enum tag in class template explicit instantiation!");
5220 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5221 Kind, KWLoc,
5222 *ClassTemplate->getIdentifier())) {
5223 Diag(KWLoc, diag::err_use_with_wrong_tag)
5224 << ClassTemplate
5225 << FixItHint::CreateReplacement(KWLoc,
5226 ClassTemplate->getTemplatedDecl()->getKindName());
5227 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5228 diag::note_previous_use);
5229 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5232 // C++0x [temp.explicit]p2:
5233 // There are two forms of explicit instantiation: an explicit instantiation
5234 // definition and an explicit instantiation declaration. An explicit
5235 // instantiation declaration begins with the extern keyword. [...]
5236 TemplateSpecializationKind TSK
5237 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5238 : TSK_ExplicitInstantiationDeclaration;
5240 // Translate the parser's template argument list in our AST format.
5241 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5242 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5244 // Check that the template argument list is well-formed for this
5245 // template.
5246 llvm::SmallVector<TemplateArgument, 4> Converted;
5247 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5248 TemplateArgs, false, Converted))
5249 return true;
5251 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5252 "Converted template argument list is too short!");
5254 // Find the class template specialization declaration that
5255 // corresponds to these arguments.
5256 void *InsertPos = 0;
5257 ClassTemplateSpecializationDecl *PrevDecl
5258 = ClassTemplate->findSpecialization(Converted.data(),
5259 Converted.size(), InsertPos);
5261 TemplateSpecializationKind PrevDecl_TSK
5262 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5264 // C++0x [temp.explicit]p2:
5265 // [...] An explicit instantiation shall appear in an enclosing
5266 // namespace of its template. [...]
5268 // This is C++ DR 275.
5269 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5270 SS.isSet()))
5271 return true;
5273 ClassTemplateSpecializationDecl *Specialization = 0;
5275 bool ReusedDecl = false;
5276 bool HasNoEffect = false;
5277 if (PrevDecl) {
5278 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5279 PrevDecl, PrevDecl_TSK,
5280 PrevDecl->getPointOfInstantiation(),
5281 HasNoEffect))
5282 return PrevDecl;
5284 // Even though HasNoEffect == true means that this explicit instantiation
5285 // has no effect on semantics, we go on to put its syntax in the AST.
5287 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5288 PrevDecl_TSK == TSK_Undeclared) {
5289 // Since the only prior class template specialization with these
5290 // arguments was referenced but not declared, reuse that
5291 // declaration node as our own, updating the source location
5292 // for the template name to reflect our new declaration.
5293 // (Other source locations will be updated later.)
5294 Specialization = PrevDecl;
5295 Specialization->setLocation(TemplateNameLoc);
5296 PrevDecl = 0;
5297 ReusedDecl = true;
5301 if (!Specialization) {
5302 // Create a new class template specialization declaration node for
5303 // this explicit specialization.
5304 Specialization
5305 = ClassTemplateSpecializationDecl::Create(Context, Kind,
5306 ClassTemplate->getDeclContext(),
5307 TemplateNameLoc,
5308 ClassTemplate,
5309 Converted.data(),
5310 Converted.size(),
5311 PrevDecl);
5312 SetNestedNameSpecifier(Specialization, SS);
5314 if (!HasNoEffect && !PrevDecl) {
5315 // Insert the new specialization.
5316 ClassTemplate->AddSpecialization(Specialization, InsertPos);
5320 // Build the fully-sugared type for this explicit instantiation as
5321 // the user wrote in the explicit instantiation itself. This means
5322 // that we'll pretty-print the type retrieved from the
5323 // specialization's declaration the way that the user actually wrote
5324 // the explicit instantiation, rather than formatting the name based
5325 // on the "canonical" representation used to store the template
5326 // arguments in the specialization.
5327 TypeSourceInfo *WrittenTy
5328 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5329 TemplateArgs,
5330 Context.getTypeDeclType(Specialization));
5331 Specialization->setTypeAsWritten(WrittenTy);
5332 TemplateArgsIn.release();
5334 // Set source locations for keywords.
5335 Specialization->setExternLoc(ExternLoc);
5336 Specialization->setTemplateKeywordLoc(TemplateLoc);
5338 // Add the explicit instantiation into its lexical context. However,
5339 // since explicit instantiations are never found by name lookup, we
5340 // just put it into the declaration context directly.
5341 Specialization->setLexicalDeclContext(CurContext);
5342 CurContext->addDecl(Specialization);
5344 // Syntax is now OK, so return if it has no other effect on semantics.
5345 if (HasNoEffect) {
5346 // Set the template specialization kind.
5347 Specialization->setTemplateSpecializationKind(TSK);
5348 return Specialization;
5351 // C++ [temp.explicit]p3:
5352 // A definition of a class template or class member template
5353 // shall be in scope at the point of the explicit instantiation of
5354 // the class template or class member template.
5356 // This check comes when we actually try to perform the
5357 // instantiation.
5358 ClassTemplateSpecializationDecl *Def
5359 = cast_or_null<ClassTemplateSpecializationDecl>(
5360 Specialization->getDefinition());
5361 if (!Def)
5362 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5363 else if (TSK == TSK_ExplicitInstantiationDefinition) {
5364 MarkVTableUsed(TemplateNameLoc, Specialization, true);
5365 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5368 // Instantiate the members of this class template specialization.
5369 Def = cast_or_null<ClassTemplateSpecializationDecl>(
5370 Specialization->getDefinition());
5371 if (Def) {
5372 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5374 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5375 // TSK_ExplicitInstantiationDefinition
5376 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5377 TSK == TSK_ExplicitInstantiationDefinition)
5378 Def->setTemplateSpecializationKind(TSK);
5380 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5383 // Set the template specialization kind.
5384 Specialization->setTemplateSpecializationKind(TSK);
5385 return Specialization;
5388 // Explicit instantiation of a member class of a class template.
5389 DeclResult
5390 Sema::ActOnExplicitInstantiation(Scope *S,
5391 SourceLocation ExternLoc,
5392 SourceLocation TemplateLoc,
5393 unsigned TagSpec,
5394 SourceLocation KWLoc,
5395 CXXScopeSpec &SS,
5396 IdentifierInfo *Name,
5397 SourceLocation NameLoc,
5398 AttributeList *Attr) {
5400 bool Owned = false;
5401 bool IsDependent = false;
5402 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5403 KWLoc, SS, Name, NameLoc, Attr, AS_none,
5404 MultiTemplateParamsArg(*this, 0, 0),
5405 Owned, IsDependent, false, false,
5406 TypeResult());
5407 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5409 if (!TagD)
5410 return true;
5412 TagDecl *Tag = cast<TagDecl>(TagD);
5413 if (Tag->isEnum()) {
5414 Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5415 << Context.getTypeDeclType(Tag);
5416 return true;
5419 if (Tag->isInvalidDecl())
5420 return true;
5422 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5423 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5424 if (!Pattern) {
5425 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5426 << Context.getTypeDeclType(Record);
5427 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5428 return true;
5431 // C++0x [temp.explicit]p2:
5432 // If the explicit instantiation is for a class or member class, the
5433 // elaborated-type-specifier in the declaration shall include a
5434 // simple-template-id.
5436 // C++98 has the same restriction, just worded differently.
5437 if (!ScopeSpecifierHasTemplateId(SS))
5438 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5439 << Record << SS.getRange();
5441 // C++0x [temp.explicit]p2:
5442 // There are two forms of explicit instantiation: an explicit instantiation
5443 // definition and an explicit instantiation declaration. An explicit
5444 // instantiation declaration begins with the extern keyword. [...]
5445 TemplateSpecializationKind TSK
5446 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5447 : TSK_ExplicitInstantiationDeclaration;
5449 // C++0x [temp.explicit]p2:
5450 // [...] An explicit instantiation shall appear in an enclosing
5451 // namespace of its template. [...]
5453 // This is C++ DR 275.
5454 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5456 // Verify that it is okay to explicitly instantiate here.
5457 CXXRecordDecl *PrevDecl
5458 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5459 if (!PrevDecl && Record->getDefinition())
5460 PrevDecl = Record;
5461 if (PrevDecl) {
5462 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5463 bool HasNoEffect = false;
5464 assert(MSInfo && "No member specialization information?");
5465 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5466 PrevDecl,
5467 MSInfo->getTemplateSpecializationKind(),
5468 MSInfo->getPointOfInstantiation(),
5469 HasNoEffect))
5470 return true;
5471 if (HasNoEffect)
5472 return TagD;
5475 CXXRecordDecl *RecordDef
5476 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5477 if (!RecordDef) {
5478 // C++ [temp.explicit]p3:
5479 // A definition of a member class of a class template shall be in scope
5480 // at the point of an explicit instantiation of the member class.
5481 CXXRecordDecl *Def
5482 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5483 if (!Def) {
5484 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5485 << 0 << Record->getDeclName() << Record->getDeclContext();
5486 Diag(Pattern->getLocation(), diag::note_forward_declaration)
5487 << Pattern;
5488 return true;
5489 } else {
5490 if (InstantiateClass(NameLoc, Record, Def,
5491 getTemplateInstantiationArgs(Record),
5492 TSK))
5493 return true;
5495 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5496 if (!RecordDef)
5497 return true;
5501 // Instantiate all of the members of the class.
5502 InstantiateClassMembers(NameLoc, RecordDef,
5503 getTemplateInstantiationArgs(Record), TSK);
5505 if (TSK == TSK_ExplicitInstantiationDefinition)
5506 MarkVTableUsed(NameLoc, RecordDef, true);
5508 // FIXME: We don't have any representation for explicit instantiations of
5509 // member classes. Such a representation is not needed for compilation, but it
5510 // should be available for clients that want to see all of the declarations in
5511 // the source code.
5512 return TagD;
5515 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5516 SourceLocation ExternLoc,
5517 SourceLocation TemplateLoc,
5518 Declarator &D) {
5519 // Explicit instantiations always require a name.
5520 // TODO: check if/when DNInfo should replace Name.
5521 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5522 DeclarationName Name = NameInfo.getName();
5523 if (!Name) {
5524 if (!D.isInvalidType())
5525 Diag(D.getDeclSpec().getSourceRange().getBegin(),
5526 diag::err_explicit_instantiation_requires_name)
5527 << D.getDeclSpec().getSourceRange()
5528 << D.getSourceRange();
5530 return true;
5533 // The scope passed in may not be a decl scope. Zip up the scope tree until
5534 // we find one that is.
5535 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5536 (S->getFlags() & Scope::TemplateParamScope) != 0)
5537 S = S->getParent();
5539 // Determine the type of the declaration.
5540 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5541 QualType R = T->getType();
5542 if (R.isNull())
5543 return true;
5545 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5546 // Cannot explicitly instantiate a typedef.
5547 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5548 << Name;
5549 return true;
5552 // C++0x [temp.explicit]p1:
5553 // [...] An explicit instantiation of a function template shall not use the
5554 // inline or constexpr specifiers.
5555 // Presumably, this also applies to member functions of class templates as
5556 // well.
5557 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5558 Diag(D.getDeclSpec().getInlineSpecLoc(),
5559 diag::err_explicit_instantiation_inline)
5560 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5562 // FIXME: check for constexpr specifier.
5564 // C++0x [temp.explicit]p2:
5565 // There are two forms of explicit instantiation: an explicit instantiation
5566 // definition and an explicit instantiation declaration. An explicit
5567 // instantiation declaration begins with the extern keyword. [...]
5568 TemplateSpecializationKind TSK
5569 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5570 : TSK_ExplicitInstantiationDeclaration;
5572 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5573 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5575 if (!R->isFunctionType()) {
5576 // C++ [temp.explicit]p1:
5577 // A [...] static data member of a class template can be explicitly
5578 // instantiated from the member definition associated with its class
5579 // template.
5580 if (Previous.isAmbiguous())
5581 return true;
5583 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5584 if (!Prev || !Prev->isStaticDataMember()) {
5585 // We expect to see a data data member here.
5586 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5587 << Name;
5588 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5589 P != PEnd; ++P)
5590 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5591 return true;
5594 if (!Prev->getInstantiatedFromStaticDataMember()) {
5595 // FIXME: Check for explicit specialization?
5596 Diag(D.getIdentifierLoc(),
5597 diag::err_explicit_instantiation_data_member_not_instantiated)
5598 << Prev;
5599 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5600 // FIXME: Can we provide a note showing where this was declared?
5601 return true;
5604 // C++0x [temp.explicit]p2:
5605 // If the explicit instantiation is for a member function, a member class
5606 // or a static data member of a class template specialization, the name of
5607 // the class template specialization in the qualified-id for the member
5608 // name shall be a simple-template-id.
5610 // C++98 has the same restriction, just worded differently.
5611 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5612 Diag(D.getIdentifierLoc(),
5613 diag::ext_explicit_instantiation_without_qualified_id)
5614 << Prev << D.getCXXScopeSpec().getRange();
5616 // Check the scope of this explicit instantiation.
5617 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5619 // Verify that it is okay to explicitly instantiate here.
5620 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5621 assert(MSInfo && "Missing static data member specialization info?");
5622 bool HasNoEffect = false;
5623 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5624 MSInfo->getTemplateSpecializationKind(),
5625 MSInfo->getPointOfInstantiation(),
5626 HasNoEffect))
5627 return true;
5628 if (HasNoEffect)
5629 return (Decl*) 0;
5631 // Instantiate static data member.
5632 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5633 if (TSK == TSK_ExplicitInstantiationDefinition)
5634 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5636 // FIXME: Create an ExplicitInstantiation node?
5637 return (Decl*) 0;
5640 // If the declarator is a template-id, translate the parser's template
5641 // argument list into our AST format.
5642 bool HasExplicitTemplateArgs = false;
5643 TemplateArgumentListInfo TemplateArgs;
5644 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5645 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5646 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5647 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5648 ASTTemplateArgsPtr TemplateArgsPtr(*this,
5649 TemplateId->getTemplateArgs(),
5650 TemplateId->NumArgs);
5651 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5652 HasExplicitTemplateArgs = true;
5653 TemplateArgsPtr.release();
5656 // C++ [temp.explicit]p1:
5657 // A [...] function [...] can be explicitly instantiated from its template.
5658 // A member function [...] of a class template can be explicitly
5659 // instantiated from the member definition associated with its class
5660 // template.
5661 UnresolvedSet<8> Matches;
5662 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5663 P != PEnd; ++P) {
5664 NamedDecl *Prev = *P;
5665 if (!HasExplicitTemplateArgs) {
5666 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5667 if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5668 Matches.clear();
5670 Matches.addDecl(Method, P.getAccess());
5671 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5672 break;
5677 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5678 if (!FunTmpl)
5679 continue;
5681 TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5682 FunctionDecl *Specialization = 0;
5683 if (TemplateDeductionResult TDK
5684 = DeduceTemplateArguments(FunTmpl,
5685 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5686 R, Specialization, Info)) {
5687 // FIXME: Keep track of almost-matches?
5688 (void)TDK;
5689 continue;
5692 Matches.addDecl(Specialization, P.getAccess());
5695 // Find the most specialized function template specialization.
5696 UnresolvedSetIterator Result
5697 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
5698 D.getIdentifierLoc(),
5699 PDiag(diag::err_explicit_instantiation_not_known) << Name,
5700 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5701 PDiag(diag::note_explicit_instantiation_candidate));
5703 if (Result == Matches.end())
5704 return true;
5706 // Ignore access control bits, we don't need them for redeclaration checking.
5707 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5709 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5710 Diag(D.getIdentifierLoc(),
5711 diag::err_explicit_instantiation_member_function_not_instantiated)
5712 << Specialization
5713 << (Specialization->getTemplateSpecializationKind() ==
5714 TSK_ExplicitSpecialization);
5715 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5716 return true;
5719 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5720 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5721 PrevDecl = Specialization;
5723 if (PrevDecl) {
5724 bool HasNoEffect = false;
5725 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5726 PrevDecl,
5727 PrevDecl->getTemplateSpecializationKind(),
5728 PrevDecl->getPointOfInstantiation(),
5729 HasNoEffect))
5730 return true;
5732 // FIXME: We may still want to build some representation of this
5733 // explicit specialization.
5734 if (HasNoEffect)
5735 return (Decl*) 0;
5738 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5740 if (TSK == TSK_ExplicitInstantiationDefinition)
5741 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5743 // C++0x [temp.explicit]p2:
5744 // If the explicit instantiation is for a member function, a member class
5745 // or a static data member of a class template specialization, the name of
5746 // the class template specialization in the qualified-id for the member
5747 // name shall be a simple-template-id.
5749 // C++98 has the same restriction, just worded differently.
5750 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5751 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5752 D.getCXXScopeSpec().isSet() &&
5753 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5754 Diag(D.getIdentifierLoc(),
5755 diag::ext_explicit_instantiation_without_qualified_id)
5756 << Specialization << D.getCXXScopeSpec().getRange();
5758 CheckExplicitInstantiationScope(*this,
5759 FunTmpl? (NamedDecl *)FunTmpl
5760 : Specialization->getInstantiatedFromMemberFunction(),
5761 D.getIdentifierLoc(),
5762 D.getCXXScopeSpec().isSet());
5764 // FIXME: Create some kind of ExplicitInstantiationDecl here.
5765 return (Decl*) 0;
5768 TypeResult
5769 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5770 const CXXScopeSpec &SS, IdentifierInfo *Name,
5771 SourceLocation TagLoc, SourceLocation NameLoc) {
5772 // This has to hold, because SS is expected to be defined.
5773 assert(Name && "Expected a name in a dependent tag");
5775 NestedNameSpecifier *NNS
5776 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5777 if (!NNS)
5778 return true;
5780 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5782 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5783 Diag(NameLoc, diag::err_dependent_tag_decl)
5784 << (TUK == TUK_Definition) << Kind << SS.getRange();
5785 return true;
5788 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5789 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5792 TypeResult
5793 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5794 const CXXScopeSpec &SS, const IdentifierInfo &II,
5795 SourceLocation IdLoc) {
5796 NestedNameSpecifier *NNS
5797 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5798 if (!NNS)
5799 return true;
5801 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5802 !getLangOptions().CPlusPlus0x)
5803 Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5804 << FixItHint::CreateRemoval(TypenameLoc);
5806 QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5807 TypenameLoc, SS.getRange(), IdLoc);
5808 if (T.isNull())
5809 return true;
5811 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5812 if (isa<DependentNameType>(T)) {
5813 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5814 TL.setKeywordLoc(TypenameLoc);
5815 TL.setQualifierRange(SS.getRange());
5816 TL.setNameLoc(IdLoc);
5817 } else {
5818 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5819 TL.setKeywordLoc(TypenameLoc);
5820 TL.setQualifierRange(SS.getRange());
5821 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5824 return CreateParsedType(T, TSI);
5827 TypeResult
5828 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5829 const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5830 ParsedType Ty) {
5831 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5832 !getLangOptions().CPlusPlus0x)
5833 Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5834 << FixItHint::CreateRemoval(TypenameLoc);
5836 TypeSourceInfo *InnerTSI = 0;
5837 QualType T = GetTypeFromParser(Ty, &InnerTSI);
5839 assert(isa<TemplateSpecializationType>(T) &&
5840 "Expected a template specialization type");
5842 if (computeDeclContext(SS, false)) {
5843 // If we can compute a declaration context, then the "typename"
5844 // keyword was superfluous. Just build an ElaboratedType to keep
5845 // track of the nested-name-specifier.
5847 // Push the inner type, preserving its source locations if possible.
5848 TypeLocBuilder Builder;
5849 if (InnerTSI)
5850 Builder.pushFullCopy(InnerTSI->getTypeLoc());
5851 else
5852 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5854 /* Note: NNS already embedded in template specialization type T. */
5855 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5856 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5857 TL.setKeywordLoc(TypenameLoc);
5858 TL.setQualifierRange(SS.getRange());
5860 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5861 return CreateParsedType(T, TSI);
5864 // TODO: it's really silly that we make a template specialization
5865 // type earlier only to drop it again here.
5866 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5867 DependentTemplateName *DTN =
5868 TST->getTemplateName().getAsDependentTemplateName();
5869 assert(DTN && "dependent template has non-dependent name?");
5870 assert(DTN->getQualifier()
5871 == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5872 T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5873 DTN->getQualifier(),
5874 DTN->getIdentifier(),
5875 TST->getNumArgs(),
5876 TST->getArgs());
5877 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5878 DependentTemplateSpecializationTypeLoc TL =
5879 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5880 if (InnerTSI) {
5881 TemplateSpecializationTypeLoc TSTL =
5882 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5883 TL.setLAngleLoc(TSTL.getLAngleLoc());
5884 TL.setRAngleLoc(TSTL.getRAngleLoc());
5885 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5886 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5887 } else {
5888 TL.initializeLocal(SourceLocation());
5890 TL.setKeywordLoc(TypenameLoc);
5891 TL.setQualifierRange(SS.getRange());
5892 return CreateParsedType(T, TSI);
5895 /// \brief Build the type that describes a C++ typename specifier,
5896 /// e.g., "typename T::type".
5897 QualType
5898 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5899 NestedNameSpecifier *NNS, const IdentifierInfo &II,
5900 SourceLocation KeywordLoc, SourceRange NNSRange,
5901 SourceLocation IILoc) {
5902 CXXScopeSpec SS;
5903 SS.setScopeRep(NNS);
5904 SS.setRange(NNSRange);
5906 DeclContext *Ctx = computeDeclContext(SS);
5907 if (!Ctx) {
5908 // If the nested-name-specifier is dependent and couldn't be
5909 // resolved to a type, build a typename type.
5910 assert(NNS->isDependent());
5911 return Context.getDependentNameType(Keyword, NNS, &II);
5914 // If the nested-name-specifier refers to the current instantiation,
5915 // the "typename" keyword itself is superfluous. In C++03, the
5916 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5917 // allows such extraneous "typename" keywords, and we retroactively
5918 // apply this DR to C++03 code with only a warning. In any case we continue.
5920 if (RequireCompleteDeclContext(SS, Ctx))
5921 return QualType();
5923 DeclarationName Name(&II);
5924 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5925 LookupQualifiedName(Result, Ctx);
5926 unsigned DiagID = 0;
5927 Decl *Referenced = 0;
5928 switch (Result.getResultKind()) {
5929 case LookupResult::NotFound:
5930 DiagID = diag::err_typename_nested_not_found;
5931 break;
5933 case LookupResult::FoundUnresolvedValue: {
5934 // We found a using declaration that is a value. Most likely, the using
5935 // declaration itself is meant to have the 'typename' keyword.
5936 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5937 IILoc);
5938 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
5939 << Name << Ctx << FullRange;
5940 if (UnresolvedUsingValueDecl *Using
5941 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
5942 SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
5943 Diag(Loc, diag::note_using_value_decl_missing_typename)
5944 << FixItHint::CreateInsertion(Loc, "typename ");
5947 // Fall through to create a dependent typename type, from which we can recover
5948 // better.
5950 case LookupResult::NotFoundInCurrentInstantiation:
5951 // Okay, it's a member of an unknown instantiation.
5952 return Context.getDependentNameType(Keyword, NNS, &II);
5954 case LookupResult::Found:
5955 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5956 // We found a type. Build an ElaboratedType, since the
5957 // typename-specifier was just sugar.
5958 return Context.getElaboratedType(ETK_Typename, NNS,
5959 Context.getTypeDeclType(Type));
5962 DiagID = diag::err_typename_nested_not_type;
5963 Referenced = Result.getFoundDecl();
5964 break;
5967 llvm_unreachable("unresolved using decl in non-dependent context");
5968 return QualType();
5970 case LookupResult::FoundOverloaded:
5971 DiagID = diag::err_typename_nested_not_type;
5972 Referenced = *Result.begin();
5973 break;
5975 case LookupResult::Ambiguous:
5976 return QualType();
5979 // If we get here, it's because name lookup did not find a
5980 // type. Emit an appropriate diagnostic and return an error.
5981 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5982 IILoc);
5983 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5984 if (Referenced)
5985 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5986 << Name;
5987 return QualType();
5990 namespace {
5991 // See Sema::RebuildTypeInCurrentInstantiation
5992 class CurrentInstantiationRebuilder
5993 : public TreeTransform<CurrentInstantiationRebuilder> {
5994 SourceLocation Loc;
5995 DeclarationName Entity;
5997 public:
5998 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6000 CurrentInstantiationRebuilder(Sema &SemaRef,
6001 SourceLocation Loc,
6002 DeclarationName Entity)
6003 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6004 Loc(Loc), Entity(Entity) { }
6006 /// \brief Determine whether the given type \p T has already been
6007 /// transformed.
6009 /// For the purposes of type reconstruction, a type has already been
6010 /// transformed if it is NULL or if it is not dependent.
6011 bool AlreadyTransformed(QualType T) {
6012 return T.isNull() || !T->isDependentType();
6015 /// \brief Returns the location of the entity whose type is being
6016 /// rebuilt.
6017 SourceLocation getBaseLocation() { return Loc; }
6019 /// \brief Returns the name of the entity whose type is being rebuilt.
6020 DeclarationName getBaseEntity() { return Entity; }
6022 /// \brief Sets the "base" location and entity when that
6023 /// information is known based on another transformation.
6024 void setBase(SourceLocation Loc, DeclarationName Entity) {
6025 this->Loc = Loc;
6026 this->Entity = Entity;
6031 /// \brief Rebuilds a type within the context of the current instantiation.
6033 /// The type \p T is part of the type of an out-of-line member definition of
6034 /// a class template (or class template partial specialization) that was parsed
6035 /// and constructed before we entered the scope of the class template (or
6036 /// partial specialization thereof). This routine will rebuild that type now
6037 /// that we have entered the declarator's scope, which may produce different
6038 /// canonical types, e.g.,
6040 /// \code
6041 /// template<typename T>
6042 /// struct X {
6043 /// typedef T* pointer;
6044 /// pointer data();
6045 /// };
6047 /// template<typename T>
6048 /// typename X<T>::pointer X<T>::data() { ... }
6049 /// \endcode
6051 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6052 /// since we do not know that we can look into X<T> when we parsed the type.
6053 /// This function will rebuild the type, performing the lookup of "pointer"
6054 /// in X<T> and returning an ElaboratedType whose canonical type is the same
6055 /// as the canonical type of T*, allowing the return types of the out-of-line
6056 /// definition and the declaration to match.
6057 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6058 SourceLocation Loc,
6059 DeclarationName Name) {
6060 if (!T || !T->getType()->isDependentType())
6061 return T;
6063 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6064 return Rebuilder.TransformType(T);
6067 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6068 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6069 DeclarationName());
6070 return Rebuilder.TransformExpr(E);
6073 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6074 if (SS.isInvalid()) return true;
6076 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6077 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6078 DeclarationName());
6079 NestedNameSpecifier *Rebuilt =
6080 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
6081 if (!Rebuilt) return true;
6083 SS.setScopeRep(Rebuilt);
6084 return false;
6087 /// \brief Produces a formatted string that describes the binding of
6088 /// template parameters to template arguments.
6089 std::string
6090 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6091 const TemplateArgumentList &Args) {
6092 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6095 std::string
6096 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6097 const TemplateArgument *Args,
6098 unsigned NumArgs) {
6099 llvm::SmallString<128> Str;
6100 llvm::raw_svector_ostream Out(Str);
6102 if (!Params || Params->size() == 0 || NumArgs == 0)
6103 return std::string();
6105 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6106 if (I >= NumArgs)
6107 break;
6109 if (I == 0)
6110 Out << "[with ";
6111 else
6112 Out << ", ";
6114 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6115 Out << Id->getName();
6116 } else {
6117 Out << '$' << I;
6120 Out << " = ";
6121 Args[I].print(Context.PrintingPolicy, Out);
6124 Out << ']';
6125 return Out.str();