1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
24 #include "libiberty.h"
27 #include "elf-vxworks.h"
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
62 static struct elf_backend_data elf32_arm_vxworks_bed
;
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
68 static reloc_howto_type elf32_arm_howto_table_1
[] =
71 HOWTO (R_ARM_NONE
, /* type */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
75 FALSE
, /* pc_relative */
77 complain_overflow_dont
,/* complain_on_overflow */
78 bfd_elf_generic_reloc
, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE
, /* partial_inplace */
83 FALSE
), /* pcrel_offset */
85 HOWTO (R_ARM_PC24
, /* type */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
89 TRUE
, /* pc_relative */
91 complain_overflow_signed
,/* complain_on_overflow */
92 bfd_elf_generic_reloc
, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE
, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE
), /* pcrel_offset */
100 HOWTO (R_ARM_ABS32
, /* type */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
104 FALSE
, /* pc_relative */
106 complain_overflow_bitfield
,/* complain_on_overflow */
107 bfd_elf_generic_reloc
, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE
, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE
), /* pcrel_offset */
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32
, /* type */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
119 TRUE
, /* pc_relative */
121 complain_overflow_bitfield
,/* complain_on_overflow */
122 bfd_elf_generic_reloc
, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE
, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE
), /* pcrel_offset */
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0
, /* type */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
134 TRUE
, /* pc_relative */
136 complain_overflow_dont
,/* complain_on_overflow */
137 bfd_elf_generic_reloc
, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE
, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE
), /* pcrel_offset */
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16
, /* type */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
149 FALSE
, /* pc_relative */
151 complain_overflow_bitfield
,/* complain_on_overflow */
152 bfd_elf_generic_reloc
, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE
, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE
), /* pcrel_offset */
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12
, /* type */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
164 FALSE
, /* pc_relative */
166 complain_overflow_bitfield
,/* complain_on_overflow */
167 bfd_elf_generic_reloc
, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE
, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE
), /* pcrel_offset */
174 HOWTO (R_ARM_THM_ABS5
, /* type */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
178 FALSE
, /* pc_relative */
180 complain_overflow_bitfield
,/* complain_on_overflow */
181 bfd_elf_generic_reloc
, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE
, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE
), /* pcrel_offset */
189 HOWTO (R_ARM_ABS8
, /* type */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
193 FALSE
, /* pc_relative */
195 complain_overflow_bitfield
,/* complain_on_overflow */
196 bfd_elf_generic_reloc
, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE
, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE
), /* pcrel_offset */
203 HOWTO (R_ARM_SBREL32
, /* type */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
207 FALSE
, /* pc_relative */
209 complain_overflow_dont
,/* complain_on_overflow */
210 bfd_elf_generic_reloc
, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE
, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE
), /* pcrel_offset */
217 HOWTO (R_ARM_THM_CALL
, /* type */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
221 TRUE
, /* pc_relative */
223 complain_overflow_signed
,/* complain_on_overflow */
224 bfd_elf_generic_reloc
, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE
, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE
), /* pcrel_offset */
231 HOWTO (R_ARM_THM_PC8
, /* type */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
235 TRUE
, /* pc_relative */
237 complain_overflow_signed
,/* complain_on_overflow */
238 bfd_elf_generic_reloc
, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE
, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE
), /* pcrel_offset */
245 HOWTO (R_ARM_BREL_ADJ
, /* type */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
249 FALSE
, /* pc_relative */
251 complain_overflow_signed
,/* complain_on_overflow */
252 bfd_elf_generic_reloc
, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE
, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE
), /* pcrel_offset */
259 HOWTO (R_ARM_SWI24
, /* type */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
263 FALSE
, /* pc_relative */
265 complain_overflow_signed
,/* complain_on_overflow */
266 bfd_elf_generic_reloc
, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE
, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE
), /* pcrel_offset */
273 HOWTO (R_ARM_THM_SWI8
, /* type */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
277 FALSE
, /* pc_relative */
279 complain_overflow_signed
,/* complain_on_overflow */
280 bfd_elf_generic_reloc
, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE
, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE
), /* pcrel_offset */
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25
, /* type */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
292 TRUE
, /* pc_relative */
294 complain_overflow_signed
,/* complain_on_overflow */
295 bfd_elf_generic_reloc
, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE
, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE
), /* pcrel_offset */
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22
, /* type */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
307 TRUE
, /* pc_relative */
309 complain_overflow_signed
,/* complain_on_overflow */
310 bfd_elf_generic_reloc
, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE
, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE
), /* pcrel_offset */
317 /* Dynamic TLS relocations. */
319 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
323 FALSE
, /* pc_relative */
325 complain_overflow_bitfield
,/* complain_on_overflow */
326 bfd_elf_generic_reloc
, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE
, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE
), /* pcrel_offset */
333 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
337 FALSE
, /* pc_relative */
339 complain_overflow_bitfield
,/* complain_on_overflow */
340 bfd_elf_generic_reloc
, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE
, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE
), /* pcrel_offset */
347 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
351 FALSE
, /* pc_relative */
353 complain_overflow_bitfield
,/* complain_on_overflow */
354 bfd_elf_generic_reloc
, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE
, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE
), /* pcrel_offset */
361 /* Relocs used in ARM Linux */
363 HOWTO (R_ARM_COPY
, /* type */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
367 FALSE
, /* pc_relative */
369 complain_overflow_bitfield
,/* complain_on_overflow */
370 bfd_elf_generic_reloc
, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE
, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE
), /* pcrel_offset */
377 HOWTO (R_ARM_GLOB_DAT
, /* type */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
381 FALSE
, /* pc_relative */
383 complain_overflow_bitfield
,/* complain_on_overflow */
384 bfd_elf_generic_reloc
, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE
, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE
), /* pcrel_offset */
391 HOWTO (R_ARM_JUMP_SLOT
, /* type */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
395 FALSE
, /* pc_relative */
397 complain_overflow_bitfield
,/* complain_on_overflow */
398 bfd_elf_generic_reloc
, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE
, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE
), /* pcrel_offset */
405 HOWTO (R_ARM_RELATIVE
, /* type */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
409 FALSE
, /* pc_relative */
411 complain_overflow_bitfield
,/* complain_on_overflow */
412 bfd_elf_generic_reloc
, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE
, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE
), /* pcrel_offset */
419 HOWTO (R_ARM_GOTOFF32
, /* type */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
423 FALSE
, /* pc_relative */
425 complain_overflow_bitfield
,/* complain_on_overflow */
426 bfd_elf_generic_reloc
, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE
, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE
), /* pcrel_offset */
433 HOWTO (R_ARM_GOTPC
, /* type */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
437 TRUE
, /* pc_relative */
439 complain_overflow_bitfield
,/* complain_on_overflow */
440 bfd_elf_generic_reloc
, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE
, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE
), /* pcrel_offset */
447 HOWTO (R_ARM_GOT32
, /* type */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
451 FALSE
, /* pc_relative */
453 complain_overflow_bitfield
,/* complain_on_overflow */
454 bfd_elf_generic_reloc
, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE
, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE
), /* pcrel_offset */
461 HOWTO (R_ARM_PLT32
, /* type */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
465 TRUE
, /* pc_relative */
467 complain_overflow_bitfield
,/* complain_on_overflow */
468 bfd_elf_generic_reloc
, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE
, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE
), /* pcrel_offset */
475 HOWTO (R_ARM_CALL
, /* type */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
479 TRUE
, /* pc_relative */
481 complain_overflow_signed
,/* complain_on_overflow */
482 bfd_elf_generic_reloc
, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE
, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE
), /* pcrel_offset */
489 HOWTO (R_ARM_JUMP24
, /* type */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
493 TRUE
, /* pc_relative */
495 complain_overflow_signed
,/* complain_on_overflow */
496 bfd_elf_generic_reloc
, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE
, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE
), /* pcrel_offset */
503 HOWTO (R_ARM_THM_JUMP24
, /* type */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
507 TRUE
, /* pc_relative */
509 complain_overflow_signed
,/* complain_on_overflow */
510 bfd_elf_generic_reloc
, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE
, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE
), /* pcrel_offset */
517 HOWTO (R_ARM_BASE_ABS
, /* type */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
521 FALSE
, /* pc_relative */
523 complain_overflow_dont
,/* complain_on_overflow */
524 bfd_elf_generic_reloc
, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE
, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE
), /* pcrel_offset */
531 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
535 TRUE
, /* pc_relative */
537 complain_overflow_dont
,/* complain_on_overflow */
538 bfd_elf_generic_reloc
, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE
, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE
), /* pcrel_offset */
545 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
549 TRUE
, /* pc_relative */
551 complain_overflow_dont
,/* complain_on_overflow */
552 bfd_elf_generic_reloc
, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE
, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE
), /* pcrel_offset */
559 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
563 TRUE
, /* pc_relative */
565 complain_overflow_dont
,/* complain_on_overflow */
566 bfd_elf_generic_reloc
, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE
, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE
), /* pcrel_offset */
573 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
577 FALSE
, /* pc_relative */
579 complain_overflow_dont
,/* complain_on_overflow */
580 bfd_elf_generic_reloc
, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE
, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE
), /* pcrel_offset */
587 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
591 FALSE
, /* pc_relative */
593 complain_overflow_dont
,/* complain_on_overflow */
594 bfd_elf_generic_reloc
, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE
, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE
), /* pcrel_offset */
601 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
605 FALSE
, /* pc_relative */
607 complain_overflow_dont
,/* complain_on_overflow */
608 bfd_elf_generic_reloc
, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE
, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE
), /* pcrel_offset */
615 HOWTO (R_ARM_TARGET1
, /* type */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
619 FALSE
, /* pc_relative */
621 complain_overflow_dont
,/* complain_on_overflow */
622 bfd_elf_generic_reloc
, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE
, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE
), /* pcrel_offset */
629 HOWTO (R_ARM_ROSEGREL32
, /* type */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
633 FALSE
, /* pc_relative */
635 complain_overflow_dont
,/* complain_on_overflow */
636 bfd_elf_generic_reloc
, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE
, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE
), /* pcrel_offset */
643 HOWTO (R_ARM_V4BX
, /* type */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
647 FALSE
, /* pc_relative */
649 complain_overflow_dont
,/* complain_on_overflow */
650 bfd_elf_generic_reloc
, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE
, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE
), /* pcrel_offset */
657 HOWTO (R_ARM_TARGET2
, /* type */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
661 FALSE
, /* pc_relative */
663 complain_overflow_signed
,/* complain_on_overflow */
664 bfd_elf_generic_reloc
, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE
, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE
), /* pcrel_offset */
671 HOWTO (R_ARM_PREL31
, /* type */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
675 TRUE
, /* pc_relative */
677 complain_overflow_signed
,/* complain_on_overflow */
678 bfd_elf_generic_reloc
, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE
, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE
), /* pcrel_offset */
685 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
689 FALSE
, /* pc_relative */
691 complain_overflow_dont
,/* complain_on_overflow */
692 bfd_elf_generic_reloc
, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE
, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE
), /* pcrel_offset */
699 HOWTO (R_ARM_MOVT_ABS
, /* type */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
703 FALSE
, /* pc_relative */
705 complain_overflow_bitfield
,/* complain_on_overflow */
706 bfd_elf_generic_reloc
, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE
, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE
), /* pcrel_offset */
713 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
717 TRUE
, /* pc_relative */
719 complain_overflow_dont
,/* complain_on_overflow */
720 bfd_elf_generic_reloc
, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE
, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE
), /* pcrel_offset */
727 HOWTO (R_ARM_MOVT_PREL
, /* type */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
731 TRUE
, /* pc_relative */
733 complain_overflow_bitfield
,/* complain_on_overflow */
734 bfd_elf_generic_reloc
, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE
, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE
), /* pcrel_offset */
741 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
745 FALSE
, /* pc_relative */
747 complain_overflow_dont
,/* complain_on_overflow */
748 bfd_elf_generic_reloc
, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE
, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE
), /* pcrel_offset */
755 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
759 FALSE
, /* pc_relative */
761 complain_overflow_bitfield
,/* complain_on_overflow */
762 bfd_elf_generic_reloc
, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE
, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE
), /* pcrel_offset */
769 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
773 TRUE
, /* pc_relative */
775 complain_overflow_dont
,/* complain_on_overflow */
776 bfd_elf_generic_reloc
, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE
, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE
), /* pcrel_offset */
783 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
787 TRUE
, /* pc_relative */
789 complain_overflow_bitfield
,/* complain_on_overflow */
790 bfd_elf_generic_reloc
, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE
, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE
), /* pcrel_offset */
797 HOWTO (R_ARM_THM_JUMP19
, /* type */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
801 TRUE
, /* pc_relative */
803 complain_overflow_signed
,/* complain_on_overflow */
804 bfd_elf_generic_reloc
, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE
, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE
), /* pcrel_offset */
811 HOWTO (R_ARM_THM_JUMP6
, /* type */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
815 TRUE
, /* pc_relative */
817 complain_overflow_unsigned
,/* complain_on_overflow */
818 bfd_elf_generic_reloc
, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE
, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE
), /* pcrel_offset */
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
828 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
832 TRUE
, /* pc_relative */
834 complain_overflow_dont
,/* complain_on_overflow */
835 bfd_elf_generic_reloc
, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE
, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE
), /* pcrel_offset */
842 HOWTO (R_ARM_THM_PC12
, /* type */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
846 TRUE
, /* pc_relative */
848 complain_overflow_dont
,/* complain_on_overflow */
849 bfd_elf_generic_reloc
, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE
, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE
), /* pcrel_offset */
856 HOWTO (R_ARM_ABS32_NOI
, /* type */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
860 FALSE
, /* pc_relative */
862 complain_overflow_dont
,/* complain_on_overflow */
863 bfd_elf_generic_reloc
, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE
, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE
), /* pcrel_offset */
870 HOWTO (R_ARM_REL32_NOI
, /* type */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
874 TRUE
, /* pc_relative */
876 complain_overflow_dont
,/* complain_on_overflow */
877 bfd_elf_generic_reloc
, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE
, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE
), /* pcrel_offset */
884 /* Group relocations. */
886 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
890 TRUE
, /* pc_relative */
892 complain_overflow_dont
,/* complain_on_overflow */
893 bfd_elf_generic_reloc
, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE
, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE
), /* pcrel_offset */
900 HOWTO (R_ARM_ALU_PC_G0
, /* type */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
904 TRUE
, /* pc_relative */
906 complain_overflow_dont
,/* complain_on_overflow */
907 bfd_elf_generic_reloc
, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE
, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE
), /* pcrel_offset */
914 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
918 TRUE
, /* pc_relative */
920 complain_overflow_dont
,/* complain_on_overflow */
921 bfd_elf_generic_reloc
, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE
, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE
), /* pcrel_offset */
928 HOWTO (R_ARM_ALU_PC_G1
, /* type */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
932 TRUE
, /* pc_relative */
934 complain_overflow_dont
,/* complain_on_overflow */
935 bfd_elf_generic_reloc
, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE
, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE
), /* pcrel_offset */
942 HOWTO (R_ARM_ALU_PC_G2
, /* type */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
946 TRUE
, /* pc_relative */
948 complain_overflow_dont
,/* complain_on_overflow */
949 bfd_elf_generic_reloc
, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE
, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE
), /* pcrel_offset */
956 HOWTO (R_ARM_LDR_PC_G1
, /* type */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
960 TRUE
, /* pc_relative */
962 complain_overflow_dont
,/* complain_on_overflow */
963 bfd_elf_generic_reloc
, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE
, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE
), /* pcrel_offset */
970 HOWTO (R_ARM_LDR_PC_G2
, /* type */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
974 TRUE
, /* pc_relative */
976 complain_overflow_dont
,/* complain_on_overflow */
977 bfd_elf_generic_reloc
, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE
, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE
), /* pcrel_offset */
984 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
988 TRUE
, /* pc_relative */
990 complain_overflow_dont
,/* complain_on_overflow */
991 bfd_elf_generic_reloc
, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE
, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE
), /* pcrel_offset */
998 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1002 TRUE
, /* pc_relative */
1004 complain_overflow_dont
,/* complain_on_overflow */
1005 bfd_elf_generic_reloc
, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE
, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE
), /* pcrel_offset */
1012 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1016 TRUE
, /* pc_relative */
1018 complain_overflow_dont
,/* complain_on_overflow */
1019 bfd_elf_generic_reloc
, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE
, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE
), /* pcrel_offset */
1026 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1030 TRUE
, /* pc_relative */
1032 complain_overflow_dont
,/* complain_on_overflow */
1033 bfd_elf_generic_reloc
, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE
, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE
), /* pcrel_offset */
1040 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1044 TRUE
, /* pc_relative */
1046 complain_overflow_dont
,/* complain_on_overflow */
1047 bfd_elf_generic_reloc
, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE
, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE
), /* pcrel_offset */
1054 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1058 TRUE
, /* pc_relative */
1060 complain_overflow_dont
,/* complain_on_overflow */
1061 bfd_elf_generic_reloc
, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE
, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE
), /* pcrel_offset */
1068 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1072 TRUE
, /* pc_relative */
1074 complain_overflow_dont
,/* complain_on_overflow */
1075 bfd_elf_generic_reloc
, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE
, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE
), /* pcrel_offset */
1082 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1086 TRUE
, /* pc_relative */
1088 complain_overflow_dont
,/* complain_on_overflow */
1089 bfd_elf_generic_reloc
, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE
, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE
), /* pcrel_offset */
1096 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1100 TRUE
, /* pc_relative */
1102 complain_overflow_dont
,/* complain_on_overflow */
1103 bfd_elf_generic_reloc
, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE
, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE
), /* pcrel_offset */
1110 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1114 TRUE
, /* pc_relative */
1116 complain_overflow_dont
,/* complain_on_overflow */
1117 bfd_elf_generic_reloc
, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE
, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE
), /* pcrel_offset */
1124 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1128 TRUE
, /* pc_relative */
1130 complain_overflow_dont
,/* complain_on_overflow */
1131 bfd_elf_generic_reloc
, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE
, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE
), /* pcrel_offset */
1138 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1142 TRUE
, /* pc_relative */
1144 complain_overflow_dont
,/* complain_on_overflow */
1145 bfd_elf_generic_reloc
, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE
, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE
), /* pcrel_offset */
1152 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1156 TRUE
, /* pc_relative */
1158 complain_overflow_dont
,/* complain_on_overflow */
1159 bfd_elf_generic_reloc
, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE
, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE
), /* pcrel_offset */
1166 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1170 TRUE
, /* pc_relative */
1172 complain_overflow_dont
,/* complain_on_overflow */
1173 bfd_elf_generic_reloc
, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE
, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE
), /* pcrel_offset */
1180 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 TRUE
, /* pc_relative */
1186 complain_overflow_dont
,/* complain_on_overflow */
1187 bfd_elf_generic_reloc
, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE
, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE
), /* pcrel_offset */
1194 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 TRUE
, /* pc_relative */
1200 complain_overflow_dont
,/* complain_on_overflow */
1201 bfd_elf_generic_reloc
, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE
, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE
), /* pcrel_offset */
1208 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 TRUE
, /* pc_relative */
1214 complain_overflow_dont
,/* complain_on_overflow */
1215 bfd_elf_generic_reloc
, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE
, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE
), /* pcrel_offset */
1222 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1226 TRUE
, /* pc_relative */
1228 complain_overflow_dont
,/* complain_on_overflow */
1229 bfd_elf_generic_reloc
, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE
, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE
), /* pcrel_offset */
1236 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1240 TRUE
, /* pc_relative */
1242 complain_overflow_dont
,/* complain_on_overflow */
1243 bfd_elf_generic_reloc
, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE
, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE
), /* pcrel_offset */
1250 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 TRUE
, /* pc_relative */
1256 complain_overflow_dont
,/* complain_on_overflow */
1257 bfd_elf_generic_reloc
, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE
, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE
), /* pcrel_offset */
1264 /* End of group relocations. */
1266 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 FALSE
, /* pc_relative */
1272 complain_overflow_dont
,/* complain_on_overflow */
1273 bfd_elf_generic_reloc
, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE
, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE
), /* pcrel_offset */
1280 HOWTO (R_ARM_MOVT_BREL
, /* type */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 FALSE
, /* pc_relative */
1286 complain_overflow_bitfield
,/* complain_on_overflow */
1287 bfd_elf_generic_reloc
, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE
, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE
), /* pcrel_offset */
1294 HOWTO (R_ARM_MOVW_BREL
, /* type */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 FALSE
, /* pc_relative */
1300 complain_overflow_dont
,/* complain_on_overflow */
1301 bfd_elf_generic_reloc
, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE
, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE
), /* pcrel_offset */
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1312 FALSE
, /* pc_relative */
1314 complain_overflow_dont
,/* complain_on_overflow */
1315 bfd_elf_generic_reloc
, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE
, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE
), /* pcrel_offset */
1322 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1326 FALSE
, /* pc_relative */
1328 complain_overflow_bitfield
,/* complain_on_overflow */
1329 bfd_elf_generic_reloc
, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE
, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE
), /* pcrel_offset */
1336 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1340 FALSE
, /* pc_relative */
1342 complain_overflow_dont
,/* complain_on_overflow */
1343 bfd_elf_generic_reloc
, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE
, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE
), /* pcrel_offset */
1350 EMPTY_HOWTO (90), /* Unallocated. */
1355 HOWTO (R_ARM_PLT32_ABS
, /* type */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 FALSE
, /* pc_relative */
1361 complain_overflow_dont
,/* complain_on_overflow */
1362 bfd_elf_generic_reloc
, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE
, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE
), /* pcrel_offset */
1369 HOWTO (R_ARM_GOT_ABS
, /* type */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 FALSE
, /* pc_relative */
1375 complain_overflow_dont
,/* complain_on_overflow */
1376 bfd_elf_generic_reloc
, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE
, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE
), /* pcrel_offset */
1383 HOWTO (R_ARM_GOT_PREL
, /* type */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 TRUE
, /* pc_relative */
1389 complain_overflow_dont
, /* complain_on_overflow */
1390 bfd_elf_generic_reloc
, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE
, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE
), /* pcrel_offset */
1397 HOWTO (R_ARM_GOT_BREL12
, /* type */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1401 FALSE
, /* pc_relative */
1403 complain_overflow_bitfield
,/* complain_on_overflow */
1404 bfd_elf_generic_reloc
, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE
, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE
), /* pcrel_offset */
1411 HOWTO (R_ARM_GOTOFF12
, /* type */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1415 FALSE
, /* pc_relative */
1417 complain_overflow_bitfield
,/* complain_on_overflow */
1418 bfd_elf_generic_reloc
, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE
, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE
), /* pcrel_offset */
1425 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 FALSE
, /* pc_relative */
1434 complain_overflow_dont
, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE
, /* partial_inplace */
1440 FALSE
), /* pcrel_offset */
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 FALSE
, /* pc_relative */
1449 complain_overflow_dont
, /* complain_on_overflow */
1450 NULL
, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE
, /* partial_inplace */
1455 FALSE
), /* pcrel_offset */
1457 HOWTO (R_ARM_THM_JUMP11
, /* type */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1461 TRUE
, /* pc_relative */
1463 complain_overflow_signed
, /* complain_on_overflow */
1464 bfd_elf_generic_reloc
, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE
, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE
), /* pcrel_offset */
1471 HOWTO (R_ARM_THM_JUMP8
, /* type */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1475 TRUE
, /* pc_relative */
1477 complain_overflow_signed
, /* complain_on_overflow */
1478 bfd_elf_generic_reloc
, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE
, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE
), /* pcrel_offset */
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32
, /* type */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 FALSE
, /* pc_relative */
1492 complain_overflow_bitfield
,/* complain_on_overflow */
1493 NULL
, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE
, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE
), /* pcrel_offset */
1500 HOWTO (R_ARM_TLS_LDM32
, /* type */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1504 FALSE
, /* pc_relative */
1506 complain_overflow_bitfield
,/* complain_on_overflow */
1507 bfd_elf_generic_reloc
, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE
, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE
), /* pcrel_offset */
1514 HOWTO (R_ARM_TLS_LDO32
, /* type */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1518 FALSE
, /* pc_relative */
1520 complain_overflow_bitfield
,/* complain_on_overflow */
1521 bfd_elf_generic_reloc
, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE
, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE
), /* pcrel_offset */
1528 HOWTO (R_ARM_TLS_IE32
, /* type */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1532 FALSE
, /* pc_relative */
1534 complain_overflow_bitfield
,/* complain_on_overflow */
1535 NULL
, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE
, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE
), /* pcrel_offset */
1542 HOWTO (R_ARM_TLS_LE32
, /* type */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 FALSE
, /* pc_relative */
1548 complain_overflow_bitfield
,/* complain_on_overflow */
1549 bfd_elf_generic_reloc
, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE
, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE
), /* pcrel_offset */
1556 HOWTO (R_ARM_TLS_LDO12
, /* type */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 FALSE
, /* pc_relative */
1562 complain_overflow_bitfield
,/* complain_on_overflow */
1563 bfd_elf_generic_reloc
, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE
, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE
), /* pcrel_offset */
1570 HOWTO (R_ARM_TLS_LE12
, /* type */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1574 FALSE
, /* pc_relative */
1576 complain_overflow_bitfield
,/* complain_on_overflow */
1577 bfd_elf_generic_reloc
, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE
, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE
), /* pcrel_offset */
1584 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1588 FALSE
, /* pc_relative */
1590 complain_overflow_bitfield
,/* complain_on_overflow */
1591 bfd_elf_generic_reloc
, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE
, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE
), /* pcrel_offset */
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1603 249-255 extended, currently unused, relocations: */
1605 static reloc_howto_type elf32_arm_howto_table_2
[4] =
1607 HOWTO (R_ARM_RREL32
, /* type */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1611 FALSE
, /* pc_relative */
1613 complain_overflow_dont
,/* complain_on_overflow */
1614 bfd_elf_generic_reloc
, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE
, /* partial_inplace */
1619 FALSE
), /* pcrel_offset */
1621 HOWTO (R_ARM_RABS32
, /* type */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1625 FALSE
, /* pc_relative */
1627 complain_overflow_dont
,/* complain_on_overflow */
1628 bfd_elf_generic_reloc
, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE
, /* partial_inplace */
1633 FALSE
), /* pcrel_offset */
1635 HOWTO (R_ARM_RPC24
, /* type */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1639 FALSE
, /* pc_relative */
1641 complain_overflow_dont
,/* complain_on_overflow */
1642 bfd_elf_generic_reloc
, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE
, /* partial_inplace */
1647 FALSE
), /* pcrel_offset */
1649 HOWTO (R_ARM_RBASE
, /* type */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1653 FALSE
, /* pc_relative */
1655 complain_overflow_dont
,/* complain_on_overflow */
1656 bfd_elf_generic_reloc
, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE
, /* partial_inplace */
1661 FALSE
) /* pcrel_offset */
1664 static reloc_howto_type
*
1665 elf32_arm_howto_from_type (unsigned int r_type
)
1667 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1668 return &elf32_arm_howto_table_1
[r_type
];
1670 if (r_type
>= R_ARM_RREL32
1671 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1672 return &elf32_arm_howto_table_2
[r_type
- R_ARM_RREL32
];
1678 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1679 Elf_Internal_Rela
* elf_reloc
)
1681 unsigned int r_type
;
1683 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1684 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1687 struct elf32_arm_reloc_map
1689 bfd_reloc_code_real_type bfd_reloc_val
;
1690 unsigned char elf_reloc_val
;
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1696 {BFD_RELOC_NONE
, R_ARM_NONE
},
1697 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1698 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1699 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1700 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1701 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1702 {BFD_RELOC_32
, R_ARM_ABS32
},
1703 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1704 {BFD_RELOC_8
, R_ARM_ABS8
},
1705 {BFD_RELOC_16
, R_ARM_ABS16
},
1706 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1707 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1714 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1715 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1716 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1717 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1718 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1719 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1720 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1721 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1722 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1723 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1724 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1725 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1726 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1727 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1728 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1729 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1732 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1733 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1734 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1735 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1736 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1737 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1738 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1739 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1740 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1741 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1742 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1746 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1748 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1749 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1750 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1751 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1752 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1753 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1754 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1755 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1756 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1757 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1758 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1760 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1762 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1763 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1764 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1765 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1766 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1767 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1768 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1769 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1770 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1771 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1772 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1773 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1776 static reloc_howto_type
*
1777 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1778 bfd_reloc_code_real_type code
)
1782 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1783 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1789 static reloc_howto_type
*
1790 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1795 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1796 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1797 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1798 return &elf32_arm_howto_table_1
[i
];
1800 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1801 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1802 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1803 return &elf32_arm_howto_table_2
[i
];
1808 /* Support for core dump NOTE sections. */
1811 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1816 switch (note
->descsz
)
1821 case 148: /* Linux/ARM 32-bit. */
1823 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1826 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1837 size
, note
->descpos
+ offset
);
1841 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1843 switch (note
->descsz
)
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd
)->core_program
1850 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1851 elf_tdata (abfd
)->core_command
1852 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1859 char *command
= elf_tdata (abfd
)->core_command
;
1860 int n
= strlen (command
);
1862 if (0 < n
&& command
[n
- 1] == ' ')
1863 command
[n
- 1] = '\0';
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1877 typedef unsigned long int insn32
;
1878 typedef unsigned short int insn16
;
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1904 /* The name of the dynamic interpreter. This is put in the .interp
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1908 #ifdef FOUR_WORD_PLT
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1914 static const bfd_vma elf32_arm_plt0_entry
[] =
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1922 /* Subsequent entries in a procedure linkage table look like
1924 static const bfd_vma elf32_arm_plt_entry
[] =
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1938 static const bfd_vma elf32_arm_plt0_entry
[] =
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1947 /* Subsequent entries in a procedure linkage table look like
1949 static const bfd_vma elf32_arm_plt_entry
[] =
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
1998 /* The entries in a PLT when using a DLL-based target with multiple
2000 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2013 static const bfd_vma arm_long_branch_stub
[] =
2015 0xe51ff004, /* ldr pc, [pc, #-4] */
2016 0x00000000, /* dcd R_ARM_ABS32(X) */
2019 static const bfd_vma arm_thumb_v4t_long_branch_stub
[] =
2021 0xe59fc000, /* ldr ip, [pc, #0] */
2022 0xe12fff1c, /* bx ip */
2023 0x00000000, /* dcd R_ARM_ABS32(X) */
2026 static const bfd_vma arm_thumb_thumb_long_branch_stub
[] =
2028 0x4e02b540, /* push {r6, lr} */
2029 /* ldr r6, [pc, #8] */
2030 0x473046fe, /* mov lr, pc */
2032 0xbf00bd40, /* pop {r6, pc} */
2034 0x00000000, /* dcd R_ARM_ABS32(X) */
2037 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub
[] =
2039 0x4e03b540, /* push {r6, lr} */
2040 /* ldr r6, [pc, #12] */
2041 0x473046fe, /* mov lr, pc */
2043 0xe8bd4040, /* pop {r6, pc} */
2044 0xe12fff1e, /* bx lr */
2045 0x00000000, /* dcd R_ARM_ABS32(X) */
2048 static const bfd_vma arm_thumb_arm_v4t_short_branch_stub
[] =
2050 0x46c04778, /* bx pc */
2052 0xea000000, /* b (X) */
2055 static const bfd_vma arm_pic_long_branch_stub
[] =
2057 0xe59fc000, /* ldr r12, [pc] */
2058 0xe08ff00c, /* add pc, pc, ip */
2059 0x00000000, /* dcd R_ARM_REL32(X) */
2062 /* Section name for stubs is the associated section name plus this
2064 #define STUB_SUFFIX ".stub"
2066 enum elf32_arm_stub_type
2069 arm_stub_long_branch
,
2070 arm_thumb_v4t_stub_long_branch
,
2071 arm_thumb_thumb_stub_long_branch
,
2072 arm_thumb_arm_v4t_stub_long_branch
,
2073 arm_thumb_arm_v4t_stub_short_branch
,
2074 arm_stub_pic_long_branch
,
2077 struct elf32_arm_stub_hash_entry
2079 /* Base hash table entry structure. */
2080 struct bfd_hash_entry root
;
2082 /* The stub section. */
2085 /* Offset within stub_sec of the beginning of this stub. */
2086 bfd_vma stub_offset
;
2088 /* Given the symbol's value and its section we can determine its final
2089 value when building the stubs (so the stub knows where to jump). */
2090 bfd_vma target_value
;
2091 asection
*target_section
;
2093 enum elf32_arm_stub_type stub_type
;
2095 /* The symbol table entry, if any, that this was derived from. */
2096 struct elf32_arm_link_hash_entry
*h
;
2098 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2099 unsigned char st_type
;
2101 /* Where this stub is being called from, or, in the case of combined
2102 stub sections, the first input section in the group. */
2105 /* The name for the local symbol at the start of this stub. The
2106 stub name in the hash table has to be unique; this does not, so
2107 it can be friendlier. */
2111 /* Used to build a map of a section. This is required for mixed-endian
2114 typedef struct elf32_elf_section_map
2119 elf32_arm_section_map
;
2121 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2125 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2126 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2127 VFP11_ERRATUM_ARM_VENEER
,
2128 VFP11_ERRATUM_THUMB_VENEER
2130 elf32_vfp11_erratum_type
;
2132 typedef struct elf32_vfp11_erratum_list
2134 struct elf32_vfp11_erratum_list
*next
;
2140 struct elf32_vfp11_erratum_list
*veneer
;
2141 unsigned int vfp_insn
;
2145 struct elf32_vfp11_erratum_list
*branch
;
2149 elf32_vfp11_erratum_type type
;
2151 elf32_vfp11_erratum_list
;
2153 typedef struct _arm_elf_section_data
2155 struct bfd_elf_section_data elf
;
2156 unsigned int mapcount
;
2157 unsigned int mapsize
;
2158 elf32_arm_section_map
*map
;
2159 unsigned int erratumcount
;
2160 elf32_vfp11_erratum_list
*erratumlist
;
2162 _arm_elf_section_data
;
2164 #define elf32_arm_section_data(sec) \
2165 ((_arm_elf_section_data *) elf_section_data (sec))
2167 /* The size of the thread control block. */
2170 struct elf_arm_obj_tdata
2172 struct elf_obj_tdata root
;
2174 /* tls_type for each local got entry. */
2175 char *local_got_tls_type
;
2177 /* Zero to warn when linking objects with incompatible enum sizes. */
2178 int no_enum_size_warning
;
2180 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2181 int no_wchar_size_warning
;
2184 #define elf_arm_tdata(bfd) \
2185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2187 #define elf32_arm_local_got_tls_type(bfd) \
2188 (elf_arm_tdata (bfd)->local_got_tls_type)
2190 #define is_arm_elf(bfd) \
2191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2192 && elf_tdata (bfd) != NULL \
2193 && elf_object_id (bfd) == ARM_ELF_TDATA)
2196 elf32_arm_mkobject (bfd
*abfd
)
2198 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2202 /* The ARM linker needs to keep track of the number of relocs that it
2203 decides to copy in check_relocs for each symbol. This is so that
2204 it can discard PC relative relocs if it doesn't need them when
2205 linking with -Bsymbolic. We store the information in a field
2206 extending the regular ELF linker hash table. */
2208 /* This structure keeps track of the number of relocs we have copied
2209 for a given symbol. */
2210 struct elf32_arm_relocs_copied
2213 struct elf32_arm_relocs_copied
* next
;
2214 /* A section in dynobj. */
2216 /* Number of relocs copied in this section. */
2217 bfd_size_type count
;
2218 /* Number of PC-relative relocs copied in this section. */
2219 bfd_size_type pc_count
;
2222 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2224 /* Arm ELF linker hash entry. */
2225 struct elf32_arm_link_hash_entry
2227 struct elf_link_hash_entry root
;
2229 /* Number of PC relative relocs copied for this symbol. */
2230 struct elf32_arm_relocs_copied
* relocs_copied
;
2232 /* We reference count Thumb references to a PLT entry separately,
2233 so that we can emit the Thumb trampoline only if needed. */
2234 bfd_signed_vma plt_thumb_refcount
;
2236 /* Some references from Thumb code may be eliminated by BL->BLX
2237 conversion, so record them separately. */
2238 bfd_signed_vma plt_maybe_thumb_refcount
;
2240 /* Since PLT entries have variable size if the Thumb prologue is
2241 used, we need to record the index into .got.plt instead of
2242 recomputing it from the PLT offset. */
2243 bfd_signed_vma plt_got_offset
;
2245 #define GOT_UNKNOWN 0
2246 #define GOT_NORMAL 1
2247 #define GOT_TLS_GD 2
2248 #define GOT_TLS_IE 4
2249 unsigned char tls_type
;
2251 /* The symbol marking the real symbol location for exported thumb
2252 symbols with Arm stubs. */
2253 struct elf_link_hash_entry
*export_glue
;
2255 /* A pointer to the most recently used stub hash entry against this
2257 struct elf32_arm_stub_hash_entry
*stub_cache
;
2260 /* Traverse an arm ELF linker hash table. */
2261 #define elf32_arm_link_hash_traverse(table, func, info) \
2262 (elf_link_hash_traverse \
2264 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2267 /* Get the ARM elf linker hash table from a link_info structure. */
2268 #define elf32_arm_hash_table(info) \
2269 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2271 #define arm_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf32_arm_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2275 /* ARM ELF linker hash table. */
2276 struct elf32_arm_link_hash_table
2278 /* The main hash table. */
2279 struct elf_link_hash_table root
;
2281 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2282 bfd_size_type thumb_glue_size
;
2284 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2285 bfd_size_type arm_glue_size
;
2287 /* The size in bytes of section containing the ARMv4 BX veneers. */
2288 bfd_size_type bx_glue_size
;
2290 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2291 veneer has been populated. */
2292 bfd_vma bx_glue_offset
[15];
2294 /* The size in bytes of the section containing glue for VFP11 erratum
2296 bfd_size_type vfp11_erratum_glue_size
;
2298 /* An arbitrary input BFD chosen to hold the glue sections. */
2299 bfd
* bfd_of_glue_owner
;
2301 /* Nonzero to output a BE8 image. */
2304 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2305 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2308 /* The relocation to use for R_ARM_TARGET2 relocations. */
2311 /* 0 = Ignore R_ARM_V4BX.
2312 1 = Convert BX to MOV PC.
2313 2 = Generate v4 interworing stubs. */
2316 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2319 /* What sort of code sequences we should look for which may trigger the
2320 VFP11 denorm erratum. */
2321 bfd_arm_vfp11_fix vfp11_fix
;
2323 /* Global counter for the number of fixes we have emitted. */
2324 int num_vfp11_fixes
;
2326 /* Nonzero to force PIC branch veneers. */
2329 /* The number of bytes in the initial entry in the PLT. */
2330 bfd_size_type plt_header_size
;
2332 /* The number of bytes in the subsequent PLT etries. */
2333 bfd_size_type plt_entry_size
;
2335 /* True if the target system is VxWorks. */
2338 /* True if the target system is Symbian OS. */
2341 /* True if the target uses REL relocations. */
2344 /* Short-cuts to get to dynamic linker sections. */
2353 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2356 /* Data for R_ARM_TLS_LDM32 relocations. */
2359 bfd_signed_vma refcount
;
2363 /* Small local sym to section mapping cache. */
2364 struct sym_sec_cache sym_sec
;
2366 /* For convenience in allocate_dynrelocs. */
2369 /* The stub hash table. */
2370 struct bfd_hash_table stub_hash_table
;
2372 /* Linker stub bfd. */
2375 /* Linker call-backs. */
2376 asection
* (*add_stub_section
) (const char *, asection
*);
2377 void (*layout_sections_again
) (void);
2379 /* Array to keep track of which stub sections have been created, and
2380 information on stub grouping. */
2383 /* This is the section to which stubs in the group will be
2386 /* The stub section. */
2390 /* Assorted information used by elf32_arm_size_stubs. */
2391 unsigned int bfd_count
;
2393 asection
**input_list
;
2396 /* Create an entry in an ARM ELF linker hash table. */
2398 static struct bfd_hash_entry
*
2399 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2400 struct bfd_hash_table
* table
,
2401 const char * string
)
2403 struct elf32_arm_link_hash_entry
* ret
=
2404 (struct elf32_arm_link_hash_entry
*) entry
;
2406 /* Allocate the structure if it has not already been allocated by a
2409 ret
= bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2411 return (struct bfd_hash_entry
*) ret
;
2413 /* Call the allocation method of the superclass. */
2414 ret
= ((struct elf32_arm_link_hash_entry
*)
2415 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2419 ret
->relocs_copied
= NULL
;
2420 ret
->tls_type
= GOT_UNKNOWN
;
2421 ret
->plt_thumb_refcount
= 0;
2422 ret
->plt_maybe_thumb_refcount
= 0;
2423 ret
->plt_got_offset
= -1;
2424 ret
->export_glue
= NULL
;
2426 ret
->stub_cache
= NULL
;
2429 return (struct bfd_hash_entry
*) ret
;
2432 /* Initialize an entry in the stub hash table. */
2434 static struct bfd_hash_entry
*
2435 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2436 struct bfd_hash_table
*table
,
2439 /* Allocate the structure if it has not already been allocated by a
2443 entry
= bfd_hash_allocate (table
,
2444 sizeof (struct elf32_arm_stub_hash_entry
));
2449 /* Call the allocation method of the superclass. */
2450 entry
= bfd_hash_newfunc (entry
, table
, string
);
2453 struct elf32_arm_stub_hash_entry
*eh
;
2455 /* Initialize the local fields. */
2456 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
2457 eh
->stub_sec
= NULL
;
2458 eh
->stub_offset
= 0;
2459 eh
->target_value
= 0;
2460 eh
->target_section
= NULL
;
2461 eh
->stub_type
= arm_stub_none
;
2469 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2470 shortcuts to them in our hash table. */
2473 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
2475 struct elf32_arm_link_hash_table
*htab
;
2477 htab
= elf32_arm_hash_table (info
);
2478 /* BPABI objects never have a GOT, or associated sections. */
2479 if (htab
->symbian_p
)
2482 if (! _bfd_elf_create_got_section (dynobj
, info
))
2485 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
2486 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
2487 if (!htab
->sgot
|| !htab
->sgotplt
)
2490 htab
->srelgot
= bfd_make_section_with_flags (dynobj
,
2491 RELOC_SECTION (htab
, ".got"),
2492 (SEC_ALLOC
| SEC_LOAD
2495 | SEC_LINKER_CREATED
2497 if (htab
->srelgot
== NULL
2498 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 2))
2503 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2504 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2508 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
2510 struct elf32_arm_link_hash_table
*htab
;
2512 htab
= elf32_arm_hash_table (info
);
2513 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
2516 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
2519 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
2520 htab
->srelplt
= bfd_get_section_by_name (dynobj
,
2521 RELOC_SECTION (htab
, ".plt"));
2522 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
2524 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
2525 RELOC_SECTION (htab
, ".bss"));
2527 if (htab
->vxworks_p
)
2529 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
2534 htab
->plt_header_size
= 0;
2535 htab
->plt_entry_size
2536 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
2540 htab
->plt_header_size
2541 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
2542 htab
->plt_entry_size
2543 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
2550 || (!info
->shared
&& !htab
->srelbss
))
2556 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2559 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
2560 struct elf_link_hash_entry
*dir
,
2561 struct elf_link_hash_entry
*ind
)
2563 struct elf32_arm_link_hash_entry
*edir
, *eind
;
2565 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
2566 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
2568 if (eind
->relocs_copied
!= NULL
)
2570 if (edir
->relocs_copied
!= NULL
)
2572 struct elf32_arm_relocs_copied
**pp
;
2573 struct elf32_arm_relocs_copied
*p
;
2575 /* Add reloc counts against the indirect sym to the direct sym
2576 list. Merge any entries against the same section. */
2577 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
; )
2579 struct elf32_arm_relocs_copied
*q
;
2581 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
2582 if (q
->section
== p
->section
)
2584 q
->pc_count
+= p
->pc_count
;
2585 q
->count
+= p
->count
;
2592 *pp
= edir
->relocs_copied
;
2595 edir
->relocs_copied
= eind
->relocs_copied
;
2596 eind
->relocs_copied
= NULL
;
2599 if (ind
->root
.type
== bfd_link_hash_indirect
)
2601 /* Copy over PLT info. */
2602 edir
->plt_thumb_refcount
+= eind
->plt_thumb_refcount
;
2603 eind
->plt_thumb_refcount
= 0;
2604 edir
->plt_maybe_thumb_refcount
+= eind
->plt_maybe_thumb_refcount
;
2605 eind
->plt_maybe_thumb_refcount
= 0;
2607 if (dir
->got
.refcount
<= 0)
2609 edir
->tls_type
= eind
->tls_type
;
2610 eind
->tls_type
= GOT_UNKNOWN
;
2614 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2617 /* Create an ARM elf linker hash table. */
2619 static struct bfd_link_hash_table
*
2620 elf32_arm_link_hash_table_create (bfd
*abfd
)
2622 struct elf32_arm_link_hash_table
*ret
;
2623 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
2625 ret
= bfd_malloc (amt
);
2629 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
2630 elf32_arm_link_hash_newfunc
,
2631 sizeof (struct elf32_arm_link_hash_entry
)))
2638 ret
->sgotplt
= NULL
;
2639 ret
->srelgot
= NULL
;
2641 ret
->srelplt
= NULL
;
2642 ret
->sdynbss
= NULL
;
2643 ret
->srelbss
= NULL
;
2644 ret
->srelplt2
= NULL
;
2645 ret
->thumb_glue_size
= 0;
2646 ret
->arm_glue_size
= 0;
2647 ret
->bx_glue_size
= 0;
2648 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
2649 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
2650 ret
->vfp11_erratum_glue_size
= 0;
2651 ret
->num_vfp11_fixes
= 0;
2652 ret
->bfd_of_glue_owner
= NULL
;
2653 ret
->byteswap_code
= 0;
2654 ret
->target1_is_rel
= 0;
2655 ret
->target2_reloc
= R_ARM_NONE
;
2656 #ifdef FOUR_WORD_PLT
2657 ret
->plt_header_size
= 16;
2658 ret
->plt_entry_size
= 16;
2660 ret
->plt_header_size
= 20;
2661 ret
->plt_entry_size
= 12;
2668 ret
->sym_sec
.abfd
= NULL
;
2670 ret
->tls_ldm_got
.refcount
= 0;
2671 ret
->stub_bfd
= NULL
;
2672 ret
->add_stub_section
= NULL
;
2673 ret
->layout_sections_again
= NULL
;
2674 ret
->stub_group
= NULL
;
2677 ret
->input_list
= NULL
;
2679 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2680 sizeof (struct elf32_arm_stub_hash_entry
)))
2686 return &ret
->root
.root
;
2689 /* Free the derived linker hash table. */
2692 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
2694 struct elf32_arm_link_hash_table
*ret
2695 = (struct elf32_arm_link_hash_table
*) hash
;
2697 bfd_hash_table_free (&ret
->stub_hash_table
);
2698 _bfd_generic_link_hash_table_free (hash
);
2701 /* Determine if we're dealing with a Thumb only architecture. */
2704 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
2706 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2710 if (arch
!= TAG_CPU_ARCH_V7
)
2713 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2714 Tag_CPU_arch_profile
);
2716 return profile
== 'M';
2719 /* Determine if we're dealing with a Thumb-2 object. */
2722 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
2724 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2726 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
2730 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
2734 case arm_thumb_thumb_stub_long_branch
:
2735 case arm_thumb_arm_v4t_stub_long_branch
:
2736 case arm_thumb_arm_v4t_stub_short_branch
:
2747 /* Determine the type of stub needed, if any, for a call. */
2749 static enum elf32_arm_stub_type
2750 arm_type_of_stub (struct bfd_link_info
*info
,
2751 asection
*input_sec
,
2752 const Elf_Internal_Rela
*rel
,
2753 unsigned char st_type
,
2754 struct elf32_arm_link_hash_entry
*hash
,
2755 bfd_vma destination
,
2761 bfd_signed_vma branch_offset
;
2762 unsigned int r_type
;
2763 struct elf32_arm_link_hash_table
* globals
;
2766 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
2768 /* We don't know the actual type of destination in case it is of
2769 type STT_SECTION: give up. */
2770 if (st_type
== STT_SECTION
)
2773 globals
= elf32_arm_hash_table (info
);
2775 thumb_only
= using_thumb_only (globals
);
2777 thumb2
= using_thumb2 (globals
);
2779 /* Determine where the call point is. */
2780 location
= (input_sec
->output_offset
2781 + input_sec
->output_section
->vma
2784 branch_offset
= (bfd_signed_vma
)(destination
- location
);
2786 r_type
= ELF32_R_TYPE (rel
->r_info
);
2788 /* If the call will go through a PLT entry then we do not need
2790 if (globals
->splt
!= NULL
&& hash
!= NULL
&& hash
->root
.plt
.offset
!= (bfd_vma
) -1)
2793 if (r_type
== R_ARM_THM_CALL
)
2796 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
2797 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
2799 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
2800 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
2801 || ((st_type
!= STT_ARM_TFUNC
) && !globals
->use_blx
))
2803 if (st_type
== STT_ARM_TFUNC
)
2805 /* Thumb to thumb. */
2808 stub_type
= (info
->shared
| globals
->pic_veneer
)
2809 ? ((globals
->use_blx
)
2810 ? arm_stub_pic_long_branch
2812 : (globals
->use_blx
)
2813 ? arm_stub_long_branch
2818 stub_type
= (info
->shared
| globals
->pic_veneer
)
2820 : (globals
->use_blx
)
2821 ? arm_thumb_thumb_stub_long_branch
2829 && sym_sec
->owner
!= NULL
2830 && !INTERWORK_FLAG (sym_sec
->owner
))
2832 (*_bfd_error_handler
)
2833 (_("%B(%s): warning: interworking not enabled.\n"
2834 " first occurrence: %B: Thumb call to ARM"),
2835 sym_sec
->owner
, input_bfd
, name
);
2838 stub_type
= (info
->shared
| globals
->pic_veneer
)
2839 ? ((globals
->use_blx
)
2840 ? arm_stub_pic_long_branch
2842 : (globals
->use_blx
)
2843 ? arm_stub_long_branch
2844 : arm_thumb_arm_v4t_stub_long_branch
;
2846 /* Handle v4t short branches. */
2847 if ((stub_type
== arm_thumb_arm_v4t_stub_long_branch
)
2848 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
2849 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
2850 stub_type
= arm_thumb_arm_v4t_stub_short_branch
;
2854 else if (r_type
== R_ARM_CALL
)
2856 if (st_type
== STT_ARM_TFUNC
)
2861 && sym_sec
->owner
!= NULL
2862 && !INTERWORK_FLAG (sym_sec
->owner
))
2864 (*_bfd_error_handler
)
2865 (_("%B(%s): warning: interworking not enabled.\n"
2866 " first occurrence: %B: Thumb call to ARM"),
2867 sym_sec
->owner
, input_bfd
, name
);
2870 /* We have an extra 2-bytes reach because of
2871 the mode change (bit 24 (H) of BLX encoding). */
2872 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
2873 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
2874 || !globals
->use_blx
)
2876 stub_type
= (info
->shared
| globals
->pic_veneer
)
2877 ? arm_stub_pic_long_branch
2878 : (globals
->use_blx
)
2879 ? arm_stub_long_branch
2880 : arm_thumb_v4t_stub_long_branch
;
2886 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
2887 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
2889 stub_type
= (info
->shared
| globals
->pic_veneer
)
2890 ? arm_stub_pic_long_branch
2891 : arm_stub_long_branch
;
2899 /* Build a name for an entry in the stub hash table. */
2902 elf32_arm_stub_name (const asection
*input_section
,
2903 const asection
*sym_sec
,
2904 const struct elf32_arm_link_hash_entry
*hash
,
2905 const Elf_Internal_Rela
*rel
)
2912 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1;
2913 stub_name
= bfd_malloc (len
);
2914 if (stub_name
!= NULL
)
2915 sprintf (stub_name
, "%08x_%s+%x",
2916 input_section
->id
& 0xffffffff,
2917 hash
->root
.root
.root
.string
,
2918 (int) rel
->r_addend
& 0xffffffff);
2922 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2923 stub_name
= bfd_malloc (len
);
2924 if (stub_name
!= NULL
)
2925 sprintf (stub_name
, "%08x_%x:%x+%x",
2926 input_section
->id
& 0xffffffff,
2927 sym_sec
->id
& 0xffffffff,
2928 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
2929 (int) rel
->r_addend
& 0xffffffff);
2935 /* Look up an entry in the stub hash. Stub entries are cached because
2936 creating the stub name takes a bit of time. */
2938 static struct elf32_arm_stub_hash_entry
*
2939 elf32_arm_get_stub_entry (const asection
*input_section
,
2940 const asection
*sym_sec
,
2941 struct elf_link_hash_entry
*hash
,
2942 const Elf_Internal_Rela
*rel
,
2943 struct elf32_arm_link_hash_table
*htab
)
2945 struct elf32_arm_stub_hash_entry
*stub_entry
;
2946 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
2947 const asection
*id_sec
;
2949 if ((input_section
->flags
& SEC_CODE
) == 0)
2952 /* If this input section is part of a group of sections sharing one
2953 stub section, then use the id of the first section in the group.
2954 Stub names need to include a section id, as there may well be
2955 more than one stub used to reach say, printf, and we need to
2956 distinguish between them. */
2957 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
2959 if (h
!= NULL
&& h
->stub_cache
!= NULL
2960 && h
->stub_cache
->h
== h
2961 && h
->stub_cache
->id_sec
== id_sec
)
2963 stub_entry
= h
->stub_cache
;
2969 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
);
2970 if (stub_name
== NULL
)
2973 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
2974 stub_name
, FALSE
, FALSE
);
2976 h
->stub_cache
= stub_entry
;
2984 /* Add a new stub entry to the stub hash. Not all fields of the new
2985 stub entry are initialised. */
2987 static struct elf32_arm_stub_hash_entry
*
2988 elf32_arm_add_stub (const char *stub_name
,
2990 struct elf32_arm_link_hash_table
*htab
)
2994 struct elf32_arm_stub_hash_entry
*stub_entry
;
2996 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
2997 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
2998 if (stub_sec
== NULL
)
3000 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3001 if (stub_sec
== NULL
)
3007 namelen
= strlen (link_sec
->name
);
3008 len
= namelen
+ sizeof (STUB_SUFFIX
);
3009 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
3013 memcpy (s_name
, link_sec
->name
, namelen
);
3014 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3015 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3016 if (stub_sec
== NULL
)
3018 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3020 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3023 /* Enter this entry into the linker stub hash table. */
3024 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3026 if (stub_entry
== NULL
)
3028 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3034 stub_entry
->stub_sec
= stub_sec
;
3035 stub_entry
->stub_offset
= 0;
3036 stub_entry
->id_sec
= link_sec
;
3041 /* Store an Arm insn into an output section not processed by
3042 elf32_arm_write_section. */
3045 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3046 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3048 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3049 bfd_putl32 (val
, ptr
);
3051 bfd_putb32 (val
, ptr
);
3054 /* Store a 16-bit Thumb insn into an output section not processed by
3055 elf32_arm_write_section. */
3058 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3059 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3061 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3062 bfd_putl16 (val
, ptr
);
3064 bfd_putb16 (val
, ptr
);
3068 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3071 struct elf32_arm_stub_hash_entry
*stub_entry
;
3072 struct bfd_link_info
*info
;
3073 struct elf32_arm_link_hash_table
*htab
;
3081 const bfd_vma
*template;
3083 struct elf32_arm_link_hash_table
* globals
;
3085 /* Massage our args to the form they really have. */
3086 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3087 info
= (struct bfd_link_info
*) in_arg
;
3089 globals
= elf32_arm_hash_table (info
);
3091 htab
= elf32_arm_hash_table (info
);
3092 stub_sec
= stub_entry
->stub_sec
;
3094 /* Make a note of the offset within the stubs for this entry. */
3095 stub_entry
->stub_offset
= stub_sec
->size
;
3096 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3098 stub_bfd
= stub_sec
->owner
;
3100 /* This is the address of the start of the stub. */
3101 stub_addr
= stub_sec
->output_section
->vma
+ stub_sec
->output_offset
3102 + stub_entry
->stub_offset
;
3104 /* This is the address of the stub destination. */
3105 sym_value
= (stub_entry
->target_value
3106 + stub_entry
->target_section
->output_offset
3107 + stub_entry
->target_section
->output_section
->vma
);
3109 switch (stub_entry
->stub_type
)
3111 case arm_stub_long_branch
:
3112 template = arm_long_branch_stub
;
3113 template_size
= (sizeof (arm_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3115 case arm_thumb_v4t_stub_long_branch
:
3116 template = arm_thumb_v4t_long_branch_stub
;
3117 template_size
= (sizeof (arm_thumb_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3119 case arm_thumb_thumb_stub_long_branch
:
3120 template = arm_thumb_thumb_long_branch_stub
;
3121 template_size
= (sizeof (arm_thumb_thumb_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3123 case arm_thumb_arm_v4t_stub_long_branch
:
3124 template = arm_thumb_arm_v4t_long_branch_stub
;
3125 template_size
= (sizeof (arm_thumb_arm_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3127 case arm_thumb_arm_v4t_stub_short_branch
:
3128 template = arm_thumb_arm_v4t_short_branch_stub
;
3129 template_size
= (sizeof(arm_thumb_arm_v4t_short_branch_stub
) / sizeof (bfd_vma
)) * 4;
3131 case arm_stub_pic_long_branch
:
3132 template = arm_pic_long_branch_stub
;
3133 template_size
= (sizeof (arm_pic_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3141 for (i
= 0; i
< (template_size
/ 4); i
++)
3143 /* A 0 pattern is a placeholder, every other pattern is an
3145 if (template[i
] != 0)
3146 put_arm_insn (globals
, stub_bfd
, template[i
], loc
+ size
);
3148 bfd_put_32 (stub_bfd
, template[i
], loc
+ size
);
3152 stub_sec
->size
+= size
;
3154 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3155 if (stub_entry
->st_type
== STT_ARM_TFUNC
)
3158 switch (stub_entry
->stub_type
)
3160 case arm_stub_long_branch
:
3161 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3162 stub_bfd
, stub_sec
, stub_sec
->contents
,
3163 stub_entry
->stub_offset
+ 4, sym_value
, 0);
3165 case arm_thumb_v4t_stub_long_branch
:
3166 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3167 stub_bfd
, stub_sec
, stub_sec
->contents
,
3168 stub_entry
->stub_offset
+ 8, sym_value
, 0);
3170 case arm_thumb_thumb_stub_long_branch
:
3171 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3172 stub_bfd
, stub_sec
, stub_sec
->contents
,
3173 stub_entry
->stub_offset
+ 12, sym_value
, 0);
3175 case arm_thumb_arm_v4t_stub_long_branch
:
3176 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3177 stub_bfd
, stub_sec
, stub_sec
->contents
,
3178 stub_entry
->stub_offset
+ 16, sym_value
, 0);
3180 case arm_thumb_arm_v4t_stub_short_branch
:
3182 long int rel_offset
;
3183 static const insn32 t2a3_b_insn
= 0xea000000;
3185 rel_offset
= sym_value
- (stub_addr
+ 8 + 4);
3187 put_arm_insn (globals
, stub_bfd
,
3188 (bfd_vma
) t2a3_b_insn
| ((rel_offset
>> 2) & 0x00FFFFFF),
3193 case arm_stub_pic_long_branch
:
3194 /* We want the value relative to the address 8 bytes from the
3195 start of the stub. */
3196 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32
),
3197 stub_bfd
, stub_sec
, stub_sec
->contents
,
3198 stub_entry
->stub_offset
+ 8, sym_value
, 0);
3207 /* As above, but don't actually build the stub. Just bump offset so
3208 we know stub section sizes. */
3211 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3214 struct elf32_arm_stub_hash_entry
*stub_entry
;
3215 struct elf32_arm_link_hash_table
*htab
;
3216 const bfd_vma
*template;
3221 /* Massage our args to the form they really have. */
3222 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3223 htab
= (struct elf32_arm_link_hash_table
*) in_arg
;
3225 switch (stub_entry
->stub_type
)
3227 case arm_stub_long_branch
:
3228 template = arm_long_branch_stub
;
3229 template_size
= (sizeof (arm_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3231 case arm_thumb_v4t_stub_long_branch
:
3232 template = arm_thumb_v4t_long_branch_stub
;
3233 template_size
= (sizeof (arm_thumb_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3235 case arm_thumb_thumb_stub_long_branch
:
3236 template = arm_thumb_thumb_long_branch_stub
;
3237 template_size
= (sizeof (arm_thumb_thumb_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3239 case arm_thumb_arm_v4t_stub_long_branch
:
3240 template = arm_thumb_arm_v4t_long_branch_stub
;
3241 template_size
= (sizeof (arm_thumb_arm_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3243 case arm_thumb_arm_v4t_stub_short_branch
:
3244 template = arm_thumb_arm_v4t_short_branch_stub
;
3245 template_size
= (sizeof(arm_thumb_arm_v4t_short_branch_stub
) / sizeof (bfd_vma
)) * 4;
3247 case arm_stub_pic_long_branch
:
3248 template = arm_pic_long_branch_stub
;
3249 template_size
= (sizeof (arm_pic_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3258 for (i
= 0; i
< (template_size
/ 4); i
++)
3260 size
= (size
+ 7) & ~7;
3261 stub_entry
->stub_sec
->size
+= size
;
3265 /* External entry points for sizing and building linker stubs. */
3267 /* Set up various things so that we can make a list of input sections
3268 for each output section included in the link. Returns -1 on error,
3269 0 when no stubs will be needed, and 1 on success. */
3272 elf32_arm_setup_section_lists (bfd
*output_bfd
,
3273 struct bfd_link_info
*info
)
3276 unsigned int bfd_count
;
3277 int top_id
, top_index
;
3279 asection
**input_list
, **list
;
3281 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3283 if (! is_elf_hash_table (htab
))
3286 /* Count the number of input BFDs and find the top input section id. */
3287 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3289 input_bfd
= input_bfd
->link_next
)
3292 for (section
= input_bfd
->sections
;
3294 section
= section
->next
)
3296 if (top_id
< section
->id
)
3297 top_id
= section
->id
;
3300 htab
->bfd_count
= bfd_count
;
3302 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3303 htab
->stub_group
= bfd_zmalloc (amt
);
3304 if (htab
->stub_group
== NULL
)
3307 /* We can't use output_bfd->section_count here to find the top output
3308 section index as some sections may have been removed, and
3309 _bfd_strip_section_from_output doesn't renumber the indices. */
3310 for (section
= output_bfd
->sections
, top_index
= 0;
3312 section
= section
->next
)
3314 if (top_index
< section
->index
)
3315 top_index
= section
->index
;
3318 htab
->top_index
= top_index
;
3319 amt
= sizeof (asection
*) * (top_index
+ 1);
3320 input_list
= bfd_malloc (amt
);
3321 htab
->input_list
= input_list
;
3322 if (input_list
== NULL
)
3325 /* For sections we aren't interested in, mark their entries with a
3326 value we can check later. */
3327 list
= input_list
+ top_index
;
3329 *list
= bfd_abs_section_ptr
;
3330 while (list
-- != input_list
);
3332 for (section
= output_bfd
->sections
;
3334 section
= section
->next
)
3336 if ((section
->flags
& SEC_CODE
) != 0)
3337 input_list
[section
->index
] = NULL
;
3343 /* The linker repeatedly calls this function for each input section,
3344 in the order that input sections are linked into output sections.
3345 Build lists of input sections to determine groupings between which
3346 we may insert linker stubs. */
3349 elf32_arm_next_input_section (struct bfd_link_info
*info
,
3352 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3354 if (isec
->output_section
->index
<= htab
->top_index
)
3356 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3358 if (*list
!= bfd_abs_section_ptr
)
3360 /* Steal the link_sec pointer for our list. */
3361 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3362 /* This happens to make the list in reverse order,
3363 which is what we want. */
3364 PREV_SEC (isec
) = *list
;
3370 /* See whether we can group stub sections together. Grouping stub
3371 sections may result in fewer stubs. More importantly, we need to
3372 put all .init* and .fini* stubs at the beginning of the .init or
3373 .fini output sections respectively, because glibc splits the
3374 _init and _fini functions into multiple parts. Putting a stub in
3375 the middle of a function is not a good idea. */
3378 group_sections (struct elf32_arm_link_hash_table
*htab
,
3379 bfd_size_type stub_group_size
,
3380 bfd_boolean stubs_always_before_branch
)
3382 asection
**list
= htab
->input_list
+ htab
->top_index
;
3386 asection
*tail
= *list
;
3388 if (tail
== bfd_abs_section_ptr
)
3391 while (tail
!= NULL
)
3395 bfd_size_type total
;
3399 while ((prev
= PREV_SEC (curr
)) != NULL
3400 && ((total
+= curr
->output_offset
- prev
->output_offset
)
3404 /* OK, the size from the start of CURR to the end is less
3405 than stub_group_size and thus can be handled by one stub
3406 section. (Or the tail section is itself larger than
3407 stub_group_size, in which case we may be toast.)
3408 We should really be keeping track of the total size of
3409 stubs added here, as stubs contribute to the final output
3413 prev
= PREV_SEC (tail
);
3414 /* Set up this stub group. */
3415 htab
->stub_group
[tail
->id
].link_sec
= curr
;
3417 while (tail
!= curr
&& (tail
= prev
) != NULL
);
3419 /* But wait, there's more! Input sections up to stub_group_size
3420 bytes before the stub section can be handled by it too. */
3421 if (!stubs_always_before_branch
)
3425 && ((total
+= tail
->output_offset
- prev
->output_offset
)
3429 prev
= PREV_SEC (tail
);
3430 htab
->stub_group
[tail
->id
].link_sec
= curr
;
3436 while (list
-- != htab
->input_list
);
3438 free (htab
->input_list
);
3442 /* Determine and set the size of the stub section for a final link.
3444 The basic idea here is to examine all the relocations looking for
3445 PC-relative calls to a target that is unreachable with a "bl"
3449 elf32_arm_size_stubs (bfd
*output_bfd
,
3451 struct bfd_link_info
*info
,
3452 bfd_signed_vma group_size
,
3453 asection
* (*add_stub_section
) (const char *, asection
*),
3454 void (*layout_sections_again
) (void))
3456 bfd_size_type stub_group_size
;
3457 bfd_boolean stubs_always_before_branch
;
3458 bfd_boolean stub_changed
= 0;
3459 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3461 /* Propagate mach to stub bfd, because it may not have been
3462 finalized when we created stub_bfd. */
3463 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
3464 bfd_get_mach (output_bfd
));
3466 /* Stash our params away. */
3467 htab
->stub_bfd
= stub_bfd
;
3468 htab
->add_stub_section
= add_stub_section
;
3469 htab
->layout_sections_again
= layout_sections_again
;
3470 stubs_always_before_branch
= group_size
< 0;
3472 stub_group_size
= -group_size
;
3474 stub_group_size
= group_size
;
3476 if (stub_group_size
== 1)
3478 /* Default values. */
3479 /* Thumb branch range is +-4MB has to be used as the default
3480 maximum size (a given section can contain both ARM and Thumb
3481 code, so the worst case has to be taken into account).
3483 This value is 24K less than that, which allows for 2025
3484 12-byte stubs. If we exceed that, then we will fail to link.
3485 The user will have to relink with an explicit group size
3487 stub_group_size
= 4170000;
3490 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
3495 unsigned int bfd_indx
;
3498 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
3500 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
3502 Elf_Internal_Shdr
*symtab_hdr
;
3504 Elf_Internal_Sym
*local_syms
= NULL
;
3506 /* We'll need the symbol table in a second. */
3507 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3508 if (symtab_hdr
->sh_info
== 0)
3511 /* Walk over each section attached to the input bfd. */
3512 for (section
= input_bfd
->sections
;
3514 section
= section
->next
)
3516 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
3518 /* If there aren't any relocs, then there's nothing more
3520 if ((section
->flags
& SEC_RELOC
) == 0
3521 || section
->reloc_count
== 0
3522 || (section
->flags
& SEC_CODE
) == 0)
3525 /* If this section is a link-once section that will be
3526 discarded, then don't create any stubs. */
3527 if (section
->output_section
== NULL
3528 || section
->output_section
->owner
!= output_bfd
)
3531 /* Get the relocs. */
3533 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
3534 NULL
, info
->keep_memory
);
3535 if (internal_relocs
== NULL
)
3536 goto error_ret_free_local
;
3538 /* Now examine each relocation. */
3539 irela
= internal_relocs
;
3540 irelaend
= irela
+ section
->reloc_count
;
3541 for (; irela
< irelaend
; irela
++)
3543 unsigned int r_type
, r_indx
;
3544 enum elf32_arm_stub_type stub_type
;
3545 struct elf32_arm_stub_hash_entry
*stub_entry
;
3548 bfd_vma destination
;
3549 struct elf32_arm_link_hash_entry
*hash
;
3550 const char *sym_name
;
3552 const asection
*id_sec
;
3553 unsigned char st_type
;
3555 r_type
= ELF32_R_TYPE (irela
->r_info
);
3556 r_indx
= ELF32_R_SYM (irela
->r_info
);
3558 if (r_type
>= (unsigned int) R_ARM_max
)
3560 bfd_set_error (bfd_error_bad_value
);
3561 error_ret_free_internal
:
3562 if (elf_section_data (section
)->relocs
== NULL
)
3563 free (internal_relocs
);
3564 goto error_ret_free_local
;
3567 /* Only look for stubs on call instructions. */
3568 if ((r_type
!= (unsigned int) R_ARM_CALL
)
3569 && (r_type
!= (unsigned int) R_ARM_THM_CALL
))
3572 /* Now determine the call target, its name, value,
3579 if (r_indx
< symtab_hdr
->sh_info
)
3581 /* It's a local symbol. */
3582 Elf_Internal_Sym
*sym
;
3583 Elf_Internal_Shdr
*hdr
;
3585 if (local_syms
== NULL
)
3588 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
3589 if (local_syms
== NULL
)
3591 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
3592 symtab_hdr
->sh_info
, 0,
3594 if (local_syms
== NULL
)
3595 goto error_ret_free_internal
;
3598 sym
= local_syms
+ r_indx
;
3599 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
3600 sym_sec
= hdr
->bfd_section
;
3601 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
3602 sym_value
= sym
->st_value
;
3603 destination
= (sym_value
+ irela
->r_addend
3604 + sym_sec
->output_offset
3605 + sym_sec
->output_section
->vma
);
3606 st_type
= ELF_ST_TYPE (sym
->st_info
);
3608 = bfd_elf_string_from_elf_section (input_bfd
,
3609 symtab_hdr
->sh_link
,
3614 /* It's an external symbol. */
3617 e_indx
= r_indx
- symtab_hdr
->sh_info
;
3618 hash
= ((struct elf32_arm_link_hash_entry
*)
3619 elf_sym_hashes (input_bfd
)[e_indx
]);
3621 while (hash
->root
.root
.type
== bfd_link_hash_indirect
3622 || hash
->root
.root
.type
== bfd_link_hash_warning
)
3623 hash
= ((struct elf32_arm_link_hash_entry
*)
3624 hash
->root
.root
.u
.i
.link
);
3626 if (hash
->root
.root
.type
== bfd_link_hash_defined
3627 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
3629 sym_sec
= hash
->root
.root
.u
.def
.section
;
3630 sym_value
= hash
->root
.root
.u
.def
.value
;
3631 if (sym_sec
->output_section
!= NULL
)
3632 destination
= (sym_value
+ irela
->r_addend
3633 + sym_sec
->output_offset
3634 + sym_sec
->output_section
->vma
);
3636 else if (hash
->root
.root
.type
== bfd_link_hash_undefweak
3637 || hash
->root
.root
.type
== bfd_link_hash_undefined
)
3638 /* For a shared library, these will need a PLT stub,
3639 which is treated separately.
3640 For absolute code, they cannot be handled. */
3644 bfd_set_error (bfd_error_bad_value
);
3645 goto error_ret_free_internal
;
3647 st_type
= ELF_ST_TYPE (hash
->root
.type
);
3648 sym_name
= hash
->root
.root
.root
.string
;
3651 /* Determine what (if any) linker stub is needed. */
3652 stub_type
= arm_type_of_stub (info
, section
, irela
, st_type
,
3653 hash
, destination
, sym_sec
,
3654 input_bfd
, sym_name
);
3655 if (stub_type
== arm_stub_none
)
3658 /* Support for grouping stub sections. */
3659 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3661 /* Get the name of this stub. */
3662 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
, irela
);
3664 goto error_ret_free_internal
;
3666 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3669 if (stub_entry
!= NULL
)
3671 /* The proper stub has already been created. */
3676 stub_entry
= elf32_arm_add_stub (stub_name
, section
, htab
);
3677 if (stub_entry
== NULL
)
3680 goto error_ret_free_internal
;
3683 stub_entry
->target_value
= sym_value
;
3684 stub_entry
->target_section
= sym_sec
;
3685 stub_entry
->stub_type
= stub_type
;
3686 stub_entry
->h
= hash
;
3687 stub_entry
->st_type
= st_type
;
3689 if (sym_name
== NULL
)
3690 sym_name
= "unnamed";
3691 stub_entry
->output_name
3692 = bfd_alloc (htab
->stub_bfd
,
3693 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
3694 + strlen (sym_name
));
3695 if (stub_entry
->output_name
== NULL
)
3698 goto error_ret_free_internal
;
3701 /* For historical reasons, use the existing names for
3702 ARM-to-Thumb and Thumb-to-ARM stubs. */
3703 if (r_type
== (unsigned int) R_ARM_THM_CALL
3704 && st_type
!= STT_ARM_TFUNC
)
3705 sprintf (stub_entry
->output_name
, THUMB2ARM_GLUE_ENTRY_NAME
,
3707 else if (r_type
== (unsigned int) R_ARM_CALL
3708 && st_type
== STT_ARM_TFUNC
)
3709 sprintf (stub_entry
->output_name
, ARM2THUMB_GLUE_ENTRY_NAME
,
3712 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
3715 stub_changed
= TRUE
;
3718 /* We're done with the internal relocs, free them. */
3719 if (elf_section_data (section
)->relocs
== NULL
)
3720 free (internal_relocs
);
3727 /* OK, we've added some stubs. Find out the new size of the
3729 for (stub_sec
= htab
->stub_bfd
->sections
;
3731 stub_sec
= stub_sec
->next
)
3734 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
3736 /* Ask the linker to do its stuff. */
3737 (*htab
->layout_sections_again
) ();
3738 stub_changed
= FALSE
;
3743 error_ret_free_local
:
3747 /* Build all the stubs associated with the current output file. The
3748 stubs are kept in a hash table attached to the main linker hash
3749 table. We also set up the .plt entries for statically linked PIC
3750 functions here. This function is called via arm_elf_finish in the
3754 elf32_arm_build_stubs (struct bfd_link_info
*info
)
3757 struct bfd_hash_table
*table
;
3758 struct elf32_arm_link_hash_table
*htab
;
3760 htab
= elf32_arm_hash_table (info
);
3762 for (stub_sec
= htab
->stub_bfd
->sections
;
3764 stub_sec
= stub_sec
->next
)
3768 /* Ignore non-stub sections. */
3769 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
3772 /* Allocate memory to hold the linker stubs. */
3773 size
= stub_sec
->size
;
3774 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
3775 if (stub_sec
->contents
== NULL
&& size
!= 0)
3780 /* Build the stubs as directed by the stub hash table. */
3781 table
= &htab
->stub_hash_table
;
3782 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
3787 /* Locate the Thumb encoded calling stub for NAME. */
3789 static struct elf_link_hash_entry
*
3790 find_thumb_glue (struct bfd_link_info
*link_info
,
3792 char **error_message
)
3795 struct elf_link_hash_entry
*hash
;
3796 struct elf32_arm_link_hash_table
*hash_table
;
3798 /* We need a pointer to the armelf specific hash table. */
3799 hash_table
= elf32_arm_hash_table (link_info
);
3801 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
3802 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
3804 BFD_ASSERT (tmp_name
);
3806 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
3808 hash
= elf_link_hash_lookup
3809 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
3812 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
3813 tmp_name
, name
) == -1)
3814 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
3821 /* Locate the ARM encoded calling stub for NAME. */
3823 static struct elf_link_hash_entry
*
3824 find_arm_glue (struct bfd_link_info
*link_info
,
3826 char **error_message
)
3829 struct elf_link_hash_entry
*myh
;
3830 struct elf32_arm_link_hash_table
*hash_table
;
3832 /* We need a pointer to the elfarm specific hash table. */
3833 hash_table
= elf32_arm_hash_table (link_info
);
3835 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
3836 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
3838 BFD_ASSERT (tmp_name
);
3840 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
3842 myh
= elf_link_hash_lookup
3843 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
3846 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
3847 tmp_name
, name
) == -1)
3848 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
3855 /* ARM->Thumb glue (static images):
3859 ldr r12, __func_addr
3862 .word func @ behave as if you saw a ARM_32 reloc.
3869 .word func @ behave as if you saw a ARM_32 reloc.
3871 (relocatable images)
3874 ldr r12, __func_offset
3880 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3881 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
3882 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
3883 static const insn32 a2t3_func_addr_insn
= 0x00000001;
3885 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3886 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
3887 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
3889 #define ARM2THUMB_PIC_GLUE_SIZE 16
3890 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
3891 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
3892 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
3894 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3898 __func_from_thumb: __func_from_thumb:
3900 nop ldr r6, __func_addr
3910 #define THUMB2ARM_GLUE_SIZE 8
3911 static const insn16 t2a1_bx_pc_insn
= 0x4778;
3912 static const insn16 t2a2_noop_insn
= 0x46c0;
3913 static const insn32 t2a3_b_insn
= 0xea000000;
3915 #define VFP11_ERRATUM_VENEER_SIZE 8
3917 #define ARM_BX_VENEER_SIZE 12
3918 static const insn32 armbx1_tst_insn
= 0xe3100001;
3919 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
3920 static const insn32 armbx3_bx_insn
= 0xe12fff10;
3922 #ifndef ELFARM_NABI_C_INCLUDED
3924 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
3927 bfd_byte
* contents
;
3932 BFD_ASSERT (abfd
!= NULL
);
3934 s
= bfd_get_section_by_name (abfd
, name
);
3935 BFD_ASSERT (s
!= NULL
);
3937 contents
= bfd_alloc (abfd
, size
);
3939 BFD_ASSERT (s
->size
== size
);
3940 s
->contents
= contents
;
3944 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
3946 struct elf32_arm_link_hash_table
* globals
;
3948 globals
= elf32_arm_hash_table (info
);
3949 BFD_ASSERT (globals
!= NULL
);
3951 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3952 globals
->arm_glue_size
,
3953 ARM2THUMB_GLUE_SECTION_NAME
);
3955 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3956 globals
->thumb_glue_size
,
3957 THUMB2ARM_GLUE_SECTION_NAME
);
3959 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3960 globals
->vfp11_erratum_glue_size
,
3961 VFP11_ERRATUM_VENEER_SECTION_NAME
);
3963 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3964 globals
->bx_glue_size
,
3965 ARM_BX_GLUE_SECTION_NAME
);
3970 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3971 returns the symbol identifying the stub. */
3973 static struct elf_link_hash_entry
*
3974 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
3975 struct elf_link_hash_entry
* h
)
3977 const char * name
= h
->root
.root
.string
;
3980 struct elf_link_hash_entry
* myh
;
3981 struct bfd_link_hash_entry
* bh
;
3982 struct elf32_arm_link_hash_table
* globals
;
3986 globals
= elf32_arm_hash_table (link_info
);
3988 BFD_ASSERT (globals
!= NULL
);
3989 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
3991 s
= bfd_get_section_by_name
3992 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
3994 BFD_ASSERT (s
!= NULL
);
3996 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
3998 BFD_ASSERT (tmp_name
);
4000 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4002 myh
= elf_link_hash_lookup
4003 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4007 /* We've already seen this guy. */
4012 /* The only trick here is using hash_table->arm_glue_size as the value.
4013 Even though the section isn't allocated yet, this is where we will be
4014 putting it. The +1 on the value marks that the stub has not been
4015 output yet - not that it is a Thumb function. */
4017 val
= globals
->arm_glue_size
+ 1;
4018 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4019 tmp_name
, BSF_GLOBAL
, s
, val
,
4020 NULL
, TRUE
, FALSE
, &bh
);
4022 myh
= (struct elf_link_hash_entry
*) bh
;
4023 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4024 myh
->forced_local
= 1;
4028 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
4029 || globals
->pic_veneer
)
4030 size
= ARM2THUMB_PIC_GLUE_SIZE
;
4031 else if (globals
->use_blx
)
4032 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
4034 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
4037 globals
->arm_glue_size
+= size
;
4043 record_thumb_to_arm_glue (struct bfd_link_info
*link_info
,
4044 struct elf_link_hash_entry
*h
)
4046 const char *name
= h
->root
.root
.string
;
4049 struct elf_link_hash_entry
*myh
;
4050 struct bfd_link_hash_entry
*bh
;
4051 struct elf32_arm_link_hash_table
*hash_table
;
4054 hash_table
= elf32_arm_hash_table (link_info
);
4056 BFD_ASSERT (hash_table
!= NULL
);
4057 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
4059 s
= bfd_get_section_by_name
4060 (hash_table
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
4062 BFD_ASSERT (s
!= NULL
);
4064 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4065 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
4067 BFD_ASSERT (tmp_name
);
4069 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
4071 myh
= elf_link_hash_lookup
4072 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4076 /* We've already seen this guy. */
4081 /* The only trick here is using hash_table->thumb_glue_size as the value.
4082 Even though the section isn't allocated yet, this is where we will be
4083 putting it. The +1 on the value marks that the stub has not been
4084 output yet - not that it is a Thumb function. */
4086 val
= hash_table
->thumb_glue_size
+ 1;
4087 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
4088 tmp_name
, BSF_GLOBAL
, s
, val
,
4089 NULL
, TRUE
, FALSE
, &bh
);
4091 /* If we mark it 'Thumb', the disassembler will do a better job. */
4092 myh
= (struct elf_link_hash_entry
*) bh
;
4093 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
4094 myh
->forced_local
= 1;
4098 #define CHANGE_TO_ARM "__%s_change_to_arm"
4099 #define BACK_FROM_ARM "__%s_back_from_arm"
4101 /* Allocate another symbol to mark where we switch to Arm mode. */
4102 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4103 + strlen (CHANGE_TO_ARM
) + 1);
4105 BFD_ASSERT (tmp_name
);
4107 sprintf (tmp_name
, CHANGE_TO_ARM
, name
);
4110 val
= hash_table
->thumb_glue_size
+ 4,
4111 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
4112 tmp_name
, BSF_LOCAL
, s
, val
,
4113 NULL
, TRUE
, FALSE
, &bh
);
4117 s
->size
+= THUMB2ARM_GLUE_SIZE
;
4118 hash_table
->thumb_glue_size
+= THUMB2ARM_GLUE_SIZE
;
4122 /* Allocate space for ARMv4 BX veneers. */
4125 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
4128 struct elf32_arm_link_hash_table
*globals
;
4130 struct elf_link_hash_entry
*myh
;
4131 struct bfd_link_hash_entry
*bh
;
4134 /* BX PC does not need a veneer. */
4138 globals
= elf32_arm_hash_table (link_info
);
4140 BFD_ASSERT (globals
!= NULL
);
4141 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4143 /* Check if this veneer has already been allocated. */
4144 if (globals
->bx_glue_offset
[reg
])
4147 s
= bfd_get_section_by_name
4148 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
4150 BFD_ASSERT (s
!= NULL
);
4152 /* Add symbol for veneer. */
4153 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
4155 BFD_ASSERT (tmp_name
);
4157 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
4159 myh
= elf_link_hash_lookup
4160 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4162 BFD_ASSERT (myh
== NULL
);
4165 val
= globals
->bx_glue_size
;
4166 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4167 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
4168 NULL
, TRUE
, FALSE
, &bh
);
4170 myh
= (struct elf_link_hash_entry
*) bh
;
4171 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4172 myh
->forced_local
= 1;
4174 s
->size
+= ARM_BX_VENEER_SIZE
;
4175 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
4176 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
4180 /* Add an entry to the code/data map for section SEC. */
4183 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
4185 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
4186 unsigned int newidx
;
4188 if (sec_data
->map
== NULL
)
4190 sec_data
->map
= bfd_malloc (sizeof (elf32_arm_section_map
));
4191 sec_data
->mapcount
= 0;
4192 sec_data
->mapsize
= 1;
4195 newidx
= sec_data
->mapcount
++;
4197 if (sec_data
->mapcount
> sec_data
->mapsize
)
4199 sec_data
->mapsize
*= 2;
4200 sec_data
->map
= bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
4201 * sizeof (elf32_arm_section_map
));
4206 sec_data
->map
[newidx
].vma
= vma
;
4207 sec_data
->map
[newidx
].type
= type
;
4212 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4213 veneers are handled for now. */
4216 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
4217 elf32_vfp11_erratum_list
*branch
,
4219 asection
*branch_sec
,
4220 unsigned int offset
)
4223 struct elf32_arm_link_hash_table
*hash_table
;
4225 struct elf_link_hash_entry
*myh
;
4226 struct bfd_link_hash_entry
*bh
;
4228 struct _arm_elf_section_data
*sec_data
;
4230 elf32_vfp11_erratum_list
*newerr
;
4232 hash_table
= elf32_arm_hash_table (link_info
);
4234 BFD_ASSERT (hash_table
!= NULL
);
4235 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
4237 s
= bfd_get_section_by_name
4238 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
4240 sec_data
= elf32_arm_section_data (s
);
4242 BFD_ASSERT (s
!= NULL
);
4244 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
4245 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
4247 BFD_ASSERT (tmp_name
);
4249 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
4250 hash_table
->num_vfp11_fixes
);
4252 myh
= elf_link_hash_lookup
4253 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4255 BFD_ASSERT (myh
== NULL
);
4258 val
= hash_table
->vfp11_erratum_glue_size
;
4259 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
4260 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
4261 NULL
, TRUE
, FALSE
, &bh
);
4263 myh
= (struct elf_link_hash_entry
*) bh
;
4264 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4265 myh
->forced_local
= 1;
4267 /* Link veneer back to calling location. */
4268 errcount
= ++(sec_data
->erratumcount
);
4269 newerr
= bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
4271 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
4273 newerr
->u
.v
.branch
= branch
;
4274 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
4275 branch
->u
.b
.veneer
= newerr
;
4277 newerr
->next
= sec_data
->erratumlist
;
4278 sec_data
->erratumlist
= newerr
;
4280 /* A symbol for the return from the veneer. */
4281 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
4282 hash_table
->num_vfp11_fixes
);
4284 myh
= elf_link_hash_lookup
4285 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4292 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
4293 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
4295 myh
= (struct elf_link_hash_entry
*) bh
;
4296 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4297 myh
->forced_local
= 1;
4301 /* Generate a mapping symbol for the veneer section, and explicitly add an
4302 entry for that symbol to the code/data map for the section. */
4303 if (hash_table
->vfp11_erratum_glue_size
== 0)
4306 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4307 ever requires this erratum fix. */
4308 _bfd_generic_link_add_one_symbol (link_info
,
4309 hash_table
->bfd_of_glue_owner
, "$a",
4310 BSF_LOCAL
, s
, 0, NULL
,
4313 myh
= (struct elf_link_hash_entry
*) bh
;
4314 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
4315 myh
->forced_local
= 1;
4317 /* The elf32_arm_init_maps function only cares about symbols from input
4318 BFDs. We must make a note of this generated mapping symbol
4319 ourselves so that code byteswapping works properly in
4320 elf32_arm_write_section. */
4321 elf32_arm_section_map_add (s
, 'a', 0);
4324 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
4325 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
4326 hash_table
->num_vfp11_fixes
++;
4328 /* The offset of the veneer. */
4332 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4333 would prevent elf_link_input_bfd() from processing the contents
4335 #define ARM_GLUE_SECTION_FLAGS \
4336 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4338 /* Create a fake section for use by the ARM backend of the linker. */
4341 arm_make_glue_section (bfd
* abfd
, const char * name
)
4345 sec
= bfd_get_section_by_name (abfd
, name
);
4350 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
4353 || !bfd_set_section_alignment (abfd
, sec
, 2))
4356 /* Set the gc mark to prevent the section from being removed by garbage
4357 collection, despite the fact that no relocs refer to this section. */
4363 /* Add the glue sections to ABFD. This function is called from the
4364 linker scripts in ld/emultempl/{armelf}.em. */
4367 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
4368 struct bfd_link_info
*info
)
4370 /* If we are only performing a partial
4371 link do not bother adding the glue. */
4372 if (info
->relocatable
)
4375 /* Linker stubs don't need glue. */
4376 if (!strcmp (abfd
->filename
, "linker stubs"))
4379 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
4380 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
4381 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
4382 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
4385 /* Select a BFD to be used to hold the sections used by the glue code.
4386 This function is called from the linker scripts in ld/emultempl/
4390 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
4392 struct elf32_arm_link_hash_table
*globals
;
4394 /* If we are only performing a partial link
4395 do not bother getting a bfd to hold the glue. */
4396 if (info
->relocatable
)
4399 /* Make sure we don't attach the glue sections to a dynamic object. */
4400 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
4402 globals
= elf32_arm_hash_table (info
);
4404 BFD_ASSERT (globals
!= NULL
);
4406 if (globals
->bfd_of_glue_owner
!= NULL
)
4409 /* Save the bfd for later use. */
4410 globals
->bfd_of_glue_owner
= abfd
;
4416 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
4418 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
4420 globals
->use_blx
= 1;
4424 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
4425 struct bfd_link_info
*link_info
)
4427 Elf_Internal_Shdr
*symtab_hdr
;
4428 Elf_Internal_Rela
*internal_relocs
= NULL
;
4429 Elf_Internal_Rela
*irel
, *irelend
;
4430 bfd_byte
*contents
= NULL
;
4433 struct elf32_arm_link_hash_table
*globals
;
4435 /* If we are only performing a partial link do not bother
4436 to construct any glue. */
4437 if (link_info
->relocatable
)
4440 /* Here we have a bfd that is to be included on the link. We have a
4441 hook to do reloc rummaging, before section sizes are nailed down. */
4442 globals
= elf32_arm_hash_table (link_info
);
4444 BFD_ASSERT (globals
!= NULL
);
4446 check_use_blx (globals
);
4448 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
4450 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4455 /* PR 5398: If we have not decided to include any loadable sections in
4456 the output then we will not have a glue owner bfd. This is OK, it
4457 just means that there is nothing else for us to do here. */
4458 if (globals
->bfd_of_glue_owner
== NULL
)
4461 /* Rummage around all the relocs and map the glue vectors. */
4462 sec
= abfd
->sections
;
4467 for (; sec
!= NULL
; sec
= sec
->next
)
4469 if (sec
->reloc_count
== 0)
4472 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
4475 symtab_hdr
= & elf_symtab_hdr (abfd
);
4477 /* Load the relocs. */
4479 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
4481 if (internal_relocs
== NULL
)
4484 irelend
= internal_relocs
+ sec
->reloc_count
;
4485 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
4488 unsigned long r_index
;
4490 struct elf_link_hash_entry
*h
;
4492 r_type
= ELF32_R_TYPE (irel
->r_info
);
4493 r_index
= ELF32_R_SYM (irel
->r_info
);
4495 /* These are the only relocation types we care about. */
4496 if ( r_type
!= R_ARM_PC24
4497 && r_type
!= R_ARM_PLT32
4498 && r_type
!= R_ARM_JUMP24
4499 && r_type
!= R_ARM_THM_JUMP24
4500 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
4503 /* Get the section contents if we haven't done so already. */
4504 if (contents
== NULL
)
4506 /* Get cached copy if it exists. */
4507 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
4508 contents
= elf_section_data (sec
)->this_hdr
.contents
;
4511 /* Go get them off disk. */
4512 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
4517 if (r_type
== R_ARM_V4BX
)
4521 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
4522 record_arm_bx_glue (link_info
, reg
);
4526 /* If the relocation is not against a symbol it cannot concern us. */
4529 /* We don't care about local symbols. */
4530 if (r_index
< symtab_hdr
->sh_info
)
4533 /* This is an external symbol. */
4534 r_index
-= symtab_hdr
->sh_info
;
4535 h
= (struct elf_link_hash_entry
*)
4536 elf_sym_hashes (abfd
)[r_index
];
4538 /* If the relocation is against a static symbol it must be within
4539 the current section and so cannot be a cross ARM/Thumb relocation. */
4543 /* If the call will go through a PLT entry then we do not need
4545 if (globals
->splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
4553 /* This one is a call from arm code. We need to look up
4554 the target of the call. If it is a thumb target, we
4556 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
4557 && !(r_type
== R_ARM_CALL
&& globals
->use_blx
))
4558 record_arm_to_thumb_glue (link_info
, h
);
4561 case R_ARM_THM_JUMP24
:
4562 /* This one is a call from thumb code. We look
4563 up the target of the call. If it is not a thumb
4564 target, we insert glue. */
4565 if (ELF_ST_TYPE (h
->type
) != STT_ARM_TFUNC
4566 && !(globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
4567 && h
->root
.type
!= bfd_link_hash_undefweak
)
4568 record_thumb_to_arm_glue (link_info
, h
);
4576 if (contents
!= NULL
4577 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
4581 if (internal_relocs
!= NULL
4582 && elf_section_data (sec
)->relocs
!= internal_relocs
)
4583 free (internal_relocs
);
4584 internal_relocs
= NULL
;
4590 if (contents
!= NULL
4591 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
4593 if (internal_relocs
!= NULL
4594 && elf_section_data (sec
)->relocs
!= internal_relocs
)
4595 free (internal_relocs
);
4602 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4605 bfd_elf32_arm_init_maps (bfd
*abfd
)
4607 Elf_Internal_Sym
*isymbuf
;
4608 Elf_Internal_Shdr
*hdr
;
4609 unsigned int i
, localsyms
;
4611 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4612 if (! is_arm_elf (abfd
))
4615 if ((abfd
->flags
& DYNAMIC
) != 0)
4618 hdr
= & elf_symtab_hdr (abfd
);
4619 localsyms
= hdr
->sh_info
;
4621 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4622 should contain the number of local symbols, which should come before any
4623 global symbols. Mapping symbols are always local. */
4624 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
4627 /* No internal symbols read? Skip this BFD. */
4628 if (isymbuf
== NULL
)
4631 for (i
= 0; i
< localsyms
; i
++)
4633 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
4634 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4638 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
4640 name
= bfd_elf_string_from_elf_section (abfd
,
4641 hdr
->sh_link
, isym
->st_name
);
4643 if (bfd_is_arm_special_symbol_name (name
,
4644 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
4645 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
4652 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
4654 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
4655 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
4657 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4658 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
4660 switch (globals
->vfp11_fix
)
4662 case BFD_ARM_VFP11_FIX_DEFAULT
:
4663 case BFD_ARM_VFP11_FIX_NONE
:
4664 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
4668 /* Give a warning, but do as the user requests anyway. */
4669 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
4670 "workaround is not necessary for target architecture"), obfd
);
4673 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
4674 /* For earlier architectures, we might need the workaround, but do not
4675 enable it by default. If users is running with broken hardware, they
4676 must enable the erratum fix explicitly. */
4677 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
4681 enum bfd_arm_vfp11_pipe
4689 /* Return a VFP register number. This is encoded as RX:X for single-precision
4690 registers, or X:RX for double-precision registers, where RX is the group of
4691 four bits in the instruction encoding and X is the single extension bit.
4692 RX and X fields are specified using their lowest (starting) bit. The return
4695 0...31: single-precision registers s0...s31
4696 32...63: double-precision registers d0...d31.
4698 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4699 encounter VFP3 instructions, so we allow the full range for DP registers. */
4702 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
4706 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
4708 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
4711 /* Set bits in *WMASK according to a register number REG as encoded by
4712 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4715 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
4720 *wmask
|= 3 << ((reg
- 32) * 2);
4723 /* Return TRUE if WMASK overwrites anything in REGS. */
4726 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
4730 for (i
= 0; i
< numregs
; i
++)
4732 unsigned int reg
= regs
[i
];
4734 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
4742 if ((wmask
& (3 << (reg
* 2))) != 0)
4749 /* In this function, we're interested in two things: finding input registers
4750 for VFP data-processing instructions, and finding the set of registers which
4751 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4752 hold the written set, so FLDM etc. are easy to deal with (we're only
4753 interested in 32 SP registers or 16 dp registers, due to the VFP version
4754 implemented by the chip in question). DP registers are marked by setting
4755 both SP registers in the write mask). */
4757 static enum bfd_arm_vfp11_pipe
4758 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
4761 enum bfd_arm_vfp11_pipe pipe
= VFP11_BAD
;
4762 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
4764 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4767 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
4768 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
4770 pqrs
= ((insn
& 0x00800000) >> 20)
4771 | ((insn
& 0x00300000) >> 19)
4772 | ((insn
& 0x00000040) >> 6);
4776 case 0: /* fmac[sd]. */
4777 case 1: /* fnmac[sd]. */
4778 case 2: /* fmsc[sd]. */
4779 case 3: /* fnmsc[sd]. */
4781 bfd_arm_vfp11_write_mask (destmask
, fd
);
4783 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
4788 case 4: /* fmul[sd]. */
4789 case 5: /* fnmul[sd]. */
4790 case 6: /* fadd[sd]. */
4791 case 7: /* fsub[sd]. */
4795 case 8: /* fdiv[sd]. */
4798 bfd_arm_vfp11_write_mask (destmask
, fd
);
4799 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
4804 case 15: /* extended opcode. */
4806 unsigned int extn
= ((insn
>> 15) & 0x1e)
4807 | ((insn
>> 7) & 1);
4811 case 0: /* fcpy[sd]. */
4812 case 1: /* fabs[sd]. */
4813 case 2: /* fneg[sd]. */
4814 case 8: /* fcmp[sd]. */
4815 case 9: /* fcmpe[sd]. */
4816 case 10: /* fcmpz[sd]. */
4817 case 11: /* fcmpez[sd]. */
4818 case 16: /* fuito[sd]. */
4819 case 17: /* fsito[sd]. */
4820 case 24: /* ftoui[sd]. */
4821 case 25: /* ftouiz[sd]. */
4822 case 26: /* ftosi[sd]. */
4823 case 27: /* ftosiz[sd]. */
4824 /* These instructions will not bounce due to underflow. */
4829 case 3: /* fsqrt[sd]. */
4830 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4831 registers to cause the erratum in previous instructions. */
4832 bfd_arm_vfp11_write_mask (destmask
, fd
);
4836 case 15: /* fcvt{ds,sd}. */
4840 bfd_arm_vfp11_write_mask (destmask
, fd
);
4842 /* Only FCVTSD can underflow. */
4843 if ((insn
& 0x100) != 0)
4862 /* Two-register transfer. */
4863 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
4865 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
4867 if ((insn
& 0x100000) == 0)
4870 bfd_arm_vfp11_write_mask (destmask
, fm
);
4873 bfd_arm_vfp11_write_mask (destmask
, fm
);
4874 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
4880 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
4882 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
4883 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
4887 case 0: /* Two-reg transfer. We should catch these above. */
4890 case 2: /* fldm[sdx]. */
4894 unsigned int i
, offset
= insn
& 0xff;
4899 for (i
= fd
; i
< fd
+ offset
; i
++)
4900 bfd_arm_vfp11_write_mask (destmask
, i
);
4904 case 4: /* fld[sd]. */
4906 bfd_arm_vfp11_write_mask (destmask
, fd
);
4915 /* Single-register transfer. Note L==0. */
4916 else if ((insn
& 0x0f100e10) == 0x0e000a10)
4918 unsigned int opcode
= (insn
>> 21) & 7;
4919 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
4923 case 0: /* fmsr/fmdlr. */
4924 case 1: /* fmdhr. */
4925 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4926 destination register. I don't know if this is exactly right,
4927 but it is the conservative choice. */
4928 bfd_arm_vfp11_write_mask (destmask
, fn
);
4942 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
4945 /* Look for potentially-troublesome code sequences which might trigger the
4946 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4947 (available from ARM) for details of the erratum. A short version is
4948 described in ld.texinfo. */
4951 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
4954 bfd_byte
*contents
= NULL
;
4956 int regs
[3], numregs
= 0;
4957 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
4958 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
4960 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4961 The states transition as follows:
4963 0 -> 1 (vector) or 0 -> 2 (scalar)
4964 A VFP FMAC-pipeline instruction has been seen. Fill
4965 regs[0]..regs[numregs-1] with its input operands. Remember this
4966 instruction in 'first_fmac'.
4969 Any instruction, except for a VFP instruction which overwrites
4974 A VFP instruction has been seen which overwrites any of regs[*].
4975 We must make a veneer! Reset state to 0 before examining next
4979 If we fail to match anything in state 2, reset to state 0 and reset
4980 the instruction pointer to the instruction after 'first_fmac'.
4982 If the VFP11 vector mode is in use, there must be at least two unrelated
4983 instructions between anti-dependent VFP11 instructions to properly avoid
4984 triggering the erratum, hence the use of the extra state 1. */
4986 /* If we are only performing a partial link do not bother
4987 to construct any glue. */
4988 if (link_info
->relocatable
)
4991 /* Skip if this bfd does not correspond to an ELF image. */
4992 if (! is_arm_elf (abfd
))
4995 /* We should have chosen a fix type by the time we get here. */
4996 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
4998 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
5001 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5003 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
5004 struct _arm_elf_section_data
*sec_data
;
5006 /* If we don't have executable progbits, we're not interested in this
5007 section. Also skip if section is to be excluded. */
5008 if (elf_section_type (sec
) != SHT_PROGBITS
5009 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
5010 || (sec
->flags
& SEC_EXCLUDE
) != 0
5011 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
5014 sec_data
= elf32_arm_section_data (sec
);
5016 if (sec_data
->mapcount
== 0)
5019 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5020 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5021 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5024 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
5025 elf32_arm_compare_mapping
);
5027 for (span
= 0; span
< sec_data
->mapcount
; span
++)
5029 unsigned int span_start
= sec_data
->map
[span
].vma
;
5030 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
5031 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
5032 char span_type
= sec_data
->map
[span
].type
;
5034 /* FIXME: Only ARM mode is supported at present. We may need to
5035 support Thumb-2 mode also at some point. */
5036 if (span_type
!= 'a')
5039 for (i
= span_start
; i
< span_end
;)
5041 unsigned int next_i
= i
+ 4;
5042 unsigned int insn
= bfd_big_endian (abfd
)
5043 ? (contents
[i
] << 24)
5044 | (contents
[i
+ 1] << 16)
5045 | (contents
[i
+ 2] << 8)
5047 : (contents
[i
+ 3] << 24)
5048 | (contents
[i
+ 2] << 16)
5049 | (contents
[i
+ 1] << 8)
5051 unsigned int writemask
= 0;
5052 enum bfd_arm_vfp11_pipe pipe
;
5057 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
5059 /* I'm assuming the VFP11 erratum can trigger with denorm
5060 operands on either the FMAC or the DS pipeline. This might
5061 lead to slightly overenthusiastic veneer insertion. */
5062 if (pipe
== VFP11_FMAC
|| pipe
== VFP11_DS
)
5064 state
= use_vector
? 1 : 2;
5066 veneer_of_insn
= insn
;
5072 int other_regs
[3], other_numregs
;
5073 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5076 if (pipe
!= VFP11_BAD
5077 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5087 int other_regs
[3], other_numregs
;
5088 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5091 if (pipe
!= VFP11_BAD
5092 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5098 next_i
= first_fmac
+ 4;
5104 abort (); /* Should be unreachable. */
5109 elf32_vfp11_erratum_list
*newerr
5110 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5113 errcount
= ++(elf32_arm_section_data (sec
)->erratumcount
);
5115 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
5120 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
5127 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
5132 newerr
->next
= sec_data
->erratumlist
;
5133 sec_data
->erratumlist
= newerr
;
5142 if (contents
!= NULL
5143 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5151 if (contents
!= NULL
5152 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5158 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5159 after sections have been laid out, using specially-named symbols. */
5162 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
5163 struct bfd_link_info
*link_info
)
5166 struct elf32_arm_link_hash_table
*globals
;
5169 if (link_info
->relocatable
)
5172 /* Skip if this bfd does not correspond to an ELF image. */
5173 if (! is_arm_elf (abfd
))
5176 globals
= elf32_arm_hash_table (link_info
);
5178 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
5179 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5181 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5183 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5184 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
5186 for (; errnode
!= NULL
; errnode
= errnode
->next
)
5188 struct elf_link_hash_entry
*myh
;
5191 switch (errnode
->type
)
5193 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
5194 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
5195 /* Find veneer symbol. */
5196 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5197 errnode
->u
.b
.veneer
->u
.v
.id
);
5199 myh
= elf_link_hash_lookup
5200 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5203 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
5204 "`%s'"), abfd
, tmp_name
);
5206 vma
= myh
->root
.u
.def
.section
->output_section
->vma
5207 + myh
->root
.u
.def
.section
->output_offset
5208 + myh
->root
.u
.def
.value
;
5210 errnode
->u
.b
.veneer
->vma
= vma
;
5213 case VFP11_ERRATUM_ARM_VENEER
:
5214 case VFP11_ERRATUM_THUMB_VENEER
:
5215 /* Find return location. */
5216 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5219 myh
= elf_link_hash_lookup
5220 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5223 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
5224 "`%s'"), abfd
, tmp_name
);
5226 vma
= myh
->root
.u
.def
.section
->output_section
->vma
5227 + myh
->root
.u
.def
.section
->output_offset
5228 + myh
->root
.u
.def
.value
;
5230 errnode
->u
.v
.branch
->vma
= vma
;
5243 /* Set target relocation values needed during linking. */
5246 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
5247 struct bfd_link_info
*link_info
,
5249 char * target2_type
,
5252 bfd_arm_vfp11_fix vfp11_fix
,
5253 int no_enum_warn
, int no_wchar_warn
,
5256 struct elf32_arm_link_hash_table
*globals
;
5258 globals
= elf32_arm_hash_table (link_info
);
5260 globals
->target1_is_rel
= target1_is_rel
;
5261 if (strcmp (target2_type
, "rel") == 0)
5262 globals
->target2_reloc
= R_ARM_REL32
;
5263 else if (strcmp (target2_type
, "abs") == 0)
5264 globals
->target2_reloc
= R_ARM_ABS32
;
5265 else if (strcmp (target2_type
, "got-rel") == 0)
5266 globals
->target2_reloc
= R_ARM_GOT_PREL
;
5269 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5272 globals
->fix_v4bx
= fix_v4bx
;
5273 globals
->use_blx
|= use_blx
;
5274 globals
->vfp11_fix
= vfp11_fix
;
5275 globals
->pic_veneer
= pic_veneer
;
5277 BFD_ASSERT (is_arm_elf (output_bfd
));
5278 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
5279 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
5282 /* Replace the target offset of a Thumb bl or b.w instruction. */
5285 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
5291 BFD_ASSERT ((offset
& 1) == 0);
5293 upper
= bfd_get_16 (abfd
, insn
);
5294 lower
= bfd_get_16 (abfd
, insn
+ 2);
5295 reloc_sign
= (offset
< 0) ? 1 : 0;
5296 upper
= (upper
& ~(bfd_vma
) 0x7ff)
5297 | ((offset
>> 12) & 0x3ff)
5298 | (reloc_sign
<< 10);
5299 lower
= (lower
& ~(bfd_vma
) 0x2fff)
5300 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
5301 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
5302 | ((offset
>> 1) & 0x7ff);
5303 bfd_put_16 (abfd
, upper
, insn
);
5304 bfd_put_16 (abfd
, lower
, insn
+ 2);
5307 /* Thumb code calling an ARM function. */
5310 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
5314 asection
* input_section
,
5315 bfd_byte
* hit_data
,
5318 bfd_signed_vma addend
,
5320 char **error_message
)
5324 long int ret_offset
;
5325 struct elf_link_hash_entry
* myh
;
5326 struct elf32_arm_link_hash_table
* globals
;
5328 myh
= find_thumb_glue (info
, name
, error_message
);
5332 globals
= elf32_arm_hash_table (info
);
5334 BFD_ASSERT (globals
!= NULL
);
5335 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5337 my_offset
= myh
->root
.u
.def
.value
;
5339 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5340 THUMB2ARM_GLUE_SECTION_NAME
);
5342 BFD_ASSERT (s
!= NULL
);
5343 BFD_ASSERT (s
->contents
!= NULL
);
5344 BFD_ASSERT (s
->output_section
!= NULL
);
5346 if ((my_offset
& 0x01) == 0x01)
5349 && sym_sec
->owner
!= NULL
5350 && !INTERWORK_FLAG (sym_sec
->owner
))
5352 (*_bfd_error_handler
)
5353 (_("%B(%s): warning: interworking not enabled.\n"
5354 " first occurrence: %B: thumb call to arm"),
5355 sym_sec
->owner
, input_bfd
, name
);
5361 myh
->root
.u
.def
.value
= my_offset
;
5363 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
5364 s
->contents
+ my_offset
);
5366 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
5367 s
->contents
+ my_offset
+ 2);
5370 /* Address of destination of the stub. */
5371 ((bfd_signed_vma
) val
)
5373 /* Offset from the start of the current section
5374 to the start of the stubs. */
5376 /* Offset of the start of this stub from the start of the stubs. */
5378 /* Address of the start of the current section. */
5379 + s
->output_section
->vma
)
5380 /* The branch instruction is 4 bytes into the stub. */
5382 /* ARM branches work from the pc of the instruction + 8. */
5385 put_arm_insn (globals
, output_bfd
,
5386 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
5387 s
->contents
+ my_offset
+ 4);
5390 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
5392 /* Now go back and fix up the original BL insn to point to here. */
5394 /* Address of where the stub is located. */
5395 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
5396 /* Address of where the BL is located. */
5397 - (input_section
->output_section
->vma
+ input_section
->output_offset
5399 /* Addend in the relocation. */
5401 /* Biassing for PC-relative addressing. */
5404 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
5409 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5411 static struct elf_link_hash_entry
*
5412 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
5419 char ** error_message
)
5422 long int ret_offset
;
5423 struct elf_link_hash_entry
* myh
;
5424 struct elf32_arm_link_hash_table
* globals
;
5426 myh
= find_arm_glue (info
, name
, error_message
);
5430 globals
= elf32_arm_hash_table (info
);
5432 BFD_ASSERT (globals
!= NULL
);
5433 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5435 my_offset
= myh
->root
.u
.def
.value
;
5437 if ((my_offset
& 0x01) == 0x01)
5440 && sym_sec
->owner
!= NULL
5441 && !INTERWORK_FLAG (sym_sec
->owner
))
5443 (*_bfd_error_handler
)
5444 (_("%B(%s): warning: interworking not enabled.\n"
5445 " first occurrence: %B: arm call to thumb"),
5446 sym_sec
->owner
, input_bfd
, name
);
5450 myh
->root
.u
.def
.value
= my_offset
;
5452 if (info
->shared
|| globals
->root
.is_relocatable_executable
5453 || globals
->pic_veneer
)
5455 /* For relocatable objects we can't use absolute addresses,
5456 so construct the address from a relative offset. */
5457 /* TODO: If the offset is small it's probably worth
5458 constructing the address with adds. */
5459 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
5460 s
->contents
+ my_offset
);
5461 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
5462 s
->contents
+ my_offset
+ 4);
5463 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
5464 s
->contents
+ my_offset
+ 8);
5465 /* Adjust the offset by 4 for the position of the add,
5466 and 8 for the pipeline offset. */
5467 ret_offset
= (val
- (s
->output_offset
5468 + s
->output_section
->vma
5471 bfd_put_32 (output_bfd
, ret_offset
,
5472 s
->contents
+ my_offset
+ 12);
5474 else if (globals
->use_blx
)
5476 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
5477 s
->contents
+ my_offset
);
5479 /* It's a thumb address. Add the low order bit. */
5480 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
5481 s
->contents
+ my_offset
+ 4);
5485 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
5486 s
->contents
+ my_offset
);
5488 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
5489 s
->contents
+ my_offset
+ 4);
5491 /* It's a thumb address. Add the low order bit. */
5492 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
5493 s
->contents
+ my_offset
+ 8);
5499 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
5504 /* Arm code calling a Thumb function. */
5507 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
5511 asection
* input_section
,
5512 bfd_byte
* hit_data
,
5515 bfd_signed_vma addend
,
5517 char **error_message
)
5519 unsigned long int tmp
;
5522 long int ret_offset
;
5523 struct elf_link_hash_entry
* myh
;
5524 struct elf32_arm_link_hash_table
* globals
;
5526 globals
= elf32_arm_hash_table (info
);
5528 BFD_ASSERT (globals
!= NULL
);
5529 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5531 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5532 ARM2THUMB_GLUE_SECTION_NAME
);
5533 BFD_ASSERT (s
!= NULL
);
5534 BFD_ASSERT (s
->contents
!= NULL
);
5535 BFD_ASSERT (s
->output_section
!= NULL
);
5537 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
5538 sym_sec
, val
, s
, error_message
);
5542 my_offset
= myh
->root
.u
.def
.value
;
5543 tmp
= bfd_get_32 (input_bfd
, hit_data
);
5544 tmp
= tmp
& 0xFF000000;
5546 /* Somehow these are both 4 too far, so subtract 8. */
5547 ret_offset
= (s
->output_offset
5549 + s
->output_section
->vma
5550 - (input_section
->output_offset
5551 + input_section
->output_section
->vma
5555 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
5557 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
5562 /* Populate Arm stub for an exported Thumb function. */
5565 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
5567 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
5569 struct elf_link_hash_entry
* myh
;
5570 struct elf32_arm_link_hash_entry
*eh
;
5571 struct elf32_arm_link_hash_table
* globals
;
5574 char *error_message
;
5576 eh
= elf32_arm_hash_entry (h
);
5577 /* Allocate stubs for exported Thumb functions on v4t. */
5578 if (eh
->export_glue
== NULL
)
5581 globals
= elf32_arm_hash_table (info
);
5583 BFD_ASSERT (globals
!= NULL
);
5584 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5586 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5587 ARM2THUMB_GLUE_SECTION_NAME
);
5588 BFD_ASSERT (s
!= NULL
);
5589 BFD_ASSERT (s
->contents
!= NULL
);
5590 BFD_ASSERT (s
->output_section
!= NULL
);
5592 sec
= eh
->export_glue
->root
.u
.def
.section
;
5594 BFD_ASSERT (sec
->output_section
!= NULL
);
5596 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
5597 + sec
->output_section
->vma
;
5599 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
5600 h
->root
.u
.def
.section
->owner
,
5601 globals
->obfd
, sec
, val
, s
,
5607 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5610 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
5615 struct elf32_arm_link_hash_table
*globals
;
5617 globals
= elf32_arm_hash_table (info
);
5619 BFD_ASSERT (globals
!= NULL
);
5620 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5622 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5623 ARM_BX_GLUE_SECTION_NAME
);
5624 BFD_ASSERT (s
!= NULL
);
5625 BFD_ASSERT (s
->contents
!= NULL
);
5626 BFD_ASSERT (s
->output_section
!= NULL
);
5628 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
5630 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
5632 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
5634 p
= s
->contents
+ glue_addr
;
5635 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
5636 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
5637 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
5638 globals
->bx_glue_offset
[reg
] |= 1;
5641 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
5644 /* Generate Arm stubs for exported Thumb symbols. */
5646 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
5647 struct bfd_link_info
*link_info
)
5649 struct elf32_arm_link_hash_table
* globals
;
5651 if (link_info
== NULL
)
5652 /* Ignore this if we are not called by the ELF backend linker. */
5655 globals
= elf32_arm_hash_table (link_info
);
5656 /* If blx is available then exported Thumb symbols are OK and there is
5658 if (globals
->use_blx
)
5661 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
5665 /* Some relocations map to different relocations depending on the
5666 target. Return the real relocation. */
5669 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
5675 if (globals
->target1_is_rel
)
5681 return globals
->target2_reloc
;
5688 /* Return the base VMA address which should be subtracted from real addresses
5689 when resolving @dtpoff relocation.
5690 This is PT_TLS segment p_vaddr. */
5693 dtpoff_base (struct bfd_link_info
*info
)
5695 /* If tls_sec is NULL, we should have signalled an error already. */
5696 if (elf_hash_table (info
)->tls_sec
== NULL
)
5698 return elf_hash_table (info
)->tls_sec
->vma
;
5701 /* Return the relocation value for @tpoff relocation
5702 if STT_TLS virtual address is ADDRESS. */
5705 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
5707 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
5710 /* If tls_sec is NULL, we should have signalled an error already. */
5711 if (htab
->tls_sec
== NULL
)
5713 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
5714 return address
- htab
->tls_sec
->vma
+ base
;
5717 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5718 VALUE is the relocation value. */
5720 static bfd_reloc_status_type
5721 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
5724 return bfd_reloc_overflow
;
5726 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
5727 bfd_put_32 (abfd
, value
, data
);
5728 return bfd_reloc_ok
;
5731 /* For a given value of n, calculate the value of G_n as required to
5732 deal with group relocations. We return it in the form of an
5733 encoded constant-and-rotation, together with the final residual. If n is
5734 specified as less than zero, then final_residual is filled with the
5735 input value and no further action is performed. */
5738 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
5742 bfd_vma encoded_g_n
= 0;
5743 bfd_vma residual
= value
; /* Also known as Y_n. */
5745 for (current_n
= 0; current_n
<= n
; current_n
++)
5749 /* Calculate which part of the value to mask. */
5756 /* Determine the most significant bit in the residual and
5757 align the resulting value to a 2-bit boundary. */
5758 for (msb
= 30; msb
>= 0; msb
-= 2)
5759 if (residual
& (3 << msb
))
5762 /* The desired shift is now (msb - 6), or zero, whichever
5769 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5770 g_n
= residual
& (0xff << shift
);
5771 encoded_g_n
= (g_n
>> shift
)
5772 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
5774 /* Calculate the residual for the next time around. */
5778 *final_residual
= residual
;
5783 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5784 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5787 identify_add_or_sub (bfd_vma insn
)
5789 int opcode
= insn
& 0x1e00000;
5791 if (opcode
== 1 << 23) /* ADD */
5794 if (opcode
== 1 << 22) /* SUB */
5800 /* Perform a relocation as part of a final link. */
5802 static bfd_reloc_status_type
5803 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
5806 asection
* input_section
,
5807 bfd_byte
* contents
,
5808 Elf_Internal_Rela
* rel
,
5810 struct bfd_link_info
* info
,
5812 const char * sym_name
,
5814 struct elf_link_hash_entry
* h
,
5815 bfd_boolean
* unresolved_reloc_p
,
5816 char ** error_message
)
5818 unsigned long r_type
= howto
->type
;
5819 unsigned long r_symndx
;
5820 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
5821 bfd
* dynobj
= NULL
;
5822 Elf_Internal_Shdr
* symtab_hdr
;
5823 struct elf_link_hash_entry
** sym_hashes
;
5824 bfd_vma
* local_got_offsets
;
5825 asection
* sgot
= NULL
;
5826 asection
* splt
= NULL
;
5827 asection
* sreloc
= NULL
;
5829 bfd_signed_vma signed_addend
;
5830 struct elf32_arm_link_hash_table
* globals
;
5832 globals
= elf32_arm_hash_table (info
);
5834 BFD_ASSERT (is_arm_elf (input_bfd
));
5836 /* Some relocation types map to different relocations depending on the
5837 target. We pick the right one here. */
5838 r_type
= arm_real_reloc_type (globals
, r_type
);
5839 if (r_type
!= howto
->type
)
5840 howto
= elf32_arm_howto_from_type (r_type
);
5842 /* If the start address has been set, then set the EF_ARM_HASENTRY
5843 flag. Setting this more than once is redundant, but the cost is
5844 not too high, and it keeps the code simple.
5846 The test is done here, rather than somewhere else, because the
5847 start address is only set just before the final link commences.
5849 Note - if the user deliberately sets a start address of 0, the
5850 flag will not be set. */
5851 if (bfd_get_start_address (output_bfd
) != 0)
5852 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
5854 dynobj
= elf_hash_table (info
)->dynobj
;
5857 sgot
= bfd_get_section_by_name (dynobj
, ".got");
5858 splt
= bfd_get_section_by_name (dynobj
, ".plt");
5860 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
5861 sym_hashes
= elf_sym_hashes (input_bfd
);
5862 local_got_offsets
= elf_local_got_offsets (input_bfd
);
5863 r_symndx
= ELF32_R_SYM (rel
->r_info
);
5865 if (globals
->use_rel
)
5867 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
5869 if (addend
& ((howto
->src_mask
+ 1) >> 1))
5872 signed_addend
&= ~ howto
->src_mask
;
5873 signed_addend
|= addend
;
5876 signed_addend
= addend
;
5879 addend
= signed_addend
= rel
->r_addend
;
5884 /* We don't need to find a value for this symbol. It's just a
5886 *unresolved_reloc_p
= FALSE
;
5887 return bfd_reloc_ok
;
5890 if (!globals
->vxworks_p
)
5891 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
5895 case R_ARM_ABS32_NOI
:
5897 case R_ARM_REL32_NOI
:
5903 /* Handle relocations which should use the PLT entry. ABS32/REL32
5904 will use the symbol's value, which may point to a PLT entry, but we
5905 don't need to handle that here. If we created a PLT entry, all
5906 branches in this object should go to it. */
5907 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
5908 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
)
5911 && h
->plt
.offset
!= (bfd_vma
) -1)
5913 /* If we've created a .plt section, and assigned a PLT entry to
5914 this function, it should not be known to bind locally. If
5915 it were, we would have cleared the PLT entry. */
5916 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
5918 value
= (splt
->output_section
->vma
5919 + splt
->output_offset
5921 *unresolved_reloc_p
= FALSE
;
5922 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
5923 contents
, rel
->r_offset
, value
,
5927 /* When generating a shared object or relocatable executable, these
5928 relocations are copied into the output file to be resolved at
5930 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
5931 && (input_section
->flags
& SEC_ALLOC
)
5932 && !(elf32_arm_hash_table (info
)->vxworks_p
5933 && strcmp (input_section
->output_section
->name
,
5935 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
5936 || !SYMBOL_CALLS_LOCAL (info
, h
))
5938 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
5939 || h
->root
.type
!= bfd_link_hash_undefweak
)
5940 && r_type
!= R_ARM_PC24
5941 && r_type
!= R_ARM_CALL
5942 && r_type
!= R_ARM_JUMP24
5943 && r_type
!= R_ARM_PREL31
5944 && r_type
!= R_ARM_PLT32
)
5946 Elf_Internal_Rela outrel
;
5948 bfd_boolean skip
, relocate
;
5950 *unresolved_reloc_p
= FALSE
;
5954 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
5955 ! globals
->use_rel
);
5958 return bfd_reloc_notsupported
;
5964 outrel
.r_addend
= addend
;
5966 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
5968 if (outrel
.r_offset
== (bfd_vma
) -1)
5970 else if (outrel
.r_offset
== (bfd_vma
) -2)
5971 skip
= TRUE
, relocate
= TRUE
;
5972 outrel
.r_offset
+= (input_section
->output_section
->vma
5973 + input_section
->output_offset
);
5976 memset (&outrel
, 0, sizeof outrel
);
5981 || !h
->def_regular
))
5982 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
5987 /* This symbol is local, or marked to become local. */
5988 if (sym_flags
== STT_ARM_TFUNC
)
5990 if (globals
->symbian_p
)
5994 /* On Symbian OS, the data segment and text segement
5995 can be relocated independently. Therefore, we
5996 must indicate the segment to which this
5997 relocation is relative. The BPABI allows us to
5998 use any symbol in the right segment; we just use
5999 the section symbol as it is convenient. (We
6000 cannot use the symbol given by "h" directly as it
6001 will not appear in the dynamic symbol table.)
6003 Note that the dynamic linker ignores the section
6004 symbol value, so we don't subtract osec->vma
6005 from the emitted reloc addend. */
6007 osec
= sym_sec
->output_section
;
6009 osec
= input_section
->output_section
;
6010 symbol
= elf_section_data (osec
)->dynindx
;
6013 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6015 if ((osec
->flags
& SEC_READONLY
) == 0
6016 && htab
->data_index_section
!= NULL
)
6017 osec
= htab
->data_index_section
;
6019 osec
= htab
->text_index_section
;
6020 symbol
= elf_section_data (osec
)->dynindx
;
6022 BFD_ASSERT (symbol
!= 0);
6025 /* On SVR4-ish systems, the dynamic loader cannot
6026 relocate the text and data segments independently,
6027 so the symbol does not matter. */
6029 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
6030 if (globals
->use_rel
)
6033 outrel
.r_addend
+= value
;
6036 loc
= sreloc
->contents
;
6037 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
6038 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6040 /* If this reloc is against an external symbol, we do not want to
6041 fiddle with the addend. Otherwise, we need to include the symbol
6042 value so that it becomes an addend for the dynamic reloc. */
6044 return bfd_reloc_ok
;
6046 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6047 contents
, rel
->r_offset
, value
,
6050 else switch (r_type
)
6053 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6055 case R_ARM_XPC25
: /* Arm BLX instruction. */
6058 case R_ARM_PC24
: /* Arm B/BL instruction. */
6062 bfd_signed_vma branch_offset
;
6063 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
6065 from
= (input_section
->output_section
->vma
6066 + input_section
->output_offset
6068 branch_offset
= (bfd_signed_vma
)(value
- from
);
6070 if (r_type
== R_ARM_XPC25
)
6072 /* Check for Arm calling Arm function. */
6073 /* FIXME: Should we translate the instruction into a BL
6074 instruction instead ? */
6075 if (sym_flags
!= STT_ARM_TFUNC
)
6076 (*_bfd_error_handler
)
6077 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6079 h
? h
->root
.root
.string
: "(local)");
6081 else if (r_type
!= R_ARM_CALL
)
6083 /* Check for Arm calling Thumb function. */
6084 if (sym_flags
== STT_ARM_TFUNC
)
6086 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
6087 output_bfd
, input_section
,
6088 hit_data
, sym_sec
, rel
->r_offset
,
6089 signed_addend
, value
,
6091 return bfd_reloc_ok
;
6093 return bfd_reloc_dangerous
;
6097 /* Check if a stub has to be inserted because the
6098 destination is too far or we are changing mode. */
6099 if (r_type
== R_ARM_CALL
)
6101 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
6102 || branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
6103 || sym_flags
== STT_ARM_TFUNC
)
6105 /* The target is out of reach, so redirect the
6106 branch to the local stub for this function. */
6108 stub_entry
= elf32_arm_get_stub_entry (input_section
,
6111 if (stub_entry
!= NULL
)
6112 value
= (stub_entry
->stub_offset
6113 + stub_entry
->stub_sec
->output_offset
6114 + stub_entry
->stub_sec
->output_section
->vma
);
6118 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6120 S is the address of the symbol in the relocation.
6121 P is address of the instruction being relocated.
6122 A is the addend (extracted from the instruction) in bytes.
6124 S is held in 'value'.
6125 P is the base address of the section containing the
6126 instruction plus the offset of the reloc into that
6128 (input_section->output_section->vma +
6129 input_section->output_offset +
6131 A is the addend, converted into bytes, ie:
6134 Note: None of these operations have knowledge of the pipeline
6135 size of the processor, thus it is up to the assembler to
6136 encode this information into the addend. */
6137 value
-= (input_section
->output_section
->vma
6138 + input_section
->output_offset
);
6139 value
-= rel
->r_offset
;
6140 if (globals
->use_rel
)
6141 value
+= (signed_addend
<< howto
->size
);
6143 /* RELA addends do not have to be adjusted by howto->size. */
6144 value
+= signed_addend
;
6146 signed_addend
= value
;
6147 signed_addend
>>= howto
->rightshift
;
6149 /* A branch to an undefined weak symbol is turned into a jump to
6150 the next instruction. */
6151 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
)
6153 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000)
6158 /* Perform a signed range check. */
6159 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
6160 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
6161 return bfd_reloc_overflow
;
6163 addend
= (value
& 2);
6165 value
= (signed_addend
& howto
->dst_mask
)
6166 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
6168 /* Set the H bit in the BLX instruction. */
6169 if (sym_flags
== STT_ARM_TFUNC
)
6174 value
&= ~(bfd_vma
)(1 << 24);
6176 if (r_type
== R_ARM_CALL
)
6178 /* Select the correct instruction (BL or BLX). */
6179 /* Only if we are not handling a BL to a stub. In this
6180 case, mode switching is performed by the stub. */
6181 if (sym_flags
== STT_ARM_TFUNC
&& !stub_entry
)
6185 value
&= ~(bfd_vma
)(1 << 28);
6195 if (sym_flags
== STT_ARM_TFUNC
)
6199 case R_ARM_ABS32_NOI
:
6205 if (sym_flags
== STT_ARM_TFUNC
)
6207 value
-= (input_section
->output_section
->vma
6208 + input_section
->output_offset
+ rel
->r_offset
);
6211 case R_ARM_REL32_NOI
:
6213 value
-= (input_section
->output_section
->vma
6214 + input_section
->output_offset
+ rel
->r_offset
);
6218 value
-= (input_section
->output_section
->vma
6219 + input_section
->output_offset
+ rel
->r_offset
);
6220 value
+= signed_addend
;
6221 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
6223 /* Check for overflow. */
6224 if ((value
^ (value
>> 1)) & (1 << 30))
6225 return bfd_reloc_overflow
;
6227 value
&= 0x7fffffff;
6228 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
6229 if (sym_flags
== STT_ARM_TFUNC
)
6234 bfd_put_32 (input_bfd
, value
, hit_data
);
6235 return bfd_reloc_ok
;
6239 if ((long) value
> 0x7f || (long) value
< -0x80)
6240 return bfd_reloc_overflow
;
6242 bfd_put_8 (input_bfd
, value
, hit_data
);
6243 return bfd_reloc_ok
;
6248 if ((long) value
> 0x7fff || (long) value
< -0x8000)
6249 return bfd_reloc_overflow
;
6251 bfd_put_16 (input_bfd
, value
, hit_data
);
6252 return bfd_reloc_ok
;
6254 case R_ARM_THM_ABS5
:
6255 /* Support ldr and str instructions for the thumb. */
6256 if (globals
->use_rel
)
6258 /* Need to refetch addend. */
6259 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
6260 /* ??? Need to determine shift amount from operand size. */
6261 addend
>>= howto
->rightshift
;
6265 /* ??? Isn't value unsigned? */
6266 if ((long) value
> 0x1f || (long) value
< -0x10)
6267 return bfd_reloc_overflow
;
6269 /* ??? Value needs to be properly shifted into place first. */
6270 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
6271 bfd_put_16 (input_bfd
, value
, hit_data
);
6272 return bfd_reloc_ok
;
6274 case R_ARM_THM_ALU_PREL_11_0
:
6275 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6278 bfd_signed_vma relocation
;
6280 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
6281 | bfd_get_16 (input_bfd
, hit_data
+ 2);
6283 if (globals
->use_rel
)
6285 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
6286 | ((insn
& (1 << 26)) >> 15);
6287 if (insn
& 0xf00000)
6288 signed_addend
= -signed_addend
;
6291 relocation
= value
+ signed_addend
;
6292 relocation
-= (input_section
->output_section
->vma
6293 + input_section
->output_offset
6296 value
= abs (relocation
);
6298 if (value
>= 0x1000)
6299 return bfd_reloc_overflow
;
6301 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
6302 | ((value
& 0x700) << 4)
6303 | ((value
& 0x800) << 15);
6307 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
6308 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
6310 return bfd_reloc_ok
;
6313 case R_ARM_THM_PC12
:
6314 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6317 bfd_signed_vma relocation
;
6319 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
6320 | bfd_get_16 (input_bfd
, hit_data
+ 2);
6322 if (globals
->use_rel
)
6324 signed_addend
= insn
& 0xfff;
6325 if (!(insn
& (1 << 23)))
6326 signed_addend
= -signed_addend
;
6329 relocation
= value
+ signed_addend
;
6330 relocation
-= (input_section
->output_section
->vma
6331 + input_section
->output_offset
6334 value
= abs (relocation
);
6336 if (value
>= 0x1000)
6337 return bfd_reloc_overflow
;
6339 insn
= (insn
& 0xff7ff000) | value
;
6340 if (relocation
>= 0)
6343 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
6344 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
6346 return bfd_reloc_ok
;
6349 case R_ARM_THM_XPC22
:
6350 case R_ARM_THM_CALL
:
6351 case R_ARM_THM_JUMP24
:
6352 /* Thumb BL (branch long instruction). */
6356 bfd_boolean overflow
= FALSE
;
6357 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
6358 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
6359 bfd_signed_vma reloc_signed_max
;
6360 bfd_signed_vma reloc_signed_min
;
6362 bfd_signed_vma signed_check
;
6364 int thumb2
= using_thumb2 (globals
);
6366 /* A branch to an undefined weak symbol is turned into a jump to
6367 the next instruction unless a PLT entry will be created. */
6368 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
6369 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
6371 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
6372 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
6373 return bfd_reloc_ok
;
6376 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6377 with Thumb-1) involving the J1 and J2 bits. */
6378 if (globals
->use_rel
)
6380 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
6381 bfd_vma upper
= upper_insn
& 0x3ff;
6382 bfd_vma lower
= lower_insn
& 0x7ff;
6383 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
6384 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
6385 bfd_vma i1
= j1
^ s
? 0 : 1;
6386 bfd_vma i2
= j2
^ s
? 0 : 1;
6388 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
6390 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
6392 signed_addend
= addend
;
6395 if (r_type
== R_ARM_THM_XPC22
)
6397 /* Check for Thumb to Thumb call. */
6398 /* FIXME: Should we translate the instruction into a BL
6399 instruction instead ? */
6400 if (sym_flags
== STT_ARM_TFUNC
)
6401 (*_bfd_error_handler
)
6402 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6404 h
? h
->root
.root
.string
: "(local)");
6408 /* If it is not a call to Thumb, assume call to Arm.
6409 If it is a call relative to a section name, then it is not a
6410 function call at all, but rather a long jump. Calls through
6411 the PLT do not require stubs. */
6412 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
6413 && (h
== NULL
|| splt
== NULL
6414 || h
->plt
.offset
== (bfd_vma
) -1))
6416 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
6418 /* Convert BL to BLX. */
6419 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
6421 else if (r_type
!= R_ARM_THM_CALL
)
6423 if (elf32_thumb_to_arm_stub
6424 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
6425 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
6427 return bfd_reloc_ok
;
6429 return bfd_reloc_dangerous
;
6432 else if (sym_flags
== STT_ARM_TFUNC
&& globals
->use_blx
6433 && r_type
== R_ARM_THM_CALL
)
6435 /* Make sure this is a BL. */
6436 lower_insn
|= 0x1800;
6440 /* Handle calls via the PLT. */
6441 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6443 value
= (splt
->output_section
->vma
6444 + splt
->output_offset
6446 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
6448 /* If the Thumb BLX instruction is available, convert the
6449 BL to a BLX instruction to call the ARM-mode PLT entry. */
6450 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
6453 /* Target the Thumb stub before the ARM PLT entry. */
6454 value
-= PLT_THUMB_STUB_SIZE
;
6455 *unresolved_reloc_p
= FALSE
;
6458 if (r_type
== R_ARM_THM_CALL
)
6460 /* Check if a stub has to be inserted because the destination
6463 bfd_signed_vma branch_offset
;
6464 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
6466 from
= (input_section
->output_section
->vma
6467 + input_section
->output_offset
6469 branch_offset
= (bfd_signed_vma
)(value
- from
);
6472 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
6473 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
6476 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
6477 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
6478 || ((sym_flags
!= STT_ARM_TFUNC
) && !globals
->use_blx
))
6480 /* The target is out of reach or we are changing modes, so
6481 redirect the branch to the local stub for this
6483 stub_entry
= elf32_arm_get_stub_entry (input_section
,
6486 if (stub_entry
!= NULL
)
6487 value
= (stub_entry
->stub_offset
6488 + stub_entry
->stub_sec
->output_offset
6489 + stub_entry
->stub_sec
->output_section
->vma
);
6491 /* If this call becomes a call to Arm, force BLX. */
6492 if (globals
->use_blx
)
6495 && !arm_stub_is_thumb (stub_entry
->stub_type
))
6496 || (sym_flags
!= STT_ARM_TFUNC
))
6497 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
6502 relocation
= value
+ signed_addend
;
6504 relocation
-= (input_section
->output_section
->vma
6505 + input_section
->output_offset
6508 check
= relocation
>> howto
->rightshift
;
6510 /* If this is a signed value, the rightshift just dropped
6511 leading 1 bits (assuming twos complement). */
6512 if ((bfd_signed_vma
) relocation
>= 0)
6513 signed_check
= check
;
6515 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
6517 /* Calculate the permissable maximum and minimum values for
6518 this relocation according to whether we're relocating for
6520 bitsize
= howto
->bitsize
;
6523 reloc_signed_max
= ((1 << (bitsize
- 1)) - 1) >> howto
->rightshift
;
6524 reloc_signed_min
= ~reloc_signed_max
;
6526 /* Assumes two's complement. */
6527 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
6530 if ((lower_insn
& 0x5000) == 0x4000)
6531 /* For a BLX instruction, make sure that the relocation is rounded up
6532 to a word boundary. This follows the semantics of the instruction
6533 which specifies that bit 1 of the target address will come from bit
6534 1 of the base address. */
6535 relocation
= (relocation
+ 2) & ~ 3;
6537 /* Put RELOCATION back into the insn. Assumes two's complement.
6538 We use the Thumb-2 encoding, which is safe even if dealing with
6539 a Thumb-1 instruction by virtue of our overflow check above. */
6540 reloc_sign
= (signed_check
< 0) ? 1 : 0;
6541 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
6542 | ((relocation
>> 12) & 0x3ff)
6543 | (reloc_sign
<< 10);
6544 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
6545 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
6546 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
6547 | ((relocation
>> 1) & 0x7ff);
6549 /* Put the relocated value back in the object file: */
6550 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
6551 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
6553 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
6557 case R_ARM_THM_JUMP19
:
6558 /* Thumb32 conditional branch instruction. */
6561 bfd_boolean overflow
= FALSE
;
6562 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
6563 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
6564 bfd_signed_vma reloc_signed_max
= 0xffffe;
6565 bfd_signed_vma reloc_signed_min
= -0x100000;
6566 bfd_signed_vma signed_check
;
6568 /* Need to refetch the addend, reconstruct the top three bits,
6569 and squish the two 11 bit pieces together. */
6570 if (globals
->use_rel
)
6572 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
6573 bfd_vma upper
= (upper_insn
& 0x003f);
6574 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
6575 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
6576 bfd_vma lower
= (lower_insn
& 0x07ff);
6581 upper
-= 0x0100; /* Sign extend. */
6583 addend
= (upper
<< 12) | (lower
<< 1);
6584 signed_addend
= addend
;
6587 /* Handle calls via the PLT. */
6588 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6590 value
= (splt
->output_section
->vma
6591 + splt
->output_offset
6593 /* Target the Thumb stub before the ARM PLT entry. */
6594 value
-= PLT_THUMB_STUB_SIZE
;
6595 *unresolved_reloc_p
= FALSE
;
6598 /* ??? Should handle interworking? GCC might someday try to
6599 use this for tail calls. */
6601 relocation
= value
+ signed_addend
;
6602 relocation
-= (input_section
->output_section
->vma
6603 + input_section
->output_offset
6605 signed_check
= (bfd_signed_vma
) relocation
;
6607 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
6610 /* Put RELOCATION back into the insn. */
6612 bfd_vma S
= (relocation
& 0x00100000) >> 20;
6613 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
6614 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
6615 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
6616 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
6618 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
6619 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
6622 /* Put the relocated value back in the object file: */
6623 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
6624 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
6626 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
6629 case R_ARM_THM_JUMP11
:
6630 case R_ARM_THM_JUMP8
:
6631 case R_ARM_THM_JUMP6
:
6632 /* Thumb B (branch) instruction). */
6634 bfd_signed_vma relocation
;
6635 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
6636 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
6637 bfd_signed_vma signed_check
;
6639 /* CZB cannot jump backward. */
6640 if (r_type
== R_ARM_THM_JUMP6
)
6641 reloc_signed_min
= 0;
6643 if (globals
->use_rel
)
6645 /* Need to refetch addend. */
6646 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
6647 if (addend
& ((howto
->src_mask
+ 1) >> 1))
6650 signed_addend
&= ~ howto
->src_mask
;
6651 signed_addend
|= addend
;
6654 signed_addend
= addend
;
6655 /* The value in the insn has been right shifted. We need to
6656 undo this, so that we can perform the address calculation
6657 in terms of bytes. */
6658 signed_addend
<<= howto
->rightshift
;
6660 relocation
= value
+ signed_addend
;
6662 relocation
-= (input_section
->output_section
->vma
6663 + input_section
->output_offset
6666 relocation
>>= howto
->rightshift
;
6667 signed_check
= relocation
;
6669 if (r_type
== R_ARM_THM_JUMP6
)
6670 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
6672 relocation
&= howto
->dst_mask
;
6673 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
6675 bfd_put_16 (input_bfd
, relocation
, hit_data
);
6677 /* Assumes two's complement. */
6678 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
6679 return bfd_reloc_overflow
;
6681 return bfd_reloc_ok
;
6684 case R_ARM_ALU_PCREL7_0
:
6685 case R_ARM_ALU_PCREL15_8
:
6686 case R_ARM_ALU_PCREL23_15
:
6691 insn
= bfd_get_32 (input_bfd
, hit_data
);
6692 if (globals
->use_rel
)
6694 /* Extract the addend. */
6695 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
6696 signed_addend
= addend
;
6698 relocation
= value
+ signed_addend
;
6700 relocation
-= (input_section
->output_section
->vma
6701 + input_section
->output_offset
6703 insn
= (insn
& ~0xfff)
6704 | ((howto
->bitpos
<< 7) & 0xf00)
6705 | ((relocation
>> howto
->bitpos
) & 0xff);
6706 bfd_put_32 (input_bfd
, value
, hit_data
);
6708 return bfd_reloc_ok
;
6710 case R_ARM_GNU_VTINHERIT
:
6711 case R_ARM_GNU_VTENTRY
:
6712 return bfd_reloc_ok
;
6714 case R_ARM_GOTOFF32
:
6715 /* Relocation is relative to the start of the
6716 global offset table. */
6718 BFD_ASSERT (sgot
!= NULL
);
6720 return bfd_reloc_notsupported
;
6722 /* If we are addressing a Thumb function, we need to adjust the
6723 address by one, so that attempts to call the function pointer will
6724 correctly interpret it as Thumb code. */
6725 if (sym_flags
== STT_ARM_TFUNC
)
6728 /* Note that sgot->output_offset is not involved in this
6729 calculation. We always want the start of .got. If we
6730 define _GLOBAL_OFFSET_TABLE in a different way, as is
6731 permitted by the ABI, we might have to change this
6733 value
-= sgot
->output_section
->vma
;
6734 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6735 contents
, rel
->r_offset
, value
,
6739 /* Use global offset table as symbol value. */
6740 BFD_ASSERT (sgot
!= NULL
);
6743 return bfd_reloc_notsupported
;
6745 *unresolved_reloc_p
= FALSE
;
6746 value
= sgot
->output_section
->vma
;
6747 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6748 contents
, rel
->r_offset
, value
,
6752 case R_ARM_GOT_PREL
:
6753 /* Relocation is to the entry for this symbol in the
6754 global offset table. */
6756 return bfd_reloc_notsupported
;
6763 off
= h
->got
.offset
;
6764 BFD_ASSERT (off
!= (bfd_vma
) -1);
6765 dyn
= globals
->root
.dynamic_sections_created
;
6767 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
6769 && SYMBOL_REFERENCES_LOCAL (info
, h
))
6770 || (ELF_ST_VISIBILITY (h
->other
)
6771 && h
->root
.type
== bfd_link_hash_undefweak
))
6773 /* This is actually a static link, or it is a -Bsymbolic link
6774 and the symbol is defined locally. We must initialize this
6775 entry in the global offset table. Since the offset must
6776 always be a multiple of 4, we use the least significant bit
6777 to record whether we have initialized it already.
6779 When doing a dynamic link, we create a .rel(a).got relocation
6780 entry to initialize the value. This is done in the
6781 finish_dynamic_symbol routine. */
6786 /* If we are addressing a Thumb function, we need to
6787 adjust the address by one, so that attempts to
6788 call the function pointer will correctly
6789 interpret it as Thumb code. */
6790 if (sym_flags
== STT_ARM_TFUNC
)
6793 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
6798 *unresolved_reloc_p
= FALSE
;
6800 value
= sgot
->output_offset
+ off
;
6806 BFD_ASSERT (local_got_offsets
!= NULL
&&
6807 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
6809 off
= local_got_offsets
[r_symndx
];
6811 /* The offset must always be a multiple of 4. We use the
6812 least significant bit to record whether we have already
6813 generated the necessary reloc. */
6818 /* If we are addressing a Thumb function, we need to
6819 adjust the address by one, so that attempts to
6820 call the function pointer will correctly
6821 interpret it as Thumb code. */
6822 if (sym_flags
== STT_ARM_TFUNC
)
6825 if (globals
->use_rel
)
6826 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
6831 Elf_Internal_Rela outrel
;
6834 srelgot
= (bfd_get_section_by_name
6835 (dynobj
, RELOC_SECTION (globals
, ".got")));
6836 BFD_ASSERT (srelgot
!= NULL
);
6838 outrel
.r_addend
= addend
+ value
;
6839 outrel
.r_offset
= (sgot
->output_section
->vma
6840 + sgot
->output_offset
6842 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
6843 loc
= srelgot
->contents
;
6844 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
6845 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6848 local_got_offsets
[r_symndx
] |= 1;
6851 value
= sgot
->output_offset
+ off
;
6853 if (r_type
!= R_ARM_GOT32
)
6854 value
+= sgot
->output_section
->vma
;
6856 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6857 contents
, rel
->r_offset
, value
,
6860 case R_ARM_TLS_LDO32
:
6861 value
= value
- dtpoff_base (info
);
6863 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6864 contents
, rel
->r_offset
, value
,
6867 case R_ARM_TLS_LDM32
:
6871 if (globals
->sgot
== NULL
)
6874 off
= globals
->tls_ldm_got
.offset
;
6880 /* If we don't know the module number, create a relocation
6884 Elf_Internal_Rela outrel
;
6887 if (globals
->srelgot
== NULL
)
6890 outrel
.r_addend
= 0;
6891 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
6892 + globals
->sgot
->output_offset
+ off
);
6893 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
6895 if (globals
->use_rel
)
6896 bfd_put_32 (output_bfd
, outrel
.r_addend
,
6897 globals
->sgot
->contents
+ off
);
6899 loc
= globals
->srelgot
->contents
;
6900 loc
+= globals
->srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
6901 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6904 bfd_put_32 (output_bfd
, 1, globals
->sgot
->contents
+ off
);
6906 globals
->tls_ldm_got
.offset
|= 1;
6909 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
6910 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
6912 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6913 contents
, rel
->r_offset
, value
,
6917 case R_ARM_TLS_GD32
:
6918 case R_ARM_TLS_IE32
:
6924 if (globals
->sgot
== NULL
)
6931 dyn
= globals
->root
.dynamic_sections_created
;
6932 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
6934 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
6936 *unresolved_reloc_p
= FALSE
;
6939 off
= h
->got
.offset
;
6940 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
6944 if (local_got_offsets
== NULL
)
6946 off
= local_got_offsets
[r_symndx
];
6947 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
6950 if (tls_type
== GOT_UNKNOWN
)
6957 bfd_boolean need_relocs
= FALSE
;
6958 Elf_Internal_Rela outrel
;
6959 bfd_byte
*loc
= NULL
;
6962 /* The GOT entries have not been initialized yet. Do it
6963 now, and emit any relocations. If both an IE GOT and a
6964 GD GOT are necessary, we emit the GD first. */
6966 if ((info
->shared
|| indx
!= 0)
6968 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6969 || h
->root
.type
!= bfd_link_hash_undefweak
))
6972 if (globals
->srelgot
== NULL
)
6974 loc
= globals
->srelgot
->contents
;
6975 loc
+= globals
->srelgot
->reloc_count
* RELOC_SIZE (globals
);
6978 if (tls_type
& GOT_TLS_GD
)
6982 outrel
.r_addend
= 0;
6983 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
6984 + globals
->sgot
->output_offset
6986 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
6988 if (globals
->use_rel
)
6989 bfd_put_32 (output_bfd
, outrel
.r_addend
,
6990 globals
->sgot
->contents
+ cur_off
);
6992 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6993 globals
->srelgot
->reloc_count
++;
6994 loc
+= RELOC_SIZE (globals
);
6997 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
6998 globals
->sgot
->contents
+ cur_off
+ 4);
7001 outrel
.r_addend
= 0;
7002 outrel
.r_info
= ELF32_R_INFO (indx
,
7003 R_ARM_TLS_DTPOFF32
);
7004 outrel
.r_offset
+= 4;
7006 if (globals
->use_rel
)
7007 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7008 globals
->sgot
->contents
+ cur_off
+ 4);
7011 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7012 globals
->srelgot
->reloc_count
++;
7013 loc
+= RELOC_SIZE (globals
);
7018 /* If we are not emitting relocations for a
7019 general dynamic reference, then we must be in a
7020 static link or an executable link with the
7021 symbol binding locally. Mark it as belonging
7022 to module 1, the executable. */
7023 bfd_put_32 (output_bfd
, 1,
7024 globals
->sgot
->contents
+ cur_off
);
7025 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7026 globals
->sgot
->contents
+ cur_off
+ 4);
7032 if (tls_type
& GOT_TLS_IE
)
7037 outrel
.r_addend
= value
- dtpoff_base (info
);
7039 outrel
.r_addend
= 0;
7040 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7041 + globals
->sgot
->output_offset
7043 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
7045 if (globals
->use_rel
)
7046 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7047 globals
->sgot
->contents
+ cur_off
);
7049 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7050 globals
->srelgot
->reloc_count
++;
7051 loc
+= RELOC_SIZE (globals
);
7054 bfd_put_32 (output_bfd
, tpoff (info
, value
),
7055 globals
->sgot
->contents
+ cur_off
);
7062 local_got_offsets
[r_symndx
] |= 1;
7065 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
7067 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
7068 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
7070 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7071 contents
, rel
->r_offset
, value
,
7075 case R_ARM_TLS_LE32
:
7078 (*_bfd_error_handler
)
7079 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7080 input_bfd
, input_section
,
7081 (long) rel
->r_offset
, howto
->name
);
7085 value
= tpoff (info
, value
);
7087 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7088 contents
, rel
->r_offset
, value
,
7092 if (globals
->fix_v4bx
)
7094 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7096 /* Ensure that we have a BX instruction. */
7097 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
7099 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
7101 /* Branch to veneer. */
7103 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
7104 glue_addr
-= input_section
->output_section
->vma
7105 + input_section
->output_offset
7106 + rel
->r_offset
+ 8;
7107 insn
= (insn
& 0xf0000000) | 0x0a000000
7108 | ((glue_addr
>> 2) & 0x00ffffff);
7112 /* Preserve Rm (lowest four bits) and the condition code
7113 (highest four bits). Other bits encode MOV PC,Rm. */
7114 insn
= (insn
& 0xf000000f) | 0x01a0f000;
7117 bfd_put_32 (input_bfd
, insn
, hit_data
);
7119 return bfd_reloc_ok
;
7121 case R_ARM_MOVW_ABS_NC
:
7122 case R_ARM_MOVT_ABS
:
7123 case R_ARM_MOVW_PREL_NC
:
7124 case R_ARM_MOVT_PREL
:
7125 /* Until we properly support segment-base-relative addressing then
7126 we assume the segment base to be zero, as for the group relocations.
7127 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7128 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7129 case R_ARM_MOVW_BREL_NC
:
7130 case R_ARM_MOVW_BREL
:
7131 case R_ARM_MOVT_BREL
:
7133 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7135 if (globals
->use_rel
)
7137 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
7138 signed_addend
= (addend
^ 0x8000) - 0x8000;
7141 value
+= signed_addend
;
7143 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
7144 value
-= (input_section
->output_section
->vma
7145 + input_section
->output_offset
+ rel
->r_offset
);
7147 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
7148 return bfd_reloc_overflow
;
7150 if (sym_flags
== STT_ARM_TFUNC
)
7153 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
7154 || r_type
== R_ARM_MOVT_BREL
)
7158 insn
|= value
& 0xfff;
7159 insn
|= (value
& 0xf000) << 4;
7160 bfd_put_32 (input_bfd
, insn
, hit_data
);
7162 return bfd_reloc_ok
;
7164 case R_ARM_THM_MOVW_ABS_NC
:
7165 case R_ARM_THM_MOVT_ABS
:
7166 case R_ARM_THM_MOVW_PREL_NC
:
7167 case R_ARM_THM_MOVT_PREL
:
7168 /* Until we properly support segment-base-relative addressing then
7169 we assume the segment base to be zero, as for the above relocations.
7170 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7171 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7172 as R_ARM_THM_MOVT_ABS. */
7173 case R_ARM_THM_MOVW_BREL_NC
:
7174 case R_ARM_THM_MOVW_BREL
:
7175 case R_ARM_THM_MOVT_BREL
:
7179 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
7180 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
7182 if (globals
->use_rel
)
7184 addend
= ((insn
>> 4) & 0xf000)
7185 | ((insn
>> 15) & 0x0800)
7186 | ((insn
>> 4) & 0x0700)
7188 signed_addend
= (addend
^ 0x8000) - 0x8000;
7191 value
+= signed_addend
;
7193 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
7194 value
-= (input_section
->output_section
->vma
7195 + input_section
->output_offset
+ rel
->r_offset
);
7197 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
7198 return bfd_reloc_overflow
;
7200 if (sym_flags
== STT_ARM_TFUNC
)
7203 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
7204 || r_type
== R_ARM_THM_MOVT_BREL
)
7208 insn
|= (value
& 0xf000) << 4;
7209 insn
|= (value
& 0x0800) << 15;
7210 insn
|= (value
& 0x0700) << 4;
7211 insn
|= (value
& 0x00ff);
7213 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7214 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7216 return bfd_reloc_ok
;
7218 case R_ARM_ALU_PC_G0_NC
:
7219 case R_ARM_ALU_PC_G1_NC
:
7220 case R_ARM_ALU_PC_G0
:
7221 case R_ARM_ALU_PC_G1
:
7222 case R_ARM_ALU_PC_G2
:
7223 case R_ARM_ALU_SB_G0_NC
:
7224 case R_ARM_ALU_SB_G1_NC
:
7225 case R_ARM_ALU_SB_G0
:
7226 case R_ARM_ALU_SB_G1
:
7227 case R_ARM_ALU_SB_G2
:
7229 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7230 bfd_vma pc
= input_section
->output_section
->vma
7231 + input_section
->output_offset
+ rel
->r_offset
;
7232 /* sb should be the origin of the *segment* containing the symbol.
7233 It is not clear how to obtain this OS-dependent value, so we
7234 make an arbitrary choice of zero. */
7238 bfd_signed_vma signed_value
;
7241 /* Determine which group of bits to select. */
7244 case R_ARM_ALU_PC_G0_NC
:
7245 case R_ARM_ALU_PC_G0
:
7246 case R_ARM_ALU_SB_G0_NC
:
7247 case R_ARM_ALU_SB_G0
:
7251 case R_ARM_ALU_PC_G1_NC
:
7252 case R_ARM_ALU_PC_G1
:
7253 case R_ARM_ALU_SB_G1_NC
:
7254 case R_ARM_ALU_SB_G1
:
7258 case R_ARM_ALU_PC_G2
:
7259 case R_ARM_ALU_SB_G2
:
7267 /* If REL, extract the addend from the insn. If RELA, it will
7268 have already been fetched for us. */
7269 if (globals
->use_rel
)
7272 bfd_vma constant
= insn
& 0xff;
7273 bfd_vma rotation
= (insn
& 0xf00) >> 8;
7276 signed_addend
= constant
;
7279 /* Compensate for the fact that in the instruction, the
7280 rotation is stored in multiples of 2 bits. */
7283 /* Rotate "constant" right by "rotation" bits. */
7284 signed_addend
= (constant
>> rotation
) |
7285 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
7288 /* Determine if the instruction is an ADD or a SUB.
7289 (For REL, this determines the sign of the addend.) */
7290 negative
= identify_add_or_sub (insn
);
7293 (*_bfd_error_handler
)
7294 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7295 input_bfd
, input_section
,
7296 (long) rel
->r_offset
, howto
->name
);
7297 return bfd_reloc_overflow
;
7300 signed_addend
*= negative
;
7303 /* Compute the value (X) to go in the place. */
7304 if (r_type
== R_ARM_ALU_PC_G0_NC
7305 || r_type
== R_ARM_ALU_PC_G1_NC
7306 || r_type
== R_ARM_ALU_PC_G0
7307 || r_type
== R_ARM_ALU_PC_G1
7308 || r_type
== R_ARM_ALU_PC_G2
)
7310 signed_value
= value
- pc
+ signed_addend
;
7312 /* Section base relative. */
7313 signed_value
= value
- sb
+ signed_addend
;
7315 /* If the target symbol is a Thumb function, then set the
7316 Thumb bit in the address. */
7317 if (sym_flags
== STT_ARM_TFUNC
)
7320 /* Calculate the value of the relevant G_n, in encoded
7321 constant-with-rotation format. */
7322 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
7325 /* Check for overflow if required. */
7326 if ((r_type
== R_ARM_ALU_PC_G0
7327 || r_type
== R_ARM_ALU_PC_G1
7328 || r_type
== R_ARM_ALU_PC_G2
7329 || r_type
== R_ARM_ALU_SB_G0
7330 || r_type
== R_ARM_ALU_SB_G1
7331 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
7333 (*_bfd_error_handler
)
7334 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7335 input_bfd
, input_section
,
7336 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7337 return bfd_reloc_overflow
;
7340 /* Mask out the value and the ADD/SUB part of the opcode; take care
7341 not to destroy the S bit. */
7344 /* Set the opcode according to whether the value to go in the
7345 place is negative. */
7346 if (signed_value
< 0)
7351 /* Encode the offset. */
7354 bfd_put_32 (input_bfd
, insn
, hit_data
);
7356 return bfd_reloc_ok
;
7358 case R_ARM_LDR_PC_G0
:
7359 case R_ARM_LDR_PC_G1
:
7360 case R_ARM_LDR_PC_G2
:
7361 case R_ARM_LDR_SB_G0
:
7362 case R_ARM_LDR_SB_G1
:
7363 case R_ARM_LDR_SB_G2
:
7365 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7366 bfd_vma pc
= input_section
->output_section
->vma
7367 + input_section
->output_offset
+ rel
->r_offset
;
7368 bfd_vma sb
= 0; /* See note above. */
7370 bfd_signed_vma signed_value
;
7373 /* Determine which groups of bits to calculate. */
7376 case R_ARM_LDR_PC_G0
:
7377 case R_ARM_LDR_SB_G0
:
7381 case R_ARM_LDR_PC_G1
:
7382 case R_ARM_LDR_SB_G1
:
7386 case R_ARM_LDR_PC_G2
:
7387 case R_ARM_LDR_SB_G2
:
7395 /* If REL, extract the addend from the insn. If RELA, it will
7396 have already been fetched for us. */
7397 if (globals
->use_rel
)
7399 int negative
= (insn
& (1 << 23)) ? 1 : -1;
7400 signed_addend
= negative
* (insn
& 0xfff);
7403 /* Compute the value (X) to go in the place. */
7404 if (r_type
== R_ARM_LDR_PC_G0
7405 || r_type
== R_ARM_LDR_PC_G1
7406 || r_type
== R_ARM_LDR_PC_G2
)
7408 signed_value
= value
- pc
+ signed_addend
;
7410 /* Section base relative. */
7411 signed_value
= value
- sb
+ signed_addend
;
7413 /* Calculate the value of the relevant G_{n-1} to obtain
7414 the residual at that stage. */
7415 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
7417 /* Check for overflow. */
7418 if (residual
>= 0x1000)
7420 (*_bfd_error_handler
)
7421 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7422 input_bfd
, input_section
,
7423 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7424 return bfd_reloc_overflow
;
7427 /* Mask out the value and U bit. */
7430 /* Set the U bit if the value to go in the place is non-negative. */
7431 if (signed_value
>= 0)
7434 /* Encode the offset. */
7437 bfd_put_32 (input_bfd
, insn
, hit_data
);
7439 return bfd_reloc_ok
;
7441 case R_ARM_LDRS_PC_G0
:
7442 case R_ARM_LDRS_PC_G1
:
7443 case R_ARM_LDRS_PC_G2
:
7444 case R_ARM_LDRS_SB_G0
:
7445 case R_ARM_LDRS_SB_G1
:
7446 case R_ARM_LDRS_SB_G2
:
7448 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7449 bfd_vma pc
= input_section
->output_section
->vma
7450 + input_section
->output_offset
+ rel
->r_offset
;
7451 bfd_vma sb
= 0; /* See note above. */
7453 bfd_signed_vma signed_value
;
7456 /* Determine which groups of bits to calculate. */
7459 case R_ARM_LDRS_PC_G0
:
7460 case R_ARM_LDRS_SB_G0
:
7464 case R_ARM_LDRS_PC_G1
:
7465 case R_ARM_LDRS_SB_G1
:
7469 case R_ARM_LDRS_PC_G2
:
7470 case R_ARM_LDRS_SB_G2
:
7478 /* If REL, extract the addend from the insn. If RELA, it will
7479 have already been fetched for us. */
7480 if (globals
->use_rel
)
7482 int negative
= (insn
& (1 << 23)) ? 1 : -1;
7483 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
7486 /* Compute the value (X) to go in the place. */
7487 if (r_type
== R_ARM_LDRS_PC_G0
7488 || r_type
== R_ARM_LDRS_PC_G1
7489 || r_type
== R_ARM_LDRS_PC_G2
)
7491 signed_value
= value
- pc
+ signed_addend
;
7493 /* Section base relative. */
7494 signed_value
= value
- sb
+ signed_addend
;
7496 /* Calculate the value of the relevant G_{n-1} to obtain
7497 the residual at that stage. */
7498 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
7500 /* Check for overflow. */
7501 if (residual
>= 0x100)
7503 (*_bfd_error_handler
)
7504 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7505 input_bfd
, input_section
,
7506 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7507 return bfd_reloc_overflow
;
7510 /* Mask out the value and U bit. */
7513 /* Set the U bit if the value to go in the place is non-negative. */
7514 if (signed_value
>= 0)
7517 /* Encode the offset. */
7518 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
7520 bfd_put_32 (input_bfd
, insn
, hit_data
);
7522 return bfd_reloc_ok
;
7524 case R_ARM_LDC_PC_G0
:
7525 case R_ARM_LDC_PC_G1
:
7526 case R_ARM_LDC_PC_G2
:
7527 case R_ARM_LDC_SB_G0
:
7528 case R_ARM_LDC_SB_G1
:
7529 case R_ARM_LDC_SB_G2
:
7531 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7532 bfd_vma pc
= input_section
->output_section
->vma
7533 + input_section
->output_offset
+ rel
->r_offset
;
7534 bfd_vma sb
= 0; /* See note above. */
7536 bfd_signed_vma signed_value
;
7539 /* Determine which groups of bits to calculate. */
7542 case R_ARM_LDC_PC_G0
:
7543 case R_ARM_LDC_SB_G0
:
7547 case R_ARM_LDC_PC_G1
:
7548 case R_ARM_LDC_SB_G1
:
7552 case R_ARM_LDC_PC_G2
:
7553 case R_ARM_LDC_SB_G2
:
7561 /* If REL, extract the addend from the insn. If RELA, it will
7562 have already been fetched for us. */
7563 if (globals
->use_rel
)
7565 int negative
= (insn
& (1 << 23)) ? 1 : -1;
7566 signed_addend
= negative
* ((insn
& 0xff) << 2);
7569 /* Compute the value (X) to go in the place. */
7570 if (r_type
== R_ARM_LDC_PC_G0
7571 || r_type
== R_ARM_LDC_PC_G1
7572 || r_type
== R_ARM_LDC_PC_G2
)
7574 signed_value
= value
- pc
+ signed_addend
;
7576 /* Section base relative. */
7577 signed_value
= value
- sb
+ signed_addend
;
7579 /* Calculate the value of the relevant G_{n-1} to obtain
7580 the residual at that stage. */
7581 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
7583 /* Check for overflow. (The absolute value to go in the place must be
7584 divisible by four and, after having been divided by four, must
7585 fit in eight bits.) */
7586 if ((residual
& 0x3) != 0 || residual
>= 0x400)
7588 (*_bfd_error_handler
)
7589 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7590 input_bfd
, input_section
,
7591 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7592 return bfd_reloc_overflow
;
7595 /* Mask out the value and U bit. */
7598 /* Set the U bit if the value to go in the place is non-negative. */
7599 if (signed_value
>= 0)
7602 /* Encode the offset. */
7603 insn
|= residual
>> 2;
7605 bfd_put_32 (input_bfd
, insn
, hit_data
);
7607 return bfd_reloc_ok
;
7610 return bfd_reloc_notsupported
;
7614 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7616 arm_add_to_rel (bfd
* abfd
,
7618 reloc_howto_type
* howto
,
7619 bfd_signed_vma increment
)
7621 bfd_signed_vma addend
;
7623 if (howto
->type
== R_ARM_THM_CALL
7624 || howto
->type
== R_ARM_THM_JUMP24
)
7626 int upper_insn
, lower_insn
;
7629 upper_insn
= bfd_get_16 (abfd
, address
);
7630 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
7631 upper
= upper_insn
& 0x7ff;
7632 lower
= lower_insn
& 0x7ff;
7634 addend
= (upper
<< 12) | (lower
<< 1);
7635 addend
+= increment
;
7638 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
7639 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
7641 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
7642 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
7648 contents
= bfd_get_32 (abfd
, address
);
7650 /* Get the (signed) value from the instruction. */
7651 addend
= contents
& howto
->src_mask
;
7652 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7654 bfd_signed_vma mask
;
7657 mask
&= ~ howto
->src_mask
;
7661 /* Add in the increment, (which is a byte value). */
7662 switch (howto
->type
)
7665 addend
+= increment
;
7672 addend
<<= howto
->size
;
7673 addend
+= increment
;
7675 /* Should we check for overflow here ? */
7677 /* Drop any undesired bits. */
7678 addend
>>= howto
->rightshift
;
7682 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
7684 bfd_put_32 (abfd
, contents
, address
);
7688 #define IS_ARM_TLS_RELOC(R_TYPE) \
7689 ((R_TYPE) == R_ARM_TLS_GD32 \
7690 || (R_TYPE) == R_ARM_TLS_LDO32 \
7691 || (R_TYPE) == R_ARM_TLS_LDM32 \
7692 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7693 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7694 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7695 || (R_TYPE) == R_ARM_TLS_LE32 \
7696 || (R_TYPE) == R_ARM_TLS_IE32)
7698 /* Relocate an ARM ELF section. */
7701 elf32_arm_relocate_section (bfd
* output_bfd
,
7702 struct bfd_link_info
* info
,
7704 asection
* input_section
,
7705 bfd_byte
* contents
,
7706 Elf_Internal_Rela
* relocs
,
7707 Elf_Internal_Sym
* local_syms
,
7708 asection
** local_sections
)
7710 Elf_Internal_Shdr
*symtab_hdr
;
7711 struct elf_link_hash_entry
**sym_hashes
;
7712 Elf_Internal_Rela
*rel
;
7713 Elf_Internal_Rela
*relend
;
7715 struct elf32_arm_link_hash_table
* globals
;
7717 globals
= elf32_arm_hash_table (info
);
7719 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
7720 sym_hashes
= elf_sym_hashes (input_bfd
);
7723 relend
= relocs
+ input_section
->reloc_count
;
7724 for (; rel
< relend
; rel
++)
7727 reloc_howto_type
* howto
;
7728 unsigned long r_symndx
;
7729 Elf_Internal_Sym
* sym
;
7731 struct elf_link_hash_entry
* h
;
7733 bfd_reloc_status_type r
;
7736 bfd_boolean unresolved_reloc
= FALSE
;
7737 char *error_message
= NULL
;
7739 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7740 r_type
= ELF32_R_TYPE (rel
->r_info
);
7741 r_type
= arm_real_reloc_type (globals
, r_type
);
7743 if ( r_type
== R_ARM_GNU_VTENTRY
7744 || r_type
== R_ARM_GNU_VTINHERIT
)
7747 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
7748 howto
= bfd_reloc
.howto
;
7754 if (r_symndx
< symtab_hdr
->sh_info
)
7756 sym
= local_syms
+ r_symndx
;
7757 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
7758 sec
= local_sections
[r_symndx
];
7759 if (globals
->use_rel
)
7761 relocation
= (sec
->output_section
->vma
7762 + sec
->output_offset
7764 if (!info
->relocatable
7765 && (sec
->flags
& SEC_MERGE
)
7766 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7769 bfd_vma addend
, value
;
7773 case R_ARM_MOVW_ABS_NC
:
7774 case R_ARM_MOVT_ABS
:
7775 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7776 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
7777 addend
= (addend
^ 0x8000) - 0x8000;
7780 case R_ARM_THM_MOVW_ABS_NC
:
7781 case R_ARM_THM_MOVT_ABS
:
7782 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
7784 value
|= bfd_get_16 (input_bfd
,
7785 contents
+ rel
->r_offset
+ 2);
7786 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
7787 | ((value
& 0x04000000) >> 15);
7788 addend
= (addend
^ 0x8000) - 0x8000;
7792 if (howto
->rightshift
7793 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
7795 (*_bfd_error_handler
)
7796 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7797 input_bfd
, input_section
,
7798 (long) rel
->r_offset
, howto
->name
);
7802 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7804 /* Get the (signed) value from the instruction. */
7805 addend
= value
& howto
->src_mask
;
7806 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7808 bfd_signed_vma mask
;
7811 mask
&= ~ howto
->src_mask
;
7819 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
7821 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
7823 /* Cases here must match those in the preceeding
7824 switch statement. */
7827 case R_ARM_MOVW_ABS_NC
:
7828 case R_ARM_MOVT_ABS
:
7829 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
7831 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
7834 case R_ARM_THM_MOVW_ABS_NC
:
7835 case R_ARM_THM_MOVT_ABS
:
7836 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
7837 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
7838 bfd_put_16 (input_bfd
, value
>> 16,
7839 contents
+ rel
->r_offset
);
7840 bfd_put_16 (input_bfd
, value
,
7841 contents
+ rel
->r_offset
+ 2);
7845 value
= (value
& ~ howto
->dst_mask
)
7846 | (addend
& howto
->dst_mask
);
7847 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
7853 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
7859 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
7860 r_symndx
, symtab_hdr
, sym_hashes
,
7862 unresolved_reloc
, warned
);
7867 if (sec
!= NULL
&& elf_discarded_section (sec
))
7869 /* For relocs against symbols from removed linkonce sections,
7870 or sections discarded by a linker script, we just want the
7871 section contents zeroed. Avoid any special processing. */
7872 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
7878 if (info
->relocatable
)
7880 /* This is a relocatable link. We don't have to change
7881 anything, unless the reloc is against a section symbol,
7882 in which case we have to adjust according to where the
7883 section symbol winds up in the output section. */
7884 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7886 if (globals
->use_rel
)
7887 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
7888 howto
, (bfd_signed_vma
) sec
->output_offset
);
7890 rel
->r_addend
+= sec
->output_offset
;
7896 name
= h
->root
.root
.string
;
7899 name
= (bfd_elf_string_from_elf_section
7900 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
7901 if (name
== NULL
|| *name
== '\0')
7902 name
= bfd_section_name (input_bfd
, sec
);
7906 && r_type
!= R_ARM_NONE
7908 || h
->root
.type
== bfd_link_hash_defined
7909 || h
->root
.type
== bfd_link_hash_defweak
)
7910 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
7912 (*_bfd_error_handler
)
7913 ((sym_type
== STT_TLS
7914 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7915 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7918 (long) rel
->r_offset
,
7923 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
7924 input_section
, contents
, rel
,
7925 relocation
, info
, sec
, name
,
7926 (h
? ELF_ST_TYPE (h
->type
) :
7927 ELF_ST_TYPE (sym
->st_info
)), h
,
7928 &unresolved_reloc
, &error_message
);
7930 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7931 because such sections are not SEC_ALLOC and thus ld.so will
7932 not process them. */
7933 if (unresolved_reloc
7934 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
7937 (*_bfd_error_handler
)
7938 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7941 (long) rel
->r_offset
,
7943 h
->root
.root
.string
);
7947 if (r
!= bfd_reloc_ok
)
7951 case bfd_reloc_overflow
:
7952 /* If the overflowing reloc was to an undefined symbol,
7953 we have already printed one error message and there
7954 is no point complaining again. */
7956 h
->root
.type
!= bfd_link_hash_undefined
)
7957 && (!((*info
->callbacks
->reloc_overflow
)
7958 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
7959 (bfd_vma
) 0, input_bfd
, input_section
,
7964 case bfd_reloc_undefined
:
7965 if (!((*info
->callbacks
->undefined_symbol
)
7966 (info
, name
, input_bfd
, input_section
,
7967 rel
->r_offset
, TRUE
)))
7971 case bfd_reloc_outofrange
:
7972 error_message
= _("out of range");
7975 case bfd_reloc_notsupported
:
7976 error_message
= _("unsupported relocation");
7979 case bfd_reloc_dangerous
:
7980 /* error_message should already be set. */
7984 error_message
= _("unknown error");
7988 BFD_ASSERT (error_message
!= NULL
);
7989 if (!((*info
->callbacks
->reloc_dangerous
)
7990 (info
, error_message
, input_bfd
, input_section
,
8001 /* Set the right machine number. */
8004 elf32_arm_object_p (bfd
*abfd
)
8008 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
8010 if (mach
!= bfd_mach_arm_unknown
)
8011 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
8013 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
8014 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
8017 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
8022 /* Function to keep ARM specific flags in the ELF header. */
8025 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
8027 if (elf_flags_init (abfd
)
8028 && elf_elfheader (abfd
)->e_flags
!= flags
)
8030 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
8032 if (flags
& EF_ARM_INTERWORK
)
8033 (*_bfd_error_handler
)
8034 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8038 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8044 elf_elfheader (abfd
)->e_flags
= flags
;
8045 elf_flags_init (abfd
) = TRUE
;
8051 /* Copy backend specific data from one object module to another. */
8054 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
8059 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
8062 in_flags
= elf_elfheader (ibfd
)->e_flags
;
8063 out_flags
= elf_elfheader (obfd
)->e_flags
;
8065 if (elf_flags_init (obfd
)
8066 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
8067 && in_flags
!= out_flags
)
8069 /* Cannot mix APCS26 and APCS32 code. */
8070 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
8073 /* Cannot mix float APCS and non-float APCS code. */
8074 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
8077 /* If the src and dest have different interworking flags
8078 then turn off the interworking bit. */
8079 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
8081 if (out_flags
& EF_ARM_INTERWORK
)
8083 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8086 in_flags
&= ~EF_ARM_INTERWORK
;
8089 /* Likewise for PIC, though don't warn for this case. */
8090 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
8091 in_flags
&= ~EF_ARM_PIC
;
8094 elf_elfheader (obfd
)->e_flags
= in_flags
;
8095 elf_flags_init (obfd
) = TRUE
;
8097 /* Also copy the EI_OSABI field. */
8098 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
8099 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
8101 /* Copy object attributes. */
8102 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
8107 /* Values for Tag_ABI_PCS_R9_use. */
8116 /* Values for Tag_ABI_PCS_RW_data. */
8119 AEABI_PCS_RW_data_absolute
,
8120 AEABI_PCS_RW_data_PCrel
,
8121 AEABI_PCS_RW_data_SBrel
,
8122 AEABI_PCS_RW_data_unused
8125 /* Values for Tag_ABI_enum_size. */
8131 AEABI_enum_forced_wide
8134 /* Determine whether an object attribute tag takes an integer, a
8138 elf32_arm_obj_attrs_arg_type (int tag
)
8140 if (tag
== Tag_compatibility
)
8142 else if (tag
== 4 || tag
== 5)
8147 return (tag
& 1) != 0 ? 2 : 1;
8150 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
8151 Returns -1 if no architecture could be read. */
8154 get_secondary_compatible_arch (bfd
*abfd
)
8156 obj_attribute
*attr
=
8157 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
8159 /* Note: the tag and its argument below are uleb128 values, though
8160 currently-defined values fit in one byte for each. */
8162 && attr
->s
[0] == Tag_CPU_arch
8163 && (attr
->s
[1] & 128) != 128
8167 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8171 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8172 The tag is removed if ARCH is -1. */
8175 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
8177 obj_attribute
*attr
=
8178 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
8186 /* Note: the tag and its argument below are uleb128 values, though
8187 currently-defined values fit in one byte for each. */
8189 attr
->s
= bfd_alloc (abfd
, 3);
8190 attr
->s
[0] = Tag_CPU_arch
;
8195 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8199 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
8200 int newtag
, int secondary_compat
)
8202 #define T(X) TAG_CPU_ARCH_##X
8203 int tagl
, tagh
, result
;
8206 T(V6T2
), /* PRE_V4. */
8210 T(V6T2
), /* V5TE. */
8211 T(V6T2
), /* V5TEJ. */
8218 T(V6K
), /* PRE_V4. */
8223 T(V6K
), /* V5TEJ. */
8225 T(V6KZ
), /* V6KZ. */
8231 T(V7
), /* PRE_V4. */
8250 T(V6K
), /* V5TEJ. */
8252 T(V6KZ
), /* V6KZ. */
8265 T(V6K
), /* V5TEJ. */
8267 T(V6KZ
), /* V6KZ. */
8271 T(V6S_M
), /* V6_M. */
8272 T(V6S_M
) /* V6S_M. */
8274 const int v4t_plus_v6_m
[] =
8280 T(V5TE
), /* V5TE. */
8281 T(V5TEJ
), /* V5TEJ. */
8283 T(V6KZ
), /* V6KZ. */
8284 T(V6T2
), /* V6T2. */
8287 T(V6_M
), /* V6_M. */
8288 T(V6S_M
), /* V6S_M. */
8289 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
8298 /* Pseudo-architecture. */
8302 /* Check we've not got a higher architecture than we know about. */
8304 if (oldtag
>= MAX_TAG_CPU_ARCH
|| newtag
>= MAX_TAG_CPU_ARCH
)
8306 _bfd_error_handler (_("ERROR: %B: Unknown CPU architecture"), ibfd
);
8310 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8312 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
8313 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
8314 oldtag
= T(V4T_PLUS_V6_M
);
8316 /* And override the new tag if we have a Tag_also_compatible_with on the
8319 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
8320 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
8321 newtag
= T(V4T_PLUS_V6_M
);
8323 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
8324 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
8326 /* Architectures before V6KZ add features monotonically. */
8327 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
8330 result
= comb
[tagh
- T(V6T2
)][tagl
];
8332 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8333 as the canonical version. */
8334 if (result
== T(V4T_PLUS_V6_M
))
8337 *secondary_compat_out
= T(V6_M
);
8340 *secondary_compat_out
= -1;
8344 _bfd_error_handler (_("ERROR: %B: Conflicting CPU architectures %d/%d"),
8345 ibfd
, oldtag
, newtag
);
8353 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8354 are conflicting attributes. */
8357 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
8359 obj_attribute
*in_attr
;
8360 obj_attribute
*out_attr
;
8361 obj_attribute_list
*in_list
;
8362 obj_attribute_list
*out_list
;
8363 obj_attribute_list
**out_listp
;
8364 /* Some tags have 0 = don't care, 1 = strong requirement,
8365 2 = weak requirement. */
8366 static const int order_021
[3] = {0, 2, 1};
8367 /* For use with Tag_VFP_arch. */
8368 static const int order_01243
[5] = {0, 1, 2, 4, 3};
8370 bfd_boolean result
= TRUE
;
8372 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
8374 /* This is the first object. Copy the attributes. */
8375 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
8377 /* Use the Tag_null value to indicate the attributes have been
8379 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
8384 in_attr
= elf_known_obj_attributes_proc (ibfd
);
8385 out_attr
= elf_known_obj_attributes_proc (obfd
);
8386 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8387 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
8389 /* Ignore mismatches if the object doesn't use floating point. */
8390 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
8391 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
8392 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
8395 (_("ERROR: %B uses VFP register arguments, %B does not"),
8401 for (i
= 4; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
8403 /* Merge this attribute with existing attributes. */
8406 case Tag_CPU_raw_name
:
8408 /* These are merged after Tag_CPU_arch. */
8411 case Tag_ABI_optimization_goals
:
8412 case Tag_ABI_FP_optimization_goals
:
8413 /* Use the first value seen. */
8418 int secondary_compat
= -1, secondary_compat_out
= -1;
8419 unsigned int saved_out_attr
= out_attr
[i
].i
;
8420 static const char *name_table
[] = {
8421 /* These aren't real CPU names, but we can't guess
8422 that from the architecture version alone. */
8438 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8439 secondary_compat
= get_secondary_compatible_arch (ibfd
);
8440 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
8441 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
8442 &secondary_compat_out
,
8445 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
8447 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8448 if (out_attr
[i
].i
== saved_out_attr
)
8449 ; /* Leave the names alone. */
8450 else if (out_attr
[i
].i
== in_attr
[i
].i
)
8452 /* The output architecture has been changed to match the
8453 input architecture. Use the input names. */
8454 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
8455 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
8457 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
8458 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
8463 out_attr
[Tag_CPU_name
].s
= NULL
;
8464 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
8467 /* If we still don't have a value for Tag_CPU_name,
8468 make one up now. Tag_CPU_raw_name remains blank. */
8469 if (out_attr
[Tag_CPU_name
].s
== NULL
8470 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
8471 out_attr
[Tag_CPU_name
].s
=
8472 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
8476 case Tag_ARM_ISA_use
:
8477 case Tag_THUMB_ISA_use
:
8479 case Tag_Advanced_SIMD_arch
:
8480 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
8481 case Tag_ABI_FP_rounding
:
8482 case Tag_ABI_FP_exceptions
:
8483 case Tag_ABI_FP_user_exceptions
:
8484 case Tag_ABI_FP_number_model
:
8485 case Tag_VFP_HP_extension
:
8486 case Tag_CPU_unaligned_access
:
8488 case Tag_Virtualization_use
:
8489 case Tag_MPextension_use
:
8490 /* Use the largest value specified. */
8491 if (in_attr
[i
].i
> out_attr
[i
].i
)
8492 out_attr
[i
].i
= in_attr
[i
].i
;
8495 case Tag_ABI_align8_preserved
:
8496 case Tag_ABI_PCS_RO_data
:
8497 /* Use the smallest value specified. */
8498 if (in_attr
[i
].i
< out_attr
[i
].i
)
8499 out_attr
[i
].i
= in_attr
[i
].i
;
8502 case Tag_ABI_align8_needed
:
8503 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
8504 && (in_attr
[Tag_ABI_align8_preserved
].i
== 0
8505 || out_attr
[Tag_ABI_align8_preserved
].i
== 0))
8507 /* This error message should be enabled once all non-conformant
8508 binaries in the toolchain have had the attributes set
8511 (_("ERROR: %B: 8-byte data alignment conflicts with %B"),
8516 case Tag_ABI_FP_denormal
:
8517 case Tag_ABI_PCS_GOT_use
:
8518 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
8519 value if greater than 2 (for future-proofing). */
8520 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
8521 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
8522 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
8523 out_attr
[i
].i
= in_attr
[i
].i
;
8527 case Tag_CPU_arch_profile
:
8528 if (out_attr
[i
].i
!= in_attr
[i
].i
)
8530 /* 0 will merge with anything.
8531 'A' and 'S' merge to 'A'.
8532 'R' and 'S' merge to 'R'.
8533 'M' and 'A|R|S' is an error. */
8534 if (out_attr
[i
].i
== 0
8535 || (out_attr
[i
].i
== 'S'
8536 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
8537 out_attr
[i
].i
= in_attr
[i
].i
;
8538 else if (in_attr
[i
].i
== 0
8539 || (in_attr
[i
].i
== 'S'
8540 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
8545 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8547 in_attr
[i
].i
? in_attr
[i
].i
: '0',
8548 out_attr
[i
].i
? out_attr
[i
].i
: '0');
8554 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
8555 largest value if greater than 4 (for future-proofing). */
8556 if ((in_attr
[i
].i
> 4 && in_attr
[i
].i
> out_attr
[i
].i
)
8557 || (in_attr
[i
].i
<= 4 && out_attr
[i
].i
<= 4
8558 && order_01243
[in_attr
[i
].i
] > order_01243
[out_attr
[i
].i
]))
8559 out_attr
[i
].i
= in_attr
[i
].i
;
8561 case Tag_PCS_config
:
8562 if (out_attr
[i
].i
== 0)
8563 out_attr
[i
].i
= in_attr
[i
].i
;
8564 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
8566 /* It's sometimes ok to mix different configs, so this is only
8569 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
8572 case Tag_ABI_PCS_R9_use
:
8573 if (in_attr
[i
].i
!= out_attr
[i
].i
8574 && out_attr
[i
].i
!= AEABI_R9_unused
8575 && in_attr
[i
].i
!= AEABI_R9_unused
)
8578 (_("ERROR: %B: Conflicting use of R9"), ibfd
);
8581 if (out_attr
[i
].i
== AEABI_R9_unused
)
8582 out_attr
[i
].i
= in_attr
[i
].i
;
8584 case Tag_ABI_PCS_RW_data
:
8585 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
8586 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
8587 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
8590 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8594 /* Use the smallest value specified. */
8595 if (in_attr
[i
].i
< out_attr
[i
].i
)
8596 out_attr
[i
].i
= in_attr
[i
].i
;
8598 case Tag_ABI_PCS_wchar_t
:
8599 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
8600 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
8603 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8604 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
8606 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
8607 out_attr
[i
].i
= in_attr
[i
].i
;
8609 case Tag_ABI_enum_size
:
8610 if (in_attr
[i
].i
!= AEABI_enum_unused
)
8612 if (out_attr
[i
].i
== AEABI_enum_unused
8613 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
8615 /* The existing object is compatible with anything.
8616 Use whatever requirements the new object has. */
8617 out_attr
[i
].i
= in_attr
[i
].i
;
8619 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
8620 && out_attr
[i
].i
!= in_attr
[i
].i
8621 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
8623 static const char *aeabi_enum_names
[] =
8624 { "", "variable-size", "32-bit", "" };
8625 const char *in_name
=
8626 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
8627 ? aeabi_enum_names
[in_attr
[i
].i
]
8629 const char *out_name
=
8630 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
8631 ? aeabi_enum_names
[out_attr
[i
].i
]
8634 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8635 ibfd
, in_name
, out_name
);
8639 case Tag_ABI_VFP_args
:
8642 case Tag_ABI_WMMX_args
:
8643 if (in_attr
[i
].i
!= out_attr
[i
].i
)
8646 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8651 case Tag_compatibility
:
8652 /* Merged in target-independent code. */
8654 case Tag_ABI_HardFP_use
:
8655 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
8656 if ((in_attr
[i
].i
== 1 && out_attr
[i
].i
== 2)
8657 || (in_attr
[i
].i
== 2 && out_attr
[i
].i
== 1))
8659 else if (in_attr
[i
].i
> out_attr
[i
].i
)
8660 out_attr
[i
].i
= in_attr
[i
].i
;
8662 case Tag_ABI_FP_16bit_format
:
8663 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
8665 if (in_attr
[i
].i
!= out_attr
[i
].i
)
8668 (_("ERROR: fp16 format mismatch between %B and %B"),
8673 if (in_attr
[i
].i
!= 0)
8674 out_attr
[i
].i
= in_attr
[i
].i
;
8677 case Tag_nodefaults
:
8678 /* This tag is set if it exists, but the value is unused.
8679 Unfortunately, we don't record whether each attribute is zero
8680 initialized, or read from the file, so the information has been
8681 lost. In any case, we don't write attributes with zero values.
8684 case Tag_also_compatible_with
:
8685 /* Already done in Tag_CPU_arch. */
8687 case Tag_conformance
:
8688 /* Keep the attribute if it matches. Throw it away otherwise.
8689 No attribute means no claim to conform. */
8690 if (!in_attr
[i
].s
|| !out_attr
[i
].s
8691 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
8692 out_attr
[i
].s
= NULL
;
8697 bfd
*err_bfd
= NULL
;
8699 /* The "known_obj_attributes" table does contain some undefined
8700 attributes. Ensure that there are unused. */
8701 if (out_attr
[i
].i
!= 0 || out_attr
[i
].s
!= NULL
)
8703 else if (in_attr
[i
].i
!= 0 || in_attr
[i
].s
!= NULL
)
8706 if (err_bfd
!= NULL
)
8708 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8712 (_("%B: Unknown mandatory EABI object attribute %d"),
8714 bfd_set_error (bfd_error_bad_value
);
8720 (_("Warning: %B: Unknown EABI object attribute %d"),
8725 /* Only pass on attributes that match in both inputs. */
8726 if (in_attr
[i
].i
!= out_attr
[i
].i
8727 || in_attr
[i
].s
!= out_attr
[i
].s
8728 || (in_attr
[i
].s
!= NULL
&& out_attr
[i
].s
!= NULL
8729 && strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0))
8732 out_attr
[i
].s
= NULL
;
8737 /* If out_attr was copied from in_attr then it won't have a type yet. */
8738 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
8739 out_attr
[i
].type
= in_attr
[i
].type
;
8742 /* Merge Tag_compatibility attributes and any common GNU ones. */
8743 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
8745 /* Check for any attributes not known on ARM. */
8746 in_list
= elf_other_obj_attributes_proc (ibfd
);
8747 out_listp
= &elf_other_obj_attributes_proc (obfd
);
8748 out_list
= *out_listp
;
8750 for (; in_list
|| out_list
; )
8752 bfd
*err_bfd
= NULL
;
8755 /* The tags for each list are in numerical order. */
8756 /* If the tags are equal, then merge. */
8757 if (out_list
&& (!in_list
|| in_list
->tag
> out_list
->tag
))
8759 /* This attribute only exists in obfd. We can't merge, and we don't
8760 know what the tag means, so delete it. */
8762 err_tag
= out_list
->tag
;
8763 *out_listp
= out_list
->next
;
8764 out_list
= *out_listp
;
8766 else if (in_list
&& (!out_list
|| in_list
->tag
< out_list
->tag
))
8768 /* This attribute only exists in ibfd. We can't merge, and we don't
8769 know what the tag means, so ignore it. */
8771 err_tag
= in_list
->tag
;
8772 in_list
= in_list
->next
;
8774 else /* The tags are equal. */
8776 /* As present, all attributes in the list are unknown, and
8777 therefore can't be merged meaningfully. */
8779 err_tag
= out_list
->tag
;
8781 /* Only pass on attributes that match in both inputs. */
8782 if (in_list
->attr
.i
!= out_list
->attr
.i
8783 || in_list
->attr
.s
!= out_list
->attr
.s
8784 || (in_list
->attr
.s
&& out_list
->attr
.s
8785 && strcmp (in_list
->attr
.s
, out_list
->attr
.s
) != 0))
8787 /* No match. Delete the attribute. */
8788 *out_listp
= out_list
->next
;
8789 out_list
= *out_listp
;
8793 /* Matched. Keep the attribute and move to the next. */
8794 out_list
= out_list
->next
;
8795 in_list
= in_list
->next
;
8801 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8802 if ((err_tag
& 127) < 64)
8805 (_("%B: Unknown mandatory EABI object attribute %d"),
8807 bfd_set_error (bfd_error_bad_value
);
8813 (_("Warning: %B: Unknown EABI object attribute %d"),
8822 /* Return TRUE if the two EABI versions are incompatible. */
8825 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
8827 /* v4 and v5 are the same spec before and after it was released,
8828 so allow mixing them. */
8829 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
8830 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
8833 return (iver
== over
);
8836 /* Merge backend specific data from an object file to the output
8837 object file when linking. */
8840 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
8844 bfd_boolean flags_compatible
= TRUE
;
8847 /* Check if we have the same endianess. */
8848 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
8851 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
8854 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
8857 /* The input BFD must have had its flags initialised. */
8858 /* The following seems bogus to me -- The flags are initialized in
8859 the assembler but I don't think an elf_flags_init field is
8860 written into the object. */
8861 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8863 in_flags
= elf_elfheader (ibfd
)->e_flags
;
8864 out_flags
= elf_elfheader (obfd
)->e_flags
;
8866 /* In theory there is no reason why we couldn't handle this. However
8867 in practice it isn't even close to working and there is no real
8868 reason to want it. */
8869 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
8870 && !(ibfd
->flags
& DYNAMIC
)
8871 && (in_flags
& EF_ARM_BE8
))
8873 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8878 if (!elf_flags_init (obfd
))
8880 /* If the input is the default architecture and had the default
8881 flags then do not bother setting the flags for the output
8882 architecture, instead allow future merges to do this. If no
8883 future merges ever set these flags then they will retain their
8884 uninitialised values, which surprise surprise, correspond
8885 to the default values. */
8886 if (bfd_get_arch_info (ibfd
)->the_default
8887 && elf_elfheader (ibfd
)->e_flags
== 0)
8890 elf_flags_init (obfd
) = TRUE
;
8891 elf_elfheader (obfd
)->e_flags
= in_flags
;
8893 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
8894 && bfd_get_arch_info (obfd
)->the_default
)
8895 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
8900 /* Determine what should happen if the input ARM architecture
8901 does not match the output ARM architecture. */
8902 if (! bfd_arm_merge_machines (ibfd
, obfd
))
8905 /* Identical flags must be compatible. */
8906 if (in_flags
== out_flags
)
8909 /* Check to see if the input BFD actually contains any sections. If
8910 not, its flags may not have been initialised either, but it
8911 cannot actually cause any incompatiblity. Do not short-circuit
8912 dynamic objects; their section list may be emptied by
8913 elf_link_add_object_symbols.
8915 Also check to see if there are no code sections in the input.
8916 In this case there is no need to check for code specific flags.
8917 XXX - do we need to worry about floating-point format compatability
8918 in data sections ? */
8919 if (!(ibfd
->flags
& DYNAMIC
))
8921 bfd_boolean null_input_bfd
= TRUE
;
8922 bfd_boolean only_data_sections
= TRUE
;
8924 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8926 /* Ignore synthetic glue sections. */
8927 if (strcmp (sec
->name
, ".glue_7")
8928 && strcmp (sec
->name
, ".glue_7t"))
8930 if ((bfd_get_section_flags (ibfd
, sec
)
8931 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
8932 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
8933 only_data_sections
= FALSE
;
8935 null_input_bfd
= FALSE
;
8940 if (null_input_bfd
|| only_data_sections
)
8944 /* Complain about various flag mismatches. */
8945 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
8946 EF_ARM_EABI_VERSION (out_flags
)))
8949 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8951 (in_flags
& EF_ARM_EABIMASK
) >> 24,
8952 (out_flags
& EF_ARM_EABIMASK
) >> 24);
8956 /* Not sure what needs to be checked for EABI versions >= 1. */
8957 /* VxWorks libraries do not use these flags. */
8958 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
8959 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
8960 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
8962 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
8965 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8967 in_flags
& EF_ARM_APCS_26
? 26 : 32,
8968 out_flags
& EF_ARM_APCS_26
? 26 : 32);
8969 flags_compatible
= FALSE
;
8972 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
8974 if (in_flags
& EF_ARM_APCS_FLOAT
)
8976 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8980 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8983 flags_compatible
= FALSE
;
8986 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
8988 if (in_flags
& EF_ARM_VFP_FLOAT
)
8990 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8994 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8997 flags_compatible
= FALSE
;
9000 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
9002 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
9004 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
9008 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
9011 flags_compatible
= FALSE
;
9014 #ifdef EF_ARM_SOFT_FLOAT
9015 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
9017 /* We can allow interworking between code that is VFP format
9018 layout, and uses either soft float or integer regs for
9019 passing floating point arguments and results. We already
9020 know that the APCS_FLOAT flags match; similarly for VFP
9022 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
9023 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
9025 if (in_flags
& EF_ARM_SOFT_FLOAT
)
9027 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
9031 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
9034 flags_compatible
= FALSE
;
9039 /* Interworking mismatch is only a warning. */
9040 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
9042 if (in_flags
& EF_ARM_INTERWORK
)
9045 (_("Warning: %B supports interworking, whereas %B does not"),
9051 (_("Warning: %B does not support interworking, whereas %B does"),
9057 return flags_compatible
;
9060 /* Display the flags field. */
9063 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
9065 FILE * file
= (FILE *) ptr
;
9066 unsigned long flags
;
9068 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
9070 /* Print normal ELF private data. */
9071 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
9073 flags
= elf_elfheader (abfd
)->e_flags
;
9074 /* Ignore init flag - it may not be set, despite the flags field
9075 containing valid data. */
9077 /* xgettext:c-format */
9078 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
9080 switch (EF_ARM_EABI_VERSION (flags
))
9082 case EF_ARM_EABI_UNKNOWN
:
9083 /* The following flag bits are GNU extensions and not part of the
9084 official ARM ELF extended ABI. Hence they are only decoded if
9085 the EABI version is not set. */
9086 if (flags
& EF_ARM_INTERWORK
)
9087 fprintf (file
, _(" [interworking enabled]"));
9089 if (flags
& EF_ARM_APCS_26
)
9090 fprintf (file
, " [APCS-26]");
9092 fprintf (file
, " [APCS-32]");
9094 if (flags
& EF_ARM_VFP_FLOAT
)
9095 fprintf (file
, _(" [VFP float format]"));
9096 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
9097 fprintf (file
, _(" [Maverick float format]"));
9099 fprintf (file
, _(" [FPA float format]"));
9101 if (flags
& EF_ARM_APCS_FLOAT
)
9102 fprintf (file
, _(" [floats passed in float registers]"));
9104 if (flags
& EF_ARM_PIC
)
9105 fprintf (file
, _(" [position independent]"));
9107 if (flags
& EF_ARM_NEW_ABI
)
9108 fprintf (file
, _(" [new ABI]"));
9110 if (flags
& EF_ARM_OLD_ABI
)
9111 fprintf (file
, _(" [old ABI]"));
9113 if (flags
& EF_ARM_SOFT_FLOAT
)
9114 fprintf (file
, _(" [software FP]"));
9116 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
9117 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
9118 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
9119 | EF_ARM_MAVERICK_FLOAT
);
9122 case EF_ARM_EABI_VER1
:
9123 fprintf (file
, _(" [Version1 EABI]"));
9125 if (flags
& EF_ARM_SYMSARESORTED
)
9126 fprintf (file
, _(" [sorted symbol table]"));
9128 fprintf (file
, _(" [unsorted symbol table]"));
9130 flags
&= ~ EF_ARM_SYMSARESORTED
;
9133 case EF_ARM_EABI_VER2
:
9134 fprintf (file
, _(" [Version2 EABI]"));
9136 if (flags
& EF_ARM_SYMSARESORTED
)
9137 fprintf (file
, _(" [sorted symbol table]"));
9139 fprintf (file
, _(" [unsorted symbol table]"));
9141 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
9142 fprintf (file
, _(" [dynamic symbols use segment index]"));
9144 if (flags
& EF_ARM_MAPSYMSFIRST
)
9145 fprintf (file
, _(" [mapping symbols precede others]"));
9147 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
9148 | EF_ARM_MAPSYMSFIRST
);
9151 case EF_ARM_EABI_VER3
:
9152 fprintf (file
, _(" [Version3 EABI]"));
9155 case EF_ARM_EABI_VER4
:
9156 fprintf (file
, _(" [Version4 EABI]"));
9159 case EF_ARM_EABI_VER5
:
9160 fprintf (file
, _(" [Version5 EABI]"));
9162 if (flags
& EF_ARM_BE8
)
9163 fprintf (file
, _(" [BE8]"));
9165 if (flags
& EF_ARM_LE8
)
9166 fprintf (file
, _(" [LE8]"));
9168 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
9172 fprintf (file
, _(" <EABI version unrecognised>"));
9176 flags
&= ~ EF_ARM_EABIMASK
;
9178 if (flags
& EF_ARM_RELEXEC
)
9179 fprintf (file
, _(" [relocatable executable]"));
9181 if (flags
& EF_ARM_HASENTRY
)
9182 fprintf (file
, _(" [has entry point]"));
9184 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
9187 fprintf (file
, _("<Unrecognised flag bits set>"));
9195 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
9197 switch (ELF_ST_TYPE (elf_sym
->st_info
))
9200 return ELF_ST_TYPE (elf_sym
->st_info
);
9203 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9204 This allows us to distinguish between data used by Thumb instructions
9205 and non-data (which is probably code) inside Thumb regions of an
9207 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
9208 return ELF_ST_TYPE (elf_sym
->st_info
);
9219 elf32_arm_gc_mark_hook (asection
*sec
,
9220 struct bfd_link_info
*info
,
9221 Elf_Internal_Rela
*rel
,
9222 struct elf_link_hash_entry
*h
,
9223 Elf_Internal_Sym
*sym
)
9226 switch (ELF32_R_TYPE (rel
->r_info
))
9228 case R_ARM_GNU_VTINHERIT
:
9229 case R_ARM_GNU_VTENTRY
:
9233 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
9236 /* Update the got entry reference counts for the section being removed. */
9239 elf32_arm_gc_sweep_hook (bfd
* abfd
,
9240 struct bfd_link_info
* info
,
9242 const Elf_Internal_Rela
* relocs
)
9244 Elf_Internal_Shdr
*symtab_hdr
;
9245 struct elf_link_hash_entry
**sym_hashes
;
9246 bfd_signed_vma
*local_got_refcounts
;
9247 const Elf_Internal_Rela
*rel
, *relend
;
9248 struct elf32_arm_link_hash_table
* globals
;
9250 if (info
->relocatable
)
9253 globals
= elf32_arm_hash_table (info
);
9255 elf_section_data (sec
)->local_dynrel
= NULL
;
9257 symtab_hdr
= & elf_symtab_hdr (abfd
);
9258 sym_hashes
= elf_sym_hashes (abfd
);
9259 local_got_refcounts
= elf_local_got_refcounts (abfd
);
9261 check_use_blx (globals
);
9263 relend
= relocs
+ sec
->reloc_count
;
9264 for (rel
= relocs
; rel
< relend
; rel
++)
9266 unsigned long r_symndx
;
9267 struct elf_link_hash_entry
*h
= NULL
;
9270 r_symndx
= ELF32_R_SYM (rel
->r_info
);
9271 if (r_symndx
>= symtab_hdr
->sh_info
)
9273 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
9274 while (h
->root
.type
== bfd_link_hash_indirect
9275 || h
->root
.type
== bfd_link_hash_warning
)
9276 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9279 r_type
= ELF32_R_TYPE (rel
->r_info
);
9280 r_type
= arm_real_reloc_type (globals
, r_type
);
9284 case R_ARM_GOT_PREL
:
9285 case R_ARM_TLS_GD32
:
9286 case R_ARM_TLS_IE32
:
9289 if (h
->got
.refcount
> 0)
9290 h
->got
.refcount
-= 1;
9292 else if (local_got_refcounts
!= NULL
)
9294 if (local_got_refcounts
[r_symndx
] > 0)
9295 local_got_refcounts
[r_symndx
] -= 1;
9299 case R_ARM_TLS_LDM32
:
9300 elf32_arm_hash_table (info
)->tls_ldm_got
.refcount
-= 1;
9304 case R_ARM_ABS32_NOI
:
9306 case R_ARM_REL32_NOI
:
9312 case R_ARM_THM_CALL
:
9313 case R_ARM_THM_JUMP24
:
9314 case R_ARM_THM_JUMP19
:
9315 case R_ARM_MOVW_ABS_NC
:
9316 case R_ARM_MOVT_ABS
:
9317 case R_ARM_MOVW_PREL_NC
:
9318 case R_ARM_MOVT_PREL
:
9319 case R_ARM_THM_MOVW_ABS_NC
:
9320 case R_ARM_THM_MOVT_ABS
:
9321 case R_ARM_THM_MOVW_PREL_NC
:
9322 case R_ARM_THM_MOVT_PREL
:
9323 /* Should the interworking branches be here also? */
9327 struct elf32_arm_link_hash_entry
*eh
;
9328 struct elf32_arm_relocs_copied
**pp
;
9329 struct elf32_arm_relocs_copied
*p
;
9331 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9333 if (h
->plt
.refcount
> 0)
9335 h
->plt
.refcount
-= 1;
9336 if (r_type
== R_ARM_THM_CALL
)
9337 eh
->plt_maybe_thumb_refcount
--;
9339 if (r_type
== R_ARM_THM_JUMP24
9340 || r_type
== R_ARM_THM_JUMP19
)
9341 eh
->plt_thumb_refcount
--;
9344 if (r_type
== R_ARM_ABS32
9345 || r_type
== R_ARM_REL32
9346 || r_type
== R_ARM_ABS32_NOI
9347 || r_type
== R_ARM_REL32_NOI
)
9349 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
;
9351 if (p
->section
== sec
)
9354 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32
9355 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32_NOI
)
9373 /* Look through the relocs for a section during the first phase. */
9376 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
9377 asection
*sec
, const Elf_Internal_Rela
*relocs
)
9379 Elf_Internal_Shdr
*symtab_hdr
;
9380 struct elf_link_hash_entry
**sym_hashes
;
9381 const Elf_Internal_Rela
*rel
;
9382 const Elf_Internal_Rela
*rel_end
;
9385 bfd_vma
*local_got_offsets
;
9386 struct elf32_arm_link_hash_table
*htab
;
9387 bfd_boolean needs_plt
;
9389 if (info
->relocatable
)
9392 BFD_ASSERT (is_arm_elf (abfd
));
9394 htab
= elf32_arm_hash_table (info
);
9397 /* Create dynamic sections for relocatable executables so that we can
9398 copy relocations. */
9399 if (htab
->root
.is_relocatable_executable
9400 && ! htab
->root
.dynamic_sections_created
)
9402 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
9406 dynobj
= elf_hash_table (info
)->dynobj
;
9407 local_got_offsets
= elf_local_got_offsets (abfd
);
9409 symtab_hdr
= & elf_symtab_hdr (abfd
);
9410 sym_hashes
= elf_sym_hashes (abfd
);
9412 rel_end
= relocs
+ sec
->reloc_count
;
9413 for (rel
= relocs
; rel
< rel_end
; rel
++)
9415 struct elf_link_hash_entry
*h
;
9416 struct elf32_arm_link_hash_entry
*eh
;
9417 unsigned long r_symndx
;
9420 r_symndx
= ELF32_R_SYM (rel
->r_info
);
9421 r_type
= ELF32_R_TYPE (rel
->r_info
);
9422 r_type
= arm_real_reloc_type (htab
, r_type
);
9424 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
9426 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
9431 if (r_symndx
< symtab_hdr
->sh_info
)
9435 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
9436 while (h
->root
.type
== bfd_link_hash_indirect
9437 || h
->root
.type
== bfd_link_hash_warning
)
9438 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9441 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9446 case R_ARM_GOT_PREL
:
9447 case R_ARM_TLS_GD32
:
9448 case R_ARM_TLS_IE32
:
9449 /* This symbol requires a global offset table entry. */
9451 int tls_type
, old_tls_type
;
9455 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
9456 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
9457 default: tls_type
= GOT_NORMAL
; break;
9463 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
9467 bfd_signed_vma
*local_got_refcounts
;
9469 /* This is a global offset table entry for a local symbol. */
9470 local_got_refcounts
= elf_local_got_refcounts (abfd
);
9471 if (local_got_refcounts
== NULL
)
9475 size
= symtab_hdr
->sh_info
;
9476 size
*= (sizeof (bfd_signed_vma
) + sizeof (char));
9477 local_got_refcounts
= bfd_zalloc (abfd
, size
);
9478 if (local_got_refcounts
== NULL
)
9480 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
9481 elf32_arm_local_got_tls_type (abfd
)
9482 = (char *) (local_got_refcounts
+ symtab_hdr
->sh_info
);
9484 local_got_refcounts
[r_symndx
] += 1;
9485 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
9488 /* We will already have issued an error message if there is a
9489 TLS / non-TLS mismatch, based on the symbol type. We don't
9490 support any linker relaxations. So just combine any TLS
9492 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
9493 && tls_type
!= GOT_NORMAL
)
9494 tls_type
|= old_tls_type
;
9496 if (old_tls_type
!= tls_type
)
9499 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
9501 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
9506 case R_ARM_TLS_LDM32
:
9507 if (r_type
== R_ARM_TLS_LDM32
)
9508 htab
->tls_ldm_got
.refcount
++;
9511 case R_ARM_GOTOFF32
:
9513 if (htab
->sgot
== NULL
)
9515 if (htab
->root
.dynobj
== NULL
)
9516 htab
->root
.dynobj
= abfd
;
9517 if (!create_got_section (htab
->root
.dynobj
, info
))
9523 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9524 ldr __GOTT_INDEX__ offsets. */
9525 if (!htab
->vxworks_p
)
9534 case R_ARM_THM_CALL
:
9535 case R_ARM_THM_JUMP24
:
9536 case R_ARM_THM_JUMP19
:
9541 case R_ARM_ABS32_NOI
:
9543 case R_ARM_REL32_NOI
:
9544 case R_ARM_MOVW_ABS_NC
:
9545 case R_ARM_MOVT_ABS
:
9546 case R_ARM_MOVW_PREL_NC
:
9547 case R_ARM_MOVT_PREL
:
9548 case R_ARM_THM_MOVW_ABS_NC
:
9549 case R_ARM_THM_MOVT_ABS
:
9550 case R_ARM_THM_MOVW_PREL_NC
:
9551 case R_ARM_THM_MOVT_PREL
:
9555 /* Should the interworking branches be listed here? */
9558 /* If this reloc is in a read-only section, we might
9559 need a copy reloc. We can't check reliably at this
9560 stage whether the section is read-only, as input
9561 sections have not yet been mapped to output sections.
9562 Tentatively set the flag for now, and correct in
9563 adjust_dynamic_symbol. */
9567 /* We may need a .plt entry if the function this reloc
9568 refers to is in a different object. We can't tell for
9569 sure yet, because something later might force the
9574 /* If we create a PLT entry, this relocation will reference
9575 it, even if it's an ABS32 relocation. */
9576 h
->plt
.refcount
+= 1;
9578 /* It's too early to use htab->use_blx here, so we have to
9579 record possible blx references separately from
9580 relocs that definitely need a thumb stub. */
9582 if (r_type
== R_ARM_THM_CALL
)
9583 eh
->plt_maybe_thumb_refcount
+= 1;
9585 if (r_type
== R_ARM_THM_JUMP24
9586 || r_type
== R_ARM_THM_JUMP19
)
9587 eh
->plt_thumb_refcount
+= 1;
9590 /* If we are creating a shared library or relocatable executable,
9591 and this is a reloc against a global symbol, or a non PC
9592 relative reloc against a local symbol, then we need to copy
9593 the reloc into the shared library. However, if we are linking
9594 with -Bsymbolic, we do not need to copy a reloc against a
9595 global symbol which is defined in an object we are
9596 including in the link (i.e., DEF_REGULAR is set). At
9597 this point we have not seen all the input files, so it is
9598 possible that DEF_REGULAR is not set now but will be set
9599 later (it is never cleared). We account for that
9600 possibility below by storing information in the
9601 relocs_copied field of the hash table entry. */
9602 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
9603 && (sec
->flags
& SEC_ALLOC
) != 0
9604 && ((r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
)
9605 || (h
!= NULL
&& ! h
->needs_plt
9606 && (! info
->symbolic
|| ! h
->def_regular
))))
9608 struct elf32_arm_relocs_copied
*p
, **head
;
9610 /* When creating a shared object, we must copy these
9611 reloc types into the output file. We create a reloc
9612 section in dynobj and make room for this reloc. */
9615 sreloc
= _bfd_elf_make_dynamic_reloc_section
9616 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
9621 /* BPABI objects never have dynamic relocations mapped. */
9622 if (! htab
->symbian_p
)
9626 flags
= bfd_get_section_flags (dynobj
, sreloc
);
9627 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
9628 bfd_set_section_flags (dynobj
, sreloc
, flags
);
9632 /* If this is a global symbol, we count the number of
9633 relocations we need for this symbol. */
9636 head
= &((struct elf32_arm_link_hash_entry
*) h
)->relocs_copied
;
9640 /* Track dynamic relocs needed for local syms too.
9641 We really need local syms available to do this
9647 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
9652 vpp
= &elf_section_data (s
)->local_dynrel
;
9653 head
= (struct elf32_arm_relocs_copied
**) vpp
;
9657 if (p
== NULL
|| p
->section
!= sec
)
9659 bfd_size_type amt
= sizeof *p
;
9661 p
= bfd_alloc (htab
->root
.dynobj
, amt
);
9671 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
9677 /* This relocation describes the C++ object vtable hierarchy.
9678 Reconstruct it for later use during GC. */
9679 case R_ARM_GNU_VTINHERIT
:
9680 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
9684 /* This relocation describes which C++ vtable entries are actually
9685 used. Record for later use during GC. */
9686 case R_ARM_GNU_VTENTRY
:
9687 BFD_ASSERT (h
!= NULL
);
9689 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
9698 /* Unwinding tables are not referenced directly. This pass marks them as
9699 required if the corresponding code section is marked. */
9702 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
9703 elf_gc_mark_hook_fn gc_mark_hook
)
9706 Elf_Internal_Shdr
**elf_shdrp
;
9709 /* Marking EH data may cause additional code sections to be marked,
9710 requiring multiple passes. */
9715 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
9719 if (! is_arm_elf (sub
))
9722 elf_shdrp
= elf_elfsections (sub
);
9723 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
9725 Elf_Internal_Shdr
*hdr
;
9727 hdr
= &elf_section_data (o
)->this_hdr
;
9728 if (hdr
->sh_type
== SHT_ARM_EXIDX
9730 && hdr
->sh_link
< elf_numsections (sub
)
9732 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
9735 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
9745 /* Treat mapping symbols as special target symbols. */
9748 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
9750 return bfd_is_arm_special_symbol_name (sym
->name
,
9751 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
9754 /* This is a copy of elf_find_function() from elf.c except that
9755 ARM mapping symbols are ignored when looking for function names
9756 and STT_ARM_TFUNC is considered to a function type. */
9759 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
9763 const char ** filename_ptr
,
9764 const char ** functionname_ptr
)
9766 const char * filename
= NULL
;
9767 asymbol
* func
= NULL
;
9768 bfd_vma low_func
= 0;
9771 for (p
= symbols
; *p
!= NULL
; p
++)
9775 q
= (elf_symbol_type
*) *p
;
9777 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
9782 filename
= bfd_asymbol_name (&q
->symbol
);
9787 /* Skip mapping symbols. */
9788 if ((q
->symbol
.flags
& BSF_LOCAL
)
9789 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
9790 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
9793 if (bfd_get_section (&q
->symbol
) == section
9794 && q
->symbol
.value
>= low_func
9795 && q
->symbol
.value
<= offset
)
9797 func
= (asymbol
*) q
;
9798 low_func
= q
->symbol
.value
;
9808 *filename_ptr
= filename
;
9809 if (functionname_ptr
)
9810 *functionname_ptr
= bfd_asymbol_name (func
);
9816 /* Find the nearest line to a particular section and offset, for error
9817 reporting. This code is a duplicate of the code in elf.c, except
9818 that it uses arm_elf_find_function. */
9821 elf32_arm_find_nearest_line (bfd
* abfd
,
9825 const char ** filename_ptr
,
9826 const char ** functionname_ptr
,
9827 unsigned int * line_ptr
)
9829 bfd_boolean found
= FALSE
;
9831 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9833 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
9834 filename_ptr
, functionname_ptr
,
9836 & elf_tdata (abfd
)->dwarf2_find_line_info
))
9838 if (!*functionname_ptr
)
9839 arm_elf_find_function (abfd
, section
, symbols
, offset
,
9840 *filename_ptr
? NULL
: filename_ptr
,
9846 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
9847 & found
, filename_ptr
,
9848 functionname_ptr
, line_ptr
,
9849 & elf_tdata (abfd
)->line_info
))
9852 if (found
&& (*functionname_ptr
|| *line_ptr
))
9855 if (symbols
== NULL
)
9858 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
9859 filename_ptr
, functionname_ptr
))
9867 elf32_arm_find_inliner_info (bfd
* abfd
,
9868 const char ** filename_ptr
,
9869 const char ** functionname_ptr
,
9870 unsigned int * line_ptr
)
9873 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
9874 functionname_ptr
, line_ptr
,
9875 & elf_tdata (abfd
)->dwarf2_find_line_info
);
9879 /* Adjust a symbol defined by a dynamic object and referenced by a
9880 regular object. The current definition is in some section of the
9881 dynamic object, but we're not including those sections. We have to
9882 change the definition to something the rest of the link can
9886 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
9887 struct elf_link_hash_entry
* h
)
9891 struct elf32_arm_link_hash_entry
* eh
;
9892 struct elf32_arm_link_hash_table
*globals
;
9894 globals
= elf32_arm_hash_table (info
);
9895 dynobj
= elf_hash_table (info
)->dynobj
;
9897 /* Make sure we know what is going on here. */
9898 BFD_ASSERT (dynobj
!= NULL
9900 || h
->u
.weakdef
!= NULL
9903 && !h
->def_regular
)));
9905 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9907 /* If this is a function, put it in the procedure linkage table. We
9908 will fill in the contents of the procedure linkage table later,
9909 when we know the address of the .got section. */
9910 if (h
->type
== STT_FUNC
|| h
->type
== STT_ARM_TFUNC
9913 if (h
->plt
.refcount
<= 0
9914 || SYMBOL_CALLS_LOCAL (info
, h
)
9915 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
9916 && h
->root
.type
== bfd_link_hash_undefweak
))
9918 /* This case can occur if we saw a PLT32 reloc in an input
9919 file, but the symbol was never referred to by a dynamic
9920 object, or if all references were garbage collected. In
9921 such a case, we don't actually need to build a procedure
9922 linkage table, and we can just do a PC24 reloc instead. */
9923 h
->plt
.offset
= (bfd_vma
) -1;
9924 eh
->plt_thumb_refcount
= 0;
9925 eh
->plt_maybe_thumb_refcount
= 0;
9933 /* It's possible that we incorrectly decided a .plt reloc was
9934 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9935 in check_relocs. We can't decide accurately between function
9936 and non-function syms in check-relocs; Objects loaded later in
9937 the link may change h->type. So fix it now. */
9938 h
->plt
.offset
= (bfd_vma
) -1;
9939 eh
->plt_thumb_refcount
= 0;
9940 eh
->plt_maybe_thumb_refcount
= 0;
9943 /* If this is a weak symbol, and there is a real definition, the
9944 processor independent code will have arranged for us to see the
9945 real definition first, and we can just use the same value. */
9946 if (h
->u
.weakdef
!= NULL
)
9948 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
9949 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
9950 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
9951 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
9955 /* If there are no non-GOT references, we do not need a copy
9957 if (!h
->non_got_ref
)
9960 /* This is a reference to a symbol defined by a dynamic object which
9961 is not a function. */
9963 /* If we are creating a shared library, we must presume that the
9964 only references to the symbol are via the global offset table.
9965 For such cases we need not do anything here; the relocations will
9966 be handled correctly by relocate_section. Relocatable executables
9967 can reference data in shared objects directly, so we don't need to
9968 do anything here. */
9969 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
9974 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
9975 h
->root
.root
.string
);
9979 /* We must allocate the symbol in our .dynbss section, which will
9980 become part of the .bss section of the executable. There will be
9981 an entry for this symbol in the .dynsym section. The dynamic
9982 object will contain position independent code, so all references
9983 from the dynamic object to this symbol will go through the global
9984 offset table. The dynamic linker will use the .dynsym entry to
9985 determine the address it must put in the global offset table, so
9986 both the dynamic object and the regular object will refer to the
9987 same memory location for the variable. */
9988 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
9989 BFD_ASSERT (s
!= NULL
);
9991 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9992 copy the initial value out of the dynamic object and into the
9993 runtime process image. We need to remember the offset into the
9994 .rel(a).bss section we are going to use. */
9995 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
9999 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
10000 BFD_ASSERT (srel
!= NULL
);
10001 srel
->size
+= RELOC_SIZE (globals
);
10005 return _bfd_elf_adjust_dynamic_copy (h
, s
);
10008 /* Allocate space in .plt, .got and associated reloc sections for
10012 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
10014 struct bfd_link_info
*info
;
10015 struct elf32_arm_link_hash_table
*htab
;
10016 struct elf32_arm_link_hash_entry
*eh
;
10017 struct elf32_arm_relocs_copied
*p
;
10018 bfd_signed_vma thumb_refs
;
10020 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10022 if (h
->root
.type
== bfd_link_hash_indirect
)
10025 if (h
->root
.type
== bfd_link_hash_warning
)
10026 /* When warning symbols are created, they **replace** the "real"
10027 entry in the hash table, thus we never get to see the real
10028 symbol in a hash traversal. So look at it now. */
10029 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10031 info
= (struct bfd_link_info
*) inf
;
10032 htab
= elf32_arm_hash_table (info
);
10034 if (htab
->root
.dynamic_sections_created
10035 && h
->plt
.refcount
> 0)
10037 /* Make sure this symbol is output as a dynamic symbol.
10038 Undefined weak syms won't yet be marked as dynamic. */
10039 if (h
->dynindx
== -1
10040 && !h
->forced_local
)
10042 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
10047 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
10049 asection
*s
= htab
->splt
;
10051 /* If this is the first .plt entry, make room for the special
10054 s
->size
+= htab
->plt_header_size
;
10056 h
->plt
.offset
= s
->size
;
10058 /* If we will insert a Thumb trampoline before this PLT, leave room
10060 thumb_refs
= eh
->plt_thumb_refcount
;
10061 if (!htab
->use_blx
)
10062 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
10064 if (thumb_refs
> 0)
10066 h
->plt
.offset
+= PLT_THUMB_STUB_SIZE
;
10067 s
->size
+= PLT_THUMB_STUB_SIZE
;
10070 /* If this symbol is not defined in a regular file, and we are
10071 not generating a shared library, then set the symbol to this
10072 location in the .plt. This is required to make function
10073 pointers compare as equal between the normal executable and
10074 the shared library. */
10076 && !h
->def_regular
)
10078 h
->root
.u
.def
.section
= s
;
10079 h
->root
.u
.def
.value
= h
->plt
.offset
;
10081 /* Make sure the function is not marked as Thumb, in case
10082 it is the target of an ABS32 relocation, which will
10083 point to the PLT entry. */
10084 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
10085 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
10088 /* Make room for this entry. */
10089 s
->size
+= htab
->plt_entry_size
;
10091 if (!htab
->symbian_p
)
10093 /* We also need to make an entry in the .got.plt section, which
10094 will be placed in the .got section by the linker script. */
10095 eh
->plt_got_offset
= htab
->sgotplt
->size
;
10096 htab
->sgotplt
->size
+= 4;
10099 /* We also need to make an entry in the .rel(a).plt section. */
10100 htab
->srelplt
->size
+= RELOC_SIZE (htab
);
10102 /* VxWorks executables have a second set of relocations for
10103 each PLT entry. They go in a separate relocation section,
10104 which is processed by the kernel loader. */
10105 if (htab
->vxworks_p
&& !info
->shared
)
10107 /* There is a relocation for the initial PLT entry:
10108 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10109 if (h
->plt
.offset
== htab
->plt_header_size
)
10110 htab
->srelplt2
->size
+= RELOC_SIZE (htab
);
10112 /* There are two extra relocations for each subsequent
10113 PLT entry: an R_ARM_32 relocation for the GOT entry,
10114 and an R_ARM_32 relocation for the PLT entry. */
10115 htab
->srelplt2
->size
+= RELOC_SIZE (htab
) * 2;
10120 h
->plt
.offset
= (bfd_vma
) -1;
10126 h
->plt
.offset
= (bfd_vma
) -1;
10130 if (h
->got
.refcount
> 0)
10134 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
10137 /* Make sure this symbol is output as a dynamic symbol.
10138 Undefined weak syms won't yet be marked as dynamic. */
10139 if (h
->dynindx
== -1
10140 && !h
->forced_local
)
10142 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
10146 if (!htab
->symbian_p
)
10149 h
->got
.offset
= s
->size
;
10151 if (tls_type
== GOT_UNKNOWN
)
10154 if (tls_type
== GOT_NORMAL
)
10155 /* Non-TLS symbols need one GOT slot. */
10159 if (tls_type
& GOT_TLS_GD
)
10160 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10162 if (tls_type
& GOT_TLS_IE
)
10163 /* R_ARM_TLS_IE32 needs one GOT slot. */
10167 dyn
= htab
->root
.dynamic_sections_created
;
10170 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
10172 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
10175 if (tls_type
!= GOT_NORMAL
10176 && (info
->shared
|| indx
!= 0)
10177 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
10178 || h
->root
.type
!= bfd_link_hash_undefweak
))
10180 if (tls_type
& GOT_TLS_IE
)
10181 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
10183 if (tls_type
& GOT_TLS_GD
)
10184 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
10186 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
10187 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
10189 else if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
10190 || h
->root
.type
!= bfd_link_hash_undefweak
)
10192 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
10193 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
10197 h
->got
.offset
= (bfd_vma
) -1;
10199 /* Allocate stubs for exported Thumb functions on v4t. */
10200 if (!htab
->use_blx
&& h
->dynindx
!= -1
10202 && ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
10203 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
10205 struct elf_link_hash_entry
* th
;
10206 struct bfd_link_hash_entry
* bh
;
10207 struct elf_link_hash_entry
* myh
;
10211 /* Create a new symbol to regist the real location of the function. */
10212 s
= h
->root
.u
.def
.section
;
10213 sprintf (name
, "__real_%s", h
->root
.root
.string
);
10214 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
10215 name
, BSF_GLOBAL
, s
,
10216 h
->root
.u
.def
.value
,
10217 NULL
, TRUE
, FALSE
, &bh
);
10219 myh
= (struct elf_link_hash_entry
*) bh
;
10220 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
10221 myh
->forced_local
= 1;
10222 eh
->export_glue
= myh
;
10223 th
= record_arm_to_thumb_glue (info
, h
);
10224 /* Point the symbol at the stub. */
10225 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
10226 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
10227 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
10230 if (eh
->relocs_copied
== NULL
)
10233 /* In the shared -Bsymbolic case, discard space allocated for
10234 dynamic pc-relative relocs against symbols which turn out to be
10235 defined in regular objects. For the normal shared case, discard
10236 space for pc-relative relocs that have become local due to symbol
10237 visibility changes. */
10239 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
10241 /* The only relocs that use pc_count are R_ARM_REL32 and
10242 R_ARM_REL32_NOI, which will appear on something like
10243 ".long foo - .". We want calls to protected symbols to resolve
10244 directly to the function rather than going via the plt. If people
10245 want function pointer comparisons to work as expected then they
10246 should avoid writing assembly like ".long foo - .". */
10247 if (SYMBOL_CALLS_LOCAL (info
, h
))
10249 struct elf32_arm_relocs_copied
**pp
;
10251 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
10253 p
->count
-= p
->pc_count
;
10262 if (elf32_arm_hash_table (info
)->vxworks_p
)
10264 struct elf32_arm_relocs_copied
**pp
;
10266 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
10268 if (strcmp (p
->section
->output_section
->name
, ".tls_vars") == 0)
10275 /* Also discard relocs on undefined weak syms with non-default
10277 if (eh
->relocs_copied
!= NULL
10278 && h
->root
.type
== bfd_link_hash_undefweak
)
10280 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
10281 eh
->relocs_copied
= NULL
;
10283 /* Make sure undefined weak symbols are output as a dynamic
10285 else if (h
->dynindx
== -1
10286 && !h
->forced_local
)
10288 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
10293 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
10294 && h
->root
.type
== bfd_link_hash_new
)
10296 /* Output absolute symbols so that we can create relocations
10297 against them. For normal symbols we output a relocation
10298 against the section that contains them. */
10299 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
10306 /* For the non-shared case, discard space for relocs against
10307 symbols which turn out to need copy relocs or are not
10310 if (!h
->non_got_ref
10311 && ((h
->def_dynamic
10312 && !h
->def_regular
)
10313 || (htab
->root
.dynamic_sections_created
10314 && (h
->root
.type
== bfd_link_hash_undefweak
10315 || h
->root
.type
== bfd_link_hash_undefined
))))
10317 /* Make sure this symbol is output as a dynamic symbol.
10318 Undefined weak syms won't yet be marked as dynamic. */
10319 if (h
->dynindx
== -1
10320 && !h
->forced_local
)
10322 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
10326 /* If that succeeded, we know we'll be keeping all the
10328 if (h
->dynindx
!= -1)
10332 eh
->relocs_copied
= NULL
;
10337 /* Finally, allocate space. */
10338 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
10340 asection
*sreloc
= elf_section_data (p
->section
)->sreloc
;
10341 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
10347 /* Find any dynamic relocs that apply to read-only sections. */
10350 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
10352 struct elf32_arm_link_hash_entry
* eh
;
10353 struct elf32_arm_relocs_copied
* p
;
10355 if (h
->root
.type
== bfd_link_hash_warning
)
10356 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10358 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10359 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
10361 asection
*s
= p
->section
;
10363 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
10365 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
10367 info
->flags
|= DF_TEXTREL
;
10369 /* Not an error, just cut short the traversal. */
10377 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
10380 struct elf32_arm_link_hash_table
*globals
;
10382 globals
= elf32_arm_hash_table (info
);
10383 globals
->byteswap_code
= byteswap_code
;
10386 /* Set the sizes of the dynamic sections. */
10389 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
10390 struct bfd_link_info
* info
)
10395 bfd_boolean relocs
;
10397 struct elf32_arm_link_hash_table
*htab
;
10399 htab
= elf32_arm_hash_table (info
);
10400 dynobj
= elf_hash_table (info
)->dynobj
;
10401 BFD_ASSERT (dynobj
!= NULL
);
10402 check_use_blx (htab
);
10404 if (elf_hash_table (info
)->dynamic_sections_created
)
10406 /* Set the contents of the .interp section to the interpreter. */
10407 if (info
->executable
)
10409 s
= bfd_get_section_by_name (dynobj
, ".interp");
10410 BFD_ASSERT (s
!= NULL
);
10411 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
10412 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
10416 /* Set up .got offsets for local syms, and space for local dynamic
10418 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
10420 bfd_signed_vma
*local_got
;
10421 bfd_signed_vma
*end_local_got
;
10422 char *local_tls_type
;
10423 bfd_size_type locsymcount
;
10424 Elf_Internal_Shdr
*symtab_hdr
;
10426 bfd_boolean is_vxworks
= elf32_arm_hash_table (info
)->vxworks_p
;
10428 if (! is_arm_elf (ibfd
))
10431 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
10433 struct elf32_arm_relocs_copied
*p
;
10435 for (p
= elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
10437 if (!bfd_is_abs_section (p
->section
)
10438 && bfd_is_abs_section (p
->section
->output_section
))
10440 /* Input section has been discarded, either because
10441 it is a copy of a linkonce section or due to
10442 linker script /DISCARD/, so we'll be discarding
10445 else if (is_vxworks
10446 && strcmp (p
->section
->output_section
->name
,
10449 /* Relocations in vxworks .tls_vars sections are
10450 handled specially by the loader. */
10452 else if (p
->count
!= 0)
10454 srel
= elf_section_data (p
->section
)->sreloc
;
10455 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
10456 if ((p
->section
->output_section
->flags
& SEC_READONLY
) != 0)
10457 info
->flags
|= DF_TEXTREL
;
10462 local_got
= elf_local_got_refcounts (ibfd
);
10466 symtab_hdr
= & elf_symtab_hdr (ibfd
);
10467 locsymcount
= symtab_hdr
->sh_info
;
10468 end_local_got
= local_got
+ locsymcount
;
10469 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
10471 srel
= htab
->srelgot
;
10472 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
10474 if (*local_got
> 0)
10476 *local_got
= s
->size
;
10477 if (*local_tls_type
& GOT_TLS_GD
)
10478 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10480 if (*local_tls_type
& GOT_TLS_IE
)
10482 if (*local_tls_type
== GOT_NORMAL
)
10485 if (info
->shared
|| *local_tls_type
== GOT_TLS_GD
)
10486 srel
->size
+= RELOC_SIZE (htab
);
10489 *local_got
= (bfd_vma
) -1;
10493 if (htab
->tls_ldm_got
.refcount
> 0)
10495 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10496 for R_ARM_TLS_LDM32 relocations. */
10497 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
10498 htab
->sgot
->size
+= 8;
10500 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
10503 htab
->tls_ldm_got
.offset
= -1;
10505 /* Allocate global sym .plt and .got entries, and space for global
10506 sym dynamic relocs. */
10507 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
10509 /* Here we rummage through the found bfds to collect glue information. */
10510 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
10512 if (! is_arm_elf (ibfd
))
10515 /* Initialise mapping tables for code/data. */
10516 bfd_elf32_arm_init_maps (ibfd
);
10518 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
10519 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
10520 /* xgettext:c-format */
10521 _bfd_error_handler (_("Errors encountered processing file %s"),
10525 /* The check_relocs and adjust_dynamic_symbol entry points have
10526 determined the sizes of the various dynamic sections. Allocate
10527 memory for them. */
10530 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
10534 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
10537 /* It's OK to base decisions on the section name, because none
10538 of the dynobj section names depend upon the input files. */
10539 name
= bfd_get_section_name (dynobj
, s
);
10541 if (strcmp (name
, ".plt") == 0)
10543 /* Remember whether there is a PLT. */
10544 plt
= s
->size
!= 0;
10546 else if (CONST_STRNEQ (name
, ".rel"))
10550 /* Remember whether there are any reloc sections other
10551 than .rel(a).plt and .rela.plt.unloaded. */
10552 if (s
!= htab
->srelplt
&& s
!= htab
->srelplt2
)
10555 /* We use the reloc_count field as a counter if we need
10556 to copy relocs into the output file. */
10557 s
->reloc_count
= 0;
10560 else if (! CONST_STRNEQ (name
, ".got")
10561 && strcmp (name
, ".dynbss") != 0)
10563 /* It's not one of our sections, so don't allocate space. */
10569 /* If we don't need this section, strip it from the
10570 output file. This is mostly to handle .rel(a).bss and
10571 .rel(a).plt. We must create both sections in
10572 create_dynamic_sections, because they must be created
10573 before the linker maps input sections to output
10574 sections. The linker does that before
10575 adjust_dynamic_symbol is called, and it is that
10576 function which decides whether anything needs to go
10577 into these sections. */
10578 s
->flags
|= SEC_EXCLUDE
;
10582 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
10585 /* Allocate memory for the section contents. */
10586 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
10587 if (s
->contents
== NULL
)
10591 if (elf_hash_table (info
)->dynamic_sections_created
)
10593 /* Add some entries to the .dynamic section. We fill in the
10594 values later, in elf32_arm_finish_dynamic_sections, but we
10595 must add the entries now so that we get the correct size for
10596 the .dynamic section. The DT_DEBUG entry is filled in by the
10597 dynamic linker and used by the debugger. */
10598 #define add_dynamic_entry(TAG, VAL) \
10599 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10601 if (info
->executable
)
10603 if (!add_dynamic_entry (DT_DEBUG
, 0))
10609 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
10610 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
10611 || !add_dynamic_entry (DT_PLTREL
,
10612 htab
->use_rel
? DT_REL
: DT_RELA
)
10613 || !add_dynamic_entry (DT_JMPREL
, 0))
10621 if (!add_dynamic_entry (DT_REL
, 0)
10622 || !add_dynamic_entry (DT_RELSZ
, 0)
10623 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
10628 if (!add_dynamic_entry (DT_RELA
, 0)
10629 || !add_dynamic_entry (DT_RELASZ
, 0)
10630 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
10635 /* If any dynamic relocs apply to a read-only section,
10636 then we need a DT_TEXTREL entry. */
10637 if ((info
->flags
& DF_TEXTREL
) == 0)
10638 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
10641 if ((info
->flags
& DF_TEXTREL
) != 0)
10643 if (!add_dynamic_entry (DT_TEXTREL
, 0))
10646 if (htab
->vxworks_p
10647 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
10650 #undef add_dynamic_entry
10655 /* Finish up dynamic symbol handling. We set the contents of various
10656 dynamic sections here. */
10659 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
10660 struct bfd_link_info
* info
,
10661 struct elf_link_hash_entry
* h
,
10662 Elf_Internal_Sym
* sym
)
10665 struct elf32_arm_link_hash_table
*htab
;
10666 struct elf32_arm_link_hash_entry
*eh
;
10668 dynobj
= elf_hash_table (info
)->dynobj
;
10669 htab
= elf32_arm_hash_table (info
);
10670 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10672 if (h
->plt
.offset
!= (bfd_vma
) -1)
10678 Elf_Internal_Rela rel
;
10680 /* This symbol has an entry in the procedure linkage table. Set
10683 BFD_ASSERT (h
->dynindx
!= -1);
10685 splt
= bfd_get_section_by_name (dynobj
, ".plt");
10686 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".plt"));
10687 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
10689 /* Fill in the entry in the procedure linkage table. */
10690 if (htab
->symbian_p
)
10692 put_arm_insn (htab
, output_bfd
,
10693 elf32_arm_symbian_plt_entry
[0],
10694 splt
->contents
+ h
->plt
.offset
);
10695 bfd_put_32 (output_bfd
,
10696 elf32_arm_symbian_plt_entry
[1],
10697 splt
->contents
+ h
->plt
.offset
+ 4);
10699 /* Fill in the entry in the .rel.plt section. */
10700 rel
.r_offset
= (splt
->output_section
->vma
10701 + splt
->output_offset
10702 + h
->plt
.offset
+ 4);
10703 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
10705 /* Get the index in the procedure linkage table which
10706 corresponds to this symbol. This is the index of this symbol
10707 in all the symbols for which we are making plt entries. The
10708 first entry in the procedure linkage table is reserved. */
10709 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
10710 / htab
->plt_entry_size
);
10714 bfd_vma got_offset
, got_address
, plt_address
;
10715 bfd_vma got_displacement
;
10719 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
10720 BFD_ASSERT (sgot
!= NULL
);
10722 /* Get the offset into the .got.plt table of the entry that
10723 corresponds to this function. */
10724 got_offset
= eh
->plt_got_offset
;
10726 /* Get the index in the procedure linkage table which
10727 corresponds to this symbol. This is the index of this symbol
10728 in all the symbols for which we are making plt entries. The
10729 first three entries in .got.plt are reserved; after that
10730 symbols appear in the same order as in .plt. */
10731 plt_index
= (got_offset
- 12) / 4;
10733 /* Calculate the address of the GOT entry. */
10734 got_address
= (sgot
->output_section
->vma
10735 + sgot
->output_offset
10738 /* ...and the address of the PLT entry. */
10739 plt_address
= (splt
->output_section
->vma
10740 + splt
->output_offset
10743 ptr
= htab
->splt
->contents
+ h
->plt
.offset
;
10744 if (htab
->vxworks_p
&& info
->shared
)
10749 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
10751 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
10753 val
|= got_address
- sgot
->output_section
->vma
;
10755 val
|= plt_index
* RELOC_SIZE (htab
);
10756 if (i
== 2 || i
== 5)
10757 bfd_put_32 (output_bfd
, val
, ptr
);
10759 put_arm_insn (htab
, output_bfd
, val
, ptr
);
10762 else if (htab
->vxworks_p
)
10767 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
10769 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
10771 val
|= got_address
;
10773 val
|= 0xffffff & -((h
->plt
.offset
+ i
* 4 + 8) >> 2);
10775 val
|= plt_index
* RELOC_SIZE (htab
);
10776 if (i
== 2 || i
== 5)
10777 bfd_put_32 (output_bfd
, val
, ptr
);
10779 put_arm_insn (htab
, output_bfd
, val
, ptr
);
10782 loc
= (htab
->srelplt2
->contents
10783 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
10785 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10786 referencing the GOT for this PLT entry. */
10787 rel
.r_offset
= plt_address
+ 8;
10788 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
10789 rel
.r_addend
= got_offset
;
10790 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10791 loc
+= RELOC_SIZE (htab
);
10793 /* Create the R_ARM_ABS32 relocation referencing the
10794 beginning of the PLT for this GOT entry. */
10795 rel
.r_offset
= got_address
;
10796 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
10798 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10802 bfd_signed_vma thumb_refs
;
10803 /* Calculate the displacement between the PLT slot and the
10804 entry in the GOT. The eight-byte offset accounts for the
10805 value produced by adding to pc in the first instruction
10806 of the PLT stub. */
10807 got_displacement
= got_address
- (plt_address
+ 8);
10809 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
10811 thumb_refs
= eh
->plt_thumb_refcount
;
10812 if (!htab
->use_blx
)
10813 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
10815 if (thumb_refs
> 0)
10817 put_thumb_insn (htab
, output_bfd
,
10818 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
10819 put_thumb_insn (htab
, output_bfd
,
10820 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
10823 put_arm_insn (htab
, output_bfd
,
10824 elf32_arm_plt_entry
[0]
10825 | ((got_displacement
& 0x0ff00000) >> 20),
10827 put_arm_insn (htab
, output_bfd
,
10828 elf32_arm_plt_entry
[1]
10829 | ((got_displacement
& 0x000ff000) >> 12),
10831 put_arm_insn (htab
, output_bfd
,
10832 elf32_arm_plt_entry
[2]
10833 | (got_displacement
& 0x00000fff),
10835 #ifdef FOUR_WORD_PLT
10836 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
10840 /* Fill in the entry in the global offset table. */
10841 bfd_put_32 (output_bfd
,
10842 (splt
->output_section
->vma
10843 + splt
->output_offset
),
10844 sgot
->contents
+ got_offset
);
10846 /* Fill in the entry in the .rel(a).plt section. */
10848 rel
.r_offset
= got_address
;
10849 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
10852 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
10853 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10855 if (!h
->def_regular
)
10857 /* Mark the symbol as undefined, rather than as defined in
10858 the .plt section. Leave the value alone. */
10859 sym
->st_shndx
= SHN_UNDEF
;
10860 /* If the symbol is weak, we do need to clear the value.
10861 Otherwise, the PLT entry would provide a definition for
10862 the symbol even if the symbol wasn't defined anywhere,
10863 and so the symbol would never be NULL. */
10864 if (!h
->ref_regular_nonweak
)
10869 if (h
->got
.offset
!= (bfd_vma
) -1
10870 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_GD
) == 0
10871 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_IE
) == 0)
10875 Elf_Internal_Rela rel
;
10879 /* This symbol has an entry in the global offset table. Set it
10881 sgot
= bfd_get_section_by_name (dynobj
, ".got");
10882 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".got"));
10883 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
10885 offset
= (h
->got
.offset
& ~(bfd_vma
) 1);
10887 rel
.r_offset
= (sgot
->output_section
->vma
10888 + sgot
->output_offset
10891 /* If this is a static link, or it is a -Bsymbolic link and the
10892 symbol is defined locally or was forced to be local because
10893 of a version file, we just want to emit a RELATIVE reloc.
10894 The entry in the global offset table will already have been
10895 initialized in the relocate_section function. */
10897 && SYMBOL_REFERENCES_LOCAL (info
, h
))
10899 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
10900 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
10901 if (!htab
->use_rel
)
10903 rel
.r_addend
= bfd_get_32 (output_bfd
, sgot
->contents
+ offset
);
10904 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
10909 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
10910 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
10911 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
10914 loc
= srel
->contents
+ srel
->reloc_count
++ * RELOC_SIZE (htab
);
10915 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10921 Elf_Internal_Rela rel
;
10924 /* This symbol needs a copy reloc. Set it up. */
10925 BFD_ASSERT (h
->dynindx
!= -1
10926 && (h
->root
.type
== bfd_link_hash_defined
10927 || h
->root
.type
== bfd_link_hash_defweak
));
10929 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
10930 RELOC_SECTION (htab
, ".bss"));
10931 BFD_ASSERT (s
!= NULL
);
10934 rel
.r_offset
= (h
->root
.u
.def
.value
10935 + h
->root
.u
.def
.section
->output_section
->vma
10936 + h
->root
.u
.def
.section
->output_offset
);
10937 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
10938 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
10939 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10942 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10943 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10944 to the ".got" section. */
10945 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
10946 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
10947 sym
->st_shndx
= SHN_ABS
;
10952 /* Finish up the dynamic sections. */
10955 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
10961 dynobj
= elf_hash_table (info
)->dynobj
;
10963 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
10964 BFD_ASSERT (elf32_arm_hash_table (info
)->symbian_p
|| sgot
!= NULL
);
10965 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
10967 if (elf_hash_table (info
)->dynamic_sections_created
)
10970 Elf32_External_Dyn
*dyncon
, *dynconend
;
10971 struct elf32_arm_link_hash_table
*htab
;
10973 htab
= elf32_arm_hash_table (info
);
10974 splt
= bfd_get_section_by_name (dynobj
, ".plt");
10975 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
10977 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
10978 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
10980 for (; dyncon
< dynconend
; dyncon
++)
10982 Elf_Internal_Dyn dyn
;
10986 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
10993 if (htab
->vxworks_p
10994 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
10995 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
11000 goto get_vma_if_bpabi
;
11003 goto get_vma_if_bpabi
;
11006 goto get_vma_if_bpabi
;
11008 name
= ".gnu.version";
11009 goto get_vma_if_bpabi
;
11011 name
= ".gnu.version_d";
11012 goto get_vma_if_bpabi
;
11014 name
= ".gnu.version_r";
11015 goto get_vma_if_bpabi
;
11021 name
= RELOC_SECTION (htab
, ".plt");
11023 s
= bfd_get_section_by_name (output_bfd
, name
);
11024 BFD_ASSERT (s
!= NULL
);
11025 if (!htab
->symbian_p
)
11026 dyn
.d_un
.d_ptr
= s
->vma
;
11028 /* In the BPABI, tags in the PT_DYNAMIC section point
11029 at the file offset, not the memory address, for the
11030 convenience of the post linker. */
11031 dyn
.d_un
.d_ptr
= s
->filepos
;
11032 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
11036 if (htab
->symbian_p
)
11041 s
= bfd_get_section_by_name (output_bfd
,
11042 RELOC_SECTION (htab
, ".plt"));
11043 BFD_ASSERT (s
!= NULL
);
11044 dyn
.d_un
.d_val
= s
->size
;
11045 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
11050 if (!htab
->symbian_p
)
11052 /* My reading of the SVR4 ABI indicates that the
11053 procedure linkage table relocs (DT_JMPREL) should be
11054 included in the overall relocs (DT_REL). This is
11055 what Solaris does. However, UnixWare can not handle
11056 that case. Therefore, we override the DT_RELSZ entry
11057 here to make it not include the JMPREL relocs. Since
11058 the linker script arranges for .rel(a).plt to follow all
11059 other relocation sections, we don't have to worry
11060 about changing the DT_REL entry. */
11061 s
= bfd_get_section_by_name (output_bfd
,
11062 RELOC_SECTION (htab
, ".plt"));
11064 dyn
.d_un
.d_val
-= s
->size
;
11065 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
11068 /* Fall through. */
11072 /* In the BPABI, the DT_REL tag must point at the file
11073 offset, not the VMA, of the first relocation
11074 section. So, we use code similar to that in
11075 elflink.c, but do not check for SHF_ALLOC on the
11076 relcoation section, since relocations sections are
11077 never allocated under the BPABI. The comments above
11078 about Unixware notwithstanding, we include all of the
11079 relocations here. */
11080 if (htab
->symbian_p
)
11083 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
11084 ? SHT_REL
: SHT_RELA
);
11085 dyn
.d_un
.d_val
= 0;
11086 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
11088 Elf_Internal_Shdr
*hdr
11089 = elf_elfsections (output_bfd
)[i
];
11090 if (hdr
->sh_type
== type
)
11092 if (dyn
.d_tag
== DT_RELSZ
11093 || dyn
.d_tag
== DT_RELASZ
)
11094 dyn
.d_un
.d_val
+= hdr
->sh_size
;
11095 else if ((ufile_ptr
) hdr
->sh_offset
11096 <= dyn
.d_un
.d_val
- 1)
11097 dyn
.d_un
.d_val
= hdr
->sh_offset
;
11100 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
11104 /* Set the bottom bit of DT_INIT/FINI if the
11105 corresponding function is Thumb. */
11107 name
= info
->init_function
;
11110 name
= info
->fini_function
;
11112 /* If it wasn't set by elf_bfd_final_link
11113 then there is nothing to adjust. */
11114 if (dyn
.d_un
.d_val
!= 0)
11116 struct elf_link_hash_entry
* eh
;
11118 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
11119 FALSE
, FALSE
, TRUE
);
11121 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
11123 dyn
.d_un
.d_val
|= 1;
11124 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
11131 /* Fill in the first entry in the procedure linkage table. */
11132 if (splt
->size
> 0 && elf32_arm_hash_table (info
)->plt_header_size
)
11134 const bfd_vma
*plt0_entry
;
11135 bfd_vma got_address
, plt_address
, got_displacement
;
11137 /* Calculate the addresses of the GOT and PLT. */
11138 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
11139 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
11141 if (htab
->vxworks_p
)
11143 /* The VxWorks GOT is relocated by the dynamic linker.
11144 Therefore, we must emit relocations rather than simply
11145 computing the values now. */
11146 Elf_Internal_Rela rel
;
11148 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
11149 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
11150 splt
->contents
+ 0);
11151 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
11152 splt
->contents
+ 4);
11153 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
11154 splt
->contents
+ 8);
11155 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
11157 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
11158 rel
.r_offset
= plt_address
+ 12;
11159 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
11161 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
11162 htab
->srelplt2
->contents
);
11166 got_displacement
= got_address
- (plt_address
+ 16);
11168 plt0_entry
= elf32_arm_plt0_entry
;
11169 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
11170 splt
->contents
+ 0);
11171 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
11172 splt
->contents
+ 4);
11173 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
11174 splt
->contents
+ 8);
11175 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
11176 splt
->contents
+ 12);
11178 #ifdef FOUR_WORD_PLT
11179 /* The displacement value goes in the otherwise-unused
11180 last word of the second entry. */
11181 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
11183 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
11188 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11189 really seem like the right value. */
11190 if (splt
->output_section
->owner
== output_bfd
)
11191 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
11193 if (htab
->vxworks_p
&& !info
->shared
&& htab
->splt
->size
> 0)
11195 /* Correct the .rel(a).plt.unloaded relocations. They will have
11196 incorrect symbol indexes. */
11200 num_plts
= ((htab
->splt
->size
- htab
->plt_header_size
)
11201 / htab
->plt_entry_size
);
11202 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
11204 for (; num_plts
; num_plts
--)
11206 Elf_Internal_Rela rel
;
11208 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
11209 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
11210 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
11211 p
+= RELOC_SIZE (htab
);
11213 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
11214 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
11215 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
11216 p
+= RELOC_SIZE (htab
);
11221 /* Fill in the first three entries in the global offset table. */
11224 if (sgot
->size
> 0)
11227 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
11229 bfd_put_32 (output_bfd
,
11230 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
11232 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
11233 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
11236 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
11243 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
11245 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
11246 struct elf32_arm_link_hash_table
*globals
;
11248 i_ehdrp
= elf_elfheader (abfd
);
11250 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
11251 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
11253 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
11254 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
11258 globals
= elf32_arm_hash_table (link_info
);
11259 if (globals
->byteswap_code
)
11260 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
11264 static enum elf_reloc_type_class
11265 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
11267 switch ((int) ELF32_R_TYPE (rela
->r_info
))
11269 case R_ARM_RELATIVE
:
11270 return reloc_class_relative
;
11271 case R_ARM_JUMP_SLOT
:
11272 return reloc_class_plt
;
11274 return reloc_class_copy
;
11276 return reloc_class_normal
;
11280 /* Set the right machine number for an Arm ELF file. */
11283 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
11285 if (hdr
->sh_type
== SHT_NOTE
)
11286 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
11292 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
11294 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
11297 /* Return TRUE if this is an unwinding table entry. */
11300 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
11302 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
11303 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
11307 /* Set the type and flags for an ARM section. We do this by
11308 the section name, which is a hack, but ought to work. */
11311 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
11315 name
= bfd_get_section_name (abfd
, sec
);
11317 if (is_arm_elf_unwind_section_name (abfd
, name
))
11319 hdr
->sh_type
= SHT_ARM_EXIDX
;
11320 hdr
->sh_flags
|= SHF_LINK_ORDER
;
11325 /* Handle an ARM specific section when reading an object file. This is
11326 called when bfd_section_from_shdr finds a section with an unknown
11330 elf32_arm_section_from_shdr (bfd
*abfd
,
11331 Elf_Internal_Shdr
* hdr
,
11335 /* There ought to be a place to keep ELF backend specific flags, but
11336 at the moment there isn't one. We just keep track of the
11337 sections by their name, instead. Fortunately, the ABI gives
11338 names for all the ARM specific sections, so we will probably get
11340 switch (hdr
->sh_type
)
11342 case SHT_ARM_EXIDX
:
11343 case SHT_ARM_PREEMPTMAP
:
11344 case SHT_ARM_ATTRIBUTES
:
11351 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
11357 /* A structure used to record a list of sections, independently
11358 of the next and prev fields in the asection structure. */
11359 typedef struct section_list
11362 struct section_list
* next
;
11363 struct section_list
* prev
;
11367 /* Unfortunately we need to keep a list of sections for which
11368 an _arm_elf_section_data structure has been allocated. This
11369 is because it is possible for functions like elf32_arm_write_section
11370 to be called on a section which has had an elf_data_structure
11371 allocated for it (and so the used_by_bfd field is valid) but
11372 for which the ARM extended version of this structure - the
11373 _arm_elf_section_data structure - has not been allocated. */
11374 static section_list
* sections_with_arm_elf_section_data
= NULL
;
11377 record_section_with_arm_elf_section_data (asection
* sec
)
11379 struct section_list
* entry
;
11381 entry
= bfd_malloc (sizeof (* entry
));
11385 entry
->next
= sections_with_arm_elf_section_data
;
11386 entry
->prev
= NULL
;
11387 if (entry
->next
!= NULL
)
11388 entry
->next
->prev
= entry
;
11389 sections_with_arm_elf_section_data
= entry
;
11392 static struct section_list
*
11393 find_arm_elf_section_entry (asection
* sec
)
11395 struct section_list
* entry
;
11396 static struct section_list
* last_entry
= NULL
;
11398 /* This is a short cut for the typical case where the sections are added
11399 to the sections_with_arm_elf_section_data list in forward order and
11400 then looked up here in backwards order. This makes a real difference
11401 to the ld-srec/sec64k.exp linker test. */
11402 entry
= sections_with_arm_elf_section_data
;
11403 if (last_entry
!= NULL
)
11405 if (last_entry
->sec
== sec
)
11406 entry
= last_entry
;
11407 else if (last_entry
->next
!= NULL
11408 && last_entry
->next
->sec
== sec
)
11409 entry
= last_entry
->next
;
11412 for (; entry
; entry
= entry
->next
)
11413 if (entry
->sec
== sec
)
11417 /* Record the entry prior to this one - it is the entry we are most
11418 likely to want to locate next time. Also this way if we have been
11419 called from unrecord_section_with_arm_elf_section_data() we will not
11420 be caching a pointer that is about to be freed. */
11421 last_entry
= entry
->prev
;
11426 static _arm_elf_section_data
*
11427 get_arm_elf_section_data (asection
* sec
)
11429 struct section_list
* entry
;
11431 entry
= find_arm_elf_section_entry (sec
);
11434 return elf32_arm_section_data (entry
->sec
);
11440 unrecord_section_with_arm_elf_section_data (asection
* sec
)
11442 struct section_list
* entry
;
11444 entry
= find_arm_elf_section_entry (sec
);
11448 if (entry
->prev
!= NULL
)
11449 entry
->prev
->next
= entry
->next
;
11450 if (entry
->next
!= NULL
)
11451 entry
->next
->prev
= entry
->prev
;
11452 if (entry
== sections_with_arm_elf_section_data
)
11453 sections_with_arm_elf_section_data
= entry
->next
;
11462 struct bfd_link_info
*info
;
11465 bfd_boolean (*func
) (void *, const char *, Elf_Internal_Sym
*,
11466 asection
*, struct elf_link_hash_entry
*);
11467 } output_arch_syminfo
;
11469 enum map_symbol_type
11477 /* Output a single mapping symbol. */
11480 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
11481 enum map_symbol_type type
,
11484 static const char *names
[3] = {"$a", "$t", "$d"};
11485 struct elf32_arm_link_hash_table
*htab
;
11486 Elf_Internal_Sym sym
;
11488 htab
= elf32_arm_hash_table (osi
->info
);
11489 sym
.st_value
= osi
->sec
->output_section
->vma
11490 + osi
->sec
->output_offset
11494 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
11495 sym
.st_shndx
= osi
->sec_shndx
;
11496 if (!osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
))
11502 /* Output mapping symbols for PLT entries associated with H. */
11505 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
11507 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
11508 struct elf32_arm_link_hash_table
*htab
;
11509 struct elf32_arm_link_hash_entry
*eh
;
11512 htab
= elf32_arm_hash_table (osi
->info
);
11514 if (h
->root
.type
== bfd_link_hash_indirect
)
11517 if (h
->root
.type
== bfd_link_hash_warning
)
11518 /* When warning symbols are created, they **replace** the "real"
11519 entry in the hash table, thus we never get to see the real
11520 symbol in a hash traversal. So look at it now. */
11521 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11523 if (h
->plt
.offset
== (bfd_vma
) -1)
11526 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11527 addr
= h
->plt
.offset
;
11528 if (htab
->symbian_p
)
11530 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11532 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
11535 else if (htab
->vxworks_p
)
11537 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11539 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
11541 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
11543 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
11548 bfd_signed_vma thumb_refs
;
11550 thumb_refs
= eh
->plt_thumb_refcount
;
11551 if (!htab
->use_blx
)
11552 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
11554 if (thumb_refs
> 0)
11556 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
11559 #ifdef FOUR_WORD_PLT
11560 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11562 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
11565 /* A three-word PLT with no Thumb thunk contains only Arm code,
11566 so only need to output a mapping symbol for the first PLT entry and
11567 entries with thumb thunks. */
11568 if (thumb_refs
> 0 || addr
== 20)
11570 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11579 /* Output a single local symbol for a generated stub. */
11582 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
11583 bfd_vma offset
, bfd_vma size
)
11585 struct elf32_arm_link_hash_table
*htab
;
11586 Elf_Internal_Sym sym
;
11588 htab
= elf32_arm_hash_table (osi
->info
);
11589 sym
.st_value
= osi
->sec
->output_section
->vma
11590 + osi
->sec
->output_offset
11592 sym
.st_size
= size
;
11594 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
11595 sym
.st_shndx
= osi
->sec_shndx
;
11596 if (!osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
))
11602 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
11605 struct elf32_arm_stub_hash_entry
*stub_entry
;
11606 struct bfd_link_info
*info
;
11607 struct elf32_arm_link_hash_table
*htab
;
11608 asection
*stub_sec
;
11611 output_arch_syminfo
*osi
;
11613 /* Massage our args to the form they really have. */
11614 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
11615 osi
= (output_arch_syminfo
*) in_arg
;
11619 htab
= elf32_arm_hash_table (info
);
11620 stub_sec
= stub_entry
->stub_sec
;
11622 /* Ensure this stub is attached to the current section being
11624 if (stub_sec
!= osi
->sec
)
11627 addr
= (bfd_vma
) stub_entry
->stub_offset
;
11628 stub_name
= stub_entry
->output_name
;
11630 switch (stub_entry
->stub_type
)
11632 case arm_stub_long_branch
:
11633 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, 8))
11635 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11637 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
11640 case arm_thumb_v4t_stub_long_branch
:
11641 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, 12))
11643 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11645 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
11648 case arm_thumb_thumb_stub_long_branch
:
11649 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1, 16))
11651 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
))
11653 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
11656 case arm_thumb_arm_v4t_stub_long_branch
:
11657 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1, 20))
11659 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
))
11661 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 8))
11663 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 16))
11666 case arm_thumb_arm_v4t_stub_short_branch
:
11667 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1, 8))
11669 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 4))
11672 case arm_stub_pic_long_branch
:
11673 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, 12))
11675 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11677 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
11687 /* Output mapping symbols for linker generated sections. */
11690 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
11691 struct bfd_link_info
*info
,
11693 bfd_boolean (*func
) (void *, const char *,
11694 Elf_Internal_Sym
*,
11696 struct elf_link_hash_entry
*))
11698 output_arch_syminfo osi
;
11699 struct elf32_arm_link_hash_table
*htab
;
11701 bfd_size_type size
;
11703 htab
= elf32_arm_hash_table (info
);
11704 check_use_blx (htab
);
11710 /* ARM->Thumb glue. */
11711 if (htab
->arm_glue_size
> 0)
11713 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
11714 ARM2THUMB_GLUE_SECTION_NAME
);
11716 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11717 (output_bfd
, osi
.sec
->output_section
);
11718 if (info
->shared
|| htab
->root
.is_relocatable_executable
11719 || htab
->pic_veneer
)
11720 size
= ARM2THUMB_PIC_GLUE_SIZE
;
11721 else if (htab
->use_blx
)
11722 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
11724 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
11726 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
11728 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
11729 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
11733 /* Thumb->ARM glue. */
11734 if (htab
->thumb_glue_size
> 0)
11736 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
11737 THUMB2ARM_GLUE_SECTION_NAME
);
11739 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11740 (output_bfd
, osi
.sec
->output_section
);
11741 size
= THUMB2ARM_GLUE_SIZE
;
11743 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
11745 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
11746 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
11750 /* ARMv4 BX veneers. */
11751 if (htab
->bx_glue_size
> 0)
11753 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
11754 ARM_BX_GLUE_SECTION_NAME
);
11756 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11757 (output_bfd
, osi
.sec
->output_section
);
11759 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
11762 /* Long calls stubs. */
11763 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
11765 asection
* stub_sec
;
11767 for (stub_sec
= htab
->stub_bfd
->sections
;
11769 stub_sec
= stub_sec
->next
)
11771 /* Ignore non-stub sections. */
11772 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
11775 osi
.sec
= stub_sec
;
11777 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11778 (output_bfd
, osi
.sec
->output_section
);
11780 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
11784 /* Finally, output mapping symbols for the PLT. */
11785 if (!htab
->splt
|| htab
->splt
->size
== 0)
11788 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
11789 htab
->splt
->output_section
);
11790 osi
.sec
= htab
->splt
;
11791 /* Output mapping symbols for the plt header. SymbianOS does not have a
11793 if (htab
->vxworks_p
)
11795 /* VxWorks shared libraries have no PLT header. */
11798 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
11800 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
11804 else if (!htab
->symbian_p
)
11806 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
11808 #ifndef FOUR_WORD_PLT
11809 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
11814 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, (void *) &osi
);
11818 /* Allocate target specific section data. */
11821 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
11823 if (!sec
->used_by_bfd
)
11825 _arm_elf_section_data
*sdata
;
11826 bfd_size_type amt
= sizeof (*sdata
);
11828 sdata
= bfd_zalloc (abfd
, amt
);
11831 sec
->used_by_bfd
= sdata
;
11834 record_section_with_arm_elf_section_data (sec
);
11836 return _bfd_elf_new_section_hook (abfd
, sec
);
11840 /* Used to order a list of mapping symbols by address. */
11843 elf32_arm_compare_mapping (const void * a
, const void * b
)
11845 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
11846 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
11848 if (amap
->vma
> bmap
->vma
)
11850 else if (amap
->vma
< bmap
->vma
)
11852 else if (amap
->type
> bmap
->type
)
11853 /* Ensure results do not depend on the host qsort for objects with
11854 multiple mapping symbols at the same address by sorting on type
11857 else if (amap
->type
< bmap
->type
)
11864 /* Do code byteswapping. Return FALSE afterwards so that the section is
11865 written out as normal. */
11868 elf32_arm_write_section (bfd
*output_bfd
,
11869 struct bfd_link_info
*link_info
,
11871 bfd_byte
*contents
)
11873 int mapcount
, errcount
;
11874 _arm_elf_section_data
*arm_data
;
11875 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
11876 elf32_arm_section_map
*map
;
11877 elf32_vfp11_erratum_list
*errnode
;
11880 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
11884 /* If this section has not been allocated an _arm_elf_section_data
11885 structure then we cannot record anything. */
11886 arm_data
= get_arm_elf_section_data (sec
);
11887 if (arm_data
== NULL
)
11890 mapcount
= arm_data
->mapcount
;
11891 map
= arm_data
->map
;
11892 errcount
= arm_data
->erratumcount
;
11896 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
11898 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
11899 errnode
= errnode
->next
)
11901 bfd_vma index
= errnode
->vma
- offset
;
11903 switch (errnode
->type
)
11905 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
11907 bfd_vma branch_to_veneer
;
11908 /* Original condition code of instruction, plus bit mask for
11909 ARM B instruction. */
11910 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
11913 /* The instruction is before the label. */
11916 /* Above offset included in -4 below. */
11917 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
11918 - errnode
->vma
- 4;
11920 if ((signed) branch_to_veneer
< -(1 << 25)
11921 || (signed) branch_to_veneer
>= (1 << 25))
11922 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
11923 "range"), output_bfd
);
11925 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
11926 contents
[endianflip
^ index
] = insn
& 0xff;
11927 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
11928 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
11929 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
11933 case VFP11_ERRATUM_ARM_VENEER
:
11935 bfd_vma branch_from_veneer
;
11938 /* Take size of veneer into account. */
11939 branch_from_veneer
= errnode
->u
.v
.branch
->vma
11940 - errnode
->vma
- 12;
11942 if ((signed) branch_from_veneer
< -(1 << 25)
11943 || (signed) branch_from_veneer
>= (1 << 25))
11944 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
11945 "range"), output_bfd
);
11947 /* Original instruction. */
11948 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
11949 contents
[endianflip
^ index
] = insn
& 0xff;
11950 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
11951 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
11952 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
11954 /* Branch back to insn after original insn. */
11955 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
11956 contents
[endianflip
^ (index
+ 4)] = insn
& 0xff;
11957 contents
[endianflip
^ (index
+ 5)] = (insn
>> 8) & 0xff;
11958 contents
[endianflip
^ (index
+ 6)] = (insn
>> 16) & 0xff;
11959 contents
[endianflip
^ (index
+ 7)] = (insn
>> 24) & 0xff;
11972 if (globals
->byteswap_code
)
11974 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
11977 for (i
= 0; i
< mapcount
; i
++)
11979 if (i
== mapcount
- 1)
11982 end
= map
[i
+ 1].vma
;
11984 switch (map
[i
].type
)
11987 /* Byte swap code words. */
11988 while (ptr
+ 3 < end
)
11990 tmp
= contents
[ptr
];
11991 contents
[ptr
] = contents
[ptr
+ 3];
11992 contents
[ptr
+ 3] = tmp
;
11993 tmp
= contents
[ptr
+ 1];
11994 contents
[ptr
+ 1] = contents
[ptr
+ 2];
11995 contents
[ptr
+ 2] = tmp
;
12001 /* Byte swap code halfwords. */
12002 while (ptr
+ 1 < end
)
12004 tmp
= contents
[ptr
];
12005 contents
[ptr
] = contents
[ptr
+ 1];
12006 contents
[ptr
+ 1] = tmp
;
12012 /* Leave data alone. */
12020 arm_data
->mapcount
= 0;
12021 arm_data
->mapsize
= 0;
12022 arm_data
->map
= NULL
;
12023 unrecord_section_with_arm_elf_section_data (sec
);
12029 unrecord_section_via_map_over_sections (bfd
* abfd ATTRIBUTE_UNUSED
,
12031 void * ignore ATTRIBUTE_UNUSED
)
12033 unrecord_section_with_arm_elf_section_data (sec
);
12037 elf32_arm_close_and_cleanup (bfd
* abfd
)
12039 if (abfd
->sections
)
12040 bfd_map_over_sections (abfd
,
12041 unrecord_section_via_map_over_sections
,
12044 return _bfd_elf_close_and_cleanup (abfd
);
12048 elf32_arm_bfd_free_cached_info (bfd
* abfd
)
12050 if (abfd
->sections
)
12051 bfd_map_over_sections (abfd
,
12052 unrecord_section_via_map_over_sections
,
12055 return _bfd_free_cached_info (abfd
);
12058 /* Display STT_ARM_TFUNC symbols as functions. */
12061 elf32_arm_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
12064 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
12066 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_ARM_TFUNC
)
12067 elfsym
->symbol
.flags
|= BSF_FUNCTION
;
12071 /* Mangle thumb function symbols as we read them in. */
12074 elf32_arm_swap_symbol_in (bfd
* abfd
,
12077 Elf_Internal_Sym
*dst
)
12079 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
12082 /* New EABI objects mark thumb function symbols by setting the low bit of
12083 the address. Turn these into STT_ARM_TFUNC. */
12084 if ((ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
)
12085 && (dst
->st_value
& 1))
12087 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_ARM_TFUNC
);
12088 dst
->st_value
&= ~(bfd_vma
) 1;
12094 /* Mangle thumb function symbols as we write them out. */
12097 elf32_arm_swap_symbol_out (bfd
*abfd
,
12098 const Elf_Internal_Sym
*src
,
12102 Elf_Internal_Sym newsym
;
12104 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12105 of the address set, as per the new EABI. We do this unconditionally
12106 because objcopy does not set the elf header flags until after
12107 it writes out the symbol table. */
12108 if (ELF_ST_TYPE (src
->st_info
) == STT_ARM_TFUNC
)
12111 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
12112 if (newsym
.st_shndx
!= SHN_UNDEF
)
12114 /* Do this only for defined symbols. At link type, the static
12115 linker will simulate the work of dynamic linker of resolving
12116 symbols and will carry over the thumbness of found symbols to
12117 the output symbol table. It's not clear how it happens, but
12118 the thumbness of undefined symbols can well be different at
12119 runtime, and writing '1' for them will be confusing for users
12120 and possibly for dynamic linker itself.
12122 newsym
.st_value
|= 1;
12127 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
12130 /* Add the PT_ARM_EXIDX program header. */
12133 elf32_arm_modify_segment_map (bfd
*abfd
,
12134 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
12136 struct elf_segment_map
*m
;
12139 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
12140 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
12142 /* If there is already a PT_ARM_EXIDX header, then we do not
12143 want to add another one. This situation arises when running
12144 "strip"; the input binary already has the header. */
12145 m
= elf_tdata (abfd
)->segment_map
;
12146 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
12150 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
12153 m
->p_type
= PT_ARM_EXIDX
;
12155 m
->sections
[0] = sec
;
12157 m
->next
= elf_tdata (abfd
)->segment_map
;
12158 elf_tdata (abfd
)->segment_map
= m
;
12165 /* We may add a PT_ARM_EXIDX program header. */
12168 elf32_arm_additional_program_headers (bfd
*abfd
,
12169 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
12173 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
12174 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
12180 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
12183 elf32_arm_is_function_type (unsigned int type
)
12185 return (type
== STT_FUNC
) || (type
== STT_ARM_TFUNC
);
12188 /* We use this to override swap_symbol_in and swap_symbol_out. */
12189 const struct elf_size_info elf32_arm_size_info
=
12191 sizeof (Elf32_External_Ehdr
),
12192 sizeof (Elf32_External_Phdr
),
12193 sizeof (Elf32_External_Shdr
),
12194 sizeof (Elf32_External_Rel
),
12195 sizeof (Elf32_External_Rela
),
12196 sizeof (Elf32_External_Sym
),
12197 sizeof (Elf32_External_Dyn
),
12198 sizeof (Elf_External_Note
),
12202 ELFCLASS32
, EV_CURRENT
,
12203 bfd_elf32_write_out_phdrs
,
12204 bfd_elf32_write_shdrs_and_ehdr
,
12205 bfd_elf32_checksum_contents
,
12206 bfd_elf32_write_relocs
,
12207 elf32_arm_swap_symbol_in
,
12208 elf32_arm_swap_symbol_out
,
12209 bfd_elf32_slurp_reloc_table
,
12210 bfd_elf32_slurp_symbol_table
,
12211 bfd_elf32_swap_dyn_in
,
12212 bfd_elf32_swap_dyn_out
,
12213 bfd_elf32_swap_reloc_in
,
12214 bfd_elf32_swap_reloc_out
,
12215 bfd_elf32_swap_reloca_in
,
12216 bfd_elf32_swap_reloca_out
12219 #define ELF_ARCH bfd_arch_arm
12220 #define ELF_MACHINE_CODE EM_ARM
12221 #ifdef __QNXTARGET__
12222 #define ELF_MAXPAGESIZE 0x1000
12224 #define ELF_MAXPAGESIZE 0x8000
12226 #define ELF_MINPAGESIZE 0x1000
12227 #define ELF_COMMONPAGESIZE 0x1000
12229 #define bfd_elf32_mkobject elf32_arm_mkobject
12231 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12232 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
12233 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12234 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12235 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
12236 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
12237 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
12238 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
12239 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
12240 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
12241 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
12242 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
12243 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
12244 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
12246 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12247 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
12248 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
12249 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12250 #define elf_backend_check_relocs elf32_arm_check_relocs
12251 #define elf_backend_relocate_section elf32_arm_relocate_section
12252 #define elf_backend_write_section elf32_arm_write_section
12253 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
12254 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
12255 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12256 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12257 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
12258 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
12259 #define elf_backend_post_process_headers elf32_arm_post_process_headers
12260 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
12261 #define elf_backend_object_p elf32_arm_object_p
12262 #define elf_backend_section_flags elf32_arm_section_flags
12263 #define elf_backend_fake_sections elf32_arm_fake_sections
12264 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
12265 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12266 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
12267 #define elf_backend_symbol_processing elf32_arm_symbol_processing
12268 #define elf_backend_size_info elf32_arm_size_info
12269 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
12270 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12271 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12272 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12273 #define elf_backend_is_function_type elf32_arm_is_function_type
12275 #define elf_backend_can_refcount 1
12276 #define elf_backend_can_gc_sections 1
12277 #define elf_backend_plt_readonly 1
12278 #define elf_backend_want_got_plt 1
12279 #define elf_backend_want_plt_sym 0
12280 #define elf_backend_may_use_rel_p 1
12281 #define elf_backend_may_use_rela_p 0
12282 #define elf_backend_default_use_rela_p 0
12284 #define elf_backend_got_header_size 12
12286 #undef elf_backend_obj_attrs_vendor
12287 #define elf_backend_obj_attrs_vendor "aeabi"
12288 #undef elf_backend_obj_attrs_section
12289 #define elf_backend_obj_attrs_section ".ARM.attributes"
12290 #undef elf_backend_obj_attrs_arg_type
12291 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12292 #undef elf_backend_obj_attrs_section_type
12293 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
12295 #include "elf32-target.h"
12297 /* VxWorks Targets. */
12299 #undef TARGET_LITTLE_SYM
12300 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
12301 #undef TARGET_LITTLE_NAME
12302 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
12303 #undef TARGET_BIG_SYM
12304 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
12305 #undef TARGET_BIG_NAME
12306 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12308 /* Like elf32_arm_link_hash_table_create -- but overrides
12309 appropriately for VxWorks. */
12311 static struct bfd_link_hash_table
*
12312 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
12314 struct bfd_link_hash_table
*ret
;
12316 ret
= elf32_arm_link_hash_table_create (abfd
);
12319 struct elf32_arm_link_hash_table
*htab
12320 = (struct elf32_arm_link_hash_table
*) ret
;
12322 htab
->vxworks_p
= 1;
12328 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
12330 elf32_arm_final_write_processing (abfd
, linker
);
12331 elf_vxworks_final_write_processing (abfd
, linker
);
12335 #define elf32_bed elf32_arm_vxworks_bed
12337 #undef bfd_elf32_bfd_link_hash_table_create
12338 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12339 #undef elf_backend_add_symbol_hook
12340 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12341 #undef elf_backend_final_write_processing
12342 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12343 #undef elf_backend_emit_relocs
12344 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
12346 #undef elf_backend_may_use_rel_p
12347 #define elf_backend_may_use_rel_p 0
12348 #undef elf_backend_may_use_rela_p
12349 #define elf_backend_may_use_rela_p 1
12350 #undef elf_backend_default_use_rela_p
12351 #define elf_backend_default_use_rela_p 1
12352 #undef elf_backend_want_plt_sym
12353 #define elf_backend_want_plt_sym 1
12354 #undef ELF_MAXPAGESIZE
12355 #define ELF_MAXPAGESIZE 0x1000
12357 #include "elf32-target.h"
12360 /* Symbian OS Targets. */
12362 #undef TARGET_LITTLE_SYM
12363 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12364 #undef TARGET_LITTLE_NAME
12365 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12366 #undef TARGET_BIG_SYM
12367 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12368 #undef TARGET_BIG_NAME
12369 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12371 /* Like elf32_arm_link_hash_table_create -- but overrides
12372 appropriately for Symbian OS. */
12374 static struct bfd_link_hash_table
*
12375 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
12377 struct bfd_link_hash_table
*ret
;
12379 ret
= elf32_arm_link_hash_table_create (abfd
);
12382 struct elf32_arm_link_hash_table
*htab
12383 = (struct elf32_arm_link_hash_table
*)ret
;
12384 /* There is no PLT header for Symbian OS. */
12385 htab
->plt_header_size
= 0;
12386 /* The PLT entries are each one instruction and one word. */
12387 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
12388 htab
->symbian_p
= 1;
12389 /* Symbian uses armv5t or above, so use_blx is always true. */
12391 htab
->root
.is_relocatable_executable
= 1;
12396 static const struct bfd_elf_special_section
12397 elf32_arm_symbian_special_sections
[] =
12399 /* In a BPABI executable, the dynamic linking sections do not go in
12400 the loadable read-only segment. The post-linker may wish to
12401 refer to these sections, but they are not part of the final
12403 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
12404 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
12405 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
12406 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
12407 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
12408 /* These sections do not need to be writable as the SymbianOS
12409 postlinker will arrange things so that no dynamic relocation is
12411 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
12412 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
12413 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
12414 { NULL
, 0, 0, 0, 0 }
12418 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
12419 struct bfd_link_info
*link_info
)
12421 /* BPABI objects are never loaded directly by an OS kernel; they are
12422 processed by a postlinker first, into an OS-specific format. If
12423 the D_PAGED bit is set on the file, BFD will align segments on
12424 page boundaries, so that an OS can directly map the file. With
12425 BPABI objects, that just results in wasted space. In addition,
12426 because we clear the D_PAGED bit, map_sections_to_segments will
12427 recognize that the program headers should not be mapped into any
12428 loadable segment. */
12429 abfd
->flags
&= ~D_PAGED
;
12430 elf32_arm_begin_write_processing (abfd
, link_info
);
12434 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
12435 struct bfd_link_info
*info
)
12437 struct elf_segment_map
*m
;
12440 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12441 segment. However, because the .dynamic section is not marked
12442 with SEC_LOAD, the generic ELF code will not create such a
12444 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
12447 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
12448 if (m
->p_type
== PT_DYNAMIC
)
12453 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
12454 m
->next
= elf_tdata (abfd
)->segment_map
;
12455 elf_tdata (abfd
)->segment_map
= m
;
12459 /* Also call the generic arm routine. */
12460 return elf32_arm_modify_segment_map (abfd
, info
);
12463 /* Return address for Ith PLT stub in section PLT, for relocation REL
12464 or (bfd_vma) -1 if it should not be included. */
12467 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
12468 const arelent
*rel ATTRIBUTE_UNUSED
)
12470 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
12475 #define elf32_bed elf32_arm_symbian_bed
12477 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12478 will process them and then discard them. */
12479 #undef ELF_DYNAMIC_SEC_FLAGS
12480 #define ELF_DYNAMIC_SEC_FLAGS \
12481 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12483 #undef elf_backend_add_symbol_hook
12484 #undef elf_backend_emit_relocs
12486 #undef bfd_elf32_bfd_link_hash_table_create
12487 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12488 #undef elf_backend_special_sections
12489 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12490 #undef elf_backend_begin_write_processing
12491 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12492 #undef elf_backend_final_write_processing
12493 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12495 #undef elf_backend_modify_segment_map
12496 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12498 /* There is no .got section for BPABI objects, and hence no header. */
12499 #undef elf_backend_got_header_size
12500 #define elf_backend_got_header_size 0
12502 /* Similarly, there is no .got.plt section. */
12503 #undef elf_backend_want_got_plt
12504 #define elf_backend_want_got_plt 0
12506 #undef elf_backend_plt_sym_val
12507 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12509 #undef elf_backend_may_use_rel_p
12510 #define elf_backend_may_use_rel_p 1
12511 #undef elf_backend_may_use_rela_p
12512 #define elf_backend_may_use_rela_p 0
12513 #undef elf_backend_default_use_rela_p
12514 #define elf_backend_default_use_rela_p 0
12515 #undef elf_backend_want_plt_sym
12516 #define elf_backend_want_plt_sym 0
12517 #undef ELF_MAXPAGESIZE
12518 #define ELF_MAXPAGESIZE 0x8000
12520 #include "elf32-target.h"