1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
12 #include "clang/Sema/SemaInternal.h"
13 #include "clang/Sema/Lookup.h"
14 #include "clang/Sema/Scope.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "TreeTransform.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/TypeVisitor.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Basic/LangOptions.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/StringExtras.h"
30 using namespace clang
;
33 // Exported for use by Parser.
35 clang::getTemplateParamsRange(TemplateParameterList
const * const *Ps
,
37 if (!N
) return SourceRange();
38 return SourceRange(Ps
[0]->getTemplateLoc(), Ps
[N
-1]->getRAngleLoc());
41 /// \brief Determine whether the declaration found is acceptable as the name
42 /// of a template and, if so, return that template declaration. Otherwise,
44 static NamedDecl
*isAcceptableTemplateName(ASTContext
&Context
,
46 NamedDecl
*D
= Orig
->getUnderlyingDecl();
48 if (isa
<TemplateDecl
>(D
))
51 if (CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(D
)) {
52 // C++ [temp.local]p1:
53 // Like normal (non-template) classes, class templates have an
54 // injected-class-name (Clause 9). The injected-class-name
55 // can be used with or without a template-argument-list. When
56 // it is used without a template-argument-list, it is
57 // equivalent to the injected-class-name followed by the
58 // template-parameters of the class template enclosed in
59 // <>. When it is used with a template-argument-list, it
60 // refers to the specified class template specialization,
61 // which could be the current specialization or another
63 if (Record
->isInjectedClassName()) {
64 Record
= cast
<CXXRecordDecl
>(Record
->getDeclContext());
65 if (Record
->getDescribedClassTemplate())
66 return Record
->getDescribedClassTemplate();
68 if (ClassTemplateSpecializationDecl
*Spec
69 = dyn_cast
<ClassTemplateSpecializationDecl
>(Record
))
70 return Spec
->getSpecializedTemplate();
79 static void FilterAcceptableTemplateNames(ASTContext
&C
, LookupResult
&R
) {
80 // The set of class templates we've already seen.
81 llvm::SmallPtrSet
<ClassTemplateDecl
*, 8> ClassTemplates
;
82 LookupResult::Filter filter
= R
.makeFilter();
83 while (filter
.hasNext()) {
84 NamedDecl
*Orig
= filter
.next();
85 NamedDecl
*Repl
= isAcceptableTemplateName(C
, Orig
);
88 else if (Repl
!= Orig
) {
90 // C++ [temp.local]p3:
91 // A lookup that finds an injected-class-name (10.2) can result in an
92 // ambiguity in certain cases (for example, if it is found in more than
93 // one base class). If all of the injected-class-names that are found
94 // refer to specializations of the same class template, and if the name
95 // is followed by a template-argument-list, the reference refers to the
96 // class template itself and not a specialization thereof, and is not
99 // FIXME: Will we eventually have to do the same for alias templates?
100 if (ClassTemplateDecl
*ClassTmpl
= dyn_cast
<ClassTemplateDecl
>(Repl
))
101 if (!ClassTemplates
.insert(ClassTmpl
)) {
106 // FIXME: we promote access to public here as a workaround to
107 // the fact that LookupResult doesn't let us remember that we
108 // found this template through a particular injected class name,
109 // which means we end up doing nasty things to the invariants.
110 // Pretending that access is public is *much* safer.
111 filter
.replace(Repl
, AS_public
);
117 TemplateNameKind
Sema::isTemplateName(Scope
*S
,
119 bool hasTemplateKeyword
,
121 ParsedType ObjectTypePtr
,
122 bool EnteringContext
,
123 TemplateTy
&TemplateResult
,
124 bool &MemberOfUnknownSpecialization
) {
125 assert(getLangOptions().CPlusPlus
&& "No template names in C!");
127 DeclarationName TName
;
128 MemberOfUnknownSpecialization
= false;
130 switch (Name
.getKind()) {
131 case UnqualifiedId::IK_Identifier
:
132 TName
= DeclarationName(Name
.Identifier
);
135 case UnqualifiedId::IK_OperatorFunctionId
:
136 TName
= Context
.DeclarationNames
.getCXXOperatorName(
137 Name
.OperatorFunctionId
.Operator
);
140 case UnqualifiedId::IK_LiteralOperatorId
:
141 TName
= Context
.DeclarationNames
.getCXXLiteralOperatorName(Name
.Identifier
);
145 return TNK_Non_template
;
148 QualType ObjectType
= ObjectTypePtr
.get();
150 LookupResult
R(*this, TName
, Name
.getSourceRange().getBegin(),
152 LookupTemplateName(R
, S
, SS
, ObjectType
, EnteringContext
,
153 MemberOfUnknownSpecialization
);
154 if (R
.empty()) return TNK_Non_template
;
155 if (R
.isAmbiguous()) {
156 // Suppress diagnostics; we'll redo this lookup later.
157 R
.suppressDiagnostics();
159 // FIXME: we might have ambiguous templates, in which case we
160 // should at least parse them properly!
161 return TNK_Non_template
;
164 TemplateName Template
;
165 TemplateNameKind TemplateKind
;
167 unsigned ResultCount
= R
.end() - R
.begin();
168 if (ResultCount
> 1) {
169 // We assume that we'll preserve the qualifier from a function
170 // template name in other ways.
171 Template
= Context
.getOverloadedTemplateName(R
.begin(), R
.end());
172 TemplateKind
= TNK_Function_template
;
174 // We'll do this lookup again later.
175 R
.suppressDiagnostics();
177 TemplateDecl
*TD
= cast
<TemplateDecl
>((*R
.begin())->getUnderlyingDecl());
179 if (SS
.isSet() && !SS
.isInvalid()) {
180 NestedNameSpecifier
*Qualifier
181 = static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
182 Template
= Context
.getQualifiedTemplateName(Qualifier
,
183 hasTemplateKeyword
, TD
);
185 Template
= TemplateName(TD
);
188 if (isa
<FunctionTemplateDecl
>(TD
)) {
189 TemplateKind
= TNK_Function_template
;
191 // We'll do this lookup again later.
192 R
.suppressDiagnostics();
194 assert(isa
<ClassTemplateDecl
>(TD
) || isa
<TemplateTemplateParmDecl
>(TD
));
195 TemplateKind
= TNK_Type_template
;
199 TemplateResult
= TemplateTy::make(Template
);
203 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo
&II
,
204 SourceLocation IILoc
,
206 const CXXScopeSpec
*SS
,
207 TemplateTy
&SuggestedTemplate
,
208 TemplateNameKind
&SuggestedKind
) {
209 // We can't recover unless there's a dependent scope specifier preceding the
211 // FIXME: Typo correction?
212 if (!SS
|| !SS
->isSet() || !isDependentScopeSpecifier(*SS
) ||
213 computeDeclContext(*SS
))
216 // The code is missing a 'template' keyword prior to the dependent template
218 NestedNameSpecifier
*Qualifier
= (NestedNameSpecifier
*)SS
->getScopeRep();
219 Diag(IILoc
, diag::err_template_kw_missing
)
220 << Qualifier
<< II
.getName()
221 << FixItHint::CreateInsertion(IILoc
, "template ");
223 = TemplateTy::make(Context
.getDependentTemplateName(Qualifier
, &II
));
224 SuggestedKind
= TNK_Dependent_template_name
;
228 void Sema::LookupTemplateName(LookupResult
&Found
,
229 Scope
*S
, CXXScopeSpec
&SS
,
231 bool EnteringContext
,
232 bool &MemberOfUnknownSpecialization
) {
233 // Determine where to perform name lookup
234 MemberOfUnknownSpecialization
= false;
235 DeclContext
*LookupCtx
= 0;
236 bool isDependent
= false;
237 if (!ObjectType
.isNull()) {
238 // This nested-name-specifier occurs in a member access expression, e.g.,
239 // x->B::f, and we are looking into the type of the object.
240 assert(!SS
.isSet() && "ObjectType and scope specifier cannot coexist");
241 LookupCtx
= computeDeclContext(ObjectType
);
242 isDependent
= ObjectType
->isDependentType();
243 assert((isDependent
|| !ObjectType
->isIncompleteType()) &&
244 "Caller should have completed object type");
245 } else if (SS
.isSet()) {
246 // This nested-name-specifier occurs after another nested-name-specifier,
247 // so long into the context associated with the prior nested-name-specifier.
248 LookupCtx
= computeDeclContext(SS
, EnteringContext
);
249 isDependent
= isDependentScopeSpecifier(SS
);
251 // The declaration context must be complete.
252 if (LookupCtx
&& RequireCompleteDeclContext(SS
, LookupCtx
))
256 bool ObjectTypeSearchedInScope
= false;
258 // Perform "qualified" name lookup into the declaration context we
259 // computed, which is either the type of the base of a member access
260 // expression or the declaration context associated with a prior
261 // nested-name-specifier.
262 LookupQualifiedName(Found
, LookupCtx
);
264 if (!ObjectType
.isNull() && Found
.empty()) {
265 // C++ [basic.lookup.classref]p1:
266 // In a class member access expression (5.2.5), if the . or -> token is
267 // immediately followed by an identifier followed by a <, the
268 // identifier must be looked up to determine whether the < is the
269 // beginning of a template argument list (14.2) or a less-than operator.
270 // The identifier is first looked up in the class of the object
271 // expression. If the identifier is not found, it is then looked up in
272 // the context of the entire postfix-expression and shall name a class
273 // or function template.
274 if (S
) LookupName(Found
, S
);
275 ObjectTypeSearchedInScope
= true;
277 } else if (isDependent
&& (!S
|| ObjectType
.isNull())) {
278 // We cannot look into a dependent object type or nested nme
280 MemberOfUnknownSpecialization
= true;
283 // Perform unqualified name lookup in the current scope.
284 LookupName(Found
, S
);
287 if (Found
.empty() && !isDependent
) {
288 // If we did not find any names, attempt to correct any typos.
289 DeclarationName Name
= Found
.getLookupName();
290 if (DeclarationName Corrected
= CorrectTypo(Found
, S
, &SS
, LookupCtx
,
291 false, CTC_CXXCasts
)) {
292 FilterAcceptableTemplateNames(Context
, Found
);
293 if (!Found
.empty()) {
295 Diag(Found
.getNameLoc(), diag::err_no_member_template_suggest
)
296 << Name
<< LookupCtx
<< Found
.getLookupName() << SS
.getRange()
297 << FixItHint::CreateReplacement(Found
.getNameLoc(),
298 Found
.getLookupName().getAsString());
300 Diag(Found
.getNameLoc(), diag::err_no_template_suggest
)
301 << Name
<< Found
.getLookupName()
302 << FixItHint::CreateReplacement(Found
.getNameLoc(),
303 Found
.getLookupName().getAsString());
304 if (TemplateDecl
*Template
= Found
.getAsSingle
<TemplateDecl
>())
305 Diag(Template
->getLocation(), diag::note_previous_decl
)
306 << Template
->getDeclName();
310 Found
.setLookupName(Name
);
314 FilterAcceptableTemplateNames(Context
, Found
);
317 MemberOfUnknownSpecialization
= true;
321 if (S
&& !ObjectType
.isNull() && !ObjectTypeSearchedInScope
) {
322 // C++ [basic.lookup.classref]p1:
323 // [...] If the lookup in the class of the object expression finds a
324 // template, the name is also looked up in the context of the entire
325 // postfix-expression and [...]
327 LookupResult
FoundOuter(*this, Found
.getLookupName(), Found
.getNameLoc(),
329 LookupName(FoundOuter
, S
);
330 FilterAcceptableTemplateNames(Context
, FoundOuter
);
332 if (FoundOuter
.empty()) {
333 // - if the name is not found, the name found in the class of the
334 // object expression is used, otherwise
335 } else if (!FoundOuter
.getAsSingle
<ClassTemplateDecl
>()) {
336 // - if the name is found in the context of the entire
337 // postfix-expression and does not name a class template, the name
338 // found in the class of the object expression is used, otherwise
339 } else if (!Found
.isSuppressingDiagnostics()) {
340 // - if the name found is a class template, it must refer to the same
341 // entity as the one found in the class of the object expression,
342 // otherwise the program is ill-formed.
343 if (!Found
.isSingleResult() ||
344 Found
.getFoundDecl()->getCanonicalDecl()
345 != FoundOuter
.getFoundDecl()->getCanonicalDecl()) {
346 Diag(Found
.getNameLoc(),
347 diag::ext_nested_name_member_ref_lookup_ambiguous
)
348 << Found
.getLookupName()
350 Diag(Found
.getRepresentativeDecl()->getLocation(),
351 diag::note_ambig_member_ref_object_type
)
353 Diag(FoundOuter
.getFoundDecl()->getLocation(),
354 diag::note_ambig_member_ref_scope
);
356 // Recover by taking the template that we found in the object
357 // expression's type.
363 /// ActOnDependentIdExpression - Handle a dependent id-expression that
364 /// was just parsed. This is only possible with an explicit scope
365 /// specifier naming a dependent type.
367 Sema::ActOnDependentIdExpression(const CXXScopeSpec
&SS
,
368 const DeclarationNameInfo
&NameInfo
,
369 bool isAddressOfOperand
,
370 const TemplateArgumentListInfo
*TemplateArgs
) {
371 NestedNameSpecifier
*Qualifier
372 = static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
374 DeclContext
*DC
= getFunctionLevelDeclContext();
376 if (!isAddressOfOperand
&&
377 isa
<CXXMethodDecl
>(DC
) &&
378 cast
<CXXMethodDecl
>(DC
)->isInstance()) {
379 QualType ThisType
= cast
<CXXMethodDecl
>(DC
)->getThisType(Context
);
381 // Since the 'this' expression is synthesized, we don't need to
382 // perform the double-lookup check.
383 NamedDecl
*FirstQualifierInScope
= 0;
385 return Owned(CXXDependentScopeMemberExpr::Create(Context
,
386 /*This*/ 0, ThisType
,
388 /*Op*/ SourceLocation(),
389 Qualifier
, SS
.getRange(),
390 FirstQualifierInScope
,
395 return BuildDependentDeclRefExpr(SS
, NameInfo
, TemplateArgs
);
399 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec
&SS
,
400 const DeclarationNameInfo
&NameInfo
,
401 const TemplateArgumentListInfo
*TemplateArgs
) {
402 return Owned(DependentScopeDeclRefExpr::Create(Context
,
403 static_cast<NestedNameSpecifier
*>(SS
.getScopeRep()),
409 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410 /// that the template parameter 'PrevDecl' is being shadowed by a new
411 /// declaration at location Loc. Returns true to indicate that this is
412 /// an error, and false otherwise.
413 bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc
, Decl
*PrevDecl
) {
414 assert(PrevDecl
->isTemplateParameter() && "Not a template parameter");
416 // Microsoft Visual C++ permits template parameters to be shadowed.
417 if (getLangOptions().Microsoft
)
420 // C++ [temp.local]p4:
421 // A template-parameter shall not be redeclared within its
422 // scope (including nested scopes).
423 Diag(Loc
, diag::err_template_param_shadow
)
424 << cast
<NamedDecl
>(PrevDecl
)->getDeclName();
425 Diag(PrevDecl
->getLocation(), diag::note_template_param_here
);
429 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430 /// the parameter D to reference the templated declaration and return a pointer
431 /// to the template declaration. Otherwise, do nothing to D and return null.
432 TemplateDecl
*Sema::AdjustDeclIfTemplate(Decl
*&D
) {
433 if (TemplateDecl
*Temp
= dyn_cast_or_null
<TemplateDecl
>(D
)) {
434 D
= Temp
->getTemplatedDecl();
440 ParsedTemplateArgument
ParsedTemplateArgument::getTemplatePackExpansion(
441 SourceLocation EllipsisLoc
) const {
442 assert(Kind
== Template
&&
443 "Only template template arguments can be pack expansions here");
444 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
445 "Template template argument pack expansion without packs");
446 ParsedTemplateArgument
Result(*this);
447 Result
.EllipsisLoc
= EllipsisLoc
;
451 static TemplateArgumentLoc
translateTemplateArgument(Sema
&SemaRef
,
452 const ParsedTemplateArgument
&Arg
) {
454 switch (Arg
.getKind()) {
455 case ParsedTemplateArgument::Type
: {
457 QualType T
= SemaRef
.GetTypeFromParser(Arg
.getAsType(), &DI
);
459 DI
= SemaRef
.Context
.getTrivialTypeSourceInfo(T
, Arg
.getLocation());
460 return TemplateArgumentLoc(TemplateArgument(T
), DI
);
463 case ParsedTemplateArgument::NonType
: {
464 Expr
*E
= static_cast<Expr
*>(Arg
.getAsExpr());
465 return TemplateArgumentLoc(TemplateArgument(E
), E
);
468 case ParsedTemplateArgument::Template
: {
469 TemplateName Template
= Arg
.getAsTemplate().get();
470 TemplateArgument TArg
;
471 if (Arg
.getEllipsisLoc().isValid())
472 TArg
= TemplateArgument(Template
, llvm::Optional
<unsigned int>());
475 return TemplateArgumentLoc(TArg
,
476 Arg
.getScopeSpec().getRange(),
478 Arg
.getEllipsisLoc());
482 llvm_unreachable("Unhandled parsed template argument");
483 return TemplateArgumentLoc();
486 /// \brief Translates template arguments as provided by the parser
487 /// into template arguments used by semantic analysis.
488 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr
&TemplateArgsIn
,
489 TemplateArgumentListInfo
&TemplateArgs
) {
490 for (unsigned I
= 0, Last
= TemplateArgsIn
.size(); I
!= Last
; ++I
)
491 TemplateArgs
.addArgument(translateTemplateArgument(*this,
495 /// ActOnTypeParameter - Called when a C++ template type parameter
496 /// (e.g., "typename T") has been parsed. Typename specifies whether
497 /// the keyword "typename" was used to declare the type parameter
498 /// (otherwise, "class" was used), and KeyLoc is the location of the
499 /// "class" or "typename" keyword. ParamName is the name of the
500 /// parameter (NULL indicates an unnamed template parameter) and
501 /// ParamName is the location of the parameter name (if any).
502 /// If the type parameter has a default argument, it will be added
503 /// later via ActOnTypeParameterDefault.
504 Decl
*Sema::ActOnTypeParameter(Scope
*S
, bool Typename
, bool Ellipsis
,
505 SourceLocation EllipsisLoc
,
506 SourceLocation KeyLoc
,
507 IdentifierInfo
*ParamName
,
508 SourceLocation ParamNameLoc
,
509 unsigned Depth
, unsigned Position
,
510 SourceLocation EqualLoc
,
511 ParsedType DefaultArg
) {
512 assert(S
->isTemplateParamScope() &&
513 "Template type parameter not in template parameter scope!");
514 bool Invalid
= false;
517 NamedDecl
*PrevDecl
= LookupSingleName(S
, ParamName
, ParamNameLoc
,
520 if (PrevDecl
&& PrevDecl
->isTemplateParameter())
521 Invalid
= Invalid
|| DiagnoseTemplateParameterShadow(ParamNameLoc
,
525 SourceLocation Loc
= ParamNameLoc
;
529 TemplateTypeParmDecl
*Param
530 = TemplateTypeParmDecl::Create(Context
, Context
.getTranslationUnitDecl(),
531 Loc
, Depth
, Position
, ParamName
, Typename
,
534 Param
->setInvalidDecl();
537 // Add the template parameter into the current scope.
539 IdResolver
.AddDecl(Param
);
542 // C++0x [temp.param]p9:
543 // A default template-argument may be specified for any kind of
544 // template-parameter that is not a template parameter pack.
545 if (DefaultArg
&& Ellipsis
) {
546 Diag(EqualLoc
, diag::err_template_param_pack_default_arg
);
547 DefaultArg
= ParsedType();
550 // Handle the default argument, if provided.
552 TypeSourceInfo
*DefaultTInfo
;
553 GetTypeFromParser(DefaultArg
, &DefaultTInfo
);
555 assert(DefaultTInfo
&& "expected source information for type");
557 // Check for unexpanded parameter packs.
558 if (DiagnoseUnexpandedParameterPack(Loc
, DefaultTInfo
,
559 UPPC_DefaultArgument
))
562 // Check the template argument itself.
563 if (CheckTemplateArgument(Param
, DefaultTInfo
)) {
564 Param
->setInvalidDecl();
568 Param
->setDefaultArgument(DefaultTInfo
, false);
574 /// \brief Check that the type of a non-type template parameter is
577 /// \returns the (possibly-promoted) parameter type if valid;
578 /// otherwise, produces a diagnostic and returns a NULL type.
580 Sema::CheckNonTypeTemplateParameterType(QualType T
, SourceLocation Loc
) {
581 // We don't allow variably-modified types as the type of non-type template
583 if (T
->isVariablyModifiedType()) {
584 Diag(Loc
, diag::err_variably_modified_nontype_template_param
)
589 // C++ [temp.param]p4:
591 // A non-type template-parameter shall have one of the following
592 // (optionally cv-qualified) types:
594 // -- integral or enumeration type,
595 if (T
->isIntegralOrEnumerationType() ||
596 // -- pointer to object or pointer to function,
597 T
->isPointerType() ||
598 // -- reference to object or reference to function,
599 T
->isReferenceType() ||
600 // -- pointer to member.
601 T
->isMemberPointerType() ||
602 // If T is a dependent type, we can't do the check now, so we
603 // assume that it is well-formed.
604 T
->isDependentType())
606 // C++ [temp.param]p8:
608 // A non-type template-parameter of type "array of T" or
609 // "function returning T" is adjusted to be of type "pointer to
610 // T" or "pointer to function returning T", respectively.
611 else if (T
->isArrayType())
612 // FIXME: Keep the type prior to promotion?
613 return Context
.getArrayDecayedType(T
);
614 else if (T
->isFunctionType())
615 // FIXME: Keep the type prior to promotion?
616 return Context
.getPointerType(T
);
618 Diag(Loc
, diag::err_template_nontype_parm_bad_type
)
624 Decl
*Sema::ActOnNonTypeTemplateParameter(Scope
*S
, Declarator
&D
,
627 SourceLocation EqualLoc
,
629 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
630 QualType T
= TInfo
->getType();
632 assert(S
->isTemplateParamScope() &&
633 "Non-type template parameter not in template parameter scope!");
634 bool Invalid
= false;
636 IdentifierInfo
*ParamName
= D
.getIdentifier();
638 NamedDecl
*PrevDecl
= LookupSingleName(S
, ParamName
, D
.getIdentifierLoc(),
641 if (PrevDecl
&& PrevDecl
->isTemplateParameter())
642 Invalid
= Invalid
|| DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(),
646 T
= CheckNonTypeTemplateParameterType(T
, D
.getIdentifierLoc());
648 T
= Context
.IntTy
; // Recover with an 'int' type.
652 bool IsParameterPack
= D
.hasEllipsis();
653 NonTypeTemplateParmDecl
*Param
654 = NonTypeTemplateParmDecl::Create(Context
, Context
.getTranslationUnitDecl(),
655 D
.getIdentifierLoc(),
656 Depth
, Position
, ParamName
, T
,
657 IsParameterPack
, TInfo
);
659 Param
->setInvalidDecl();
661 if (D
.getIdentifier()) {
662 // Add the template parameter into the current scope.
664 IdResolver
.AddDecl(Param
);
667 // C++0x [temp.param]p9:
668 // A default template-argument may be specified for any kind of
669 // template-parameter that is not a template parameter pack.
670 if (Default
&& IsParameterPack
) {
671 Diag(EqualLoc
, diag::err_template_param_pack_default_arg
);
675 // Check the well-formedness of the default template argument, if provided.
677 // Check for unexpanded parameter packs.
678 if (DiagnoseUnexpandedParameterPack(Default
, UPPC_DefaultArgument
))
681 TemplateArgument Converted
;
682 if (CheckTemplateArgument(Param
, Param
->getType(), Default
, Converted
)) {
683 Param
->setInvalidDecl();
687 Param
->setDefaultArgument(Default
, false);
693 /// ActOnTemplateTemplateParameter - Called when a C++ template template
694 /// parameter (e.g. T in template <template <typename> class T> class array)
695 /// has been parsed. S is the current scope.
696 Decl
*Sema::ActOnTemplateTemplateParameter(Scope
* S
,
697 SourceLocation TmpLoc
,
698 TemplateParamsTy
*Params
,
699 SourceLocation EllipsisLoc
,
700 IdentifierInfo
*Name
,
701 SourceLocation NameLoc
,
704 SourceLocation EqualLoc
,
705 ParsedTemplateArgument Default
) {
706 assert(S
->isTemplateParamScope() &&
707 "Template template parameter not in template parameter scope!");
709 // Construct the parameter object.
710 bool IsParameterPack
= EllipsisLoc
.isValid();
711 // FIXME: Pack-ness is dropped
712 TemplateTemplateParmDecl
*Param
=
713 TemplateTemplateParmDecl::Create(Context
, Context
.getTranslationUnitDecl(),
714 NameLoc
.isInvalid()? TmpLoc
: NameLoc
,
715 Depth
, Position
, IsParameterPack
,
718 // If the template template parameter has a name, then link the identifier
719 // into the scope and lookup mechanisms.
722 IdResolver
.AddDecl(Param
);
725 if (Params
->size() == 0) {
726 Diag(Param
->getLocation(), diag::err_template_template_parm_no_parms
)
727 << SourceRange(Params
->getLAngleLoc(), Params
->getRAngleLoc());
728 Param
->setInvalidDecl();
731 // C++0x [temp.param]p9:
732 // A default template-argument may be specified for any kind of
733 // template-parameter that is not a template parameter pack.
734 if (IsParameterPack
&& !Default
.isInvalid()) {
735 Diag(EqualLoc
, diag::err_template_param_pack_default_arg
);
736 Default
= ParsedTemplateArgument();
739 if (!Default
.isInvalid()) {
740 // Check only that we have a template template argument. We don't want to
741 // try to check well-formedness now, because our template template parameter
742 // might have dependent types in its template parameters, which we wouldn't
743 // be able to match now.
745 // If none of the template template parameter's template arguments mention
746 // other template parameters, we could actually perform more checking here.
747 // However, it isn't worth doing.
748 TemplateArgumentLoc DefaultArg
= translateTemplateArgument(*this, Default
);
749 if (DefaultArg
.getArgument().getAsTemplate().isNull()) {
750 Diag(DefaultArg
.getLocation(), diag::err_template_arg_not_class_template
)
751 << DefaultArg
.getSourceRange();
755 // Check for unexpanded parameter packs.
756 if (DiagnoseUnexpandedParameterPack(DefaultArg
.getLocation(),
757 DefaultArg
.getArgument().getAsTemplate(),
758 UPPC_DefaultArgument
))
761 Param
->setDefaultArgument(DefaultArg
, false);
767 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
768 /// contains the template parameters in Params/NumParams.
769 Sema::TemplateParamsTy
*
770 Sema::ActOnTemplateParameterList(unsigned Depth
,
771 SourceLocation ExportLoc
,
772 SourceLocation TemplateLoc
,
773 SourceLocation LAngleLoc
,
774 Decl
**Params
, unsigned NumParams
,
775 SourceLocation RAngleLoc
) {
776 if (ExportLoc
.isValid())
777 Diag(ExportLoc
, diag::warn_template_export_unsupported
);
779 return TemplateParameterList::Create(Context
, TemplateLoc
, LAngleLoc
,
780 (NamedDecl
**)Params
, NumParams
,
784 static void SetNestedNameSpecifier(TagDecl
*T
, const CXXScopeSpec
&SS
) {
786 T
->setQualifierInfo(static_cast<NestedNameSpecifier
*>(SS
.getScopeRep()),
791 Sema::CheckClassTemplate(Scope
*S
, unsigned TagSpec
, TagUseKind TUK
,
792 SourceLocation KWLoc
, CXXScopeSpec
&SS
,
793 IdentifierInfo
*Name
, SourceLocation NameLoc
,
795 TemplateParameterList
*TemplateParams
,
796 AccessSpecifier AS
) {
797 assert(TemplateParams
&& TemplateParams
->size() > 0 &&
798 "No template parameters");
799 assert(TUK
!= TUK_Reference
&& "Can only declare or define class templates");
800 bool Invalid
= false;
802 // Check that we can declare a template here.
803 if (CheckTemplateDeclScope(S
, TemplateParams
))
806 TagTypeKind Kind
= TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec
);
807 assert(Kind
!= TTK_Enum
&& "can't build template of enumerated type");
809 // There is no such thing as an unnamed class template.
811 Diag(KWLoc
, diag::err_template_unnamed_class
);
815 // Find any previous declaration with this name.
816 DeclContext
*SemanticContext
;
817 LookupResult
Previous(*this, Name
, NameLoc
, LookupOrdinaryName
,
819 if (SS
.isNotEmpty() && !SS
.isInvalid()) {
820 SemanticContext
= computeDeclContext(SS
, true);
821 if (!SemanticContext
) {
822 // FIXME: Produce a reasonable diagnostic here
826 if (RequireCompleteDeclContext(SS
, SemanticContext
))
829 LookupQualifiedName(Previous
, SemanticContext
);
831 SemanticContext
= CurContext
;
832 LookupName(Previous
, S
);
835 if (Previous
.isAmbiguous())
838 NamedDecl
*PrevDecl
= 0;
839 if (Previous
.begin() != Previous
.end())
840 PrevDecl
= (*Previous
.begin())->getUnderlyingDecl();
842 // If there is a previous declaration with the same name, check
843 // whether this is a valid redeclaration.
844 ClassTemplateDecl
*PrevClassTemplate
845 = dyn_cast_or_null
<ClassTemplateDecl
>(PrevDecl
);
847 // We may have found the injected-class-name of a class template,
848 // class template partial specialization, or class template specialization.
849 // In these cases, grab the template that is being defined or specialized.
850 if (!PrevClassTemplate
&& PrevDecl
&& isa
<CXXRecordDecl
>(PrevDecl
) &&
851 cast
<CXXRecordDecl
>(PrevDecl
)->isInjectedClassName()) {
852 PrevDecl
= cast
<CXXRecordDecl
>(PrevDecl
->getDeclContext());
854 = cast
<CXXRecordDecl
>(PrevDecl
)->getDescribedClassTemplate();
855 if (!PrevClassTemplate
&& isa
<ClassTemplateSpecializationDecl
>(PrevDecl
)) {
857 = cast
<ClassTemplateSpecializationDecl
>(PrevDecl
)
858 ->getSpecializedTemplate();
862 if (TUK
== TUK_Friend
) {
863 // C++ [namespace.memdef]p3:
864 // [...] When looking for a prior declaration of a class or a function
865 // declared as a friend, and when the name of the friend class or
866 // function is neither a qualified name nor a template-id, scopes outside
867 // the innermost enclosing namespace scope are not considered.
869 DeclContext
*OutermostContext
= CurContext
;
870 while (!OutermostContext
->isFileContext())
871 OutermostContext
= OutermostContext
->getLookupParent();
874 (OutermostContext
->Equals(PrevDecl
->getDeclContext()) ||
875 OutermostContext
->Encloses(PrevDecl
->getDeclContext()))) {
876 SemanticContext
= PrevDecl
->getDeclContext();
878 // Declarations in outer scopes don't matter. However, the outermost
879 // context we computed is the semantic context for our new
881 PrevDecl
= PrevClassTemplate
= 0;
882 SemanticContext
= OutermostContext
;
886 if (CurContext
->isDependentContext()) {
887 // If this is a dependent context, we don't want to link the friend
888 // class template to the template in scope, because that would perform
889 // checking of the template parameter lists that can't be performed
890 // until the outer context is instantiated.
891 PrevDecl
= PrevClassTemplate
= 0;
893 } else if (PrevDecl
&& !isDeclInScope(PrevDecl
, SemanticContext
, S
))
894 PrevDecl
= PrevClassTemplate
= 0;
896 if (PrevClassTemplate
) {
897 // Ensure that the template parameter lists are compatible.
898 if (!TemplateParameterListsAreEqual(TemplateParams
,
899 PrevClassTemplate
->getTemplateParameters(),
904 // C++ [temp.class]p4:
905 // In a redeclaration, partial specialization, explicit
906 // specialization or explicit instantiation of a class template,
907 // the class-key shall agree in kind with the original class
908 // template declaration (7.1.5.3).
909 RecordDecl
*PrevRecordDecl
= PrevClassTemplate
->getTemplatedDecl();
910 if (!isAcceptableTagRedeclaration(PrevRecordDecl
, Kind
, KWLoc
, *Name
)) {
911 Diag(KWLoc
, diag::err_use_with_wrong_tag
)
913 << FixItHint::CreateReplacement(KWLoc
, PrevRecordDecl
->getKindName());
914 Diag(PrevRecordDecl
->getLocation(), diag::note_previous_use
);
915 Kind
= PrevRecordDecl
->getTagKind();
918 // Check for redefinition of this class template.
919 if (TUK
== TUK_Definition
) {
920 if (TagDecl
*Def
= PrevRecordDecl
->getDefinition()) {
921 Diag(NameLoc
, diag::err_redefinition
) << Name
;
922 Diag(Def
->getLocation(), diag::note_previous_definition
);
923 // FIXME: Would it make sense to try to "forget" the previous
924 // definition, as part of error recovery?
928 } else if (PrevDecl
&& PrevDecl
->isTemplateParameter()) {
929 // Maybe we will complain about the shadowed template parameter.
930 DiagnoseTemplateParameterShadow(NameLoc
, PrevDecl
);
931 // Just pretend that we didn't see the previous declaration.
933 } else if (PrevDecl
) {
935 // A class template shall not have the same name as any other
936 // template, class, function, object, enumeration, enumerator,
937 // namespace, or type in the same scope (3.3), except as specified
939 Diag(NameLoc
, diag::err_redefinition_different_kind
) << Name
;
940 Diag(PrevDecl
->getLocation(), diag::note_previous_definition
);
944 // Check the template parameter list of this declaration, possibly
945 // merging in the template parameter list from the previous class
946 // template declaration.
947 if (CheckTemplateParameterList(TemplateParams
,
948 PrevClassTemplate
? PrevClassTemplate
->getTemplateParameters() : 0,
949 (SS
.isSet() && SemanticContext
&&
950 SemanticContext
->isRecord() &&
951 SemanticContext
->isDependentContext())
952 ? TPC_ClassTemplateMember
953 : TPC_ClassTemplate
))
957 // If the name of the template was qualified, we must be defining the
958 // template out-of-line.
959 if (!SS
.isInvalid() && !Invalid
&& !PrevClassTemplate
&&
960 !(TUK
== TUK_Friend
&& CurContext
->isDependentContext()))
961 Diag(NameLoc
, diag::err_member_def_does_not_match
)
962 << Name
<< SemanticContext
<< SS
.getRange();
965 CXXRecordDecl
*NewClass
=
966 CXXRecordDecl::Create(Context
, Kind
, SemanticContext
, NameLoc
, Name
, KWLoc
,
968 PrevClassTemplate
->getTemplatedDecl() : 0,
969 /*DelayTypeCreation=*/true);
970 SetNestedNameSpecifier(NewClass
, SS
);
972 ClassTemplateDecl
*NewTemplate
973 = ClassTemplateDecl::Create(Context
, SemanticContext
, NameLoc
,
974 DeclarationName(Name
), TemplateParams
,
975 NewClass
, PrevClassTemplate
);
976 NewClass
->setDescribedClassTemplate(NewTemplate
);
978 // Build the type for the class template declaration now.
979 QualType T
= NewTemplate
->getInjectedClassNameSpecialization();
980 T
= Context
.getInjectedClassNameType(NewClass
, T
);
981 assert(T
->isDependentType() && "Class template type is not dependent?");
984 // If we are providing an explicit specialization of a member that is a
985 // class template, make a note of that.
986 if (PrevClassTemplate
&&
987 PrevClassTemplate
->getInstantiatedFromMemberTemplate())
988 PrevClassTemplate
->setMemberSpecialization();
990 // Set the access specifier.
991 if (!Invalid
&& TUK
!= TUK_Friend
)
992 SetMemberAccessSpecifier(NewTemplate
, PrevClassTemplate
, AS
);
994 // Set the lexical context of these templates
995 NewClass
->setLexicalDeclContext(CurContext
);
996 NewTemplate
->setLexicalDeclContext(CurContext
);
998 if (TUK
== TUK_Definition
)
999 NewClass
->startDefinition();
1002 ProcessDeclAttributeList(S
, NewClass
, Attr
);
1004 if (TUK
!= TUK_Friend
)
1005 PushOnScopeChains(NewTemplate
, S
);
1007 if (PrevClassTemplate
&& PrevClassTemplate
->getAccess() != AS_none
) {
1008 NewTemplate
->setAccess(PrevClassTemplate
->getAccess());
1009 NewClass
->setAccess(PrevClassTemplate
->getAccess());
1012 NewTemplate
->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1013 PrevClassTemplate
!= NULL
);
1015 // Friend templates are visible in fairly strange ways.
1016 if (!CurContext
->isDependentContext()) {
1017 DeclContext
*DC
= SemanticContext
->getRedeclContext();
1018 DC
->makeDeclVisibleInContext(NewTemplate
, /* Recoverable = */ false);
1019 if (Scope
*EnclosingScope
= getScopeForDeclContext(S
, DC
))
1020 PushOnScopeChains(NewTemplate
, EnclosingScope
,
1021 /* AddToContext = */ false);
1024 FriendDecl
*Friend
= FriendDecl::Create(Context
, CurContext
,
1025 NewClass
->getLocation(),
1027 /*FIXME:*/NewClass
->getLocation());
1028 Friend
->setAccess(AS_public
);
1029 CurContext
->addDecl(Friend
);
1033 NewTemplate
->setInvalidDecl();
1034 NewClass
->setInvalidDecl();
1039 /// \brief Diagnose the presence of a default template argument on a
1040 /// template parameter, which is ill-formed in certain contexts.
1042 /// \returns true if the default template argument should be dropped.
1043 static bool DiagnoseDefaultTemplateArgument(Sema
&S
,
1044 Sema::TemplateParamListContext TPC
,
1045 SourceLocation ParamLoc
,
1046 SourceRange DefArgRange
) {
1048 case Sema::TPC_ClassTemplate
:
1051 case Sema::TPC_FunctionTemplate
:
1052 case Sema::TPC_FriendFunctionTemplateDefinition
:
1053 // C++ [temp.param]p9:
1054 // A default template-argument shall not be specified in a
1055 // function template declaration or a function template
1057 // If a friend function template declaration specifies a default
1058 // template-argument, that declaration shall be a definition and shall be
1059 // the only declaration of the function template in the translation unit.
1060 // (C++98/03 doesn't have this wording; see DR226).
1061 if (!S
.getLangOptions().CPlusPlus0x
)
1063 diag::ext_template_parameter_default_in_function_template
)
1067 case Sema::TPC_ClassTemplateMember
:
1068 // C++0x [temp.param]p9:
1069 // A default template-argument shall not be specified in the
1070 // template-parameter-lists of the definition of a member of a
1071 // class template that appears outside of the member's class.
1072 S
.Diag(ParamLoc
, diag::err_template_parameter_default_template_member
)
1076 case Sema::TPC_FriendFunctionTemplate
:
1077 // C++ [temp.param]p9:
1078 // A default template-argument shall not be specified in a
1079 // friend template declaration.
1080 S
.Diag(ParamLoc
, diag::err_template_parameter_default_friend_template
)
1084 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1085 // for friend function templates if there is only a single
1086 // declaration (and it is a definition). Strange!
1092 /// \brief Check for unexpanded parameter packs within the template parameters
1093 /// of a template template parameter, recursively.
1094 bool DiagnoseUnexpandedParameterPacks(Sema
&S
, TemplateTemplateParmDecl
*TTP
){
1095 TemplateParameterList
*Params
= TTP
->getTemplateParameters();
1096 for (unsigned I
= 0, N
= Params
->size(); I
!= N
; ++I
) {
1097 NamedDecl
*P
= Params
->getParam(I
);
1098 if (NonTypeTemplateParmDecl
*NTTP
= dyn_cast
<NonTypeTemplateParmDecl
>(P
)) {
1099 if (S
.DiagnoseUnexpandedParameterPack(NTTP
->getLocation(),
1100 NTTP
->getTypeSourceInfo(),
1101 Sema::UPPC_NonTypeTemplateParameterType
))
1107 if (TemplateTemplateParmDecl
*InnerTTP
1108 = dyn_cast
<TemplateTemplateParmDecl
>(P
))
1109 if (DiagnoseUnexpandedParameterPacks(S
, InnerTTP
))
1116 /// \brief Checks the validity of a template parameter list, possibly
1117 /// considering the template parameter list from a previous
1120 /// If an "old" template parameter list is provided, it must be
1121 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1122 /// template parameter list.
1124 /// \param NewParams Template parameter list for a new template
1125 /// declaration. This template parameter list will be updated with any
1126 /// default arguments that are carried through from the previous
1127 /// template parameter list.
1129 /// \param OldParams If provided, template parameter list from a
1130 /// previous declaration of the same template. Default template
1131 /// arguments will be merged from the old template parameter list to
1132 /// the new template parameter list.
1134 /// \param TPC Describes the context in which we are checking the given
1135 /// template parameter list.
1137 /// \returns true if an error occurred, false otherwise.
1138 bool Sema::CheckTemplateParameterList(TemplateParameterList
*NewParams
,
1139 TemplateParameterList
*OldParams
,
1140 TemplateParamListContext TPC
) {
1141 bool Invalid
= false;
1143 // C++ [temp.param]p10:
1144 // The set of default template-arguments available for use with a
1145 // template declaration or definition is obtained by merging the
1146 // default arguments from the definition (if in scope) and all
1147 // declarations in scope in the same way default function
1148 // arguments are (8.3.6).
1149 bool SawDefaultArgument
= false;
1150 SourceLocation PreviousDefaultArgLoc
;
1152 bool SawParameterPack
= false;
1153 SourceLocation ParameterPackLoc
;
1155 // Dummy initialization to avoid warnings.
1156 TemplateParameterList::iterator OldParam
= NewParams
->end();
1158 OldParam
= OldParams
->begin();
1160 bool RemoveDefaultArguments
= false;
1161 for (TemplateParameterList::iterator NewParam
= NewParams
->begin(),
1162 NewParamEnd
= NewParams
->end();
1163 NewParam
!= NewParamEnd
; ++NewParam
) {
1164 // Variables used to diagnose redundant default arguments
1165 bool RedundantDefaultArg
= false;
1166 SourceLocation OldDefaultLoc
;
1167 SourceLocation NewDefaultLoc
;
1169 // Variables used to diagnose missing default arguments
1170 bool MissingDefaultArg
= false;
1172 // C++0x [temp.param]p11:
1173 // If a template parameter of a primary class template is a template
1174 // parameter pack, it shall be the last template parameter.
1175 if (SawParameterPack
&& TPC
== TPC_ClassTemplate
) {
1176 Diag(ParameterPackLoc
,
1177 diag::err_template_param_pack_must_be_last_template_parameter
);
1181 if (TemplateTypeParmDecl
*NewTypeParm
1182 = dyn_cast
<TemplateTypeParmDecl
>(*NewParam
)) {
1183 // Check the presence of a default argument here.
1184 if (NewTypeParm
->hasDefaultArgument() &&
1185 DiagnoseDefaultTemplateArgument(*this, TPC
,
1186 NewTypeParm
->getLocation(),
1187 NewTypeParm
->getDefaultArgumentInfo()->getTypeLoc()
1189 NewTypeParm
->removeDefaultArgument();
1191 // Merge default arguments for template type parameters.
1192 TemplateTypeParmDecl
*OldTypeParm
1193 = OldParams
? cast
<TemplateTypeParmDecl
>(*OldParam
) : 0;
1195 if (NewTypeParm
->isParameterPack()) {
1196 assert(!NewTypeParm
->hasDefaultArgument() &&
1197 "Parameter packs can't have a default argument!");
1198 SawParameterPack
= true;
1199 ParameterPackLoc
= NewTypeParm
->getLocation();
1200 } else if (OldTypeParm
&& OldTypeParm
->hasDefaultArgument() &&
1201 NewTypeParm
->hasDefaultArgument()) {
1202 OldDefaultLoc
= OldTypeParm
->getDefaultArgumentLoc();
1203 NewDefaultLoc
= NewTypeParm
->getDefaultArgumentLoc();
1204 SawDefaultArgument
= true;
1205 RedundantDefaultArg
= true;
1206 PreviousDefaultArgLoc
= NewDefaultLoc
;
1207 } else if (OldTypeParm
&& OldTypeParm
->hasDefaultArgument()) {
1208 // Merge the default argument from the old declaration to the
1210 SawDefaultArgument
= true;
1211 NewTypeParm
->setDefaultArgument(OldTypeParm
->getDefaultArgumentInfo(),
1213 PreviousDefaultArgLoc
= OldTypeParm
->getDefaultArgumentLoc();
1214 } else if (NewTypeParm
->hasDefaultArgument()) {
1215 SawDefaultArgument
= true;
1216 PreviousDefaultArgLoc
= NewTypeParm
->getDefaultArgumentLoc();
1217 } else if (SawDefaultArgument
)
1218 MissingDefaultArg
= true;
1219 } else if (NonTypeTemplateParmDecl
*NewNonTypeParm
1220 = dyn_cast
<NonTypeTemplateParmDecl
>(*NewParam
)) {
1221 // Check for unexpanded parameter packs.
1222 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm
->getLocation(),
1223 NewNonTypeParm
->getTypeSourceInfo(),
1224 UPPC_NonTypeTemplateParameterType
)) {
1229 // Check the presence of a default argument here.
1230 if (NewNonTypeParm
->hasDefaultArgument() &&
1231 DiagnoseDefaultTemplateArgument(*this, TPC
,
1232 NewNonTypeParm
->getLocation(),
1233 NewNonTypeParm
->getDefaultArgument()->getSourceRange())) {
1234 NewNonTypeParm
->removeDefaultArgument();
1237 // Merge default arguments for non-type template parameters
1238 NonTypeTemplateParmDecl
*OldNonTypeParm
1239 = OldParams
? cast
<NonTypeTemplateParmDecl
>(*OldParam
) : 0;
1240 if (NewNonTypeParm
->isParameterPack()) {
1241 assert(!NewNonTypeParm
->hasDefaultArgument() &&
1242 "Parameter packs can't have a default argument!");
1243 SawParameterPack
= true;
1244 ParameterPackLoc
= NewNonTypeParm
->getLocation();
1245 } else if (OldNonTypeParm
&& OldNonTypeParm
->hasDefaultArgument() &&
1246 NewNonTypeParm
->hasDefaultArgument()) {
1247 OldDefaultLoc
= OldNonTypeParm
->getDefaultArgumentLoc();
1248 NewDefaultLoc
= NewNonTypeParm
->getDefaultArgumentLoc();
1249 SawDefaultArgument
= true;
1250 RedundantDefaultArg
= true;
1251 PreviousDefaultArgLoc
= NewDefaultLoc
;
1252 } else if (OldNonTypeParm
&& OldNonTypeParm
->hasDefaultArgument()) {
1253 // Merge the default argument from the old declaration to the
1255 SawDefaultArgument
= true;
1256 // FIXME: We need to create a new kind of "default argument"
1257 // expression that points to a previous non-type template
1259 NewNonTypeParm
->setDefaultArgument(
1260 OldNonTypeParm
->getDefaultArgument(),
1261 /*Inherited=*/ true);
1262 PreviousDefaultArgLoc
= OldNonTypeParm
->getDefaultArgumentLoc();
1263 } else if (NewNonTypeParm
->hasDefaultArgument()) {
1264 SawDefaultArgument
= true;
1265 PreviousDefaultArgLoc
= NewNonTypeParm
->getDefaultArgumentLoc();
1266 } else if (SawDefaultArgument
)
1267 MissingDefaultArg
= true;
1269 // Check the presence of a default argument here.
1270 TemplateTemplateParmDecl
*NewTemplateParm
1271 = cast
<TemplateTemplateParmDecl
>(*NewParam
);
1273 // Check for unexpanded parameter packs, recursively.
1274 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm
)) {
1279 if (NewTemplateParm
->hasDefaultArgument() &&
1280 DiagnoseDefaultTemplateArgument(*this, TPC
,
1281 NewTemplateParm
->getLocation(),
1282 NewTemplateParm
->getDefaultArgument().getSourceRange()))
1283 NewTemplateParm
->removeDefaultArgument();
1285 // Merge default arguments for template template parameters
1286 TemplateTemplateParmDecl
*OldTemplateParm
1287 = OldParams
? cast
<TemplateTemplateParmDecl
>(*OldParam
) : 0;
1288 if (NewTemplateParm
->isParameterPack()) {
1289 assert(!NewTemplateParm
->hasDefaultArgument() &&
1290 "Parameter packs can't have a default argument!");
1291 SawParameterPack
= true;
1292 ParameterPackLoc
= NewTemplateParm
->getLocation();
1293 } else if (OldTemplateParm
&& OldTemplateParm
->hasDefaultArgument() &&
1294 NewTemplateParm
->hasDefaultArgument()) {
1295 OldDefaultLoc
= OldTemplateParm
->getDefaultArgument().getLocation();
1296 NewDefaultLoc
= NewTemplateParm
->getDefaultArgument().getLocation();
1297 SawDefaultArgument
= true;
1298 RedundantDefaultArg
= true;
1299 PreviousDefaultArgLoc
= NewDefaultLoc
;
1300 } else if (OldTemplateParm
&& OldTemplateParm
->hasDefaultArgument()) {
1301 // Merge the default argument from the old declaration to the
1303 SawDefaultArgument
= true;
1304 // FIXME: We need to create a new kind of "default argument" expression
1305 // that points to a previous template template parameter.
1306 NewTemplateParm
->setDefaultArgument(
1307 OldTemplateParm
->getDefaultArgument(),
1308 /*Inherited=*/ true);
1309 PreviousDefaultArgLoc
1310 = OldTemplateParm
->getDefaultArgument().getLocation();
1311 } else if (NewTemplateParm
->hasDefaultArgument()) {
1312 SawDefaultArgument
= true;
1313 PreviousDefaultArgLoc
1314 = NewTemplateParm
->getDefaultArgument().getLocation();
1315 } else if (SawDefaultArgument
)
1316 MissingDefaultArg
= true;
1319 if (RedundantDefaultArg
) {
1320 // C++ [temp.param]p12:
1321 // A template-parameter shall not be given default arguments
1322 // by two different declarations in the same scope.
1323 Diag(NewDefaultLoc
, diag::err_template_param_default_arg_redefinition
);
1324 Diag(OldDefaultLoc
, diag::note_template_param_prev_default_arg
);
1326 } else if (MissingDefaultArg
&& TPC
!= TPC_FunctionTemplate
) {
1327 // C++ [temp.param]p11:
1328 // If a template-parameter of a class template has a default
1329 // template-argument, each subsequent template-parameter shall either
1330 // have a default template-argument supplied or be a template parameter
1332 Diag((*NewParam
)->getLocation(),
1333 diag::err_template_param_default_arg_missing
);
1334 Diag(PreviousDefaultArgLoc
, diag::note_template_param_prev_default_arg
);
1336 RemoveDefaultArguments
= true;
1339 // If we have an old template parameter list that we're merging
1340 // in, move on to the next parameter.
1345 // We were missing some default arguments at the end of the list, so remove
1346 // all of the default arguments.
1347 if (RemoveDefaultArguments
) {
1348 for (TemplateParameterList::iterator NewParam
= NewParams
->begin(),
1349 NewParamEnd
= NewParams
->end();
1350 NewParam
!= NewParamEnd
; ++NewParam
) {
1351 if (TemplateTypeParmDecl
*TTP
= dyn_cast
<TemplateTypeParmDecl
>(*NewParam
))
1352 TTP
->removeDefaultArgument();
1353 else if (NonTypeTemplateParmDecl
*NTTP
1354 = dyn_cast
<NonTypeTemplateParmDecl
>(*NewParam
))
1355 NTTP
->removeDefaultArgument();
1357 cast
<TemplateTemplateParmDecl
>(*NewParam
)->removeDefaultArgument();
1366 /// A class which looks for a use of a certain level of template
1368 struct DependencyChecker
: RecursiveASTVisitor
<DependencyChecker
> {
1369 typedef RecursiveASTVisitor
<DependencyChecker
> super
;
1374 DependencyChecker(TemplateParameterList
*Params
) : Match(false) {
1375 NamedDecl
*ND
= Params
->getParam(0);
1376 if (TemplateTypeParmDecl
*PD
= dyn_cast
<TemplateTypeParmDecl
>(ND
)) {
1377 Depth
= PD
->getDepth();
1378 } else if (NonTypeTemplateParmDecl
*PD
=
1379 dyn_cast
<NonTypeTemplateParmDecl
>(ND
)) {
1380 Depth
= PD
->getDepth();
1382 Depth
= cast
<TemplateTemplateParmDecl
>(ND
)->getDepth();
1386 bool Matches(unsigned ParmDepth
) {
1387 if (ParmDepth
>= Depth
) {
1394 bool VisitTemplateTypeParmType(const TemplateTypeParmType
*T
) {
1395 return !Matches(T
->getDepth());
1398 bool TraverseTemplateName(TemplateName N
) {
1399 if (TemplateTemplateParmDecl
*PD
=
1400 dyn_cast_or_null
<TemplateTemplateParmDecl
>(N
.getAsTemplateDecl()))
1401 if (Matches(PD
->getDepth())) return false;
1402 return super::TraverseTemplateName(N
);
1405 bool VisitDeclRefExpr(DeclRefExpr
*E
) {
1406 if (NonTypeTemplateParmDecl
*PD
=
1407 dyn_cast
<NonTypeTemplateParmDecl
>(E
->getDecl())) {
1408 if (PD
->getDepth() == Depth
) {
1413 return super::VisitDeclRefExpr(E
);
1418 /// Determines whether a template-id depends on the given parameter
1421 DependsOnTemplateParameters(const TemplateSpecializationType
*TemplateId
,
1422 TemplateParameterList
*Params
) {
1423 DependencyChecker
Checker(Params
);
1424 Checker
.TraverseType(QualType(TemplateId
, 0));
1425 return Checker
.Match
;
1428 /// \brief Match the given template parameter lists to the given scope
1429 /// specifier, returning the template parameter list that applies to the
1432 /// \param DeclStartLoc the start of the declaration that has a scope
1433 /// specifier or a template parameter list.
1435 /// \param SS the scope specifier that will be matched to the given template
1436 /// parameter lists. This scope specifier precedes a qualified name that is
1439 /// \param ParamLists the template parameter lists, from the outermost to the
1440 /// innermost template parameter lists.
1442 /// \param NumParamLists the number of template parameter lists in ParamLists.
1444 /// \param IsFriend Whether to apply the slightly different rules for
1445 /// matching template parameters to scope specifiers in friend
1448 /// \param IsExplicitSpecialization will be set true if the entity being
1449 /// declared is an explicit specialization, false otherwise.
1451 /// \returns the template parameter list, if any, that corresponds to the
1452 /// name that is preceded by the scope specifier @p SS. This template
1453 /// parameter list may be have template parameters (if we're declaring a
1454 /// template) or may have no template parameters (if we're declaring a
1455 /// template specialization), or may be NULL (if we were's declaring isn't
1456 /// itself a template).
1457 TemplateParameterList
*
1458 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc
,
1459 const CXXScopeSpec
&SS
,
1460 TemplateParameterList
**ParamLists
,
1461 unsigned NumParamLists
,
1463 bool &IsExplicitSpecialization
,
1465 IsExplicitSpecialization
= false;
1467 // Find the template-ids that occur within the nested-name-specifier. These
1468 // template-ids will match up with the template parameter lists.
1469 llvm::SmallVector
<const TemplateSpecializationType
*, 4>
1470 TemplateIdsInSpecifier
;
1471 llvm::SmallVector
<ClassTemplateSpecializationDecl
*, 4>
1472 ExplicitSpecializationsInSpecifier
;
1473 for (NestedNameSpecifier
*NNS
= (NestedNameSpecifier
*)SS
.getScopeRep();
1474 NNS
; NNS
= NNS
->getPrefix()) {
1475 const Type
*T
= NNS
->getAsType();
1478 // C++0x [temp.expl.spec]p17:
1479 // A member or a member template may be nested within many
1480 // enclosing class templates. In an explicit specialization for
1481 // such a member, the member declaration shall be preceded by a
1482 // template<> for each enclosing class template that is
1483 // explicitly specialized.
1485 // Following the existing practice of GNU and EDG, we allow a typedef of a
1486 // template specialization type.
1487 while (const TypedefType
*TT
= dyn_cast
<TypedefType
>(T
))
1488 T
= TT
->getDecl()->getUnderlyingType().getTypePtr();
1490 if (const TemplateSpecializationType
*SpecType
1491 = dyn_cast
<TemplateSpecializationType
>(T
)) {
1492 TemplateDecl
*Template
= SpecType
->getTemplateName().getAsTemplateDecl();
1494 continue; // FIXME: should this be an error? probably...
1496 if (const RecordType
*Record
= SpecType
->getAs
<RecordType
>()) {
1497 ClassTemplateSpecializationDecl
*SpecDecl
1498 = cast
<ClassTemplateSpecializationDecl
>(Record
->getDecl());
1499 // If the nested name specifier refers to an explicit specialization,
1500 // we don't need a template<> header.
1501 if (SpecDecl
->getSpecializationKind() == TSK_ExplicitSpecialization
) {
1502 ExplicitSpecializationsInSpecifier
.push_back(SpecDecl
);
1507 TemplateIdsInSpecifier
.push_back(SpecType
);
1511 // Reverse the list of template-ids in the scope specifier, so that we can
1512 // more easily match up the template-ids and the template parameter lists.
1513 std::reverse(TemplateIdsInSpecifier
.begin(), TemplateIdsInSpecifier
.end());
1515 SourceLocation FirstTemplateLoc
= DeclStartLoc
;
1517 FirstTemplateLoc
= ParamLists
[0]->getTemplateLoc();
1519 // Match the template-ids found in the specifier to the template parameter
1521 unsigned ParamIdx
= 0, TemplateIdx
= 0;
1522 for (unsigned NumTemplateIds
= TemplateIdsInSpecifier
.size();
1523 TemplateIdx
!= NumTemplateIds
; ++TemplateIdx
) {
1524 const TemplateSpecializationType
*TemplateId
1525 = TemplateIdsInSpecifier
[TemplateIdx
];
1526 bool DependentTemplateId
= TemplateId
->isDependentType();
1528 // In friend declarations we can have template-ids which don't
1529 // depend on the corresponding template parameter lists. But
1530 // assume that empty parameter lists are supposed to match this
1532 if (IsFriend
&& ParamIdx
< NumParamLists
&& ParamLists
[ParamIdx
]->size()) {
1533 if (!DependentTemplateId
||
1534 !DependsOnTemplateParameters(TemplateId
, ParamLists
[ParamIdx
]))
1538 if (ParamIdx
>= NumParamLists
) {
1539 // We have a template-id without a corresponding template parameter
1542 // ...which is fine if this is a friend declaration.
1544 IsExplicitSpecialization
= true;
1548 if (DependentTemplateId
) {
1549 // FIXME: the location information here isn't great.
1550 Diag(SS
.getRange().getBegin(),
1551 diag::err_template_spec_needs_template_parameters
)
1552 << QualType(TemplateId
, 0)
1556 Diag(SS
.getRange().getBegin(), diag::err_template_spec_needs_header
)
1558 << FixItHint::CreateInsertion(FirstTemplateLoc
, "template<> ");
1559 IsExplicitSpecialization
= true;
1564 // Check the template parameter list against its corresponding template-id.
1565 if (DependentTemplateId
) {
1566 TemplateParameterList
*ExpectedTemplateParams
= 0;
1568 // Are there cases in (e.g.) friends where this won't match?
1569 if (const InjectedClassNameType
*Injected
1570 = TemplateId
->getAs
<InjectedClassNameType
>()) {
1571 CXXRecordDecl
*Record
= Injected
->getDecl();
1572 if (ClassTemplatePartialSpecializationDecl
*Partial
=
1573 dyn_cast
<ClassTemplatePartialSpecializationDecl
>(Record
))
1574 ExpectedTemplateParams
= Partial
->getTemplateParameters();
1576 ExpectedTemplateParams
= Record
->getDescribedClassTemplate()
1577 ->getTemplateParameters();
1580 if (ExpectedTemplateParams
)
1581 TemplateParameterListsAreEqual(ParamLists
[ParamIdx
],
1582 ExpectedTemplateParams
,
1583 true, TPL_TemplateMatch
);
1585 CheckTemplateParameterList(ParamLists
[ParamIdx
], 0,
1586 TPC_ClassTemplateMember
);
1587 } else if (ParamLists
[ParamIdx
]->size() > 0)
1588 Diag(ParamLists
[ParamIdx
]->getTemplateLoc(),
1589 diag::err_template_param_list_matches_nontemplate
)
1591 << ParamLists
[ParamIdx
]->getSourceRange();
1593 IsExplicitSpecialization
= true;
1598 // If there were at least as many template-ids as there were template
1599 // parameter lists, then there are no template parameter lists remaining for
1600 // the declaration itself.
1601 if (ParamIdx
>= NumParamLists
)
1604 // If there were too many template parameter lists, complain about that now.
1605 if (ParamIdx
!= NumParamLists
- 1) {
1606 while (ParamIdx
< NumParamLists
- 1) {
1607 bool isExplicitSpecHeader
= ParamLists
[ParamIdx
]->size() == 0;
1608 Diag(ParamLists
[ParamIdx
]->getTemplateLoc(),
1609 isExplicitSpecHeader
? diag::warn_template_spec_extra_headers
1610 : diag::err_template_spec_extra_headers
)
1611 << SourceRange(ParamLists
[ParamIdx
]->getTemplateLoc(),
1612 ParamLists
[ParamIdx
]->getRAngleLoc());
1614 if (isExplicitSpecHeader
&& !ExplicitSpecializationsInSpecifier
.empty()) {
1615 Diag(ExplicitSpecializationsInSpecifier
.back()->getLocation(),
1616 diag::note_explicit_template_spec_does_not_need_header
)
1617 << ExplicitSpecializationsInSpecifier
.back();
1618 ExplicitSpecializationsInSpecifier
.pop_back();
1621 // We have a template parameter list with no corresponding scope, which
1622 // means that the resulting template declaration can't be instantiated
1623 // properly (we'll end up with dependent nodes when we shouldn't).
1624 if (!isExplicitSpecHeader
)
1631 // Return the last template parameter list, which corresponds to the
1632 // entity being declared.
1633 return ParamLists
[NumParamLists
- 1];
1636 QualType
Sema::CheckTemplateIdType(TemplateName Name
,
1637 SourceLocation TemplateLoc
,
1638 const TemplateArgumentListInfo
&TemplateArgs
) {
1639 TemplateDecl
*Template
= Name
.getAsTemplateDecl();
1641 // The template name does not resolve to a template, so we just
1642 // build a dependent template-id type.
1643 return Context
.getTemplateSpecializationType(Name
, TemplateArgs
);
1646 // Check that the template argument list is well-formed for this
1648 llvm::SmallVector
<TemplateArgument
, 4> Converted
;
1649 if (CheckTemplateArgumentList(Template
, TemplateLoc
, TemplateArgs
,
1653 assert((Converted
.size() == Template
->getTemplateParameters()->size()) &&
1654 "Converted template argument list is too short!");
1658 if (Name
.isDependent() ||
1659 TemplateSpecializationType::anyDependentTemplateArguments(
1661 // This class template specialization is a dependent
1662 // type. Therefore, its canonical type is another class template
1663 // specialization type that contains all of the converted
1664 // arguments in canonical form. This ensures that, e.g., A<T> and
1665 // A<T, T> have identical types when A is declared as:
1667 // template<typename T, typename U = T> struct A;
1668 TemplateName CanonName
= Context
.getCanonicalTemplateName(Name
);
1669 CanonType
= Context
.getTemplateSpecializationType(CanonName
,
1673 // FIXME: CanonType is not actually the canonical type, and unfortunately
1674 // it is a TemplateSpecializationType that we will never use again.
1675 // In the future, we need to teach getTemplateSpecializationType to only
1676 // build the canonical type and return that to us.
1677 CanonType
= Context
.getCanonicalType(CanonType
);
1679 // This might work out to be a current instantiation, in which
1680 // case the canonical type needs to be the InjectedClassNameType.
1682 // TODO: in theory this could be a simple hashtable lookup; most
1683 // changes to CurContext don't change the set of current
1685 if (isa
<ClassTemplateDecl
>(Template
)) {
1686 for (DeclContext
*Ctx
= CurContext
; Ctx
; Ctx
= Ctx
->getLookupParent()) {
1687 // If we get out to a namespace, we're done.
1688 if (Ctx
->isFileContext()) break;
1690 // If this isn't a record, keep looking.
1691 CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(Ctx
);
1692 if (!Record
) continue;
1694 // Look for one of the two cases with InjectedClassNameTypes
1695 // and check whether it's the same template.
1696 if (!isa
<ClassTemplatePartialSpecializationDecl
>(Record
) &&
1697 !Record
->getDescribedClassTemplate())
1700 // Fetch the injected class name type and check whether its
1701 // injected type is equal to the type we just built.
1702 QualType ICNT
= Context
.getTypeDeclType(Record
);
1703 QualType Injected
= cast
<InjectedClassNameType
>(ICNT
)
1704 ->getInjectedSpecializationType();
1706 if (CanonType
!= Injected
->getCanonicalTypeInternal())
1709 // If so, the canonical type of this TST is the injected
1710 // class name type of the record we just found.
1711 assert(ICNT
.isCanonical());
1716 } else if (ClassTemplateDecl
*ClassTemplate
1717 = dyn_cast
<ClassTemplateDecl
>(Template
)) {
1718 // Find the class template specialization declaration that
1719 // corresponds to these arguments.
1720 void *InsertPos
= 0;
1721 ClassTemplateSpecializationDecl
*Decl
1722 = ClassTemplate
->findSpecialization(Converted
.data(), Converted
.size(),
1725 // This is the first time we have referenced this class template
1726 // specialization. Create the canonical declaration and add it to
1727 // the set of specializations.
1728 Decl
= ClassTemplateSpecializationDecl::Create(Context
,
1729 ClassTemplate
->getTemplatedDecl()->getTagKind(),
1730 ClassTemplate
->getDeclContext(),
1731 ClassTemplate
->getLocation(),
1734 Converted
.size(), 0);
1735 ClassTemplate
->AddSpecialization(Decl
, InsertPos
);
1736 Decl
->setLexicalDeclContext(CurContext
);
1739 CanonType
= Context
.getTypeDeclType(Decl
);
1740 assert(isa
<RecordType
>(CanonType
) &&
1741 "type of non-dependent specialization is not a RecordType");
1744 // Build the fully-sugared type for this class template
1745 // specialization, which refers back to the class template
1746 // specialization we created or found.
1747 return Context
.getTemplateSpecializationType(Name
, TemplateArgs
, CanonType
);
1751 Sema::ActOnTemplateIdType(TemplateTy TemplateD
, SourceLocation TemplateLoc
,
1752 SourceLocation LAngleLoc
,
1753 ASTTemplateArgsPtr TemplateArgsIn
,
1754 SourceLocation RAngleLoc
) {
1755 TemplateName Template
= TemplateD
.getAsVal
<TemplateName
>();
1757 // Translate the parser's template argument list in our AST format.
1758 TemplateArgumentListInfo
TemplateArgs(LAngleLoc
, RAngleLoc
);
1759 translateTemplateArguments(TemplateArgsIn
, TemplateArgs
);
1761 QualType Result
= CheckTemplateIdType(Template
, TemplateLoc
, TemplateArgs
);
1762 TemplateArgsIn
.release();
1764 if (Result
.isNull())
1767 TypeSourceInfo
*DI
= Context
.CreateTypeSourceInfo(Result
);
1768 TemplateSpecializationTypeLoc TL
1769 = cast
<TemplateSpecializationTypeLoc
>(DI
->getTypeLoc());
1770 TL
.setTemplateNameLoc(TemplateLoc
);
1771 TL
.setLAngleLoc(LAngleLoc
);
1772 TL
.setRAngleLoc(RAngleLoc
);
1773 for (unsigned i
= 0, e
= TL
.getNumArgs(); i
!= e
; ++i
)
1774 TL
.setArgLocInfo(i
, TemplateArgs
[i
].getLocInfo());
1776 return CreateParsedType(Result
, DI
);
1779 TypeResult
Sema::ActOnTagTemplateIdType(CXXScopeSpec
&SS
,
1780 TypeResult TypeResult
,
1782 TypeSpecifierType TagSpec
,
1783 SourceLocation TagLoc
) {
1784 if (TypeResult
.isInvalid())
1785 return ::TypeResult();
1788 QualType Type
= GetTypeFromParser(TypeResult
.get(), &DI
);
1790 // Verify the tag specifier.
1791 TagTypeKind TagKind
= TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec
);
1793 if (const RecordType
*RT
= Type
->getAs
<RecordType
>()) {
1794 RecordDecl
*D
= RT
->getDecl();
1796 IdentifierInfo
*Id
= D
->getIdentifier();
1797 assert(Id
&& "templated class must have an identifier");
1799 if (!isAcceptableTagRedeclaration(D
, TagKind
, TagLoc
, *Id
)) {
1800 Diag(TagLoc
, diag::err_use_with_wrong_tag
)
1802 << FixItHint::CreateReplacement(SourceRange(TagLoc
), D
->getKindName());
1803 Diag(D
->getLocation(), diag::note_previous_use
);
1807 ElaboratedTypeKeyword Keyword
1808 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind
);
1809 QualType ElabType
= Context
.getElaboratedType(Keyword
, /*NNS=*/0, Type
);
1811 TypeSourceInfo
*ElabDI
= Context
.CreateTypeSourceInfo(ElabType
);
1812 ElaboratedTypeLoc TL
= cast
<ElaboratedTypeLoc
>(ElabDI
->getTypeLoc());
1813 TL
.setKeywordLoc(TagLoc
);
1814 TL
.setQualifierRange(SS
.getRange());
1815 TL
.getNamedTypeLoc().initializeFullCopy(DI
->getTypeLoc());
1816 return CreateParsedType(ElabType
, ElabDI
);
1819 ExprResult
Sema::BuildTemplateIdExpr(const CXXScopeSpec
&SS
,
1822 const TemplateArgumentListInfo
&TemplateArgs
) {
1823 // FIXME: Can we do any checking at this point? I guess we could check the
1824 // template arguments that we have against the template name, if the template
1825 // name refers to a single template. That's not a terribly common case,
1828 // These should be filtered out by our callers.
1829 assert(!R
.empty() && "empty lookup results when building templateid");
1830 assert(!R
.isAmbiguous() && "ambiguous lookup when building templateid");
1832 NestedNameSpecifier
*Qualifier
= 0;
1833 SourceRange QualifierRange
;
1835 Qualifier
= static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
1836 QualifierRange
= SS
.getRange();
1839 // We don't want lookup warnings at this point.
1840 R
.suppressDiagnostics();
1842 UnresolvedLookupExpr
*ULE
1843 = UnresolvedLookupExpr::Create(Context
, R
.getNamingClass(),
1844 Qualifier
, QualifierRange
,
1845 R
.getLookupNameInfo(),
1846 RequiresADL
, TemplateArgs
,
1847 R
.begin(), R
.end());
1852 // We actually only call this from template instantiation.
1854 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec
&SS
,
1855 const DeclarationNameInfo
&NameInfo
,
1856 const TemplateArgumentListInfo
&TemplateArgs
) {
1858 if (!(DC
= computeDeclContext(SS
, false)) ||
1859 DC
->isDependentContext() ||
1860 RequireCompleteDeclContext(SS
, DC
))
1861 return BuildDependentDeclRefExpr(SS
, NameInfo
, &TemplateArgs
);
1863 bool MemberOfUnknownSpecialization
;
1864 LookupResult
R(*this, NameInfo
, LookupOrdinaryName
);
1865 LookupTemplateName(R
, (Scope
*) 0, SS
, QualType(), /*Entering*/ false,
1866 MemberOfUnknownSpecialization
);
1868 if (R
.isAmbiguous())
1872 Diag(NameInfo
.getLoc(), diag::err_template_kw_refers_to_non_template
)
1873 << NameInfo
.getName() << SS
.getRange();
1877 if (ClassTemplateDecl
*Temp
= R
.getAsSingle
<ClassTemplateDecl
>()) {
1878 Diag(NameInfo
.getLoc(), diag::err_template_kw_refers_to_class_template
)
1879 << (NestedNameSpecifier
*) SS
.getScopeRep()
1880 << NameInfo
.getName() << SS
.getRange();
1881 Diag(Temp
->getLocation(), diag::note_referenced_class_template
);
1885 return BuildTemplateIdExpr(SS
, R
, /* ADL */ false, TemplateArgs
);
1888 /// \brief Form a dependent template name.
1890 /// This action forms a dependent template name given the template
1891 /// name and its (presumably dependent) scope specifier. For
1892 /// example, given "MetaFun::template apply", the scope specifier \p
1893 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1894 /// of the "template" keyword, and "apply" is the \p Name.
1895 TemplateNameKind
Sema::ActOnDependentTemplateName(Scope
*S
,
1896 SourceLocation TemplateKWLoc
,
1898 UnqualifiedId
&Name
,
1899 ParsedType ObjectType
,
1900 bool EnteringContext
,
1901 TemplateTy
&Result
) {
1902 if (TemplateKWLoc
.isValid() && S
&& !S
->getTemplateParamParent() &&
1903 !getLangOptions().CPlusPlus0x
)
1904 Diag(TemplateKWLoc
, diag::ext_template_outside_of_template
)
1905 << FixItHint::CreateRemoval(TemplateKWLoc
);
1907 DeclContext
*LookupCtx
= 0;
1909 LookupCtx
= computeDeclContext(SS
, EnteringContext
);
1910 if (!LookupCtx
&& ObjectType
)
1911 LookupCtx
= computeDeclContext(ObjectType
.get());
1913 // C++0x [temp.names]p5:
1914 // If a name prefixed by the keyword template is not the name of
1915 // a template, the program is ill-formed. [Note: the keyword
1916 // template may not be applied to non-template members of class
1917 // templates. -end note ] [ Note: as is the case with the
1918 // typename prefix, the template prefix is allowed in cases
1919 // where it is not strictly necessary; i.e., when the
1920 // nested-name-specifier or the expression on the left of the ->
1921 // or . is not dependent on a template-parameter, or the use
1922 // does not appear in the scope of a template. -end note]
1924 // Note: C++03 was more strict here, because it banned the use of
1925 // the "template" keyword prior to a template-name that was not a
1926 // dependent name. C++ DR468 relaxed this requirement (the
1927 // "template" keyword is now permitted). We follow the C++0x
1928 // rules, even in C++03 mode with a warning, retroactively applying the DR.
1929 bool MemberOfUnknownSpecialization
;
1930 TemplateNameKind TNK
= isTemplateName(0, SS
, TemplateKWLoc
.isValid(), Name
,
1931 ObjectType
, EnteringContext
, Result
,
1932 MemberOfUnknownSpecialization
);
1933 if (TNK
== TNK_Non_template
&& LookupCtx
->isDependentContext() &&
1934 isa
<CXXRecordDecl
>(LookupCtx
) &&
1935 cast
<CXXRecordDecl
>(LookupCtx
)->hasAnyDependentBases()) {
1936 // This is a dependent template. Handle it below.
1937 } else if (TNK
== TNK_Non_template
) {
1938 Diag(Name
.getSourceRange().getBegin(),
1939 diag::err_template_kw_refers_to_non_template
)
1940 << GetNameFromUnqualifiedId(Name
).getName()
1941 << Name
.getSourceRange()
1943 return TNK_Non_template
;
1945 // We found something; return it.
1950 NestedNameSpecifier
*Qualifier
1951 = static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
1953 switch (Name
.getKind()) {
1954 case UnqualifiedId::IK_Identifier
:
1955 Result
= TemplateTy::make(Context
.getDependentTemplateName(Qualifier
,
1957 return TNK_Dependent_template_name
;
1959 case UnqualifiedId::IK_OperatorFunctionId
:
1960 Result
= TemplateTy::make(Context
.getDependentTemplateName(Qualifier
,
1961 Name
.OperatorFunctionId
.Operator
));
1962 return TNK_Dependent_template_name
;
1964 case UnqualifiedId::IK_LiteralOperatorId
:
1965 assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1971 Diag(Name
.getSourceRange().getBegin(),
1972 diag::err_template_kw_refers_to_non_template
)
1973 << GetNameFromUnqualifiedId(Name
).getName()
1974 << Name
.getSourceRange()
1976 return TNK_Non_template
;
1979 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl
*Param
,
1980 const TemplateArgumentLoc
&AL
,
1981 llvm::SmallVectorImpl
<TemplateArgument
> &Converted
) {
1982 const TemplateArgument
&Arg
= AL
.getArgument();
1984 // Check template type parameter.
1985 switch(Arg
.getKind()) {
1986 case TemplateArgument::Type
:
1987 // C++ [temp.arg.type]p1:
1988 // A template-argument for a template-parameter which is a
1989 // type shall be a type-id.
1991 case TemplateArgument::Template
: {
1992 // We have a template type parameter but the template argument
1993 // is a template without any arguments.
1994 SourceRange SR
= AL
.getSourceRange();
1995 TemplateName Name
= Arg
.getAsTemplate();
1996 Diag(SR
.getBegin(), diag::err_template_missing_args
)
1998 if (TemplateDecl
*Decl
= Name
.getAsTemplateDecl())
1999 Diag(Decl
->getLocation(), diag::note_template_decl_here
);
2004 // We have a template type parameter but the template argument
2006 SourceRange SR
= AL
.getSourceRange();
2007 Diag(SR
.getBegin(), diag::err_template_arg_must_be_type
) << SR
;
2008 Diag(Param
->getLocation(), diag::note_template_param_here
);
2014 if (CheckTemplateArgument(Param
, AL
.getTypeSourceInfo()))
2017 // Add the converted template type argument.
2018 Converted
.push_back(
2019 TemplateArgument(Context
.getCanonicalType(Arg
.getAsType())));
2023 /// \brief Substitute template arguments into the default template argument for
2024 /// the given template type parameter.
2026 /// \param SemaRef the semantic analysis object for which we are performing
2027 /// the substitution.
2029 /// \param Template the template that we are synthesizing template arguments
2032 /// \param TemplateLoc the location of the template name that started the
2033 /// template-id we are checking.
2035 /// \param RAngleLoc the location of the right angle bracket ('>') that
2036 /// terminates the template-id.
2038 /// \param Param the template template parameter whose default we are
2039 /// substituting into.
2041 /// \param Converted the list of template arguments provided for template
2042 /// parameters that precede \p Param in the template parameter list.
2044 /// \returns the substituted template argument, or NULL if an error occurred.
2045 static TypeSourceInfo
*
2046 SubstDefaultTemplateArgument(Sema
&SemaRef
,
2047 TemplateDecl
*Template
,
2048 SourceLocation TemplateLoc
,
2049 SourceLocation RAngleLoc
,
2050 TemplateTypeParmDecl
*Param
,
2051 llvm::SmallVectorImpl
<TemplateArgument
> &Converted
) {
2052 TypeSourceInfo
*ArgType
= Param
->getDefaultArgumentInfo();
2054 // If the argument type is dependent, instantiate it now based
2055 // on the previously-computed template arguments.
2056 if (ArgType
->getType()->isDependentType()) {
2057 TemplateArgumentList
TemplateArgs(TemplateArgumentList::OnStack
,
2058 Converted
.data(), Converted
.size());
2060 MultiLevelTemplateArgumentList AllTemplateArgs
2061 = SemaRef
.getTemplateInstantiationArgs(Template
, &TemplateArgs
);
2063 Sema::InstantiatingTemplate
Inst(SemaRef
, TemplateLoc
,
2064 Template
, Converted
.data(),
2066 SourceRange(TemplateLoc
, RAngleLoc
));
2068 ArgType
= SemaRef
.SubstType(ArgType
, AllTemplateArgs
,
2069 Param
->getDefaultArgumentLoc(),
2070 Param
->getDeclName());
2076 /// \brief Substitute template arguments into the default template argument for
2077 /// the given non-type template parameter.
2079 /// \param SemaRef the semantic analysis object for which we are performing
2080 /// the substitution.
2082 /// \param Template the template that we are synthesizing template arguments
2085 /// \param TemplateLoc the location of the template name that started the
2086 /// template-id we are checking.
2088 /// \param RAngleLoc the location of the right angle bracket ('>') that
2089 /// terminates the template-id.
2091 /// \param Param the non-type template parameter whose default we are
2092 /// substituting into.
2094 /// \param Converted the list of template arguments provided for template
2095 /// parameters that precede \p Param in the template parameter list.
2097 /// \returns the substituted template argument, or NULL if an error occurred.
2099 SubstDefaultTemplateArgument(Sema
&SemaRef
,
2100 TemplateDecl
*Template
,
2101 SourceLocation TemplateLoc
,
2102 SourceLocation RAngleLoc
,
2103 NonTypeTemplateParmDecl
*Param
,
2104 llvm::SmallVectorImpl
<TemplateArgument
> &Converted
) {
2105 TemplateArgumentList
TemplateArgs(TemplateArgumentList::OnStack
,
2106 Converted
.data(), Converted
.size());
2108 MultiLevelTemplateArgumentList AllTemplateArgs
2109 = SemaRef
.getTemplateInstantiationArgs(Template
, &TemplateArgs
);
2111 Sema::InstantiatingTemplate
Inst(SemaRef
, TemplateLoc
,
2112 Template
, Converted
.data(),
2114 SourceRange(TemplateLoc
, RAngleLoc
));
2116 return SemaRef
.SubstExpr(Param
->getDefaultArgument(), AllTemplateArgs
);
2119 /// \brief Substitute template arguments into the default template argument for
2120 /// the given template template parameter.
2122 /// \param SemaRef the semantic analysis object for which we are performing
2123 /// the substitution.
2125 /// \param Template the template that we are synthesizing template arguments
2128 /// \param TemplateLoc the location of the template name that started the
2129 /// template-id we are checking.
2131 /// \param RAngleLoc the location of the right angle bracket ('>') that
2132 /// terminates the template-id.
2134 /// \param Param the template template parameter whose default we are
2135 /// substituting into.
2137 /// \param Converted the list of template arguments provided for template
2138 /// parameters that precede \p Param in the template parameter list.
2140 /// \returns the substituted template argument, or NULL if an error occurred.
2142 SubstDefaultTemplateArgument(Sema
&SemaRef
,
2143 TemplateDecl
*Template
,
2144 SourceLocation TemplateLoc
,
2145 SourceLocation RAngleLoc
,
2146 TemplateTemplateParmDecl
*Param
,
2147 llvm::SmallVectorImpl
<TemplateArgument
> &Converted
) {
2148 TemplateArgumentList
TemplateArgs(TemplateArgumentList::OnStack
,
2149 Converted
.data(), Converted
.size());
2151 MultiLevelTemplateArgumentList AllTemplateArgs
2152 = SemaRef
.getTemplateInstantiationArgs(Template
, &TemplateArgs
);
2154 Sema::InstantiatingTemplate
Inst(SemaRef
, TemplateLoc
,
2155 Template
, Converted
.data(),
2157 SourceRange(TemplateLoc
, RAngleLoc
));
2159 return SemaRef
.SubstTemplateName(
2160 Param
->getDefaultArgument().getArgument().getAsTemplate(),
2161 Param
->getDefaultArgument().getTemplateNameLoc(),
2165 /// \brief If the given template parameter has a default template
2166 /// argument, substitute into that default template argument and
2167 /// return the corresponding template argument.
2169 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl
*Template
,
2170 SourceLocation TemplateLoc
,
2171 SourceLocation RAngleLoc
,
2173 llvm::SmallVectorImpl
<TemplateArgument
> &Converted
) {
2174 if (TemplateTypeParmDecl
*TypeParm
= dyn_cast
<TemplateTypeParmDecl
>(Param
)) {
2175 if (!TypeParm
->hasDefaultArgument())
2176 return TemplateArgumentLoc();
2178 TypeSourceInfo
*DI
= SubstDefaultTemplateArgument(*this, Template
,
2184 return TemplateArgumentLoc(TemplateArgument(DI
->getType()), DI
);
2186 return TemplateArgumentLoc();
2189 if (NonTypeTemplateParmDecl
*NonTypeParm
2190 = dyn_cast
<NonTypeTemplateParmDecl
>(Param
)) {
2191 if (!NonTypeParm
->hasDefaultArgument())
2192 return TemplateArgumentLoc();
2194 ExprResult Arg
= SubstDefaultTemplateArgument(*this, Template
,
2199 if (Arg
.isInvalid())
2200 return TemplateArgumentLoc();
2202 Expr
*ArgE
= Arg
.takeAs
<Expr
>();
2203 return TemplateArgumentLoc(TemplateArgument(ArgE
), ArgE
);
2206 TemplateTemplateParmDecl
*TempTempParm
2207 = cast
<TemplateTemplateParmDecl
>(Param
);
2208 if (!TempTempParm
->hasDefaultArgument())
2209 return TemplateArgumentLoc();
2211 TemplateName TName
= SubstDefaultTemplateArgument(*this, Template
,
2217 return TemplateArgumentLoc();
2219 return TemplateArgumentLoc(TemplateArgument(TName
),
2220 TempTempParm
->getDefaultArgument().getTemplateQualifierRange(),
2221 TempTempParm
->getDefaultArgument().getTemplateNameLoc());
2224 /// \brief Check that the given template argument corresponds to the given
2225 /// template parameter.
2227 /// \param Param The template parameter against which the argument will be
2230 /// \param Arg The template argument.
2232 /// \param Template The template in which the template argument resides.
2234 /// \param TemplateLoc The location of the template name for the template
2235 /// whose argument list we're matching.
2237 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
2238 /// the template argument list.
2240 /// \param ArgumentPackIndex The index into the argument pack where this
2241 /// argument will be placed. Only valid if the parameter is a parameter pack.
2243 /// \param Converted The checked, converted argument will be added to the
2244 /// end of this small vector.
2246 /// \param CTAK Describes how we arrived at this particular template argument:
2247 /// explicitly written, deduced, etc.
2249 /// \returns true on error, false otherwise.
2250 bool Sema::CheckTemplateArgument(NamedDecl
*Param
,
2251 const TemplateArgumentLoc
&Arg
,
2252 NamedDecl
*Template
,
2253 SourceLocation TemplateLoc
,
2254 SourceLocation RAngleLoc
,
2255 unsigned ArgumentPackIndex
,
2256 llvm::SmallVectorImpl
<TemplateArgument
> &Converted
,
2257 CheckTemplateArgumentKind CTAK
) {
2258 // Check template type parameters.
2259 if (TemplateTypeParmDecl
*TTP
= dyn_cast
<TemplateTypeParmDecl
>(Param
))
2260 return CheckTemplateTypeArgument(TTP
, Arg
, Converted
);
2262 // Check non-type template parameters.
2263 if (NonTypeTemplateParmDecl
*NTTP
=dyn_cast
<NonTypeTemplateParmDecl
>(Param
)) {
2264 // Do substitution on the type of the non-type template parameter
2265 // with the template arguments we've seen thus far. But if the
2266 // template has a dependent context then we cannot substitute yet.
2267 QualType NTTPType
= NTTP
->getType();
2268 if (NTTP
->isParameterPack() && NTTP
->isExpandedParameterPack())
2269 NTTPType
= NTTP
->getExpansionType(ArgumentPackIndex
);
2271 if (NTTPType
->isDependentType() &&
2272 !isa
<TemplateTemplateParmDecl
>(Template
) &&
2273 !Template
->getDeclContext()->isDependentContext()) {
2274 // Do substitution on the type of the non-type template parameter.
2275 InstantiatingTemplate
Inst(*this, TemplateLoc
, Template
,
2276 NTTP
, Converted
.data(), Converted
.size(),
2277 SourceRange(TemplateLoc
, RAngleLoc
));
2279 TemplateArgumentList
TemplateArgs(TemplateArgumentList::OnStack
,
2280 Converted
.data(), Converted
.size());
2281 NTTPType
= SubstType(NTTPType
,
2282 MultiLevelTemplateArgumentList(TemplateArgs
),
2283 NTTP
->getLocation(),
2284 NTTP
->getDeclName());
2285 // If that worked, check the non-type template parameter type
2287 if (!NTTPType
.isNull())
2288 NTTPType
= CheckNonTypeTemplateParameterType(NTTPType
,
2289 NTTP
->getLocation());
2290 if (NTTPType
.isNull())
2294 switch (Arg
.getArgument().getKind()) {
2295 case TemplateArgument::Null
:
2296 assert(false && "Should never see a NULL template argument here");
2299 case TemplateArgument::Expression
: {
2300 Expr
*E
= Arg
.getArgument().getAsExpr();
2301 TemplateArgument Result
;
2302 if (CheckTemplateArgument(NTTP
, NTTPType
, E
, Result
, CTAK
))
2305 Converted
.push_back(Result
);
2309 case TemplateArgument::Declaration
:
2310 case TemplateArgument::Integral
:
2311 // We've already checked this template argument, so just copy
2312 // it to the list of converted arguments.
2313 Converted
.push_back(Arg
.getArgument());
2316 case TemplateArgument::Template
:
2317 case TemplateArgument::TemplateExpansion
:
2318 // We were given a template template argument. It may not be ill-formed;
2320 if (DependentTemplateName
*DTN
2321 = Arg
.getArgument().getAsTemplateOrTemplatePattern()
2322 .getAsDependentTemplateName()) {
2323 // We have a template argument such as \c T::template X, which we
2324 // parsed as a template template argument. However, since we now
2325 // know that we need a non-type template argument, convert this
2326 // template name into an expression.
2328 DeclarationNameInfo
NameInfo(DTN
->getIdentifier(),
2329 Arg
.getTemplateNameLoc());
2331 Expr
*E
= DependentScopeDeclRefExpr::Create(Context
,
2332 DTN
->getQualifier(),
2333 Arg
.getTemplateQualifierRange(),
2336 // If we parsed the template argument as a pack expansion, create a
2337 // pack expansion expression.
2338 if (Arg
.getArgument().getKind() == TemplateArgument::TemplateExpansion
){
2339 ExprResult Expansion
= ActOnPackExpansion(E
,
2340 Arg
.getTemplateEllipsisLoc());
2341 if (Expansion
.isInvalid())
2344 E
= Expansion
.get();
2347 TemplateArgument Result
;
2348 if (CheckTemplateArgument(NTTP
, NTTPType
, E
, Result
))
2351 Converted
.push_back(Result
);
2355 // We have a template argument that actually does refer to a class
2356 // template, template alias, or template template parameter, and
2357 // therefore cannot be a non-type template argument.
2358 Diag(Arg
.getLocation(), diag::err_template_arg_must_be_expr
)
2359 << Arg
.getSourceRange();
2361 Diag(Param
->getLocation(), diag::note_template_param_here
);
2364 case TemplateArgument::Type
: {
2365 // We have a non-type template parameter but the template
2366 // argument is a type.
2368 // C++ [temp.arg]p2:
2369 // In a template-argument, an ambiguity between a type-id and
2370 // an expression is resolved to a type-id, regardless of the
2371 // form of the corresponding template-parameter.
2373 // We warn specifically about this case, since it can be rather
2374 // confusing for users.
2375 QualType T
= Arg
.getArgument().getAsType();
2376 SourceRange SR
= Arg
.getSourceRange();
2377 if (T
->isFunctionType())
2378 Diag(SR
.getBegin(), diag::err_template_arg_nontype_ambig
) << SR
<< T
;
2380 Diag(SR
.getBegin(), diag::err_template_arg_must_be_expr
) << SR
;
2381 Diag(Param
->getLocation(), diag::note_template_param_here
);
2385 case TemplateArgument::Pack
:
2386 llvm_unreachable("Caller must expand template argument packs");
2394 // Check template template parameters.
2395 TemplateTemplateParmDecl
*TempParm
= cast
<TemplateTemplateParmDecl
>(Param
);
2397 // Substitute into the template parameter list of the template
2398 // template parameter, since previously-supplied template arguments
2399 // may appear within the template template parameter.
2401 // Set up a template instantiation context.
2402 LocalInstantiationScope
Scope(*this);
2403 InstantiatingTemplate
Inst(*this, TemplateLoc
, Template
,
2404 TempParm
, Converted
.data(), Converted
.size(),
2405 SourceRange(TemplateLoc
, RAngleLoc
));
2407 TemplateArgumentList
TemplateArgs(TemplateArgumentList::OnStack
,
2408 Converted
.data(), Converted
.size());
2409 TempParm
= cast_or_null
<TemplateTemplateParmDecl
>(
2410 SubstDecl(TempParm
, CurContext
,
2411 MultiLevelTemplateArgumentList(TemplateArgs
)));
2416 switch (Arg
.getArgument().getKind()) {
2417 case TemplateArgument::Null
:
2418 assert(false && "Should never see a NULL template argument here");
2421 case TemplateArgument::Template
:
2422 case TemplateArgument::TemplateExpansion
:
2423 if (CheckTemplateArgument(TempParm
, Arg
))
2426 Converted
.push_back(Arg
.getArgument());
2429 case TemplateArgument::Expression
:
2430 case TemplateArgument::Type
:
2431 // We have a template template parameter but the template
2432 // argument does not refer to a template.
2433 Diag(Arg
.getLocation(), diag::err_template_arg_must_be_template
);
2436 case TemplateArgument::Declaration
:
2438 "Declaration argument with template template parameter");
2440 case TemplateArgument::Integral
:
2442 "Integral argument with template template parameter");
2445 case TemplateArgument::Pack
:
2446 llvm_unreachable("Caller must expand template argument packs");
2453 /// \brief Check that the given template argument list is well-formed
2454 /// for specializing the given template.
2455 bool Sema::CheckTemplateArgumentList(TemplateDecl
*Template
,
2456 SourceLocation TemplateLoc
,
2457 const TemplateArgumentListInfo
&TemplateArgs
,
2458 bool PartialTemplateArgs
,
2459 llvm::SmallVectorImpl
<TemplateArgument
> &Converted
) {
2460 TemplateParameterList
*Params
= Template
->getTemplateParameters();
2461 unsigned NumParams
= Params
->size();
2462 unsigned NumArgs
= TemplateArgs
.size();
2463 bool Invalid
= false;
2465 SourceLocation RAngleLoc
= TemplateArgs
.getRAngleLoc();
2467 bool HasParameterPack
=
2468 NumParams
> 0 && Params
->getParam(NumParams
- 1)->isTemplateParameterPack();
2470 if ((NumArgs
> NumParams
&& !HasParameterPack
) ||
2471 (NumArgs
< Params
->getMinRequiredArguments() &&
2472 !PartialTemplateArgs
)) {
2473 // FIXME: point at either the first arg beyond what we can handle,
2474 // or the '>', depending on whether we have too many or too few
2477 if (NumArgs
> NumParams
)
2478 Range
= SourceRange(TemplateArgs
[NumParams
].getLocation(), RAngleLoc
);
2479 Diag(TemplateLoc
, diag::err_template_arg_list_different_arity
)
2480 << (NumArgs
> NumParams
)
2481 << (isa
<ClassTemplateDecl
>(Template
)? 0 :
2482 isa
<FunctionTemplateDecl
>(Template
)? 1 :
2483 isa
<TemplateTemplateParmDecl
>(Template
)? 2 : 3)
2484 << Template
<< Range
;
2485 Diag(Template
->getLocation(), diag::note_template_decl_here
)
2486 << Params
->getSourceRange();
2490 // C++ [temp.arg]p1:
2491 // [...] The type and form of each template-argument specified in
2492 // a template-id shall match the type and form specified for the
2493 // corresponding parameter declared by the template in its
2494 // template-parameter-list.
2495 llvm::SmallVector
<TemplateArgument
, 2> ArgumentPack
;
2496 TemplateParameterList::iterator Param
= Params
->begin(),
2497 ParamEnd
= Params
->end();
2498 unsigned ArgIdx
= 0;
2499 LocalInstantiationScope
InstScope(*this, true);
2500 while (Param
!= ParamEnd
) {
2501 if (ArgIdx
> NumArgs
&& PartialTemplateArgs
)
2504 if (ArgIdx
< NumArgs
) {
2505 // If we have an expanded parameter pack, make sure we don't have too
2507 if (NonTypeTemplateParmDecl
*NTTP
2508 = dyn_cast
<NonTypeTemplateParmDecl
>(*Param
)) {
2509 if (NTTP
->isExpandedParameterPack() &&
2510 ArgumentPack
.size() >= NTTP
->getNumExpansionTypes()) {
2511 Diag(TemplateLoc
, diag::err_template_arg_list_different_arity
)
2513 << (isa
<ClassTemplateDecl
>(Template
)? 0 :
2514 isa
<FunctionTemplateDecl
>(Template
)? 1 :
2515 isa
<TemplateTemplateParmDecl
>(Template
)? 2 : 3)
2517 Diag(Template
->getLocation(), diag::note_template_decl_here
)
2518 << Params
->getSourceRange();
2523 // Check the template argument we were given.
2524 if (CheckTemplateArgument(*Param
, TemplateArgs
[ArgIdx
], Template
,
2525 TemplateLoc
, RAngleLoc
,
2526 ArgumentPack
.size(), Converted
))
2529 if ((*Param
)->isTemplateParameterPack()) {
2530 // The template parameter was a template parameter pack, so take the
2531 // deduced argument and place it on the argument pack. Note that we
2532 // stay on the same template parameter so that we can deduce more
2534 ArgumentPack
.push_back(Converted
.back());
2535 Converted
.pop_back();
2537 // Move to the next template parameter.
2544 // If we have a template parameter pack with no more corresponding
2545 // arguments, just break out now and we'll fill in the argument pack below.
2546 if ((*Param
)->isTemplateParameterPack())
2549 // We have a default template argument that we will use.
2550 TemplateArgumentLoc Arg
;
2552 // Retrieve the default template argument from the template
2553 // parameter. For each kind of template parameter, we substitute the
2554 // template arguments provided thus far and any "outer" template arguments
2555 // (when the template parameter was part of a nested template) into
2556 // the default argument.
2557 if (TemplateTypeParmDecl
*TTP
= dyn_cast
<TemplateTypeParmDecl
>(*Param
)) {
2558 if (!TTP
->hasDefaultArgument()) {
2559 assert((Invalid
|| PartialTemplateArgs
) && "Missing default argument");
2563 TypeSourceInfo
*ArgType
= SubstDefaultTemplateArgument(*this,
2572 Arg
= TemplateArgumentLoc(TemplateArgument(ArgType
->getType()),
2574 } else if (NonTypeTemplateParmDecl
*NTTP
2575 = dyn_cast
<NonTypeTemplateParmDecl
>(*Param
)) {
2576 if (!NTTP
->hasDefaultArgument()) {
2577 assert((Invalid
|| PartialTemplateArgs
) && "Missing default argument");
2581 ExprResult E
= SubstDefaultTemplateArgument(*this, Template
,
2589 Expr
*Ex
= E
.takeAs
<Expr
>();
2590 Arg
= TemplateArgumentLoc(TemplateArgument(Ex
), Ex
);
2592 TemplateTemplateParmDecl
*TempParm
2593 = cast
<TemplateTemplateParmDecl
>(*Param
);
2595 if (!TempParm
->hasDefaultArgument()) {
2596 assert((Invalid
|| PartialTemplateArgs
) && "Missing default argument");
2600 TemplateName Name
= SubstDefaultTemplateArgument(*this, Template
,
2608 Arg
= TemplateArgumentLoc(TemplateArgument(Name
),
2609 TempParm
->getDefaultArgument().getTemplateQualifierRange(),
2610 TempParm
->getDefaultArgument().getTemplateNameLoc());
2613 // Introduce an instantiation record that describes where we are using
2614 // the default template argument.
2615 InstantiatingTemplate
Instantiating(*this, RAngleLoc
, Template
, *Param
,
2616 Converted
.data(), Converted
.size(),
2617 SourceRange(TemplateLoc
, RAngleLoc
));
2619 // Check the default template argument.
2620 if (CheckTemplateArgument(*Param
, Arg
, Template
, TemplateLoc
,
2621 RAngleLoc
, 0, Converted
))
2624 // Move to the next template parameter and argument.
2629 // Form argument packs for each of the parameter packs remaining.
2630 while (Param
!= ParamEnd
) {
2631 // If we're checking a partial list of template arguments, don't fill
2632 // in arguments for non-template parameter packs.
2634 if ((*Param
)->isTemplateParameterPack()) {
2635 if (PartialTemplateArgs
&& ArgumentPack
.empty()) {
2636 Converted
.push_back(TemplateArgument());
2637 } else if (ArgumentPack
.empty())
2638 Converted
.push_back(TemplateArgument(0, 0));
2640 Converted
.push_back(TemplateArgument::CreatePackCopy(Context
,
2641 ArgumentPack
.data(),
2642 ArgumentPack
.size()));
2643 ArgumentPack
.clear();
2654 class UnnamedLocalNoLinkageFinder
2655 : public TypeVisitor
<UnnamedLocalNoLinkageFinder
, bool>
2660 typedef TypeVisitor
<UnnamedLocalNoLinkageFinder
, bool> inherited
;
2663 UnnamedLocalNoLinkageFinder(Sema
&S
, SourceRange SR
) : S(S
), SR(SR
) { }
2665 bool Visit(QualType T
) {
2666 return inherited::Visit(T
.getTypePtr());
2669 #define TYPE(Class, Parent) \
2670 bool Visit##Class##Type(const Class##Type *);
2671 #define ABSTRACT_TYPE(Class, Parent) \
2672 bool Visit##Class##Type(const Class##Type *) { return false; }
2673 #define NON_CANONICAL_TYPE(Class, Parent) \
2674 bool Visit##Class##Type(const Class##Type *) { return false; }
2675 #include "clang/AST/TypeNodes.def"
2677 bool VisitTagDecl(const TagDecl
*Tag
);
2678 bool VisitNestedNameSpecifier(NestedNameSpecifier
*NNS
);
2682 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType
*) {
2686 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType
* T
) {
2687 return Visit(T
->getElementType());
2690 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType
* T
) {
2691 return Visit(T
->getPointeeType());
2694 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2695 const BlockPointerType
* T
) {
2696 return Visit(T
->getPointeeType());
2699 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2700 const LValueReferenceType
* T
) {
2701 return Visit(T
->getPointeeType());
2704 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2705 const RValueReferenceType
* T
) {
2706 return Visit(T
->getPointeeType());
2709 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2710 const MemberPointerType
* T
) {
2711 return Visit(T
->getPointeeType()) || Visit(QualType(T
->getClass(), 0));
2714 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2715 const ConstantArrayType
* T
) {
2716 return Visit(T
->getElementType());
2719 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2720 const IncompleteArrayType
* T
) {
2721 return Visit(T
->getElementType());
2724 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2725 const VariableArrayType
* T
) {
2726 return Visit(T
->getElementType());
2729 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2730 const DependentSizedArrayType
* T
) {
2731 return Visit(T
->getElementType());
2734 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2735 const DependentSizedExtVectorType
* T
) {
2736 return Visit(T
->getElementType());
2739 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType
* T
) {
2740 return Visit(T
->getElementType());
2743 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType
* T
) {
2744 return Visit(T
->getElementType());
2747 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2748 const FunctionProtoType
* T
) {
2749 for (FunctionProtoType::arg_type_iterator A
= T
->arg_type_begin(),
2750 AEnd
= T
->arg_type_end();
2756 return Visit(T
->getResultType());
2759 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2760 const FunctionNoProtoType
* T
) {
2761 return Visit(T
->getResultType());
2764 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2765 const UnresolvedUsingType
*) {
2769 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType
*) {
2773 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType
* T
) {
2774 return Visit(T
->getUnderlyingType());
2777 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType
*) {
2781 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType
* T
) {
2782 return VisitTagDecl(T
->getDecl());
2785 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType
* T
) {
2786 return VisitTagDecl(T
->getDecl());
2789 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2790 const TemplateTypeParmType
*) {
2794 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
2795 const SubstTemplateTypeParmPackType
*) {
2799 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2800 const TemplateSpecializationType
*) {
2804 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2805 const InjectedClassNameType
* T
) {
2806 return VisitTagDecl(T
->getDecl());
2809 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2810 const DependentNameType
* T
) {
2811 return VisitNestedNameSpecifier(T
->getQualifier());
2814 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2815 const DependentTemplateSpecializationType
* T
) {
2816 return VisitNestedNameSpecifier(T
->getQualifier());
2819 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2820 const PackExpansionType
* T
) {
2821 return Visit(T
->getPattern());
2824 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType
*) {
2828 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2829 const ObjCInterfaceType
*) {
2833 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2834 const ObjCObjectPointerType
*) {
2838 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl
*Tag
) {
2839 if (Tag
->getDeclContext()->isFunctionOrMethod()) {
2840 S
.Diag(SR
.getBegin(), diag::ext_template_arg_local_type
)
2841 << S
.Context
.getTypeDeclType(Tag
) << SR
;
2845 if (!Tag
->getDeclName() && !Tag
->getTypedefForAnonDecl()) {
2846 S
.Diag(SR
.getBegin(), diag::ext_template_arg_unnamed_type
) << SR
;
2847 S
.Diag(Tag
->getLocation(), diag::note_template_unnamed_type_here
);
2854 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2855 NestedNameSpecifier
*NNS
) {
2856 if (NNS
->getPrefix() && VisitNestedNameSpecifier(NNS
->getPrefix()))
2859 switch (NNS
->getKind()) {
2860 case NestedNameSpecifier::Identifier
:
2861 case NestedNameSpecifier::Namespace
:
2862 case NestedNameSpecifier::Global
:
2865 case NestedNameSpecifier::TypeSpec
:
2866 case NestedNameSpecifier::TypeSpecWithTemplate
:
2867 return Visit(QualType(NNS
->getAsType(), 0));
2873 /// \brief Check a template argument against its corresponding
2874 /// template type parameter.
2876 /// This routine implements the semantics of C++ [temp.arg.type]. It
2877 /// returns true if an error occurred, and false otherwise.
2878 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl
*Param
,
2879 TypeSourceInfo
*ArgInfo
) {
2880 assert(ArgInfo
&& "invalid TypeSourceInfo");
2881 QualType Arg
= ArgInfo
->getType();
2882 SourceRange SR
= ArgInfo
->getTypeLoc().getSourceRange();
2884 if (Arg
->isVariablyModifiedType()) {
2885 return Diag(SR
.getBegin(), diag::err_variably_modified_template_arg
) << Arg
;
2886 } else if (Context
.hasSameUnqualifiedType(Arg
, Context
.OverloadTy
)) {
2887 return Diag(SR
.getBegin(), diag::err_template_arg_overload_type
) << SR
;
2890 // C++03 [temp.arg.type]p2:
2891 // A local type, a type with no linkage, an unnamed type or a type
2892 // compounded from any of these types shall not be used as a
2893 // template-argument for a template type-parameter.
2895 // C++0x allows these, and even in C++03 we allow them as an extension with
2897 if (!LangOpts
.CPlusPlus0x
&& Arg
->hasUnnamedOrLocalType()) {
2898 UnnamedLocalNoLinkageFinder
Finder(*this, SR
);
2899 (void)Finder
.Visit(Context
.getCanonicalType(Arg
));
2905 /// \brief Checks whether the given template argument is the address
2906 /// of an object or function according to C++ [temp.arg.nontype]p1.
2908 CheckTemplateArgumentAddressOfObjectOrFunction(Sema
&S
,
2909 NonTypeTemplateParmDecl
*Param
,
2912 TemplateArgument
&Converted
) {
2913 bool Invalid
= false;
2915 QualType ArgType
= Arg
->getType();
2917 // See through any implicit casts we added to fix the type.
2918 while (ImplicitCastExpr
*Cast
= dyn_cast
<ImplicitCastExpr
>(Arg
))
2919 Arg
= Cast
->getSubExpr();
2921 // C++ [temp.arg.nontype]p1:
2923 // A template-argument for a non-type, non-template
2924 // template-parameter shall be one of: [...]
2926 // -- the address of an object or function with external
2927 // linkage, including function templates and function
2928 // template-ids but excluding non-static class members,
2929 // expressed as & id-expression where the & is optional if
2930 // the name refers to a function or array, or if the
2931 // corresponding template-parameter is a reference; or
2932 DeclRefExpr
*DRE
= 0;
2934 // In C++98/03 mode, give an extension warning on any extra parentheses.
2935 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2936 bool ExtraParens
= false;
2937 while (ParenExpr
*Parens
= dyn_cast
<ParenExpr
>(Arg
)) {
2938 if (!Invalid
&& !ExtraParens
&& !S
.getLangOptions().CPlusPlus0x
) {
2939 S
.Diag(Arg
->getSourceRange().getBegin(),
2940 diag::ext_template_arg_extra_parens
)
2941 << Arg
->getSourceRange();
2945 Arg
= Parens
->getSubExpr();
2948 bool AddressTaken
= false;
2949 SourceLocation AddrOpLoc
;
2950 if (UnaryOperator
*UnOp
= dyn_cast
<UnaryOperator
>(Arg
)) {
2951 if (UnOp
->getOpcode() == UO_AddrOf
) {
2952 DRE
= dyn_cast
<DeclRefExpr
>(UnOp
->getSubExpr());
2953 AddressTaken
= true;
2954 AddrOpLoc
= UnOp
->getOperatorLoc();
2957 DRE
= dyn_cast
<DeclRefExpr
>(Arg
);
2960 S
.Diag(Arg
->getLocStart(), diag::err_template_arg_not_decl_ref
)
2961 << Arg
->getSourceRange();
2962 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
2966 // Stop checking the precise nature of the argument if it is value dependent,
2967 // it should be checked when instantiated.
2968 if (Arg
->isValueDependent()) {
2969 Converted
= TemplateArgument(ArgIn
);
2973 if (!isa
<ValueDecl
>(DRE
->getDecl())) {
2974 S
.Diag(Arg
->getSourceRange().getBegin(),
2975 diag::err_template_arg_not_object_or_func_form
)
2976 << Arg
->getSourceRange();
2977 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
2981 NamedDecl
*Entity
= 0;
2983 // Cannot refer to non-static data members
2984 if (FieldDecl
*Field
= dyn_cast
<FieldDecl
>(DRE
->getDecl())) {
2985 S
.Diag(Arg
->getSourceRange().getBegin(), diag::err_template_arg_field
)
2986 << Field
<< Arg
->getSourceRange();
2987 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
2991 // Cannot refer to non-static member functions
2992 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(DRE
->getDecl()))
2993 if (!Method
->isStatic()) {
2994 S
.Diag(Arg
->getSourceRange().getBegin(), diag::err_template_arg_method
)
2995 << Method
<< Arg
->getSourceRange();
2996 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3000 // Functions must have external linkage.
3001 if (FunctionDecl
*Func
= dyn_cast
<FunctionDecl
>(DRE
->getDecl())) {
3002 if (!isExternalLinkage(Func
->getLinkage())) {
3003 S
.Diag(Arg
->getSourceRange().getBegin(),
3004 diag::err_template_arg_function_not_extern
)
3005 << Func
<< Arg
->getSourceRange();
3006 S
.Diag(Func
->getLocation(), diag::note_template_arg_internal_object
)
3011 // Okay: we've named a function with external linkage.
3014 // If the template parameter has pointer type, the function decays.
3015 if (ParamType
->isPointerType() && !AddressTaken
)
3016 ArgType
= S
.Context
.getPointerType(Func
->getType());
3017 else if (AddressTaken
&& ParamType
->isReferenceType()) {
3018 // If we originally had an address-of operator, but the
3019 // parameter has reference type, complain and (if things look
3020 // like they will work) drop the address-of operator.
3021 if (!S
.Context
.hasSameUnqualifiedType(Func
->getType(),
3022 ParamType
.getNonReferenceType())) {
3023 S
.Diag(AddrOpLoc
, diag::err_template_arg_address_of_non_pointer
)
3025 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3029 S
.Diag(AddrOpLoc
, diag::err_template_arg_address_of_non_pointer
)
3031 << FixItHint::CreateRemoval(AddrOpLoc
);
3032 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3034 ArgType
= Func
->getType();
3036 } else if (VarDecl
*Var
= dyn_cast
<VarDecl
>(DRE
->getDecl())) {
3037 if (!isExternalLinkage(Var
->getLinkage())) {
3038 S
.Diag(Arg
->getSourceRange().getBegin(),
3039 diag::err_template_arg_object_not_extern
)
3040 << Var
<< Arg
->getSourceRange();
3041 S
.Diag(Var
->getLocation(), diag::note_template_arg_internal_object
)
3046 // A value of reference type is not an object.
3047 if (Var
->getType()->isReferenceType()) {
3048 S
.Diag(Arg
->getSourceRange().getBegin(),
3049 diag::err_template_arg_reference_var
)
3050 << Var
->getType() << Arg
->getSourceRange();
3051 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3055 // Okay: we've named an object with external linkage
3058 // If the template parameter has pointer type, we must have taken
3059 // the address of this object.
3060 if (ParamType
->isReferenceType()) {
3062 // If we originally had an address-of operator, but the
3063 // parameter has reference type, complain and (if things look
3064 // like they will work) drop the address-of operator.
3065 if (!S
.Context
.hasSameUnqualifiedType(Var
->getType(),
3066 ParamType
.getNonReferenceType())) {
3067 S
.Diag(AddrOpLoc
, diag::err_template_arg_address_of_non_pointer
)
3069 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3073 S
.Diag(AddrOpLoc
, diag::err_template_arg_address_of_non_pointer
)
3075 << FixItHint::CreateRemoval(AddrOpLoc
);
3076 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3078 ArgType
= Var
->getType();
3080 } else if (!AddressTaken
&& ParamType
->isPointerType()) {
3081 if (Var
->getType()->isArrayType()) {
3082 // Array-to-pointer decay.
3083 ArgType
= S
.Context
.getArrayDecayedType(Var
->getType());
3085 // If the template parameter has pointer type but the address of
3086 // this object was not taken, complain and (possibly) recover by
3087 // taking the address of the entity.
3088 ArgType
= S
.Context
.getPointerType(Var
->getType());
3089 if (!S
.Context
.hasSameUnqualifiedType(ArgType
, ParamType
)) {
3090 S
.Diag(Arg
->getLocStart(), diag::err_template_arg_not_address_of
)
3092 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3096 S
.Diag(Arg
->getLocStart(), diag::err_template_arg_not_address_of
)
3098 << FixItHint::CreateInsertion(Arg
->getLocStart(), "&");
3100 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3104 // We found something else, but we don't know specifically what it is.
3105 S
.Diag(Arg
->getSourceRange().getBegin(),
3106 diag::err_template_arg_not_object_or_func
)
3107 << Arg
->getSourceRange();
3108 S
.Diag(DRE
->getDecl()->getLocation(), diag::note_template_arg_refers_here
);
3112 if (ParamType
->isPointerType() &&
3113 !ParamType
->getAs
<PointerType
>()->getPointeeType()->isFunctionType() &&
3114 S
.IsQualificationConversion(ArgType
, ParamType
, false)) {
3115 // For pointer-to-object types, qualification conversions are
3118 if (const ReferenceType
*ParamRef
= ParamType
->getAs
<ReferenceType
>()) {
3119 if (!ParamRef
->getPointeeType()->isFunctionType()) {
3120 // C++ [temp.arg.nontype]p5b3:
3121 // For a non-type template-parameter of type reference to
3122 // object, no conversions apply. The type referred to by the
3123 // reference may be more cv-qualified than the (otherwise
3124 // identical) type of the template- argument. The
3125 // template-parameter is bound directly to the
3126 // template-argument, which shall be an lvalue.
3128 // FIXME: Other qualifiers?
3129 unsigned ParamQuals
= ParamRef
->getPointeeType().getCVRQualifiers();
3130 unsigned ArgQuals
= ArgType
.getCVRQualifiers();
3132 if ((ParamQuals
| ArgQuals
) != ParamQuals
) {
3133 S
.Diag(Arg
->getSourceRange().getBegin(),
3134 diag::err_template_arg_ref_bind_ignores_quals
)
3135 << ParamType
<< Arg
->getType()
3136 << Arg
->getSourceRange();
3137 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3143 // At this point, the template argument refers to an object or
3144 // function with external linkage. We now need to check whether the
3145 // argument and parameter types are compatible.
3146 if (!S
.Context
.hasSameUnqualifiedType(ArgType
,
3147 ParamType
.getNonReferenceType())) {
3148 // We can't perform this conversion or binding.
3149 if (ParamType
->isReferenceType())
3150 S
.Diag(Arg
->getLocStart(), diag::err_template_arg_no_ref_bind
)
3151 << ParamType
<< Arg
->getType() << Arg
->getSourceRange();
3153 S
.Diag(Arg
->getLocStart(), diag::err_template_arg_not_convertible
)
3154 << Arg
->getType() << ParamType
<< Arg
->getSourceRange();
3155 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
3160 // Create the template argument.
3161 Converted
= TemplateArgument(Entity
->getCanonicalDecl());
3162 S
.MarkDeclarationReferenced(Arg
->getLocStart(), Entity
);
3166 /// \brief Checks whether the given template argument is a pointer to
3167 /// member constant according to C++ [temp.arg.nontype]p1.
3168 bool Sema::CheckTemplateArgumentPointerToMember(Expr
*Arg
,
3169 TemplateArgument
&Converted
) {
3170 bool Invalid
= false;
3172 // See through any implicit casts we added to fix the type.
3173 while (ImplicitCastExpr
*Cast
= dyn_cast
<ImplicitCastExpr
>(Arg
))
3174 Arg
= Cast
->getSubExpr();
3176 // C++ [temp.arg.nontype]p1:
3178 // A template-argument for a non-type, non-template
3179 // template-parameter shall be one of: [...]
3181 // -- a pointer to member expressed as described in 5.3.1.
3182 DeclRefExpr
*DRE
= 0;
3184 // In C++98/03 mode, give an extension warning on any extra parentheses.
3185 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3186 bool ExtraParens
= false;
3187 while (ParenExpr
*Parens
= dyn_cast
<ParenExpr
>(Arg
)) {
3188 if (!Invalid
&& !ExtraParens
&& !getLangOptions().CPlusPlus0x
) {
3189 Diag(Arg
->getSourceRange().getBegin(),
3190 diag::ext_template_arg_extra_parens
)
3191 << Arg
->getSourceRange();
3195 Arg
= Parens
->getSubExpr();
3198 // A pointer-to-member constant written &Class::member.
3199 if (UnaryOperator
*UnOp
= dyn_cast
<UnaryOperator
>(Arg
)) {
3200 if (UnOp
->getOpcode() == UO_AddrOf
) {
3201 DRE
= dyn_cast
<DeclRefExpr
>(UnOp
->getSubExpr());
3202 if (DRE
&& !DRE
->getQualifier())
3206 // A constant of pointer-to-member type.
3207 else if ((DRE
= dyn_cast
<DeclRefExpr
>(Arg
))) {
3208 if (ValueDecl
*VD
= dyn_cast
<ValueDecl
>(DRE
->getDecl())) {
3209 if (VD
->getType()->isMemberPointerType()) {
3210 if (isa
<NonTypeTemplateParmDecl
>(VD
) ||
3211 (isa
<VarDecl
>(VD
) &&
3212 Context
.getCanonicalType(VD
->getType()).isConstQualified())) {
3213 if (Arg
->isTypeDependent() || Arg
->isValueDependent())
3214 Converted
= TemplateArgument(Arg
);
3216 Converted
= TemplateArgument(VD
->getCanonicalDecl());
3226 return Diag(Arg
->getSourceRange().getBegin(),
3227 diag::err_template_arg_not_pointer_to_member_form
)
3228 << Arg
->getSourceRange();
3230 if (isa
<FieldDecl
>(DRE
->getDecl()) || isa
<CXXMethodDecl
>(DRE
->getDecl())) {
3231 assert((isa
<FieldDecl
>(DRE
->getDecl()) ||
3232 !cast
<CXXMethodDecl
>(DRE
->getDecl())->isStatic()) &&
3233 "Only non-static member pointers can make it here");
3235 // Okay: this is the address of a non-static member, and therefore
3236 // a member pointer constant.
3237 if (Arg
->isTypeDependent() || Arg
->isValueDependent())
3238 Converted
= TemplateArgument(Arg
);
3240 Converted
= TemplateArgument(DRE
->getDecl()->getCanonicalDecl());
3244 // We found something else, but we don't know specifically what it is.
3245 Diag(Arg
->getSourceRange().getBegin(),
3246 diag::err_template_arg_not_pointer_to_member_form
)
3247 << Arg
->getSourceRange();
3248 Diag(DRE
->getDecl()->getLocation(),
3249 diag::note_template_arg_refers_here
);
3253 /// \brief Check a template argument against its corresponding
3254 /// non-type template parameter.
3256 /// This routine implements the semantics of C++ [temp.arg.nontype].
3257 /// It returns true if an error occurred, and false otherwise. \p
3258 /// InstantiatedParamType is the type of the non-type template
3259 /// parameter after it has been instantiated.
3261 /// If no error was detected, Converted receives the converted template argument.
3262 bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl
*Param
,
3263 QualType InstantiatedParamType
, Expr
*&Arg
,
3264 TemplateArgument
&Converted
,
3265 CheckTemplateArgumentKind CTAK
) {
3266 SourceLocation StartLoc
= Arg
->getSourceRange().getBegin();
3268 // If either the parameter has a dependent type or the argument is
3269 // type-dependent, there's nothing we can check now.
3270 if (InstantiatedParamType
->isDependentType() || Arg
->isTypeDependent()) {
3271 // FIXME: Produce a cloned, canonical expression?
3272 Converted
= TemplateArgument(Arg
);
3276 // C++ [temp.arg.nontype]p5:
3277 // The following conversions are performed on each expression used
3278 // as a non-type template-argument. If a non-type
3279 // template-argument cannot be converted to the type of the
3280 // corresponding template-parameter then the program is
3283 // -- for a non-type template-parameter of integral or
3284 // enumeration type, integral promotions (4.5) and integral
3285 // conversions (4.7) are applied.
3286 QualType ParamType
= InstantiatedParamType
;
3287 QualType ArgType
= Arg
->getType();
3288 if (ParamType
->isIntegralOrEnumerationType()) {
3289 // C++ [temp.arg.nontype]p1:
3290 // A template-argument for a non-type, non-template
3291 // template-parameter shall be one of:
3293 // -- an integral constant-expression of integral or enumeration
3295 // -- the name of a non-type template-parameter; or
3296 SourceLocation NonConstantLoc
;
3298 if (!ArgType
->isIntegralOrEnumerationType()) {
3299 Diag(Arg
->getSourceRange().getBegin(),
3300 diag::err_template_arg_not_integral_or_enumeral
)
3301 << ArgType
<< Arg
->getSourceRange();
3302 Diag(Param
->getLocation(), diag::note_template_param_here
);
3304 } else if (!Arg
->isValueDependent() &&
3305 !Arg
->isIntegerConstantExpr(Value
, Context
, &NonConstantLoc
)) {
3306 Diag(NonConstantLoc
, diag::err_template_arg_not_ice
)
3307 << ArgType
<< Arg
->getSourceRange();
3311 // From here on out, all we care about are the unqualified forms
3312 // of the parameter and argument types.
3313 ParamType
= ParamType
.getUnqualifiedType();
3314 ArgType
= ArgType
.getUnqualifiedType();
3316 // Try to convert the argument to the parameter's type.
3317 if (Context
.hasSameType(ParamType
, ArgType
)) {
3318 // Okay: no conversion necessary
3319 } else if (CTAK
== CTAK_Deduced
) {
3320 // C++ [temp.deduct.type]p17:
3321 // If, in the declaration of a function template with a non-type
3322 // template-parameter, the non-type template- parameter is used
3323 // in an expression in the function parameter-list and, if the
3324 // corresponding template-argument is deduced, the
3325 // template-argument type shall match the type of the
3326 // template-parameter exactly, except that a template-argument
3327 // deduced from an array bound may be of any integral type.
3328 Diag(StartLoc
, diag::err_deduced_non_type_template_arg_type_mismatch
)
3329 << ArgType
<< ParamType
;
3330 Diag(Param
->getLocation(), diag::note_template_param_here
);
3332 } else if (ParamType
->isBooleanType()) {
3333 // This is an integral-to-boolean conversion.
3334 ImpCastExprToType(Arg
, ParamType
, CK_IntegralToBoolean
);
3335 } else if (IsIntegralPromotion(Arg
, ArgType
, ParamType
) ||
3336 !ParamType
->isEnumeralType()) {
3337 // This is an integral promotion or conversion.
3338 ImpCastExprToType(Arg
, ParamType
, CK_IntegralCast
);
3340 // We can't perform this conversion.
3341 Diag(Arg
->getSourceRange().getBegin(),
3342 diag::err_template_arg_not_convertible
)
3343 << Arg
->getType() << InstantiatedParamType
<< Arg
->getSourceRange();
3344 Diag(Param
->getLocation(), diag::note_template_param_here
);
3348 QualType IntegerType
= Context
.getCanonicalType(ParamType
);
3349 if (const EnumType
*Enum
= IntegerType
->getAs
<EnumType
>())
3350 IntegerType
= Context
.getCanonicalType(Enum
->getDecl()->getIntegerType());
3352 if (!Arg
->isValueDependent()) {
3353 llvm::APSInt OldValue
= Value
;
3355 // Coerce the template argument's value to the value it will have
3356 // based on the template parameter's type.
3357 unsigned AllowedBits
= Context
.getTypeSize(IntegerType
);
3358 if (Value
.getBitWidth() != AllowedBits
)
3359 Value
= Value
.extOrTrunc(AllowedBits
);
3360 Value
.setIsSigned(IntegerType
->isSignedIntegerType());
3362 // Complain if an unsigned parameter received a negative value.
3363 if (IntegerType
->isUnsignedIntegerType()
3364 && (OldValue
.isSigned() && OldValue
.isNegative())) {
3365 Diag(Arg
->getSourceRange().getBegin(), diag::warn_template_arg_negative
)
3366 << OldValue
.toString(10) << Value
.toString(10) << Param
->getType()
3367 << Arg
->getSourceRange();
3368 Diag(Param
->getLocation(), diag::note_template_param_here
);
3371 // Complain if we overflowed the template parameter's type.
3372 unsigned RequiredBits
;
3373 if (IntegerType
->isUnsignedIntegerType())
3374 RequiredBits
= OldValue
.getActiveBits();
3375 else if (OldValue
.isUnsigned())
3376 RequiredBits
= OldValue
.getActiveBits() + 1;
3378 RequiredBits
= OldValue
.getMinSignedBits();
3379 if (RequiredBits
> AllowedBits
) {
3380 Diag(Arg
->getSourceRange().getBegin(),
3381 diag::warn_template_arg_too_large
)
3382 << OldValue
.toString(10) << Value
.toString(10) << Param
->getType()
3383 << Arg
->getSourceRange();
3384 Diag(Param
->getLocation(), diag::note_template_param_here
);
3388 // Add the value of this argument to the list of converted
3389 // arguments. We use the bitwidth and signedness of the template
3391 if (Arg
->isValueDependent()) {
3392 // The argument is value-dependent. Create a new
3393 // TemplateArgument with the converted expression.
3394 Converted
= TemplateArgument(Arg
);
3398 Converted
= TemplateArgument(Value
,
3399 ParamType
->isEnumeralType() ? ParamType
3404 DeclAccessPair FoundResult
; // temporary for ResolveOverloadedFunction
3406 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3407 // from a template argument of type std::nullptr_t to a non-type
3408 // template parameter of type pointer to object, pointer to
3409 // function, or pointer-to-member, respectively.
3410 if (ArgType
->isNullPtrType() &&
3411 (ParamType
->isPointerType() || ParamType
->isMemberPointerType())) {
3412 Converted
= TemplateArgument((NamedDecl
*)0);
3416 // Handle pointer-to-function, reference-to-function, and
3417 // pointer-to-member-function all in (roughly) the same way.
3418 if (// -- For a non-type template-parameter of type pointer to
3419 // function, only the function-to-pointer conversion (4.3) is
3420 // applied. If the template-argument represents a set of
3421 // overloaded functions (or a pointer to such), the matching
3422 // function is selected from the set (13.4).
3423 (ParamType
->isPointerType() &&
3424 ParamType
->getAs
<PointerType
>()->getPointeeType()->isFunctionType()) ||
3425 // -- For a non-type template-parameter of type reference to
3426 // function, no conversions apply. If the template-argument
3427 // represents a set of overloaded functions, the matching
3428 // function is selected from the set (13.4).
3429 (ParamType
->isReferenceType() &&
3430 ParamType
->getAs
<ReferenceType
>()->getPointeeType()->isFunctionType()) ||
3431 // -- For a non-type template-parameter of type pointer to
3432 // member function, no conversions apply. If the
3433 // template-argument represents a set of overloaded member
3434 // functions, the matching member function is selected from
3436 (ParamType
->isMemberPointerType() &&
3437 ParamType
->getAs
<MemberPointerType
>()->getPointeeType()
3438 ->isFunctionType())) {
3440 if (Arg
->getType() == Context
.OverloadTy
) {
3441 if (FunctionDecl
*Fn
= ResolveAddressOfOverloadedFunction(Arg
, ParamType
,
3444 if (DiagnoseUseOfDecl(Fn
, Arg
->getSourceRange().getBegin()))
3447 Arg
= FixOverloadedFunctionReference(Arg
, FoundResult
, Fn
);
3448 ArgType
= Arg
->getType();
3453 if (!ParamType
->isMemberPointerType())
3454 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param
,
3458 if (IsQualificationConversion(ArgType
, ParamType
.getNonReferenceType(),
3460 ImpCastExprToType(Arg
, ParamType
, CK_NoOp
, CastCategory(Arg
));
3461 } else if (!Context
.hasSameUnqualifiedType(ArgType
,
3462 ParamType
.getNonReferenceType())) {
3463 // We can't perform this conversion.
3464 Diag(Arg
->getSourceRange().getBegin(),
3465 diag::err_template_arg_not_convertible
)
3466 << Arg
->getType() << InstantiatedParamType
<< Arg
->getSourceRange();
3467 Diag(Param
->getLocation(), diag::note_template_param_here
);
3471 return CheckTemplateArgumentPointerToMember(Arg
, Converted
);
3474 if (ParamType
->isPointerType()) {
3475 // -- for a non-type template-parameter of type pointer to
3476 // object, qualification conversions (4.4) and the
3477 // array-to-pointer conversion (4.2) are applied.
3478 // C++0x also allows a value of std::nullptr_t.
3479 assert(ParamType
->getPointeeType()->isIncompleteOrObjectType() &&
3480 "Only object pointers allowed here");
3482 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param
,
3487 if (const ReferenceType
*ParamRefType
= ParamType
->getAs
<ReferenceType
>()) {
3488 // -- For a non-type template-parameter of type reference to
3489 // object, no conversions apply. The type referred to by the
3490 // reference may be more cv-qualified than the (otherwise
3491 // identical) type of the template-argument. The
3492 // template-parameter is bound directly to the
3493 // template-argument, which must be an lvalue.
3494 assert(ParamRefType
->getPointeeType()->isIncompleteOrObjectType() &&
3495 "Only object references allowed here");
3497 if (Arg
->getType() == Context
.OverloadTy
) {
3498 if (FunctionDecl
*Fn
= ResolveAddressOfOverloadedFunction(Arg
,
3499 ParamRefType
->getPointeeType(),
3502 if (DiagnoseUseOfDecl(Fn
, Arg
->getSourceRange().getBegin()))
3505 Arg
= FixOverloadedFunctionReference(Arg
, FoundResult
, Fn
);
3506 ArgType
= Arg
->getType();
3511 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param
,
3516 // -- For a non-type template-parameter of type pointer to data
3517 // member, qualification conversions (4.4) are applied.
3518 assert(ParamType
->isMemberPointerType() && "Only pointers to members remain");
3520 if (Context
.hasSameUnqualifiedType(ParamType
, ArgType
)) {
3521 // Types match exactly: nothing more to do here.
3522 } else if (IsQualificationConversion(ArgType
, ParamType
, false)) {
3523 ImpCastExprToType(Arg
, ParamType
, CK_NoOp
, CastCategory(Arg
));
3525 // We can't perform this conversion.
3526 Diag(Arg
->getSourceRange().getBegin(),
3527 diag::err_template_arg_not_convertible
)
3528 << Arg
->getType() << InstantiatedParamType
<< Arg
->getSourceRange();
3529 Diag(Param
->getLocation(), diag::note_template_param_here
);
3533 return CheckTemplateArgumentPointerToMember(Arg
, Converted
);
3536 /// \brief Check a template argument against its corresponding
3537 /// template template parameter.
3539 /// This routine implements the semantics of C++ [temp.arg.template].
3540 /// It returns true if an error occurred, and false otherwise.
3541 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl
*Param
,
3542 const TemplateArgumentLoc
&Arg
) {
3543 TemplateName Name
= Arg
.getArgument().getAsTemplate();
3544 TemplateDecl
*Template
= Name
.getAsTemplateDecl();
3546 // Any dependent template name is fine.
3547 assert(Name
.isDependent() && "Non-dependent template isn't a declaration?");
3551 // C++ [temp.arg.template]p1:
3552 // A template-argument for a template template-parameter shall be
3553 // the name of a class template, expressed as id-expression. Only
3554 // primary class templates are considered when matching the
3555 // template template argument with the corresponding parameter;
3556 // partial specializations are not considered even if their
3557 // parameter lists match that of the template template parameter.
3559 // Note that we also allow template template parameters here, which
3560 // will happen when we are dealing with, e.g., class template
3561 // partial specializations.
3562 if (!isa
<ClassTemplateDecl
>(Template
) &&
3563 !isa
<TemplateTemplateParmDecl
>(Template
)) {
3564 assert(isa
<FunctionTemplateDecl
>(Template
) &&
3565 "Only function templates are possible here");
3566 Diag(Arg
.getLocation(), diag::err_template_arg_not_class_template
);
3567 Diag(Template
->getLocation(), diag::note_template_arg_refers_here_func
)
3571 return !TemplateParameterListsAreEqual(Template
->getTemplateParameters(),
3572 Param
->getTemplateParameters(),
3574 TPL_TemplateTemplateArgumentMatch
,
3578 /// \brief Given a non-type template argument that refers to a
3579 /// declaration and the type of its corresponding non-type template
3580 /// parameter, produce an expression that properly refers to that
3583 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument
&Arg
,
3585 SourceLocation Loc
) {
3586 assert(Arg
.getKind() == TemplateArgument::Declaration
&&
3587 "Only declaration template arguments permitted here");
3588 ValueDecl
*VD
= cast
<ValueDecl
>(Arg
.getAsDecl());
3590 if (VD
->getDeclContext()->isRecord() &&
3591 (isa
<CXXMethodDecl
>(VD
) || isa
<FieldDecl
>(VD
))) {
3592 // If the value is a class member, we might have a pointer-to-member.
3593 // Determine whether the non-type template template parameter is of
3594 // pointer-to-member type. If so, we need to build an appropriate
3595 // expression for a pointer-to-member, since a "normal" DeclRefExpr
3596 // would refer to the member itself.
3597 if (ParamType
->isMemberPointerType()) {
3599 = Context
.getTypeDeclType(cast
<RecordDecl
>(VD
->getDeclContext()));
3600 NestedNameSpecifier
*Qualifier
3601 = NestedNameSpecifier::Create(Context
, 0, false,
3602 ClassType
.getTypePtr());
3604 SS
.setScopeRep(Qualifier
);
3606 // The actual value-ness of this is unimportant, but for
3607 // internal consistency's sake, references to instance methods
3609 ExprValueKind VK
= VK_LValue
;
3610 if (isa
<CXXMethodDecl
>(VD
) && cast
<CXXMethodDecl
>(VD
)->isInstance())
3613 ExprResult RefExpr
= BuildDeclRefExpr(VD
,
3614 VD
->getType().getNonReferenceType(),
3618 if (RefExpr
.isInvalid())
3621 RefExpr
= CreateBuiltinUnaryOp(Loc
, UO_AddrOf
, RefExpr
.get());
3623 // We might need to perform a trailing qualification conversion, since
3624 // the element type on the parameter could be more qualified than the
3625 // element type in the expression we constructed.
3626 if (IsQualificationConversion(((Expr
*) RefExpr
.get())->getType(),
3627 ParamType
.getUnqualifiedType(), false)) {
3628 Expr
*RefE
= RefExpr
.takeAs
<Expr
>();
3629 ImpCastExprToType(RefE
, ParamType
.getUnqualifiedType(), CK_NoOp
);
3630 RefExpr
= Owned(RefE
);
3633 assert(!RefExpr
.isInvalid() &&
3634 Context
.hasSameType(((Expr
*) RefExpr
.get())->getType(),
3635 ParamType
.getUnqualifiedType()));
3636 return move(RefExpr
);
3640 QualType T
= VD
->getType().getNonReferenceType();
3641 if (ParamType
->isPointerType()) {
3642 // When the non-type template parameter is a pointer, take the
3643 // address of the declaration.
3644 ExprResult RefExpr
= BuildDeclRefExpr(VD
, T
, VK_LValue
, Loc
);
3645 if (RefExpr
.isInvalid())
3648 if (T
->isFunctionType() || T
->isArrayType()) {
3649 // Decay functions and arrays.
3650 Expr
*RefE
= (Expr
*)RefExpr
.get();
3651 DefaultFunctionArrayConversion(RefE
);
3652 if (RefE
!= RefExpr
.get()) {
3654 RefExpr
= Owned(RefE
);
3657 return move(RefExpr
);
3660 // Take the address of everything else
3661 return CreateBuiltinUnaryOp(Loc
, UO_AddrOf
, RefExpr
.get());
3664 ExprValueKind VK
= VK_RValue
;
3666 // If the non-type template parameter has reference type, qualify the
3667 // resulting declaration reference with the extra qualifiers on the
3668 // type that the reference refers to.
3669 if (const ReferenceType
*TargetRef
= ParamType
->getAs
<ReferenceType
>()) {
3671 T
= Context
.getQualifiedType(T
,
3672 TargetRef
->getPointeeType().getQualifiers());
3675 return BuildDeclRefExpr(VD
, T
, VK
, Loc
);
3678 /// \brief Construct a new expression that refers to the given
3679 /// integral template argument with the given source-location
3682 /// This routine takes care of the mapping from an integral template
3683 /// argument (which may have any integral type) to the appropriate
3686 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument
&Arg
,
3687 SourceLocation Loc
) {
3688 assert(Arg
.getKind() == TemplateArgument::Integral
&&
3689 "Operation is only valid for integral template arguments");
3690 QualType T
= Arg
.getIntegralType();
3691 if (T
->isCharType() || T
->isWideCharType())
3692 return Owned(new (Context
) CharacterLiteral(
3693 Arg
.getAsIntegral()->getZExtValue(),
3694 T
->isWideCharType(),
3697 if (T
->isBooleanType())
3698 return Owned(new (Context
) CXXBoolLiteralExpr(
3699 Arg
.getAsIntegral()->getBoolValue(),
3704 if (const EnumType
*ET
= T
->getAs
<EnumType
>())
3705 BT
= ET
->getDecl()->getPromotionType();
3709 Expr
*E
= IntegerLiteral::Create(Context
, *Arg
.getAsIntegral(), BT
, Loc
);
3710 if (T
->isEnumeralType()) {
3711 // FIXME: This is a hack. We need a better way to handle substituted
3712 // non-type template parameters.
3713 E
= CStyleCastExpr::Create(Context
, T
, VK_RValue
, CK_IntegralCast
,
3715 Context
.getTrivialTypeSourceInfo(T
, Loc
),
3722 /// \brief Match two template parameters within template parameter lists.
3723 static bool MatchTemplateParameterKind(Sema
&S
, NamedDecl
*New
, NamedDecl
*Old
,
3725 Sema::TemplateParameterListEqualKind Kind
,
3726 SourceLocation TemplateArgLoc
) {
3727 // Check the actual kind (type, non-type, template).
3728 if (Old
->getKind() != New
->getKind()) {
3730 unsigned NextDiag
= diag::err_template_param_different_kind
;
3731 if (TemplateArgLoc
.isValid()) {
3732 S
.Diag(TemplateArgLoc
, diag::err_template_arg_template_params_mismatch
);
3733 NextDiag
= diag::note_template_param_different_kind
;
3735 S
.Diag(New
->getLocation(), NextDiag
)
3736 << (Kind
!= Sema::TPL_TemplateMatch
);
3737 S
.Diag(Old
->getLocation(), diag::note_template_prev_declaration
)
3738 << (Kind
!= Sema::TPL_TemplateMatch
);
3744 // Check that both are parameter packs are neither are parameter packs.
3745 // However, if we are matching a template template argument to a
3746 // template template parameter, the template template parameter can have
3747 // a parameter pack where the template template argument does not.
3748 if (Old
->isTemplateParameterPack() != New
->isTemplateParameterPack() &&
3749 !(Kind
== Sema::TPL_TemplateTemplateArgumentMatch
&&
3750 Old
->isTemplateParameterPack())) {
3752 unsigned NextDiag
= diag::err_template_parameter_pack_non_pack
;
3753 if (TemplateArgLoc
.isValid()) {
3754 S
.Diag(TemplateArgLoc
,
3755 diag::err_template_arg_template_params_mismatch
);
3756 NextDiag
= diag::note_template_parameter_pack_non_pack
;
3759 unsigned ParamKind
= isa
<TemplateTypeParmDecl
>(New
)? 0
3760 : isa
<NonTypeTemplateParmDecl
>(New
)? 1
3762 S
.Diag(New
->getLocation(), NextDiag
)
3763 << ParamKind
<< New
->isParameterPack();
3764 S
.Diag(Old
->getLocation(), diag::note_template_parameter_pack_here
)
3765 << ParamKind
<< Old
->isParameterPack();
3771 // For non-type template parameters, check the type of the parameter.
3772 if (NonTypeTemplateParmDecl
*OldNTTP
3773 = dyn_cast
<NonTypeTemplateParmDecl
>(Old
)) {
3774 NonTypeTemplateParmDecl
*NewNTTP
= cast
<NonTypeTemplateParmDecl
>(New
);
3776 // If we are matching a template template argument to a template
3777 // template parameter and one of the non-type template parameter types
3778 // is dependent, then we must wait until template instantiation time
3779 // to actually compare the arguments.
3780 if (Kind
== Sema::TPL_TemplateTemplateArgumentMatch
&&
3781 (OldNTTP
->getType()->isDependentType() ||
3782 NewNTTP
->getType()->isDependentType()))
3785 if (!S
.Context
.hasSameType(OldNTTP
->getType(), NewNTTP
->getType())) {
3787 unsigned NextDiag
= diag::err_template_nontype_parm_different_type
;
3788 if (TemplateArgLoc
.isValid()) {
3789 S
.Diag(TemplateArgLoc
,
3790 diag::err_template_arg_template_params_mismatch
);
3791 NextDiag
= diag::note_template_nontype_parm_different_type
;
3793 S
.Diag(NewNTTP
->getLocation(), NextDiag
)
3794 << NewNTTP
->getType()
3795 << (Kind
!= Sema::TPL_TemplateMatch
);
3796 S
.Diag(OldNTTP
->getLocation(),
3797 diag::note_template_nontype_parm_prev_declaration
)
3798 << OldNTTP
->getType();
3807 // For template template parameters, check the template parameter types.
3808 // The template parameter lists of template template
3809 // parameters must agree.
3810 if (TemplateTemplateParmDecl
*OldTTP
3811 = dyn_cast
<TemplateTemplateParmDecl
>(Old
)) {
3812 TemplateTemplateParmDecl
*NewTTP
= cast
<TemplateTemplateParmDecl
>(New
);
3813 return S
.TemplateParameterListsAreEqual(NewTTP
->getTemplateParameters(),
3814 OldTTP
->getTemplateParameters(),
3816 (Kind
== Sema::TPL_TemplateMatch
3817 ? Sema::TPL_TemplateTemplateParmMatch
3825 /// \brief Diagnose a known arity mismatch when comparing template argument
3828 void DiagnoseTemplateParameterListArityMismatch(Sema
&S
,
3829 TemplateParameterList
*New
,
3830 TemplateParameterList
*Old
,
3831 Sema::TemplateParameterListEqualKind Kind
,
3832 SourceLocation TemplateArgLoc
) {
3833 unsigned NextDiag
= diag::err_template_param_list_different_arity
;
3834 if (TemplateArgLoc
.isValid()) {
3835 S
.Diag(TemplateArgLoc
, diag::err_template_arg_template_params_mismatch
);
3836 NextDiag
= diag::note_template_param_list_different_arity
;
3838 S
.Diag(New
->getTemplateLoc(), NextDiag
)
3839 << (New
->size() > Old
->size())
3840 << (Kind
!= Sema::TPL_TemplateMatch
)
3841 << SourceRange(New
->getTemplateLoc(), New
->getRAngleLoc());
3842 S
.Diag(Old
->getTemplateLoc(), diag::note_template_prev_declaration
)
3843 << (Kind
!= Sema::TPL_TemplateMatch
)
3844 << SourceRange(Old
->getTemplateLoc(), Old
->getRAngleLoc());
3847 /// \brief Determine whether the given template parameter lists are
3850 /// \param New The new template parameter list, typically written in the
3851 /// source code as part of a new template declaration.
3853 /// \param Old The old template parameter list, typically found via
3854 /// name lookup of the template declared with this template parameter
3857 /// \param Complain If true, this routine will produce a diagnostic if
3858 /// the template parameter lists are not equivalent.
3860 /// \param Kind describes how we are to match the template parameter lists.
3862 /// \param TemplateArgLoc If this source location is valid, then we
3863 /// are actually checking the template parameter list of a template
3864 /// argument (New) against the template parameter list of its
3865 /// corresponding template template parameter (Old). We produce
3866 /// slightly different diagnostics in this scenario.
3868 /// \returns True if the template parameter lists are equal, false
3871 Sema::TemplateParameterListsAreEqual(TemplateParameterList
*New
,
3872 TemplateParameterList
*Old
,
3874 TemplateParameterListEqualKind Kind
,
3875 SourceLocation TemplateArgLoc
) {
3876 if (Old
->size() != New
->size() && Kind
!= TPL_TemplateTemplateArgumentMatch
) {
3878 DiagnoseTemplateParameterListArityMismatch(*this, New
, Old
, Kind
,
3884 // C++0x [temp.arg.template]p3:
3885 // A template-argument matches a template template-parameter (call it P)
3886 // when each of the template parameters in the template-parameter-list of
3887 // the template-argument's corresponding class template or template alias
3888 // (call it A) matches the corresponding template parameter in the
3889 // template-parameter-list of P. [...]
3890 TemplateParameterList::iterator NewParm
= New
->begin();
3891 TemplateParameterList::iterator NewParmEnd
= New
->end();
3892 for (TemplateParameterList::iterator OldParm
= Old
->begin(),
3893 OldParmEnd
= Old
->end();
3894 OldParm
!= OldParmEnd
; ++OldParm
) {
3895 if (Kind
!= TPL_TemplateTemplateArgumentMatch
||
3896 !(*OldParm
)->isTemplateParameterPack()) {
3897 if (NewParm
== NewParmEnd
) {
3899 DiagnoseTemplateParameterListArityMismatch(*this, New
, Old
, Kind
,
3905 if (!MatchTemplateParameterKind(*this, *NewParm
, *OldParm
, Complain
,
3906 Kind
, TemplateArgLoc
))
3913 // C++0x [temp.arg.template]p3:
3914 // [...] When P's template- parameter-list contains a template parameter
3915 // pack (14.5.3), the template parameter pack will match zero or more
3916 // template parameters or template parameter packs in the
3917 // template-parameter-list of A with the same type and form as the
3918 // template parameter pack in P (ignoring whether those template
3919 // parameters are template parameter packs).
3920 for (; NewParm
!= NewParmEnd
; ++NewParm
) {
3921 if (!MatchTemplateParameterKind(*this, *NewParm
, *OldParm
, Complain
,
3922 Kind
, TemplateArgLoc
))
3927 // Make sure we exhausted all of the arguments.
3928 if (NewParm
!= NewParmEnd
) {
3930 DiagnoseTemplateParameterListArityMismatch(*this, New
, Old
, Kind
,
3939 /// \brief Check whether a template can be declared within this scope.
3941 /// If the template declaration is valid in this scope, returns
3942 /// false. Otherwise, issues a diagnostic and returns true.
3944 Sema::CheckTemplateDeclScope(Scope
*S
, TemplateParameterList
*TemplateParams
) {
3945 // Find the nearest enclosing declaration scope.
3946 while ((S
->getFlags() & Scope::DeclScope
) == 0 ||
3947 (S
->getFlags() & Scope::TemplateParamScope
) != 0)
3951 // A template-declaration can appear only as a namespace scope or
3952 // class scope declaration.
3953 DeclContext
*Ctx
= static_cast<DeclContext
*>(S
->getEntity());
3954 if (Ctx
&& isa
<LinkageSpecDecl
>(Ctx
) &&
3955 cast
<LinkageSpecDecl
>(Ctx
)->getLanguage() != LinkageSpecDecl::lang_cxx
)
3956 return Diag(TemplateParams
->getTemplateLoc(), diag::err_template_linkage
)
3957 << TemplateParams
->getSourceRange();
3959 while (Ctx
&& isa
<LinkageSpecDecl
>(Ctx
))
3960 Ctx
= Ctx
->getParent();
3962 if (Ctx
&& (Ctx
->isFileContext() || Ctx
->isRecord()))
3965 return Diag(TemplateParams
->getTemplateLoc(),
3966 diag::err_template_outside_namespace_or_class_scope
)
3967 << TemplateParams
->getSourceRange();
3970 /// \brief Determine what kind of template specialization the given declaration
3972 static TemplateSpecializationKind
getTemplateSpecializationKind(NamedDecl
*D
) {
3974 return TSK_Undeclared
;
3976 if (CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(D
))
3977 return Record
->getTemplateSpecializationKind();
3978 if (FunctionDecl
*Function
= dyn_cast
<FunctionDecl
>(D
))
3979 return Function
->getTemplateSpecializationKind();
3980 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(D
))
3981 return Var
->getTemplateSpecializationKind();
3983 return TSK_Undeclared
;
3986 /// \brief Check whether a specialization is well-formed in the current
3989 /// This routine determines whether a template specialization can be declared
3990 /// in the current context (C++ [temp.expl.spec]p2).
3992 /// \param S the semantic analysis object for which this check is being
3995 /// \param Specialized the entity being specialized or instantiated, which
3996 /// may be a kind of template (class template, function template, etc.) or
3997 /// a member of a class template (member function, static data member,
4000 /// \param PrevDecl the previous declaration of this entity, if any.
4002 /// \param Loc the location of the explicit specialization or instantiation of
4005 /// \param IsPartialSpecialization whether this is a partial specialization of
4006 /// a class template.
4008 /// \returns true if there was an error that we cannot recover from, false
4010 static bool CheckTemplateSpecializationScope(Sema
&S
,
4011 NamedDecl
*Specialized
,
4012 NamedDecl
*PrevDecl
,
4014 bool IsPartialSpecialization
) {
4015 // Keep these "kind" numbers in sync with the %select statements in the
4016 // various diagnostics emitted by this routine.
4018 if (isa
<ClassTemplateDecl
>(Specialized
))
4019 EntityKind
= IsPartialSpecialization
? 1 : 0;
4020 else if (isa
<FunctionTemplateDecl
>(Specialized
))
4022 else if (isa
<CXXMethodDecl
>(Specialized
))
4024 else if (isa
<VarDecl
>(Specialized
))
4026 else if (isa
<RecordDecl
>(Specialized
))
4029 S
.Diag(Loc
, diag::err_template_spec_unknown_kind
);
4030 S
.Diag(Specialized
->getLocation(), diag::note_specialized_entity
);
4034 // C++ [temp.expl.spec]p2:
4035 // An explicit specialization shall be declared in the namespace
4036 // of which the template is a member, or, for member templates, in
4037 // the namespace of which the enclosing class or enclosing class
4038 // template is a member. An explicit specialization of a member
4039 // function, member class or static data member of a class
4040 // template shall be declared in the namespace of which the class
4041 // template is a member. Such a declaration may also be a
4042 // definition. If the declaration is not a definition, the
4043 // specialization may be defined later in the name- space in which
4044 // the explicit specialization was declared, or in a namespace
4045 // that encloses the one in which the explicit specialization was
4047 if (S
.CurContext
->getRedeclContext()->isFunctionOrMethod()) {
4048 S
.Diag(Loc
, diag::err_template_spec_decl_function_scope
)
4053 if (S
.CurContext
->isRecord() && !IsPartialSpecialization
) {
4054 S
.Diag(Loc
, diag::err_template_spec_decl_class_scope
)
4059 // C++ [temp.class.spec]p6:
4060 // A class template partial specialization may be declared or redeclared
4061 // in any namespace scope in which its definition may be defined (14.5.1
4063 bool ComplainedAboutScope
= false;
4064 DeclContext
*SpecializedContext
4065 = Specialized
->getDeclContext()->getEnclosingNamespaceContext();
4066 DeclContext
*DC
= S
.CurContext
->getEnclosingNamespaceContext();
4068 getTemplateSpecializationKind(PrevDecl
) == TSK_Undeclared
||
4069 getTemplateSpecializationKind(PrevDecl
) == TSK_ImplicitInstantiation
)){
4070 // C++ [temp.exp.spec]p2:
4071 // An explicit specialization shall be declared in the namespace of which
4072 // the template is a member, or, for member templates, in the namespace
4073 // of which the enclosing class or enclosing class template is a member.
4074 // An explicit specialization of a member function, member class or
4075 // static data member of a class template shall be declared in the
4076 // namespace of which the class template is a member.
4078 // C++0x [temp.expl.spec]p2:
4079 // An explicit specialization shall be declared in a namespace enclosing
4080 // the specialized template.
4081 if (!DC
->InEnclosingNamespaceSetOf(SpecializedContext
) &&
4082 !(S
.getLangOptions().CPlusPlus0x
&& DC
->Encloses(SpecializedContext
))) {
4083 bool IsCPlusPlus0xExtension
4084 = !S
.getLangOptions().CPlusPlus0x
&& DC
->Encloses(SpecializedContext
);
4085 if (isa
<TranslationUnitDecl
>(SpecializedContext
))
4086 S
.Diag(Loc
, IsCPlusPlus0xExtension
4087 ? diag::ext_template_spec_decl_out_of_scope_global
4088 : diag::err_template_spec_decl_out_of_scope_global
)
4089 << EntityKind
<< Specialized
;
4090 else if (isa
<NamespaceDecl
>(SpecializedContext
))
4091 S
.Diag(Loc
, IsCPlusPlus0xExtension
4092 ? diag::ext_template_spec_decl_out_of_scope
4093 : diag::err_template_spec_decl_out_of_scope
)
4094 << EntityKind
<< Specialized
4095 << cast
<NamedDecl
>(SpecializedContext
);
4097 S
.Diag(Specialized
->getLocation(), diag::note_specialized_entity
);
4098 ComplainedAboutScope
= true;
4102 // Make sure that this redeclaration (or definition) occurs in an enclosing
4104 // Note that HandleDeclarator() performs this check for explicit
4105 // specializations of function templates, static data members, and member
4106 // functions, so we skip the check here for those kinds of entities.
4107 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4108 // Should we refactor that check, so that it occurs later?
4109 if (!ComplainedAboutScope
&& !DC
->Encloses(SpecializedContext
) &&
4110 !(isa
<FunctionTemplateDecl
>(Specialized
) || isa
<VarDecl
>(Specialized
) ||
4111 isa
<FunctionDecl
>(Specialized
))) {
4112 if (isa
<TranslationUnitDecl
>(SpecializedContext
))
4113 S
.Diag(Loc
, diag::err_template_spec_redecl_global_scope
)
4114 << EntityKind
<< Specialized
;
4115 else if (isa
<NamespaceDecl
>(SpecializedContext
))
4116 S
.Diag(Loc
, diag::err_template_spec_redecl_out_of_scope
)
4117 << EntityKind
<< Specialized
4118 << cast
<NamedDecl
>(SpecializedContext
);
4120 S
.Diag(Specialized
->getLocation(), diag::note_specialized_entity
);
4123 // FIXME: check for specialization-after-instantiation errors and such.
4128 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4129 /// that checks non-type template partial specialization arguments.
4130 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema
&S
,
4131 NonTypeTemplateParmDecl
*Param
,
4132 const TemplateArgument
*Args
,
4134 for (unsigned I
= 0; I
!= NumArgs
; ++I
) {
4135 if (Args
[I
].getKind() == TemplateArgument::Pack
) {
4136 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S
, Param
,
4137 Args
[I
].pack_begin(),
4138 Args
[I
].pack_size()))
4144 Expr
*ArgExpr
= Args
[I
].getAsExpr();
4149 // We can have a pack expansion of any of the bullets below.
4150 if (PackExpansionExpr
*Expansion
= dyn_cast
<PackExpansionExpr
>(ArgExpr
))
4151 ArgExpr
= Expansion
->getPattern();
4153 // Strip off any implicit casts we added as part of type checking.
4154 while (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(ArgExpr
))
4155 ArgExpr
= ICE
->getSubExpr();
4157 // C++ [temp.class.spec]p8:
4158 // A non-type argument is non-specialized if it is the name of a
4159 // non-type parameter. All other non-type arguments are
4162 // Below, we check the two conditions that only apply to
4163 // specialized non-type arguments, so skip any non-specialized
4165 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(ArgExpr
))
4166 if (isa
<NonTypeTemplateParmDecl
>(DRE
->getDecl()))
4169 // C++ [temp.class.spec]p9:
4170 // Within the argument list of a class template partial
4171 // specialization, the following restrictions apply:
4172 // -- A partially specialized non-type argument expression
4173 // shall not involve a template parameter of the partial
4174 // specialization except when the argument expression is a
4175 // simple identifier.
4176 if (ArgExpr
->isTypeDependent() || ArgExpr
->isValueDependent()) {
4177 S
.Diag(ArgExpr
->getLocStart(),
4178 diag::err_dependent_non_type_arg_in_partial_spec
)
4179 << ArgExpr
->getSourceRange();
4183 // -- The type of a template parameter corresponding to a
4184 // specialized non-type argument shall not be dependent on a
4185 // parameter of the specialization.
4186 if (Param
->getType()->isDependentType()) {
4187 S
.Diag(ArgExpr
->getLocStart(),
4188 diag::err_dependent_typed_non_type_arg_in_partial_spec
)
4190 << ArgExpr
->getSourceRange();
4191 S
.Diag(Param
->getLocation(), diag::note_template_param_here
);
4199 /// \brief Check the non-type template arguments of a class template
4200 /// partial specialization according to C++ [temp.class.spec]p9.
4202 /// \param TemplateParams the template parameters of the primary class
4205 /// \param TemplateArg the template arguments of the class template
4206 /// partial specialization.
4208 /// \returns true if there was an error, false otherwise.
4209 static bool CheckClassTemplatePartialSpecializationArgs(Sema
&S
,
4210 TemplateParameterList
*TemplateParams
,
4211 llvm::SmallVectorImpl
<TemplateArgument
> &TemplateArgs
) {
4212 const TemplateArgument
*ArgList
= TemplateArgs
.data();
4214 for (unsigned I
= 0, N
= TemplateParams
->size(); I
!= N
; ++I
) {
4215 NonTypeTemplateParmDecl
*Param
4216 = dyn_cast
<NonTypeTemplateParmDecl
>(TemplateParams
->getParam(I
));
4220 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S
, Param
,
4228 /// \brief Retrieve the previous declaration of the given declaration.
4229 static NamedDecl
*getPreviousDecl(NamedDecl
*ND
) {
4230 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(ND
))
4231 return VD
->getPreviousDeclaration();
4232 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(ND
))
4233 return FD
->getPreviousDeclaration();
4234 if (TagDecl
*TD
= dyn_cast
<TagDecl
>(ND
))
4235 return TD
->getPreviousDeclaration();
4236 if (TypedefDecl
*TD
= dyn_cast
<TypedefDecl
>(ND
))
4237 return TD
->getPreviousDeclaration();
4238 if (FunctionTemplateDecl
*FTD
= dyn_cast
<FunctionTemplateDecl
>(ND
))
4239 return FTD
->getPreviousDeclaration();
4240 if (ClassTemplateDecl
*CTD
= dyn_cast
<ClassTemplateDecl
>(ND
))
4241 return CTD
->getPreviousDeclaration();
4246 Sema::ActOnClassTemplateSpecialization(Scope
*S
, unsigned TagSpec
,
4248 SourceLocation KWLoc
,
4250 TemplateTy TemplateD
,
4251 SourceLocation TemplateNameLoc
,
4252 SourceLocation LAngleLoc
,
4253 ASTTemplateArgsPtr TemplateArgsIn
,
4254 SourceLocation RAngleLoc
,
4255 AttributeList
*Attr
,
4256 MultiTemplateParamsArg TemplateParameterLists
) {
4257 assert(TUK
!= TUK_Reference
&& "References are not specializations");
4259 // Find the class template we're specializing
4260 TemplateName Name
= TemplateD
.getAsVal
<TemplateName
>();
4261 ClassTemplateDecl
*ClassTemplate
4262 = dyn_cast_or_null
<ClassTemplateDecl
>(Name
.getAsTemplateDecl());
4264 if (!ClassTemplate
) {
4265 Diag(TemplateNameLoc
, diag::err_not_class_template_specialization
)
4266 << (Name
.getAsTemplateDecl() &&
4267 isa
<TemplateTemplateParmDecl
>(Name
.getAsTemplateDecl()));
4271 bool isExplicitSpecialization
= false;
4272 bool isPartialSpecialization
= false;
4274 // Check the validity of the template headers that introduce this
4276 // FIXME: We probably shouldn't complain about these headers for
4277 // friend declarations.
4278 bool Invalid
= false;
4279 TemplateParameterList
*TemplateParams
4280 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc
, SS
,
4281 (TemplateParameterList
**)TemplateParameterLists
.get(),
4282 TemplateParameterLists
.size(),
4284 isExplicitSpecialization
,
4289 unsigned NumMatchedTemplateParamLists
= TemplateParameterLists
.size();
4291 --NumMatchedTemplateParamLists
;
4293 if (TemplateParams
&& TemplateParams
->size() > 0) {
4294 isPartialSpecialization
= true;
4296 if (TUK
== TUK_Friend
) {
4297 Diag(KWLoc
, diag::err_partial_specialization_friend
)
4298 << SourceRange(LAngleLoc
, RAngleLoc
);
4302 // C++ [temp.class.spec]p10:
4303 // The template parameter list of a specialization shall not
4304 // contain default template argument values.
4305 for (unsigned I
= 0, N
= TemplateParams
->size(); I
!= N
; ++I
) {
4306 Decl
*Param
= TemplateParams
->getParam(I
);
4307 if (TemplateTypeParmDecl
*TTP
= dyn_cast
<TemplateTypeParmDecl
>(Param
)) {
4308 if (TTP
->hasDefaultArgument()) {
4309 Diag(TTP
->getDefaultArgumentLoc(),
4310 diag::err_default_arg_in_partial_spec
);
4311 TTP
->removeDefaultArgument();
4313 } else if (NonTypeTemplateParmDecl
*NTTP
4314 = dyn_cast
<NonTypeTemplateParmDecl
>(Param
)) {
4315 if (Expr
*DefArg
= NTTP
->getDefaultArgument()) {
4316 Diag(NTTP
->getDefaultArgumentLoc(),
4317 diag::err_default_arg_in_partial_spec
)
4318 << DefArg
->getSourceRange();
4319 NTTP
->removeDefaultArgument();
4322 TemplateTemplateParmDecl
*TTP
= cast
<TemplateTemplateParmDecl
>(Param
);
4323 if (TTP
->hasDefaultArgument()) {
4324 Diag(TTP
->getDefaultArgument().getLocation(),
4325 diag::err_default_arg_in_partial_spec
)
4326 << TTP
->getDefaultArgument().getSourceRange();
4327 TTP
->removeDefaultArgument();
4331 } else if (TemplateParams
) {
4332 if (TUK
== TUK_Friend
)
4333 Diag(KWLoc
, diag::err_template_spec_friend
)
4334 << FixItHint::CreateRemoval(
4335 SourceRange(TemplateParams
->getTemplateLoc(),
4336 TemplateParams
->getRAngleLoc()))
4337 << SourceRange(LAngleLoc
, RAngleLoc
);
4339 isExplicitSpecialization
= true;
4340 } else if (TUK
!= TUK_Friend
) {
4341 Diag(KWLoc
, diag::err_template_spec_needs_header
)
4342 << FixItHint::CreateInsertion(KWLoc
, "template<> ");
4343 isExplicitSpecialization
= true;
4346 // Check that the specialization uses the same tag kind as the
4347 // original template.
4348 TagTypeKind Kind
= TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec
);
4349 assert(Kind
!= TTK_Enum
&& "Invalid enum tag in class template spec!");
4350 if (!isAcceptableTagRedeclaration(ClassTemplate
->getTemplatedDecl(),
4352 *ClassTemplate
->getIdentifier())) {
4353 Diag(KWLoc
, diag::err_use_with_wrong_tag
)
4355 << FixItHint::CreateReplacement(KWLoc
,
4356 ClassTemplate
->getTemplatedDecl()->getKindName());
4357 Diag(ClassTemplate
->getTemplatedDecl()->getLocation(),
4358 diag::note_previous_use
);
4359 Kind
= ClassTemplate
->getTemplatedDecl()->getTagKind();
4362 // Translate the parser's template argument list in our AST format.
4363 TemplateArgumentListInfo TemplateArgs
;
4364 TemplateArgs
.setLAngleLoc(LAngleLoc
);
4365 TemplateArgs
.setRAngleLoc(RAngleLoc
);
4366 translateTemplateArguments(TemplateArgsIn
, TemplateArgs
);
4368 // Check for unexpanded parameter packs in any of the template arguments.
4369 for (unsigned I
= 0, N
= TemplateArgs
.size(); I
!= N
; ++I
)
4370 if (DiagnoseUnexpandedParameterPack(TemplateArgs
[I
],
4371 UPPC_PartialSpecialization
))
4374 // Check that the template argument list is well-formed for this
4376 llvm::SmallVector
<TemplateArgument
, 4> Converted
;
4377 if (CheckTemplateArgumentList(ClassTemplate
, TemplateNameLoc
,
4378 TemplateArgs
, false, Converted
))
4381 assert((Converted
.size() == ClassTemplate
->getTemplateParameters()->size()) &&
4382 "Converted template argument list is too short!");
4384 // Find the class template (partial) specialization declaration that
4385 // corresponds to these arguments.
4386 if (isPartialSpecialization
) {
4387 if (CheckClassTemplatePartialSpecializationArgs(*this,
4388 ClassTemplate
->getTemplateParameters(),
4392 if (!Name
.isDependent() &&
4393 !TemplateSpecializationType::anyDependentTemplateArguments(
4394 TemplateArgs
.getArgumentArray(),
4395 TemplateArgs
.size())) {
4396 Diag(TemplateNameLoc
, diag::err_partial_spec_fully_specialized
)
4397 << ClassTemplate
->getDeclName();
4398 isPartialSpecialization
= false;
4402 void *InsertPos
= 0;
4403 ClassTemplateSpecializationDecl
*PrevDecl
= 0;
4405 if (isPartialSpecialization
)
4406 // FIXME: Template parameter list matters, too
4408 = ClassTemplate
->findPartialSpecialization(Converted
.data(),
4413 = ClassTemplate
->findSpecialization(Converted
.data(),
4414 Converted
.size(), InsertPos
);
4416 ClassTemplateSpecializationDecl
*Specialization
= 0;
4418 // Check whether we can declare a class template specialization in
4419 // the current scope.
4420 if (TUK
!= TUK_Friend
&&
4421 CheckTemplateSpecializationScope(*this, ClassTemplate
, PrevDecl
,
4423 isPartialSpecialization
))
4426 // The canonical type
4429 (PrevDecl
->getSpecializationKind() == TSK_Undeclared
||
4430 TUK
== TUK_Friend
)) {
4431 // Since the only prior class template specialization with these
4432 // arguments was referenced but not declared, or we're only
4433 // referencing this specialization as a friend, reuse that
4434 // declaration node as our own, updating its source location to
4435 // reflect our new declaration.
4436 Specialization
= PrevDecl
;
4437 Specialization
->setLocation(TemplateNameLoc
);
4439 CanonType
= Context
.getTypeDeclType(Specialization
);
4440 } else if (isPartialSpecialization
) {
4441 // Build the canonical type that describes the converted template
4442 // arguments of the class template partial specialization.
4443 TemplateName CanonTemplate
= Context
.getCanonicalTemplateName(Name
);
4444 CanonType
= Context
.getTemplateSpecializationType(CanonTemplate
,
4448 if (Context
.hasSameType(CanonType
,
4449 ClassTemplate
->getInjectedClassNameSpecialization())) {
4450 // C++ [temp.class.spec]p9b3:
4452 // -- The argument list of the specialization shall not be identical
4453 // to the implicit argument list of the primary template.
4454 Diag(TemplateNameLoc
, diag::err_partial_spec_args_match_primary_template
)
4455 << (TUK
== TUK_Definition
)
4456 << FixItHint::CreateRemoval(SourceRange(LAngleLoc
, RAngleLoc
));
4457 return CheckClassTemplate(S
, TagSpec
, TUK
, KWLoc
, SS
,
4458 ClassTemplate
->getIdentifier(),
4465 // Create a new class template partial specialization declaration node.
4466 ClassTemplatePartialSpecializationDecl
*PrevPartial
4467 = cast_or_null
<ClassTemplatePartialSpecializationDecl
>(PrevDecl
);
4468 unsigned SequenceNumber
= PrevPartial
? PrevPartial
->getSequenceNumber()
4469 : ClassTemplate
->getNextPartialSpecSequenceNumber();
4470 ClassTemplatePartialSpecializationDecl
*Partial
4471 = ClassTemplatePartialSpecializationDecl::Create(Context
, Kind
,
4472 ClassTemplate
->getDeclContext(),
4482 SetNestedNameSpecifier(Partial
, SS
);
4483 if (NumMatchedTemplateParamLists
> 0 && SS
.isSet()) {
4484 Partial
->setTemplateParameterListsInfo(Context
,
4485 NumMatchedTemplateParamLists
,
4486 (TemplateParameterList
**) TemplateParameterLists
.release());
4490 ClassTemplate
->AddPartialSpecialization(Partial
, InsertPos
);
4491 Specialization
= Partial
;
4493 // If we are providing an explicit specialization of a member class
4494 // template specialization, make a note of that.
4495 if (PrevPartial
&& PrevPartial
->getInstantiatedFromMember())
4496 PrevPartial
->setMemberSpecialization();
4498 // Check that all of the template parameters of the class template
4499 // partial specialization are deducible from the template
4500 // arguments. If not, this class template partial specialization
4501 // will never be used.
4502 llvm::SmallVector
<bool, 8> DeducibleParams
;
4503 DeducibleParams
.resize(TemplateParams
->size());
4504 MarkUsedTemplateParameters(Partial
->getTemplateArgs(), true,
4505 TemplateParams
->getDepth(),
4507 unsigned NumNonDeducible
= 0;
4508 for (unsigned I
= 0, N
= DeducibleParams
.size(); I
!= N
; ++I
)
4509 if (!DeducibleParams
[I
])
4512 if (NumNonDeducible
) {
4513 Diag(TemplateNameLoc
, diag::warn_partial_specs_not_deducible
)
4514 << (NumNonDeducible
> 1)
4515 << SourceRange(TemplateNameLoc
, RAngleLoc
);
4516 for (unsigned I
= 0, N
= DeducibleParams
.size(); I
!= N
; ++I
) {
4517 if (!DeducibleParams
[I
]) {
4518 NamedDecl
*Param
= cast
<NamedDecl
>(TemplateParams
->getParam(I
));
4519 if (Param
->getDeclName())
4520 Diag(Param
->getLocation(),
4521 diag::note_partial_spec_unused_parameter
)
4522 << Param
->getDeclName();
4524 Diag(Param
->getLocation(),
4525 diag::note_partial_spec_unused_parameter
)
4531 // Create a new class template specialization declaration node for
4532 // this explicit specialization or friend declaration.
4534 = ClassTemplateSpecializationDecl::Create(Context
, Kind
,
4535 ClassTemplate
->getDeclContext(),
4541 SetNestedNameSpecifier(Specialization
, SS
);
4542 if (NumMatchedTemplateParamLists
> 0 && SS
.isSet()) {
4543 Specialization
->setTemplateParameterListsInfo(Context
,
4544 NumMatchedTemplateParamLists
,
4545 (TemplateParameterList
**) TemplateParameterLists
.release());
4549 ClassTemplate
->AddSpecialization(Specialization
, InsertPos
);
4551 CanonType
= Context
.getTypeDeclType(Specialization
);
4554 // C++ [temp.expl.spec]p6:
4555 // If a template, a member template or the member of a class template is
4556 // explicitly specialized then that specialization shall be declared
4557 // before the first use of that specialization that would cause an implicit
4558 // instantiation to take place, in every translation unit in which such a
4559 // use occurs; no diagnostic is required.
4560 if (PrevDecl
&& PrevDecl
->getPointOfInstantiation().isValid()) {
4562 for (NamedDecl
*Prev
= PrevDecl
; Prev
; Prev
= getPreviousDecl(Prev
)) {
4563 // Is there any previous explicit specialization declaration?
4564 if (getTemplateSpecializationKind(Prev
) == TSK_ExplicitSpecialization
) {
4571 SourceRange
Range(TemplateNameLoc
, RAngleLoc
);
4572 Diag(TemplateNameLoc
, diag::err_specialization_after_instantiation
)
4573 << Context
.getTypeDeclType(Specialization
) << Range
;
4575 Diag(PrevDecl
->getPointOfInstantiation(),
4576 diag::note_instantiation_required_here
)
4577 << (PrevDecl
->getTemplateSpecializationKind()
4578 != TSK_ImplicitInstantiation
);
4583 // If this is not a friend, note that this is an explicit specialization.
4584 if (TUK
!= TUK_Friend
)
4585 Specialization
->setSpecializationKind(TSK_ExplicitSpecialization
);
4587 // Check that this isn't a redefinition of this specialization.
4588 if (TUK
== TUK_Definition
) {
4589 if (RecordDecl
*Def
= Specialization
->getDefinition()) {
4590 SourceRange
Range(TemplateNameLoc
, RAngleLoc
);
4591 Diag(TemplateNameLoc
, diag::err_redefinition
)
4592 << Context
.getTypeDeclType(Specialization
) << Range
;
4593 Diag(Def
->getLocation(), diag::note_previous_definition
);
4594 Specialization
->setInvalidDecl();
4600 ProcessDeclAttributeList(S
, Specialization
, Attr
);
4602 // Build the fully-sugared type for this class template
4603 // specialization as the user wrote in the specialization
4604 // itself. This means that we'll pretty-print the type retrieved
4605 // from the specialization's declaration the way that the user
4606 // actually wrote the specialization, rather than formatting the
4607 // name based on the "canonical" representation used to store the
4608 // template arguments in the specialization.
4609 TypeSourceInfo
*WrittenTy
4610 = Context
.getTemplateSpecializationTypeInfo(Name
, TemplateNameLoc
,
4611 TemplateArgs
, CanonType
);
4612 if (TUK
!= TUK_Friend
) {
4613 Specialization
->setTypeAsWritten(WrittenTy
);
4615 Specialization
->setTemplateKeywordLoc(TemplateParams
->getTemplateLoc());
4617 TemplateArgsIn
.release();
4619 // C++ [temp.expl.spec]p9:
4620 // A template explicit specialization is in the scope of the
4621 // namespace in which the template was defined.
4623 // We actually implement this paragraph where we set the semantic
4624 // context (in the creation of the ClassTemplateSpecializationDecl),
4625 // but we also maintain the lexical context where the actual
4626 // definition occurs.
4627 Specialization
->setLexicalDeclContext(CurContext
);
4629 // We may be starting the definition of this specialization.
4630 if (TUK
== TUK_Definition
)
4631 Specialization
->startDefinition();
4633 if (TUK
== TUK_Friend
) {
4634 FriendDecl
*Friend
= FriendDecl::Create(Context
, CurContext
,
4638 Friend
->setAccess(AS_public
);
4639 CurContext
->addDecl(Friend
);
4641 // Add the specialization into its lexical context, so that it can
4642 // be seen when iterating through the list of declarations in that
4643 // context. However, specializations are not found by name lookup.
4644 CurContext
->addDecl(Specialization
);
4646 return Specialization
;
4649 Decl
*Sema::ActOnTemplateDeclarator(Scope
*S
,
4650 MultiTemplateParamsArg TemplateParameterLists
,
4652 return HandleDeclarator(S
, D
, move(TemplateParameterLists
), false);
4655 Decl
*Sema::ActOnStartOfFunctionTemplateDef(Scope
*FnBodyScope
,
4656 MultiTemplateParamsArg TemplateParameterLists
,
4658 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4659 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getFunctionTypeInfo();
4661 if (FTI
.hasPrototype
) {
4662 // FIXME: Diagnose arguments without names in C.
4665 Scope
*ParentScope
= FnBodyScope
->getParent();
4667 Decl
*DP
= HandleDeclarator(ParentScope
, D
,
4668 move(TemplateParameterLists
),
4669 /*IsFunctionDefinition=*/true);
4670 if (FunctionTemplateDecl
*FunctionTemplate
4671 = dyn_cast_or_null
<FunctionTemplateDecl
>(DP
))
4672 return ActOnStartOfFunctionDef(FnBodyScope
,
4673 FunctionTemplate
->getTemplatedDecl());
4674 if (FunctionDecl
*Function
= dyn_cast_or_null
<FunctionDecl
>(DP
))
4675 return ActOnStartOfFunctionDef(FnBodyScope
, Function
);
4679 /// \brief Strips various properties off an implicit instantiation
4680 /// that has just been explicitly specialized.
4681 static void StripImplicitInstantiation(NamedDecl
*D
) {
4684 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
4685 FD
->setInlineSpecified(false);
4689 /// \brief Diagnose cases where we have an explicit template specialization
4690 /// before/after an explicit template instantiation, producing diagnostics
4691 /// for those cases where they are required and determining whether the
4692 /// new specialization/instantiation will have any effect.
4694 /// \param NewLoc the location of the new explicit specialization or
4697 /// \param NewTSK the kind of the new explicit specialization or instantiation.
4699 /// \param PrevDecl the previous declaration of the entity.
4701 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4703 /// \param PrevPointOfInstantiation if valid, indicates where the previus
4704 /// declaration was instantiated (either implicitly or explicitly).
4706 /// \param HasNoEffect will be set to true to indicate that the new
4707 /// specialization or instantiation has no effect and should be ignored.
4709 /// \returns true if there was an error that should prevent the introduction of
4710 /// the new declaration into the AST, false otherwise.
4712 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc
,
4713 TemplateSpecializationKind NewTSK
,
4714 NamedDecl
*PrevDecl
,
4715 TemplateSpecializationKind PrevTSK
,
4716 SourceLocation PrevPointOfInstantiation
,
4717 bool &HasNoEffect
) {
4718 HasNoEffect
= false;
4721 case TSK_Undeclared
:
4722 case TSK_ImplicitInstantiation
:
4723 assert(false && "Don't check implicit instantiations here");
4726 case TSK_ExplicitSpecialization
:
4728 case TSK_Undeclared
:
4729 case TSK_ExplicitSpecialization
:
4730 // Okay, we're just specializing something that is either already
4731 // explicitly specialized or has merely been mentioned without any
4735 case TSK_ImplicitInstantiation
:
4736 if (PrevPointOfInstantiation
.isInvalid()) {
4737 // The declaration itself has not actually been instantiated, so it is
4738 // still okay to specialize it.
4739 StripImplicitInstantiation(PrevDecl
);
4744 case TSK_ExplicitInstantiationDeclaration
:
4745 case TSK_ExplicitInstantiationDefinition
:
4746 assert((PrevTSK
== TSK_ImplicitInstantiation
||
4747 PrevPointOfInstantiation
.isValid()) &&
4748 "Explicit instantiation without point of instantiation?");
4750 // C++ [temp.expl.spec]p6:
4751 // If a template, a member template or the member of a class template
4752 // is explicitly specialized then that specialization shall be declared
4753 // before the first use of that specialization that would cause an
4754 // implicit instantiation to take place, in every translation unit in
4755 // which such a use occurs; no diagnostic is required.
4756 for (NamedDecl
*Prev
= PrevDecl
; Prev
; Prev
= getPreviousDecl(Prev
)) {
4757 // Is there any previous explicit specialization declaration?
4758 if (getTemplateSpecializationKind(Prev
) == TSK_ExplicitSpecialization
)
4762 Diag(NewLoc
, diag::err_specialization_after_instantiation
)
4764 Diag(PrevPointOfInstantiation
, diag::note_instantiation_required_here
)
4765 << (PrevTSK
!= TSK_ImplicitInstantiation
);
4771 case TSK_ExplicitInstantiationDeclaration
:
4773 case TSK_ExplicitInstantiationDeclaration
:
4774 // This explicit instantiation declaration is redundant (that's okay).
4778 case TSK_Undeclared
:
4779 case TSK_ImplicitInstantiation
:
4780 // We're explicitly instantiating something that may have already been
4781 // implicitly instantiated; that's fine.
4784 case TSK_ExplicitSpecialization
:
4785 // C++0x [temp.explicit]p4:
4786 // For a given set of template parameters, if an explicit instantiation
4787 // of a template appears after a declaration of an explicit
4788 // specialization for that template, the explicit instantiation has no
4793 case TSK_ExplicitInstantiationDefinition
:
4794 // C++0x [temp.explicit]p10:
4795 // If an entity is the subject of both an explicit instantiation
4796 // declaration and an explicit instantiation definition in the same
4797 // translation unit, the definition shall follow the declaration.
4799 diag::err_explicit_instantiation_declaration_after_definition
);
4800 Diag(PrevPointOfInstantiation
,
4801 diag::note_explicit_instantiation_definition_here
);
4802 assert(PrevPointOfInstantiation
.isValid() &&
4803 "Explicit instantiation without point of instantiation?");
4809 case TSK_ExplicitInstantiationDefinition
:
4811 case TSK_Undeclared
:
4812 case TSK_ImplicitInstantiation
:
4813 // We're explicitly instantiating something that may have already been
4814 // implicitly instantiated; that's fine.
4817 case TSK_ExplicitSpecialization
:
4818 // C++ DR 259, C++0x [temp.explicit]p4:
4819 // For a given set of template parameters, if an explicit
4820 // instantiation of a template appears after a declaration of
4821 // an explicit specialization for that template, the explicit
4822 // instantiation has no effect.
4824 // In C++98/03 mode, we only give an extension warning here, because it
4825 // is not harmful to try to explicitly instantiate something that
4826 // has been explicitly specialized.
4827 if (!getLangOptions().CPlusPlus0x
) {
4828 Diag(NewLoc
, diag::ext_explicit_instantiation_after_specialization
)
4830 Diag(PrevDecl
->getLocation(),
4831 diag::note_previous_template_specialization
);
4836 case TSK_ExplicitInstantiationDeclaration
:
4837 // We're explicity instantiating a definition for something for which we
4838 // were previously asked to suppress instantiations. That's fine.
4841 case TSK_ExplicitInstantiationDefinition
:
4842 // C++0x [temp.spec]p5:
4843 // For a given template and a given set of template-arguments,
4844 // - an explicit instantiation definition shall appear at most once
4846 Diag(NewLoc
, diag::err_explicit_instantiation_duplicate
)
4848 Diag(PrevPointOfInstantiation
,
4849 diag::note_previous_explicit_instantiation
);
4856 assert(false && "Missing specialization/instantiation case?");
4861 /// \brief Perform semantic analysis for the given dependent function
4862 /// template specialization. The only possible way to get a dependent
4863 /// function template specialization is with a friend declaration,
4866 /// template <class T> void foo(T);
4867 /// template <class T> class A {
4868 /// friend void foo<>(T);
4871 /// There really isn't any useful analysis we can do here, so we
4872 /// just store the information.
4874 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl
*FD
,
4875 const TemplateArgumentListInfo
&ExplicitTemplateArgs
,
4876 LookupResult
&Previous
) {
4877 // Remove anything from Previous that isn't a function template in
4878 // the correct context.
4879 DeclContext
*FDLookupContext
= FD
->getDeclContext()->getRedeclContext();
4880 LookupResult::Filter F
= Previous
.makeFilter();
4881 while (F
.hasNext()) {
4882 NamedDecl
*D
= F
.next()->getUnderlyingDecl();
4883 if (!isa
<FunctionTemplateDecl
>(D
) ||
4884 !FDLookupContext
->InEnclosingNamespaceSetOf(
4885 D
->getDeclContext()->getRedeclContext()))
4890 // Should this be diagnosed here?
4891 if (Previous
.empty()) return true;
4893 FD
->setDependentTemplateSpecialization(Context
, Previous
.asUnresolvedSet(),
4894 ExplicitTemplateArgs
);
4898 /// \brief Perform semantic analysis for the given function template
4901 /// This routine performs all of the semantic analysis required for an
4902 /// explicit function template specialization. On successful completion,
4903 /// the function declaration \p FD will become a function template
4906 /// \param FD the function declaration, which will be updated to become a
4907 /// function template specialization.
4909 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4910 /// if any. Note that this may be valid info even when 0 arguments are
4911 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4912 /// as it anyway contains info on the angle brackets locations.
4914 /// \param PrevDecl the set of declarations that may be specialized by
4915 /// this function specialization.
4917 Sema::CheckFunctionTemplateSpecialization(FunctionDecl
*FD
,
4918 const TemplateArgumentListInfo
*ExplicitTemplateArgs
,
4919 LookupResult
&Previous
) {
4920 // The set of function template specializations that could match this
4921 // explicit function template specialization.
4922 UnresolvedSet
<8> Candidates
;
4924 DeclContext
*FDLookupContext
= FD
->getDeclContext()->getRedeclContext();
4925 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
4927 NamedDecl
*Ovl
= (*I
)->getUnderlyingDecl();
4928 if (FunctionTemplateDecl
*FunTmpl
= dyn_cast
<FunctionTemplateDecl
>(Ovl
)) {
4929 // Only consider templates found within the same semantic lookup scope as
4931 if (!FDLookupContext
->InEnclosingNamespaceSetOf(
4932 Ovl
->getDeclContext()->getRedeclContext()))
4935 // C++ [temp.expl.spec]p11:
4936 // A trailing template-argument can be left unspecified in the
4937 // template-id naming an explicit function template specialization
4938 // provided it can be deduced from the function argument type.
4939 // Perform template argument deduction to determine whether we may be
4940 // specializing this template.
4941 // FIXME: It is somewhat wasteful to build
4942 TemplateDeductionInfo
Info(Context
, FD
->getLocation());
4943 FunctionDecl
*Specialization
= 0;
4944 if (TemplateDeductionResult TDK
4945 = DeduceTemplateArguments(FunTmpl
, ExplicitTemplateArgs
,
4949 // FIXME: Template argument deduction failed; record why it failed, so
4950 // that we can provide nifty diagnostics.
4955 // Record this candidate.
4956 Candidates
.addDecl(Specialization
, I
.getAccess());
4960 // Find the most specialized function template.
4961 UnresolvedSetIterator Result
4962 = getMostSpecialized(Candidates
.begin(), Candidates
.end(),
4963 TPOC_Other
, 0, FD
->getLocation(),
4964 PDiag(diag::err_function_template_spec_no_match
)
4965 << FD
->getDeclName(),
4966 PDiag(diag::err_function_template_spec_ambiguous
)
4967 << FD
->getDeclName() << (ExplicitTemplateArgs
!= 0),
4968 PDiag(diag::note_function_template_spec_matched
));
4969 if (Result
== Candidates
.end())
4972 // Ignore access information; it doesn't figure into redeclaration checking.
4973 FunctionDecl
*Specialization
= cast
<FunctionDecl
>(*Result
);
4974 Specialization
->setLocation(FD
->getLocation());
4976 // FIXME: Check if the prior specialization has a point of instantiation.
4977 // If so, we have run afoul of .
4979 // If this is a friend declaration, then we're not really declaring
4980 // an explicit specialization.
4981 bool isFriend
= (FD
->getFriendObjectKind() != Decl::FOK_None
);
4983 // Check the scope of this explicit specialization.
4985 CheckTemplateSpecializationScope(*this,
4986 Specialization
->getPrimaryTemplate(),
4987 Specialization
, FD
->getLocation(),
4991 // C++ [temp.expl.spec]p6:
4992 // If a template, a member template or the member of a class template is
4993 // explicitly specialized then that specialization shall be declared
4994 // before the first use of that specialization that would cause an implicit
4995 // instantiation to take place, in every translation unit in which such a
4996 // use occurs; no diagnostic is required.
4997 FunctionTemplateSpecializationInfo
*SpecInfo
4998 = Specialization
->getTemplateSpecializationInfo();
4999 assert(SpecInfo
&& "Function template specialization info missing?");
5001 bool HasNoEffect
= false;
5003 CheckSpecializationInstantiationRedecl(FD
->getLocation(),
5004 TSK_ExplicitSpecialization
,
5006 SpecInfo
->getTemplateSpecializationKind(),
5007 SpecInfo
->getPointOfInstantiation(),
5011 // Mark the prior declaration as an explicit specialization, so that later
5012 // clients know that this is an explicit specialization.
5014 SpecInfo
->setTemplateSpecializationKind(TSK_ExplicitSpecialization
);
5015 MarkUnusedFileScopedDecl(Specialization
);
5018 // Turn the given function declaration into a function template
5019 // specialization, with the template arguments from the previous
5021 // Take copies of (semantic and syntactic) template argument lists.
5022 const TemplateArgumentList
* TemplArgs
= new (Context
)
5023 TemplateArgumentList(Specialization
->getTemplateSpecializationArgs());
5024 const TemplateArgumentListInfo
* TemplArgsAsWritten
= ExplicitTemplateArgs
5025 ? new (Context
) TemplateArgumentListInfo(*ExplicitTemplateArgs
) : 0;
5026 FD
->setFunctionTemplateSpecialization(Specialization
->getPrimaryTemplate(),
5027 TemplArgs
, /*InsertPos=*/0,
5028 SpecInfo
->getTemplateSpecializationKind(),
5029 TemplArgsAsWritten
);
5031 // The "previous declaration" for this function template specialization is
5032 // the prior function template specialization.
5034 Previous
.addDecl(Specialization
);
5038 /// \brief Perform semantic analysis for the given non-template member
5041 /// This routine performs all of the semantic analysis required for an
5042 /// explicit member function specialization. On successful completion,
5043 /// the function declaration \p FD will become a member function
5046 /// \param Member the member declaration, which will be updated to become a
5049 /// \param Previous the set of declarations, one of which may be specialized
5050 /// by this function specialization; the set will be modified to contain the
5051 /// redeclared member.
5053 Sema::CheckMemberSpecialization(NamedDecl
*Member
, LookupResult
&Previous
) {
5054 assert(!isa
<TemplateDecl
>(Member
) && "Only for non-template members");
5056 // Try to find the member we are instantiating.
5057 NamedDecl
*Instantiation
= 0;
5058 NamedDecl
*InstantiatedFrom
= 0;
5059 MemberSpecializationInfo
*MSInfo
= 0;
5061 if (Previous
.empty()) {
5062 // Nowhere to look anyway.
5063 } else if (FunctionDecl
*Function
= dyn_cast
<FunctionDecl
>(Member
)) {
5064 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
5066 NamedDecl
*D
= (*I
)->getUnderlyingDecl();
5067 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
5068 if (Context
.hasSameType(Function
->getType(), Method
->getType())) {
5069 Instantiation
= Method
;
5070 InstantiatedFrom
= Method
->getInstantiatedFromMemberFunction();
5071 MSInfo
= Method
->getMemberSpecializationInfo();
5076 } else if (isa
<VarDecl
>(Member
)) {
5078 if (Previous
.isSingleResult() &&
5079 (PrevVar
= dyn_cast
<VarDecl
>(Previous
.getFoundDecl())))
5080 if (PrevVar
->isStaticDataMember()) {
5081 Instantiation
= PrevVar
;
5082 InstantiatedFrom
= PrevVar
->getInstantiatedFromStaticDataMember();
5083 MSInfo
= PrevVar
->getMemberSpecializationInfo();
5085 } else if (isa
<RecordDecl
>(Member
)) {
5086 CXXRecordDecl
*PrevRecord
;
5087 if (Previous
.isSingleResult() &&
5088 (PrevRecord
= dyn_cast
<CXXRecordDecl
>(Previous
.getFoundDecl()))) {
5089 Instantiation
= PrevRecord
;
5090 InstantiatedFrom
= PrevRecord
->getInstantiatedFromMemberClass();
5091 MSInfo
= PrevRecord
->getMemberSpecializationInfo();
5095 if (!Instantiation
) {
5096 // There is no previous declaration that matches. Since member
5097 // specializations are always out-of-line, the caller will complain about
5098 // this mismatch later.
5102 // If this is a friend, just bail out here before we start turning
5103 // things into explicit specializations.
5104 if (Member
->getFriendObjectKind() != Decl::FOK_None
) {
5105 // Preserve instantiation information.
5106 if (InstantiatedFrom
&& isa
<CXXMethodDecl
>(Member
)) {
5107 cast
<CXXMethodDecl
>(Member
)->setInstantiationOfMemberFunction(
5108 cast
<CXXMethodDecl
>(InstantiatedFrom
),
5109 cast
<CXXMethodDecl
>(Instantiation
)->getTemplateSpecializationKind());
5110 } else if (InstantiatedFrom
&& isa
<CXXRecordDecl
>(Member
)) {
5111 cast
<CXXRecordDecl
>(Member
)->setInstantiationOfMemberClass(
5112 cast
<CXXRecordDecl
>(InstantiatedFrom
),
5113 cast
<CXXRecordDecl
>(Instantiation
)->getTemplateSpecializationKind());
5117 Previous
.addDecl(Instantiation
);
5121 // Make sure that this is a specialization of a member.
5122 if (!InstantiatedFrom
) {
5123 Diag(Member
->getLocation(), diag::err_spec_member_not_instantiated
)
5125 Diag(Instantiation
->getLocation(), diag::note_specialized_decl
);
5129 // C++ [temp.expl.spec]p6:
5130 // If a template, a member template or the member of a class template is
5131 // explicitly specialized then that spe- cialization shall be declared
5132 // before the first use of that specialization that would cause an implicit
5133 // instantiation to take place, in every translation unit in which such a
5134 // use occurs; no diagnostic is required.
5135 assert(MSInfo
&& "Member specialization info missing?");
5137 bool HasNoEffect
= false;
5138 if (CheckSpecializationInstantiationRedecl(Member
->getLocation(),
5139 TSK_ExplicitSpecialization
,
5141 MSInfo
->getTemplateSpecializationKind(),
5142 MSInfo
->getPointOfInstantiation(),
5146 // Check the scope of this explicit specialization.
5147 if (CheckTemplateSpecializationScope(*this,
5149 Instantiation
, Member
->getLocation(),
5153 // Note that this is an explicit instantiation of a member.
5154 // the original declaration to note that it is an explicit specialization
5155 // (if it was previously an implicit instantiation). This latter step
5156 // makes bookkeeping easier.
5157 if (isa
<FunctionDecl
>(Member
)) {
5158 FunctionDecl
*InstantiationFunction
= cast
<FunctionDecl
>(Instantiation
);
5159 if (InstantiationFunction
->getTemplateSpecializationKind() ==
5160 TSK_ImplicitInstantiation
) {
5161 InstantiationFunction
->setTemplateSpecializationKind(
5162 TSK_ExplicitSpecialization
);
5163 InstantiationFunction
->setLocation(Member
->getLocation());
5166 cast
<FunctionDecl
>(Member
)->setInstantiationOfMemberFunction(
5167 cast
<CXXMethodDecl
>(InstantiatedFrom
),
5168 TSK_ExplicitSpecialization
);
5169 MarkUnusedFileScopedDecl(InstantiationFunction
);
5170 } else if (isa
<VarDecl
>(Member
)) {
5171 VarDecl
*InstantiationVar
= cast
<VarDecl
>(Instantiation
);
5172 if (InstantiationVar
->getTemplateSpecializationKind() ==
5173 TSK_ImplicitInstantiation
) {
5174 InstantiationVar
->setTemplateSpecializationKind(
5175 TSK_ExplicitSpecialization
);
5176 InstantiationVar
->setLocation(Member
->getLocation());
5179 Context
.setInstantiatedFromStaticDataMember(cast
<VarDecl
>(Member
),
5180 cast
<VarDecl
>(InstantiatedFrom
),
5181 TSK_ExplicitSpecialization
);
5182 MarkUnusedFileScopedDecl(InstantiationVar
);
5184 assert(isa
<CXXRecordDecl
>(Member
) && "Only member classes remain");
5185 CXXRecordDecl
*InstantiationClass
= cast
<CXXRecordDecl
>(Instantiation
);
5186 if (InstantiationClass
->getTemplateSpecializationKind() ==
5187 TSK_ImplicitInstantiation
) {
5188 InstantiationClass
->setTemplateSpecializationKind(
5189 TSK_ExplicitSpecialization
);
5190 InstantiationClass
->setLocation(Member
->getLocation());
5193 cast
<CXXRecordDecl
>(Member
)->setInstantiationOfMemberClass(
5194 cast
<CXXRecordDecl
>(InstantiatedFrom
),
5195 TSK_ExplicitSpecialization
);
5198 // Save the caller the trouble of having to figure out which declaration
5199 // this specialization matches.
5201 Previous
.addDecl(Instantiation
);
5205 /// \brief Check the scope of an explicit instantiation.
5207 /// \returns true if a serious error occurs, false otherwise.
5208 static bool CheckExplicitInstantiationScope(Sema
&S
, NamedDecl
*D
,
5209 SourceLocation InstLoc
,
5210 bool WasQualifiedName
) {
5211 DeclContext
*OrigContext
= D
->getDeclContext()->getEnclosingNamespaceContext();
5212 DeclContext
*CurContext
= S
.CurContext
->getRedeclContext();
5214 if (CurContext
->isRecord()) {
5215 S
.Diag(InstLoc
, diag::err_explicit_instantiation_in_class
)
5220 // C++0x [temp.explicit]p2:
5221 // An explicit instantiation shall appear in an enclosing namespace of its
5224 // This is DR275, which we do not retroactively apply to C++98/03.
5225 if (S
.getLangOptions().CPlusPlus0x
&&
5226 !CurContext
->Encloses(OrigContext
)) {
5227 if (NamespaceDecl
*NS
= dyn_cast
<NamespaceDecl
>(OrigContext
))
5229 S
.getLangOptions().CPlusPlus0x
?
5230 diag::err_explicit_instantiation_out_of_scope
5231 : diag::warn_explicit_instantiation_out_of_scope_0x
)
5235 S
.getLangOptions().CPlusPlus0x
?
5236 diag::err_explicit_instantiation_must_be_global
5237 : diag::warn_explicit_instantiation_out_of_scope_0x
)
5239 S
.Diag(D
->getLocation(), diag::note_explicit_instantiation_here
);
5243 // C++0x [temp.explicit]p2:
5244 // If the name declared in the explicit instantiation is an unqualified
5245 // name, the explicit instantiation shall appear in the namespace where
5246 // its template is declared or, if that namespace is inline (7.3.1), any
5247 // namespace from its enclosing namespace set.
5248 if (WasQualifiedName
)
5251 if (CurContext
->InEnclosingNamespaceSetOf(OrigContext
))
5255 S
.getLangOptions().CPlusPlus0x
?
5256 diag::err_explicit_instantiation_unqualified_wrong_namespace
5257 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x
)
5258 << D
<< OrigContext
;
5259 S
.Diag(D
->getLocation(), diag::note_explicit_instantiation_here
);
5263 /// \brief Determine whether the given scope specifier has a template-id in it.
5264 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec
&SS
) {
5268 // C++0x [temp.explicit]p2:
5269 // If the explicit instantiation is for a member function, a member class
5270 // or a static data member of a class template specialization, the name of
5271 // the class template specialization in the qualified-id for the member
5272 // name shall be a simple-template-id.
5274 // C++98 has the same restriction, just worded differently.
5275 for (NestedNameSpecifier
*NNS
= (NestedNameSpecifier
*)SS
.getScopeRep();
5276 NNS
; NNS
= NNS
->getPrefix())
5277 if (const Type
*T
= NNS
->getAsType())
5278 if (isa
<TemplateSpecializationType
>(T
))
5284 // Explicit instantiation of a class template specialization
5286 Sema::ActOnExplicitInstantiation(Scope
*S
,
5287 SourceLocation ExternLoc
,
5288 SourceLocation TemplateLoc
,
5290 SourceLocation KWLoc
,
5291 const CXXScopeSpec
&SS
,
5292 TemplateTy TemplateD
,
5293 SourceLocation TemplateNameLoc
,
5294 SourceLocation LAngleLoc
,
5295 ASTTemplateArgsPtr TemplateArgsIn
,
5296 SourceLocation RAngleLoc
,
5297 AttributeList
*Attr
) {
5298 // Find the class template we're specializing
5299 TemplateName Name
= TemplateD
.getAsVal
<TemplateName
>();
5300 ClassTemplateDecl
*ClassTemplate
5301 = cast
<ClassTemplateDecl
>(Name
.getAsTemplateDecl());
5303 // Check that the specialization uses the same tag kind as the
5304 // original template.
5305 TagTypeKind Kind
= TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec
);
5306 assert(Kind
!= TTK_Enum
&&
5307 "Invalid enum tag in class template explicit instantiation!");
5308 if (!isAcceptableTagRedeclaration(ClassTemplate
->getTemplatedDecl(),
5310 *ClassTemplate
->getIdentifier())) {
5311 Diag(KWLoc
, diag::err_use_with_wrong_tag
)
5313 << FixItHint::CreateReplacement(KWLoc
,
5314 ClassTemplate
->getTemplatedDecl()->getKindName());
5315 Diag(ClassTemplate
->getTemplatedDecl()->getLocation(),
5316 diag::note_previous_use
);
5317 Kind
= ClassTemplate
->getTemplatedDecl()->getTagKind();
5320 // C++0x [temp.explicit]p2:
5321 // There are two forms of explicit instantiation: an explicit instantiation
5322 // definition and an explicit instantiation declaration. An explicit
5323 // instantiation declaration begins with the extern keyword. [...]
5324 TemplateSpecializationKind TSK
5325 = ExternLoc
.isInvalid()? TSK_ExplicitInstantiationDefinition
5326 : TSK_ExplicitInstantiationDeclaration
;
5328 // Translate the parser's template argument list in our AST format.
5329 TemplateArgumentListInfo
TemplateArgs(LAngleLoc
, RAngleLoc
);
5330 translateTemplateArguments(TemplateArgsIn
, TemplateArgs
);
5332 // Check that the template argument list is well-formed for this
5334 llvm::SmallVector
<TemplateArgument
, 4> Converted
;
5335 if (CheckTemplateArgumentList(ClassTemplate
, TemplateNameLoc
,
5336 TemplateArgs
, false, Converted
))
5339 assert((Converted
.size() == ClassTemplate
->getTemplateParameters()->size()) &&
5340 "Converted template argument list is too short!");
5342 // Find the class template specialization declaration that
5343 // corresponds to these arguments.
5344 void *InsertPos
= 0;
5345 ClassTemplateSpecializationDecl
*PrevDecl
5346 = ClassTemplate
->findSpecialization(Converted
.data(),
5347 Converted
.size(), InsertPos
);
5349 TemplateSpecializationKind PrevDecl_TSK
5350 = PrevDecl
? PrevDecl
->getTemplateSpecializationKind() : TSK_Undeclared
;
5352 // C++0x [temp.explicit]p2:
5353 // [...] An explicit instantiation shall appear in an enclosing
5354 // namespace of its template. [...]
5356 // This is C++ DR 275.
5357 if (CheckExplicitInstantiationScope(*this, ClassTemplate
, TemplateNameLoc
,
5361 ClassTemplateSpecializationDecl
*Specialization
= 0;
5363 bool HasNoEffect
= false;
5365 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc
, TSK
,
5366 PrevDecl
, PrevDecl_TSK
,
5367 PrevDecl
->getPointOfInstantiation(),
5371 // Even though HasNoEffect == true means that this explicit instantiation
5372 // has no effect on semantics, we go on to put its syntax in the AST.
5374 if (PrevDecl_TSK
== TSK_ImplicitInstantiation
||
5375 PrevDecl_TSK
== TSK_Undeclared
) {
5376 // Since the only prior class template specialization with these
5377 // arguments was referenced but not declared, reuse that
5378 // declaration node as our own, updating the source location
5379 // for the template name to reflect our new declaration.
5380 // (Other source locations will be updated later.)
5381 Specialization
= PrevDecl
;
5382 Specialization
->setLocation(TemplateNameLoc
);
5387 if (!Specialization
) {
5388 // Create a new class template specialization declaration node for
5389 // this explicit specialization.
5391 = ClassTemplateSpecializationDecl::Create(Context
, Kind
,
5392 ClassTemplate
->getDeclContext(),
5398 SetNestedNameSpecifier(Specialization
, SS
);
5400 if (!HasNoEffect
&& !PrevDecl
) {
5401 // Insert the new specialization.
5402 ClassTemplate
->AddSpecialization(Specialization
, InsertPos
);
5406 // Build the fully-sugared type for this explicit instantiation as
5407 // the user wrote in the explicit instantiation itself. This means
5408 // that we'll pretty-print the type retrieved from the
5409 // specialization's declaration the way that the user actually wrote
5410 // the explicit instantiation, rather than formatting the name based
5411 // on the "canonical" representation used to store the template
5412 // arguments in the specialization.
5413 TypeSourceInfo
*WrittenTy
5414 = Context
.getTemplateSpecializationTypeInfo(Name
, TemplateNameLoc
,
5416 Context
.getTypeDeclType(Specialization
));
5417 Specialization
->setTypeAsWritten(WrittenTy
);
5418 TemplateArgsIn
.release();
5420 // Set source locations for keywords.
5421 Specialization
->setExternLoc(ExternLoc
);
5422 Specialization
->setTemplateKeywordLoc(TemplateLoc
);
5424 // Add the explicit instantiation into its lexical context. However,
5425 // since explicit instantiations are never found by name lookup, we
5426 // just put it into the declaration context directly.
5427 Specialization
->setLexicalDeclContext(CurContext
);
5428 CurContext
->addDecl(Specialization
);
5430 // Syntax is now OK, so return if it has no other effect on semantics.
5432 // Set the template specialization kind.
5433 Specialization
->setTemplateSpecializationKind(TSK
);
5434 return Specialization
;
5437 // C++ [temp.explicit]p3:
5438 // A definition of a class template or class member template
5439 // shall be in scope at the point of the explicit instantiation of
5440 // the class template or class member template.
5442 // This check comes when we actually try to perform the
5444 ClassTemplateSpecializationDecl
*Def
5445 = cast_or_null
<ClassTemplateSpecializationDecl
>(
5446 Specialization
->getDefinition());
5448 InstantiateClassTemplateSpecialization(TemplateNameLoc
, Specialization
, TSK
);
5449 else if (TSK
== TSK_ExplicitInstantiationDefinition
) {
5450 MarkVTableUsed(TemplateNameLoc
, Specialization
, true);
5451 Specialization
->setPointOfInstantiation(Def
->getPointOfInstantiation());
5454 // Instantiate the members of this class template specialization.
5455 Def
= cast_or_null
<ClassTemplateSpecializationDecl
>(
5456 Specialization
->getDefinition());
5458 TemplateSpecializationKind Old_TSK
= Def
->getTemplateSpecializationKind();
5460 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5461 // TSK_ExplicitInstantiationDefinition
5462 if (Old_TSK
== TSK_ExplicitInstantiationDeclaration
&&
5463 TSK
== TSK_ExplicitInstantiationDefinition
)
5464 Def
->setTemplateSpecializationKind(TSK
);
5466 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc
, Def
, TSK
);
5469 // Set the template specialization kind.
5470 Specialization
->setTemplateSpecializationKind(TSK
);
5471 return Specialization
;
5474 // Explicit instantiation of a member class of a class template.
5476 Sema::ActOnExplicitInstantiation(Scope
*S
,
5477 SourceLocation ExternLoc
,
5478 SourceLocation TemplateLoc
,
5480 SourceLocation KWLoc
,
5482 IdentifierInfo
*Name
,
5483 SourceLocation NameLoc
,
5484 AttributeList
*Attr
) {
5487 bool IsDependent
= false;
5488 Decl
*TagD
= ActOnTag(S
, TagSpec
, Sema::TUK_Reference
,
5489 KWLoc
, SS
, Name
, NameLoc
, Attr
, AS_none
,
5490 MultiTemplateParamsArg(*this, 0, 0),
5491 Owned
, IsDependent
, false, false,
5493 assert(!IsDependent
&& "explicit instantiation of dependent name not yet handled");
5498 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
5499 if (Tag
->isEnum()) {
5500 Diag(TemplateLoc
, diag::err_explicit_instantiation_enum
)
5501 << Context
.getTypeDeclType(Tag
);
5505 if (Tag
->isInvalidDecl())
5508 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(Tag
);
5509 CXXRecordDecl
*Pattern
= Record
->getInstantiatedFromMemberClass();
5511 Diag(TemplateLoc
, diag::err_explicit_instantiation_nontemplate_type
)
5512 << Context
.getTypeDeclType(Record
);
5513 Diag(Record
->getLocation(), diag::note_nontemplate_decl_here
);
5517 // C++0x [temp.explicit]p2:
5518 // If the explicit instantiation is for a class or member class, the
5519 // elaborated-type-specifier in the declaration shall include a
5520 // simple-template-id.
5522 // C++98 has the same restriction, just worded differently.
5523 if (!ScopeSpecifierHasTemplateId(SS
))
5524 Diag(TemplateLoc
, diag::ext_explicit_instantiation_without_qualified_id
)
5525 << Record
<< SS
.getRange();
5527 // C++0x [temp.explicit]p2:
5528 // There are two forms of explicit instantiation: an explicit instantiation
5529 // definition and an explicit instantiation declaration. An explicit
5530 // instantiation declaration begins with the extern keyword. [...]
5531 TemplateSpecializationKind TSK
5532 = ExternLoc
.isInvalid()? TSK_ExplicitInstantiationDefinition
5533 : TSK_ExplicitInstantiationDeclaration
;
5535 // C++0x [temp.explicit]p2:
5536 // [...] An explicit instantiation shall appear in an enclosing
5537 // namespace of its template. [...]
5539 // This is C++ DR 275.
5540 CheckExplicitInstantiationScope(*this, Record
, NameLoc
, true);
5542 // Verify that it is okay to explicitly instantiate here.
5543 CXXRecordDecl
*PrevDecl
5544 = cast_or_null
<CXXRecordDecl
>(Record
->getPreviousDeclaration());
5545 if (!PrevDecl
&& Record
->getDefinition())
5548 MemberSpecializationInfo
*MSInfo
= PrevDecl
->getMemberSpecializationInfo();
5549 bool HasNoEffect
= false;
5550 assert(MSInfo
&& "No member specialization information?");
5551 if (CheckSpecializationInstantiationRedecl(TemplateLoc
, TSK
,
5553 MSInfo
->getTemplateSpecializationKind(),
5554 MSInfo
->getPointOfInstantiation(),
5561 CXXRecordDecl
*RecordDef
5562 = cast_or_null
<CXXRecordDecl
>(Record
->getDefinition());
5564 // C++ [temp.explicit]p3:
5565 // A definition of a member class of a class template shall be in scope
5566 // at the point of an explicit instantiation of the member class.
5568 = cast_or_null
<CXXRecordDecl
>(Pattern
->getDefinition());
5570 Diag(TemplateLoc
, diag::err_explicit_instantiation_undefined_member
)
5571 << 0 << Record
->getDeclName() << Record
->getDeclContext();
5572 Diag(Pattern
->getLocation(), diag::note_forward_declaration
)
5576 if (InstantiateClass(NameLoc
, Record
, Def
,
5577 getTemplateInstantiationArgs(Record
),
5581 RecordDef
= cast_or_null
<CXXRecordDecl
>(Record
->getDefinition());
5587 // Instantiate all of the members of the class.
5588 InstantiateClassMembers(NameLoc
, RecordDef
,
5589 getTemplateInstantiationArgs(Record
), TSK
);
5591 if (TSK
== TSK_ExplicitInstantiationDefinition
)
5592 MarkVTableUsed(NameLoc
, RecordDef
, true);
5594 // FIXME: We don't have any representation for explicit instantiations of
5595 // member classes. Such a representation is not needed for compilation, but it
5596 // should be available for clients that want to see all of the declarations in
5601 DeclResult
Sema::ActOnExplicitInstantiation(Scope
*S
,
5602 SourceLocation ExternLoc
,
5603 SourceLocation TemplateLoc
,
5605 // Explicit instantiations always require a name.
5606 // TODO: check if/when DNInfo should replace Name.
5607 DeclarationNameInfo NameInfo
= GetNameForDeclarator(D
);
5608 DeclarationName Name
= NameInfo
.getName();
5610 if (!D
.isInvalidType())
5611 Diag(D
.getDeclSpec().getSourceRange().getBegin(),
5612 diag::err_explicit_instantiation_requires_name
)
5613 << D
.getDeclSpec().getSourceRange()
5614 << D
.getSourceRange();
5619 // The scope passed in may not be a decl scope. Zip up the scope tree until
5620 // we find one that is.
5621 while ((S
->getFlags() & Scope::DeclScope
) == 0 ||
5622 (S
->getFlags() & Scope::TemplateParamScope
) != 0)
5625 // Determine the type of the declaration.
5626 TypeSourceInfo
*T
= GetTypeForDeclarator(D
, S
);
5627 QualType R
= T
->getType();
5631 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
) {
5632 // Cannot explicitly instantiate a typedef.
5633 Diag(D
.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef
)
5638 // C++0x [temp.explicit]p1:
5639 // [...] An explicit instantiation of a function template shall not use the
5640 // inline or constexpr specifiers.
5641 // Presumably, this also applies to member functions of class templates as
5643 if (D
.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x
)
5644 Diag(D
.getDeclSpec().getInlineSpecLoc(),
5645 diag::err_explicit_instantiation_inline
)
5646 <<FixItHint::CreateRemoval(D
.getDeclSpec().getInlineSpecLoc());
5648 // FIXME: check for constexpr specifier.
5650 // C++0x [temp.explicit]p2:
5651 // There are two forms of explicit instantiation: an explicit instantiation
5652 // definition and an explicit instantiation declaration. An explicit
5653 // instantiation declaration begins with the extern keyword. [...]
5654 TemplateSpecializationKind TSK
5655 = ExternLoc
.isInvalid()? TSK_ExplicitInstantiationDefinition
5656 : TSK_ExplicitInstantiationDeclaration
;
5658 LookupResult
Previous(*this, NameInfo
, LookupOrdinaryName
);
5659 LookupParsedName(Previous
, S
, &D
.getCXXScopeSpec());
5661 if (!R
->isFunctionType()) {
5662 // C++ [temp.explicit]p1:
5663 // A [...] static data member of a class template can be explicitly
5664 // instantiated from the member definition associated with its class
5666 if (Previous
.isAmbiguous())
5669 VarDecl
*Prev
= Previous
.getAsSingle
<VarDecl
>();
5670 if (!Prev
|| !Prev
->isStaticDataMember()) {
5671 // We expect to see a data data member here.
5672 Diag(D
.getIdentifierLoc(), diag::err_explicit_instantiation_not_known
)
5674 for (LookupResult::iterator P
= Previous
.begin(), PEnd
= Previous
.end();
5676 Diag((*P
)->getLocation(), diag::note_explicit_instantiation_here
);
5680 if (!Prev
->getInstantiatedFromStaticDataMember()) {
5681 // FIXME: Check for explicit specialization?
5682 Diag(D
.getIdentifierLoc(),
5683 diag::err_explicit_instantiation_data_member_not_instantiated
)
5685 Diag(Prev
->getLocation(), diag::note_explicit_instantiation_here
);
5686 // FIXME: Can we provide a note showing where this was declared?
5690 // C++0x [temp.explicit]p2:
5691 // If the explicit instantiation is for a member function, a member class
5692 // or a static data member of a class template specialization, the name of
5693 // the class template specialization in the qualified-id for the member
5694 // name shall be a simple-template-id.
5696 // C++98 has the same restriction, just worded differently.
5697 if (!ScopeSpecifierHasTemplateId(D
.getCXXScopeSpec()))
5698 Diag(D
.getIdentifierLoc(),
5699 diag::ext_explicit_instantiation_without_qualified_id
)
5700 << Prev
<< D
.getCXXScopeSpec().getRange();
5702 // Check the scope of this explicit instantiation.
5703 CheckExplicitInstantiationScope(*this, Prev
, D
.getIdentifierLoc(), true);
5705 // Verify that it is okay to explicitly instantiate here.
5706 MemberSpecializationInfo
*MSInfo
= Prev
->getMemberSpecializationInfo();
5707 assert(MSInfo
&& "Missing static data member specialization info?");
5708 bool HasNoEffect
= false;
5709 if (CheckSpecializationInstantiationRedecl(D
.getIdentifierLoc(), TSK
, Prev
,
5710 MSInfo
->getTemplateSpecializationKind(),
5711 MSInfo
->getPointOfInstantiation(),
5717 // Instantiate static data member.
5718 Prev
->setTemplateSpecializationKind(TSK
, D
.getIdentifierLoc());
5719 if (TSK
== TSK_ExplicitInstantiationDefinition
)
5720 InstantiateStaticDataMemberDefinition(D
.getIdentifierLoc(), Prev
);
5722 // FIXME: Create an ExplicitInstantiation node?
5726 // If the declarator is a template-id, translate the parser's template
5727 // argument list into our AST format.
5728 bool HasExplicitTemplateArgs
= false;
5729 TemplateArgumentListInfo TemplateArgs
;
5730 if (D
.getName().getKind() == UnqualifiedId::IK_TemplateId
) {
5731 TemplateIdAnnotation
*TemplateId
= D
.getName().TemplateId
;
5732 TemplateArgs
.setLAngleLoc(TemplateId
->LAngleLoc
);
5733 TemplateArgs
.setRAngleLoc(TemplateId
->RAngleLoc
);
5734 ASTTemplateArgsPtr
TemplateArgsPtr(*this,
5735 TemplateId
->getTemplateArgs(),
5736 TemplateId
->NumArgs
);
5737 translateTemplateArguments(TemplateArgsPtr
, TemplateArgs
);
5738 HasExplicitTemplateArgs
= true;
5739 TemplateArgsPtr
.release();
5742 // C++ [temp.explicit]p1:
5743 // A [...] function [...] can be explicitly instantiated from its template.
5744 // A member function [...] of a class template can be explicitly
5745 // instantiated from the member definition associated with its class
5747 UnresolvedSet
<8> Matches
;
5748 for (LookupResult::iterator P
= Previous
.begin(), PEnd
= Previous
.end();
5750 NamedDecl
*Prev
= *P
;
5751 if (!HasExplicitTemplateArgs
) {
5752 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(Prev
)) {
5753 if (Context
.hasSameUnqualifiedType(Method
->getType(), R
)) {
5756 Matches
.addDecl(Method
, P
.getAccess());
5757 if (Method
->getTemplateSpecializationKind() == TSK_Undeclared
)
5763 FunctionTemplateDecl
*FunTmpl
= dyn_cast
<FunctionTemplateDecl
>(Prev
);
5767 TemplateDeductionInfo
Info(Context
, D
.getIdentifierLoc());
5768 FunctionDecl
*Specialization
= 0;
5769 if (TemplateDeductionResult TDK
5770 = DeduceTemplateArguments(FunTmpl
,
5771 (HasExplicitTemplateArgs
? &TemplateArgs
: 0),
5772 R
, Specialization
, Info
)) {
5773 // FIXME: Keep track of almost-matches?
5778 Matches
.addDecl(Specialization
, P
.getAccess());
5781 // Find the most specialized function template specialization.
5782 UnresolvedSetIterator Result
5783 = getMostSpecialized(Matches
.begin(), Matches
.end(), TPOC_Other
, 0,
5784 D
.getIdentifierLoc(),
5785 PDiag(diag::err_explicit_instantiation_not_known
) << Name
,
5786 PDiag(diag::err_explicit_instantiation_ambiguous
) << Name
,
5787 PDiag(diag::note_explicit_instantiation_candidate
));
5789 if (Result
== Matches
.end())
5792 // Ignore access control bits, we don't need them for redeclaration checking.
5793 FunctionDecl
*Specialization
= cast
<FunctionDecl
>(*Result
);
5795 if (Specialization
->getTemplateSpecializationKind() == TSK_Undeclared
) {
5796 Diag(D
.getIdentifierLoc(),
5797 diag::err_explicit_instantiation_member_function_not_instantiated
)
5799 << (Specialization
->getTemplateSpecializationKind() ==
5800 TSK_ExplicitSpecialization
);
5801 Diag(Specialization
->getLocation(), diag::note_explicit_instantiation_here
);
5805 FunctionDecl
*PrevDecl
= Specialization
->getPreviousDeclaration();
5806 if (!PrevDecl
&& Specialization
->isThisDeclarationADefinition())
5807 PrevDecl
= Specialization
;
5810 bool HasNoEffect
= false;
5811 if (CheckSpecializationInstantiationRedecl(D
.getIdentifierLoc(), TSK
,
5813 PrevDecl
->getTemplateSpecializationKind(),
5814 PrevDecl
->getPointOfInstantiation(),
5818 // FIXME: We may still want to build some representation of this
5819 // explicit specialization.
5824 Specialization
->setTemplateSpecializationKind(TSK
, D
.getIdentifierLoc());
5826 if (TSK
== TSK_ExplicitInstantiationDefinition
)
5827 InstantiateFunctionDefinition(D
.getIdentifierLoc(), Specialization
);
5829 // C++0x [temp.explicit]p2:
5830 // If the explicit instantiation is for a member function, a member class
5831 // or a static data member of a class template specialization, the name of
5832 // the class template specialization in the qualified-id for the member
5833 // name shall be a simple-template-id.
5835 // C++98 has the same restriction, just worded differently.
5836 FunctionTemplateDecl
*FunTmpl
= Specialization
->getPrimaryTemplate();
5837 if (D
.getName().getKind() != UnqualifiedId::IK_TemplateId
&& !FunTmpl
&&
5838 D
.getCXXScopeSpec().isSet() &&
5839 !ScopeSpecifierHasTemplateId(D
.getCXXScopeSpec()))
5840 Diag(D
.getIdentifierLoc(),
5841 diag::ext_explicit_instantiation_without_qualified_id
)
5842 << Specialization
<< D
.getCXXScopeSpec().getRange();
5844 CheckExplicitInstantiationScope(*this,
5845 FunTmpl
? (NamedDecl
*)FunTmpl
5846 : Specialization
->getInstantiatedFromMemberFunction(),
5847 D
.getIdentifierLoc(),
5848 D
.getCXXScopeSpec().isSet());
5850 // FIXME: Create some kind of ExplicitInstantiationDecl here.
5855 Sema::ActOnDependentTag(Scope
*S
, unsigned TagSpec
, TagUseKind TUK
,
5856 const CXXScopeSpec
&SS
, IdentifierInfo
*Name
,
5857 SourceLocation TagLoc
, SourceLocation NameLoc
) {
5858 // This has to hold, because SS is expected to be defined.
5859 assert(Name
&& "Expected a name in a dependent tag");
5861 NestedNameSpecifier
*NNS
5862 = static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
5866 TagTypeKind Kind
= TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec
);
5868 if (TUK
== TUK_Declaration
|| TUK
== TUK_Definition
) {
5869 Diag(NameLoc
, diag::err_dependent_tag_decl
)
5870 << (TUK
== TUK_Definition
) << Kind
<< SS
.getRange();
5874 ElaboratedTypeKeyword Kwd
= TypeWithKeyword::getKeywordForTagTypeKind(Kind
);
5875 return ParsedType::make(Context
.getDependentNameType(Kwd
, NNS
, Name
));
5879 Sema::ActOnTypenameType(Scope
*S
, SourceLocation TypenameLoc
,
5880 const CXXScopeSpec
&SS
, const IdentifierInfo
&II
,
5881 SourceLocation IdLoc
) {
5882 NestedNameSpecifier
*NNS
5883 = static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
5887 if (TypenameLoc
.isValid() && S
&& !S
->getTemplateParamParent() &&
5888 !getLangOptions().CPlusPlus0x
)
5889 Diag(TypenameLoc
, diag::ext_typename_outside_of_template
)
5890 << FixItHint::CreateRemoval(TypenameLoc
);
5892 QualType T
= CheckTypenameType(ETK_Typename
, NNS
, II
,
5893 TypenameLoc
, SS
.getRange(), IdLoc
);
5897 TypeSourceInfo
*TSI
= Context
.CreateTypeSourceInfo(T
);
5898 if (isa
<DependentNameType
>(T
)) {
5899 DependentNameTypeLoc TL
= cast
<DependentNameTypeLoc
>(TSI
->getTypeLoc());
5900 TL
.setKeywordLoc(TypenameLoc
);
5901 TL
.setQualifierRange(SS
.getRange());
5902 TL
.setNameLoc(IdLoc
);
5904 ElaboratedTypeLoc TL
= cast
<ElaboratedTypeLoc
>(TSI
->getTypeLoc());
5905 TL
.setKeywordLoc(TypenameLoc
);
5906 TL
.setQualifierRange(SS
.getRange());
5907 cast
<TypeSpecTypeLoc
>(TL
.getNamedTypeLoc()).setNameLoc(IdLoc
);
5910 return CreateParsedType(T
, TSI
);
5914 Sema::ActOnTypenameType(Scope
*S
, SourceLocation TypenameLoc
,
5915 const CXXScopeSpec
&SS
, SourceLocation TemplateLoc
,
5917 if (TypenameLoc
.isValid() && S
&& !S
->getTemplateParamParent() &&
5918 !getLangOptions().CPlusPlus0x
)
5919 Diag(TypenameLoc
, diag::ext_typename_outside_of_template
)
5920 << FixItHint::CreateRemoval(TypenameLoc
);
5922 TypeSourceInfo
*InnerTSI
= 0;
5923 QualType T
= GetTypeFromParser(Ty
, &InnerTSI
);
5925 assert(isa
<TemplateSpecializationType
>(T
) &&
5926 "Expected a template specialization type");
5928 if (computeDeclContext(SS
, false)) {
5929 // If we can compute a declaration context, then the "typename"
5930 // keyword was superfluous. Just build an ElaboratedType to keep
5931 // track of the nested-name-specifier.
5933 // Push the inner type, preserving its source locations if possible.
5934 TypeLocBuilder Builder
;
5936 Builder
.pushFullCopy(InnerTSI
->getTypeLoc());
5938 Builder
.push
<TemplateSpecializationTypeLoc
>(T
).initialize(Context
,
5941 /* Note: NNS already embedded in template specialization type T. */
5942 T
= Context
.getElaboratedType(ETK_Typename
, /*NNS=*/0, T
);
5943 ElaboratedTypeLoc TL
= Builder
.push
<ElaboratedTypeLoc
>(T
);
5944 TL
.setKeywordLoc(TypenameLoc
);
5945 TL
.setQualifierRange(SS
.getRange());
5947 TypeSourceInfo
*TSI
= Builder
.getTypeSourceInfo(Context
, T
);
5948 return CreateParsedType(T
, TSI
);
5951 // TODO: it's really silly that we make a template specialization
5952 // type earlier only to drop it again here.
5953 const TemplateSpecializationType
*TST
= cast
<TemplateSpecializationType
>(T
);
5954 DependentTemplateName
*DTN
=
5955 TST
->getTemplateName().getAsDependentTemplateName();
5956 assert(DTN
&& "dependent template has non-dependent name?");
5957 assert(DTN
->getQualifier()
5958 == static_cast<NestedNameSpecifier
*>(SS
.getScopeRep()));
5959 T
= Context
.getDependentTemplateSpecializationType(ETK_Typename
,
5960 DTN
->getQualifier(),
5961 DTN
->getIdentifier(),
5964 TypeSourceInfo
*TSI
= Context
.CreateTypeSourceInfo(T
);
5965 DependentTemplateSpecializationTypeLoc TL
=
5966 cast
<DependentTemplateSpecializationTypeLoc
>(TSI
->getTypeLoc());
5968 TemplateSpecializationTypeLoc TSTL
=
5969 cast
<TemplateSpecializationTypeLoc
>(InnerTSI
->getTypeLoc());
5970 TL
.setLAngleLoc(TSTL
.getLAngleLoc());
5971 TL
.setRAngleLoc(TSTL
.getRAngleLoc());
5972 for (unsigned I
= 0, E
= TST
->getNumArgs(); I
!= E
; ++I
)
5973 TL
.setArgLocInfo(I
, TSTL
.getArgLocInfo(I
));
5975 // FIXME: Poor source-location information here.
5976 TL
.initializeLocal(Context
, TemplateLoc
);
5978 TL
.setKeywordLoc(TypenameLoc
);
5979 TL
.setQualifierRange(SS
.getRange());
5980 return CreateParsedType(T
, TSI
);
5983 /// \brief Build the type that describes a C++ typename specifier,
5984 /// e.g., "typename T::type".
5986 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword
,
5987 NestedNameSpecifier
*NNS
, const IdentifierInfo
&II
,
5988 SourceLocation KeywordLoc
, SourceRange NNSRange
,
5989 SourceLocation IILoc
) {
5991 SS
.setScopeRep(NNS
);
5992 SS
.setRange(NNSRange
);
5994 DeclContext
*Ctx
= computeDeclContext(SS
);
5996 // If the nested-name-specifier is dependent and couldn't be
5997 // resolved to a type, build a typename type.
5998 assert(NNS
->isDependent());
5999 return Context
.getDependentNameType(Keyword
, NNS
, &II
);
6002 // If the nested-name-specifier refers to the current instantiation,
6003 // the "typename" keyword itself is superfluous. In C++03, the
6004 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6005 // allows such extraneous "typename" keywords, and we retroactively
6006 // apply this DR to C++03 code with only a warning. In any case we continue.
6008 if (RequireCompleteDeclContext(SS
, Ctx
))
6011 DeclarationName
Name(&II
);
6012 LookupResult
Result(*this, Name
, IILoc
, LookupOrdinaryName
);
6013 LookupQualifiedName(Result
, Ctx
);
6014 unsigned DiagID
= 0;
6015 Decl
*Referenced
= 0;
6016 switch (Result
.getResultKind()) {
6017 case LookupResult::NotFound
:
6018 DiagID
= diag::err_typename_nested_not_found
;
6021 case LookupResult::FoundUnresolvedValue
: {
6022 // We found a using declaration that is a value. Most likely, the using
6023 // declaration itself is meant to have the 'typename' keyword.
6024 SourceRange
FullRange(KeywordLoc
.isValid() ? KeywordLoc
: NNSRange
.getBegin(),
6026 Diag(IILoc
, diag::err_typename_refers_to_using_value_decl
)
6027 << Name
<< Ctx
<< FullRange
;
6028 if (UnresolvedUsingValueDecl
*Using
6029 = dyn_cast
<UnresolvedUsingValueDecl
>(Result
.getRepresentativeDecl())){
6030 SourceLocation Loc
= Using
->getTargetNestedNameRange().getBegin();
6031 Diag(Loc
, diag::note_using_value_decl_missing_typename
)
6032 << FixItHint::CreateInsertion(Loc
, "typename ");
6035 // Fall through to create a dependent typename type, from which we can recover
6038 case LookupResult::NotFoundInCurrentInstantiation
:
6039 // Okay, it's a member of an unknown instantiation.
6040 return Context
.getDependentNameType(Keyword
, NNS
, &II
);
6042 case LookupResult::Found
:
6043 if (TypeDecl
*Type
= dyn_cast
<TypeDecl
>(Result
.getFoundDecl())) {
6044 // We found a type. Build an ElaboratedType, since the
6045 // typename-specifier was just sugar.
6046 return Context
.getElaboratedType(ETK_Typename
, NNS
,
6047 Context
.getTypeDeclType(Type
));
6050 DiagID
= diag::err_typename_nested_not_type
;
6051 Referenced
= Result
.getFoundDecl();
6055 llvm_unreachable("unresolved using decl in non-dependent context");
6058 case LookupResult::FoundOverloaded
:
6059 DiagID
= diag::err_typename_nested_not_type
;
6060 Referenced
= *Result
.begin();
6063 case LookupResult::Ambiguous
:
6067 // If we get here, it's because name lookup did not find a
6068 // type. Emit an appropriate diagnostic and return an error.
6069 SourceRange
FullRange(KeywordLoc
.isValid() ? KeywordLoc
: NNSRange
.getBegin(),
6071 Diag(IILoc
, DiagID
) << FullRange
<< Name
<< Ctx
;
6073 Diag(Referenced
->getLocation(), diag::note_typename_refers_here
)
6079 // See Sema::RebuildTypeInCurrentInstantiation
6080 class CurrentInstantiationRebuilder
6081 : public TreeTransform
<CurrentInstantiationRebuilder
> {
6083 DeclarationName Entity
;
6086 typedef TreeTransform
<CurrentInstantiationRebuilder
> inherited
;
6088 CurrentInstantiationRebuilder(Sema
&SemaRef
,
6090 DeclarationName Entity
)
6091 : TreeTransform
<CurrentInstantiationRebuilder
>(SemaRef
),
6092 Loc(Loc
), Entity(Entity
) { }
6094 /// \brief Determine whether the given type \p T has already been
6097 /// For the purposes of type reconstruction, a type has already been
6098 /// transformed if it is NULL or if it is not dependent.
6099 bool AlreadyTransformed(QualType T
) {
6100 return T
.isNull() || !T
->isDependentType();
6103 /// \brief Returns the location of the entity whose type is being
6105 SourceLocation
getBaseLocation() { return Loc
; }
6107 /// \brief Returns the name of the entity whose type is being rebuilt.
6108 DeclarationName
getBaseEntity() { return Entity
; }
6110 /// \brief Sets the "base" location and entity when that
6111 /// information is known based on another transformation.
6112 void setBase(SourceLocation Loc
, DeclarationName Entity
) {
6114 this->Entity
= Entity
;
6119 /// \brief Rebuilds a type within the context of the current instantiation.
6121 /// The type \p T is part of the type of an out-of-line member definition of
6122 /// a class template (or class template partial specialization) that was parsed
6123 /// and constructed before we entered the scope of the class template (or
6124 /// partial specialization thereof). This routine will rebuild that type now
6125 /// that we have entered the declarator's scope, which may produce different
6126 /// canonical types, e.g.,
6129 /// template<typename T>
6131 /// typedef T* pointer;
6135 /// template<typename T>
6136 /// typename X<T>::pointer X<T>::data() { ... }
6139 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6140 /// since we do not know that we can look into X<T> when we parsed the type.
6141 /// This function will rebuild the type, performing the lookup of "pointer"
6142 /// in X<T> and returning an ElaboratedType whose canonical type is the same
6143 /// as the canonical type of T*, allowing the return types of the out-of-line
6144 /// definition and the declaration to match.
6145 TypeSourceInfo
*Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo
*T
,
6147 DeclarationName Name
) {
6148 if (!T
|| !T
->getType()->isDependentType())
6151 CurrentInstantiationRebuilder
Rebuilder(*this, Loc
, Name
);
6152 return Rebuilder
.TransformType(T
);
6155 ExprResult
Sema::RebuildExprInCurrentInstantiation(Expr
*E
) {
6156 CurrentInstantiationRebuilder
Rebuilder(*this, E
->getExprLoc(),
6158 return Rebuilder
.TransformExpr(E
);
6161 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec
&SS
) {
6162 if (SS
.isInvalid()) return true;
6164 NestedNameSpecifier
*NNS
= static_cast<NestedNameSpecifier
*>(SS
.getScopeRep());
6165 CurrentInstantiationRebuilder
Rebuilder(*this, SS
.getRange().getBegin(),
6167 NestedNameSpecifier
*Rebuilt
=
6168 Rebuilder
.TransformNestedNameSpecifier(NNS
, SS
.getRange());
6169 if (!Rebuilt
) return true;
6171 SS
.setScopeRep(Rebuilt
);
6175 /// \brief Produces a formatted string that describes the binding of
6176 /// template parameters to template arguments.
6178 Sema::getTemplateArgumentBindingsText(const TemplateParameterList
*Params
,
6179 const TemplateArgumentList
&Args
) {
6180 return getTemplateArgumentBindingsText(Params
, Args
.data(), Args
.size());
6184 Sema::getTemplateArgumentBindingsText(const TemplateParameterList
*Params
,
6185 const TemplateArgument
*Args
,
6187 llvm::SmallString
<128> Str
;
6188 llvm::raw_svector_ostream
Out(Str
);
6190 if (!Params
|| Params
->size() == 0 || NumArgs
== 0)
6191 return std::string();
6193 for (unsigned I
= 0, N
= Params
->size(); I
!= N
; ++I
) {
6202 if (const IdentifierInfo
*Id
= Params
->getParam(I
)->getIdentifier()) {
6203 Out
<< Id
->getName();
6209 Args
[I
].print(Context
.PrintingPolicy
, Out
);