Handle member initializer in C++ ctor.
[clang.git] / lib / Sema / SemaTemplate.cpp
blob3f4a1af77278055c1919ff1622f978c6a42986a0
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
12 #include "clang/Sema/SemaInternal.h"
13 #include "clang/Sema/Lookup.h"
14 #include "clang/Sema/Scope.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "TreeTransform.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/TypeVisitor.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Basic/LangOptions.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/StringExtras.h"
30 using namespace clang;
31 using namespace sema;
33 // Exported for use by Parser.
34 SourceRange
35 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36 unsigned N) {
37 if (!N) return SourceRange();
38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41 /// \brief Determine whether the declaration found is acceptable as the name
42 /// of a template and, if so, return that template declaration. Otherwise,
43 /// returns NULL.
44 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45 NamedDecl *Orig) {
46 NamedDecl *D = Orig->getUnderlyingDecl();
48 if (isa<TemplateDecl>(D))
49 return Orig;
51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52 // C++ [temp.local]p1:
53 // Like normal (non-template) classes, class templates have an
54 // injected-class-name (Clause 9). The injected-class-name
55 // can be used with or without a template-argument-list. When
56 // it is used without a template-argument-list, it is
57 // equivalent to the injected-class-name followed by the
58 // template-parameters of the class template enclosed in
59 // <>. When it is used with a template-argument-list, it
60 // refers to the specified class template specialization,
61 // which could be the current specialization or another
62 // specialization.
63 if (Record->isInjectedClassName()) {
64 Record = cast<CXXRecordDecl>(Record->getDeclContext());
65 if (Record->getDescribedClassTemplate())
66 return Record->getDescribedClassTemplate();
68 if (ClassTemplateSpecializationDecl *Spec
69 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70 return Spec->getSpecializedTemplate();
73 return 0;
76 return 0;
79 static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80 // The set of class templates we've already seen.
81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82 LookupResult::Filter filter = R.makeFilter();
83 while (filter.hasNext()) {
84 NamedDecl *Orig = filter.next();
85 NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86 if (!Repl)
87 filter.erase();
88 else if (Repl != Orig) {
90 // C++ [temp.local]p3:
91 // A lookup that finds an injected-class-name (10.2) can result in an
92 // ambiguity in certain cases (for example, if it is found in more than
93 // one base class). If all of the injected-class-names that are found
94 // refer to specializations of the same class template, and if the name
95 // is followed by a template-argument-list, the reference refers to the
96 // class template itself and not a specialization thereof, and is not
97 // ambiguous.
99 // FIXME: Will we eventually have to do the same for alias templates?
100 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101 if (!ClassTemplates.insert(ClassTmpl)) {
102 filter.erase();
103 continue;
106 // FIXME: we promote access to public here as a workaround to
107 // the fact that LookupResult doesn't let us remember that we
108 // found this template through a particular injected class name,
109 // which means we end up doing nasty things to the invariants.
110 // Pretending that access is public is *much* safer.
111 filter.replace(Repl, AS_public);
114 filter.done();
117 TemplateNameKind Sema::isTemplateName(Scope *S,
118 CXXScopeSpec &SS,
119 bool hasTemplateKeyword,
120 UnqualifiedId &Name,
121 ParsedType ObjectTypePtr,
122 bool EnteringContext,
123 TemplateTy &TemplateResult,
124 bool &MemberOfUnknownSpecialization) {
125 assert(getLangOptions().CPlusPlus && "No template names in C!");
127 DeclarationName TName;
128 MemberOfUnknownSpecialization = false;
130 switch (Name.getKind()) {
131 case UnqualifiedId::IK_Identifier:
132 TName = DeclarationName(Name.Identifier);
133 break;
135 case UnqualifiedId::IK_OperatorFunctionId:
136 TName = Context.DeclarationNames.getCXXOperatorName(
137 Name.OperatorFunctionId.Operator);
138 break;
140 case UnqualifiedId::IK_LiteralOperatorId:
141 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142 break;
144 default:
145 return TNK_Non_template;
148 QualType ObjectType = ObjectTypePtr.get();
150 LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151 LookupOrdinaryName);
152 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153 MemberOfUnknownSpecialization);
154 if (R.empty()) return TNK_Non_template;
155 if (R.isAmbiguous()) {
156 // Suppress diagnostics; we'll redo this lookup later.
157 R.suppressDiagnostics();
159 // FIXME: we might have ambiguous templates, in which case we
160 // should at least parse them properly!
161 return TNK_Non_template;
164 TemplateName Template;
165 TemplateNameKind TemplateKind;
167 unsigned ResultCount = R.end() - R.begin();
168 if (ResultCount > 1) {
169 // We assume that we'll preserve the qualifier from a function
170 // template name in other ways.
171 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172 TemplateKind = TNK_Function_template;
174 // We'll do this lookup again later.
175 R.suppressDiagnostics();
176 } else {
177 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
179 if (SS.isSet() && !SS.isInvalid()) {
180 NestedNameSpecifier *Qualifier
181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182 Template = Context.getQualifiedTemplateName(Qualifier,
183 hasTemplateKeyword, TD);
184 } else {
185 Template = TemplateName(TD);
188 if (isa<FunctionTemplateDecl>(TD)) {
189 TemplateKind = TNK_Function_template;
191 // We'll do this lookup again later.
192 R.suppressDiagnostics();
193 } else {
194 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195 TemplateKind = TNK_Type_template;
199 TemplateResult = TemplateTy::make(Template);
200 return TemplateKind;
203 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204 SourceLocation IILoc,
205 Scope *S,
206 const CXXScopeSpec *SS,
207 TemplateTy &SuggestedTemplate,
208 TemplateNameKind &SuggestedKind) {
209 // We can't recover unless there's a dependent scope specifier preceding the
210 // template name.
211 // FIXME: Typo correction?
212 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213 computeDeclContext(*SS))
214 return false;
216 // The code is missing a 'template' keyword prior to the dependent template
217 // name.
218 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219 Diag(IILoc, diag::err_template_kw_missing)
220 << Qualifier << II.getName()
221 << FixItHint::CreateInsertion(IILoc, "template ");
222 SuggestedTemplate
223 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224 SuggestedKind = TNK_Dependent_template_name;
225 return true;
228 void Sema::LookupTemplateName(LookupResult &Found,
229 Scope *S, CXXScopeSpec &SS,
230 QualType ObjectType,
231 bool EnteringContext,
232 bool &MemberOfUnknownSpecialization) {
233 // Determine where to perform name lookup
234 MemberOfUnknownSpecialization = false;
235 DeclContext *LookupCtx = 0;
236 bool isDependent = false;
237 if (!ObjectType.isNull()) {
238 // This nested-name-specifier occurs in a member access expression, e.g.,
239 // x->B::f, and we are looking into the type of the object.
240 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241 LookupCtx = computeDeclContext(ObjectType);
242 isDependent = ObjectType->isDependentType();
243 assert((isDependent || !ObjectType->isIncompleteType()) &&
244 "Caller should have completed object type");
245 } else if (SS.isSet()) {
246 // This nested-name-specifier occurs after another nested-name-specifier,
247 // so long into the context associated with the prior nested-name-specifier.
248 LookupCtx = computeDeclContext(SS, EnteringContext);
249 isDependent = isDependentScopeSpecifier(SS);
251 // The declaration context must be complete.
252 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253 return;
256 bool ObjectTypeSearchedInScope = false;
257 if (LookupCtx) {
258 // Perform "qualified" name lookup into the declaration context we
259 // computed, which is either the type of the base of a member access
260 // expression or the declaration context associated with a prior
261 // nested-name-specifier.
262 LookupQualifiedName(Found, LookupCtx);
264 if (!ObjectType.isNull() && Found.empty()) {
265 // C++ [basic.lookup.classref]p1:
266 // In a class member access expression (5.2.5), if the . or -> token is
267 // immediately followed by an identifier followed by a <, the
268 // identifier must be looked up to determine whether the < is the
269 // beginning of a template argument list (14.2) or a less-than operator.
270 // The identifier is first looked up in the class of the object
271 // expression. If the identifier is not found, it is then looked up in
272 // the context of the entire postfix-expression and shall name a class
273 // or function template.
274 if (S) LookupName(Found, S);
275 ObjectTypeSearchedInScope = true;
277 } else if (isDependent && (!S || ObjectType.isNull())) {
278 // We cannot look into a dependent object type or nested nme
279 // specifier.
280 MemberOfUnknownSpecialization = true;
281 return;
282 } else {
283 // Perform unqualified name lookup in the current scope.
284 LookupName(Found, S);
287 if (Found.empty() && !isDependent) {
288 // If we did not find any names, attempt to correct any typos.
289 DeclarationName Name = Found.getLookupName();
290 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291 false, CTC_CXXCasts)) {
292 FilterAcceptableTemplateNames(Context, Found);
293 if (!Found.empty()) {
294 if (LookupCtx)
295 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296 << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297 << FixItHint::CreateReplacement(Found.getNameLoc(),
298 Found.getLookupName().getAsString());
299 else
300 Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301 << Name << Found.getLookupName()
302 << FixItHint::CreateReplacement(Found.getNameLoc(),
303 Found.getLookupName().getAsString());
304 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305 Diag(Template->getLocation(), diag::note_previous_decl)
306 << Template->getDeclName();
308 } else {
309 Found.clear();
310 Found.setLookupName(Name);
314 FilterAcceptableTemplateNames(Context, Found);
315 if (Found.empty()) {
316 if (isDependent)
317 MemberOfUnknownSpecialization = true;
318 return;
321 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322 // C++ [basic.lookup.classref]p1:
323 // [...] If the lookup in the class of the object expression finds a
324 // template, the name is also looked up in the context of the entire
325 // postfix-expression and [...]
327 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328 LookupOrdinaryName);
329 LookupName(FoundOuter, S);
330 FilterAcceptableTemplateNames(Context, FoundOuter);
332 if (FoundOuter.empty()) {
333 // - if the name is not found, the name found in the class of the
334 // object expression is used, otherwise
335 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336 // - if the name is found in the context of the entire
337 // postfix-expression and does not name a class template, the name
338 // found in the class of the object expression is used, otherwise
339 } else if (!Found.isSuppressingDiagnostics()) {
340 // - if the name found is a class template, it must refer to the same
341 // entity as the one found in the class of the object expression,
342 // otherwise the program is ill-formed.
343 if (!Found.isSingleResult() ||
344 Found.getFoundDecl()->getCanonicalDecl()
345 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346 Diag(Found.getNameLoc(),
347 diag::ext_nested_name_member_ref_lookup_ambiguous)
348 << Found.getLookupName()
349 << ObjectType;
350 Diag(Found.getRepresentativeDecl()->getLocation(),
351 diag::note_ambig_member_ref_object_type)
352 << ObjectType;
353 Diag(FoundOuter.getFoundDecl()->getLocation(),
354 diag::note_ambig_member_ref_scope);
356 // Recover by taking the template that we found in the object
357 // expression's type.
363 /// ActOnDependentIdExpression - Handle a dependent id-expression that
364 /// was just parsed. This is only possible with an explicit scope
365 /// specifier naming a dependent type.
366 ExprResult
367 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368 const DeclarationNameInfo &NameInfo,
369 bool isAddressOfOperand,
370 const TemplateArgumentListInfo *TemplateArgs) {
371 NestedNameSpecifier *Qualifier
372 = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
374 DeclContext *DC = getFunctionLevelDeclContext();
376 if (!isAddressOfOperand &&
377 isa<CXXMethodDecl>(DC) &&
378 cast<CXXMethodDecl>(DC)->isInstance()) {
379 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
381 // Since the 'this' expression is synthesized, we don't need to
382 // perform the double-lookup check.
383 NamedDecl *FirstQualifierInScope = 0;
385 return Owned(CXXDependentScopeMemberExpr::Create(Context,
386 /*This*/ 0, ThisType,
387 /*IsArrow*/ true,
388 /*Op*/ SourceLocation(),
389 Qualifier, SS.getRange(),
390 FirstQualifierInScope,
391 NameInfo,
392 TemplateArgs));
395 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
398 ExprResult
399 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400 const DeclarationNameInfo &NameInfo,
401 const TemplateArgumentListInfo *TemplateArgs) {
402 return Owned(DependentScopeDeclRefExpr::Create(Context,
403 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404 SS.getRange(),
405 NameInfo,
406 TemplateArgs));
409 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410 /// that the template parameter 'PrevDecl' is being shadowed by a new
411 /// declaration at location Loc. Returns true to indicate that this is
412 /// an error, and false otherwise.
413 bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
416 // Microsoft Visual C++ permits template parameters to be shadowed.
417 if (getLangOptions().Microsoft)
418 return false;
420 // C++ [temp.local]p4:
421 // A template-parameter shall not be redeclared within its
422 // scope (including nested scopes).
423 Diag(Loc, diag::err_template_param_shadow)
424 << cast<NamedDecl>(PrevDecl)->getDeclName();
425 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426 return true;
429 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430 /// the parameter D to reference the templated declaration and return a pointer
431 /// to the template declaration. Otherwise, do nothing to D and return null.
432 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434 D = Temp->getTemplatedDecl();
435 return Temp;
437 return 0;
440 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
441 const ParsedTemplateArgument &Arg) {
443 switch (Arg.getKind()) {
444 case ParsedTemplateArgument::Type: {
445 TypeSourceInfo *DI;
446 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
447 if (!DI)
448 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
449 return TemplateArgumentLoc(TemplateArgument(T), DI);
452 case ParsedTemplateArgument::NonType: {
453 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
454 return TemplateArgumentLoc(TemplateArgument(E), E);
457 case ParsedTemplateArgument::Template: {
458 TemplateName Template = Arg.getAsTemplate().get();
459 return TemplateArgumentLoc(TemplateArgument(Template),
460 Arg.getScopeSpec().getRange(),
461 Arg.getLocation());
465 llvm_unreachable("Unhandled parsed template argument");
466 return TemplateArgumentLoc();
469 /// \brief Translates template arguments as provided by the parser
470 /// into template arguments used by semantic analysis.
471 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
472 TemplateArgumentListInfo &TemplateArgs) {
473 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
474 TemplateArgs.addArgument(translateTemplateArgument(*this,
475 TemplateArgsIn[I]));
478 /// ActOnTypeParameter - Called when a C++ template type parameter
479 /// (e.g., "typename T") has been parsed. Typename specifies whether
480 /// the keyword "typename" was used to declare the type parameter
481 /// (otherwise, "class" was used), and KeyLoc is the location of the
482 /// "class" or "typename" keyword. ParamName is the name of the
483 /// parameter (NULL indicates an unnamed template parameter) and
484 /// ParamName is the location of the parameter name (if any).
485 /// If the type parameter has a default argument, it will be added
486 /// later via ActOnTypeParameterDefault.
487 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
488 SourceLocation EllipsisLoc,
489 SourceLocation KeyLoc,
490 IdentifierInfo *ParamName,
491 SourceLocation ParamNameLoc,
492 unsigned Depth, unsigned Position,
493 SourceLocation EqualLoc,
494 ParsedType DefaultArg) {
495 assert(S->isTemplateParamScope() &&
496 "Template type parameter not in template parameter scope!");
497 bool Invalid = false;
499 if (ParamName) {
500 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
501 LookupOrdinaryName,
502 ForRedeclaration);
503 if (PrevDecl && PrevDecl->isTemplateParameter())
504 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
505 PrevDecl);
508 SourceLocation Loc = ParamNameLoc;
509 if (!ParamName)
510 Loc = KeyLoc;
512 TemplateTypeParmDecl *Param
513 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
514 Loc, Depth, Position, ParamName, Typename,
515 Ellipsis);
516 if (Invalid)
517 Param->setInvalidDecl();
519 if (ParamName) {
520 // Add the template parameter into the current scope.
521 S->AddDecl(Param);
522 IdResolver.AddDecl(Param);
525 // Handle the default argument, if provided.
526 if (DefaultArg) {
527 TypeSourceInfo *DefaultTInfo;
528 GetTypeFromParser(DefaultArg, &DefaultTInfo);
530 assert(DefaultTInfo && "expected source information for type");
532 // C++0x [temp.param]p9:
533 // A default template-argument may be specified for any kind of
534 // template-parameter that is not a template parameter pack.
535 if (Ellipsis) {
536 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
537 return Param;
540 // Check the template argument itself.
541 if (CheckTemplateArgument(Param, DefaultTInfo)) {
542 Param->setInvalidDecl();
543 return Param;
546 Param->setDefaultArgument(DefaultTInfo, false);
549 return Param;
552 /// \brief Check that the type of a non-type template parameter is
553 /// well-formed.
555 /// \returns the (possibly-promoted) parameter type if valid;
556 /// otherwise, produces a diagnostic and returns a NULL type.
557 QualType
558 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
559 // We don't allow variably-modified types as the type of non-type template
560 // parameters.
561 if (T->isVariablyModifiedType()) {
562 Diag(Loc, diag::err_variably_modified_nontype_template_param)
563 << T;
564 return QualType();
567 // C++ [temp.param]p4:
569 // A non-type template-parameter shall have one of the following
570 // (optionally cv-qualified) types:
572 // -- integral or enumeration type,
573 if (T->isIntegralOrEnumerationType() ||
574 // -- pointer to object or pointer to function,
575 T->isPointerType() ||
576 // -- reference to object or reference to function,
577 T->isReferenceType() ||
578 // -- pointer to member.
579 T->isMemberPointerType() ||
580 // If T is a dependent type, we can't do the check now, so we
581 // assume that it is well-formed.
582 T->isDependentType())
583 return T;
584 // C++ [temp.param]p8:
586 // A non-type template-parameter of type "array of T" or
587 // "function returning T" is adjusted to be of type "pointer to
588 // T" or "pointer to function returning T", respectively.
589 else if (T->isArrayType())
590 // FIXME: Keep the type prior to promotion?
591 return Context.getArrayDecayedType(T);
592 else if (T->isFunctionType())
593 // FIXME: Keep the type prior to promotion?
594 return Context.getPointerType(T);
596 Diag(Loc, diag::err_template_nontype_parm_bad_type)
597 << T;
599 return QualType();
602 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
603 unsigned Depth,
604 unsigned Position,
605 SourceLocation EqualLoc,
606 Expr *Default) {
607 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
608 QualType T = TInfo->getType();
610 assert(S->isTemplateParamScope() &&
611 "Non-type template parameter not in template parameter scope!");
612 bool Invalid = false;
614 IdentifierInfo *ParamName = D.getIdentifier();
615 if (ParamName) {
616 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
617 LookupOrdinaryName,
618 ForRedeclaration);
619 if (PrevDecl && PrevDecl->isTemplateParameter())
620 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
621 PrevDecl);
624 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
625 if (T.isNull()) {
626 T = Context.IntTy; // Recover with an 'int' type.
627 Invalid = true;
630 NonTypeTemplateParmDecl *Param
631 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
632 D.getIdentifierLoc(),
633 Depth, Position, ParamName, T, TInfo);
634 if (Invalid)
635 Param->setInvalidDecl();
637 if (D.getIdentifier()) {
638 // Add the template parameter into the current scope.
639 S->AddDecl(Param);
640 IdResolver.AddDecl(Param);
643 // Check the well-formedness of the default template argument, if provided.
644 if (Default) {
645 TemplateArgument Converted;
646 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
647 Param->setInvalidDecl();
648 return Param;
651 Param->setDefaultArgument(Default, false);
654 return Param;
657 /// ActOnTemplateTemplateParameter - Called when a C++ template template
658 /// parameter (e.g. T in template <template <typename> class T> class array)
659 /// has been parsed. S is the current scope.
660 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
661 SourceLocation TmpLoc,
662 TemplateParamsTy *Params,
663 IdentifierInfo *Name,
664 SourceLocation NameLoc,
665 unsigned Depth,
666 unsigned Position,
667 SourceLocation EqualLoc,
668 const ParsedTemplateArgument &Default) {
669 assert(S->isTemplateParamScope() &&
670 "Template template parameter not in template parameter scope!");
672 // Construct the parameter object.
673 TemplateTemplateParmDecl *Param =
674 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
675 NameLoc.isInvalid()? TmpLoc : NameLoc,
676 Depth, Position, Name,
677 Params);
679 // If the template template parameter has a name, then link the identifier
680 // into the scope and lookup mechanisms.
681 if (Name) {
682 S->AddDecl(Param);
683 IdResolver.AddDecl(Param);
686 if (!Default.isInvalid()) {
687 // Check only that we have a template template argument. We don't want to
688 // try to check well-formedness now, because our template template parameter
689 // might have dependent types in its template parameters, which we wouldn't
690 // be able to match now.
692 // If none of the template template parameter's template arguments mention
693 // other template parameters, we could actually perform more checking here.
694 // However, it isn't worth doing.
695 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
696 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
697 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
698 << DefaultArg.getSourceRange();
699 return Param;
702 Param->setDefaultArgument(DefaultArg, false);
705 if (Params->size() == 0) {
706 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
707 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
708 Param->setInvalidDecl();
710 return Param;
713 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
714 /// contains the template parameters in Params/NumParams.
715 Sema::TemplateParamsTy *
716 Sema::ActOnTemplateParameterList(unsigned Depth,
717 SourceLocation ExportLoc,
718 SourceLocation TemplateLoc,
719 SourceLocation LAngleLoc,
720 Decl **Params, unsigned NumParams,
721 SourceLocation RAngleLoc) {
722 if (ExportLoc.isValid())
723 Diag(ExportLoc, diag::warn_template_export_unsupported);
725 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
726 (NamedDecl**)Params, NumParams,
727 RAngleLoc);
730 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
731 if (SS.isSet())
732 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
733 SS.getRange());
736 DeclResult
737 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
738 SourceLocation KWLoc, CXXScopeSpec &SS,
739 IdentifierInfo *Name, SourceLocation NameLoc,
740 AttributeList *Attr,
741 TemplateParameterList *TemplateParams,
742 AccessSpecifier AS) {
743 assert(TemplateParams && TemplateParams->size() > 0 &&
744 "No template parameters");
745 assert(TUK != TUK_Reference && "Can only declare or define class templates");
746 bool Invalid = false;
748 // Check that we can declare a template here.
749 if (CheckTemplateDeclScope(S, TemplateParams))
750 return true;
752 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
753 assert(Kind != TTK_Enum && "can't build template of enumerated type");
755 // There is no such thing as an unnamed class template.
756 if (!Name) {
757 Diag(KWLoc, diag::err_template_unnamed_class);
758 return true;
761 // Find any previous declaration with this name.
762 DeclContext *SemanticContext;
763 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
764 ForRedeclaration);
765 if (SS.isNotEmpty() && !SS.isInvalid()) {
766 SemanticContext = computeDeclContext(SS, true);
767 if (!SemanticContext) {
768 // FIXME: Produce a reasonable diagnostic here
769 return true;
772 if (RequireCompleteDeclContext(SS, SemanticContext))
773 return true;
775 LookupQualifiedName(Previous, SemanticContext);
776 } else {
777 SemanticContext = CurContext;
778 LookupName(Previous, S);
781 if (Previous.isAmbiguous())
782 return true;
784 NamedDecl *PrevDecl = 0;
785 if (Previous.begin() != Previous.end())
786 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
788 // If there is a previous declaration with the same name, check
789 // whether this is a valid redeclaration.
790 ClassTemplateDecl *PrevClassTemplate
791 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
793 // We may have found the injected-class-name of a class template,
794 // class template partial specialization, or class template specialization.
795 // In these cases, grab the template that is being defined or specialized.
796 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
797 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
798 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
799 PrevClassTemplate
800 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
801 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
802 PrevClassTemplate
803 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
804 ->getSpecializedTemplate();
808 if (TUK == TUK_Friend) {
809 // C++ [namespace.memdef]p3:
810 // [...] When looking for a prior declaration of a class or a function
811 // declared as a friend, and when the name of the friend class or
812 // function is neither a qualified name nor a template-id, scopes outside
813 // the innermost enclosing namespace scope are not considered.
814 if (!SS.isSet()) {
815 DeclContext *OutermostContext = CurContext;
816 while (!OutermostContext->isFileContext())
817 OutermostContext = OutermostContext->getLookupParent();
819 if (PrevDecl &&
820 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
821 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
822 SemanticContext = PrevDecl->getDeclContext();
823 } else {
824 // Declarations in outer scopes don't matter. However, the outermost
825 // context we computed is the semantic context for our new
826 // declaration.
827 PrevDecl = PrevClassTemplate = 0;
828 SemanticContext = OutermostContext;
832 if (CurContext->isDependentContext()) {
833 // If this is a dependent context, we don't want to link the friend
834 // class template to the template in scope, because that would perform
835 // checking of the template parameter lists that can't be performed
836 // until the outer context is instantiated.
837 PrevDecl = PrevClassTemplate = 0;
839 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
840 PrevDecl = PrevClassTemplate = 0;
842 if (PrevClassTemplate) {
843 // Ensure that the template parameter lists are compatible.
844 if (!TemplateParameterListsAreEqual(TemplateParams,
845 PrevClassTemplate->getTemplateParameters(),
846 /*Complain=*/true,
847 TPL_TemplateMatch))
848 return true;
850 // C++ [temp.class]p4:
851 // In a redeclaration, partial specialization, explicit
852 // specialization or explicit instantiation of a class template,
853 // the class-key shall agree in kind with the original class
854 // template declaration (7.1.5.3).
855 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
856 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
857 Diag(KWLoc, diag::err_use_with_wrong_tag)
858 << Name
859 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
860 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
861 Kind = PrevRecordDecl->getTagKind();
864 // Check for redefinition of this class template.
865 if (TUK == TUK_Definition) {
866 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
867 Diag(NameLoc, diag::err_redefinition) << Name;
868 Diag(Def->getLocation(), diag::note_previous_definition);
869 // FIXME: Would it make sense to try to "forget" the previous
870 // definition, as part of error recovery?
871 return true;
874 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
875 // Maybe we will complain about the shadowed template parameter.
876 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
877 // Just pretend that we didn't see the previous declaration.
878 PrevDecl = 0;
879 } else if (PrevDecl) {
880 // C++ [temp]p5:
881 // A class template shall not have the same name as any other
882 // template, class, function, object, enumeration, enumerator,
883 // namespace, or type in the same scope (3.3), except as specified
884 // in (14.5.4).
885 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
886 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
887 return true;
890 // Check the template parameter list of this declaration, possibly
891 // merging in the template parameter list from the previous class
892 // template declaration.
893 if (CheckTemplateParameterList(TemplateParams,
894 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
895 TPC_ClassTemplate))
896 Invalid = true;
898 if (SS.isSet()) {
899 // If the name of the template was qualified, we must be defining the
900 // template out-of-line.
901 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
902 !(TUK == TUK_Friend && CurContext->isDependentContext()))
903 Diag(NameLoc, diag::err_member_def_does_not_match)
904 << Name << SemanticContext << SS.getRange();
907 CXXRecordDecl *NewClass =
908 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
909 PrevClassTemplate?
910 PrevClassTemplate->getTemplatedDecl() : 0,
911 /*DelayTypeCreation=*/true);
912 SetNestedNameSpecifier(NewClass, SS);
914 ClassTemplateDecl *NewTemplate
915 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
916 DeclarationName(Name), TemplateParams,
917 NewClass, PrevClassTemplate);
918 NewClass->setDescribedClassTemplate(NewTemplate);
920 // Build the type for the class template declaration now.
921 QualType T = NewTemplate->getInjectedClassNameSpecialization();
922 T = Context.getInjectedClassNameType(NewClass, T);
923 assert(T->isDependentType() && "Class template type is not dependent?");
924 (void)T;
926 // If we are providing an explicit specialization of a member that is a
927 // class template, make a note of that.
928 if (PrevClassTemplate &&
929 PrevClassTemplate->getInstantiatedFromMemberTemplate())
930 PrevClassTemplate->setMemberSpecialization();
932 // Set the access specifier.
933 if (!Invalid && TUK != TUK_Friend)
934 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
936 // Set the lexical context of these templates
937 NewClass->setLexicalDeclContext(CurContext);
938 NewTemplate->setLexicalDeclContext(CurContext);
940 if (TUK == TUK_Definition)
941 NewClass->startDefinition();
943 if (Attr)
944 ProcessDeclAttributeList(S, NewClass, Attr);
946 if (TUK != TUK_Friend)
947 PushOnScopeChains(NewTemplate, S);
948 else {
949 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
950 NewTemplate->setAccess(PrevClassTemplate->getAccess());
951 NewClass->setAccess(PrevClassTemplate->getAccess());
954 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
955 PrevClassTemplate != NULL);
957 // Friend templates are visible in fairly strange ways.
958 if (!CurContext->isDependentContext()) {
959 DeclContext *DC = SemanticContext->getRedeclContext();
960 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
961 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
962 PushOnScopeChains(NewTemplate, EnclosingScope,
963 /* AddToContext = */ false);
966 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
967 NewClass->getLocation(),
968 NewTemplate,
969 /*FIXME:*/NewClass->getLocation());
970 Friend->setAccess(AS_public);
971 CurContext->addDecl(Friend);
974 if (Invalid) {
975 NewTemplate->setInvalidDecl();
976 NewClass->setInvalidDecl();
978 return NewTemplate;
981 /// \brief Diagnose the presence of a default template argument on a
982 /// template parameter, which is ill-formed in certain contexts.
984 /// \returns true if the default template argument should be dropped.
985 static bool DiagnoseDefaultTemplateArgument(Sema &S,
986 Sema::TemplateParamListContext TPC,
987 SourceLocation ParamLoc,
988 SourceRange DefArgRange) {
989 switch (TPC) {
990 case Sema::TPC_ClassTemplate:
991 return false;
993 case Sema::TPC_FunctionTemplate:
994 // C++ [temp.param]p9:
995 // A default template-argument shall not be specified in a
996 // function template declaration or a function template
997 // definition [...]
998 // (This sentence is not in C++0x, per DR226).
999 if (!S.getLangOptions().CPlusPlus0x)
1000 S.Diag(ParamLoc,
1001 diag::err_template_parameter_default_in_function_template)
1002 << DefArgRange;
1003 return false;
1005 case Sema::TPC_ClassTemplateMember:
1006 // C++0x [temp.param]p9:
1007 // A default template-argument shall not be specified in the
1008 // template-parameter-lists of the definition of a member of a
1009 // class template that appears outside of the member's class.
1010 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1011 << DefArgRange;
1012 return true;
1014 case Sema::TPC_FriendFunctionTemplate:
1015 // C++ [temp.param]p9:
1016 // A default template-argument shall not be specified in a
1017 // friend template declaration.
1018 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1019 << DefArgRange;
1020 return true;
1022 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1023 // for friend function templates if there is only a single
1024 // declaration (and it is a definition). Strange!
1027 return false;
1030 /// \brief Checks the validity of a template parameter list, possibly
1031 /// considering the template parameter list from a previous
1032 /// declaration.
1034 /// If an "old" template parameter list is provided, it must be
1035 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1036 /// template parameter list.
1038 /// \param NewParams Template parameter list for a new template
1039 /// declaration. This template parameter list will be updated with any
1040 /// default arguments that are carried through from the previous
1041 /// template parameter list.
1043 /// \param OldParams If provided, template parameter list from a
1044 /// previous declaration of the same template. Default template
1045 /// arguments will be merged from the old template parameter list to
1046 /// the new template parameter list.
1048 /// \param TPC Describes the context in which we are checking the given
1049 /// template parameter list.
1051 /// \returns true if an error occurred, false otherwise.
1052 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1053 TemplateParameterList *OldParams,
1054 TemplateParamListContext TPC) {
1055 bool Invalid = false;
1057 // C++ [temp.param]p10:
1058 // The set of default template-arguments available for use with a
1059 // template declaration or definition is obtained by merging the
1060 // default arguments from the definition (if in scope) and all
1061 // declarations in scope in the same way default function
1062 // arguments are (8.3.6).
1063 bool SawDefaultArgument = false;
1064 SourceLocation PreviousDefaultArgLoc;
1066 bool SawParameterPack = false;
1067 SourceLocation ParameterPackLoc;
1069 // Dummy initialization to avoid warnings.
1070 TemplateParameterList::iterator OldParam = NewParams->end();
1071 if (OldParams)
1072 OldParam = OldParams->begin();
1074 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1075 NewParamEnd = NewParams->end();
1076 NewParam != NewParamEnd; ++NewParam) {
1077 // Variables used to diagnose redundant default arguments
1078 bool RedundantDefaultArg = false;
1079 SourceLocation OldDefaultLoc;
1080 SourceLocation NewDefaultLoc;
1082 // Variables used to diagnose missing default arguments
1083 bool MissingDefaultArg = false;
1085 // C++0x [temp.param]p11:
1086 // If a template parameter of a class template is a template parameter pack,
1087 // it must be the last template parameter.
1088 if (SawParameterPack) {
1089 Diag(ParameterPackLoc,
1090 diag::err_template_param_pack_must_be_last_template_parameter);
1091 Invalid = true;
1094 if (TemplateTypeParmDecl *NewTypeParm
1095 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1096 // Check the presence of a default argument here.
1097 if (NewTypeParm->hasDefaultArgument() &&
1098 DiagnoseDefaultTemplateArgument(*this, TPC,
1099 NewTypeParm->getLocation(),
1100 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1101 .getSourceRange()))
1102 NewTypeParm->removeDefaultArgument();
1104 // Merge default arguments for template type parameters.
1105 TemplateTypeParmDecl *OldTypeParm
1106 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1108 if (NewTypeParm->isParameterPack()) {
1109 assert(!NewTypeParm->hasDefaultArgument() &&
1110 "Parameter packs can't have a default argument!");
1111 SawParameterPack = true;
1112 ParameterPackLoc = NewTypeParm->getLocation();
1113 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1114 NewTypeParm->hasDefaultArgument()) {
1115 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1116 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1117 SawDefaultArgument = true;
1118 RedundantDefaultArg = true;
1119 PreviousDefaultArgLoc = NewDefaultLoc;
1120 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1121 // Merge the default argument from the old declaration to the
1122 // new declaration.
1123 SawDefaultArgument = true;
1124 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1125 true);
1126 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1127 } else if (NewTypeParm->hasDefaultArgument()) {
1128 SawDefaultArgument = true;
1129 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1130 } else if (SawDefaultArgument)
1131 MissingDefaultArg = true;
1132 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1133 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1134 // Check the presence of a default argument here.
1135 if (NewNonTypeParm->hasDefaultArgument() &&
1136 DiagnoseDefaultTemplateArgument(*this, TPC,
1137 NewNonTypeParm->getLocation(),
1138 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1139 NewNonTypeParm->removeDefaultArgument();
1142 // Merge default arguments for non-type template parameters
1143 NonTypeTemplateParmDecl *OldNonTypeParm
1144 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1145 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1146 NewNonTypeParm->hasDefaultArgument()) {
1147 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1148 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1149 SawDefaultArgument = true;
1150 RedundantDefaultArg = true;
1151 PreviousDefaultArgLoc = NewDefaultLoc;
1152 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1153 // Merge the default argument from the old declaration to the
1154 // new declaration.
1155 SawDefaultArgument = true;
1156 // FIXME: We need to create a new kind of "default argument"
1157 // expression that points to a previous template template
1158 // parameter.
1159 NewNonTypeParm->setDefaultArgument(
1160 OldNonTypeParm->getDefaultArgument(),
1161 /*Inherited=*/ true);
1162 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1163 } else if (NewNonTypeParm->hasDefaultArgument()) {
1164 SawDefaultArgument = true;
1165 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1166 } else if (SawDefaultArgument)
1167 MissingDefaultArg = true;
1168 } else {
1169 // Check the presence of a default argument here.
1170 TemplateTemplateParmDecl *NewTemplateParm
1171 = cast<TemplateTemplateParmDecl>(*NewParam);
1172 if (NewTemplateParm->hasDefaultArgument() &&
1173 DiagnoseDefaultTemplateArgument(*this, TPC,
1174 NewTemplateParm->getLocation(),
1175 NewTemplateParm->getDefaultArgument().getSourceRange()))
1176 NewTemplateParm->removeDefaultArgument();
1178 // Merge default arguments for template template parameters
1179 TemplateTemplateParmDecl *OldTemplateParm
1180 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1181 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1182 NewTemplateParm->hasDefaultArgument()) {
1183 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1184 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1185 SawDefaultArgument = true;
1186 RedundantDefaultArg = true;
1187 PreviousDefaultArgLoc = NewDefaultLoc;
1188 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1189 // Merge the default argument from the old declaration to the
1190 // new declaration.
1191 SawDefaultArgument = true;
1192 // FIXME: We need to create a new kind of "default argument" expression
1193 // that points to a previous template template parameter.
1194 NewTemplateParm->setDefaultArgument(
1195 OldTemplateParm->getDefaultArgument(),
1196 /*Inherited=*/ true);
1197 PreviousDefaultArgLoc
1198 = OldTemplateParm->getDefaultArgument().getLocation();
1199 } else if (NewTemplateParm->hasDefaultArgument()) {
1200 SawDefaultArgument = true;
1201 PreviousDefaultArgLoc
1202 = NewTemplateParm->getDefaultArgument().getLocation();
1203 } else if (SawDefaultArgument)
1204 MissingDefaultArg = true;
1207 if (RedundantDefaultArg) {
1208 // C++ [temp.param]p12:
1209 // A template-parameter shall not be given default arguments
1210 // by two different declarations in the same scope.
1211 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1212 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1213 Invalid = true;
1214 } else if (MissingDefaultArg) {
1215 // C++ [temp.param]p11:
1216 // If a template-parameter has a default template-argument,
1217 // all subsequent template-parameters shall have a default
1218 // template-argument supplied.
1219 Diag((*NewParam)->getLocation(),
1220 diag::err_template_param_default_arg_missing);
1221 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1222 Invalid = true;
1225 // If we have an old template parameter list that we're merging
1226 // in, move on to the next parameter.
1227 if (OldParams)
1228 ++OldParam;
1231 return Invalid;
1234 namespace {
1236 /// A class which looks for a use of a certain level of template
1237 /// parameter.
1238 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1239 typedef RecursiveASTVisitor<DependencyChecker> super;
1241 unsigned Depth;
1242 bool Match;
1244 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1245 NamedDecl *ND = Params->getParam(0);
1246 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1247 Depth = PD->getDepth();
1248 } else if (NonTypeTemplateParmDecl *PD =
1249 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1250 Depth = PD->getDepth();
1251 } else {
1252 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1256 bool Matches(unsigned ParmDepth) {
1257 if (ParmDepth >= Depth) {
1258 Match = true;
1259 return true;
1261 return false;
1264 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1265 return !Matches(T->getDepth());
1268 bool TraverseTemplateName(TemplateName N) {
1269 if (TemplateTemplateParmDecl *PD =
1270 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1271 if (Matches(PD->getDepth())) return false;
1272 return super::TraverseTemplateName(N);
1275 bool VisitDeclRefExpr(DeclRefExpr *E) {
1276 if (NonTypeTemplateParmDecl *PD =
1277 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1278 if (PD->getDepth() == Depth) {
1279 Match = true;
1280 return false;
1283 return super::VisitDeclRefExpr(E);
1288 /// Determines whether a template-id depends on the given parameter
1289 /// list.
1290 static bool
1291 DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1292 TemplateParameterList *Params) {
1293 DependencyChecker Checker(Params);
1294 Checker.TraverseType(QualType(TemplateId, 0));
1295 return Checker.Match;
1298 /// \brief Match the given template parameter lists to the given scope
1299 /// specifier, returning the template parameter list that applies to the
1300 /// name.
1302 /// \param DeclStartLoc the start of the declaration that has a scope
1303 /// specifier or a template parameter list.
1305 /// \param SS the scope specifier that will be matched to the given template
1306 /// parameter lists. This scope specifier precedes a qualified name that is
1307 /// being declared.
1309 /// \param ParamLists the template parameter lists, from the outermost to the
1310 /// innermost template parameter lists.
1312 /// \param NumParamLists the number of template parameter lists in ParamLists.
1314 /// \param IsFriend Whether to apply the slightly different rules for
1315 /// matching template parameters to scope specifiers in friend
1316 /// declarations.
1318 /// \param IsExplicitSpecialization will be set true if the entity being
1319 /// declared is an explicit specialization, false otherwise.
1321 /// \returns the template parameter list, if any, that corresponds to the
1322 /// name that is preceded by the scope specifier @p SS. This template
1323 /// parameter list may be have template parameters (if we're declaring a
1324 /// template) or may have no template parameters (if we're declaring a
1325 /// template specialization), or may be NULL (if we were's declaring isn't
1326 /// itself a template).
1327 TemplateParameterList *
1328 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1329 const CXXScopeSpec &SS,
1330 TemplateParameterList **ParamLists,
1331 unsigned NumParamLists,
1332 bool IsFriend,
1333 bool &IsExplicitSpecialization,
1334 bool &Invalid) {
1335 IsExplicitSpecialization = false;
1337 // Find the template-ids that occur within the nested-name-specifier. These
1338 // template-ids will match up with the template parameter lists.
1339 llvm::SmallVector<const TemplateSpecializationType *, 4>
1340 TemplateIdsInSpecifier;
1341 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1342 ExplicitSpecializationsInSpecifier;
1343 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1344 NNS; NNS = NNS->getPrefix()) {
1345 const Type *T = NNS->getAsType();
1346 if (!T) break;
1348 // C++0x [temp.expl.spec]p17:
1349 // A member or a member template may be nested within many
1350 // enclosing class templates. In an explicit specialization for
1351 // such a member, the member declaration shall be preceded by a
1352 // template<> for each enclosing class template that is
1353 // explicitly specialized.
1355 // Following the existing practice of GNU and EDG, we allow a typedef of a
1356 // template specialization type.
1357 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1358 T = TT->LookThroughTypedefs().getTypePtr();
1360 if (const TemplateSpecializationType *SpecType
1361 = dyn_cast<TemplateSpecializationType>(T)) {
1362 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1363 if (!Template)
1364 continue; // FIXME: should this be an error? probably...
1366 if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1367 ClassTemplateSpecializationDecl *SpecDecl
1368 = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1369 // If the nested name specifier refers to an explicit specialization,
1370 // we don't need a template<> header.
1371 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1372 ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1373 continue;
1377 TemplateIdsInSpecifier.push_back(SpecType);
1381 // Reverse the list of template-ids in the scope specifier, so that we can
1382 // more easily match up the template-ids and the template parameter lists.
1383 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1385 SourceLocation FirstTemplateLoc = DeclStartLoc;
1386 if (NumParamLists)
1387 FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1389 // Match the template-ids found in the specifier to the template parameter
1390 // lists.
1391 unsigned ParamIdx = 0, TemplateIdx = 0;
1392 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1393 TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1394 const TemplateSpecializationType *TemplateId
1395 = TemplateIdsInSpecifier[TemplateIdx];
1396 bool DependentTemplateId = TemplateId->isDependentType();
1398 // In friend declarations we can have template-ids which don't
1399 // depend on the corresponding template parameter lists. But
1400 // assume that empty parameter lists are supposed to match this
1401 // template-id.
1402 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1403 if (!DependentTemplateId ||
1404 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1405 continue;
1408 if (ParamIdx >= NumParamLists) {
1409 // We have a template-id without a corresponding template parameter
1410 // list.
1412 // ...which is fine if this is a friend declaration.
1413 if (IsFriend) {
1414 IsExplicitSpecialization = true;
1415 break;
1418 if (DependentTemplateId) {
1419 // FIXME: the location information here isn't great.
1420 Diag(SS.getRange().getBegin(),
1421 diag::err_template_spec_needs_template_parameters)
1422 << QualType(TemplateId, 0)
1423 << SS.getRange();
1424 Invalid = true;
1425 } else {
1426 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1427 << SS.getRange()
1428 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1429 IsExplicitSpecialization = true;
1431 return 0;
1434 // Check the template parameter list against its corresponding template-id.
1435 if (DependentTemplateId) {
1436 TemplateParameterList *ExpectedTemplateParams = 0;
1438 // Are there cases in (e.g.) friends where this won't match?
1439 if (const InjectedClassNameType *Injected
1440 = TemplateId->getAs<InjectedClassNameType>()) {
1441 CXXRecordDecl *Record = Injected->getDecl();
1442 if (ClassTemplatePartialSpecializationDecl *Partial =
1443 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1444 ExpectedTemplateParams = Partial->getTemplateParameters();
1445 else
1446 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1447 ->getTemplateParameters();
1450 if (ExpectedTemplateParams)
1451 TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1452 ExpectedTemplateParams,
1453 true, TPL_TemplateMatch);
1455 CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1456 TPC_ClassTemplateMember);
1457 } else if (ParamLists[ParamIdx]->size() > 0)
1458 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1459 diag::err_template_param_list_matches_nontemplate)
1460 << TemplateId
1461 << ParamLists[ParamIdx]->getSourceRange();
1462 else
1463 IsExplicitSpecialization = true;
1465 ++ParamIdx;
1468 // If there were at least as many template-ids as there were template
1469 // parameter lists, then there are no template parameter lists remaining for
1470 // the declaration itself.
1471 if (ParamIdx >= NumParamLists)
1472 return 0;
1474 // If there were too many template parameter lists, complain about that now.
1475 if (ParamIdx != NumParamLists - 1) {
1476 while (ParamIdx < NumParamLists - 1) {
1477 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1478 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1479 isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1480 : diag::err_template_spec_extra_headers)
1481 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1482 ParamLists[ParamIdx]->getRAngleLoc());
1484 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1485 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1486 diag::note_explicit_template_spec_does_not_need_header)
1487 << ExplicitSpecializationsInSpecifier.back();
1488 ExplicitSpecializationsInSpecifier.pop_back();
1491 // We have a template parameter list with no corresponding scope, which
1492 // means that the resulting template declaration can't be instantiated
1493 // properly (we'll end up with dependent nodes when we shouldn't).
1494 if (!isExplicitSpecHeader)
1495 Invalid = true;
1497 ++ParamIdx;
1501 // Return the last template parameter list, which corresponds to the
1502 // entity being declared.
1503 return ParamLists[NumParamLists - 1];
1506 QualType Sema::CheckTemplateIdType(TemplateName Name,
1507 SourceLocation TemplateLoc,
1508 const TemplateArgumentListInfo &TemplateArgs) {
1509 TemplateDecl *Template = Name.getAsTemplateDecl();
1510 if (!Template) {
1511 // The template name does not resolve to a template, so we just
1512 // build a dependent template-id type.
1513 return Context.getTemplateSpecializationType(Name, TemplateArgs);
1516 // Check that the template argument list is well-formed for this
1517 // template.
1518 llvm::SmallVector<TemplateArgument, 4> Converted;
1519 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1520 false, Converted))
1521 return QualType();
1523 assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1524 "Converted template argument list is too short!");
1526 QualType CanonType;
1528 if (Name.isDependent() ||
1529 TemplateSpecializationType::anyDependentTemplateArguments(
1530 TemplateArgs)) {
1531 // This class template specialization is a dependent
1532 // type. Therefore, its canonical type is another class template
1533 // specialization type that contains all of the converted
1534 // arguments in canonical form. This ensures that, e.g., A<T> and
1535 // A<T, T> have identical types when A is declared as:
1537 // template<typename T, typename U = T> struct A;
1538 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1539 CanonType = Context.getTemplateSpecializationType(CanonName,
1540 Converted.data(),
1541 Converted.size());
1543 // FIXME: CanonType is not actually the canonical type, and unfortunately
1544 // it is a TemplateSpecializationType that we will never use again.
1545 // In the future, we need to teach getTemplateSpecializationType to only
1546 // build the canonical type and return that to us.
1547 CanonType = Context.getCanonicalType(CanonType);
1549 // This might work out to be a current instantiation, in which
1550 // case the canonical type needs to be the InjectedClassNameType.
1552 // TODO: in theory this could be a simple hashtable lookup; most
1553 // changes to CurContext don't change the set of current
1554 // instantiations.
1555 if (isa<ClassTemplateDecl>(Template)) {
1556 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1557 // If we get out to a namespace, we're done.
1558 if (Ctx->isFileContext()) break;
1560 // If this isn't a record, keep looking.
1561 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1562 if (!Record) continue;
1564 // Look for one of the two cases with InjectedClassNameTypes
1565 // and check whether it's the same template.
1566 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1567 !Record->getDescribedClassTemplate())
1568 continue;
1570 // Fetch the injected class name type and check whether its
1571 // injected type is equal to the type we just built.
1572 QualType ICNT = Context.getTypeDeclType(Record);
1573 QualType Injected = cast<InjectedClassNameType>(ICNT)
1574 ->getInjectedSpecializationType();
1576 if (CanonType != Injected->getCanonicalTypeInternal())
1577 continue;
1579 // If so, the canonical type of this TST is the injected
1580 // class name type of the record we just found.
1581 assert(ICNT.isCanonical());
1582 CanonType = ICNT;
1583 break;
1586 } else if (ClassTemplateDecl *ClassTemplate
1587 = dyn_cast<ClassTemplateDecl>(Template)) {
1588 // Find the class template specialization declaration that
1589 // corresponds to these arguments.
1590 void *InsertPos = 0;
1591 ClassTemplateSpecializationDecl *Decl
1592 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1593 InsertPos);
1594 if (!Decl) {
1595 // This is the first time we have referenced this class template
1596 // specialization. Create the canonical declaration and add it to
1597 // the set of specializations.
1598 Decl = ClassTemplateSpecializationDecl::Create(Context,
1599 ClassTemplate->getTemplatedDecl()->getTagKind(),
1600 ClassTemplate->getDeclContext(),
1601 ClassTemplate->getLocation(),
1602 ClassTemplate,
1603 Converted.data(),
1604 Converted.size(), 0);
1605 ClassTemplate->AddSpecialization(Decl, InsertPos);
1606 Decl->setLexicalDeclContext(CurContext);
1609 CanonType = Context.getTypeDeclType(Decl);
1610 assert(isa<RecordType>(CanonType) &&
1611 "type of non-dependent specialization is not a RecordType");
1614 // Build the fully-sugared type for this class template
1615 // specialization, which refers back to the class template
1616 // specialization we created or found.
1617 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1620 TypeResult
1621 Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1622 SourceLocation LAngleLoc,
1623 ASTTemplateArgsPtr TemplateArgsIn,
1624 SourceLocation RAngleLoc) {
1625 TemplateName Template = TemplateD.getAsVal<TemplateName>();
1627 // Translate the parser's template argument list in our AST format.
1628 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1629 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1631 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1632 TemplateArgsIn.release();
1634 if (Result.isNull())
1635 return true;
1637 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1638 TemplateSpecializationTypeLoc TL
1639 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1640 TL.setTemplateNameLoc(TemplateLoc);
1641 TL.setLAngleLoc(LAngleLoc);
1642 TL.setRAngleLoc(RAngleLoc);
1643 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1644 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1646 return CreateParsedType(Result, DI);
1649 TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1650 TagUseKind TUK,
1651 TypeSpecifierType TagSpec,
1652 SourceLocation TagLoc) {
1653 if (TypeResult.isInvalid())
1654 return ::TypeResult();
1656 // FIXME: preserve source info, ideally without copying the DI.
1657 TypeSourceInfo *DI;
1658 QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1660 // Verify the tag specifier.
1661 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1663 if (const RecordType *RT = Type->getAs<RecordType>()) {
1664 RecordDecl *D = RT->getDecl();
1666 IdentifierInfo *Id = D->getIdentifier();
1667 assert(Id && "templated class must have an identifier");
1669 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1670 Diag(TagLoc, diag::err_use_with_wrong_tag)
1671 << Type
1672 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1673 Diag(D->getLocation(), diag::note_previous_use);
1677 ElaboratedTypeKeyword Keyword
1678 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1679 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1681 return ParsedType::make(ElabType);
1684 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1685 LookupResult &R,
1686 bool RequiresADL,
1687 const TemplateArgumentListInfo &TemplateArgs) {
1688 // FIXME: Can we do any checking at this point? I guess we could check the
1689 // template arguments that we have against the template name, if the template
1690 // name refers to a single template. That's not a terribly common case,
1691 // though.
1693 // These should be filtered out by our callers.
1694 assert(!R.empty() && "empty lookup results when building templateid");
1695 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1697 NestedNameSpecifier *Qualifier = 0;
1698 SourceRange QualifierRange;
1699 if (SS.isSet()) {
1700 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1701 QualifierRange = SS.getRange();
1704 // We don't want lookup warnings at this point.
1705 R.suppressDiagnostics();
1707 bool Dependent
1708 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1709 &TemplateArgs);
1710 UnresolvedLookupExpr *ULE
1711 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1712 Qualifier, QualifierRange,
1713 R.getLookupNameInfo(),
1714 RequiresADL, TemplateArgs,
1715 R.begin(), R.end());
1717 return Owned(ULE);
1720 // We actually only call this from template instantiation.
1721 ExprResult
1722 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1723 const DeclarationNameInfo &NameInfo,
1724 const TemplateArgumentListInfo &TemplateArgs) {
1725 DeclContext *DC;
1726 if (!(DC = computeDeclContext(SS, false)) ||
1727 DC->isDependentContext() ||
1728 RequireCompleteDeclContext(SS, DC))
1729 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1731 bool MemberOfUnknownSpecialization;
1732 LookupResult R(*this, NameInfo, LookupOrdinaryName);
1733 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1734 MemberOfUnknownSpecialization);
1736 if (R.isAmbiguous())
1737 return ExprError();
1739 if (R.empty()) {
1740 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1741 << NameInfo.getName() << SS.getRange();
1742 return ExprError();
1745 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1746 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1747 << (NestedNameSpecifier*) SS.getScopeRep()
1748 << NameInfo.getName() << SS.getRange();
1749 Diag(Temp->getLocation(), diag::note_referenced_class_template);
1750 return ExprError();
1753 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1756 /// \brief Form a dependent template name.
1758 /// This action forms a dependent template name given the template
1759 /// name and its (presumably dependent) scope specifier. For
1760 /// example, given "MetaFun::template apply", the scope specifier \p
1761 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1762 /// of the "template" keyword, and "apply" is the \p Name.
1763 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1764 SourceLocation TemplateKWLoc,
1765 CXXScopeSpec &SS,
1766 UnqualifiedId &Name,
1767 ParsedType ObjectType,
1768 bool EnteringContext,
1769 TemplateTy &Result) {
1770 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1771 !getLangOptions().CPlusPlus0x)
1772 Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1773 << FixItHint::CreateRemoval(TemplateKWLoc);
1775 DeclContext *LookupCtx = 0;
1776 if (SS.isSet())
1777 LookupCtx = computeDeclContext(SS, EnteringContext);
1778 if (!LookupCtx && ObjectType)
1779 LookupCtx = computeDeclContext(ObjectType.get());
1780 if (LookupCtx) {
1781 // C++0x [temp.names]p5:
1782 // If a name prefixed by the keyword template is not the name of
1783 // a template, the program is ill-formed. [Note: the keyword
1784 // template may not be applied to non-template members of class
1785 // templates. -end note ] [ Note: as is the case with the
1786 // typename prefix, the template prefix is allowed in cases
1787 // where it is not strictly necessary; i.e., when the
1788 // nested-name-specifier or the expression on the left of the ->
1789 // or . is not dependent on a template-parameter, or the use
1790 // does not appear in the scope of a template. -end note]
1792 // Note: C++03 was more strict here, because it banned the use of
1793 // the "template" keyword prior to a template-name that was not a
1794 // dependent name. C++ DR468 relaxed this requirement (the
1795 // "template" keyword is now permitted). We follow the C++0x
1796 // rules, even in C++03 mode with a warning, retroactively applying the DR.
1797 bool MemberOfUnknownSpecialization;
1798 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1799 ObjectType, EnteringContext, Result,
1800 MemberOfUnknownSpecialization);
1801 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1802 isa<CXXRecordDecl>(LookupCtx) &&
1803 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1804 // This is a dependent template. Handle it below.
1805 } else if (TNK == TNK_Non_template) {
1806 Diag(Name.getSourceRange().getBegin(),
1807 diag::err_template_kw_refers_to_non_template)
1808 << GetNameFromUnqualifiedId(Name).getName()
1809 << Name.getSourceRange()
1810 << TemplateKWLoc;
1811 return TNK_Non_template;
1812 } else {
1813 // We found something; return it.
1814 return TNK;
1818 NestedNameSpecifier *Qualifier
1819 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1821 switch (Name.getKind()) {
1822 case UnqualifiedId::IK_Identifier:
1823 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1824 Name.Identifier));
1825 return TNK_Dependent_template_name;
1827 case UnqualifiedId::IK_OperatorFunctionId:
1828 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1829 Name.OperatorFunctionId.Operator));
1830 return TNK_Dependent_template_name;
1832 case UnqualifiedId::IK_LiteralOperatorId:
1833 assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1835 default:
1836 break;
1839 Diag(Name.getSourceRange().getBegin(),
1840 diag::err_template_kw_refers_to_non_template)
1841 << GetNameFromUnqualifiedId(Name).getName()
1842 << Name.getSourceRange()
1843 << TemplateKWLoc;
1844 return TNK_Non_template;
1847 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1848 const TemplateArgumentLoc &AL,
1849 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1850 const TemplateArgument &Arg = AL.getArgument();
1852 // Check template type parameter.
1853 switch(Arg.getKind()) {
1854 case TemplateArgument::Type:
1855 // C++ [temp.arg.type]p1:
1856 // A template-argument for a template-parameter which is a
1857 // type shall be a type-id.
1858 break;
1859 case TemplateArgument::Template: {
1860 // We have a template type parameter but the template argument
1861 // is a template without any arguments.
1862 SourceRange SR = AL.getSourceRange();
1863 TemplateName Name = Arg.getAsTemplate();
1864 Diag(SR.getBegin(), diag::err_template_missing_args)
1865 << Name << SR;
1866 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1867 Diag(Decl->getLocation(), diag::note_template_decl_here);
1869 return true;
1871 default: {
1872 // We have a template type parameter but the template argument
1873 // is not a type.
1874 SourceRange SR = AL.getSourceRange();
1875 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1876 Diag(Param->getLocation(), diag::note_template_param_here);
1878 return true;
1882 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1883 return true;
1885 // Add the converted template type argument.
1886 Converted.push_back(
1887 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1888 return false;
1891 /// \brief Substitute template arguments into the default template argument for
1892 /// the given template type parameter.
1894 /// \param SemaRef the semantic analysis object for which we are performing
1895 /// the substitution.
1897 /// \param Template the template that we are synthesizing template arguments
1898 /// for.
1900 /// \param TemplateLoc the location of the template name that started the
1901 /// template-id we are checking.
1903 /// \param RAngleLoc the location of the right angle bracket ('>') that
1904 /// terminates the template-id.
1906 /// \param Param the template template parameter whose default we are
1907 /// substituting into.
1909 /// \param Converted the list of template arguments provided for template
1910 /// parameters that precede \p Param in the template parameter list.
1912 /// \returns the substituted template argument, or NULL if an error occurred.
1913 static TypeSourceInfo *
1914 SubstDefaultTemplateArgument(Sema &SemaRef,
1915 TemplateDecl *Template,
1916 SourceLocation TemplateLoc,
1917 SourceLocation RAngleLoc,
1918 TemplateTypeParmDecl *Param,
1919 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1920 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1922 // If the argument type is dependent, instantiate it now based
1923 // on the previously-computed template arguments.
1924 if (ArgType->getType()->isDependentType()) {
1925 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1926 Converted.data(), Converted.size());
1928 MultiLevelTemplateArgumentList AllTemplateArgs
1929 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1931 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1932 Template, Converted.data(),
1933 Converted.size(),
1934 SourceRange(TemplateLoc, RAngleLoc));
1936 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1937 Param->getDefaultArgumentLoc(),
1938 Param->getDeclName());
1941 return ArgType;
1944 /// \brief Substitute template arguments into the default template argument for
1945 /// the given non-type template parameter.
1947 /// \param SemaRef the semantic analysis object for which we are performing
1948 /// the substitution.
1950 /// \param Template the template that we are synthesizing template arguments
1951 /// for.
1953 /// \param TemplateLoc the location of the template name that started the
1954 /// template-id we are checking.
1956 /// \param RAngleLoc the location of the right angle bracket ('>') that
1957 /// terminates the template-id.
1959 /// \param Param the non-type template parameter whose default we are
1960 /// substituting into.
1962 /// \param Converted the list of template arguments provided for template
1963 /// parameters that precede \p Param in the template parameter list.
1965 /// \returns the substituted template argument, or NULL if an error occurred.
1966 static ExprResult
1967 SubstDefaultTemplateArgument(Sema &SemaRef,
1968 TemplateDecl *Template,
1969 SourceLocation TemplateLoc,
1970 SourceLocation RAngleLoc,
1971 NonTypeTemplateParmDecl *Param,
1972 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1973 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1974 Converted.data(), Converted.size());
1976 MultiLevelTemplateArgumentList AllTemplateArgs
1977 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1979 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1980 Template, Converted.data(),
1981 Converted.size(),
1982 SourceRange(TemplateLoc, RAngleLoc));
1984 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1987 /// \brief Substitute template arguments into the default template argument for
1988 /// the given template template parameter.
1990 /// \param SemaRef the semantic analysis object for which we are performing
1991 /// the substitution.
1993 /// \param Template the template that we are synthesizing template arguments
1994 /// for.
1996 /// \param TemplateLoc the location of the template name that started the
1997 /// template-id we are checking.
1999 /// \param RAngleLoc the location of the right angle bracket ('>') that
2000 /// terminates the template-id.
2002 /// \param Param the template template parameter whose default we are
2003 /// substituting into.
2005 /// \param Converted the list of template arguments provided for template
2006 /// parameters that precede \p Param in the template parameter list.
2008 /// \returns the substituted template argument, or NULL if an error occurred.
2009 static TemplateName
2010 SubstDefaultTemplateArgument(Sema &SemaRef,
2011 TemplateDecl *Template,
2012 SourceLocation TemplateLoc,
2013 SourceLocation RAngleLoc,
2014 TemplateTemplateParmDecl *Param,
2015 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2016 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2017 Converted.data(), Converted.size());
2019 MultiLevelTemplateArgumentList AllTemplateArgs
2020 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2022 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2023 Template, Converted.data(),
2024 Converted.size(),
2025 SourceRange(TemplateLoc, RAngleLoc));
2027 return SemaRef.SubstTemplateName(
2028 Param->getDefaultArgument().getArgument().getAsTemplate(),
2029 Param->getDefaultArgument().getTemplateNameLoc(),
2030 AllTemplateArgs);
2033 /// \brief If the given template parameter has a default template
2034 /// argument, substitute into that default template argument and
2035 /// return the corresponding template argument.
2036 TemplateArgumentLoc
2037 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2038 SourceLocation TemplateLoc,
2039 SourceLocation RAngleLoc,
2040 Decl *Param,
2041 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2042 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2043 if (!TypeParm->hasDefaultArgument())
2044 return TemplateArgumentLoc();
2046 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2047 TemplateLoc,
2048 RAngleLoc,
2049 TypeParm,
2050 Converted);
2051 if (DI)
2052 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2054 return TemplateArgumentLoc();
2057 if (NonTypeTemplateParmDecl *NonTypeParm
2058 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2059 if (!NonTypeParm->hasDefaultArgument())
2060 return TemplateArgumentLoc();
2062 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2063 TemplateLoc,
2064 RAngleLoc,
2065 NonTypeParm,
2066 Converted);
2067 if (Arg.isInvalid())
2068 return TemplateArgumentLoc();
2070 Expr *ArgE = Arg.takeAs<Expr>();
2071 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2074 TemplateTemplateParmDecl *TempTempParm
2075 = cast<TemplateTemplateParmDecl>(Param);
2076 if (!TempTempParm->hasDefaultArgument())
2077 return TemplateArgumentLoc();
2079 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2080 TemplateLoc,
2081 RAngleLoc,
2082 TempTempParm,
2083 Converted);
2084 if (TName.isNull())
2085 return TemplateArgumentLoc();
2087 return TemplateArgumentLoc(TemplateArgument(TName),
2088 TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2089 TempTempParm->getDefaultArgument().getTemplateNameLoc());
2092 /// \brief Check that the given template argument corresponds to the given
2093 /// template parameter.
2094 bool Sema::CheckTemplateArgument(NamedDecl *Param,
2095 const TemplateArgumentLoc &Arg,
2096 TemplateDecl *Template,
2097 SourceLocation TemplateLoc,
2098 SourceLocation RAngleLoc,
2099 llvm::SmallVectorImpl<TemplateArgument> &Converted,
2100 CheckTemplateArgumentKind CTAK) {
2101 // Check template type parameters.
2102 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2103 return CheckTemplateTypeArgument(TTP, Arg, Converted);
2105 // Check non-type template parameters.
2106 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2107 // Do substitution on the type of the non-type template parameter
2108 // with the template arguments we've seen thus far.
2109 QualType NTTPType = NTTP->getType();
2110 if (NTTPType->isDependentType()) {
2111 // Do substitution on the type of the non-type template parameter.
2112 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2113 NTTP, Converted.data(), Converted.size(),
2114 SourceRange(TemplateLoc, RAngleLoc));
2116 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2117 Converted.data(), Converted.size());
2118 NTTPType = SubstType(NTTPType,
2119 MultiLevelTemplateArgumentList(TemplateArgs),
2120 NTTP->getLocation(),
2121 NTTP->getDeclName());
2122 // If that worked, check the non-type template parameter type
2123 // for validity.
2124 if (!NTTPType.isNull())
2125 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2126 NTTP->getLocation());
2127 if (NTTPType.isNull())
2128 return true;
2131 switch (Arg.getArgument().getKind()) {
2132 case TemplateArgument::Null:
2133 assert(false && "Should never see a NULL template argument here");
2134 return true;
2136 case TemplateArgument::Expression: {
2137 Expr *E = Arg.getArgument().getAsExpr();
2138 TemplateArgument Result;
2139 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2140 return true;
2142 Converted.push_back(Result);
2143 break;
2146 case TemplateArgument::Declaration:
2147 case TemplateArgument::Integral:
2148 // We've already checked this template argument, so just copy
2149 // it to the list of converted arguments.
2150 Converted.push_back(Arg.getArgument());
2151 break;
2153 case TemplateArgument::Template:
2154 // We were given a template template argument. It may not be ill-formed;
2155 // see below.
2156 if (DependentTemplateName *DTN
2157 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2158 // We have a template argument such as \c T::template X, which we
2159 // parsed as a template template argument. However, since we now
2160 // know that we need a non-type template argument, convert this
2161 // template name into an expression.
2163 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2164 Arg.getTemplateNameLoc());
2166 Expr *E = DependentScopeDeclRefExpr::Create(Context,
2167 DTN->getQualifier(),
2168 Arg.getTemplateQualifierRange(),
2169 NameInfo);
2171 TemplateArgument Result;
2172 if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2173 return true;
2175 Converted.push_back(Result);
2176 break;
2179 // We have a template argument that actually does refer to a class
2180 // template, template alias, or template template parameter, and
2181 // therefore cannot be a non-type template argument.
2182 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2183 << Arg.getSourceRange();
2185 Diag(Param->getLocation(), diag::note_template_param_here);
2186 return true;
2188 case TemplateArgument::Type: {
2189 // We have a non-type template parameter but the template
2190 // argument is a type.
2192 // C++ [temp.arg]p2:
2193 // In a template-argument, an ambiguity between a type-id and
2194 // an expression is resolved to a type-id, regardless of the
2195 // form of the corresponding template-parameter.
2197 // We warn specifically about this case, since it can be rather
2198 // confusing for users.
2199 QualType T = Arg.getArgument().getAsType();
2200 SourceRange SR = Arg.getSourceRange();
2201 if (T->isFunctionType())
2202 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2203 else
2204 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2205 Diag(Param->getLocation(), diag::note_template_param_here);
2206 return true;
2209 case TemplateArgument::Pack:
2210 llvm_unreachable("Caller must expand template argument packs");
2211 break;
2214 return false;
2218 // Check template template parameters.
2219 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2221 // Substitute into the template parameter list of the template
2222 // template parameter, since previously-supplied template arguments
2223 // may appear within the template template parameter.
2225 // Set up a template instantiation context.
2226 LocalInstantiationScope Scope(*this);
2227 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2228 TempParm, Converted.data(), Converted.size(),
2229 SourceRange(TemplateLoc, RAngleLoc));
2231 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2232 Converted.data(), Converted.size());
2233 TempParm = cast_or_null<TemplateTemplateParmDecl>(
2234 SubstDecl(TempParm, CurContext,
2235 MultiLevelTemplateArgumentList(TemplateArgs)));
2236 if (!TempParm)
2237 return true;
2239 // FIXME: TempParam is leaked.
2242 switch (Arg.getArgument().getKind()) {
2243 case TemplateArgument::Null:
2244 assert(false && "Should never see a NULL template argument here");
2245 return true;
2247 case TemplateArgument::Template:
2248 if (CheckTemplateArgument(TempParm, Arg))
2249 return true;
2251 Converted.push_back(Arg.getArgument());
2252 break;
2254 case TemplateArgument::Expression:
2255 case TemplateArgument::Type:
2256 // We have a template template parameter but the template
2257 // argument does not refer to a template.
2258 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2259 return true;
2261 case TemplateArgument::Declaration:
2262 llvm_unreachable(
2263 "Declaration argument with template template parameter");
2264 break;
2265 case TemplateArgument::Integral:
2266 llvm_unreachable(
2267 "Integral argument with template template parameter");
2268 break;
2270 case TemplateArgument::Pack:
2271 llvm_unreachable("Caller must expand template argument packs");
2272 break;
2275 return false;
2278 /// \brief Check that the given template argument list is well-formed
2279 /// for specializing the given template.
2280 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2281 SourceLocation TemplateLoc,
2282 const TemplateArgumentListInfo &TemplateArgs,
2283 bool PartialTemplateArgs,
2284 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2285 TemplateParameterList *Params = Template->getTemplateParameters();
2286 unsigned NumParams = Params->size();
2287 unsigned NumArgs = TemplateArgs.size();
2288 bool Invalid = false;
2290 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2292 bool HasParameterPack =
2293 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2295 if ((NumArgs > NumParams && !HasParameterPack) ||
2296 (NumArgs < Params->getMinRequiredArguments() &&
2297 !PartialTemplateArgs)) {
2298 // FIXME: point at either the first arg beyond what we can handle,
2299 // or the '>', depending on whether we have too many or too few
2300 // arguments.
2301 SourceRange Range;
2302 if (NumArgs > NumParams)
2303 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2304 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2305 << (NumArgs > NumParams)
2306 << (isa<ClassTemplateDecl>(Template)? 0 :
2307 isa<FunctionTemplateDecl>(Template)? 1 :
2308 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2309 << Template << Range;
2310 Diag(Template->getLocation(), diag::note_template_decl_here)
2311 << Params->getSourceRange();
2312 Invalid = true;
2315 // C++ [temp.arg]p1:
2316 // [...] The type and form of each template-argument specified in
2317 // a template-id shall match the type and form specified for the
2318 // corresponding parameter declared by the template in its
2319 // template-parameter-list.
2320 unsigned ArgIdx = 0;
2321 for (TemplateParameterList::iterator Param = Params->begin(),
2322 ParamEnd = Params->end();
2323 Param != ParamEnd; ++Param, ++ArgIdx) {
2324 if (ArgIdx > NumArgs && PartialTemplateArgs)
2325 break;
2327 // If we have a template parameter pack, check every remaining template
2328 // argument against that template parameter pack.
2329 if ((*Param)->isTemplateParameterPack()) {
2330 Diag(TemplateLoc, diag::err_variadic_templates_unsupported);
2331 return true;
2334 if (ArgIdx < NumArgs) {
2335 // Check the template argument we were given.
2336 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2337 TemplateLoc, RAngleLoc, Converted))
2338 return true;
2340 continue;
2343 // We have a default template argument that we will use.
2344 TemplateArgumentLoc Arg;
2346 // Retrieve the default template argument from the template
2347 // parameter. For each kind of template parameter, we substitute the
2348 // template arguments provided thus far and any "outer" template arguments
2349 // (when the template parameter was part of a nested template) into
2350 // the default argument.
2351 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2352 if (!TTP->hasDefaultArgument()) {
2353 assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2354 break;
2357 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2358 Template,
2359 TemplateLoc,
2360 RAngleLoc,
2361 TTP,
2362 Converted);
2363 if (!ArgType)
2364 return true;
2366 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2367 ArgType);
2368 } else if (NonTypeTemplateParmDecl *NTTP
2369 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2370 if (!NTTP->hasDefaultArgument()) {
2371 assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2372 break;
2375 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2376 TemplateLoc,
2377 RAngleLoc,
2378 NTTP,
2379 Converted);
2380 if (E.isInvalid())
2381 return true;
2383 Expr *Ex = E.takeAs<Expr>();
2384 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2385 } else {
2386 TemplateTemplateParmDecl *TempParm
2387 = cast<TemplateTemplateParmDecl>(*Param);
2389 if (!TempParm->hasDefaultArgument()) {
2390 assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2391 break;
2394 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2395 TemplateLoc,
2396 RAngleLoc,
2397 TempParm,
2398 Converted);
2399 if (Name.isNull())
2400 return true;
2402 Arg = TemplateArgumentLoc(TemplateArgument(Name),
2403 TempParm->getDefaultArgument().getTemplateQualifierRange(),
2404 TempParm->getDefaultArgument().getTemplateNameLoc());
2407 // Introduce an instantiation record that describes where we are using
2408 // the default template argument.
2409 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2410 Converted.data(), Converted.size(),
2411 SourceRange(TemplateLoc, RAngleLoc));
2413 // Check the default template argument.
2414 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2415 RAngleLoc, Converted))
2416 return true;
2419 return Invalid;
2422 namespace {
2423 class UnnamedLocalNoLinkageFinder
2424 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2426 Sema &S;
2427 SourceRange SR;
2429 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2431 public:
2432 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2434 bool Visit(QualType T) {
2435 return inherited::Visit(T.getTypePtr());
2438 #define TYPE(Class, Parent) \
2439 bool Visit##Class##Type(const Class##Type *);
2440 #define ABSTRACT_TYPE(Class, Parent) \
2441 bool Visit##Class##Type(const Class##Type *) { return false; }
2442 #define NON_CANONICAL_TYPE(Class, Parent) \
2443 bool Visit##Class##Type(const Class##Type *) { return false; }
2444 #include "clang/AST/TypeNodes.def"
2446 bool VisitTagDecl(const TagDecl *Tag);
2447 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2451 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2452 return false;
2455 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2456 return Visit(T->getElementType());
2459 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2460 return Visit(T->getPointeeType());
2463 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2464 const BlockPointerType* T) {
2465 return Visit(T->getPointeeType());
2468 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2469 const LValueReferenceType* T) {
2470 return Visit(T->getPointeeType());
2473 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2474 const RValueReferenceType* T) {
2475 return Visit(T->getPointeeType());
2478 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2479 const MemberPointerType* T) {
2480 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2483 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2484 const ConstantArrayType* T) {
2485 return Visit(T->getElementType());
2488 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2489 const IncompleteArrayType* T) {
2490 return Visit(T->getElementType());
2493 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2494 const VariableArrayType* T) {
2495 return Visit(T->getElementType());
2498 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2499 const DependentSizedArrayType* T) {
2500 return Visit(T->getElementType());
2503 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2504 const DependentSizedExtVectorType* T) {
2505 return Visit(T->getElementType());
2508 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2509 return Visit(T->getElementType());
2512 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2513 return Visit(T->getElementType());
2516 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2517 const FunctionProtoType* T) {
2518 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2519 AEnd = T->arg_type_end();
2520 A != AEnd; ++A) {
2521 if (Visit(*A))
2522 return true;
2525 return Visit(T->getResultType());
2528 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2529 const FunctionNoProtoType* T) {
2530 return Visit(T->getResultType());
2533 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2534 const UnresolvedUsingType*) {
2535 return false;
2538 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2539 return false;
2542 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2543 return Visit(T->getUnderlyingType());
2546 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2547 return false;
2550 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2551 return VisitTagDecl(T->getDecl());
2554 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2555 return VisitTagDecl(T->getDecl());
2558 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2559 const TemplateTypeParmType*) {
2560 return false;
2563 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2564 const TemplateSpecializationType*) {
2565 return false;
2568 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2569 const InjectedClassNameType* T) {
2570 return VisitTagDecl(T->getDecl());
2573 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2574 const DependentNameType* T) {
2575 return VisitNestedNameSpecifier(T->getQualifier());
2578 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2579 const DependentTemplateSpecializationType* T) {
2580 return VisitNestedNameSpecifier(T->getQualifier());
2583 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2584 return false;
2587 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2588 const ObjCInterfaceType *) {
2589 return false;
2592 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2593 const ObjCObjectPointerType *) {
2594 return false;
2597 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2598 if (Tag->getDeclContext()->isFunctionOrMethod()) {
2599 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2600 << S.Context.getTypeDeclType(Tag) << SR;
2601 return true;
2604 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2605 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2606 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2607 return true;
2610 return false;
2613 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2614 NestedNameSpecifier *NNS) {
2615 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2616 return true;
2618 switch (NNS->getKind()) {
2619 case NestedNameSpecifier::Identifier:
2620 case NestedNameSpecifier::Namespace:
2621 case NestedNameSpecifier::Global:
2622 return false;
2624 case NestedNameSpecifier::TypeSpec:
2625 case NestedNameSpecifier::TypeSpecWithTemplate:
2626 return Visit(QualType(NNS->getAsType(), 0));
2628 return false;
2632 /// \brief Check a template argument against its corresponding
2633 /// template type parameter.
2635 /// This routine implements the semantics of C++ [temp.arg.type]. It
2636 /// returns true if an error occurred, and false otherwise.
2637 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2638 TypeSourceInfo *ArgInfo) {
2639 assert(ArgInfo && "invalid TypeSourceInfo");
2640 QualType Arg = ArgInfo->getType();
2641 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2643 if (Arg->isVariablyModifiedType()) {
2644 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2645 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2646 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2649 // C++03 [temp.arg.type]p2:
2650 // A local type, a type with no linkage, an unnamed type or a type
2651 // compounded from any of these types shall not be used as a
2652 // template-argument for a template type-parameter.
2654 // C++0x allows these, and even in C++03 we allow them as an extension with
2655 // a warning.
2656 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2657 UnnamedLocalNoLinkageFinder Finder(*this, SR);
2658 (void)Finder.Visit(Context.getCanonicalType(Arg));
2661 return false;
2664 /// \brief Checks whether the given template argument is the address
2665 /// of an object or function according to C++ [temp.arg.nontype]p1.
2666 static bool
2667 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2668 NonTypeTemplateParmDecl *Param,
2669 QualType ParamType,
2670 Expr *ArgIn,
2671 TemplateArgument &Converted) {
2672 bool Invalid = false;
2673 Expr *Arg = ArgIn;
2674 QualType ArgType = Arg->getType();
2676 // See through any implicit casts we added to fix the type.
2677 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2678 Arg = Cast->getSubExpr();
2680 // C++ [temp.arg.nontype]p1:
2682 // A template-argument for a non-type, non-template
2683 // template-parameter shall be one of: [...]
2685 // -- the address of an object or function with external
2686 // linkage, including function templates and function
2687 // template-ids but excluding non-static class members,
2688 // expressed as & id-expression where the & is optional if
2689 // the name refers to a function or array, or if the
2690 // corresponding template-parameter is a reference; or
2691 DeclRefExpr *DRE = 0;
2693 // In C++98/03 mode, give an extension warning on any extra parentheses.
2694 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2695 bool ExtraParens = false;
2696 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2697 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2698 S.Diag(Arg->getSourceRange().getBegin(),
2699 diag::ext_template_arg_extra_parens)
2700 << Arg->getSourceRange();
2701 ExtraParens = true;
2704 Arg = Parens->getSubExpr();
2707 bool AddressTaken = false;
2708 SourceLocation AddrOpLoc;
2709 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2710 if (UnOp->getOpcode() == UO_AddrOf) {
2711 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2712 AddressTaken = true;
2713 AddrOpLoc = UnOp->getOperatorLoc();
2715 } else
2716 DRE = dyn_cast<DeclRefExpr>(Arg);
2718 if (!DRE) {
2719 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2720 << Arg->getSourceRange();
2721 S.Diag(Param->getLocation(), diag::note_template_param_here);
2722 return true;
2725 // Stop checking the precise nature of the argument if it is value dependent,
2726 // it should be checked when instantiated.
2727 if (Arg->isValueDependent()) {
2728 Converted = TemplateArgument(ArgIn);
2729 return false;
2732 if (!isa<ValueDecl>(DRE->getDecl())) {
2733 S.Diag(Arg->getSourceRange().getBegin(),
2734 diag::err_template_arg_not_object_or_func_form)
2735 << Arg->getSourceRange();
2736 S.Diag(Param->getLocation(), diag::note_template_param_here);
2737 return true;
2740 NamedDecl *Entity = 0;
2742 // Cannot refer to non-static data members
2743 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2744 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2745 << Field << Arg->getSourceRange();
2746 S.Diag(Param->getLocation(), diag::note_template_param_here);
2747 return true;
2750 // Cannot refer to non-static member functions
2751 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2752 if (!Method->isStatic()) {
2753 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2754 << Method << Arg->getSourceRange();
2755 S.Diag(Param->getLocation(), diag::note_template_param_here);
2756 return true;
2759 // Functions must have external linkage.
2760 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2761 if (!isExternalLinkage(Func->getLinkage())) {
2762 S.Diag(Arg->getSourceRange().getBegin(),
2763 diag::err_template_arg_function_not_extern)
2764 << Func << Arg->getSourceRange();
2765 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2766 << true;
2767 return true;
2770 // Okay: we've named a function with external linkage.
2771 Entity = Func;
2773 // If the template parameter has pointer type, the function decays.
2774 if (ParamType->isPointerType() && !AddressTaken)
2775 ArgType = S.Context.getPointerType(Func->getType());
2776 else if (AddressTaken && ParamType->isReferenceType()) {
2777 // If we originally had an address-of operator, but the
2778 // parameter has reference type, complain and (if things look
2779 // like they will work) drop the address-of operator.
2780 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2781 ParamType.getNonReferenceType())) {
2782 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2783 << ParamType;
2784 S.Diag(Param->getLocation(), diag::note_template_param_here);
2785 return true;
2788 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2789 << ParamType
2790 << FixItHint::CreateRemoval(AddrOpLoc);
2791 S.Diag(Param->getLocation(), diag::note_template_param_here);
2793 ArgType = Func->getType();
2795 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2796 if (!isExternalLinkage(Var->getLinkage())) {
2797 S.Diag(Arg->getSourceRange().getBegin(),
2798 diag::err_template_arg_object_not_extern)
2799 << Var << Arg->getSourceRange();
2800 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2801 << true;
2802 return true;
2805 // A value of reference type is not an object.
2806 if (Var->getType()->isReferenceType()) {
2807 S.Diag(Arg->getSourceRange().getBegin(),
2808 diag::err_template_arg_reference_var)
2809 << Var->getType() << Arg->getSourceRange();
2810 S.Diag(Param->getLocation(), diag::note_template_param_here);
2811 return true;
2814 // Okay: we've named an object with external linkage
2815 Entity = Var;
2817 // If the template parameter has pointer type, we must have taken
2818 // the address of this object.
2819 if (ParamType->isReferenceType()) {
2820 if (AddressTaken) {
2821 // If we originally had an address-of operator, but the
2822 // parameter has reference type, complain and (if things look
2823 // like they will work) drop the address-of operator.
2824 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2825 ParamType.getNonReferenceType())) {
2826 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2827 << ParamType;
2828 S.Diag(Param->getLocation(), diag::note_template_param_here);
2829 return true;
2832 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2833 << ParamType
2834 << FixItHint::CreateRemoval(AddrOpLoc);
2835 S.Diag(Param->getLocation(), diag::note_template_param_here);
2837 ArgType = Var->getType();
2839 } else if (!AddressTaken && ParamType->isPointerType()) {
2840 if (Var->getType()->isArrayType()) {
2841 // Array-to-pointer decay.
2842 ArgType = S.Context.getArrayDecayedType(Var->getType());
2843 } else {
2844 // If the template parameter has pointer type but the address of
2845 // this object was not taken, complain and (possibly) recover by
2846 // taking the address of the entity.
2847 ArgType = S.Context.getPointerType(Var->getType());
2848 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2849 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2850 << ParamType;
2851 S.Diag(Param->getLocation(), diag::note_template_param_here);
2852 return true;
2855 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2856 << ParamType
2857 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2859 S.Diag(Param->getLocation(), diag::note_template_param_here);
2862 } else {
2863 // We found something else, but we don't know specifically what it is.
2864 S.Diag(Arg->getSourceRange().getBegin(),
2865 diag::err_template_arg_not_object_or_func)
2866 << Arg->getSourceRange();
2867 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2868 return true;
2871 if (ParamType->isPointerType() &&
2872 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2873 S.IsQualificationConversion(ArgType, ParamType)) {
2874 // For pointer-to-object types, qualification conversions are
2875 // permitted.
2876 } else {
2877 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2878 if (!ParamRef->getPointeeType()->isFunctionType()) {
2879 // C++ [temp.arg.nontype]p5b3:
2880 // For a non-type template-parameter of type reference to
2881 // object, no conversions apply. The type referred to by the
2882 // reference may be more cv-qualified than the (otherwise
2883 // identical) type of the template- argument. The
2884 // template-parameter is bound directly to the
2885 // template-argument, which shall be an lvalue.
2887 // FIXME: Other qualifiers?
2888 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2889 unsigned ArgQuals = ArgType.getCVRQualifiers();
2891 if ((ParamQuals | ArgQuals) != ParamQuals) {
2892 S.Diag(Arg->getSourceRange().getBegin(),
2893 diag::err_template_arg_ref_bind_ignores_quals)
2894 << ParamType << Arg->getType()
2895 << Arg->getSourceRange();
2896 S.Diag(Param->getLocation(), diag::note_template_param_here);
2897 return true;
2902 // At this point, the template argument refers to an object or
2903 // function with external linkage. We now need to check whether the
2904 // argument and parameter types are compatible.
2905 if (!S.Context.hasSameUnqualifiedType(ArgType,
2906 ParamType.getNonReferenceType())) {
2907 // We can't perform this conversion or binding.
2908 if (ParamType->isReferenceType())
2909 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2910 << ParamType << Arg->getType() << Arg->getSourceRange();
2911 else
2912 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
2913 << Arg->getType() << ParamType << Arg->getSourceRange();
2914 S.Diag(Param->getLocation(), diag::note_template_param_here);
2915 return true;
2919 // Create the template argument.
2920 Converted = TemplateArgument(Entity->getCanonicalDecl());
2921 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2922 return false;
2925 /// \brief Checks whether the given template argument is a pointer to
2926 /// member constant according to C++ [temp.arg.nontype]p1.
2927 bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2928 TemplateArgument &Converted) {
2929 bool Invalid = false;
2931 // See through any implicit casts we added to fix the type.
2932 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2933 Arg = Cast->getSubExpr();
2935 // C++ [temp.arg.nontype]p1:
2937 // A template-argument for a non-type, non-template
2938 // template-parameter shall be one of: [...]
2940 // -- a pointer to member expressed as described in 5.3.1.
2941 DeclRefExpr *DRE = 0;
2943 // In C++98/03 mode, give an extension warning on any extra parentheses.
2944 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2945 bool ExtraParens = false;
2946 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2947 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
2948 Diag(Arg->getSourceRange().getBegin(),
2949 diag::ext_template_arg_extra_parens)
2950 << Arg->getSourceRange();
2951 ExtraParens = true;
2954 Arg = Parens->getSubExpr();
2957 // A pointer-to-member constant written &Class::member.
2958 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2959 if (UnOp->getOpcode() == UO_AddrOf) {
2960 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2961 if (DRE && !DRE->getQualifier())
2962 DRE = 0;
2965 // A constant of pointer-to-member type.
2966 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2967 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2968 if (VD->getType()->isMemberPointerType()) {
2969 if (isa<NonTypeTemplateParmDecl>(VD) ||
2970 (isa<VarDecl>(VD) &&
2971 Context.getCanonicalType(VD->getType()).isConstQualified())) {
2972 if (Arg->isTypeDependent() || Arg->isValueDependent())
2973 Converted = TemplateArgument(Arg);
2974 else
2975 Converted = TemplateArgument(VD->getCanonicalDecl());
2976 return Invalid;
2981 DRE = 0;
2984 if (!DRE)
2985 return Diag(Arg->getSourceRange().getBegin(),
2986 diag::err_template_arg_not_pointer_to_member_form)
2987 << Arg->getSourceRange();
2989 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2990 assert((isa<FieldDecl>(DRE->getDecl()) ||
2991 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2992 "Only non-static member pointers can make it here");
2994 // Okay: this is the address of a non-static member, and therefore
2995 // a member pointer constant.
2996 if (Arg->isTypeDependent() || Arg->isValueDependent())
2997 Converted = TemplateArgument(Arg);
2998 else
2999 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3000 return Invalid;
3003 // We found something else, but we don't know specifically what it is.
3004 Diag(Arg->getSourceRange().getBegin(),
3005 diag::err_template_arg_not_pointer_to_member_form)
3006 << Arg->getSourceRange();
3007 Diag(DRE->getDecl()->getLocation(),
3008 diag::note_template_arg_refers_here);
3009 return true;
3012 /// \brief Check a template argument against its corresponding
3013 /// non-type template parameter.
3015 /// This routine implements the semantics of C++ [temp.arg.nontype].
3016 /// It returns true if an error occurred, and false otherwise. \p
3017 /// InstantiatedParamType is the type of the non-type template
3018 /// parameter after it has been instantiated.
3020 /// If no error was detected, Converted receives the converted template argument.
3021 bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3022 QualType InstantiatedParamType, Expr *&Arg,
3023 TemplateArgument &Converted,
3024 CheckTemplateArgumentKind CTAK) {
3025 SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3027 // If either the parameter has a dependent type or the argument is
3028 // type-dependent, there's nothing we can check now.
3029 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3030 // FIXME: Produce a cloned, canonical expression?
3031 Converted = TemplateArgument(Arg);
3032 return false;
3035 // C++ [temp.arg.nontype]p5:
3036 // The following conversions are performed on each expression used
3037 // as a non-type template-argument. If a non-type
3038 // template-argument cannot be converted to the type of the
3039 // corresponding template-parameter then the program is
3040 // ill-formed.
3042 // -- for a non-type template-parameter of integral or
3043 // enumeration type, integral promotions (4.5) and integral
3044 // conversions (4.7) are applied.
3045 QualType ParamType = InstantiatedParamType;
3046 QualType ArgType = Arg->getType();
3047 if (ParamType->isIntegralOrEnumerationType()) {
3048 // C++ [temp.arg.nontype]p1:
3049 // A template-argument for a non-type, non-template
3050 // template-parameter shall be one of:
3052 // -- an integral constant-expression of integral or enumeration
3053 // type; or
3054 // -- the name of a non-type template-parameter; or
3055 SourceLocation NonConstantLoc;
3056 llvm::APSInt Value;
3057 if (!ArgType->isIntegralOrEnumerationType()) {
3058 Diag(Arg->getSourceRange().getBegin(),
3059 diag::err_template_arg_not_integral_or_enumeral)
3060 << ArgType << Arg->getSourceRange();
3061 Diag(Param->getLocation(), diag::note_template_param_here);
3062 return true;
3063 } else if (!Arg->isValueDependent() &&
3064 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3065 Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3066 << ArgType << Arg->getSourceRange();
3067 return true;
3070 // From here on out, all we care about are the unqualified forms
3071 // of the parameter and argument types.
3072 ParamType = ParamType.getUnqualifiedType();
3073 ArgType = ArgType.getUnqualifiedType();
3075 // Try to convert the argument to the parameter's type.
3076 if (Context.hasSameType(ParamType, ArgType)) {
3077 // Okay: no conversion necessary
3078 } else if (CTAK == CTAK_Deduced) {
3079 // C++ [temp.deduct.type]p17:
3080 // If, in the declaration of a function template with a non-type
3081 // template-parameter, the non-type template- parameter is used
3082 // in an expression in the function parameter-list and, if the
3083 // corresponding template-argument is deduced, the
3084 // template-argument type shall match the type of the
3085 // template-parameter exactly, except that a template-argument
3086 // deduced from an array bound may be of any integral type.
3087 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3088 << ArgType << ParamType;
3089 Diag(Param->getLocation(), diag::note_template_param_here);
3090 return true;
3091 } else if (ParamType->isBooleanType()) {
3092 // This is an integral-to-boolean conversion.
3093 ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3094 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3095 !ParamType->isEnumeralType()) {
3096 // This is an integral promotion or conversion.
3097 ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3098 } else {
3099 // We can't perform this conversion.
3100 Diag(Arg->getSourceRange().getBegin(),
3101 diag::err_template_arg_not_convertible)
3102 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3103 Diag(Param->getLocation(), diag::note_template_param_here);
3104 return true;
3107 QualType IntegerType = Context.getCanonicalType(ParamType);
3108 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3109 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3111 if (!Arg->isValueDependent()) {
3112 llvm::APSInt OldValue = Value;
3114 // Coerce the template argument's value to the value it will have
3115 // based on the template parameter's type.
3116 unsigned AllowedBits = Context.getTypeSize(IntegerType);
3117 if (Value.getBitWidth() != AllowedBits)
3118 Value.extOrTrunc(AllowedBits);
3119 Value.setIsSigned(IntegerType->isSignedIntegerType());
3121 // Complain if an unsigned parameter received a negative value.
3122 if (IntegerType->isUnsignedIntegerType()
3123 && (OldValue.isSigned() && OldValue.isNegative())) {
3124 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3125 << OldValue.toString(10) << Value.toString(10) << Param->getType()
3126 << Arg->getSourceRange();
3127 Diag(Param->getLocation(), diag::note_template_param_here);
3130 // Complain if we overflowed the template parameter's type.
3131 unsigned RequiredBits;
3132 if (IntegerType->isUnsignedIntegerType())
3133 RequiredBits = OldValue.getActiveBits();
3134 else if (OldValue.isUnsigned())
3135 RequiredBits = OldValue.getActiveBits() + 1;
3136 else
3137 RequiredBits = OldValue.getMinSignedBits();
3138 if (RequiredBits > AllowedBits) {
3139 Diag(Arg->getSourceRange().getBegin(),
3140 diag::warn_template_arg_too_large)
3141 << OldValue.toString(10) << Value.toString(10) << Param->getType()
3142 << Arg->getSourceRange();
3143 Diag(Param->getLocation(), diag::note_template_param_here);
3147 // Add the value of this argument to the list of converted
3148 // arguments. We use the bitwidth and signedness of the template
3149 // parameter.
3150 if (Arg->isValueDependent()) {
3151 // The argument is value-dependent. Create a new
3152 // TemplateArgument with the converted expression.
3153 Converted = TemplateArgument(Arg);
3154 return false;
3157 Converted = TemplateArgument(Value,
3158 ParamType->isEnumeralType() ? ParamType
3159 : IntegerType);
3160 return false;
3163 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3165 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3166 // from a template argument of type std::nullptr_t to a non-type
3167 // template parameter of type pointer to object, pointer to
3168 // function, or pointer-to-member, respectively.
3169 if (ArgType->isNullPtrType() &&
3170 (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3171 Converted = TemplateArgument((NamedDecl *)0);
3172 return false;
3175 // Handle pointer-to-function, reference-to-function, and
3176 // pointer-to-member-function all in (roughly) the same way.
3177 if (// -- For a non-type template-parameter of type pointer to
3178 // function, only the function-to-pointer conversion (4.3) is
3179 // applied. If the template-argument represents a set of
3180 // overloaded functions (or a pointer to such), the matching
3181 // function is selected from the set (13.4).
3182 (ParamType->isPointerType() &&
3183 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3184 // -- For a non-type template-parameter of type reference to
3185 // function, no conversions apply. If the template-argument
3186 // represents a set of overloaded functions, the matching
3187 // function is selected from the set (13.4).
3188 (ParamType->isReferenceType() &&
3189 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3190 // -- For a non-type template-parameter of type pointer to
3191 // member function, no conversions apply. If the
3192 // template-argument represents a set of overloaded member
3193 // functions, the matching member function is selected from
3194 // the set (13.4).
3195 (ParamType->isMemberPointerType() &&
3196 ParamType->getAs<MemberPointerType>()->getPointeeType()
3197 ->isFunctionType())) {
3199 if (Arg->getType() == Context.OverloadTy) {
3200 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3201 true,
3202 FoundResult)) {
3203 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3204 return true;
3206 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3207 ArgType = Arg->getType();
3208 } else
3209 return true;
3212 if (!ParamType->isMemberPointerType())
3213 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3214 ParamType,
3215 Arg, Converted);
3217 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3218 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3219 } else if (!Context.hasSameUnqualifiedType(ArgType,
3220 ParamType.getNonReferenceType())) {
3221 // We can't perform this conversion.
3222 Diag(Arg->getSourceRange().getBegin(),
3223 diag::err_template_arg_not_convertible)
3224 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3225 Diag(Param->getLocation(), diag::note_template_param_here);
3226 return true;
3229 return CheckTemplateArgumentPointerToMember(Arg, Converted);
3232 if (ParamType->isPointerType()) {
3233 // -- for a non-type template-parameter of type pointer to
3234 // object, qualification conversions (4.4) and the
3235 // array-to-pointer conversion (4.2) are applied.
3236 // C++0x also allows a value of std::nullptr_t.
3237 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3238 "Only object pointers allowed here");
3240 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3241 ParamType,
3242 Arg, Converted);
3245 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3246 // -- For a non-type template-parameter of type reference to
3247 // object, no conversions apply. The type referred to by the
3248 // reference may be more cv-qualified than the (otherwise
3249 // identical) type of the template-argument. The
3250 // template-parameter is bound directly to the
3251 // template-argument, which must be an lvalue.
3252 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3253 "Only object references allowed here");
3255 if (Arg->getType() == Context.OverloadTy) {
3256 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3257 ParamRefType->getPointeeType(),
3258 true,
3259 FoundResult)) {
3260 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3261 return true;
3263 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3264 ArgType = Arg->getType();
3265 } else
3266 return true;
3269 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3270 ParamType,
3271 Arg, Converted);
3274 // -- For a non-type template-parameter of type pointer to data
3275 // member, qualification conversions (4.4) are applied.
3276 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3278 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3279 // Types match exactly: nothing more to do here.
3280 } else if (IsQualificationConversion(ArgType, ParamType)) {
3281 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3282 } else {
3283 // We can't perform this conversion.
3284 Diag(Arg->getSourceRange().getBegin(),
3285 diag::err_template_arg_not_convertible)
3286 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3287 Diag(Param->getLocation(), diag::note_template_param_here);
3288 return true;
3291 return CheckTemplateArgumentPointerToMember(Arg, Converted);
3294 /// \brief Check a template argument against its corresponding
3295 /// template template parameter.
3297 /// This routine implements the semantics of C++ [temp.arg.template].
3298 /// It returns true if an error occurred, and false otherwise.
3299 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3300 const TemplateArgumentLoc &Arg) {
3301 TemplateName Name = Arg.getArgument().getAsTemplate();
3302 TemplateDecl *Template = Name.getAsTemplateDecl();
3303 if (!Template) {
3304 // Any dependent template name is fine.
3305 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3306 return false;
3309 // C++ [temp.arg.template]p1:
3310 // A template-argument for a template template-parameter shall be
3311 // the name of a class template, expressed as id-expression. Only
3312 // primary class templates are considered when matching the
3313 // template template argument with the corresponding parameter;
3314 // partial specializations are not considered even if their
3315 // parameter lists match that of the template template parameter.
3317 // Note that we also allow template template parameters here, which
3318 // will happen when we are dealing with, e.g., class template
3319 // partial specializations.
3320 if (!isa<ClassTemplateDecl>(Template) &&
3321 !isa<TemplateTemplateParmDecl>(Template)) {
3322 assert(isa<FunctionTemplateDecl>(Template) &&
3323 "Only function templates are possible here");
3324 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3325 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3326 << Template;
3329 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3330 Param->getTemplateParameters(),
3331 true,
3332 TPL_TemplateTemplateArgumentMatch,
3333 Arg.getLocation());
3336 /// \brief Given a non-type template argument that refers to a
3337 /// declaration and the type of its corresponding non-type template
3338 /// parameter, produce an expression that properly refers to that
3339 /// declaration.
3340 ExprResult
3341 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3342 QualType ParamType,
3343 SourceLocation Loc) {
3344 assert(Arg.getKind() == TemplateArgument::Declaration &&
3345 "Only declaration template arguments permitted here");
3346 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3348 if (VD->getDeclContext()->isRecord() &&
3349 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3350 // If the value is a class member, we might have a pointer-to-member.
3351 // Determine whether the non-type template template parameter is of
3352 // pointer-to-member type. If so, we need to build an appropriate
3353 // expression for a pointer-to-member, since a "normal" DeclRefExpr
3354 // would refer to the member itself.
3355 if (ParamType->isMemberPointerType()) {
3356 QualType ClassType
3357 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3358 NestedNameSpecifier *Qualifier
3359 = NestedNameSpecifier::Create(Context, 0, false,
3360 ClassType.getTypePtr());
3361 CXXScopeSpec SS;
3362 SS.setScopeRep(Qualifier);
3363 ExprResult RefExpr = BuildDeclRefExpr(VD,
3364 VD->getType().getNonReferenceType(),
3365 Loc,
3366 &SS);
3367 if (RefExpr.isInvalid())
3368 return ExprError();
3370 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3372 // We might need to perform a trailing qualification conversion, since
3373 // the element type on the parameter could be more qualified than the
3374 // element type in the expression we constructed.
3375 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3376 ParamType.getUnqualifiedType())) {
3377 Expr *RefE = RefExpr.takeAs<Expr>();
3378 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3379 RefExpr = Owned(RefE);
3382 assert(!RefExpr.isInvalid() &&
3383 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3384 ParamType.getUnqualifiedType()));
3385 return move(RefExpr);
3389 QualType T = VD->getType().getNonReferenceType();
3390 if (ParamType->isPointerType()) {
3391 // When the non-type template parameter is a pointer, take the
3392 // address of the declaration.
3393 ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3394 if (RefExpr.isInvalid())
3395 return ExprError();
3397 if (T->isFunctionType() || T->isArrayType()) {
3398 // Decay functions and arrays.
3399 Expr *RefE = (Expr *)RefExpr.get();
3400 DefaultFunctionArrayConversion(RefE);
3401 if (RefE != RefExpr.get()) {
3402 RefExpr.release();
3403 RefExpr = Owned(RefE);
3406 return move(RefExpr);
3409 // Take the address of everything else
3410 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3413 // If the non-type template parameter has reference type, qualify the
3414 // resulting declaration reference with the extra qualifiers on the
3415 // type that the reference refers to.
3416 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3417 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3419 return BuildDeclRefExpr(VD, T, Loc);
3422 /// \brief Construct a new expression that refers to the given
3423 /// integral template argument with the given source-location
3424 /// information.
3426 /// This routine takes care of the mapping from an integral template
3427 /// argument (which may have any integral type) to the appropriate
3428 /// literal value.
3429 ExprResult
3430 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3431 SourceLocation Loc) {
3432 assert(Arg.getKind() == TemplateArgument::Integral &&
3433 "Operation is only value for integral template arguments");
3434 QualType T = Arg.getIntegralType();
3435 if (T->isCharType() || T->isWideCharType())
3436 return Owned(new (Context) CharacterLiteral(
3437 Arg.getAsIntegral()->getZExtValue(),
3438 T->isWideCharType(),
3440 Loc));
3441 if (T->isBooleanType())
3442 return Owned(new (Context) CXXBoolLiteralExpr(
3443 Arg.getAsIntegral()->getBoolValue(),
3445 Loc));
3447 return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc));
3451 /// \brief Determine whether the given template parameter lists are
3452 /// equivalent.
3454 /// \param New The new template parameter list, typically written in the
3455 /// source code as part of a new template declaration.
3457 /// \param Old The old template parameter list, typically found via
3458 /// name lookup of the template declared with this template parameter
3459 /// list.
3461 /// \param Complain If true, this routine will produce a diagnostic if
3462 /// the template parameter lists are not equivalent.
3464 /// \param Kind describes how we are to match the template parameter lists.
3466 /// \param TemplateArgLoc If this source location is valid, then we
3467 /// are actually checking the template parameter list of a template
3468 /// argument (New) against the template parameter list of its
3469 /// corresponding template template parameter (Old). We produce
3470 /// slightly different diagnostics in this scenario.
3472 /// \returns True if the template parameter lists are equal, false
3473 /// otherwise.
3474 bool
3475 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3476 TemplateParameterList *Old,
3477 bool Complain,
3478 TemplateParameterListEqualKind Kind,
3479 SourceLocation TemplateArgLoc) {
3480 if (Old->size() != New->size()) {
3481 if (Complain) {
3482 unsigned NextDiag = diag::err_template_param_list_different_arity;
3483 if (TemplateArgLoc.isValid()) {
3484 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3485 NextDiag = diag::note_template_param_list_different_arity;
3487 Diag(New->getTemplateLoc(), NextDiag)
3488 << (New->size() > Old->size())
3489 << (Kind != TPL_TemplateMatch)
3490 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3491 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3492 << (Kind != TPL_TemplateMatch)
3493 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3496 return false;
3499 for (TemplateParameterList::iterator OldParm = Old->begin(),
3500 OldParmEnd = Old->end(), NewParm = New->begin();
3501 OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3502 if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3503 if (Complain) {
3504 unsigned NextDiag = diag::err_template_param_different_kind;
3505 if (TemplateArgLoc.isValid()) {
3506 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3507 NextDiag = diag::note_template_param_different_kind;
3509 Diag((*NewParm)->getLocation(), NextDiag)
3510 << (Kind != TPL_TemplateMatch);
3511 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3512 << (Kind != TPL_TemplateMatch);
3514 return false;
3517 if (TemplateTypeParmDecl *OldTTP
3518 = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3519 // Template type parameters are equivalent if either both are template
3520 // type parameter packs or neither are (since we know we're at the same
3521 // index).
3522 TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3523 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3524 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3525 // allow one to match a template parameter pack in the template
3526 // parameter list of a template template parameter to one or more
3527 // template parameters in the template parameter list of the
3528 // corresponding template template argument.
3529 if (Complain) {
3530 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3531 if (TemplateArgLoc.isValid()) {
3532 Diag(TemplateArgLoc,
3533 diag::err_template_arg_template_params_mismatch);
3534 NextDiag = diag::note_template_parameter_pack_non_pack;
3536 Diag(NewTTP->getLocation(), NextDiag)
3537 << 0 << NewTTP->isParameterPack();
3538 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3539 << 0 << OldTTP->isParameterPack();
3541 return false;
3543 } else if (NonTypeTemplateParmDecl *OldNTTP
3544 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3545 // The types of non-type template parameters must agree.
3546 NonTypeTemplateParmDecl *NewNTTP
3547 = cast<NonTypeTemplateParmDecl>(*NewParm);
3549 // If we are matching a template template argument to a template
3550 // template parameter and one of the non-type template parameter types
3551 // is dependent, then we must wait until template instantiation time
3552 // to actually compare the arguments.
3553 if (Kind == TPL_TemplateTemplateArgumentMatch &&
3554 (OldNTTP->getType()->isDependentType() ||
3555 NewNTTP->getType()->isDependentType()))
3556 continue;
3558 if (Context.getCanonicalType(OldNTTP->getType()) !=
3559 Context.getCanonicalType(NewNTTP->getType())) {
3560 if (Complain) {
3561 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3562 if (TemplateArgLoc.isValid()) {
3563 Diag(TemplateArgLoc,
3564 diag::err_template_arg_template_params_mismatch);
3565 NextDiag = diag::note_template_nontype_parm_different_type;
3567 Diag(NewNTTP->getLocation(), NextDiag)
3568 << NewNTTP->getType()
3569 << (Kind != TPL_TemplateMatch);
3570 Diag(OldNTTP->getLocation(),
3571 diag::note_template_nontype_parm_prev_declaration)
3572 << OldNTTP->getType();
3574 return false;
3576 } else {
3577 // The template parameter lists of template template
3578 // parameters must agree.
3579 assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3580 "Only template template parameters handled here");
3581 TemplateTemplateParmDecl *OldTTP
3582 = cast<TemplateTemplateParmDecl>(*OldParm);
3583 TemplateTemplateParmDecl *NewTTP
3584 = cast<TemplateTemplateParmDecl>(*NewParm);
3585 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3586 OldTTP->getTemplateParameters(),
3587 Complain,
3588 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3589 TemplateArgLoc))
3590 return false;
3594 return true;
3597 /// \brief Check whether a template can be declared within this scope.
3599 /// If the template declaration is valid in this scope, returns
3600 /// false. Otherwise, issues a diagnostic and returns true.
3601 bool
3602 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3603 // Find the nearest enclosing declaration scope.
3604 while ((S->getFlags() & Scope::DeclScope) == 0 ||
3605 (S->getFlags() & Scope::TemplateParamScope) != 0)
3606 S = S->getParent();
3608 // C++ [temp]p2:
3609 // A template-declaration can appear only as a namespace scope or
3610 // class scope declaration.
3611 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3612 if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3613 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3614 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3615 << TemplateParams->getSourceRange();
3617 while (Ctx && isa<LinkageSpecDecl>(Ctx))
3618 Ctx = Ctx->getParent();
3620 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3621 return false;
3623 return Diag(TemplateParams->getTemplateLoc(),
3624 diag::err_template_outside_namespace_or_class_scope)
3625 << TemplateParams->getSourceRange();
3628 /// \brief Determine what kind of template specialization the given declaration
3629 /// is.
3630 static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3631 if (!D)
3632 return TSK_Undeclared;
3634 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3635 return Record->getTemplateSpecializationKind();
3636 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3637 return Function->getTemplateSpecializationKind();
3638 if (VarDecl *Var = dyn_cast<VarDecl>(D))
3639 return Var->getTemplateSpecializationKind();
3641 return TSK_Undeclared;
3644 /// \brief Check whether a specialization is well-formed in the current
3645 /// context.
3647 /// This routine determines whether a template specialization can be declared
3648 /// in the current context (C++ [temp.expl.spec]p2).
3650 /// \param S the semantic analysis object for which this check is being
3651 /// performed.
3653 /// \param Specialized the entity being specialized or instantiated, which
3654 /// may be a kind of template (class template, function template, etc.) or
3655 /// a member of a class template (member function, static data member,
3656 /// member class).
3658 /// \param PrevDecl the previous declaration of this entity, if any.
3660 /// \param Loc the location of the explicit specialization or instantiation of
3661 /// this entity.
3663 /// \param IsPartialSpecialization whether this is a partial specialization of
3664 /// a class template.
3666 /// \returns true if there was an error that we cannot recover from, false
3667 /// otherwise.
3668 static bool CheckTemplateSpecializationScope(Sema &S,
3669 NamedDecl *Specialized,
3670 NamedDecl *PrevDecl,
3671 SourceLocation Loc,
3672 bool IsPartialSpecialization) {
3673 // Keep these "kind" numbers in sync with the %select statements in the
3674 // various diagnostics emitted by this routine.
3675 int EntityKind = 0;
3676 bool isTemplateSpecialization = false;
3677 if (isa<ClassTemplateDecl>(Specialized)) {
3678 EntityKind = IsPartialSpecialization? 1 : 0;
3679 isTemplateSpecialization = true;
3680 } else if (isa<FunctionTemplateDecl>(Specialized)) {
3681 EntityKind = 2;
3682 isTemplateSpecialization = true;
3683 } else if (isa<CXXMethodDecl>(Specialized))
3684 EntityKind = 3;
3685 else if (isa<VarDecl>(Specialized))
3686 EntityKind = 4;
3687 else if (isa<RecordDecl>(Specialized))
3688 EntityKind = 5;
3689 else {
3690 S.Diag(Loc, diag::err_template_spec_unknown_kind);
3691 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3692 return true;
3695 // C++ [temp.expl.spec]p2:
3696 // An explicit specialization shall be declared in the namespace
3697 // of which the template is a member, or, for member templates, in
3698 // the namespace of which the enclosing class or enclosing class
3699 // template is a member. An explicit specialization of a member
3700 // function, member class or static data member of a class
3701 // template shall be declared in the namespace of which the class
3702 // template is a member. Such a declaration may also be a
3703 // definition. If the declaration is not a definition, the
3704 // specialization may be defined later in the name- space in which
3705 // the explicit specialization was declared, or in a namespace
3706 // that encloses the one in which the explicit specialization was
3707 // declared.
3708 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3709 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3710 << Specialized;
3711 return true;
3714 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3715 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3716 << Specialized;
3717 return true;
3720 // C++ [temp.class.spec]p6:
3721 // A class template partial specialization may be declared or redeclared
3722 // in any namespace scope in which its definition may be defined (14.5.1
3723 // and 14.5.2).
3724 bool ComplainedAboutScope = false;
3725 DeclContext *SpecializedContext
3726 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3727 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3728 if ((!PrevDecl ||
3729 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3730 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3731 // C++ [temp.exp.spec]p2:
3732 // An explicit specialization shall be declared in the namespace of which
3733 // the template is a member, or, for member templates, in the namespace
3734 // of which the enclosing class or enclosing class template is a member.
3735 // An explicit specialization of a member function, member class or
3736 // static data member of a class template shall be declared in the
3737 // namespace of which the class template is a member.
3739 // C++0x [temp.expl.spec]p2:
3740 // An explicit specialization shall be declared in a namespace enclosing
3741 // the specialized template.
3742 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3743 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3744 bool IsCPlusPlus0xExtension
3745 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3746 if (isa<TranslationUnitDecl>(SpecializedContext))
3747 S.Diag(Loc, IsCPlusPlus0xExtension
3748 ? diag::ext_template_spec_decl_out_of_scope_global
3749 : diag::err_template_spec_decl_out_of_scope_global)
3750 << EntityKind << Specialized;
3751 else if (isa<NamespaceDecl>(SpecializedContext))
3752 S.Diag(Loc, IsCPlusPlus0xExtension
3753 ? diag::ext_template_spec_decl_out_of_scope
3754 : diag::err_template_spec_decl_out_of_scope)
3755 << EntityKind << Specialized
3756 << cast<NamedDecl>(SpecializedContext);
3758 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3759 ComplainedAboutScope = true;
3763 // Make sure that this redeclaration (or definition) occurs in an enclosing
3764 // namespace.
3765 // Note that HandleDeclarator() performs this check for explicit
3766 // specializations of function templates, static data members, and member
3767 // functions, so we skip the check here for those kinds of entities.
3768 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3769 // Should we refactor that check, so that it occurs later?
3770 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3771 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3772 isa<FunctionDecl>(Specialized))) {
3773 if (isa<TranslationUnitDecl>(SpecializedContext))
3774 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3775 << EntityKind << Specialized;
3776 else if (isa<NamespaceDecl>(SpecializedContext))
3777 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3778 << EntityKind << Specialized
3779 << cast<NamedDecl>(SpecializedContext);
3781 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3784 // FIXME: check for specialization-after-instantiation errors and such.
3786 return false;
3789 /// \brief Check the non-type template arguments of a class template
3790 /// partial specialization according to C++ [temp.class.spec]p9.
3792 /// \param TemplateParams the template parameters of the primary class
3793 /// template.
3795 /// \param TemplateArg the template arguments of the class template
3796 /// partial specialization.
3798 /// \param MirrorsPrimaryTemplate will be set true if the class
3799 /// template partial specialization arguments are identical to the
3800 /// implicit template arguments of the primary template. This is not
3801 /// necessarily an error (C++0x), and it is left to the caller to diagnose
3802 /// this condition when it is an error.
3804 /// \returns true if there was an error, false otherwise.
3805 bool Sema::CheckClassTemplatePartialSpecializationArgs(
3806 TemplateParameterList *TemplateParams,
3807 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs,
3808 bool &MirrorsPrimaryTemplate) {
3809 // FIXME: the interface to this function will have to change to
3810 // accommodate variadic templates.
3811 MirrorsPrimaryTemplate = true;
3813 const TemplateArgument *ArgList = TemplateArgs.data();
3815 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3816 // Determine whether the template argument list of the partial
3817 // specialization is identical to the implicit argument list of
3818 // the primary template. The caller may need to diagnostic this as
3819 // an error per C++ [temp.class.spec]p9b3.
3820 if (MirrorsPrimaryTemplate) {
3821 if (TemplateTypeParmDecl *TTP
3822 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3823 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3824 Context.getCanonicalType(ArgList[I].getAsType()))
3825 MirrorsPrimaryTemplate = false;
3826 } else if (TemplateTemplateParmDecl *TTP
3827 = dyn_cast<TemplateTemplateParmDecl>(
3828 TemplateParams->getParam(I))) {
3829 TemplateName Name = ArgList[I].getAsTemplate();
3830 TemplateTemplateParmDecl *ArgDecl
3831 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3832 if (!ArgDecl ||
3833 ArgDecl->getIndex() != TTP->getIndex() ||
3834 ArgDecl->getDepth() != TTP->getDepth())
3835 MirrorsPrimaryTemplate = false;
3839 NonTypeTemplateParmDecl *Param
3840 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3841 if (!Param) {
3842 continue;
3845 Expr *ArgExpr = ArgList[I].getAsExpr();
3846 if (!ArgExpr) {
3847 MirrorsPrimaryTemplate = false;
3848 continue;
3851 // C++ [temp.class.spec]p8:
3852 // A non-type argument is non-specialized if it is the name of a
3853 // non-type parameter. All other non-type arguments are
3854 // specialized.
3856 // Below, we check the two conditions that only apply to
3857 // specialized non-type arguments, so skip any non-specialized
3858 // arguments.
3859 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3860 if (NonTypeTemplateParmDecl *NTTP
3861 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3862 if (MirrorsPrimaryTemplate &&
3863 (Param->getIndex() != NTTP->getIndex() ||
3864 Param->getDepth() != NTTP->getDepth()))
3865 MirrorsPrimaryTemplate = false;
3867 continue;
3870 // C++ [temp.class.spec]p9:
3871 // Within the argument list of a class template partial
3872 // specialization, the following restrictions apply:
3873 // -- A partially specialized non-type argument expression
3874 // shall not involve a template parameter of the partial
3875 // specialization except when the argument expression is a
3876 // simple identifier.
3877 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3878 Diag(ArgExpr->getLocStart(),
3879 diag::err_dependent_non_type_arg_in_partial_spec)
3880 << ArgExpr->getSourceRange();
3881 return true;
3884 // -- The type of a template parameter corresponding to a
3885 // specialized non-type argument shall not be dependent on a
3886 // parameter of the specialization.
3887 if (Param->getType()->isDependentType()) {
3888 Diag(ArgExpr->getLocStart(),
3889 diag::err_dependent_typed_non_type_arg_in_partial_spec)
3890 << Param->getType()
3891 << ArgExpr->getSourceRange();
3892 Diag(Param->getLocation(), diag::note_template_param_here);
3893 return true;
3896 MirrorsPrimaryTemplate = false;
3899 return false;
3902 /// \brief Retrieve the previous declaration of the given declaration.
3903 static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3904 if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3905 return VD->getPreviousDeclaration();
3906 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3907 return FD->getPreviousDeclaration();
3908 if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3909 return TD->getPreviousDeclaration();
3910 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3911 return TD->getPreviousDeclaration();
3912 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3913 return FTD->getPreviousDeclaration();
3914 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3915 return CTD->getPreviousDeclaration();
3916 return 0;
3919 DeclResult
3920 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3921 TagUseKind TUK,
3922 SourceLocation KWLoc,
3923 CXXScopeSpec &SS,
3924 TemplateTy TemplateD,
3925 SourceLocation TemplateNameLoc,
3926 SourceLocation LAngleLoc,
3927 ASTTemplateArgsPtr TemplateArgsIn,
3928 SourceLocation RAngleLoc,
3929 AttributeList *Attr,
3930 MultiTemplateParamsArg TemplateParameterLists) {
3931 assert(TUK != TUK_Reference && "References are not specializations");
3933 // Find the class template we're specializing
3934 TemplateName Name = TemplateD.getAsVal<TemplateName>();
3935 ClassTemplateDecl *ClassTemplate
3936 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3938 if (!ClassTemplate) {
3939 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3940 << (Name.getAsTemplateDecl() &&
3941 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3942 return true;
3945 bool isExplicitSpecialization = false;
3946 bool isPartialSpecialization = false;
3948 // Check the validity of the template headers that introduce this
3949 // template.
3950 // FIXME: We probably shouldn't complain about these headers for
3951 // friend declarations.
3952 bool Invalid = false;
3953 TemplateParameterList *TemplateParams
3954 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3955 (TemplateParameterList**)TemplateParameterLists.get(),
3956 TemplateParameterLists.size(),
3957 TUK == TUK_Friend,
3958 isExplicitSpecialization,
3959 Invalid);
3960 if (Invalid)
3961 return true;
3963 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3964 if (TemplateParams)
3965 --NumMatchedTemplateParamLists;
3967 if (TemplateParams && TemplateParams->size() > 0) {
3968 isPartialSpecialization = true;
3970 // C++ [temp.class.spec]p10:
3971 // The template parameter list of a specialization shall not
3972 // contain default template argument values.
3973 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3974 Decl *Param = TemplateParams->getParam(I);
3975 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3976 if (TTP->hasDefaultArgument()) {
3977 Diag(TTP->getDefaultArgumentLoc(),
3978 diag::err_default_arg_in_partial_spec);
3979 TTP->removeDefaultArgument();
3981 } else if (NonTypeTemplateParmDecl *NTTP
3982 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3983 if (Expr *DefArg = NTTP->getDefaultArgument()) {
3984 Diag(NTTP->getDefaultArgumentLoc(),
3985 diag::err_default_arg_in_partial_spec)
3986 << DefArg->getSourceRange();
3987 NTTP->removeDefaultArgument();
3989 } else {
3990 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3991 if (TTP->hasDefaultArgument()) {
3992 Diag(TTP->getDefaultArgument().getLocation(),
3993 diag::err_default_arg_in_partial_spec)
3994 << TTP->getDefaultArgument().getSourceRange();
3995 TTP->removeDefaultArgument();
3999 } else if (TemplateParams) {
4000 if (TUK == TUK_Friend)
4001 Diag(KWLoc, diag::err_template_spec_friend)
4002 << FixItHint::CreateRemoval(
4003 SourceRange(TemplateParams->getTemplateLoc(),
4004 TemplateParams->getRAngleLoc()))
4005 << SourceRange(LAngleLoc, RAngleLoc);
4006 else
4007 isExplicitSpecialization = true;
4008 } else if (TUK != TUK_Friend) {
4009 Diag(KWLoc, diag::err_template_spec_needs_header)
4010 << FixItHint::CreateInsertion(KWLoc, "template<> ");
4011 isExplicitSpecialization = true;
4014 // Check that the specialization uses the same tag kind as the
4015 // original template.
4016 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4017 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4018 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4019 Kind, KWLoc,
4020 *ClassTemplate->getIdentifier())) {
4021 Diag(KWLoc, diag::err_use_with_wrong_tag)
4022 << ClassTemplate
4023 << FixItHint::CreateReplacement(KWLoc,
4024 ClassTemplate->getTemplatedDecl()->getKindName());
4025 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4026 diag::note_previous_use);
4027 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4030 // Translate the parser's template argument list in our AST format.
4031 TemplateArgumentListInfo TemplateArgs;
4032 TemplateArgs.setLAngleLoc(LAngleLoc);
4033 TemplateArgs.setRAngleLoc(RAngleLoc);
4034 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4036 // Check that the template argument list is well-formed for this
4037 // template.
4038 llvm::SmallVector<TemplateArgument, 4> Converted;
4039 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4040 TemplateArgs, false, Converted))
4041 return true;
4043 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4044 "Converted template argument list is too short!");
4046 // Find the class template (partial) specialization declaration that
4047 // corresponds to these arguments.
4048 if (isPartialSpecialization) {
4049 bool MirrorsPrimaryTemplate;
4050 if (CheckClassTemplatePartialSpecializationArgs(
4051 ClassTemplate->getTemplateParameters(),
4052 Converted, MirrorsPrimaryTemplate))
4053 return true;
4055 if (MirrorsPrimaryTemplate) {
4056 // C++ [temp.class.spec]p9b3:
4058 // -- The argument list of the specialization shall not be identical
4059 // to the implicit argument list of the primary template.
4060 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4061 << (TUK == TUK_Definition)
4062 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4063 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4064 ClassTemplate->getIdentifier(),
4065 TemplateNameLoc,
4066 Attr,
4067 TemplateParams,
4068 AS_none);
4071 // FIXME: Diagnose friend partial specializations
4073 if (!Name.isDependent() &&
4074 !TemplateSpecializationType::anyDependentTemplateArguments(
4075 TemplateArgs.getArgumentArray(),
4076 TemplateArgs.size())) {
4077 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4078 << ClassTemplate->getDeclName();
4079 isPartialSpecialization = false;
4083 void *InsertPos = 0;
4084 ClassTemplateSpecializationDecl *PrevDecl = 0;
4086 if (isPartialSpecialization)
4087 // FIXME: Template parameter list matters, too
4088 PrevDecl
4089 = ClassTemplate->findPartialSpecialization(Converted.data(),
4090 Converted.size(),
4091 InsertPos);
4092 else
4093 PrevDecl
4094 = ClassTemplate->findSpecialization(Converted.data(),
4095 Converted.size(), InsertPos);
4097 ClassTemplateSpecializationDecl *Specialization = 0;
4099 // Check whether we can declare a class template specialization in
4100 // the current scope.
4101 if (TUK != TUK_Friend &&
4102 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4103 TemplateNameLoc,
4104 isPartialSpecialization))
4105 return true;
4107 // The canonical type
4108 QualType CanonType;
4109 if (PrevDecl &&
4110 (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4111 TUK == TUK_Friend)) {
4112 // Since the only prior class template specialization with these
4113 // arguments was referenced but not declared, or we're only
4114 // referencing this specialization as a friend, reuse that
4115 // declaration node as our own, updating its source location to
4116 // reflect our new declaration.
4117 Specialization = PrevDecl;
4118 Specialization->setLocation(TemplateNameLoc);
4119 PrevDecl = 0;
4120 CanonType = Context.getTypeDeclType(Specialization);
4121 } else if (isPartialSpecialization) {
4122 // Build the canonical type that describes the converted template
4123 // arguments of the class template partial specialization.
4124 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4125 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4126 Converted.data(),
4127 Converted.size());
4129 // Create a new class template partial specialization declaration node.
4130 ClassTemplatePartialSpecializationDecl *PrevPartial
4131 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4132 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4133 : ClassTemplate->getNextPartialSpecSequenceNumber();
4134 ClassTemplatePartialSpecializationDecl *Partial
4135 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4136 ClassTemplate->getDeclContext(),
4137 TemplateNameLoc,
4138 TemplateParams,
4139 ClassTemplate,
4140 Converted.data(),
4141 Converted.size(),
4142 TemplateArgs,
4143 CanonType,
4144 PrevPartial,
4145 SequenceNumber);
4146 SetNestedNameSpecifier(Partial, SS);
4147 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4148 Partial->setTemplateParameterListsInfo(Context,
4149 NumMatchedTemplateParamLists,
4150 (TemplateParameterList**) TemplateParameterLists.release());
4153 if (!PrevPartial)
4154 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4155 Specialization = Partial;
4157 // If we are providing an explicit specialization of a member class
4158 // template specialization, make a note of that.
4159 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4160 PrevPartial->setMemberSpecialization();
4162 // Check that all of the template parameters of the class template
4163 // partial specialization are deducible from the template
4164 // arguments. If not, this class template partial specialization
4165 // will never be used.
4166 llvm::SmallVector<bool, 8> DeducibleParams;
4167 DeducibleParams.resize(TemplateParams->size());
4168 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4169 TemplateParams->getDepth(),
4170 DeducibleParams);
4171 unsigned NumNonDeducible = 0;
4172 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4173 if (!DeducibleParams[I])
4174 ++NumNonDeducible;
4176 if (NumNonDeducible) {
4177 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4178 << (NumNonDeducible > 1)
4179 << SourceRange(TemplateNameLoc, RAngleLoc);
4180 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4181 if (!DeducibleParams[I]) {
4182 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4183 if (Param->getDeclName())
4184 Diag(Param->getLocation(),
4185 diag::note_partial_spec_unused_parameter)
4186 << Param->getDeclName();
4187 else
4188 Diag(Param->getLocation(),
4189 diag::note_partial_spec_unused_parameter)
4190 << "<anonymous>";
4194 } else {
4195 // Create a new class template specialization declaration node for
4196 // this explicit specialization or friend declaration.
4197 Specialization
4198 = ClassTemplateSpecializationDecl::Create(Context, Kind,
4199 ClassTemplate->getDeclContext(),
4200 TemplateNameLoc,
4201 ClassTemplate,
4202 Converted.data(),
4203 Converted.size(),
4204 PrevDecl);
4205 SetNestedNameSpecifier(Specialization, SS);
4206 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4207 Specialization->setTemplateParameterListsInfo(Context,
4208 NumMatchedTemplateParamLists,
4209 (TemplateParameterList**) TemplateParameterLists.release());
4212 if (!PrevDecl)
4213 ClassTemplate->AddSpecialization(Specialization, InsertPos);
4215 CanonType = Context.getTypeDeclType(Specialization);
4218 // C++ [temp.expl.spec]p6:
4219 // If a template, a member template or the member of a class template is
4220 // explicitly specialized then that specialization shall be declared
4221 // before the first use of that specialization that would cause an implicit
4222 // instantiation to take place, in every translation unit in which such a
4223 // use occurs; no diagnostic is required.
4224 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4225 bool Okay = false;
4226 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4227 // Is there any previous explicit specialization declaration?
4228 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4229 Okay = true;
4230 break;
4234 if (!Okay) {
4235 SourceRange Range(TemplateNameLoc, RAngleLoc);
4236 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4237 << Context.getTypeDeclType(Specialization) << Range;
4239 Diag(PrevDecl->getPointOfInstantiation(),
4240 diag::note_instantiation_required_here)
4241 << (PrevDecl->getTemplateSpecializationKind()
4242 != TSK_ImplicitInstantiation);
4243 return true;
4247 // If this is not a friend, note that this is an explicit specialization.
4248 if (TUK != TUK_Friend)
4249 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4251 // Check that this isn't a redefinition of this specialization.
4252 if (TUK == TUK_Definition) {
4253 if (RecordDecl *Def = Specialization->getDefinition()) {
4254 SourceRange Range(TemplateNameLoc, RAngleLoc);
4255 Diag(TemplateNameLoc, diag::err_redefinition)
4256 << Context.getTypeDeclType(Specialization) << Range;
4257 Diag(Def->getLocation(), diag::note_previous_definition);
4258 Specialization->setInvalidDecl();
4259 return true;
4263 // Build the fully-sugared type for this class template
4264 // specialization as the user wrote in the specialization
4265 // itself. This means that we'll pretty-print the type retrieved
4266 // from the specialization's declaration the way that the user
4267 // actually wrote the specialization, rather than formatting the
4268 // name based on the "canonical" representation used to store the
4269 // template arguments in the specialization.
4270 TypeSourceInfo *WrittenTy
4271 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4272 TemplateArgs, CanonType);
4273 if (TUK != TUK_Friend) {
4274 Specialization->setTypeAsWritten(WrittenTy);
4275 if (TemplateParams)
4276 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4278 TemplateArgsIn.release();
4280 // C++ [temp.expl.spec]p9:
4281 // A template explicit specialization is in the scope of the
4282 // namespace in which the template was defined.
4284 // We actually implement this paragraph where we set the semantic
4285 // context (in the creation of the ClassTemplateSpecializationDecl),
4286 // but we also maintain the lexical context where the actual
4287 // definition occurs.
4288 Specialization->setLexicalDeclContext(CurContext);
4290 // We may be starting the definition of this specialization.
4291 if (TUK == TUK_Definition)
4292 Specialization->startDefinition();
4294 if (TUK == TUK_Friend) {
4295 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4296 TemplateNameLoc,
4297 WrittenTy,
4298 /*FIXME:*/KWLoc);
4299 Friend->setAccess(AS_public);
4300 CurContext->addDecl(Friend);
4301 } else {
4302 // Add the specialization into its lexical context, so that it can
4303 // be seen when iterating through the list of declarations in that
4304 // context. However, specializations are not found by name lookup.
4305 CurContext->addDecl(Specialization);
4307 return Specialization;
4310 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4311 MultiTemplateParamsArg TemplateParameterLists,
4312 Declarator &D) {
4313 return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4316 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4317 MultiTemplateParamsArg TemplateParameterLists,
4318 Declarator &D) {
4319 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4320 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4321 "Not a function declarator!");
4322 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4324 if (FTI.hasPrototype) {
4325 // FIXME: Diagnose arguments without names in C.
4328 Scope *ParentScope = FnBodyScope->getParent();
4330 Decl *DP = HandleDeclarator(ParentScope, D,
4331 move(TemplateParameterLists),
4332 /*IsFunctionDefinition=*/true);
4333 if (FunctionTemplateDecl *FunctionTemplate
4334 = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4335 return ActOnStartOfFunctionDef(FnBodyScope,
4336 FunctionTemplate->getTemplatedDecl());
4337 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4338 return ActOnStartOfFunctionDef(FnBodyScope, Function);
4339 return 0;
4342 /// \brief Strips various properties off an implicit instantiation
4343 /// that has just been explicitly specialized.
4344 static void StripImplicitInstantiation(NamedDecl *D) {
4345 D->dropAttrs();
4347 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4348 FD->setInlineSpecified(false);
4352 /// \brief Diagnose cases where we have an explicit template specialization
4353 /// before/after an explicit template instantiation, producing diagnostics
4354 /// for those cases where they are required and determining whether the
4355 /// new specialization/instantiation will have any effect.
4357 /// \param NewLoc the location of the new explicit specialization or
4358 /// instantiation.
4360 /// \param NewTSK the kind of the new explicit specialization or instantiation.
4362 /// \param PrevDecl the previous declaration of the entity.
4364 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4366 /// \param PrevPointOfInstantiation if valid, indicates where the previus
4367 /// declaration was instantiated (either implicitly or explicitly).
4369 /// \param HasNoEffect will be set to true to indicate that the new
4370 /// specialization or instantiation has no effect and should be ignored.
4372 /// \returns true if there was an error that should prevent the introduction of
4373 /// the new declaration into the AST, false otherwise.
4374 bool
4375 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4376 TemplateSpecializationKind NewTSK,
4377 NamedDecl *PrevDecl,
4378 TemplateSpecializationKind PrevTSK,
4379 SourceLocation PrevPointOfInstantiation,
4380 bool &HasNoEffect) {
4381 HasNoEffect = false;
4383 switch (NewTSK) {
4384 case TSK_Undeclared:
4385 case TSK_ImplicitInstantiation:
4386 assert(false && "Don't check implicit instantiations here");
4387 return false;
4389 case TSK_ExplicitSpecialization:
4390 switch (PrevTSK) {
4391 case TSK_Undeclared:
4392 case TSK_ExplicitSpecialization:
4393 // Okay, we're just specializing something that is either already
4394 // explicitly specialized or has merely been mentioned without any
4395 // instantiation.
4396 return false;
4398 case TSK_ImplicitInstantiation:
4399 if (PrevPointOfInstantiation.isInvalid()) {
4400 // The declaration itself has not actually been instantiated, so it is
4401 // still okay to specialize it.
4402 StripImplicitInstantiation(PrevDecl);
4403 return false;
4405 // Fall through
4407 case TSK_ExplicitInstantiationDeclaration:
4408 case TSK_ExplicitInstantiationDefinition:
4409 assert((PrevTSK == TSK_ImplicitInstantiation ||
4410 PrevPointOfInstantiation.isValid()) &&
4411 "Explicit instantiation without point of instantiation?");
4413 // C++ [temp.expl.spec]p6:
4414 // If a template, a member template or the member of a class template
4415 // is explicitly specialized then that specialization shall be declared
4416 // before the first use of that specialization that would cause an
4417 // implicit instantiation to take place, in every translation unit in
4418 // which such a use occurs; no diagnostic is required.
4419 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4420 // Is there any previous explicit specialization declaration?
4421 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4422 return false;
4425 Diag(NewLoc, diag::err_specialization_after_instantiation)
4426 << PrevDecl;
4427 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4428 << (PrevTSK != TSK_ImplicitInstantiation);
4430 return true;
4432 break;
4434 case TSK_ExplicitInstantiationDeclaration:
4435 switch (PrevTSK) {
4436 case TSK_ExplicitInstantiationDeclaration:
4437 // This explicit instantiation declaration is redundant (that's okay).
4438 HasNoEffect = true;
4439 return false;
4441 case TSK_Undeclared:
4442 case TSK_ImplicitInstantiation:
4443 // We're explicitly instantiating something that may have already been
4444 // implicitly instantiated; that's fine.
4445 return false;
4447 case TSK_ExplicitSpecialization:
4448 // C++0x [temp.explicit]p4:
4449 // For a given set of template parameters, if an explicit instantiation
4450 // of a template appears after a declaration of an explicit
4451 // specialization for that template, the explicit instantiation has no
4452 // effect.
4453 HasNoEffect = true;
4454 return false;
4456 case TSK_ExplicitInstantiationDefinition:
4457 // C++0x [temp.explicit]p10:
4458 // If an entity is the subject of both an explicit instantiation
4459 // declaration and an explicit instantiation definition in the same
4460 // translation unit, the definition shall follow the declaration.
4461 Diag(NewLoc,
4462 diag::err_explicit_instantiation_declaration_after_definition);
4463 Diag(PrevPointOfInstantiation,
4464 diag::note_explicit_instantiation_definition_here);
4465 assert(PrevPointOfInstantiation.isValid() &&
4466 "Explicit instantiation without point of instantiation?");
4467 HasNoEffect = true;
4468 return false;
4470 break;
4472 case TSK_ExplicitInstantiationDefinition:
4473 switch (PrevTSK) {
4474 case TSK_Undeclared:
4475 case TSK_ImplicitInstantiation:
4476 // We're explicitly instantiating something that may have already been
4477 // implicitly instantiated; that's fine.
4478 return false;
4480 case TSK_ExplicitSpecialization:
4481 // C++ DR 259, C++0x [temp.explicit]p4:
4482 // For a given set of template parameters, if an explicit
4483 // instantiation of a template appears after a declaration of
4484 // an explicit specialization for that template, the explicit
4485 // instantiation has no effect.
4487 // In C++98/03 mode, we only give an extension warning here, because it
4488 // is not harmful to try to explicitly instantiate something that
4489 // has been explicitly specialized.
4490 if (!getLangOptions().CPlusPlus0x) {
4491 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4492 << PrevDecl;
4493 Diag(PrevDecl->getLocation(),
4494 diag::note_previous_template_specialization);
4496 HasNoEffect = true;
4497 return false;
4499 case TSK_ExplicitInstantiationDeclaration:
4500 // We're explicity instantiating a definition for something for which we
4501 // were previously asked to suppress instantiations. That's fine.
4502 return false;
4504 case TSK_ExplicitInstantiationDefinition:
4505 // C++0x [temp.spec]p5:
4506 // For a given template and a given set of template-arguments,
4507 // - an explicit instantiation definition shall appear at most once
4508 // in a program,
4509 Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4510 << PrevDecl;
4511 Diag(PrevPointOfInstantiation,
4512 diag::note_previous_explicit_instantiation);
4513 HasNoEffect = true;
4514 return false;
4516 break;
4519 assert(false && "Missing specialization/instantiation case?");
4521 return false;
4524 /// \brief Perform semantic analysis for the given dependent function
4525 /// template specialization. The only possible way to get a dependent
4526 /// function template specialization is with a friend declaration,
4527 /// like so:
4529 /// template <class T> void foo(T);
4530 /// template <class T> class A {
4531 /// friend void foo<>(T);
4532 /// };
4534 /// There really isn't any useful analysis we can do here, so we
4535 /// just store the information.
4536 bool
4537 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4538 const TemplateArgumentListInfo &ExplicitTemplateArgs,
4539 LookupResult &Previous) {
4540 // Remove anything from Previous that isn't a function template in
4541 // the correct context.
4542 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4543 LookupResult::Filter F = Previous.makeFilter();
4544 while (F.hasNext()) {
4545 NamedDecl *D = F.next()->getUnderlyingDecl();
4546 if (!isa<FunctionTemplateDecl>(D) ||
4547 !FDLookupContext->InEnclosingNamespaceSetOf(
4548 D->getDeclContext()->getRedeclContext()))
4549 F.erase();
4551 F.done();
4553 // Should this be diagnosed here?
4554 if (Previous.empty()) return true;
4556 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4557 ExplicitTemplateArgs);
4558 return false;
4561 /// \brief Perform semantic analysis for the given function template
4562 /// specialization.
4564 /// This routine performs all of the semantic analysis required for an
4565 /// explicit function template specialization. On successful completion,
4566 /// the function declaration \p FD will become a function template
4567 /// specialization.
4569 /// \param FD the function declaration, which will be updated to become a
4570 /// function template specialization.
4572 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4573 /// if any. Note that this may be valid info even when 0 arguments are
4574 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4575 /// as it anyway contains info on the angle brackets locations.
4577 /// \param PrevDecl the set of declarations that may be specialized by
4578 /// this function specialization.
4579 bool
4580 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4581 const TemplateArgumentListInfo *ExplicitTemplateArgs,
4582 LookupResult &Previous) {
4583 // The set of function template specializations that could match this
4584 // explicit function template specialization.
4585 UnresolvedSet<8> Candidates;
4587 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4588 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4589 I != E; ++I) {
4590 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4591 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4592 // Only consider templates found within the same semantic lookup scope as
4593 // FD.
4594 if (!FDLookupContext->InEnclosingNamespaceSetOf(
4595 Ovl->getDeclContext()->getRedeclContext()))
4596 continue;
4598 // C++ [temp.expl.spec]p11:
4599 // A trailing template-argument can be left unspecified in the
4600 // template-id naming an explicit function template specialization
4601 // provided it can be deduced from the function argument type.
4602 // Perform template argument deduction to determine whether we may be
4603 // specializing this template.
4604 // FIXME: It is somewhat wasteful to build
4605 TemplateDeductionInfo Info(Context, FD->getLocation());
4606 FunctionDecl *Specialization = 0;
4607 if (TemplateDeductionResult TDK
4608 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4609 FD->getType(),
4610 Specialization,
4611 Info)) {
4612 // FIXME: Template argument deduction failed; record why it failed, so
4613 // that we can provide nifty diagnostics.
4614 (void)TDK;
4615 continue;
4618 // Record this candidate.
4619 Candidates.addDecl(Specialization, I.getAccess());
4623 // Find the most specialized function template.
4624 UnresolvedSetIterator Result
4625 = getMostSpecialized(Candidates.begin(), Candidates.end(),
4626 TPOC_Other, FD->getLocation(),
4627 PDiag(diag::err_function_template_spec_no_match)
4628 << FD->getDeclName(),
4629 PDiag(diag::err_function_template_spec_ambiguous)
4630 << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4631 PDiag(diag::note_function_template_spec_matched));
4632 if (Result == Candidates.end())
4633 return true;
4635 // Ignore access information; it doesn't figure into redeclaration checking.
4636 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4637 Specialization->setLocation(FD->getLocation());
4639 // FIXME: Check if the prior specialization has a point of instantiation.
4640 // If so, we have run afoul of .
4642 // If this is a friend declaration, then we're not really declaring
4643 // an explicit specialization.
4644 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4646 // Check the scope of this explicit specialization.
4647 if (!isFriend &&
4648 CheckTemplateSpecializationScope(*this,
4649 Specialization->getPrimaryTemplate(),
4650 Specialization, FD->getLocation(),
4651 false))
4652 return true;
4654 // C++ [temp.expl.spec]p6:
4655 // If a template, a member template or the member of a class template is
4656 // explicitly specialized then that specialization shall be declared
4657 // before the first use of that specialization that would cause an implicit
4658 // instantiation to take place, in every translation unit in which such a
4659 // use occurs; no diagnostic is required.
4660 FunctionTemplateSpecializationInfo *SpecInfo
4661 = Specialization->getTemplateSpecializationInfo();
4662 assert(SpecInfo && "Function template specialization info missing?");
4664 bool HasNoEffect = false;
4665 if (!isFriend &&
4666 CheckSpecializationInstantiationRedecl(FD->getLocation(),
4667 TSK_ExplicitSpecialization,
4668 Specialization,
4669 SpecInfo->getTemplateSpecializationKind(),
4670 SpecInfo->getPointOfInstantiation(),
4671 HasNoEffect))
4672 return true;
4674 // Mark the prior declaration as an explicit specialization, so that later
4675 // clients know that this is an explicit specialization.
4676 if (!isFriend) {
4677 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4678 MarkUnusedFileScopedDecl(Specialization);
4681 // Turn the given function declaration into a function template
4682 // specialization, with the template arguments from the previous
4683 // specialization.
4684 // Take copies of (semantic and syntactic) template argument lists.
4685 const TemplateArgumentList* TemplArgs = new (Context)
4686 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4687 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4688 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4689 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4690 TemplArgs, /*InsertPos=*/0,
4691 SpecInfo->getTemplateSpecializationKind(),
4692 TemplArgsAsWritten);
4694 // The "previous declaration" for this function template specialization is
4695 // the prior function template specialization.
4696 Previous.clear();
4697 Previous.addDecl(Specialization);
4698 return false;
4701 /// \brief Perform semantic analysis for the given non-template member
4702 /// specialization.
4704 /// This routine performs all of the semantic analysis required for an
4705 /// explicit member function specialization. On successful completion,
4706 /// the function declaration \p FD will become a member function
4707 /// specialization.
4709 /// \param Member the member declaration, which will be updated to become a
4710 /// specialization.
4712 /// \param Previous the set of declarations, one of which may be specialized
4713 /// by this function specialization; the set will be modified to contain the
4714 /// redeclared member.
4715 bool
4716 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4717 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4719 // Try to find the member we are instantiating.
4720 NamedDecl *Instantiation = 0;
4721 NamedDecl *InstantiatedFrom = 0;
4722 MemberSpecializationInfo *MSInfo = 0;
4724 if (Previous.empty()) {
4725 // Nowhere to look anyway.
4726 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4727 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4728 I != E; ++I) {
4729 NamedDecl *D = (*I)->getUnderlyingDecl();
4730 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4731 if (Context.hasSameType(Function->getType(), Method->getType())) {
4732 Instantiation = Method;
4733 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4734 MSInfo = Method->getMemberSpecializationInfo();
4735 break;
4739 } else if (isa<VarDecl>(Member)) {
4740 VarDecl *PrevVar;
4741 if (Previous.isSingleResult() &&
4742 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4743 if (PrevVar->isStaticDataMember()) {
4744 Instantiation = PrevVar;
4745 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4746 MSInfo = PrevVar->getMemberSpecializationInfo();
4748 } else if (isa<RecordDecl>(Member)) {
4749 CXXRecordDecl *PrevRecord;
4750 if (Previous.isSingleResult() &&
4751 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4752 Instantiation = PrevRecord;
4753 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4754 MSInfo = PrevRecord->getMemberSpecializationInfo();
4758 if (!Instantiation) {
4759 // There is no previous declaration that matches. Since member
4760 // specializations are always out-of-line, the caller will complain about
4761 // this mismatch later.
4762 return false;
4765 // If this is a friend, just bail out here before we start turning
4766 // things into explicit specializations.
4767 if (Member->getFriendObjectKind() != Decl::FOK_None) {
4768 // Preserve instantiation information.
4769 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4770 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4771 cast<CXXMethodDecl>(InstantiatedFrom),
4772 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4773 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4774 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4775 cast<CXXRecordDecl>(InstantiatedFrom),
4776 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4779 Previous.clear();
4780 Previous.addDecl(Instantiation);
4781 return false;
4784 // Make sure that this is a specialization of a member.
4785 if (!InstantiatedFrom) {
4786 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4787 << Member;
4788 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4789 return true;
4792 // C++ [temp.expl.spec]p6:
4793 // If a template, a member template or the member of a class template is
4794 // explicitly specialized then that spe- cialization shall be declared
4795 // before the first use of that specialization that would cause an implicit
4796 // instantiation to take place, in every translation unit in which such a
4797 // use occurs; no diagnostic is required.
4798 assert(MSInfo && "Member specialization info missing?");
4800 bool HasNoEffect = false;
4801 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4802 TSK_ExplicitSpecialization,
4803 Instantiation,
4804 MSInfo->getTemplateSpecializationKind(),
4805 MSInfo->getPointOfInstantiation(),
4806 HasNoEffect))
4807 return true;
4809 // Check the scope of this explicit specialization.
4810 if (CheckTemplateSpecializationScope(*this,
4811 InstantiatedFrom,
4812 Instantiation, Member->getLocation(),
4813 false))
4814 return true;
4816 // Note that this is an explicit instantiation of a member.
4817 // the original declaration to note that it is an explicit specialization
4818 // (if it was previously an implicit instantiation). This latter step
4819 // makes bookkeeping easier.
4820 if (isa<FunctionDecl>(Member)) {
4821 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4822 if (InstantiationFunction->getTemplateSpecializationKind() ==
4823 TSK_ImplicitInstantiation) {
4824 InstantiationFunction->setTemplateSpecializationKind(
4825 TSK_ExplicitSpecialization);
4826 InstantiationFunction->setLocation(Member->getLocation());
4829 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4830 cast<CXXMethodDecl>(InstantiatedFrom),
4831 TSK_ExplicitSpecialization);
4832 MarkUnusedFileScopedDecl(InstantiationFunction);
4833 } else if (isa<VarDecl>(Member)) {
4834 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4835 if (InstantiationVar->getTemplateSpecializationKind() ==
4836 TSK_ImplicitInstantiation) {
4837 InstantiationVar->setTemplateSpecializationKind(
4838 TSK_ExplicitSpecialization);
4839 InstantiationVar->setLocation(Member->getLocation());
4842 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4843 cast<VarDecl>(InstantiatedFrom),
4844 TSK_ExplicitSpecialization);
4845 MarkUnusedFileScopedDecl(InstantiationVar);
4846 } else {
4847 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4848 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4849 if (InstantiationClass->getTemplateSpecializationKind() ==
4850 TSK_ImplicitInstantiation) {
4851 InstantiationClass->setTemplateSpecializationKind(
4852 TSK_ExplicitSpecialization);
4853 InstantiationClass->setLocation(Member->getLocation());
4856 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4857 cast<CXXRecordDecl>(InstantiatedFrom),
4858 TSK_ExplicitSpecialization);
4861 // Save the caller the trouble of having to figure out which declaration
4862 // this specialization matches.
4863 Previous.clear();
4864 Previous.addDecl(Instantiation);
4865 return false;
4868 /// \brief Check the scope of an explicit instantiation.
4870 /// \returns true if a serious error occurs, false otherwise.
4871 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4872 SourceLocation InstLoc,
4873 bool WasQualifiedName) {
4874 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4875 DeclContext *CurContext = S.CurContext->getRedeclContext();
4877 if (CurContext->isRecord()) {
4878 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4879 << D;
4880 return true;
4883 // C++0x [temp.explicit]p2:
4884 // An explicit instantiation shall appear in an enclosing namespace of its
4885 // template.
4887 // This is DR275, which we do not retroactively apply to C++98/03.
4888 if (S.getLangOptions().CPlusPlus0x &&
4889 !CurContext->Encloses(OrigContext)) {
4890 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4891 S.Diag(InstLoc,
4892 S.getLangOptions().CPlusPlus0x?
4893 diag::err_explicit_instantiation_out_of_scope
4894 : diag::warn_explicit_instantiation_out_of_scope_0x)
4895 << D << NS;
4896 else
4897 S.Diag(InstLoc,
4898 S.getLangOptions().CPlusPlus0x?
4899 diag::err_explicit_instantiation_must_be_global
4900 : diag::warn_explicit_instantiation_out_of_scope_0x)
4901 << D;
4902 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4903 return false;
4906 // C++0x [temp.explicit]p2:
4907 // If the name declared in the explicit instantiation is an unqualified
4908 // name, the explicit instantiation shall appear in the namespace where
4909 // its template is declared or, if that namespace is inline (7.3.1), any
4910 // namespace from its enclosing namespace set.
4911 if (WasQualifiedName)
4912 return false;
4914 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
4915 return false;
4917 S.Diag(InstLoc,
4918 S.getLangOptions().CPlusPlus0x?
4919 diag::err_explicit_instantiation_unqualified_wrong_namespace
4920 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4921 << D << OrigContext;
4922 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4923 return false;
4926 /// \brief Determine whether the given scope specifier has a template-id in it.
4927 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4928 if (!SS.isSet())
4929 return false;
4931 // C++0x [temp.explicit]p2:
4932 // If the explicit instantiation is for a member function, a member class
4933 // or a static data member of a class template specialization, the name of
4934 // the class template specialization in the qualified-id for the member
4935 // name shall be a simple-template-id.
4937 // C++98 has the same restriction, just worded differently.
4938 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4939 NNS; NNS = NNS->getPrefix())
4940 if (Type *T = NNS->getAsType())
4941 if (isa<TemplateSpecializationType>(T))
4942 return true;
4944 return false;
4947 // Explicit instantiation of a class template specialization
4948 DeclResult
4949 Sema::ActOnExplicitInstantiation(Scope *S,
4950 SourceLocation ExternLoc,
4951 SourceLocation TemplateLoc,
4952 unsigned TagSpec,
4953 SourceLocation KWLoc,
4954 const CXXScopeSpec &SS,
4955 TemplateTy TemplateD,
4956 SourceLocation TemplateNameLoc,
4957 SourceLocation LAngleLoc,
4958 ASTTemplateArgsPtr TemplateArgsIn,
4959 SourceLocation RAngleLoc,
4960 AttributeList *Attr) {
4961 // Find the class template we're specializing
4962 TemplateName Name = TemplateD.getAsVal<TemplateName>();
4963 ClassTemplateDecl *ClassTemplate
4964 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4966 // Check that the specialization uses the same tag kind as the
4967 // original template.
4968 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4969 assert(Kind != TTK_Enum &&
4970 "Invalid enum tag in class template explicit instantiation!");
4971 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4972 Kind, KWLoc,
4973 *ClassTemplate->getIdentifier())) {
4974 Diag(KWLoc, diag::err_use_with_wrong_tag)
4975 << ClassTemplate
4976 << FixItHint::CreateReplacement(KWLoc,
4977 ClassTemplate->getTemplatedDecl()->getKindName());
4978 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4979 diag::note_previous_use);
4980 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4983 // C++0x [temp.explicit]p2:
4984 // There are two forms of explicit instantiation: an explicit instantiation
4985 // definition and an explicit instantiation declaration. An explicit
4986 // instantiation declaration begins with the extern keyword. [...]
4987 TemplateSpecializationKind TSK
4988 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4989 : TSK_ExplicitInstantiationDeclaration;
4991 // Translate the parser's template argument list in our AST format.
4992 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4993 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4995 // Check that the template argument list is well-formed for this
4996 // template.
4997 llvm::SmallVector<TemplateArgument, 4> Converted;
4998 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4999 TemplateArgs, false, Converted))
5000 return true;
5002 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5003 "Converted template argument list is too short!");
5005 // Find the class template specialization declaration that
5006 // corresponds to these arguments.
5007 void *InsertPos = 0;
5008 ClassTemplateSpecializationDecl *PrevDecl
5009 = ClassTemplate->findSpecialization(Converted.data(),
5010 Converted.size(), InsertPos);
5012 TemplateSpecializationKind PrevDecl_TSK
5013 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5015 // C++0x [temp.explicit]p2:
5016 // [...] An explicit instantiation shall appear in an enclosing
5017 // namespace of its template. [...]
5019 // This is C++ DR 275.
5020 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5021 SS.isSet()))
5022 return true;
5024 ClassTemplateSpecializationDecl *Specialization = 0;
5026 bool ReusedDecl = false;
5027 bool HasNoEffect = false;
5028 if (PrevDecl) {
5029 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5030 PrevDecl, PrevDecl_TSK,
5031 PrevDecl->getPointOfInstantiation(),
5032 HasNoEffect))
5033 return PrevDecl;
5035 // Even though HasNoEffect == true means that this explicit instantiation
5036 // has no effect on semantics, we go on to put its syntax in the AST.
5038 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5039 PrevDecl_TSK == TSK_Undeclared) {
5040 // Since the only prior class template specialization with these
5041 // arguments was referenced but not declared, reuse that
5042 // declaration node as our own, updating the source location
5043 // for the template name to reflect our new declaration.
5044 // (Other source locations will be updated later.)
5045 Specialization = PrevDecl;
5046 Specialization->setLocation(TemplateNameLoc);
5047 PrevDecl = 0;
5048 ReusedDecl = true;
5052 if (!Specialization) {
5053 // Create a new class template specialization declaration node for
5054 // this explicit specialization.
5055 Specialization
5056 = ClassTemplateSpecializationDecl::Create(Context, Kind,
5057 ClassTemplate->getDeclContext(),
5058 TemplateNameLoc,
5059 ClassTemplate,
5060 Converted.data(),
5061 Converted.size(),
5062 PrevDecl);
5063 SetNestedNameSpecifier(Specialization, SS);
5065 if (!HasNoEffect && !PrevDecl) {
5066 // Insert the new specialization.
5067 ClassTemplate->AddSpecialization(Specialization, InsertPos);
5071 // Build the fully-sugared type for this explicit instantiation as
5072 // the user wrote in the explicit instantiation itself. This means
5073 // that we'll pretty-print the type retrieved from the
5074 // specialization's declaration the way that the user actually wrote
5075 // the explicit instantiation, rather than formatting the name based
5076 // on the "canonical" representation used to store the template
5077 // arguments in the specialization.
5078 TypeSourceInfo *WrittenTy
5079 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5080 TemplateArgs,
5081 Context.getTypeDeclType(Specialization));
5082 Specialization->setTypeAsWritten(WrittenTy);
5083 TemplateArgsIn.release();
5085 // Set source locations for keywords.
5086 Specialization->setExternLoc(ExternLoc);
5087 Specialization->setTemplateKeywordLoc(TemplateLoc);
5089 // Add the explicit instantiation into its lexical context. However,
5090 // since explicit instantiations are never found by name lookup, we
5091 // just put it into the declaration context directly.
5092 Specialization->setLexicalDeclContext(CurContext);
5093 CurContext->addDecl(Specialization);
5095 // Syntax is now OK, so return if it has no other effect on semantics.
5096 if (HasNoEffect) {
5097 // Set the template specialization kind.
5098 Specialization->setTemplateSpecializationKind(TSK);
5099 return Specialization;
5102 // C++ [temp.explicit]p3:
5103 // A definition of a class template or class member template
5104 // shall be in scope at the point of the explicit instantiation of
5105 // the class template or class member template.
5107 // This check comes when we actually try to perform the
5108 // instantiation.
5109 ClassTemplateSpecializationDecl *Def
5110 = cast_or_null<ClassTemplateSpecializationDecl>(
5111 Specialization->getDefinition());
5112 if (!Def)
5113 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5114 else if (TSK == TSK_ExplicitInstantiationDefinition) {
5115 MarkVTableUsed(TemplateNameLoc, Specialization, true);
5116 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5119 // Instantiate the members of this class template specialization.
5120 Def = cast_or_null<ClassTemplateSpecializationDecl>(
5121 Specialization->getDefinition());
5122 if (Def) {
5123 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5125 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5126 // TSK_ExplicitInstantiationDefinition
5127 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5128 TSK == TSK_ExplicitInstantiationDefinition)
5129 Def->setTemplateSpecializationKind(TSK);
5131 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5134 // Set the template specialization kind.
5135 Specialization->setTemplateSpecializationKind(TSK);
5136 return Specialization;
5139 // Explicit instantiation of a member class of a class template.
5140 DeclResult
5141 Sema::ActOnExplicitInstantiation(Scope *S,
5142 SourceLocation ExternLoc,
5143 SourceLocation TemplateLoc,
5144 unsigned TagSpec,
5145 SourceLocation KWLoc,
5146 CXXScopeSpec &SS,
5147 IdentifierInfo *Name,
5148 SourceLocation NameLoc,
5149 AttributeList *Attr) {
5151 bool Owned = false;
5152 bool IsDependent = false;
5153 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5154 KWLoc, SS, Name, NameLoc, Attr, AS_none,
5155 MultiTemplateParamsArg(*this, 0, 0),
5156 Owned, IsDependent, false,
5157 TypeResult());
5158 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5160 if (!TagD)
5161 return true;
5163 TagDecl *Tag = cast<TagDecl>(TagD);
5164 if (Tag->isEnum()) {
5165 Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5166 << Context.getTypeDeclType(Tag);
5167 return true;
5170 if (Tag->isInvalidDecl())
5171 return true;
5173 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5174 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5175 if (!Pattern) {
5176 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5177 << Context.getTypeDeclType(Record);
5178 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5179 return true;
5182 // C++0x [temp.explicit]p2:
5183 // If the explicit instantiation is for a class or member class, the
5184 // elaborated-type-specifier in the declaration shall include a
5185 // simple-template-id.
5187 // C++98 has the same restriction, just worded differently.
5188 if (!ScopeSpecifierHasTemplateId(SS))
5189 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5190 << Record << SS.getRange();
5192 // C++0x [temp.explicit]p2:
5193 // There are two forms of explicit instantiation: an explicit instantiation
5194 // definition and an explicit instantiation declaration. An explicit
5195 // instantiation declaration begins with the extern keyword. [...]
5196 TemplateSpecializationKind TSK
5197 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5198 : TSK_ExplicitInstantiationDeclaration;
5200 // C++0x [temp.explicit]p2:
5201 // [...] An explicit instantiation shall appear in an enclosing
5202 // namespace of its template. [...]
5204 // This is C++ DR 275.
5205 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5207 // Verify that it is okay to explicitly instantiate here.
5208 CXXRecordDecl *PrevDecl
5209 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5210 if (!PrevDecl && Record->getDefinition())
5211 PrevDecl = Record;
5212 if (PrevDecl) {
5213 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5214 bool HasNoEffect = false;
5215 assert(MSInfo && "No member specialization information?");
5216 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5217 PrevDecl,
5218 MSInfo->getTemplateSpecializationKind(),
5219 MSInfo->getPointOfInstantiation(),
5220 HasNoEffect))
5221 return true;
5222 if (HasNoEffect)
5223 return TagD;
5226 CXXRecordDecl *RecordDef
5227 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5228 if (!RecordDef) {
5229 // C++ [temp.explicit]p3:
5230 // A definition of a member class of a class template shall be in scope
5231 // at the point of an explicit instantiation of the member class.
5232 CXXRecordDecl *Def
5233 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5234 if (!Def) {
5235 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5236 << 0 << Record->getDeclName() << Record->getDeclContext();
5237 Diag(Pattern->getLocation(), diag::note_forward_declaration)
5238 << Pattern;
5239 return true;
5240 } else {
5241 if (InstantiateClass(NameLoc, Record, Def,
5242 getTemplateInstantiationArgs(Record),
5243 TSK))
5244 return true;
5246 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5247 if (!RecordDef)
5248 return true;
5252 // Instantiate all of the members of the class.
5253 InstantiateClassMembers(NameLoc, RecordDef,
5254 getTemplateInstantiationArgs(Record), TSK);
5256 if (TSK == TSK_ExplicitInstantiationDefinition)
5257 MarkVTableUsed(NameLoc, RecordDef, true);
5259 // FIXME: We don't have any representation for explicit instantiations of
5260 // member classes. Such a representation is not needed for compilation, but it
5261 // should be available for clients that want to see all of the declarations in
5262 // the source code.
5263 return TagD;
5266 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5267 SourceLocation ExternLoc,
5268 SourceLocation TemplateLoc,
5269 Declarator &D) {
5270 // Explicit instantiations always require a name.
5271 // TODO: check if/when DNInfo should replace Name.
5272 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5273 DeclarationName Name = NameInfo.getName();
5274 if (!Name) {
5275 if (!D.isInvalidType())
5276 Diag(D.getDeclSpec().getSourceRange().getBegin(),
5277 diag::err_explicit_instantiation_requires_name)
5278 << D.getDeclSpec().getSourceRange()
5279 << D.getSourceRange();
5281 return true;
5284 // The scope passed in may not be a decl scope. Zip up the scope tree until
5285 // we find one that is.
5286 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5287 (S->getFlags() & Scope::TemplateParamScope) != 0)
5288 S = S->getParent();
5290 // Determine the type of the declaration.
5291 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5292 QualType R = T->getType();
5293 if (R.isNull())
5294 return true;
5296 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5297 // Cannot explicitly instantiate a typedef.
5298 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5299 << Name;
5300 return true;
5303 // C++0x [temp.explicit]p1:
5304 // [...] An explicit instantiation of a function template shall not use the
5305 // inline or constexpr specifiers.
5306 // Presumably, this also applies to member functions of class templates as
5307 // well.
5308 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5309 Diag(D.getDeclSpec().getInlineSpecLoc(),
5310 diag::err_explicit_instantiation_inline)
5311 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5313 // FIXME: check for constexpr specifier.
5315 // C++0x [temp.explicit]p2:
5316 // There are two forms of explicit instantiation: an explicit instantiation
5317 // definition and an explicit instantiation declaration. An explicit
5318 // instantiation declaration begins with the extern keyword. [...]
5319 TemplateSpecializationKind TSK
5320 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5321 : TSK_ExplicitInstantiationDeclaration;
5323 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5324 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5326 if (!R->isFunctionType()) {
5327 // C++ [temp.explicit]p1:
5328 // A [...] static data member of a class template can be explicitly
5329 // instantiated from the member definition associated with its class
5330 // template.
5331 if (Previous.isAmbiguous())
5332 return true;
5334 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5335 if (!Prev || !Prev->isStaticDataMember()) {
5336 // We expect to see a data data member here.
5337 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5338 << Name;
5339 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5340 P != PEnd; ++P)
5341 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5342 return true;
5345 if (!Prev->getInstantiatedFromStaticDataMember()) {
5346 // FIXME: Check for explicit specialization?
5347 Diag(D.getIdentifierLoc(),
5348 diag::err_explicit_instantiation_data_member_not_instantiated)
5349 << Prev;
5350 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5351 // FIXME: Can we provide a note showing where this was declared?
5352 return true;
5355 // C++0x [temp.explicit]p2:
5356 // If the explicit instantiation is for a member function, a member class
5357 // or a static data member of a class template specialization, the name of
5358 // the class template specialization in the qualified-id for the member
5359 // name shall be a simple-template-id.
5361 // C++98 has the same restriction, just worded differently.
5362 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5363 Diag(D.getIdentifierLoc(),
5364 diag::ext_explicit_instantiation_without_qualified_id)
5365 << Prev << D.getCXXScopeSpec().getRange();
5367 // Check the scope of this explicit instantiation.
5368 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5370 // Verify that it is okay to explicitly instantiate here.
5371 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5372 assert(MSInfo && "Missing static data member specialization info?");
5373 bool HasNoEffect = false;
5374 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5375 MSInfo->getTemplateSpecializationKind(),
5376 MSInfo->getPointOfInstantiation(),
5377 HasNoEffect))
5378 return true;
5379 if (HasNoEffect)
5380 return (Decl*) 0;
5382 // Instantiate static data member.
5383 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5384 if (TSK == TSK_ExplicitInstantiationDefinition)
5385 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5387 // FIXME: Create an ExplicitInstantiation node?
5388 return (Decl*) 0;
5391 // If the declarator is a template-id, translate the parser's template
5392 // argument list into our AST format.
5393 bool HasExplicitTemplateArgs = false;
5394 TemplateArgumentListInfo TemplateArgs;
5395 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5396 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5397 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5398 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5399 ASTTemplateArgsPtr TemplateArgsPtr(*this,
5400 TemplateId->getTemplateArgs(),
5401 TemplateId->NumArgs);
5402 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5403 HasExplicitTemplateArgs = true;
5404 TemplateArgsPtr.release();
5407 // C++ [temp.explicit]p1:
5408 // A [...] function [...] can be explicitly instantiated from its template.
5409 // A member function [...] of a class template can be explicitly
5410 // instantiated from the member definition associated with its class
5411 // template.
5412 UnresolvedSet<8> Matches;
5413 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5414 P != PEnd; ++P) {
5415 NamedDecl *Prev = *P;
5416 if (!HasExplicitTemplateArgs) {
5417 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5418 if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5419 Matches.clear();
5421 Matches.addDecl(Method, P.getAccess());
5422 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5423 break;
5428 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5429 if (!FunTmpl)
5430 continue;
5432 TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5433 FunctionDecl *Specialization = 0;
5434 if (TemplateDeductionResult TDK
5435 = DeduceTemplateArguments(FunTmpl,
5436 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5437 R, Specialization, Info)) {
5438 // FIXME: Keep track of almost-matches?
5439 (void)TDK;
5440 continue;
5443 Matches.addDecl(Specialization, P.getAccess());
5446 // Find the most specialized function template specialization.
5447 UnresolvedSetIterator Result
5448 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5449 D.getIdentifierLoc(),
5450 PDiag(diag::err_explicit_instantiation_not_known) << Name,
5451 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5452 PDiag(diag::note_explicit_instantiation_candidate));
5454 if (Result == Matches.end())
5455 return true;
5457 // Ignore access control bits, we don't need them for redeclaration checking.
5458 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5460 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5461 Diag(D.getIdentifierLoc(),
5462 diag::err_explicit_instantiation_member_function_not_instantiated)
5463 << Specialization
5464 << (Specialization->getTemplateSpecializationKind() ==
5465 TSK_ExplicitSpecialization);
5466 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5467 return true;
5470 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5471 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5472 PrevDecl = Specialization;
5474 if (PrevDecl) {
5475 bool HasNoEffect = false;
5476 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5477 PrevDecl,
5478 PrevDecl->getTemplateSpecializationKind(),
5479 PrevDecl->getPointOfInstantiation(),
5480 HasNoEffect))
5481 return true;
5483 // FIXME: We may still want to build some representation of this
5484 // explicit specialization.
5485 if (HasNoEffect)
5486 return (Decl*) 0;
5489 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5491 if (TSK == TSK_ExplicitInstantiationDefinition)
5492 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5494 // C++0x [temp.explicit]p2:
5495 // If the explicit instantiation is for a member function, a member class
5496 // or a static data member of a class template specialization, the name of
5497 // the class template specialization in the qualified-id for the member
5498 // name shall be a simple-template-id.
5500 // C++98 has the same restriction, just worded differently.
5501 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5502 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5503 D.getCXXScopeSpec().isSet() &&
5504 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5505 Diag(D.getIdentifierLoc(),
5506 diag::ext_explicit_instantiation_without_qualified_id)
5507 << Specialization << D.getCXXScopeSpec().getRange();
5509 CheckExplicitInstantiationScope(*this,
5510 FunTmpl? (NamedDecl *)FunTmpl
5511 : Specialization->getInstantiatedFromMemberFunction(),
5512 D.getIdentifierLoc(),
5513 D.getCXXScopeSpec().isSet());
5515 // FIXME: Create some kind of ExplicitInstantiationDecl here.
5516 return (Decl*) 0;
5519 TypeResult
5520 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5521 const CXXScopeSpec &SS, IdentifierInfo *Name,
5522 SourceLocation TagLoc, SourceLocation NameLoc) {
5523 // This has to hold, because SS is expected to be defined.
5524 assert(Name && "Expected a name in a dependent tag");
5526 NestedNameSpecifier *NNS
5527 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5528 if (!NNS)
5529 return true;
5531 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5533 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5534 Diag(NameLoc, diag::err_dependent_tag_decl)
5535 << (TUK == TUK_Definition) << Kind << SS.getRange();
5536 return true;
5539 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5540 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5543 TypeResult
5544 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5545 const CXXScopeSpec &SS, const IdentifierInfo &II,
5546 SourceLocation IdLoc) {
5547 NestedNameSpecifier *NNS
5548 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5549 if (!NNS)
5550 return true;
5552 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5553 !getLangOptions().CPlusPlus0x)
5554 Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5555 << FixItHint::CreateRemoval(TypenameLoc);
5557 QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5558 TypenameLoc, SS.getRange(), IdLoc);
5559 if (T.isNull())
5560 return true;
5562 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5563 if (isa<DependentNameType>(T)) {
5564 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5565 TL.setKeywordLoc(TypenameLoc);
5566 TL.setQualifierRange(SS.getRange());
5567 TL.setNameLoc(IdLoc);
5568 } else {
5569 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5570 TL.setKeywordLoc(TypenameLoc);
5571 TL.setQualifierRange(SS.getRange());
5572 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5575 return CreateParsedType(T, TSI);
5578 TypeResult
5579 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5580 const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5581 ParsedType Ty) {
5582 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5583 !getLangOptions().CPlusPlus0x)
5584 Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5585 << FixItHint::CreateRemoval(TypenameLoc);
5587 TypeSourceInfo *InnerTSI = 0;
5588 QualType T = GetTypeFromParser(Ty, &InnerTSI);
5590 assert(isa<TemplateSpecializationType>(T) &&
5591 "Expected a template specialization type");
5593 if (computeDeclContext(SS, false)) {
5594 // If we can compute a declaration context, then the "typename"
5595 // keyword was superfluous. Just build an ElaboratedType to keep
5596 // track of the nested-name-specifier.
5598 // Push the inner type, preserving its source locations if possible.
5599 TypeLocBuilder Builder;
5600 if (InnerTSI)
5601 Builder.pushFullCopy(InnerTSI->getTypeLoc());
5602 else
5603 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5605 /* Note: NNS already embedded in template specialization type T. */
5606 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5607 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5608 TL.setKeywordLoc(TypenameLoc);
5609 TL.setQualifierRange(SS.getRange());
5611 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5612 return CreateParsedType(T, TSI);
5615 // TODO: it's really silly that we make a template specialization
5616 // type earlier only to drop it again here.
5617 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5618 DependentTemplateName *DTN =
5619 TST->getTemplateName().getAsDependentTemplateName();
5620 assert(DTN && "dependent template has non-dependent name?");
5621 assert(DTN->getQualifier()
5622 == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5623 T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5624 DTN->getQualifier(),
5625 DTN->getIdentifier(),
5626 TST->getNumArgs(),
5627 TST->getArgs());
5628 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5629 DependentTemplateSpecializationTypeLoc TL =
5630 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5631 if (InnerTSI) {
5632 TemplateSpecializationTypeLoc TSTL =
5633 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5634 TL.setLAngleLoc(TSTL.getLAngleLoc());
5635 TL.setRAngleLoc(TSTL.getRAngleLoc());
5636 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5637 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5638 } else {
5639 TL.initializeLocal(SourceLocation());
5641 TL.setKeywordLoc(TypenameLoc);
5642 TL.setQualifierRange(SS.getRange());
5643 return CreateParsedType(T, TSI);
5646 /// \brief Build the type that describes a C++ typename specifier,
5647 /// e.g., "typename T::type".
5648 QualType
5649 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5650 NestedNameSpecifier *NNS, const IdentifierInfo &II,
5651 SourceLocation KeywordLoc, SourceRange NNSRange,
5652 SourceLocation IILoc) {
5653 CXXScopeSpec SS;
5654 SS.setScopeRep(NNS);
5655 SS.setRange(NNSRange);
5657 DeclContext *Ctx = computeDeclContext(SS);
5658 if (!Ctx) {
5659 // If the nested-name-specifier is dependent and couldn't be
5660 // resolved to a type, build a typename type.
5661 assert(NNS->isDependent());
5662 return Context.getDependentNameType(Keyword, NNS, &II);
5665 // If the nested-name-specifier refers to the current instantiation,
5666 // the "typename" keyword itself is superfluous. In C++03, the
5667 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5668 // allows such extraneous "typename" keywords, and we retroactively
5669 // apply this DR to C++03 code with only a warning. In any case we continue.
5671 if (RequireCompleteDeclContext(SS, Ctx))
5672 return QualType();
5674 DeclarationName Name(&II);
5675 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5676 LookupQualifiedName(Result, Ctx);
5677 unsigned DiagID = 0;
5678 Decl *Referenced = 0;
5679 switch (Result.getResultKind()) {
5680 case LookupResult::NotFound:
5681 DiagID = diag::err_typename_nested_not_found;
5682 break;
5684 case LookupResult::NotFoundInCurrentInstantiation:
5685 // Okay, it's a member of an unknown instantiation.
5686 return Context.getDependentNameType(Keyword, NNS, &II);
5688 case LookupResult::Found:
5689 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5690 // We found a type. Build an ElaboratedType, since the
5691 // typename-specifier was just sugar.
5692 return Context.getElaboratedType(ETK_Typename, NNS,
5693 Context.getTypeDeclType(Type));
5696 DiagID = diag::err_typename_nested_not_type;
5697 Referenced = Result.getFoundDecl();
5698 break;
5700 case LookupResult::FoundUnresolvedValue:
5701 llvm_unreachable("unresolved using decl in non-dependent context");
5702 return QualType();
5704 case LookupResult::FoundOverloaded:
5705 DiagID = diag::err_typename_nested_not_type;
5706 Referenced = *Result.begin();
5707 break;
5709 case LookupResult::Ambiguous:
5710 return QualType();
5713 // If we get here, it's because name lookup did not find a
5714 // type. Emit an appropriate diagnostic and return an error.
5715 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5716 IILoc);
5717 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5718 if (Referenced)
5719 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5720 << Name;
5721 return QualType();
5724 namespace {
5725 // See Sema::RebuildTypeInCurrentInstantiation
5726 class CurrentInstantiationRebuilder
5727 : public TreeTransform<CurrentInstantiationRebuilder> {
5728 SourceLocation Loc;
5729 DeclarationName Entity;
5731 public:
5732 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5734 CurrentInstantiationRebuilder(Sema &SemaRef,
5735 SourceLocation Loc,
5736 DeclarationName Entity)
5737 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5738 Loc(Loc), Entity(Entity) { }
5740 /// \brief Determine whether the given type \p T has already been
5741 /// transformed.
5743 /// For the purposes of type reconstruction, a type has already been
5744 /// transformed if it is NULL or if it is not dependent.
5745 bool AlreadyTransformed(QualType T) {
5746 return T.isNull() || !T->isDependentType();
5749 /// \brief Returns the location of the entity whose type is being
5750 /// rebuilt.
5751 SourceLocation getBaseLocation() { return Loc; }
5753 /// \brief Returns the name of the entity whose type is being rebuilt.
5754 DeclarationName getBaseEntity() { return Entity; }
5756 /// \brief Sets the "base" location and entity when that
5757 /// information is known based on another transformation.
5758 void setBase(SourceLocation Loc, DeclarationName Entity) {
5759 this->Loc = Loc;
5760 this->Entity = Entity;
5765 /// \brief Rebuilds a type within the context of the current instantiation.
5767 /// The type \p T is part of the type of an out-of-line member definition of
5768 /// a class template (or class template partial specialization) that was parsed
5769 /// and constructed before we entered the scope of the class template (or
5770 /// partial specialization thereof). This routine will rebuild that type now
5771 /// that we have entered the declarator's scope, which may produce different
5772 /// canonical types, e.g.,
5774 /// \code
5775 /// template<typename T>
5776 /// struct X {
5777 /// typedef T* pointer;
5778 /// pointer data();
5779 /// };
5781 /// template<typename T>
5782 /// typename X<T>::pointer X<T>::data() { ... }
5783 /// \endcode
5785 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5786 /// since we do not know that we can look into X<T> when we parsed the type.
5787 /// This function will rebuild the type, performing the lookup of "pointer"
5788 /// in X<T> and returning an ElaboratedType whose canonical type is the same
5789 /// as the canonical type of T*, allowing the return types of the out-of-line
5790 /// definition and the declaration to match.
5791 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5792 SourceLocation Loc,
5793 DeclarationName Name) {
5794 if (!T || !T->getType()->isDependentType())
5795 return T;
5797 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5798 return Rebuilder.TransformType(T);
5801 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5802 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5803 DeclarationName());
5804 return Rebuilder.TransformExpr(E);
5807 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5808 if (SS.isInvalid()) return true;
5810 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5811 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5812 DeclarationName());
5813 NestedNameSpecifier *Rebuilt =
5814 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5815 if (!Rebuilt) return true;
5817 SS.setScopeRep(Rebuilt);
5818 return false;
5821 /// \brief Produces a formatted string that describes the binding of
5822 /// template parameters to template arguments.
5823 std::string
5824 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5825 const TemplateArgumentList &Args) {
5826 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
5829 std::string
5830 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5831 const TemplateArgument *Args,
5832 unsigned NumArgs) {
5833 std::string Result;
5835 if (!Params || Params->size() == 0 || NumArgs == 0)
5836 return Result;
5838 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5839 if (I >= NumArgs)
5840 break;
5842 if (I == 0)
5843 Result += "[with ";
5844 else
5845 Result += ", ";
5847 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5848 Result += Id->getName();
5849 } else {
5850 Result += '$';
5851 Result += llvm::utostr(I);
5854 Result += " = ";
5856 switch (Args[I].getKind()) {
5857 case TemplateArgument::Null:
5858 Result += "<no value>";
5859 break;
5861 case TemplateArgument::Type: {
5862 std::string TypeStr;
5863 Args[I].getAsType().getAsStringInternal(TypeStr,
5864 Context.PrintingPolicy);
5865 Result += TypeStr;
5866 break;
5869 case TemplateArgument::Declaration: {
5870 bool Unnamed = true;
5871 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5872 if (ND->getDeclName()) {
5873 Unnamed = false;
5874 Result += ND->getNameAsString();
5878 if (Unnamed) {
5879 Result += "<anonymous>";
5881 break;
5884 case TemplateArgument::Template: {
5885 std::string Str;
5886 llvm::raw_string_ostream OS(Str);
5887 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5888 Result += OS.str();
5889 break;
5892 case TemplateArgument::Integral: {
5893 Result += Args[I].getAsIntegral()->toString(10);
5894 break;
5897 case TemplateArgument::Expression: {
5898 // FIXME: This is non-optimal, since we're regurgitating the
5899 // expression we were given.
5900 std::string Str;
5902 llvm::raw_string_ostream OS(Str);
5903 Args[I].getAsExpr()->printPretty(OS, Context, 0,
5904 Context.PrintingPolicy);
5906 Result += Str;
5907 break;
5910 case TemplateArgument::Pack:
5911 // FIXME: Format template argument packs
5912 Result += "<template argument pack>";
5913 break;
5917 Result += ']';
5918 return Result;