1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
65 struct bfd_link_info
*link_info
,
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73 static reloc_howto_type elf32_arm_howto_table_1
[] =
76 HOWTO (R_ARM_NONE
, /* type */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
80 FALSE
, /* pc_relative */
82 complain_overflow_dont
,/* complain_on_overflow */
83 bfd_elf_generic_reloc
, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE
, /* partial_inplace */
88 FALSE
), /* pcrel_offset */
90 HOWTO (R_ARM_PC24
, /* type */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
94 TRUE
, /* pc_relative */
96 complain_overflow_signed
,/* complain_on_overflow */
97 bfd_elf_generic_reloc
, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE
, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE
), /* pcrel_offset */
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32
, /* type */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
109 FALSE
, /* pc_relative */
111 complain_overflow_bitfield
,/* complain_on_overflow */
112 bfd_elf_generic_reloc
, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE
, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE
), /* pcrel_offset */
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32
, /* type */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
124 TRUE
, /* pc_relative */
126 complain_overflow_bitfield
,/* complain_on_overflow */
127 bfd_elf_generic_reloc
, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE
, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE
), /* pcrel_offset */
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0
, /* type */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
139 TRUE
, /* pc_relative */
141 complain_overflow_dont
,/* complain_on_overflow */
142 bfd_elf_generic_reloc
, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE
, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE
), /* pcrel_offset */
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16
, /* type */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
154 FALSE
, /* pc_relative */
156 complain_overflow_bitfield
,/* complain_on_overflow */
157 bfd_elf_generic_reloc
, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE
, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE
), /* pcrel_offset */
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12
, /* type */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
169 FALSE
, /* pc_relative */
171 complain_overflow_bitfield
,/* complain_on_overflow */
172 bfd_elf_generic_reloc
, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE
, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE
), /* pcrel_offset */
179 HOWTO (R_ARM_THM_ABS5
, /* type */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
183 FALSE
, /* pc_relative */
185 complain_overflow_bitfield
,/* complain_on_overflow */
186 bfd_elf_generic_reloc
, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE
, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE
), /* pcrel_offset */
194 HOWTO (R_ARM_ABS8
, /* type */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
198 FALSE
, /* pc_relative */
200 complain_overflow_bitfield
,/* complain_on_overflow */
201 bfd_elf_generic_reloc
, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE
, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE
), /* pcrel_offset */
208 HOWTO (R_ARM_SBREL32
, /* type */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
212 FALSE
, /* pc_relative */
214 complain_overflow_dont
,/* complain_on_overflow */
215 bfd_elf_generic_reloc
, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE
, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE
), /* pcrel_offset */
222 HOWTO (R_ARM_THM_CALL
, /* type */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
226 TRUE
, /* pc_relative */
228 complain_overflow_signed
,/* complain_on_overflow */
229 bfd_elf_generic_reloc
, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE
, /* partial_inplace */
232 0x07ff2fff, /* src_mask */
233 0x07ff2fff, /* dst_mask */
234 TRUE
), /* pcrel_offset */
236 HOWTO (R_ARM_THM_PC8
, /* type */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
240 TRUE
, /* pc_relative */
242 complain_overflow_signed
,/* complain_on_overflow */
243 bfd_elf_generic_reloc
, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE
, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE
), /* pcrel_offset */
250 HOWTO (R_ARM_BREL_ADJ
, /* type */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
254 FALSE
, /* pc_relative */
256 complain_overflow_signed
,/* complain_on_overflow */
257 bfd_elf_generic_reloc
, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE
, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE
), /* pcrel_offset */
264 HOWTO (R_ARM_TLS_DESC
, /* type */
266 2, /* size (0 = byte, 1 = short, 2 = long) */
268 FALSE
, /* pc_relative */
270 complain_overflow_bitfield
,/* complain_on_overflow */
271 bfd_elf_generic_reloc
, /* special_function */
272 "R_ARM_TLS_DESC", /* name */
273 FALSE
, /* partial_inplace */
274 0xffffffff, /* src_mask */
275 0xffffffff, /* dst_mask */
276 FALSE
), /* pcrel_offset */
278 HOWTO (R_ARM_THM_SWI8
, /* type */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
282 FALSE
, /* pc_relative */
284 complain_overflow_signed
,/* complain_on_overflow */
285 bfd_elf_generic_reloc
, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE
, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE
), /* pcrel_offset */
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25
, /* type */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
297 TRUE
, /* pc_relative */
299 complain_overflow_signed
,/* complain_on_overflow */
300 bfd_elf_generic_reloc
, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE
, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE
), /* pcrel_offset */
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22
, /* type */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
312 TRUE
, /* pc_relative */
314 complain_overflow_signed
,/* complain_on_overflow */
315 bfd_elf_generic_reloc
, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE
, /* partial_inplace */
318 0x07ff2fff, /* src_mask */
319 0x07ff2fff, /* dst_mask */
320 TRUE
), /* pcrel_offset */
322 /* Dynamic TLS relocations. */
324 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE
, /* pc_relative */
330 complain_overflow_bitfield
,/* complain_on_overflow */
331 bfd_elf_generic_reloc
, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE
, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE
), /* pcrel_offset */
338 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE
, /* pc_relative */
344 complain_overflow_bitfield
,/* complain_on_overflow */
345 bfd_elf_generic_reloc
, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE
, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE
), /* pcrel_offset */
352 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE
, /* pc_relative */
358 complain_overflow_bitfield
,/* complain_on_overflow */
359 bfd_elf_generic_reloc
, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE
, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE
), /* pcrel_offset */
366 /* Relocs used in ARM Linux */
368 HOWTO (R_ARM_COPY
, /* type */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
372 FALSE
, /* pc_relative */
374 complain_overflow_bitfield
,/* complain_on_overflow */
375 bfd_elf_generic_reloc
, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE
, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE
), /* pcrel_offset */
382 HOWTO (R_ARM_GLOB_DAT
, /* type */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
386 FALSE
, /* pc_relative */
388 complain_overflow_bitfield
,/* complain_on_overflow */
389 bfd_elf_generic_reloc
, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE
, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE
), /* pcrel_offset */
396 HOWTO (R_ARM_JUMP_SLOT
, /* type */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
400 FALSE
, /* pc_relative */
402 complain_overflow_bitfield
,/* complain_on_overflow */
403 bfd_elf_generic_reloc
, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE
, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE
), /* pcrel_offset */
410 HOWTO (R_ARM_RELATIVE
, /* type */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
414 FALSE
, /* pc_relative */
416 complain_overflow_bitfield
,/* complain_on_overflow */
417 bfd_elf_generic_reloc
, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE
, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE
), /* pcrel_offset */
424 HOWTO (R_ARM_GOTOFF32
, /* type */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
428 FALSE
, /* pc_relative */
430 complain_overflow_bitfield
,/* complain_on_overflow */
431 bfd_elf_generic_reloc
, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE
, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE
), /* pcrel_offset */
438 HOWTO (R_ARM_GOTPC
, /* type */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
442 TRUE
, /* pc_relative */
444 complain_overflow_bitfield
,/* complain_on_overflow */
445 bfd_elf_generic_reloc
, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE
, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE
), /* pcrel_offset */
452 HOWTO (R_ARM_GOT32
, /* type */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE
, /* pc_relative */
458 complain_overflow_bitfield
,/* complain_on_overflow */
459 bfd_elf_generic_reloc
, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE
, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE
), /* pcrel_offset */
466 HOWTO (R_ARM_PLT32
, /* type */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
470 TRUE
, /* pc_relative */
472 complain_overflow_bitfield
,/* complain_on_overflow */
473 bfd_elf_generic_reloc
, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE
, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE
), /* pcrel_offset */
480 HOWTO (R_ARM_CALL
, /* type */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
484 TRUE
, /* pc_relative */
486 complain_overflow_signed
,/* complain_on_overflow */
487 bfd_elf_generic_reloc
, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE
, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE
), /* pcrel_offset */
494 HOWTO (R_ARM_JUMP24
, /* type */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
498 TRUE
, /* pc_relative */
500 complain_overflow_signed
,/* complain_on_overflow */
501 bfd_elf_generic_reloc
, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE
, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE
), /* pcrel_offset */
508 HOWTO (R_ARM_THM_JUMP24
, /* type */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
512 TRUE
, /* pc_relative */
514 complain_overflow_signed
,/* complain_on_overflow */
515 bfd_elf_generic_reloc
, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE
, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE
), /* pcrel_offset */
522 HOWTO (R_ARM_BASE_ABS
, /* type */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
526 FALSE
, /* pc_relative */
528 complain_overflow_dont
,/* complain_on_overflow */
529 bfd_elf_generic_reloc
, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE
, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE
), /* pcrel_offset */
536 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
540 TRUE
, /* pc_relative */
542 complain_overflow_dont
,/* complain_on_overflow */
543 bfd_elf_generic_reloc
, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE
, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE
), /* pcrel_offset */
550 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
554 TRUE
, /* pc_relative */
556 complain_overflow_dont
,/* complain_on_overflow */
557 bfd_elf_generic_reloc
, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE
, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE
), /* pcrel_offset */
564 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
568 TRUE
, /* pc_relative */
570 complain_overflow_dont
,/* complain_on_overflow */
571 bfd_elf_generic_reloc
, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE
, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE
), /* pcrel_offset */
578 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE
, /* pc_relative */
584 complain_overflow_dont
,/* complain_on_overflow */
585 bfd_elf_generic_reloc
, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE
, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE
), /* pcrel_offset */
592 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
596 FALSE
, /* pc_relative */
598 complain_overflow_dont
,/* complain_on_overflow */
599 bfd_elf_generic_reloc
, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE
, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE
), /* pcrel_offset */
606 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 FALSE
, /* pc_relative */
612 complain_overflow_dont
,/* complain_on_overflow */
613 bfd_elf_generic_reloc
, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE
, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE
), /* pcrel_offset */
620 HOWTO (R_ARM_TARGET1
, /* type */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
624 FALSE
, /* pc_relative */
626 complain_overflow_dont
,/* complain_on_overflow */
627 bfd_elf_generic_reloc
, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE
, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE
), /* pcrel_offset */
634 HOWTO (R_ARM_ROSEGREL32
, /* type */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
638 FALSE
, /* pc_relative */
640 complain_overflow_dont
,/* complain_on_overflow */
641 bfd_elf_generic_reloc
, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE
, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE
), /* pcrel_offset */
648 HOWTO (R_ARM_V4BX
, /* type */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
652 FALSE
, /* pc_relative */
654 complain_overflow_dont
,/* complain_on_overflow */
655 bfd_elf_generic_reloc
, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE
, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE
), /* pcrel_offset */
662 HOWTO (R_ARM_TARGET2
, /* type */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
666 FALSE
, /* pc_relative */
668 complain_overflow_signed
,/* complain_on_overflow */
669 bfd_elf_generic_reloc
, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE
, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE
), /* pcrel_offset */
676 HOWTO (R_ARM_PREL31
, /* type */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
680 TRUE
, /* pc_relative */
682 complain_overflow_signed
,/* complain_on_overflow */
683 bfd_elf_generic_reloc
, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE
, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE
), /* pcrel_offset */
690 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
694 FALSE
, /* pc_relative */
696 complain_overflow_dont
,/* complain_on_overflow */
697 bfd_elf_generic_reloc
, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE
, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE
), /* pcrel_offset */
704 HOWTO (R_ARM_MOVT_ABS
, /* type */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
708 FALSE
, /* pc_relative */
710 complain_overflow_bitfield
,/* complain_on_overflow */
711 bfd_elf_generic_reloc
, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE
, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE
), /* pcrel_offset */
718 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
722 TRUE
, /* pc_relative */
724 complain_overflow_dont
,/* complain_on_overflow */
725 bfd_elf_generic_reloc
, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE
, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE
), /* pcrel_offset */
732 HOWTO (R_ARM_MOVT_PREL
, /* type */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
736 TRUE
, /* pc_relative */
738 complain_overflow_bitfield
,/* complain_on_overflow */
739 bfd_elf_generic_reloc
, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE
, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE
), /* pcrel_offset */
746 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 FALSE
, /* pc_relative */
752 complain_overflow_dont
,/* complain_on_overflow */
753 bfd_elf_generic_reloc
, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE
, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE
), /* pcrel_offset */
760 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
764 FALSE
, /* pc_relative */
766 complain_overflow_bitfield
,/* complain_on_overflow */
767 bfd_elf_generic_reloc
, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE
, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE
), /* pcrel_offset */
774 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
778 TRUE
, /* pc_relative */
780 complain_overflow_dont
,/* complain_on_overflow */
781 bfd_elf_generic_reloc
, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE
, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE
), /* pcrel_offset */
788 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
792 TRUE
, /* pc_relative */
794 complain_overflow_bitfield
,/* complain_on_overflow */
795 bfd_elf_generic_reloc
, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE
, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE
), /* pcrel_offset */
802 HOWTO (R_ARM_THM_JUMP19
, /* type */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
806 TRUE
, /* pc_relative */
808 complain_overflow_signed
,/* complain_on_overflow */
809 bfd_elf_generic_reloc
, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE
, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE
), /* pcrel_offset */
816 HOWTO (R_ARM_THM_JUMP6
, /* type */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
820 TRUE
, /* pc_relative */
822 complain_overflow_unsigned
,/* complain_on_overflow */
823 bfd_elf_generic_reloc
, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE
, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE
), /* pcrel_offset */
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
833 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
837 TRUE
, /* pc_relative */
839 complain_overflow_dont
,/* complain_on_overflow */
840 bfd_elf_generic_reloc
, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE
, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE
), /* pcrel_offset */
847 HOWTO (R_ARM_THM_PC12
, /* type */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
851 TRUE
, /* pc_relative */
853 complain_overflow_dont
,/* complain_on_overflow */
854 bfd_elf_generic_reloc
, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE
, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE
), /* pcrel_offset */
861 HOWTO (R_ARM_ABS32_NOI
, /* type */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
865 FALSE
, /* pc_relative */
867 complain_overflow_dont
,/* complain_on_overflow */
868 bfd_elf_generic_reloc
, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE
, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE
), /* pcrel_offset */
875 HOWTO (R_ARM_REL32_NOI
, /* type */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
879 TRUE
, /* pc_relative */
881 complain_overflow_dont
,/* complain_on_overflow */
882 bfd_elf_generic_reloc
, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE
, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE
), /* pcrel_offset */
889 /* Group relocations. */
891 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
895 TRUE
, /* pc_relative */
897 complain_overflow_dont
,/* complain_on_overflow */
898 bfd_elf_generic_reloc
, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE
, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE
), /* pcrel_offset */
905 HOWTO (R_ARM_ALU_PC_G0
, /* type */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
909 TRUE
, /* pc_relative */
911 complain_overflow_dont
,/* complain_on_overflow */
912 bfd_elf_generic_reloc
, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE
, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE
), /* pcrel_offset */
919 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
923 TRUE
, /* pc_relative */
925 complain_overflow_dont
,/* complain_on_overflow */
926 bfd_elf_generic_reloc
, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE
, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE
), /* pcrel_offset */
933 HOWTO (R_ARM_ALU_PC_G1
, /* type */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
937 TRUE
, /* pc_relative */
939 complain_overflow_dont
,/* complain_on_overflow */
940 bfd_elf_generic_reloc
, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE
, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE
), /* pcrel_offset */
947 HOWTO (R_ARM_ALU_PC_G2
, /* type */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
951 TRUE
, /* pc_relative */
953 complain_overflow_dont
,/* complain_on_overflow */
954 bfd_elf_generic_reloc
, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE
, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE
), /* pcrel_offset */
961 HOWTO (R_ARM_LDR_PC_G1
, /* type */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
965 TRUE
, /* pc_relative */
967 complain_overflow_dont
,/* complain_on_overflow */
968 bfd_elf_generic_reloc
, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE
, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE
), /* pcrel_offset */
975 HOWTO (R_ARM_LDR_PC_G2
, /* type */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
979 TRUE
, /* pc_relative */
981 complain_overflow_dont
,/* complain_on_overflow */
982 bfd_elf_generic_reloc
, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE
, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE
), /* pcrel_offset */
989 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
993 TRUE
, /* pc_relative */
995 complain_overflow_dont
,/* complain_on_overflow */
996 bfd_elf_generic_reloc
, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE
, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE
), /* pcrel_offset */
1003 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1007 TRUE
, /* pc_relative */
1009 complain_overflow_dont
,/* complain_on_overflow */
1010 bfd_elf_generic_reloc
, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE
, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE
), /* pcrel_offset */
1017 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1021 TRUE
, /* pc_relative */
1023 complain_overflow_dont
,/* complain_on_overflow */
1024 bfd_elf_generic_reloc
, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE
, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE
), /* pcrel_offset */
1031 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 TRUE
, /* pc_relative */
1037 complain_overflow_dont
,/* complain_on_overflow */
1038 bfd_elf_generic_reloc
, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE
, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE
), /* pcrel_offset */
1045 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 TRUE
, /* pc_relative */
1051 complain_overflow_dont
,/* complain_on_overflow */
1052 bfd_elf_generic_reloc
, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE
, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE
), /* pcrel_offset */
1059 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 TRUE
, /* pc_relative */
1065 complain_overflow_dont
,/* complain_on_overflow */
1066 bfd_elf_generic_reloc
, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE
, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE
), /* pcrel_offset */
1073 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 TRUE
, /* pc_relative */
1079 complain_overflow_dont
,/* complain_on_overflow */
1080 bfd_elf_generic_reloc
, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE
, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE
), /* pcrel_offset */
1087 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 TRUE
, /* pc_relative */
1093 complain_overflow_dont
,/* complain_on_overflow */
1094 bfd_elf_generic_reloc
, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE
, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE
), /* pcrel_offset */
1101 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 TRUE
, /* pc_relative */
1107 complain_overflow_dont
,/* complain_on_overflow */
1108 bfd_elf_generic_reloc
, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE
, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE
), /* pcrel_offset */
1115 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 TRUE
, /* pc_relative */
1121 complain_overflow_dont
,/* complain_on_overflow */
1122 bfd_elf_generic_reloc
, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE
, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE
), /* pcrel_offset */
1129 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1133 TRUE
, /* pc_relative */
1135 complain_overflow_dont
,/* complain_on_overflow */
1136 bfd_elf_generic_reloc
, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE
, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE
), /* pcrel_offset */
1143 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1147 TRUE
, /* pc_relative */
1149 complain_overflow_dont
,/* complain_on_overflow */
1150 bfd_elf_generic_reloc
, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE
, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE
), /* pcrel_offset */
1157 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1161 TRUE
, /* pc_relative */
1163 complain_overflow_dont
,/* complain_on_overflow */
1164 bfd_elf_generic_reloc
, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE
, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE
), /* pcrel_offset */
1171 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 TRUE
, /* pc_relative */
1177 complain_overflow_dont
,/* complain_on_overflow */
1178 bfd_elf_generic_reloc
, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE
, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE
), /* pcrel_offset */
1185 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1189 TRUE
, /* pc_relative */
1191 complain_overflow_dont
,/* complain_on_overflow */
1192 bfd_elf_generic_reloc
, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE
, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE
), /* pcrel_offset */
1199 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1203 TRUE
, /* pc_relative */
1205 complain_overflow_dont
,/* complain_on_overflow */
1206 bfd_elf_generic_reloc
, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE
, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE
), /* pcrel_offset */
1213 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 TRUE
, /* pc_relative */
1219 complain_overflow_dont
,/* complain_on_overflow */
1220 bfd_elf_generic_reloc
, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE
, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE
), /* pcrel_offset */
1227 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1231 TRUE
, /* pc_relative */
1233 complain_overflow_dont
,/* complain_on_overflow */
1234 bfd_elf_generic_reloc
, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE
, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE
), /* pcrel_offset */
1241 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1245 TRUE
, /* pc_relative */
1247 complain_overflow_dont
,/* complain_on_overflow */
1248 bfd_elf_generic_reloc
, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE
, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE
), /* pcrel_offset */
1255 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1259 TRUE
, /* pc_relative */
1261 complain_overflow_dont
,/* complain_on_overflow */
1262 bfd_elf_generic_reloc
, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE
, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE
), /* pcrel_offset */
1269 /* End of group relocations. */
1271 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1275 FALSE
, /* pc_relative */
1277 complain_overflow_dont
,/* complain_on_overflow */
1278 bfd_elf_generic_reloc
, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE
, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE
), /* pcrel_offset */
1285 HOWTO (R_ARM_MOVT_BREL
, /* type */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1289 FALSE
, /* pc_relative */
1291 complain_overflow_bitfield
,/* complain_on_overflow */
1292 bfd_elf_generic_reloc
, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE
, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE
), /* pcrel_offset */
1299 HOWTO (R_ARM_MOVW_BREL
, /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 FALSE
, /* pc_relative */
1305 complain_overflow_dont
,/* complain_on_overflow */
1306 bfd_elf_generic_reloc
, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE
, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE
), /* pcrel_offset */
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 FALSE
, /* pc_relative */
1319 complain_overflow_dont
,/* complain_on_overflow */
1320 bfd_elf_generic_reloc
, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE
, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE
), /* pcrel_offset */
1327 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 FALSE
, /* pc_relative */
1333 complain_overflow_bitfield
,/* complain_on_overflow */
1334 bfd_elf_generic_reloc
, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE
, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE
), /* pcrel_offset */
1341 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1345 FALSE
, /* pc_relative */
1347 complain_overflow_dont
,/* complain_on_overflow */
1348 bfd_elf_generic_reloc
, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE
, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE
), /* pcrel_offset */
1355 HOWTO (R_ARM_TLS_GOTDESC
, /* type */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 FALSE
, /* pc_relative */
1361 complain_overflow_bitfield
,/* complain_on_overflow */
1362 NULL
, /* special_function */
1363 "R_ARM_TLS_GOTDESC", /* name */
1364 TRUE
, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE
), /* pcrel_offset */
1369 HOWTO (R_ARM_TLS_CALL
, /* type */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 FALSE
, /* pc_relative */
1375 complain_overflow_dont
,/* complain_on_overflow */
1376 bfd_elf_generic_reloc
, /* special_function */
1377 "R_ARM_TLS_CALL", /* name */
1378 FALSE
, /* partial_inplace */
1379 0x00ffffff, /* src_mask */
1380 0x00ffffff, /* dst_mask */
1381 FALSE
), /* pcrel_offset */
1383 HOWTO (R_ARM_TLS_DESCSEQ
, /* type */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 FALSE
, /* pc_relative */
1389 complain_overflow_bitfield
,/* complain_on_overflow */
1390 bfd_elf_generic_reloc
, /* special_function */
1391 "R_ARM_TLS_DESCSEQ", /* name */
1392 FALSE
, /* partial_inplace */
1393 0x00000000, /* src_mask */
1394 0x00000000, /* dst_mask */
1395 FALSE
), /* pcrel_offset */
1397 HOWTO (R_ARM_THM_TLS_CALL
, /* type */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1401 FALSE
, /* pc_relative */
1403 complain_overflow_dont
,/* complain_on_overflow */
1404 bfd_elf_generic_reloc
, /* special_function */
1405 "R_ARM_THM_TLS_CALL", /* name */
1406 FALSE
, /* partial_inplace */
1407 0x07ff07ff, /* src_mask */
1408 0x07ff07ff, /* dst_mask */
1409 FALSE
), /* pcrel_offset */
1411 HOWTO (R_ARM_PLT32_ABS
, /* type */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1415 FALSE
, /* pc_relative */
1417 complain_overflow_dont
,/* complain_on_overflow */
1418 bfd_elf_generic_reloc
, /* special_function */
1419 "R_ARM_PLT32_ABS", /* name */
1420 FALSE
, /* partial_inplace */
1421 0xffffffff, /* src_mask */
1422 0xffffffff, /* dst_mask */
1423 FALSE
), /* pcrel_offset */
1425 HOWTO (R_ARM_GOT_ABS
, /* type */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1429 FALSE
, /* pc_relative */
1431 complain_overflow_dont
,/* complain_on_overflow */
1432 bfd_elf_generic_reloc
, /* special_function */
1433 "R_ARM_GOT_ABS", /* name */
1434 FALSE
, /* partial_inplace */
1435 0xffffffff, /* src_mask */
1436 0xffffffff, /* dst_mask */
1437 FALSE
), /* pcrel_offset */
1439 HOWTO (R_ARM_GOT_PREL
, /* type */
1441 2, /* size (0 = byte, 1 = short, 2 = long) */
1443 TRUE
, /* pc_relative */
1445 complain_overflow_dont
, /* complain_on_overflow */
1446 bfd_elf_generic_reloc
, /* special_function */
1447 "R_ARM_GOT_PREL", /* name */
1448 FALSE
, /* partial_inplace */
1449 0xffffffff, /* src_mask */
1450 0xffffffff, /* dst_mask */
1451 TRUE
), /* pcrel_offset */
1453 HOWTO (R_ARM_GOT_BREL12
, /* type */
1455 2, /* size (0 = byte, 1 = short, 2 = long) */
1457 FALSE
, /* pc_relative */
1459 complain_overflow_bitfield
,/* complain_on_overflow */
1460 bfd_elf_generic_reloc
, /* special_function */
1461 "R_ARM_GOT_BREL12", /* name */
1462 FALSE
, /* partial_inplace */
1463 0x00000fff, /* src_mask */
1464 0x00000fff, /* dst_mask */
1465 FALSE
), /* pcrel_offset */
1467 HOWTO (R_ARM_GOTOFF12
, /* type */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1471 FALSE
, /* pc_relative */
1473 complain_overflow_bitfield
,/* complain_on_overflow */
1474 bfd_elf_generic_reloc
, /* special_function */
1475 "R_ARM_GOTOFF12", /* name */
1476 FALSE
, /* partial_inplace */
1477 0x00000fff, /* src_mask */
1478 0x00000fff, /* dst_mask */
1479 FALSE
), /* pcrel_offset */
1481 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1483 /* GNU extension to record C++ vtable member usage */
1484 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1486 2, /* size (0 = byte, 1 = short, 2 = long) */
1488 FALSE
, /* pc_relative */
1490 complain_overflow_dont
, /* complain_on_overflow */
1491 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1492 "R_ARM_GNU_VTENTRY", /* name */
1493 FALSE
, /* partial_inplace */
1496 FALSE
), /* pcrel_offset */
1498 /* GNU extension to record C++ vtable hierarchy */
1499 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 FALSE
, /* pc_relative */
1505 complain_overflow_dont
, /* complain_on_overflow */
1506 NULL
, /* special_function */
1507 "R_ARM_GNU_VTINHERIT", /* name */
1508 FALSE
, /* partial_inplace */
1511 FALSE
), /* pcrel_offset */
1513 HOWTO (R_ARM_THM_JUMP11
, /* type */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1517 TRUE
, /* pc_relative */
1519 complain_overflow_signed
, /* complain_on_overflow */
1520 bfd_elf_generic_reloc
, /* special_function */
1521 "R_ARM_THM_JUMP11", /* name */
1522 FALSE
, /* partial_inplace */
1523 0x000007ff, /* src_mask */
1524 0x000007ff, /* dst_mask */
1525 TRUE
), /* pcrel_offset */
1527 HOWTO (R_ARM_THM_JUMP8
, /* type */
1529 1, /* size (0 = byte, 1 = short, 2 = long) */
1531 TRUE
, /* pc_relative */
1533 complain_overflow_signed
, /* complain_on_overflow */
1534 bfd_elf_generic_reloc
, /* special_function */
1535 "R_ARM_THM_JUMP8", /* name */
1536 FALSE
, /* partial_inplace */
1537 0x000000ff, /* src_mask */
1538 0x000000ff, /* dst_mask */
1539 TRUE
), /* pcrel_offset */
1541 /* TLS relocations */
1542 HOWTO (R_ARM_TLS_GD32
, /* type */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 FALSE
, /* pc_relative */
1548 complain_overflow_bitfield
,/* complain_on_overflow */
1549 NULL
, /* special_function */
1550 "R_ARM_TLS_GD32", /* name */
1551 TRUE
, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE
), /* pcrel_offset */
1556 HOWTO (R_ARM_TLS_LDM32
, /* type */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 FALSE
, /* pc_relative */
1562 complain_overflow_bitfield
,/* complain_on_overflow */
1563 bfd_elf_generic_reloc
, /* special_function */
1564 "R_ARM_TLS_LDM32", /* name */
1565 TRUE
, /* partial_inplace */
1566 0xffffffff, /* src_mask */
1567 0xffffffff, /* dst_mask */
1568 FALSE
), /* pcrel_offset */
1570 HOWTO (R_ARM_TLS_LDO32
, /* type */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1574 FALSE
, /* pc_relative */
1576 complain_overflow_bitfield
,/* complain_on_overflow */
1577 bfd_elf_generic_reloc
, /* special_function */
1578 "R_ARM_TLS_LDO32", /* name */
1579 TRUE
, /* partial_inplace */
1580 0xffffffff, /* src_mask */
1581 0xffffffff, /* dst_mask */
1582 FALSE
), /* pcrel_offset */
1584 HOWTO (R_ARM_TLS_IE32
, /* type */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1588 FALSE
, /* pc_relative */
1590 complain_overflow_bitfield
,/* complain_on_overflow */
1591 NULL
, /* special_function */
1592 "R_ARM_TLS_IE32", /* name */
1593 TRUE
, /* partial_inplace */
1594 0xffffffff, /* src_mask */
1595 0xffffffff, /* dst_mask */
1596 FALSE
), /* pcrel_offset */
1598 HOWTO (R_ARM_TLS_LE32
, /* type */
1600 2, /* size (0 = byte, 1 = short, 2 = long) */
1602 FALSE
, /* pc_relative */
1604 complain_overflow_bitfield
,/* complain_on_overflow */
1605 bfd_elf_generic_reloc
, /* special_function */
1606 "R_ARM_TLS_LE32", /* name */
1607 TRUE
, /* partial_inplace */
1608 0xffffffff, /* src_mask */
1609 0xffffffff, /* dst_mask */
1610 FALSE
), /* pcrel_offset */
1612 HOWTO (R_ARM_TLS_LDO12
, /* type */
1614 2, /* size (0 = byte, 1 = short, 2 = long) */
1616 FALSE
, /* pc_relative */
1618 complain_overflow_bitfield
,/* complain_on_overflow */
1619 bfd_elf_generic_reloc
, /* special_function */
1620 "R_ARM_TLS_LDO12", /* name */
1621 FALSE
, /* partial_inplace */
1622 0x00000fff, /* src_mask */
1623 0x00000fff, /* dst_mask */
1624 FALSE
), /* pcrel_offset */
1626 HOWTO (R_ARM_TLS_LE12
, /* type */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1630 FALSE
, /* pc_relative */
1632 complain_overflow_bitfield
,/* complain_on_overflow */
1633 bfd_elf_generic_reloc
, /* special_function */
1634 "R_ARM_TLS_LE12", /* name */
1635 FALSE
, /* partial_inplace */
1636 0x00000fff, /* src_mask */
1637 0x00000fff, /* dst_mask */
1638 FALSE
), /* pcrel_offset */
1640 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1642 2, /* size (0 = byte, 1 = short, 2 = long) */
1644 FALSE
, /* pc_relative */
1646 complain_overflow_bitfield
,/* complain_on_overflow */
1647 bfd_elf_generic_reloc
, /* special_function */
1648 "R_ARM_TLS_IE12GP", /* name */
1649 FALSE
, /* partial_inplace */
1650 0x00000fff, /* src_mask */
1651 0x00000fff, /* dst_mask */
1652 FALSE
), /* pcrel_offset */
1654 /* 112-127 private relocations. */
1672 /* R_ARM_ME_TOO, obsolete. */
1675 HOWTO (R_ARM_THM_TLS_DESCSEQ
, /* type */
1677 1, /* size (0 = byte, 1 = short, 2 = long) */
1679 FALSE
, /* pc_relative */
1681 complain_overflow_bitfield
,/* complain_on_overflow */
1682 bfd_elf_generic_reloc
, /* special_function */
1683 "R_ARM_THM_TLS_DESCSEQ",/* name */
1684 FALSE
, /* partial_inplace */
1685 0x00000000, /* src_mask */
1686 0x00000000, /* dst_mask */
1687 FALSE
), /* pcrel_offset */
1691 static reloc_howto_type elf32_arm_howto_table_2
[1] =
1693 HOWTO (R_ARM_IRELATIVE
, /* type */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1697 FALSE
, /* pc_relative */
1699 complain_overflow_bitfield
,/* complain_on_overflow */
1700 bfd_elf_generic_reloc
, /* special_function */
1701 "R_ARM_IRELATIVE", /* name */
1702 TRUE
, /* partial_inplace */
1703 0xffffffff, /* src_mask */
1704 0xffffffff, /* dst_mask */
1705 FALSE
) /* pcrel_offset */
1708 /* 249-255 extended, currently unused, relocations: */
1709 static reloc_howto_type elf32_arm_howto_table_3
[4] =
1711 HOWTO (R_ARM_RREL32
, /* type */
1713 0, /* size (0 = byte, 1 = short, 2 = long) */
1715 FALSE
, /* pc_relative */
1717 complain_overflow_dont
,/* complain_on_overflow */
1718 bfd_elf_generic_reloc
, /* special_function */
1719 "R_ARM_RREL32", /* name */
1720 FALSE
, /* partial_inplace */
1723 FALSE
), /* pcrel_offset */
1725 HOWTO (R_ARM_RABS32
, /* type */
1727 0, /* size (0 = byte, 1 = short, 2 = long) */
1729 FALSE
, /* pc_relative */
1731 complain_overflow_dont
,/* complain_on_overflow */
1732 bfd_elf_generic_reloc
, /* special_function */
1733 "R_ARM_RABS32", /* name */
1734 FALSE
, /* partial_inplace */
1737 FALSE
), /* pcrel_offset */
1739 HOWTO (R_ARM_RPC24
, /* type */
1741 0, /* size (0 = byte, 1 = short, 2 = long) */
1743 FALSE
, /* pc_relative */
1745 complain_overflow_dont
,/* complain_on_overflow */
1746 bfd_elf_generic_reloc
, /* special_function */
1747 "R_ARM_RPC24", /* name */
1748 FALSE
, /* partial_inplace */
1751 FALSE
), /* pcrel_offset */
1753 HOWTO (R_ARM_RBASE
, /* type */
1755 0, /* size (0 = byte, 1 = short, 2 = long) */
1757 FALSE
, /* pc_relative */
1759 complain_overflow_dont
,/* complain_on_overflow */
1760 bfd_elf_generic_reloc
, /* special_function */
1761 "R_ARM_RBASE", /* name */
1762 FALSE
, /* partial_inplace */
1765 FALSE
) /* pcrel_offset */
1768 static reloc_howto_type
*
1769 elf32_arm_howto_from_type (unsigned int r_type
)
1771 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1772 return &elf32_arm_howto_table_1
[r_type
];
1774 if (r_type
== R_ARM_IRELATIVE
)
1775 return &elf32_arm_howto_table_2
[r_type
- R_ARM_IRELATIVE
];
1777 if (r_type
>= R_ARM_RREL32
1778 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_3
))
1779 return &elf32_arm_howto_table_3
[r_type
- R_ARM_RREL32
];
1785 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1786 Elf_Internal_Rela
* elf_reloc
)
1788 unsigned int r_type
;
1790 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1791 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1794 struct elf32_arm_reloc_map
1796 bfd_reloc_code_real_type bfd_reloc_val
;
1797 unsigned char elf_reloc_val
;
1800 /* All entries in this list must also be present in elf32_arm_howto_table. */
1801 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1803 {BFD_RELOC_NONE
, R_ARM_NONE
},
1804 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1805 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1806 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1807 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1808 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1809 {BFD_RELOC_32
, R_ARM_ABS32
},
1810 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1811 {BFD_RELOC_8
, R_ARM_ABS8
},
1812 {BFD_RELOC_16
, R_ARM_ABS16
},
1813 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1814 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1815 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1816 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1817 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1818 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1821 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1822 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1823 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1824 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1825 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1826 {BFD_RELOC_ARM_GOT_PREL
, R_ARM_GOT_PREL
},
1827 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1828 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1829 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1830 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1831 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1832 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1833 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1834 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1835 {BFD_RELOC_ARM_TLS_GOTDESC
, R_ARM_TLS_GOTDESC
},
1836 {BFD_RELOC_ARM_TLS_CALL
, R_ARM_TLS_CALL
},
1837 {BFD_RELOC_ARM_THM_TLS_CALL
, R_ARM_THM_TLS_CALL
},
1838 {BFD_RELOC_ARM_TLS_DESCSEQ
, R_ARM_TLS_DESCSEQ
},
1839 {BFD_RELOC_ARM_THM_TLS_DESCSEQ
, R_ARM_THM_TLS_DESCSEQ
},
1840 {BFD_RELOC_ARM_TLS_DESC
, R_ARM_TLS_DESC
},
1841 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1842 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1843 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1844 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1845 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1846 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1847 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1848 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1849 {BFD_RELOC_ARM_IRELATIVE
, R_ARM_IRELATIVE
},
1850 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1851 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1852 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1853 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1854 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1855 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1856 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1857 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1858 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1859 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1860 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1861 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1862 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1863 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1864 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1865 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1866 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1867 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1868 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1869 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1870 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1871 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1872 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1873 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1874 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1875 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1876 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1877 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1878 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1879 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1880 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1881 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1882 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1883 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1884 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1885 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1886 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1887 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1888 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1891 static reloc_howto_type
*
1892 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1893 bfd_reloc_code_real_type code
)
1897 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1898 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1899 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1904 static reloc_howto_type
*
1905 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1910 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1911 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1912 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1913 return &elf32_arm_howto_table_1
[i
];
1915 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1916 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1917 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1918 return &elf32_arm_howto_table_2
[i
];
1920 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_3
); i
++)
1921 if (elf32_arm_howto_table_3
[i
].name
!= NULL
1922 && strcasecmp (elf32_arm_howto_table_3
[i
].name
, r_name
) == 0)
1923 return &elf32_arm_howto_table_3
[i
];
1928 /* Support for core dump NOTE sections. */
1931 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1936 switch (note
->descsz
)
1941 case 148: /* Linux/ARM 32-bit. */
1943 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1946 elf_tdata (abfd
)->core_lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1955 /* Make a ".reg/999" section. */
1956 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1957 size
, note
->descpos
+ offset
);
1961 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1963 switch (note
->descsz
)
1968 case 124: /* Linux/ARM elf_prpsinfo. */
1969 elf_tdata (abfd
)->core_pid
1970 = bfd_get_32 (abfd
, note
->descdata
+ 12);
1971 elf_tdata (abfd
)->core_program
1972 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1973 elf_tdata (abfd
)->core_command
1974 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1977 /* Note that for some reason, a spurious space is tacked
1978 onto the end of the args in some (at least one anyway)
1979 implementations, so strip it off if it exists. */
1981 char *command
= elf_tdata (abfd
)->core_command
;
1982 int n
= strlen (command
);
1984 if (0 < n
&& command
[n
- 1] == ' ')
1985 command
[n
- 1] = '\0';
1992 elf32_arm_nabi_write_core_note (bfd
*abfd
, char *buf
, int *bufsiz
,
2005 va_start (ap
, note_type
);
2006 memset (data
, 0, sizeof (data
));
2007 strncpy (data
+ 28, va_arg (ap
, const char *), 16);
2008 strncpy (data
+ 44, va_arg (ap
, const char *), 80);
2011 return elfcore_write_note (abfd
, buf
, bufsiz
,
2012 "CORE", note_type
, data
, sizeof (data
));
2023 va_start (ap
, note_type
);
2024 memset (data
, 0, sizeof (data
));
2025 pid
= va_arg (ap
, long);
2026 bfd_put_32 (abfd
, pid
, data
+ 24);
2027 cursig
= va_arg (ap
, int);
2028 bfd_put_16 (abfd
, cursig
, data
+ 12);
2029 greg
= va_arg (ap
, const void *);
2030 memcpy (data
+ 72, greg
, 72);
2033 return elfcore_write_note (abfd
, buf
, bufsiz
,
2034 "CORE", note_type
, data
, sizeof (data
));
2039 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
2040 #define TARGET_LITTLE_NAME "elf32-littlearm"
2041 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
2042 #define TARGET_BIG_NAME "elf32-bigarm"
2044 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2045 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2046 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2048 typedef unsigned long int insn32
;
2049 typedef unsigned short int insn16
;
2051 /* In lieu of proper flags, assume all EABIv4 or later objects are
2053 #define INTERWORK_FLAG(abfd) \
2054 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2055 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2056 || ((abfd)->flags & BFD_LINKER_CREATED))
2058 /* The linker script knows the section names for placement.
2059 The entry_names are used to do simple name mangling on the stubs.
2060 Given a function name, and its type, the stub can be found. The
2061 name can be changed. The only requirement is the %s be present. */
2062 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2063 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2065 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2066 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2068 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2069 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2071 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2072 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2074 #define STUB_ENTRY_NAME "__%s_veneer"
2076 /* The name of the dynamic interpreter. This is put in the .interp
2078 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2080 static const unsigned long tls_trampoline
[] =
2082 0xe08e0000, /* add r0, lr, r0 */
2083 0xe5901004, /* ldr r1, [r0,#4] */
2084 0xe12fff11, /* bx r1 */
2087 static const unsigned long dl_tlsdesc_lazy_trampoline
[] =
2089 0xe52d2004, /* push {r2} */
2090 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2091 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2092 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2093 0xe081100f, /* 2: add r1, pc */
2094 0xe12fff12, /* bx r2 */
2095 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2096 + dl_tlsdesc_lazy_resolver(GOT) */
2097 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2100 #ifdef FOUR_WORD_PLT
2102 /* The first entry in a procedure linkage table looks like
2103 this. It is set up so that any shared library function that is
2104 called before the relocation has been set up calls the dynamic
2106 static const bfd_vma elf32_arm_plt0_entry
[] =
2108 0xe52de004, /* str lr, [sp, #-4]! */
2109 0xe59fe010, /* ldr lr, [pc, #16] */
2110 0xe08fe00e, /* add lr, pc, lr */
2111 0xe5bef008, /* ldr pc, [lr, #8]! */
2114 /* Subsequent entries in a procedure linkage table look like
2116 static const bfd_vma elf32_arm_plt_entry
[] =
2118 0xe28fc600, /* add ip, pc, #NN */
2119 0xe28cca00, /* add ip, ip, #NN */
2120 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2121 0x00000000, /* unused */
2126 /* The first entry in a procedure linkage table looks like
2127 this. It is set up so that any shared library function that is
2128 called before the relocation has been set up calls the dynamic
2130 static const bfd_vma elf32_arm_plt0_entry
[] =
2132 0xe52de004, /* str lr, [sp, #-4]! */
2133 0xe59fe004, /* ldr lr, [pc, #4] */
2134 0xe08fe00e, /* add lr, pc, lr */
2135 0xe5bef008, /* ldr pc, [lr, #8]! */
2136 0x00000000, /* &GOT[0] - . */
2139 /* Subsequent entries in a procedure linkage table look like
2141 static const bfd_vma elf32_arm_plt_entry
[] =
2143 0xe28fc600, /* add ip, pc, #0xNN00000 */
2144 0xe28cca00, /* add ip, ip, #0xNN000 */
2145 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2150 /* The format of the first entry in the procedure linkage table
2151 for a VxWorks executable. */
2152 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
2154 0xe52dc008, /* str ip,[sp,#-8]! */
2155 0xe59fc000, /* ldr ip,[pc] */
2156 0xe59cf008, /* ldr pc,[ip,#8] */
2157 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2160 /* The format of subsequent entries in a VxWorks executable. */
2161 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
2163 0xe59fc000, /* ldr ip,[pc] */
2164 0xe59cf000, /* ldr pc,[ip] */
2165 0x00000000, /* .long @got */
2166 0xe59fc000, /* ldr ip,[pc] */
2167 0xea000000, /* b _PLT */
2168 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2171 /* The format of entries in a VxWorks shared library. */
2172 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
2174 0xe59fc000, /* ldr ip,[pc] */
2175 0xe79cf009, /* ldr pc,[ip,r9] */
2176 0x00000000, /* .long @got */
2177 0xe59fc000, /* ldr ip,[pc] */
2178 0xe599f008, /* ldr pc,[r9,#8] */
2179 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2182 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2183 #define PLT_THUMB_STUB_SIZE 4
2184 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2190 /* The entries in a PLT when using a DLL-based target with multiple
2192 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2194 0xe51ff004, /* ldr pc, [pc, #-4] */
2195 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2198 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2199 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2200 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2201 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2202 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2203 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2213 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2214 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2215 is inserted in arm_build_one_stub(). */
2216 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2217 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2218 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2219 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2220 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2221 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2226 enum stub_insn_type type
;
2227 unsigned int r_type
;
2231 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2232 to reach the stub if necessary. */
2233 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2235 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2236 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2239 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2241 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2243 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2244 ARM_INSN(0xe12fff1c), /* bx ip */
2245 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2248 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2249 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2251 THUMB16_INSN(0xb401), /* push {r0} */
2252 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2253 THUMB16_INSN(0x4684), /* mov ip, r0 */
2254 THUMB16_INSN(0xbc01), /* pop {r0} */
2255 THUMB16_INSN(0x4760), /* bx ip */
2256 THUMB16_INSN(0xbf00), /* nop */
2257 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2260 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2262 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2264 THUMB16_INSN(0x4778), /* bx pc */
2265 THUMB16_INSN(0x46c0), /* nop */
2266 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2267 ARM_INSN(0xe12fff1c), /* bx ip */
2268 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2271 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2273 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2275 THUMB16_INSN(0x4778), /* bx pc */
2276 THUMB16_INSN(0x46c0), /* nop */
2277 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2278 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2281 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2282 one, when the destination is close enough. */
2283 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2285 THUMB16_INSN(0x4778), /* bx pc */
2286 THUMB16_INSN(0x46c0), /* nop */
2287 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2290 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2291 blx to reach the stub if necessary. */
2292 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2294 ARM_INSN(0xe59fc000), /* ldr ip, [pc] */
2295 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2296 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2299 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2300 blx to reach the stub if necessary. We can not add into pc;
2301 it is not guaranteed to mode switch (different in ARMv6 and
2303 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2305 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2306 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2307 ARM_INSN(0xe12fff1c), /* bx ip */
2308 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2311 /* V4T ARM -> ARM long branch stub, PIC. */
2312 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2314 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2315 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2316 ARM_INSN(0xe12fff1c), /* bx ip */
2317 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2320 /* V4T Thumb -> ARM long branch stub, PIC. */
2321 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2323 THUMB16_INSN(0x4778), /* bx pc */
2324 THUMB16_INSN(0x46c0), /* nop */
2325 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2326 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2327 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2330 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2332 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2334 THUMB16_INSN(0xb401), /* push {r0} */
2335 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2336 THUMB16_INSN(0x46fc), /* mov ip, pc */
2337 THUMB16_INSN(0x4484), /* add ip, r0 */
2338 THUMB16_INSN(0xbc01), /* pop {r0} */
2339 THUMB16_INSN(0x4760), /* bx ip */
2340 DATA_WORD(0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2343 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2345 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2347 THUMB16_INSN(0x4778), /* bx pc */
2348 THUMB16_INSN(0x46c0), /* nop */
2349 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2350 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2351 ARM_INSN(0xe12fff1c), /* bx ip */
2352 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2355 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2356 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2357 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic
[] =
2359 ARM_INSN(0xe59f1000), /* ldr r1, [pc] */
2360 ARM_INSN(0xe08ff001), /* add pc, pc, r1 */
2361 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2364 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2365 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2366 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic
[] =
2368 THUMB16_INSN(0x4778), /* bx pc */
2369 THUMB16_INSN(0x46c0), /* nop */
2370 ARM_INSN(0xe59f1000), /* ldr r1, [pc, #0] */
2371 ARM_INSN(0xe081f00f), /* add pc, r1, pc */
2372 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2375 /* Cortex-A8 erratum-workaround stubs. */
2377 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2378 can't use a conditional branch to reach this stub). */
2380 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2382 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2383 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2384 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2387 /* Stub used for b.w and bl.w instructions. */
2389 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2391 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2394 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2396 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2399 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2400 instruction (which switches to ARM mode) to point to this stub. Jump to the
2401 real destination using an ARM-mode branch. */
2403 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2405 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2408 /* For each section group there can be a specially created linker section
2409 to hold the stubs for that group. The name of the stub section is based
2410 upon the name of another section within that group with the suffix below
2413 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2414 create what appeared to be a linker stub section when it actually
2415 contained user code/data. For example, consider this fragment:
2417 const char * stubborn_problems[] = { "np" };
2419 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2422 .data.rel.local.stubborn_problems
2424 This then causes problems in arm32_arm_build_stubs() as it triggers:
2426 // Ignore non-stub sections.
2427 if (!strstr (stub_sec->name, STUB_SUFFIX))
2430 And so the section would be ignored instead of being processed. Hence
2431 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2433 #define STUB_SUFFIX ".__stub"
2435 /* One entry per long/short branch stub defined above. */
2437 DEF_STUB(long_branch_any_any) \
2438 DEF_STUB(long_branch_v4t_arm_thumb) \
2439 DEF_STUB(long_branch_thumb_only) \
2440 DEF_STUB(long_branch_v4t_thumb_thumb) \
2441 DEF_STUB(long_branch_v4t_thumb_arm) \
2442 DEF_STUB(short_branch_v4t_thumb_arm) \
2443 DEF_STUB(long_branch_any_arm_pic) \
2444 DEF_STUB(long_branch_any_thumb_pic) \
2445 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2446 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2447 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2448 DEF_STUB(long_branch_thumb_only_pic) \
2449 DEF_STUB(long_branch_any_tls_pic) \
2450 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2451 DEF_STUB(a8_veneer_b_cond) \
2452 DEF_STUB(a8_veneer_b) \
2453 DEF_STUB(a8_veneer_bl) \
2454 DEF_STUB(a8_veneer_blx)
2456 #define DEF_STUB(x) arm_stub_##x,
2457 enum elf32_arm_stub_type
{
2460 /* Note the first a8_veneer type */
2461 arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
2467 const insn_sequence
* template_sequence
;
2471 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2472 static const stub_def stub_definitions
[] = {
2477 struct elf32_arm_stub_hash_entry
2479 /* Base hash table entry structure. */
2480 struct bfd_hash_entry root
;
2482 /* The stub section. */
2485 /* Offset within stub_sec of the beginning of this stub. */
2486 bfd_vma stub_offset
;
2488 /* Given the symbol's value and its section we can determine its final
2489 value when building the stubs (so the stub knows where to jump). */
2490 bfd_vma target_value
;
2491 asection
*target_section
;
2493 /* Offset to apply to relocation referencing target_value. */
2494 bfd_vma target_addend
;
2496 /* The instruction which caused this stub to be generated (only valid for
2497 Cortex-A8 erratum workaround stubs at present). */
2498 unsigned long orig_insn
;
2500 /* The stub type. */
2501 enum elf32_arm_stub_type stub_type
;
2502 /* Its encoding size in bytes. */
2505 const insn_sequence
*stub_template
;
2506 /* The size of the template (number of entries). */
2507 int stub_template_size
;
2509 /* The symbol table entry, if any, that this was derived from. */
2510 struct elf32_arm_link_hash_entry
*h
;
2512 /* Type of branch. */
2513 enum arm_st_branch_type branch_type
;
2515 /* Where this stub is being called from, or, in the case of combined
2516 stub sections, the first input section in the group. */
2519 /* The name for the local symbol at the start of this stub. The
2520 stub name in the hash table has to be unique; this does not, so
2521 it can be friendlier. */
2525 /* Used to build a map of a section. This is required for mixed-endian
2528 typedef struct elf32_elf_section_map
2533 elf32_arm_section_map
;
2535 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2539 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2540 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2541 VFP11_ERRATUM_ARM_VENEER
,
2542 VFP11_ERRATUM_THUMB_VENEER
2544 elf32_vfp11_erratum_type
;
2546 typedef struct elf32_vfp11_erratum_list
2548 struct elf32_vfp11_erratum_list
*next
;
2554 struct elf32_vfp11_erratum_list
*veneer
;
2555 unsigned int vfp_insn
;
2559 struct elf32_vfp11_erratum_list
*branch
;
2563 elf32_vfp11_erratum_type type
;
2565 elf32_vfp11_erratum_list
;
2570 INSERT_EXIDX_CANTUNWIND_AT_END
2572 arm_unwind_edit_type
;
2574 /* A (sorted) list of edits to apply to an unwind table. */
2575 typedef struct arm_unwind_table_edit
2577 arm_unwind_edit_type type
;
2578 /* Note: we sometimes want to insert an unwind entry corresponding to a
2579 section different from the one we're currently writing out, so record the
2580 (text) section this edit relates to here. */
2581 asection
*linked_section
;
2583 struct arm_unwind_table_edit
*next
;
2585 arm_unwind_table_edit
;
2587 typedef struct _arm_elf_section_data
2589 /* Information about mapping symbols. */
2590 struct bfd_elf_section_data elf
;
2591 unsigned int mapcount
;
2592 unsigned int mapsize
;
2593 elf32_arm_section_map
*map
;
2594 /* Information about CPU errata. */
2595 unsigned int erratumcount
;
2596 elf32_vfp11_erratum_list
*erratumlist
;
2597 /* Information about unwind tables. */
2600 /* Unwind info attached to a text section. */
2603 asection
*arm_exidx_sec
;
2606 /* Unwind info attached to an .ARM.exidx section. */
2609 arm_unwind_table_edit
*unwind_edit_list
;
2610 arm_unwind_table_edit
*unwind_edit_tail
;
2614 _arm_elf_section_data
;
2616 #define elf32_arm_section_data(sec) \
2617 ((_arm_elf_section_data *) elf_section_data (sec))
2619 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2620 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2621 so may be created multiple times: we use an array of these entries whilst
2622 relaxing which we can refresh easily, then create stubs for each potentially
2623 erratum-triggering instruction once we've settled on a solution. */
2625 struct a8_erratum_fix
{
2630 unsigned long orig_insn
;
2632 enum elf32_arm_stub_type stub_type
;
2633 enum arm_st_branch_type branch_type
;
2636 /* A table of relocs applied to branches which might trigger Cortex-A8
2639 struct a8_erratum_reloc
{
2641 bfd_vma destination
;
2642 struct elf32_arm_link_hash_entry
*hash
;
2643 const char *sym_name
;
2644 unsigned int r_type
;
2645 enum arm_st_branch_type branch_type
;
2646 bfd_boolean non_a8_stub
;
2649 /* The size of the thread control block. */
2652 /* ARM-specific information about a PLT entry, over and above the usual
2654 struct arm_plt_info
{
2655 /* We reference count Thumb references to a PLT entry separately,
2656 so that we can emit the Thumb trampoline only if needed. */
2657 bfd_signed_vma thumb_refcount
;
2659 /* Some references from Thumb code may be eliminated by BL->BLX
2660 conversion, so record them separately. */
2661 bfd_signed_vma maybe_thumb_refcount
;
2663 /* How many of the recorded PLT accesses were from non-call relocations.
2664 This information is useful when deciding whether anything takes the
2665 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2666 non-call references to the function should resolve directly to the
2667 real runtime target. */
2668 unsigned int noncall_refcount
;
2670 /* Since PLT entries have variable size if the Thumb prologue is
2671 used, we need to record the index into .got.plt instead of
2672 recomputing it from the PLT offset. */
2673 bfd_signed_vma got_offset
;
2676 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2677 struct arm_local_iplt_info
{
2678 /* The information that is usually found in the generic ELF part of
2679 the hash table entry. */
2680 union gotplt_union root
;
2682 /* The information that is usually found in the ARM-specific part of
2683 the hash table entry. */
2684 struct arm_plt_info arm
;
2686 /* A list of all potential dynamic relocations against this symbol. */
2687 struct elf_dyn_relocs
*dyn_relocs
;
2690 struct elf_arm_obj_tdata
2692 struct elf_obj_tdata root
;
2694 /* tls_type for each local got entry. */
2695 char *local_got_tls_type
;
2697 /* GOTPLT entries for TLS descriptors. */
2698 bfd_vma
*local_tlsdesc_gotent
;
2700 /* Information for local symbols that need entries in .iplt. */
2701 struct arm_local_iplt_info
**local_iplt
;
2703 /* Zero to warn when linking objects with incompatible enum sizes. */
2704 int no_enum_size_warning
;
2706 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2707 int no_wchar_size_warning
;
2710 #define elf_arm_tdata(bfd) \
2711 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2713 #define elf32_arm_local_got_tls_type(bfd) \
2714 (elf_arm_tdata (bfd)->local_got_tls_type)
2716 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2717 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2719 #define elf32_arm_local_iplt(bfd) \
2720 (elf_arm_tdata (bfd)->local_iplt)
2722 #define is_arm_elf(bfd) \
2723 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2724 && elf_tdata (bfd) != NULL \
2725 && elf_object_id (bfd) == ARM_ELF_DATA)
2728 elf32_arm_mkobject (bfd
*abfd
)
2730 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2734 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2736 /* Arm ELF linker hash entry. */
2737 struct elf32_arm_link_hash_entry
2739 struct elf_link_hash_entry root
;
2741 /* Track dynamic relocs copied for this symbol. */
2742 struct elf_dyn_relocs
*dyn_relocs
;
2744 /* ARM-specific PLT information. */
2745 struct arm_plt_info plt
;
2747 #define GOT_UNKNOWN 0
2748 #define GOT_NORMAL 1
2749 #define GOT_TLS_GD 2
2750 #define GOT_TLS_IE 4
2751 #define GOT_TLS_GDESC 8
2752 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2753 unsigned int tls_type
: 8;
2755 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2756 unsigned int is_iplt
: 1;
2758 unsigned int unused
: 23;
2760 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2761 starting at the end of the jump table. */
2762 bfd_vma tlsdesc_got
;
2764 /* The symbol marking the real symbol location for exported thumb
2765 symbols with Arm stubs. */
2766 struct elf_link_hash_entry
*export_glue
;
2768 /* A pointer to the most recently used stub hash entry against this
2770 struct elf32_arm_stub_hash_entry
*stub_cache
;
2773 /* Traverse an arm ELF linker hash table. */
2774 #define elf32_arm_link_hash_traverse(table, func, info) \
2775 (elf_link_hash_traverse \
2777 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2780 /* Get the ARM elf linker hash table from a link_info structure. */
2781 #define elf32_arm_hash_table(info) \
2782 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2783 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2785 #define arm_stub_hash_lookup(table, string, create, copy) \
2786 ((struct elf32_arm_stub_hash_entry *) \
2787 bfd_hash_lookup ((table), (string), (create), (copy)))
2789 /* Array to keep track of which stub sections have been created, and
2790 information on stub grouping. */
2793 /* This is the section to which stubs in the group will be
2796 /* The stub section. */
2800 #define elf32_arm_compute_jump_table_size(htab) \
2801 ((htab)->next_tls_desc_index * 4)
2803 /* ARM ELF linker hash table. */
2804 struct elf32_arm_link_hash_table
2806 /* The main hash table. */
2807 struct elf_link_hash_table root
;
2809 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2810 bfd_size_type thumb_glue_size
;
2812 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2813 bfd_size_type arm_glue_size
;
2815 /* The size in bytes of section containing the ARMv4 BX veneers. */
2816 bfd_size_type bx_glue_size
;
2818 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2819 veneer has been populated. */
2820 bfd_vma bx_glue_offset
[15];
2822 /* The size in bytes of the section containing glue for VFP11 erratum
2824 bfd_size_type vfp11_erratum_glue_size
;
2826 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2827 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2828 elf32_arm_write_section(). */
2829 struct a8_erratum_fix
*a8_erratum_fixes
;
2830 unsigned int num_a8_erratum_fixes
;
2832 /* An arbitrary input BFD chosen to hold the glue sections. */
2833 bfd
* bfd_of_glue_owner
;
2835 /* Nonzero to output a BE8 image. */
2838 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2839 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2842 /* The relocation to use for R_ARM_TARGET2 relocations. */
2845 /* 0 = Ignore R_ARM_V4BX.
2846 1 = Convert BX to MOV PC.
2847 2 = Generate v4 interworing stubs. */
2850 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2853 /* Whether we should fix the ARM1176 BLX immediate issue. */
2856 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2859 /* What sort of code sequences we should look for which may trigger the
2860 VFP11 denorm erratum. */
2861 bfd_arm_vfp11_fix vfp11_fix
;
2863 /* Global counter for the number of fixes we have emitted. */
2864 int num_vfp11_fixes
;
2866 /* Nonzero to force PIC branch veneers. */
2869 /* The number of bytes in the initial entry in the PLT. */
2870 bfd_size_type plt_header_size
;
2872 /* The number of bytes in the subsequent PLT etries. */
2873 bfd_size_type plt_entry_size
;
2875 /* True if the target system is VxWorks. */
2878 /* True if the target system is Symbian OS. */
2881 /* True if the target uses REL relocations. */
2884 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2885 bfd_vma next_tls_desc_index
;
2887 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2888 bfd_vma num_tls_desc
;
2890 /* Short-cuts to get to dynamic linker sections. */
2894 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2897 /* The offset into splt of the PLT entry for the TLS descriptor
2898 resolver. Special values are 0, if not necessary (or not found
2899 to be necessary yet), and -1 if needed but not determined
2901 bfd_vma dt_tlsdesc_plt
;
2903 /* The offset into sgot of the GOT entry used by the PLT entry
2905 bfd_vma dt_tlsdesc_got
;
2907 /* Offset in .plt section of tls_arm_trampoline. */
2908 bfd_vma tls_trampoline
;
2910 /* Data for R_ARM_TLS_LDM32 relocations. */
2913 bfd_signed_vma refcount
;
2917 /* Small local sym cache. */
2918 struct sym_cache sym_cache
;
2920 /* For convenience in allocate_dynrelocs. */
2923 /* The amount of space used by the reserved portion of the sgotplt
2924 section, plus whatever space is used by the jump slots. */
2925 bfd_vma sgotplt_jump_table_size
;
2927 /* The stub hash table. */
2928 struct bfd_hash_table stub_hash_table
;
2930 /* Linker stub bfd. */
2933 /* Linker call-backs. */
2934 asection
* (*add_stub_section
) (const char *, asection
*);
2935 void (*layout_sections_again
) (void);
2937 /* Array to keep track of which stub sections have been created, and
2938 information on stub grouping. */
2939 struct map_stub
*stub_group
;
2941 /* Number of elements in stub_group. */
2944 /* Assorted information used by elf32_arm_size_stubs. */
2945 unsigned int bfd_count
;
2947 asection
**input_list
;
2950 /* Create an entry in an ARM ELF linker hash table. */
2952 static struct bfd_hash_entry
*
2953 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2954 struct bfd_hash_table
* table
,
2955 const char * string
)
2957 struct elf32_arm_link_hash_entry
* ret
=
2958 (struct elf32_arm_link_hash_entry
*) entry
;
2960 /* Allocate the structure if it has not already been allocated by a
2963 ret
= (struct elf32_arm_link_hash_entry
*)
2964 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2966 return (struct bfd_hash_entry
*) ret
;
2968 /* Call the allocation method of the superclass. */
2969 ret
= ((struct elf32_arm_link_hash_entry
*)
2970 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2974 ret
->dyn_relocs
= NULL
;
2975 ret
->tls_type
= GOT_UNKNOWN
;
2976 ret
->tlsdesc_got
= (bfd_vma
) -1;
2977 ret
->plt
.thumb_refcount
= 0;
2978 ret
->plt
.maybe_thumb_refcount
= 0;
2979 ret
->plt
.noncall_refcount
= 0;
2980 ret
->plt
.got_offset
= -1;
2981 ret
->is_iplt
= FALSE
;
2982 ret
->export_glue
= NULL
;
2984 ret
->stub_cache
= NULL
;
2987 return (struct bfd_hash_entry
*) ret
;
2990 /* Ensure that we have allocated bookkeeping structures for ABFD's local
2994 elf32_arm_allocate_local_sym_info (bfd
*abfd
)
2996 if (elf_local_got_refcounts (abfd
) == NULL
)
2998 bfd_size_type num_syms
;
3002 num_syms
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
3003 size
= num_syms
* (sizeof (bfd_signed_vma
)
3004 + sizeof (struct arm_local_iplt_info
*)
3007 data
= bfd_zalloc (abfd
, size
);
3011 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) data
;
3012 data
+= num_syms
* sizeof (bfd_signed_vma
);
3014 elf32_arm_local_iplt (abfd
) = (struct arm_local_iplt_info
**) data
;
3015 data
+= num_syms
* sizeof (struct arm_local_iplt_info
*);
3017 elf32_arm_local_tlsdesc_gotent (abfd
) = (bfd_vma
*) data
;
3018 data
+= num_syms
* sizeof (bfd_vma
);
3020 elf32_arm_local_got_tls_type (abfd
) = data
;
3025 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3026 to input bfd ABFD. Create the information if it doesn't already exist.
3027 Return null if an allocation fails. */
3029 static struct arm_local_iplt_info
*
3030 elf32_arm_create_local_iplt (bfd
*abfd
, unsigned long r_symndx
)
3032 struct arm_local_iplt_info
**ptr
;
3034 if (!elf32_arm_allocate_local_sym_info (abfd
))
3037 BFD_ASSERT (r_symndx
< elf_tdata (abfd
)->symtab_hdr
.sh_info
);
3038 ptr
= &elf32_arm_local_iplt (abfd
)[r_symndx
];
3040 *ptr
= bfd_zalloc (abfd
, sizeof (**ptr
));
3044 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3045 in ABFD's symbol table. If the symbol is global, H points to its
3046 hash table entry, otherwise H is null.
3048 Return true if the symbol does have PLT information. When returning
3049 true, point *ROOT_PLT at the target-independent reference count/offset
3050 union and *ARM_PLT at the ARM-specific information. */
3053 elf32_arm_get_plt_info (bfd
*abfd
, struct elf32_arm_link_hash_entry
*h
,
3054 unsigned long r_symndx
, union gotplt_union
**root_plt
,
3055 struct arm_plt_info
**arm_plt
)
3057 struct arm_local_iplt_info
*local_iplt
;
3061 *root_plt
= &h
->root
.plt
;
3066 if (elf32_arm_local_iplt (abfd
) == NULL
)
3069 local_iplt
= elf32_arm_local_iplt (abfd
)[r_symndx
];
3070 if (local_iplt
== NULL
)
3073 *root_plt
= &local_iplt
->root
;
3074 *arm_plt
= &local_iplt
->arm
;
3078 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3082 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info
*info
,
3083 struct arm_plt_info
*arm_plt
)
3085 struct elf32_arm_link_hash_table
*htab
;
3087 htab
= elf32_arm_hash_table (info
);
3088 return (arm_plt
->thumb_refcount
!= 0
3089 || (!htab
->use_blx
&& arm_plt
->maybe_thumb_refcount
!= 0));
3092 /* Return a pointer to the head of the dynamic reloc list that should
3093 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3094 ABFD's symbol table. Return null if an error occurs. */
3096 static struct elf_dyn_relocs
**
3097 elf32_arm_get_local_dynreloc_list (bfd
*abfd
, unsigned long r_symndx
,
3098 Elf_Internal_Sym
*isym
)
3100 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
3102 struct arm_local_iplt_info
*local_iplt
;
3104 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
3105 if (local_iplt
== NULL
)
3107 return &local_iplt
->dyn_relocs
;
3111 /* Track dynamic relocs needed for local syms too.
3112 We really need local syms available to do this
3117 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3121 vpp
= &elf_section_data (s
)->local_dynrel
;
3122 return (struct elf_dyn_relocs
**) vpp
;
3126 /* Initialize an entry in the stub hash table. */
3128 static struct bfd_hash_entry
*
3129 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
3130 struct bfd_hash_table
*table
,
3133 /* Allocate the structure if it has not already been allocated by a
3137 entry
= (struct bfd_hash_entry
*)
3138 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
3143 /* Call the allocation method of the superclass. */
3144 entry
= bfd_hash_newfunc (entry
, table
, string
);
3147 struct elf32_arm_stub_hash_entry
*eh
;
3149 /* Initialize the local fields. */
3150 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
3151 eh
->stub_sec
= NULL
;
3152 eh
->stub_offset
= 0;
3153 eh
->target_value
= 0;
3154 eh
->target_section
= NULL
;
3155 eh
->target_addend
= 0;
3157 eh
->stub_type
= arm_stub_none
;
3159 eh
->stub_template
= NULL
;
3160 eh
->stub_template_size
= 0;
3163 eh
->output_name
= NULL
;
3169 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3170 shortcuts to them in our hash table. */
3173 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
3175 struct elf32_arm_link_hash_table
*htab
;
3177 htab
= elf32_arm_hash_table (info
);
3181 /* BPABI objects never have a GOT, or associated sections. */
3182 if (htab
->symbian_p
)
3185 if (! _bfd_elf_create_got_section (dynobj
, info
))
3191 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3194 create_ifunc_sections (struct bfd_link_info
*info
)
3196 struct elf32_arm_link_hash_table
*htab
;
3197 const struct elf_backend_data
*bed
;
3202 htab
= elf32_arm_hash_table (info
);
3203 dynobj
= htab
->root
.dynobj
;
3204 bed
= get_elf_backend_data (dynobj
);
3205 flags
= bed
->dynamic_sec_flags
;
3207 if (htab
->root
.iplt
== NULL
)
3209 s
= bfd_make_section_with_flags (dynobj
, ".iplt",
3210 flags
| SEC_READONLY
| SEC_CODE
);
3212 || !bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
3214 htab
->root
.iplt
= s
;
3217 if (htab
->root
.irelplt
== NULL
)
3219 s
= bfd_make_section_with_flags (dynobj
, RELOC_SECTION (htab
, ".iplt"),
3220 flags
| SEC_READONLY
);
3222 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
3224 htab
->root
.irelplt
= s
;
3227 if (htab
->root
.igotplt
== NULL
)
3229 s
= bfd_make_section_with_flags (dynobj
, ".igot.plt", flags
);
3231 || !bfd_set_section_alignment (dynobj
, s
, bed
->s
->log_file_align
))
3233 htab
->root
.igotplt
= s
;
3238 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3239 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3243 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
3245 struct elf32_arm_link_hash_table
*htab
;
3247 htab
= elf32_arm_hash_table (info
);
3251 if (!htab
->root
.sgot
&& !create_got_section (dynobj
, info
))
3254 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
3257 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
3259 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
3260 RELOC_SECTION (htab
, ".bss"));
3262 if (htab
->vxworks_p
)
3264 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
3269 htab
->plt_header_size
= 0;
3270 htab
->plt_entry_size
3271 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
3275 htab
->plt_header_size
3276 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
3277 htab
->plt_entry_size
3278 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
3282 if (!htab
->root
.splt
3283 || !htab
->root
.srelplt
3285 || (!info
->shared
&& !htab
->srelbss
))
3291 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3294 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
3295 struct elf_link_hash_entry
*dir
,
3296 struct elf_link_hash_entry
*ind
)
3298 struct elf32_arm_link_hash_entry
*edir
, *eind
;
3300 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
3301 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
3303 if (eind
->dyn_relocs
!= NULL
)
3305 if (edir
->dyn_relocs
!= NULL
)
3307 struct elf_dyn_relocs
**pp
;
3308 struct elf_dyn_relocs
*p
;
3310 /* Add reloc counts against the indirect sym to the direct sym
3311 list. Merge any entries against the same section. */
3312 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
3314 struct elf_dyn_relocs
*q
;
3316 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
3317 if (q
->sec
== p
->sec
)
3319 q
->pc_count
+= p
->pc_count
;
3320 q
->count
+= p
->count
;
3327 *pp
= edir
->dyn_relocs
;
3330 edir
->dyn_relocs
= eind
->dyn_relocs
;
3331 eind
->dyn_relocs
= NULL
;
3334 if (ind
->root
.type
== bfd_link_hash_indirect
)
3336 /* Copy over PLT info. */
3337 edir
->plt
.thumb_refcount
+= eind
->plt
.thumb_refcount
;
3338 eind
->plt
.thumb_refcount
= 0;
3339 edir
->plt
.maybe_thumb_refcount
+= eind
->plt
.maybe_thumb_refcount
;
3340 eind
->plt
.maybe_thumb_refcount
= 0;
3341 edir
->plt
.noncall_refcount
+= eind
->plt
.noncall_refcount
;
3342 eind
->plt
.noncall_refcount
= 0;
3344 /* We should only allocate a function to .iplt once the final
3345 symbol information is known. */
3346 BFD_ASSERT (!eind
->is_iplt
);
3348 if (dir
->got
.refcount
<= 0)
3350 edir
->tls_type
= eind
->tls_type
;
3351 eind
->tls_type
= GOT_UNKNOWN
;
3355 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
3358 /* Create an ARM elf linker hash table. */
3360 static struct bfd_link_hash_table
*
3361 elf32_arm_link_hash_table_create (bfd
*abfd
)
3363 struct elf32_arm_link_hash_table
*ret
;
3364 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
3366 ret
= (struct elf32_arm_link_hash_table
*) bfd_malloc (amt
);
3370 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
3371 elf32_arm_link_hash_newfunc
,
3372 sizeof (struct elf32_arm_link_hash_entry
),
3379 ret
->sdynbss
= NULL
;
3380 ret
->srelbss
= NULL
;
3381 ret
->srelplt2
= NULL
;
3382 ret
->dt_tlsdesc_plt
= 0;
3383 ret
->dt_tlsdesc_got
= 0;
3384 ret
->tls_trampoline
= 0;
3385 ret
->next_tls_desc_index
= 0;
3386 ret
->num_tls_desc
= 0;
3387 ret
->thumb_glue_size
= 0;
3388 ret
->arm_glue_size
= 0;
3389 ret
->bx_glue_size
= 0;
3390 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
3391 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
3392 ret
->vfp11_erratum_glue_size
= 0;
3393 ret
->num_vfp11_fixes
= 0;
3394 ret
->fix_cortex_a8
= 0;
3395 ret
->fix_arm1176
= 0;
3396 ret
->bfd_of_glue_owner
= NULL
;
3397 ret
->byteswap_code
= 0;
3398 ret
->target1_is_rel
= 0;
3399 ret
->target2_reloc
= R_ARM_NONE
;
3400 #ifdef FOUR_WORD_PLT
3401 ret
->plt_header_size
= 16;
3402 ret
->plt_entry_size
= 16;
3404 ret
->plt_header_size
= 20;
3405 ret
->plt_entry_size
= 12;
3412 ret
->sym_cache
.abfd
= NULL
;
3414 ret
->tls_ldm_got
.refcount
= 0;
3415 ret
->stub_bfd
= NULL
;
3416 ret
->add_stub_section
= NULL
;
3417 ret
->layout_sections_again
= NULL
;
3418 ret
->stub_group
= NULL
;
3422 ret
->input_list
= NULL
;
3424 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
3425 sizeof (struct elf32_arm_stub_hash_entry
)))
3431 return &ret
->root
.root
;
3434 /* Free the derived linker hash table. */
3437 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
3439 struct elf32_arm_link_hash_table
*ret
3440 = (struct elf32_arm_link_hash_table
*) hash
;
3442 bfd_hash_table_free (&ret
->stub_hash_table
);
3443 _bfd_generic_link_hash_table_free (hash
);
3446 /* Determine if we're dealing with a Thumb only architecture. */
3449 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
3451 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3455 if (arch
== TAG_CPU_ARCH_V6_M
|| arch
== TAG_CPU_ARCH_V6S_M
)
3458 if (arch
!= TAG_CPU_ARCH_V7
&& arch
!= TAG_CPU_ARCH_V7E_M
)
3461 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3462 Tag_CPU_arch_profile
);
3464 return profile
== 'M';
3467 /* Determine if we're dealing with a Thumb-2 object. */
3470 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
3472 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3474 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
3477 /* Determine what kind of NOPs are available. */
3480 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
3482 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3484 return arch
== TAG_CPU_ARCH_V6T2
3485 || arch
== TAG_CPU_ARCH_V6K
3486 || arch
== TAG_CPU_ARCH_V7
3487 || arch
== TAG_CPU_ARCH_V7E_M
;
3491 arch_has_thumb2_nop (struct elf32_arm_link_hash_table
*globals
)
3493 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3495 return (arch
== TAG_CPU_ARCH_V6T2
|| arch
== TAG_CPU_ARCH_V7
3496 || arch
== TAG_CPU_ARCH_V7E_M
);
3500 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
3504 case arm_stub_long_branch_thumb_only
:
3505 case arm_stub_long_branch_v4t_thumb_arm
:
3506 case arm_stub_short_branch_v4t_thumb_arm
:
3507 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3508 case arm_stub_long_branch_v4t_thumb_tls_pic
:
3509 case arm_stub_long_branch_thumb_only_pic
:
3520 /* Determine the type of stub needed, if any, for a call. */
3522 static enum elf32_arm_stub_type
3523 arm_type_of_stub (struct bfd_link_info
*info
,
3524 asection
*input_sec
,
3525 const Elf_Internal_Rela
*rel
,
3526 unsigned char st_type
,
3527 enum arm_st_branch_type
*actual_branch_type
,
3528 struct elf32_arm_link_hash_entry
*hash
,
3529 bfd_vma destination
,
3535 bfd_signed_vma branch_offset
;
3536 unsigned int r_type
;
3537 struct elf32_arm_link_hash_table
* globals
;
3540 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3542 enum arm_st_branch_type branch_type
= *actual_branch_type
;
3543 union gotplt_union
*root_plt
;
3544 struct arm_plt_info
*arm_plt
;
3546 if (branch_type
== ST_BRANCH_LONG
)
3549 globals
= elf32_arm_hash_table (info
);
3550 if (globals
== NULL
)
3553 thumb_only
= using_thumb_only (globals
);
3555 thumb2
= using_thumb2 (globals
);
3557 /* Determine where the call point is. */
3558 location
= (input_sec
->output_offset
3559 + input_sec
->output_section
->vma
3562 r_type
= ELF32_R_TYPE (rel
->r_info
);
3564 /* For TLS call relocs, it is the caller's responsibility to provide
3565 the address of the appropriate trampoline. */
3566 if (r_type
!= R_ARM_TLS_CALL
3567 && r_type
!= R_ARM_THM_TLS_CALL
3568 && elf32_arm_get_plt_info (input_bfd
, hash
, ELF32_R_SYM (rel
->r_info
),
3569 &root_plt
, &arm_plt
)
3570 && root_plt
->offset
!= (bfd_vma
) -1)
3574 if (hash
== NULL
|| hash
->is_iplt
)
3575 splt
= globals
->root
.iplt
;
3577 splt
= globals
->root
.splt
;
3582 /* Note when dealing with PLT entries: the main PLT stub is in
3583 ARM mode, so if the branch is in Thumb mode, another
3584 Thumb->ARM stub will be inserted later just before the ARM
3585 PLT stub. We don't take this extra distance into account
3586 here, because if a long branch stub is needed, we'll add a
3587 Thumb->Arm one and branch directly to the ARM PLT entry
3588 because it avoids spreading offset corrections in several
3591 destination
= (splt
->output_section
->vma
3592 + splt
->output_offset
3593 + root_plt
->offset
);
3595 branch_type
= ST_BRANCH_TO_ARM
;
3598 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3599 BFD_ASSERT (st_type
!= STT_GNU_IFUNC
);
3601 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3603 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
3604 || r_type
== R_ARM_THM_TLS_CALL
)
3606 /* Handle cases where:
3607 - this call goes too far (different Thumb/Thumb2 max
3609 - it's a Thumb->Arm call and blx is not available, or it's a
3610 Thumb->Arm branch (not bl). A stub is needed in this case,
3611 but only if this call is not through a PLT entry. Indeed,
3612 PLT stubs handle mode switching already.
3615 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3616 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3618 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3619 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3620 || (branch_type
== ST_BRANCH_TO_ARM
3621 && (((r_type
== R_ARM_THM_CALL
3622 || r_type
== R_ARM_THM_TLS_CALL
) && !globals
->use_blx
)
3623 || (r_type
== R_ARM_THM_JUMP24
))
3626 if (branch_type
== ST_BRANCH_TO_THUMB
)
3628 /* Thumb to thumb. */
3631 stub_type
= (info
->shared
| globals
->pic_veneer
)
3633 ? ((globals
->use_blx
3634 && (r_type
== R_ARM_THM_CALL
))
3635 /* V5T and above. Stub starts with ARM code, so
3636 we must be able to switch mode before
3637 reaching it, which is only possible for 'bl'
3638 (ie R_ARM_THM_CALL relocation). */
3639 ? arm_stub_long_branch_any_thumb_pic
3640 /* On V4T, use Thumb code only. */
3641 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3643 /* non-PIC stubs. */
3644 : ((globals
->use_blx
3645 && (r_type
== R_ARM_THM_CALL
))
3646 /* V5T and above. */
3647 ? arm_stub_long_branch_any_any
3649 : arm_stub_long_branch_v4t_thumb_thumb
);
3653 stub_type
= (info
->shared
| globals
->pic_veneer
)
3655 ? arm_stub_long_branch_thumb_only_pic
3657 : arm_stub_long_branch_thumb_only
;
3664 && sym_sec
->owner
!= NULL
3665 && !INTERWORK_FLAG (sym_sec
->owner
))
3667 (*_bfd_error_handler
)
3668 (_("%B(%s): warning: interworking not enabled.\n"
3669 " first occurrence: %B: Thumb call to ARM"),
3670 sym_sec
->owner
, input_bfd
, name
);
3674 (info
->shared
| globals
->pic_veneer
)
3676 ? (r_type
== R_ARM_THM_TLS_CALL
3678 ? (globals
->use_blx
? arm_stub_long_branch_any_tls_pic
3679 : arm_stub_long_branch_v4t_thumb_tls_pic
)
3680 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3681 /* V5T PIC and above. */
3682 ? arm_stub_long_branch_any_arm_pic
3684 : arm_stub_long_branch_v4t_thumb_arm_pic
))
3686 /* non-PIC stubs. */
3687 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3688 /* V5T and above. */
3689 ? arm_stub_long_branch_any_any
3691 : arm_stub_long_branch_v4t_thumb_arm
);
3693 /* Handle v4t short branches. */
3694 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3695 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3696 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3697 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3701 else if (r_type
== R_ARM_CALL
3702 || r_type
== R_ARM_JUMP24
3703 || r_type
== R_ARM_PLT32
3704 || r_type
== R_ARM_TLS_CALL
)
3706 if (branch_type
== ST_BRANCH_TO_THUMB
)
3711 && sym_sec
->owner
!= NULL
3712 && !INTERWORK_FLAG (sym_sec
->owner
))
3714 (*_bfd_error_handler
)
3715 (_("%B(%s): warning: interworking not enabled.\n"
3716 " first occurrence: %B: ARM call to Thumb"),
3717 sym_sec
->owner
, input_bfd
, name
);
3720 /* We have an extra 2-bytes reach because of
3721 the mode change (bit 24 (H) of BLX encoding). */
3722 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3723 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3724 || (r_type
== R_ARM_CALL
&& !globals
->use_blx
)
3725 || (r_type
== R_ARM_JUMP24
)
3726 || (r_type
== R_ARM_PLT32
))
3728 stub_type
= (info
->shared
| globals
->pic_veneer
)
3730 ? ((globals
->use_blx
)
3731 /* V5T and above. */
3732 ? arm_stub_long_branch_any_thumb_pic
3734 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3736 /* non-PIC stubs. */
3737 : ((globals
->use_blx
)
3738 /* V5T and above. */
3739 ? arm_stub_long_branch_any_any
3741 : arm_stub_long_branch_v4t_arm_thumb
);
3747 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3748 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3751 (info
->shared
| globals
->pic_veneer
)
3753 ? (r_type
== R_ARM_TLS_CALL
3755 ? arm_stub_long_branch_any_tls_pic
3756 : arm_stub_long_branch_any_arm_pic
)
3757 /* non-PIC stubs. */
3758 : arm_stub_long_branch_any_any
;
3763 /* If a stub is needed, record the actual destination type. */
3764 if (stub_type
!= arm_stub_none
)
3765 *actual_branch_type
= branch_type
;
3770 /* Build a name for an entry in the stub hash table. */
3773 elf32_arm_stub_name (const asection
*input_section
,
3774 const asection
*sym_sec
,
3775 const struct elf32_arm_link_hash_entry
*hash
,
3776 const Elf_Internal_Rela
*rel
,
3777 enum elf32_arm_stub_type stub_type
)
3784 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1 + 2 + 1;
3785 stub_name
= (char *) bfd_malloc (len
);
3786 if (stub_name
!= NULL
)
3787 sprintf (stub_name
, "%08x_%s+%x_%d",
3788 input_section
->id
& 0xffffffff,
3789 hash
->root
.root
.root
.string
,
3790 (int) rel
->r_addend
& 0xffffffff,
3795 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3796 stub_name
= (char *) bfd_malloc (len
);
3797 if (stub_name
!= NULL
)
3798 sprintf (stub_name
, "%08x_%x:%x+%x_%d",
3799 input_section
->id
& 0xffffffff,
3800 sym_sec
->id
& 0xffffffff,
3801 ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
3802 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_THM_TLS_CALL
3803 ? 0 : (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3804 (int) rel
->r_addend
& 0xffffffff,
3811 /* Look up an entry in the stub hash. Stub entries are cached because
3812 creating the stub name takes a bit of time. */
3814 static struct elf32_arm_stub_hash_entry
*
3815 elf32_arm_get_stub_entry (const asection
*input_section
,
3816 const asection
*sym_sec
,
3817 struct elf_link_hash_entry
*hash
,
3818 const Elf_Internal_Rela
*rel
,
3819 struct elf32_arm_link_hash_table
*htab
,
3820 enum elf32_arm_stub_type stub_type
)
3822 struct elf32_arm_stub_hash_entry
*stub_entry
;
3823 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3824 const asection
*id_sec
;
3826 if ((input_section
->flags
& SEC_CODE
) == 0)
3829 /* If this input section is part of a group of sections sharing one
3830 stub section, then use the id of the first section in the group.
3831 Stub names need to include a section id, as there may well be
3832 more than one stub used to reach say, printf, and we need to
3833 distinguish between them. */
3834 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3836 if (h
!= NULL
&& h
->stub_cache
!= NULL
3837 && h
->stub_cache
->h
== h
3838 && h
->stub_cache
->id_sec
== id_sec
3839 && h
->stub_cache
->stub_type
== stub_type
)
3841 stub_entry
= h
->stub_cache
;
3847 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
, stub_type
);
3848 if (stub_name
== NULL
)
3851 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3852 stub_name
, FALSE
, FALSE
);
3854 h
->stub_cache
= stub_entry
;
3862 /* Find or create a stub section. Returns a pointer to the stub section, and
3863 the section to which the stub section will be attached (in *LINK_SEC_P).
3864 LINK_SEC_P may be NULL. */
3867 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3868 struct elf32_arm_link_hash_table
*htab
)
3873 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3874 BFD_ASSERT (link_sec
!= NULL
);
3875 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3877 if (stub_sec
== NULL
)
3879 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3880 if (stub_sec
== NULL
)
3886 namelen
= strlen (link_sec
->name
);
3887 len
= namelen
+ sizeof (STUB_SUFFIX
);
3888 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
3892 memcpy (s_name
, link_sec
->name
, namelen
);
3893 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3894 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3895 if (stub_sec
== NULL
)
3897 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3899 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3903 *link_sec_p
= link_sec
;
3908 /* Add a new stub entry to the stub hash. Not all fields of the new
3909 stub entry are initialised. */
3911 static struct elf32_arm_stub_hash_entry
*
3912 elf32_arm_add_stub (const char *stub_name
,
3914 struct elf32_arm_link_hash_table
*htab
)
3918 struct elf32_arm_stub_hash_entry
*stub_entry
;
3920 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3921 if (stub_sec
== NULL
)
3924 /* Enter this entry into the linker stub hash table. */
3925 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3927 if (stub_entry
== NULL
)
3929 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3935 stub_entry
->stub_sec
= stub_sec
;
3936 stub_entry
->stub_offset
= 0;
3937 stub_entry
->id_sec
= link_sec
;
3942 /* Store an Arm insn into an output section not processed by
3943 elf32_arm_write_section. */
3946 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3947 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3949 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3950 bfd_putl32 (val
, ptr
);
3952 bfd_putb32 (val
, ptr
);
3955 /* Store a 16-bit Thumb insn into an output section not processed by
3956 elf32_arm_write_section. */
3959 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3960 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3962 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3963 bfd_putl16 (val
, ptr
);
3965 bfd_putb16 (val
, ptr
);
3968 /* If it's possible to change R_TYPE to a more efficient access
3969 model, return the new reloc type. */
3972 elf32_arm_tls_transition (struct bfd_link_info
*info
, int r_type
,
3973 struct elf_link_hash_entry
*h
)
3975 int is_local
= (h
== NULL
);
3977 if (info
->shared
|| (h
&& h
->root
.type
== bfd_link_hash_undefweak
))
3980 /* We do not support relaxations for Old TLS models. */
3983 case R_ARM_TLS_GOTDESC
:
3984 case R_ARM_TLS_CALL
:
3985 case R_ARM_THM_TLS_CALL
:
3986 case R_ARM_TLS_DESCSEQ
:
3987 case R_ARM_THM_TLS_DESCSEQ
:
3988 return is_local
? R_ARM_TLS_LE32
: R_ARM_TLS_IE32
;
3994 static bfd_reloc_status_type elf32_arm_final_link_relocate
3995 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
3996 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
3997 const char *, unsigned char, enum arm_st_branch_type
,
3998 struct elf_link_hash_entry
*, bfd_boolean
*, char **);
4001 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type
)
4005 case arm_stub_a8_veneer_b_cond
:
4006 case arm_stub_a8_veneer_b
:
4007 case arm_stub_a8_veneer_bl
:
4010 case arm_stub_long_branch_any_any
:
4011 case arm_stub_long_branch_v4t_arm_thumb
:
4012 case arm_stub_long_branch_thumb_only
:
4013 case arm_stub_long_branch_v4t_thumb_thumb
:
4014 case arm_stub_long_branch_v4t_thumb_arm
:
4015 case arm_stub_short_branch_v4t_thumb_arm
:
4016 case arm_stub_long_branch_any_arm_pic
:
4017 case arm_stub_long_branch_any_thumb_pic
:
4018 case arm_stub_long_branch_v4t_thumb_thumb_pic
:
4019 case arm_stub_long_branch_v4t_arm_thumb_pic
:
4020 case arm_stub_long_branch_v4t_thumb_arm_pic
:
4021 case arm_stub_long_branch_thumb_only_pic
:
4022 case arm_stub_long_branch_any_tls_pic
:
4023 case arm_stub_long_branch_v4t_thumb_tls_pic
:
4024 case arm_stub_a8_veneer_blx
:
4028 abort (); /* Should be unreachable. */
4033 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
4037 struct elf32_arm_stub_hash_entry
*stub_entry
;
4038 struct elf32_arm_link_hash_table
*globals
;
4039 struct bfd_link_info
*info
;
4046 const insn_sequence
*template_sequence
;
4048 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
4049 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
4052 /* Massage our args to the form they really have. */
4053 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
4054 info
= (struct bfd_link_info
*) in_arg
;
4056 globals
= elf32_arm_hash_table (info
);
4057 if (globals
== NULL
)
4060 stub_sec
= stub_entry
->stub_sec
;
4062 if ((globals
->fix_cortex_a8
< 0)
4063 != (arm_stub_required_alignment (stub_entry
->stub_type
) == 2))
4064 /* We have to do less-strictly-aligned fixes last. */
4067 /* Make a note of the offset within the stubs for this entry. */
4068 stub_entry
->stub_offset
= stub_sec
->size
;
4069 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
4071 stub_bfd
= stub_sec
->owner
;
4073 /* This is the address of the stub destination. */
4074 sym_value
= (stub_entry
->target_value
4075 + stub_entry
->target_section
->output_offset
4076 + stub_entry
->target_section
->output_section
->vma
);
4078 template_sequence
= stub_entry
->stub_template
;
4079 template_size
= stub_entry
->stub_template_size
;
4082 for (i
= 0; i
< template_size
; i
++)
4084 switch (template_sequence
[i
].type
)
4088 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
4089 if (template_sequence
[i
].reloc_addend
!= 0)
4091 /* We've borrowed the reloc_addend field to mean we should
4092 insert a condition code into this (Thumb-1 branch)
4093 instruction. See THUMB16_BCOND_INSN. */
4094 BFD_ASSERT ((data
& 0xff00) == 0xd000);
4095 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
4097 bfd_put_16 (stub_bfd
, data
, loc
+ size
);
4103 bfd_put_16 (stub_bfd
,
4104 (template_sequence
[i
].data
>> 16) & 0xffff,
4106 bfd_put_16 (stub_bfd
, template_sequence
[i
].data
& 0xffff,
4108 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
4110 stub_reloc_idx
[nrelocs
] = i
;
4111 stub_reloc_offset
[nrelocs
++] = size
;
4117 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
,
4119 /* Handle cases where the target is encoded within the
4121 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
4123 stub_reloc_idx
[nrelocs
] = i
;
4124 stub_reloc_offset
[nrelocs
++] = size
;
4130 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
4131 stub_reloc_idx
[nrelocs
] = i
;
4132 stub_reloc_offset
[nrelocs
++] = size
;
4142 stub_sec
->size
+= size
;
4144 /* Stub size has already been computed in arm_size_one_stub. Check
4146 BFD_ASSERT (size
== stub_entry
->stub_size
);
4148 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4149 if (stub_entry
->branch_type
== ST_BRANCH_TO_THUMB
)
4152 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4154 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
4156 for (i
= 0; i
< nrelocs
; i
++)
4157 if (template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
4158 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
4159 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
4160 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
4162 Elf_Internal_Rela rel
;
4163 bfd_boolean unresolved_reloc
;
4164 char *error_message
;
4165 enum arm_st_branch_type branch_type
4166 = (template_sequence
[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
4167 ? ST_BRANCH_TO_THUMB
: ST_BRANCH_TO_ARM
);
4168 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
4170 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4171 rel
.r_info
= ELF32_R_INFO (0,
4172 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4173 rel
.r_addend
= template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4175 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
4176 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4177 template should refer back to the instruction after the original
4179 points_to
= sym_value
;
4181 /* There may be unintended consequences if this is not true. */
4182 BFD_ASSERT (stub_entry
->h
== NULL
);
4184 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4185 properly. We should probably use this function unconditionally,
4186 rather than only for certain relocations listed in the enclosing
4187 conditional, for the sake of consistency. */
4188 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4189 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4190 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4191 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4192 branch_type
, (struct elf_link_hash_entry
*) stub_entry
->h
,
4193 &unresolved_reloc
, &error_message
);
4197 Elf_Internal_Rela rel
;
4198 bfd_boolean unresolved_reloc
;
4199 char *error_message
;
4200 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
4201 + template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4203 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4204 rel
.r_info
= ELF32_R_INFO (0,
4205 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4208 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4209 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4210 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4211 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4212 stub_entry
->branch_type
,
4213 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
4221 /* Calculate the template, template size and instruction size for a stub.
4222 Return value is the instruction size. */
4225 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
4226 const insn_sequence
**stub_template
,
4227 int *stub_template_size
)
4229 const insn_sequence
*template_sequence
= NULL
;
4230 int template_size
= 0, i
;
4233 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
4235 *stub_template
= template_sequence
;
4237 template_size
= stub_definitions
[stub_type
].template_size
;
4238 if (stub_template_size
)
4239 *stub_template_size
= template_size
;
4242 for (i
= 0; i
< template_size
; i
++)
4244 switch (template_sequence
[i
].type
)
4265 /* As above, but don't actually build the stub. Just bump offset so
4266 we know stub section sizes. */
4269 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
4270 void *in_arg ATTRIBUTE_UNUSED
)
4272 struct elf32_arm_stub_hash_entry
*stub_entry
;
4273 const insn_sequence
*template_sequence
;
4274 int template_size
, size
;
4276 /* Massage our args to the form they really have. */
4277 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
4279 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
4280 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
4282 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
4285 stub_entry
->stub_size
= size
;
4286 stub_entry
->stub_template
= template_sequence
;
4287 stub_entry
->stub_template_size
= template_size
;
4289 size
= (size
+ 7) & ~7;
4290 stub_entry
->stub_sec
->size
+= size
;
4295 /* External entry points for sizing and building linker stubs. */
4297 /* Set up various things so that we can make a list of input sections
4298 for each output section included in the link. Returns -1 on error,
4299 0 when no stubs will be needed, and 1 on success. */
4302 elf32_arm_setup_section_lists (bfd
*output_bfd
,
4303 struct bfd_link_info
*info
)
4306 unsigned int bfd_count
;
4307 int top_id
, top_index
;
4309 asection
**input_list
, **list
;
4311 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4315 if (! is_elf_hash_table (htab
))
4318 /* Count the number of input BFDs and find the top input section id. */
4319 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
4321 input_bfd
= input_bfd
->link_next
)
4324 for (section
= input_bfd
->sections
;
4326 section
= section
->next
)
4328 if (top_id
< section
->id
)
4329 top_id
= section
->id
;
4332 htab
->bfd_count
= bfd_count
;
4334 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
4335 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
4336 if (htab
->stub_group
== NULL
)
4338 htab
->top_id
= top_id
;
4340 /* We can't use output_bfd->section_count here to find the top output
4341 section index as some sections may have been removed, and
4342 _bfd_strip_section_from_output doesn't renumber the indices. */
4343 for (section
= output_bfd
->sections
, top_index
= 0;
4345 section
= section
->next
)
4347 if (top_index
< section
->index
)
4348 top_index
= section
->index
;
4351 htab
->top_index
= top_index
;
4352 amt
= sizeof (asection
*) * (top_index
+ 1);
4353 input_list
= (asection
**) bfd_malloc (amt
);
4354 htab
->input_list
= input_list
;
4355 if (input_list
== NULL
)
4358 /* For sections we aren't interested in, mark their entries with a
4359 value we can check later. */
4360 list
= input_list
+ top_index
;
4362 *list
= bfd_abs_section_ptr
;
4363 while (list
-- != input_list
);
4365 for (section
= output_bfd
->sections
;
4367 section
= section
->next
)
4369 if ((section
->flags
& SEC_CODE
) != 0)
4370 input_list
[section
->index
] = NULL
;
4376 /* The linker repeatedly calls this function for each input section,
4377 in the order that input sections are linked into output sections.
4378 Build lists of input sections to determine groupings between which
4379 we may insert linker stubs. */
4382 elf32_arm_next_input_section (struct bfd_link_info
*info
,
4385 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4390 if (isec
->output_section
->index
<= htab
->top_index
)
4392 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
4394 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
4396 /* Steal the link_sec pointer for our list. */
4397 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4398 /* This happens to make the list in reverse order,
4399 which we reverse later. */
4400 PREV_SEC (isec
) = *list
;
4406 /* See whether we can group stub sections together. Grouping stub
4407 sections may result in fewer stubs. More importantly, we need to
4408 put all .init* and .fini* stubs at the end of the .init or
4409 .fini output sections respectively, because glibc splits the
4410 _init and _fini functions into multiple parts. Putting a stub in
4411 the middle of a function is not a good idea. */
4414 group_sections (struct elf32_arm_link_hash_table
*htab
,
4415 bfd_size_type stub_group_size
,
4416 bfd_boolean stubs_always_after_branch
)
4418 asection
**list
= htab
->input_list
;
4422 asection
*tail
= *list
;
4425 if (tail
== bfd_abs_section_ptr
)
4428 /* Reverse the list: we must avoid placing stubs at the
4429 beginning of the section because the beginning of the text
4430 section may be required for an interrupt vector in bare metal
4432 #define NEXT_SEC PREV_SEC
4434 while (tail
!= NULL
)
4436 /* Pop from tail. */
4437 asection
*item
= tail
;
4438 tail
= PREV_SEC (item
);
4441 NEXT_SEC (item
) = head
;
4445 while (head
!= NULL
)
4449 bfd_vma stub_group_start
= head
->output_offset
;
4450 bfd_vma end_of_next
;
4453 while (NEXT_SEC (curr
) != NULL
)
4455 next
= NEXT_SEC (curr
);
4456 end_of_next
= next
->output_offset
+ next
->size
;
4457 if (end_of_next
- stub_group_start
>= stub_group_size
)
4458 /* End of NEXT is too far from start, so stop. */
4460 /* Add NEXT to the group. */
4464 /* OK, the size from the start to the start of CURR is less
4465 than stub_group_size and thus can be handled by one stub
4466 section. (Or the head section is itself larger than
4467 stub_group_size, in which case we may be toast.)
4468 We should really be keeping track of the total size of
4469 stubs added here, as stubs contribute to the final output
4473 next
= NEXT_SEC (head
);
4474 /* Set up this stub group. */
4475 htab
->stub_group
[head
->id
].link_sec
= curr
;
4477 while (head
!= curr
&& (head
= next
) != NULL
);
4479 /* But wait, there's more! Input sections up to stub_group_size
4480 bytes after the stub section can be handled by it too. */
4481 if (!stubs_always_after_branch
)
4483 stub_group_start
= curr
->output_offset
+ curr
->size
;
4485 while (next
!= NULL
)
4487 end_of_next
= next
->output_offset
+ next
->size
;
4488 if (end_of_next
- stub_group_start
>= stub_group_size
)
4489 /* End of NEXT is too far from stubs, so stop. */
4491 /* Add NEXT to the stub group. */
4493 next
= NEXT_SEC (head
);
4494 htab
->stub_group
[head
->id
].link_sec
= curr
;
4500 while (list
++ != htab
->input_list
+ htab
->top_index
);
4502 free (htab
->input_list
);
4507 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4511 a8_reloc_compare (const void *a
, const void *b
)
4513 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
4514 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
4516 if (ra
->from
< rb
->from
)
4518 else if (ra
->from
> rb
->from
)
4524 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
4525 const char *, char **);
4527 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4528 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4529 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4533 cortex_a8_erratum_scan (bfd
*input_bfd
,
4534 struct bfd_link_info
*info
,
4535 struct a8_erratum_fix
**a8_fixes_p
,
4536 unsigned int *num_a8_fixes_p
,
4537 unsigned int *a8_fix_table_size_p
,
4538 struct a8_erratum_reloc
*a8_relocs
,
4539 unsigned int num_a8_relocs
,
4540 unsigned prev_num_a8_fixes
,
4541 bfd_boolean
*stub_changed_p
)
4544 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4545 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
4546 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
4547 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
4552 for (section
= input_bfd
->sections
;
4554 section
= section
->next
)
4556 bfd_byte
*contents
= NULL
;
4557 struct _arm_elf_section_data
*sec_data
;
4561 if (elf_section_type (section
) != SHT_PROGBITS
4562 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
4563 || (section
->flags
& SEC_EXCLUDE
) != 0
4564 || (section
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
4565 || (section
->output_section
== bfd_abs_section_ptr
))
4568 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
4570 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
4571 contents
= elf_section_data (section
)->this_hdr
.contents
;
4572 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
4575 sec_data
= elf32_arm_section_data (section
);
4577 for (span
= 0; span
< sec_data
->mapcount
; span
++)
4579 unsigned int span_start
= sec_data
->map
[span
].vma
;
4580 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
4581 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
4583 char span_type
= sec_data
->map
[span
].type
;
4584 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
4586 if (span_type
!= 't')
4589 /* Span is entirely within a single 4KB region: skip scanning. */
4590 if (((base_vma
+ span_start
) & ~0xfff)
4591 == ((base_vma
+ span_end
) & ~0xfff))
4594 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4596 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4597 * The branch target is in the same 4KB region as the
4598 first half of the branch.
4599 * The instruction before the branch is a 32-bit
4600 length non-branch instruction. */
4601 for (i
= span_start
; i
< span_end
;)
4603 unsigned int insn
= bfd_getl16 (&contents
[i
]);
4604 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
4605 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
4607 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
4612 /* Load the rest of the insn (in manual-friendly order). */
4613 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
4615 /* Encoding T4: B<c>.W. */
4616 is_b
= (insn
& 0xf800d000) == 0xf0009000;
4617 /* Encoding T1: BL<c>.W. */
4618 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
4619 /* Encoding T2: BLX<c>.W. */
4620 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
4621 /* Encoding T3: B<c>.W (not permitted in IT block). */
4622 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
4623 && (insn
& 0x07f00000) != 0x03800000;
4626 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
4628 if (((base_vma
+ i
) & 0xfff) == 0xffe
4632 && ! last_was_branch
)
4634 bfd_signed_vma offset
= 0;
4635 bfd_boolean force_target_arm
= FALSE
;
4636 bfd_boolean force_target_thumb
= FALSE
;
4638 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4639 struct a8_erratum_reloc key
, *found
;
4640 bfd_boolean use_plt
= FALSE
;
4642 key
.from
= base_vma
+ i
;
4643 found
= (struct a8_erratum_reloc
*)
4644 bsearch (&key
, a8_relocs
, num_a8_relocs
,
4645 sizeof (struct a8_erratum_reloc
),
4650 char *error_message
= NULL
;
4651 struct elf_link_hash_entry
*entry
;
4653 /* We don't care about the error returned from this
4654 function, only if there is glue or not. */
4655 entry
= find_thumb_glue (info
, found
->sym_name
,
4659 found
->non_a8_stub
= TRUE
;
4661 /* Keep a simpler condition, for the sake of clarity. */
4662 if (htab
->root
.splt
!= NULL
&& found
->hash
!= NULL
4663 && found
->hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4666 if (found
->r_type
== R_ARM_THM_CALL
)
4668 if (found
->branch_type
== ST_BRANCH_TO_ARM
4670 force_target_arm
= TRUE
;
4672 force_target_thumb
= TRUE
;
4676 /* Check if we have an offending branch instruction. */
4678 if (found
&& found
->non_a8_stub
)
4679 /* We've already made a stub for this instruction, e.g.
4680 it's a long branch or a Thumb->ARM stub. Assume that
4681 stub will suffice to work around the A8 erratum (see
4682 setting of always_after_branch above). */
4686 offset
= (insn
& 0x7ff) << 1;
4687 offset
|= (insn
& 0x3f0000) >> 4;
4688 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4689 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4690 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4691 if (offset
& 0x100000)
4692 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4693 stub_type
= arm_stub_a8_veneer_b_cond
;
4695 else if (is_b
|| is_bl
|| is_blx
)
4697 int s
= (insn
& 0x4000000) != 0;
4698 int j1
= (insn
& 0x2000) != 0;
4699 int j2
= (insn
& 0x800) != 0;
4703 offset
= (insn
& 0x7ff) << 1;
4704 offset
|= (insn
& 0x3ff0000) >> 4;
4708 if (offset
& 0x1000000)
4709 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4712 offset
&= ~ ((bfd_signed_vma
) 3);
4714 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4715 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4718 if (stub_type
!= arm_stub_none
)
4720 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4722 /* The original instruction is a BL, but the target is
4723 an ARM instruction. If we were not making a stub,
4724 the BL would have been converted to a BLX. Use the
4725 BLX stub instead in that case. */
4726 if (htab
->use_blx
&& force_target_arm
4727 && stub_type
== arm_stub_a8_veneer_bl
)
4729 stub_type
= arm_stub_a8_veneer_blx
;
4733 /* Conversely, if the original instruction was
4734 BLX but the target is Thumb mode, use the BL
4736 else if (force_target_thumb
4737 && stub_type
== arm_stub_a8_veneer_blx
)
4739 stub_type
= arm_stub_a8_veneer_bl
;
4745 pc_for_insn
&= ~ ((bfd_vma
) 3);
4747 /* If we found a relocation, use the proper destination,
4748 not the offset in the (unrelocated) instruction.
4749 Note this is always done if we switched the stub type
4753 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4755 /* If the stub will use a Thumb-mode branch to a
4756 PLT target, redirect it to the preceding Thumb
4758 if (stub_type
!= arm_stub_a8_veneer_blx
&& use_plt
)
4759 offset
-= PLT_THUMB_STUB_SIZE
;
4761 target
= pc_for_insn
+ offset
;
4763 /* The BLX stub is ARM-mode code. Adjust the offset to
4764 take the different PC value (+8 instead of +4) into
4766 if (stub_type
== arm_stub_a8_veneer_blx
)
4769 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4771 char *stub_name
= NULL
;
4773 if (num_a8_fixes
== a8_fix_table_size
)
4775 a8_fix_table_size
*= 2;
4776 a8_fixes
= (struct a8_erratum_fix
*)
4777 bfd_realloc (a8_fixes
,
4778 sizeof (struct a8_erratum_fix
)
4779 * a8_fix_table_size
);
4782 if (num_a8_fixes
< prev_num_a8_fixes
)
4784 /* If we're doing a subsequent scan,
4785 check if we've found the same fix as
4786 before, and try and reuse the stub
4788 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
4789 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
4790 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
4794 *stub_changed_p
= TRUE
;
4800 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
4801 if (stub_name
!= NULL
)
4802 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4805 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4806 a8_fixes
[num_a8_fixes
].section
= section
;
4807 a8_fixes
[num_a8_fixes
].offset
= i
;
4808 a8_fixes
[num_a8_fixes
].addend
= offset
;
4809 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4810 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4811 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4812 a8_fixes
[num_a8_fixes
].branch_type
=
4813 is_blx
? ST_BRANCH_TO_ARM
: ST_BRANCH_TO_THUMB
;
4820 i
+= insn_32bit
? 4 : 2;
4821 last_was_32bit
= insn_32bit
;
4822 last_was_branch
= is_32bit_branch
;
4826 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4830 *a8_fixes_p
= a8_fixes
;
4831 *num_a8_fixes_p
= num_a8_fixes
;
4832 *a8_fix_table_size_p
= a8_fix_table_size
;
4837 /* Determine and set the size of the stub section for a final link.
4839 The basic idea here is to examine all the relocations looking for
4840 PC-relative calls to a target that is unreachable with a "bl"
4844 elf32_arm_size_stubs (bfd
*output_bfd
,
4846 struct bfd_link_info
*info
,
4847 bfd_signed_vma group_size
,
4848 asection
* (*add_stub_section
) (const char *, asection
*),
4849 void (*layout_sections_again
) (void))
4851 bfd_size_type stub_group_size
;
4852 bfd_boolean stubs_always_after_branch
;
4853 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4854 struct a8_erratum_fix
*a8_fixes
= NULL
;
4855 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
4856 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4857 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4862 if (htab
->fix_cortex_a8
)
4864 a8_fixes
= (struct a8_erratum_fix
*)
4865 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
4866 a8_relocs
= (struct a8_erratum_reloc
*)
4867 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
4870 /* Propagate mach to stub bfd, because it may not have been
4871 finalized when we created stub_bfd. */
4872 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4873 bfd_get_mach (output_bfd
));
4875 /* Stash our params away. */
4876 htab
->stub_bfd
= stub_bfd
;
4877 htab
->add_stub_section
= add_stub_section
;
4878 htab
->layout_sections_again
= layout_sections_again
;
4879 stubs_always_after_branch
= group_size
< 0;
4881 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4882 as the first half of a 32-bit branch straddling two 4K pages. This is a
4883 crude way of enforcing that. */
4884 if (htab
->fix_cortex_a8
)
4885 stubs_always_after_branch
= 1;
4888 stub_group_size
= -group_size
;
4890 stub_group_size
= group_size
;
4892 if (stub_group_size
== 1)
4894 /* Default values. */
4895 /* Thumb branch range is +-4MB has to be used as the default
4896 maximum size (a given section can contain both ARM and Thumb
4897 code, so the worst case has to be taken into account).
4899 This value is 24K less than that, which allows for 2025
4900 12-byte stubs. If we exceed that, then we will fail to link.
4901 The user will have to relink with an explicit group size
4903 stub_group_size
= 4170000;
4906 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4908 /* If we're applying the cortex A8 fix, we need to determine the
4909 program header size now, because we cannot change it later --
4910 that could alter section placements. Notice the A8 erratum fix
4911 ends up requiring the section addresses to remain unchanged
4912 modulo the page size. That's something we cannot represent
4913 inside BFD, and we don't want to force the section alignment to
4914 be the page size. */
4915 if (htab
->fix_cortex_a8
)
4916 (*htab
->layout_sections_again
) ();
4921 unsigned int bfd_indx
;
4923 bfd_boolean stub_changed
= FALSE
;
4924 unsigned prev_num_a8_fixes
= num_a8_fixes
;
4927 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4929 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4931 Elf_Internal_Shdr
*symtab_hdr
;
4933 Elf_Internal_Sym
*local_syms
= NULL
;
4937 /* We'll need the symbol table in a second. */
4938 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4939 if (symtab_hdr
->sh_info
== 0)
4942 /* Walk over each section attached to the input bfd. */
4943 for (section
= input_bfd
->sections
;
4945 section
= section
->next
)
4947 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4949 /* If there aren't any relocs, then there's nothing more
4951 if ((section
->flags
& SEC_RELOC
) == 0
4952 || section
->reloc_count
== 0
4953 || (section
->flags
& SEC_CODE
) == 0)
4956 /* If this section is a link-once section that will be
4957 discarded, then don't create any stubs. */
4958 if (section
->output_section
== NULL
4959 || section
->output_section
->owner
!= output_bfd
)
4962 /* Get the relocs. */
4964 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4965 NULL
, info
->keep_memory
);
4966 if (internal_relocs
== NULL
)
4967 goto error_ret_free_local
;
4969 /* Now examine each relocation. */
4970 irela
= internal_relocs
;
4971 irelaend
= irela
+ section
->reloc_count
;
4972 for (; irela
< irelaend
; irela
++)
4974 unsigned int r_type
, r_indx
;
4975 enum elf32_arm_stub_type stub_type
;
4976 struct elf32_arm_stub_hash_entry
*stub_entry
;
4979 bfd_vma destination
;
4980 struct elf32_arm_link_hash_entry
*hash
;
4981 const char *sym_name
;
4983 const asection
*id_sec
;
4984 unsigned char st_type
;
4985 enum arm_st_branch_type branch_type
;
4986 bfd_boolean created_stub
= FALSE
;
4988 r_type
= ELF32_R_TYPE (irela
->r_info
);
4989 r_indx
= ELF32_R_SYM (irela
->r_info
);
4991 if (r_type
>= (unsigned int) R_ARM_max
)
4993 bfd_set_error (bfd_error_bad_value
);
4994 error_ret_free_internal
:
4995 if (elf_section_data (section
)->relocs
== NULL
)
4996 free (internal_relocs
);
4997 goto error_ret_free_local
;
5001 if (r_indx
>= symtab_hdr
->sh_info
)
5002 hash
= elf32_arm_hash_entry
5003 (elf_sym_hashes (input_bfd
)
5004 [r_indx
- symtab_hdr
->sh_info
]);
5006 /* Only look for stubs on branch instructions, or
5007 non-relaxed TLSCALL */
5008 if ((r_type
!= (unsigned int) R_ARM_CALL
)
5009 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
5010 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
5011 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
5012 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
5013 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
5014 && (r_type
!= (unsigned int) R_ARM_PLT32
)
5015 && !((r_type
== (unsigned int) R_ARM_TLS_CALL
5016 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
5017 && r_type
== elf32_arm_tls_transition
5018 (info
, r_type
, &hash
->root
)
5019 && ((hash
? hash
->tls_type
5020 : (elf32_arm_local_got_tls_type
5021 (input_bfd
)[r_indx
]))
5022 & GOT_TLS_GDESC
) != 0))
5025 /* Now determine the call target, its name, value,
5032 if (r_type
== (unsigned int) R_ARM_TLS_CALL
5033 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
5035 /* A non-relaxed TLS call. The target is the
5036 plt-resident trampoline and nothing to do
5038 BFD_ASSERT (htab
->tls_trampoline
> 0);
5039 sym_sec
= htab
->root
.splt
;
5040 sym_value
= htab
->tls_trampoline
;
5043 branch_type
= ST_BRANCH_TO_ARM
;
5047 /* It's a local symbol. */
5048 Elf_Internal_Sym
*sym
;
5050 if (local_syms
== NULL
)
5053 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5054 if (local_syms
== NULL
)
5056 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
5057 symtab_hdr
->sh_info
, 0,
5059 if (local_syms
== NULL
)
5060 goto error_ret_free_internal
;
5063 sym
= local_syms
+ r_indx
;
5064 if (sym
->st_shndx
== SHN_UNDEF
)
5065 sym_sec
= bfd_und_section_ptr
;
5066 else if (sym
->st_shndx
== SHN_ABS
)
5067 sym_sec
= bfd_abs_section_ptr
;
5068 else if (sym
->st_shndx
== SHN_COMMON
)
5069 sym_sec
= bfd_com_section_ptr
;
5072 bfd_section_from_elf_index (input_bfd
, sym
->st_shndx
);
5075 /* This is an undefined symbol. It can never
5079 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
5080 sym_value
= sym
->st_value
;
5081 destination
= (sym_value
+ irela
->r_addend
5082 + sym_sec
->output_offset
5083 + sym_sec
->output_section
->vma
);
5084 st_type
= ELF_ST_TYPE (sym
->st_info
);
5085 branch_type
= ARM_SYM_BRANCH_TYPE (sym
);
5087 = bfd_elf_string_from_elf_section (input_bfd
,
5088 symtab_hdr
->sh_link
,
5093 /* It's an external symbol. */
5094 while (hash
->root
.root
.type
== bfd_link_hash_indirect
5095 || hash
->root
.root
.type
== bfd_link_hash_warning
)
5096 hash
= ((struct elf32_arm_link_hash_entry
*)
5097 hash
->root
.root
.u
.i
.link
);
5099 if (hash
->root
.root
.type
== bfd_link_hash_defined
5100 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
5102 sym_sec
= hash
->root
.root
.u
.def
.section
;
5103 sym_value
= hash
->root
.root
.u
.def
.value
;
5105 struct elf32_arm_link_hash_table
*globals
=
5106 elf32_arm_hash_table (info
);
5108 /* For a destination in a shared library,
5109 use the PLT stub as target address to
5110 decide whether a branch stub is
5113 && globals
->root
.splt
!= NULL
5115 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5117 sym_sec
= globals
->root
.splt
;
5118 sym_value
= hash
->root
.plt
.offset
;
5119 if (sym_sec
->output_section
!= NULL
)
5120 destination
= (sym_value
5121 + sym_sec
->output_offset
5122 + sym_sec
->output_section
->vma
);
5124 else if (sym_sec
->output_section
!= NULL
)
5125 destination
= (sym_value
+ irela
->r_addend
5126 + sym_sec
->output_offset
5127 + sym_sec
->output_section
->vma
);
5129 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
5130 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
5132 /* For a shared library, use the PLT stub as
5133 target address to decide whether a long
5134 branch stub is needed.
5135 For absolute code, they cannot be handled. */
5136 struct elf32_arm_link_hash_table
*globals
=
5137 elf32_arm_hash_table (info
);
5140 && globals
->root
.splt
!= NULL
5142 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5144 sym_sec
= globals
->root
.splt
;
5145 sym_value
= hash
->root
.plt
.offset
;
5146 if (sym_sec
->output_section
!= NULL
)
5147 destination
= (sym_value
5148 + sym_sec
->output_offset
5149 + sym_sec
->output_section
->vma
);
5156 bfd_set_error (bfd_error_bad_value
);
5157 goto error_ret_free_internal
;
5159 st_type
= hash
->root
.type
;
5160 branch_type
= hash
->root
.target_internal
;
5161 sym_name
= hash
->root
.root
.root
.string
;
5166 /* Determine what (if any) linker stub is needed. */
5167 stub_type
= arm_type_of_stub (info
, section
, irela
,
5168 st_type
, &branch_type
,
5169 hash
, destination
, sym_sec
,
5170 input_bfd
, sym_name
);
5171 if (stub_type
== arm_stub_none
)
5174 /* Support for grouping stub sections. */
5175 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
5177 /* Get the name of this stub. */
5178 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
5181 goto error_ret_free_internal
;
5183 /* We've either created a stub for this reloc already,
5184 or we are about to. */
5185 created_stub
= TRUE
;
5187 stub_entry
= arm_stub_hash_lookup
5188 (&htab
->stub_hash_table
, stub_name
,
5190 if (stub_entry
!= NULL
)
5192 /* The proper stub has already been created. */
5194 stub_entry
->target_value
= sym_value
;
5198 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
5200 if (stub_entry
== NULL
)
5203 goto error_ret_free_internal
;
5206 stub_entry
->target_value
= sym_value
;
5207 stub_entry
->target_section
= sym_sec
;
5208 stub_entry
->stub_type
= stub_type
;
5209 stub_entry
->h
= hash
;
5210 stub_entry
->branch_type
= branch_type
;
5212 if (sym_name
== NULL
)
5213 sym_name
= "unnamed";
5214 stub_entry
->output_name
= (char *)
5215 bfd_alloc (htab
->stub_bfd
,
5216 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
5217 + strlen (sym_name
));
5218 if (stub_entry
->output_name
== NULL
)
5221 goto error_ret_free_internal
;
5224 /* For historical reasons, use the existing names for
5225 ARM-to-Thumb and Thumb-to-ARM stubs. */
5226 if ((r_type
== (unsigned int) R_ARM_THM_CALL
5227 || r_type
== (unsigned int) R_ARM_THM_JUMP24
)
5228 && branch_type
== ST_BRANCH_TO_ARM
)
5229 sprintf (stub_entry
->output_name
,
5230 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
5231 else if ((r_type
== (unsigned int) R_ARM_CALL
5232 || r_type
== (unsigned int) R_ARM_JUMP24
)
5233 && branch_type
== ST_BRANCH_TO_THUMB
)
5234 sprintf (stub_entry
->output_name
,
5235 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
5237 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
5240 stub_changed
= TRUE
;
5244 /* Look for relocations which might trigger Cortex-A8
5246 if (htab
->fix_cortex_a8
5247 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
5248 || r_type
== (unsigned int) R_ARM_THM_JUMP19
5249 || r_type
== (unsigned int) R_ARM_THM_CALL
5250 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
5252 bfd_vma from
= section
->output_section
->vma
5253 + section
->output_offset
5256 if ((from
& 0xfff) == 0xffe)
5258 /* Found a candidate. Note we haven't checked the
5259 destination is within 4K here: if we do so (and
5260 don't create an entry in a8_relocs) we can't tell
5261 that a branch should have been relocated when
5263 if (num_a8_relocs
== a8_reloc_table_size
)
5265 a8_reloc_table_size
*= 2;
5266 a8_relocs
= (struct a8_erratum_reloc
*)
5267 bfd_realloc (a8_relocs
,
5268 sizeof (struct a8_erratum_reloc
)
5269 * a8_reloc_table_size
);
5272 a8_relocs
[num_a8_relocs
].from
= from
;
5273 a8_relocs
[num_a8_relocs
].destination
= destination
;
5274 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
5275 a8_relocs
[num_a8_relocs
].branch_type
= branch_type
;
5276 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
5277 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
5278 a8_relocs
[num_a8_relocs
].hash
= hash
;
5285 /* We're done with the internal relocs, free them. */
5286 if (elf_section_data (section
)->relocs
== NULL
)
5287 free (internal_relocs
);
5290 if (htab
->fix_cortex_a8
)
5292 /* Sort relocs which might apply to Cortex-A8 erratum. */
5293 qsort (a8_relocs
, num_a8_relocs
,
5294 sizeof (struct a8_erratum_reloc
),
5297 /* Scan for branches which might trigger Cortex-A8 erratum. */
5298 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
5299 &num_a8_fixes
, &a8_fix_table_size
,
5300 a8_relocs
, num_a8_relocs
,
5301 prev_num_a8_fixes
, &stub_changed
)
5303 goto error_ret_free_local
;
5307 if (prev_num_a8_fixes
!= num_a8_fixes
)
5308 stub_changed
= TRUE
;
5313 /* OK, we've added some stubs. Find out the new size of the
5315 for (stub_sec
= htab
->stub_bfd
->sections
;
5317 stub_sec
= stub_sec
->next
)
5319 /* Ignore non-stub sections. */
5320 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5326 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
5328 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5329 if (htab
->fix_cortex_a8
)
5330 for (i
= 0; i
< num_a8_fixes
; i
++)
5332 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
5333 a8_fixes
[i
].section
, htab
);
5335 if (stub_sec
== NULL
)
5336 goto error_ret_free_local
;
5339 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
5344 /* Ask the linker to do its stuff. */
5345 (*htab
->layout_sections_again
) ();
5348 /* Add stubs for Cortex-A8 erratum fixes now. */
5349 if (htab
->fix_cortex_a8
)
5351 for (i
= 0; i
< num_a8_fixes
; i
++)
5353 struct elf32_arm_stub_hash_entry
*stub_entry
;
5354 char *stub_name
= a8_fixes
[i
].stub_name
;
5355 asection
*section
= a8_fixes
[i
].section
;
5356 unsigned int section_id
= a8_fixes
[i
].section
->id
;
5357 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
5358 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
5359 const insn_sequence
*template_sequence
;
5360 int template_size
, size
= 0;
5362 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
5364 if (stub_entry
== NULL
)
5366 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
5372 stub_entry
->stub_sec
= stub_sec
;
5373 stub_entry
->stub_offset
= 0;
5374 stub_entry
->id_sec
= link_sec
;
5375 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
5376 stub_entry
->target_section
= a8_fixes
[i
].section
;
5377 stub_entry
->target_value
= a8_fixes
[i
].offset
;
5378 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
5379 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
5380 stub_entry
->branch_type
= a8_fixes
[i
].branch_type
;
5382 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
5386 stub_entry
->stub_size
= size
;
5387 stub_entry
->stub_template
= template_sequence
;
5388 stub_entry
->stub_template_size
= template_size
;
5391 /* Stash the Cortex-A8 erratum fix array for use later in
5392 elf32_arm_write_section(). */
5393 htab
->a8_erratum_fixes
= a8_fixes
;
5394 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
5398 htab
->a8_erratum_fixes
= NULL
;
5399 htab
->num_a8_erratum_fixes
= 0;
5403 error_ret_free_local
:
5407 /* Build all the stubs associated with the current output file. The
5408 stubs are kept in a hash table attached to the main linker hash
5409 table. We also set up the .plt entries for statically linked PIC
5410 functions here. This function is called via arm_elf_finish in the
5414 elf32_arm_build_stubs (struct bfd_link_info
*info
)
5417 struct bfd_hash_table
*table
;
5418 struct elf32_arm_link_hash_table
*htab
;
5420 htab
= elf32_arm_hash_table (info
);
5424 for (stub_sec
= htab
->stub_bfd
->sections
;
5426 stub_sec
= stub_sec
->next
)
5430 /* Ignore non-stub sections. */
5431 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5434 /* Allocate memory to hold the linker stubs. */
5435 size
= stub_sec
->size
;
5436 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
5437 if (stub_sec
->contents
== NULL
&& size
!= 0)
5442 /* Build the stubs as directed by the stub hash table. */
5443 table
= &htab
->stub_hash_table
;
5444 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5445 if (htab
->fix_cortex_a8
)
5447 /* Place the cortex a8 stubs last. */
5448 htab
->fix_cortex_a8
= -1;
5449 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5455 /* Locate the Thumb encoded calling stub for NAME. */
5457 static struct elf_link_hash_entry
*
5458 find_thumb_glue (struct bfd_link_info
*link_info
,
5460 char **error_message
)
5463 struct elf_link_hash_entry
*hash
;
5464 struct elf32_arm_link_hash_table
*hash_table
;
5466 /* We need a pointer to the armelf specific hash table. */
5467 hash_table
= elf32_arm_hash_table (link_info
);
5468 if (hash_table
== NULL
)
5471 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5472 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
5474 BFD_ASSERT (tmp_name
);
5476 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
5478 hash
= elf_link_hash_lookup
5479 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5482 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
5483 tmp_name
, name
) == -1)
5484 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5491 /* Locate the ARM encoded calling stub for NAME. */
5493 static struct elf_link_hash_entry
*
5494 find_arm_glue (struct bfd_link_info
*link_info
,
5496 char **error_message
)
5499 struct elf_link_hash_entry
*myh
;
5500 struct elf32_arm_link_hash_table
*hash_table
;
5502 /* We need a pointer to the elfarm specific hash table. */
5503 hash_table
= elf32_arm_hash_table (link_info
);
5504 if (hash_table
== NULL
)
5507 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5508 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5510 BFD_ASSERT (tmp_name
);
5512 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5514 myh
= elf_link_hash_lookup
5515 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5518 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
5519 tmp_name
, name
) == -1)
5520 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5527 /* ARM->Thumb glue (static images):
5531 ldr r12, __func_addr
5534 .word func @ behave as if you saw a ARM_32 reloc.
5541 .word func @ behave as if you saw a ARM_32 reloc.
5543 (relocatable images)
5546 ldr r12, __func_offset
5552 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5553 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
5554 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
5555 static const insn32 a2t3_func_addr_insn
= 0x00000001;
5557 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5558 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
5559 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
5561 #define ARM2THUMB_PIC_GLUE_SIZE 16
5562 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
5563 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
5564 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
5566 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5570 __func_from_thumb: __func_from_thumb:
5572 nop ldr r6, __func_addr
5582 #define THUMB2ARM_GLUE_SIZE 8
5583 static const insn16 t2a1_bx_pc_insn
= 0x4778;
5584 static const insn16 t2a2_noop_insn
= 0x46c0;
5585 static const insn32 t2a3_b_insn
= 0xea000000;
5587 #define VFP11_ERRATUM_VENEER_SIZE 8
5589 #define ARM_BX_VENEER_SIZE 12
5590 static const insn32 armbx1_tst_insn
= 0xe3100001;
5591 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
5592 static const insn32 armbx3_bx_insn
= 0xe12fff10;
5594 #ifndef ELFARM_NABI_C_INCLUDED
5596 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
5599 bfd_byte
* contents
;
5603 /* Do not include empty glue sections in the output. */
5606 s
= bfd_get_section_by_name (abfd
, name
);
5608 s
->flags
|= SEC_EXCLUDE
;
5613 BFD_ASSERT (abfd
!= NULL
);
5615 s
= bfd_get_section_by_name (abfd
, name
);
5616 BFD_ASSERT (s
!= NULL
);
5618 contents
= (bfd_byte
*) bfd_alloc (abfd
, size
);
5620 BFD_ASSERT (s
->size
== size
);
5621 s
->contents
= contents
;
5625 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
5627 struct elf32_arm_link_hash_table
* globals
;
5629 globals
= elf32_arm_hash_table (info
);
5630 BFD_ASSERT (globals
!= NULL
);
5632 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5633 globals
->arm_glue_size
,
5634 ARM2THUMB_GLUE_SECTION_NAME
);
5636 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5637 globals
->thumb_glue_size
,
5638 THUMB2ARM_GLUE_SECTION_NAME
);
5640 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5641 globals
->vfp11_erratum_glue_size
,
5642 VFP11_ERRATUM_VENEER_SECTION_NAME
);
5644 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5645 globals
->bx_glue_size
,
5646 ARM_BX_GLUE_SECTION_NAME
);
5651 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5652 returns the symbol identifying the stub. */
5654 static struct elf_link_hash_entry
*
5655 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
5656 struct elf_link_hash_entry
* h
)
5658 const char * name
= h
->root
.root
.string
;
5661 struct elf_link_hash_entry
* myh
;
5662 struct bfd_link_hash_entry
* bh
;
5663 struct elf32_arm_link_hash_table
* globals
;
5667 globals
= elf32_arm_hash_table (link_info
);
5668 BFD_ASSERT (globals
!= NULL
);
5669 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5671 s
= bfd_get_section_by_name
5672 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
5674 BFD_ASSERT (s
!= NULL
);
5676 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5677 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5679 BFD_ASSERT (tmp_name
);
5681 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5683 myh
= elf_link_hash_lookup
5684 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5688 /* We've already seen this guy. */
5693 /* The only trick here is using hash_table->arm_glue_size as the value.
5694 Even though the section isn't allocated yet, this is where we will be
5695 putting it. The +1 on the value marks that the stub has not been
5696 output yet - not that it is a Thumb function. */
5698 val
= globals
->arm_glue_size
+ 1;
5699 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5700 tmp_name
, BSF_GLOBAL
, s
, val
,
5701 NULL
, TRUE
, FALSE
, &bh
);
5703 myh
= (struct elf_link_hash_entry
*) bh
;
5704 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5705 myh
->forced_local
= 1;
5709 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
5710 || globals
->pic_veneer
)
5711 size
= ARM2THUMB_PIC_GLUE_SIZE
;
5712 else if (globals
->use_blx
)
5713 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
5715 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
5718 globals
->arm_glue_size
+= size
;
5723 /* Allocate space for ARMv4 BX veneers. */
5726 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
5729 struct elf32_arm_link_hash_table
*globals
;
5731 struct elf_link_hash_entry
*myh
;
5732 struct bfd_link_hash_entry
*bh
;
5735 /* BX PC does not need a veneer. */
5739 globals
= elf32_arm_hash_table (link_info
);
5740 BFD_ASSERT (globals
!= NULL
);
5741 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5743 /* Check if this veneer has already been allocated. */
5744 if (globals
->bx_glue_offset
[reg
])
5747 s
= bfd_get_section_by_name
5748 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
5750 BFD_ASSERT (s
!= NULL
);
5752 /* Add symbol for veneer. */
5754 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
5756 BFD_ASSERT (tmp_name
);
5758 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
5760 myh
= elf_link_hash_lookup
5761 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5763 BFD_ASSERT (myh
== NULL
);
5766 val
= globals
->bx_glue_size
;
5767 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5768 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5769 NULL
, TRUE
, FALSE
, &bh
);
5771 myh
= (struct elf_link_hash_entry
*) bh
;
5772 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5773 myh
->forced_local
= 1;
5775 s
->size
+= ARM_BX_VENEER_SIZE
;
5776 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5777 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5781 /* Add an entry to the code/data map for section SEC. */
5784 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5786 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5787 unsigned int newidx
;
5789 if (sec_data
->map
== NULL
)
5791 sec_data
->map
= (elf32_arm_section_map
*)
5792 bfd_malloc (sizeof (elf32_arm_section_map
));
5793 sec_data
->mapcount
= 0;
5794 sec_data
->mapsize
= 1;
5797 newidx
= sec_data
->mapcount
++;
5799 if (sec_data
->mapcount
> sec_data
->mapsize
)
5801 sec_data
->mapsize
*= 2;
5802 sec_data
->map
= (elf32_arm_section_map
*)
5803 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5804 * sizeof (elf32_arm_section_map
));
5809 sec_data
->map
[newidx
].vma
= vma
;
5810 sec_data
->map
[newidx
].type
= type
;
5815 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5816 veneers are handled for now. */
5819 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5820 elf32_vfp11_erratum_list
*branch
,
5822 asection
*branch_sec
,
5823 unsigned int offset
)
5826 struct elf32_arm_link_hash_table
*hash_table
;
5828 struct elf_link_hash_entry
*myh
;
5829 struct bfd_link_hash_entry
*bh
;
5831 struct _arm_elf_section_data
*sec_data
;
5832 elf32_vfp11_erratum_list
*newerr
;
5834 hash_table
= elf32_arm_hash_table (link_info
);
5835 BFD_ASSERT (hash_table
!= NULL
);
5836 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5838 s
= bfd_get_section_by_name
5839 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5841 sec_data
= elf32_arm_section_data (s
);
5843 BFD_ASSERT (s
!= NULL
);
5845 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
5846 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5848 BFD_ASSERT (tmp_name
);
5850 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5851 hash_table
->num_vfp11_fixes
);
5853 myh
= elf_link_hash_lookup
5854 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5856 BFD_ASSERT (myh
== NULL
);
5859 val
= hash_table
->vfp11_erratum_glue_size
;
5860 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5861 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5862 NULL
, TRUE
, FALSE
, &bh
);
5864 myh
= (struct elf_link_hash_entry
*) bh
;
5865 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5866 myh
->forced_local
= 1;
5868 /* Link veneer back to calling location. */
5869 sec_data
->erratumcount
+= 1;
5870 newerr
= (elf32_vfp11_erratum_list
*)
5871 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5873 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5875 newerr
->u
.v
.branch
= branch
;
5876 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5877 branch
->u
.b
.veneer
= newerr
;
5879 newerr
->next
= sec_data
->erratumlist
;
5880 sec_data
->erratumlist
= newerr
;
5882 /* A symbol for the return from the veneer. */
5883 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5884 hash_table
->num_vfp11_fixes
);
5886 myh
= elf_link_hash_lookup
5887 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5894 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5895 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5897 myh
= (struct elf_link_hash_entry
*) bh
;
5898 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5899 myh
->forced_local
= 1;
5903 /* Generate a mapping symbol for the veneer section, and explicitly add an
5904 entry for that symbol to the code/data map for the section. */
5905 if (hash_table
->vfp11_erratum_glue_size
== 0)
5908 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5909 ever requires this erratum fix. */
5910 _bfd_generic_link_add_one_symbol (link_info
,
5911 hash_table
->bfd_of_glue_owner
, "$a",
5912 BSF_LOCAL
, s
, 0, NULL
,
5915 myh
= (struct elf_link_hash_entry
*) bh
;
5916 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5917 myh
->forced_local
= 1;
5919 /* The elf32_arm_init_maps function only cares about symbols from input
5920 BFDs. We must make a note of this generated mapping symbol
5921 ourselves so that code byteswapping works properly in
5922 elf32_arm_write_section. */
5923 elf32_arm_section_map_add (s
, 'a', 0);
5926 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5927 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5928 hash_table
->num_vfp11_fixes
++;
5930 /* The offset of the veneer. */
5934 #define ARM_GLUE_SECTION_FLAGS \
5935 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5936 | SEC_READONLY | SEC_LINKER_CREATED)
5938 /* Create a fake section for use by the ARM backend of the linker. */
5941 arm_make_glue_section (bfd
* abfd
, const char * name
)
5945 sec
= bfd_get_section_by_name (abfd
, name
);
5950 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5953 || !bfd_set_section_alignment (abfd
, sec
, 2))
5956 /* Set the gc mark to prevent the section from being removed by garbage
5957 collection, despite the fact that no relocs refer to this section. */
5963 /* Add the glue sections to ABFD. This function is called from the
5964 linker scripts in ld/emultempl/{armelf}.em. */
5967 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5968 struct bfd_link_info
*info
)
5970 /* If we are only performing a partial
5971 link do not bother adding the glue. */
5972 if (info
->relocatable
)
5975 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5976 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
5977 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
5978 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
5981 /* Select a BFD to be used to hold the sections used by the glue code.
5982 This function is called from the linker scripts in ld/emultempl/
5986 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
5988 struct elf32_arm_link_hash_table
*globals
;
5990 /* If we are only performing a partial link
5991 do not bother getting a bfd to hold the glue. */
5992 if (info
->relocatable
)
5995 /* Make sure we don't attach the glue sections to a dynamic object. */
5996 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
5998 globals
= elf32_arm_hash_table (info
);
5999 BFD_ASSERT (globals
!= NULL
);
6001 if (globals
->bfd_of_glue_owner
!= NULL
)
6004 /* Save the bfd for later use. */
6005 globals
->bfd_of_glue_owner
= abfd
;
6011 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
6015 cpu_arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
6018 if (globals
->fix_arm1176
)
6020 if (cpu_arch
== TAG_CPU_ARCH_V6T2
|| cpu_arch
> TAG_CPU_ARCH_V6K
)
6021 globals
->use_blx
= 1;
6025 if (cpu_arch
> TAG_CPU_ARCH_V4T
)
6026 globals
->use_blx
= 1;
6031 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
6032 struct bfd_link_info
*link_info
)
6034 Elf_Internal_Shdr
*symtab_hdr
;
6035 Elf_Internal_Rela
*internal_relocs
= NULL
;
6036 Elf_Internal_Rela
*irel
, *irelend
;
6037 bfd_byte
*contents
= NULL
;
6040 struct elf32_arm_link_hash_table
*globals
;
6042 /* If we are only performing a partial link do not bother
6043 to construct any glue. */
6044 if (link_info
->relocatable
)
6047 /* Here we have a bfd that is to be included on the link. We have a
6048 hook to do reloc rummaging, before section sizes are nailed down. */
6049 globals
= elf32_arm_hash_table (link_info
);
6050 BFD_ASSERT (globals
!= NULL
);
6052 check_use_blx (globals
);
6054 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
6056 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6061 /* PR 5398: If we have not decided to include any loadable sections in
6062 the output then we will not have a glue owner bfd. This is OK, it
6063 just means that there is nothing else for us to do here. */
6064 if (globals
->bfd_of_glue_owner
== NULL
)
6067 /* Rummage around all the relocs and map the glue vectors. */
6068 sec
= abfd
->sections
;
6073 for (; sec
!= NULL
; sec
= sec
->next
)
6075 if (sec
->reloc_count
== 0)
6078 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
6081 symtab_hdr
= & elf_symtab_hdr (abfd
);
6083 /* Load the relocs. */
6085 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
6087 if (internal_relocs
== NULL
)
6090 irelend
= internal_relocs
+ sec
->reloc_count
;
6091 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
6094 unsigned long r_index
;
6096 struct elf_link_hash_entry
*h
;
6098 r_type
= ELF32_R_TYPE (irel
->r_info
);
6099 r_index
= ELF32_R_SYM (irel
->r_info
);
6101 /* These are the only relocation types we care about. */
6102 if ( r_type
!= R_ARM_PC24
6103 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
6106 /* Get the section contents if we haven't done so already. */
6107 if (contents
== NULL
)
6109 /* Get cached copy if it exists. */
6110 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6111 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6114 /* Go get them off disk. */
6115 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6120 if (r_type
== R_ARM_V4BX
)
6124 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
6125 record_arm_bx_glue (link_info
, reg
);
6129 /* If the relocation is not against a symbol it cannot concern us. */
6132 /* We don't care about local symbols. */
6133 if (r_index
< symtab_hdr
->sh_info
)
6136 /* This is an external symbol. */
6137 r_index
-= symtab_hdr
->sh_info
;
6138 h
= (struct elf_link_hash_entry
*)
6139 elf_sym_hashes (abfd
)[r_index
];
6141 /* If the relocation is against a static symbol it must be within
6142 the current section and so cannot be a cross ARM/Thumb relocation. */
6146 /* If the call will go through a PLT entry then we do not need
6148 if (globals
->root
.splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6154 /* This one is a call from arm code. We need to look up
6155 the target of the call. If it is a thumb target, we
6157 if (h
->target_internal
== ST_BRANCH_TO_THUMB
)
6158 record_arm_to_thumb_glue (link_info
, h
);
6166 if (contents
!= NULL
6167 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6171 if (internal_relocs
!= NULL
6172 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6173 free (internal_relocs
);
6174 internal_relocs
= NULL
;
6180 if (contents
!= NULL
6181 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6183 if (internal_relocs
!= NULL
6184 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6185 free (internal_relocs
);
6192 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6195 bfd_elf32_arm_init_maps (bfd
*abfd
)
6197 Elf_Internal_Sym
*isymbuf
;
6198 Elf_Internal_Shdr
*hdr
;
6199 unsigned int i
, localsyms
;
6201 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6202 if (! is_arm_elf (abfd
))
6205 if ((abfd
->flags
& DYNAMIC
) != 0)
6208 hdr
= & elf_symtab_hdr (abfd
);
6209 localsyms
= hdr
->sh_info
;
6211 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6212 should contain the number of local symbols, which should come before any
6213 global symbols. Mapping symbols are always local. */
6214 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
6217 /* No internal symbols read? Skip this BFD. */
6218 if (isymbuf
== NULL
)
6221 for (i
= 0; i
< localsyms
; i
++)
6223 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
6224 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6228 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
6230 name
= bfd_elf_string_from_elf_section (abfd
,
6231 hdr
->sh_link
, isym
->st_name
);
6233 if (bfd_is_arm_special_symbol_name (name
,
6234 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
6235 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
6241 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6242 say what they wanted. */
6245 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6247 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6248 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6250 if (globals
== NULL
)
6253 if (globals
->fix_cortex_a8
== -1)
6255 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6256 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
6257 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
6258 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
6259 globals
->fix_cortex_a8
= 1;
6261 globals
->fix_cortex_a8
= 0;
6267 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6269 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6270 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6272 if (globals
== NULL
)
6274 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6275 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
6277 switch (globals
->vfp11_fix
)
6279 case BFD_ARM_VFP11_FIX_DEFAULT
:
6280 case BFD_ARM_VFP11_FIX_NONE
:
6281 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6285 /* Give a warning, but do as the user requests anyway. */
6286 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
6287 "workaround is not necessary for target architecture"), obfd
);
6290 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
6291 /* For earlier architectures, we might need the workaround, but do not
6292 enable it by default. If users is running with broken hardware, they
6293 must enable the erratum fix explicitly. */
6294 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6298 enum bfd_arm_vfp11_pipe
6306 /* Return a VFP register number. This is encoded as RX:X for single-precision
6307 registers, or X:RX for double-precision registers, where RX is the group of
6308 four bits in the instruction encoding and X is the single extension bit.
6309 RX and X fields are specified using their lowest (starting) bit. The return
6312 0...31: single-precision registers s0...s31
6313 32...63: double-precision registers d0...d31.
6315 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6316 encounter VFP3 instructions, so we allow the full range for DP registers. */
6319 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
6323 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
6325 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
6328 /* Set bits in *WMASK according to a register number REG as encoded by
6329 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6332 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
6337 *wmask
|= 3 << ((reg
- 32) * 2);
6340 /* Return TRUE if WMASK overwrites anything in REGS. */
6343 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
6347 for (i
= 0; i
< numregs
; i
++)
6349 unsigned int reg
= regs
[i
];
6351 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
6359 if ((wmask
& (3 << (reg
* 2))) != 0)
6366 /* In this function, we're interested in two things: finding input registers
6367 for VFP data-processing instructions, and finding the set of registers which
6368 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6369 hold the written set, so FLDM etc. are easy to deal with (we're only
6370 interested in 32 SP registers or 16 dp registers, due to the VFP version
6371 implemented by the chip in question). DP registers are marked by setting
6372 both SP registers in the write mask). */
6374 static enum bfd_arm_vfp11_pipe
6375 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
6378 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
6379 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
6381 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6384 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6385 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6387 pqrs
= ((insn
& 0x00800000) >> 20)
6388 | ((insn
& 0x00300000) >> 19)
6389 | ((insn
& 0x00000040) >> 6);
6393 case 0: /* fmac[sd]. */
6394 case 1: /* fnmac[sd]. */
6395 case 2: /* fmsc[sd]. */
6396 case 3: /* fnmsc[sd]. */
6398 bfd_arm_vfp11_write_mask (destmask
, fd
);
6400 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6405 case 4: /* fmul[sd]. */
6406 case 5: /* fnmul[sd]. */
6407 case 6: /* fadd[sd]. */
6408 case 7: /* fsub[sd]. */
6412 case 8: /* fdiv[sd]. */
6415 bfd_arm_vfp11_write_mask (destmask
, fd
);
6416 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6421 case 15: /* extended opcode. */
6423 unsigned int extn
= ((insn
>> 15) & 0x1e)
6424 | ((insn
>> 7) & 1);
6428 case 0: /* fcpy[sd]. */
6429 case 1: /* fabs[sd]. */
6430 case 2: /* fneg[sd]. */
6431 case 8: /* fcmp[sd]. */
6432 case 9: /* fcmpe[sd]. */
6433 case 10: /* fcmpz[sd]. */
6434 case 11: /* fcmpez[sd]. */
6435 case 16: /* fuito[sd]. */
6436 case 17: /* fsito[sd]. */
6437 case 24: /* ftoui[sd]. */
6438 case 25: /* ftouiz[sd]. */
6439 case 26: /* ftosi[sd]. */
6440 case 27: /* ftosiz[sd]. */
6441 /* These instructions will not bounce due to underflow. */
6446 case 3: /* fsqrt[sd]. */
6447 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6448 registers to cause the erratum in previous instructions. */
6449 bfd_arm_vfp11_write_mask (destmask
, fd
);
6453 case 15: /* fcvt{ds,sd}. */
6457 bfd_arm_vfp11_write_mask (destmask
, fd
);
6459 /* Only FCVTSD can underflow. */
6460 if ((insn
& 0x100) != 0)
6479 /* Two-register transfer. */
6480 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
6482 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6484 if ((insn
& 0x100000) == 0)
6487 bfd_arm_vfp11_write_mask (destmask
, fm
);
6490 bfd_arm_vfp11_write_mask (destmask
, fm
);
6491 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
6497 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
6499 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6500 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
6504 case 0: /* Two-reg transfer. We should catch these above. */
6507 case 2: /* fldm[sdx]. */
6511 unsigned int i
, offset
= insn
& 0xff;
6516 for (i
= fd
; i
< fd
+ offset
; i
++)
6517 bfd_arm_vfp11_write_mask (destmask
, i
);
6521 case 4: /* fld[sd]. */
6523 bfd_arm_vfp11_write_mask (destmask
, fd
);
6532 /* Single-register transfer. Note L==0. */
6533 else if ((insn
& 0x0f100e10) == 0x0e000a10)
6535 unsigned int opcode
= (insn
>> 21) & 7;
6536 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
6540 case 0: /* fmsr/fmdlr. */
6541 case 1: /* fmdhr. */
6542 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6543 destination register. I don't know if this is exactly right,
6544 but it is the conservative choice. */
6545 bfd_arm_vfp11_write_mask (destmask
, fn
);
6559 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
6562 /* Look for potentially-troublesome code sequences which might trigger the
6563 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6564 (available from ARM) for details of the erratum. A short version is
6565 described in ld.texinfo. */
6568 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
6571 bfd_byte
*contents
= NULL
;
6573 int regs
[3], numregs
= 0;
6574 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6575 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
6577 if (globals
== NULL
)
6580 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6581 The states transition as follows:
6583 0 -> 1 (vector) or 0 -> 2 (scalar)
6584 A VFP FMAC-pipeline instruction has been seen. Fill
6585 regs[0]..regs[numregs-1] with its input operands. Remember this
6586 instruction in 'first_fmac'.
6589 Any instruction, except for a VFP instruction which overwrites
6594 A VFP instruction has been seen which overwrites any of regs[*].
6595 We must make a veneer! Reset state to 0 before examining next
6599 If we fail to match anything in state 2, reset to state 0 and reset
6600 the instruction pointer to the instruction after 'first_fmac'.
6602 If the VFP11 vector mode is in use, there must be at least two unrelated
6603 instructions between anti-dependent VFP11 instructions to properly avoid
6604 triggering the erratum, hence the use of the extra state 1. */
6606 /* If we are only performing a partial link do not bother
6607 to construct any glue. */
6608 if (link_info
->relocatable
)
6611 /* Skip if this bfd does not correspond to an ELF image. */
6612 if (! is_arm_elf (abfd
))
6615 /* We should have chosen a fix type by the time we get here. */
6616 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
6618 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
6621 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6622 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
6625 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6627 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
6628 struct _arm_elf_section_data
*sec_data
;
6630 /* If we don't have executable progbits, we're not interested in this
6631 section. Also skip if section is to be excluded. */
6632 if (elf_section_type (sec
) != SHT_PROGBITS
6633 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
6634 || (sec
->flags
& SEC_EXCLUDE
) != 0
6635 || sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
6636 || sec
->output_section
== bfd_abs_section_ptr
6637 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
6640 sec_data
= elf32_arm_section_data (sec
);
6642 if (sec_data
->mapcount
== 0)
6645 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6646 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6647 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6650 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
6651 elf32_arm_compare_mapping
);
6653 for (span
= 0; span
< sec_data
->mapcount
; span
++)
6655 unsigned int span_start
= sec_data
->map
[span
].vma
;
6656 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
6657 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
6658 char span_type
= sec_data
->map
[span
].type
;
6660 /* FIXME: Only ARM mode is supported at present. We may need to
6661 support Thumb-2 mode also at some point. */
6662 if (span_type
!= 'a')
6665 for (i
= span_start
; i
< span_end
;)
6667 unsigned int next_i
= i
+ 4;
6668 unsigned int insn
= bfd_big_endian (abfd
)
6669 ? (contents
[i
] << 24)
6670 | (contents
[i
+ 1] << 16)
6671 | (contents
[i
+ 2] << 8)
6673 : (contents
[i
+ 3] << 24)
6674 | (contents
[i
+ 2] << 16)
6675 | (contents
[i
+ 1] << 8)
6677 unsigned int writemask
= 0;
6678 enum bfd_arm_vfp11_pipe vpipe
;
6683 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
6685 /* I'm assuming the VFP11 erratum can trigger with denorm
6686 operands on either the FMAC or the DS pipeline. This might
6687 lead to slightly overenthusiastic veneer insertion. */
6688 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
6690 state
= use_vector
? 1 : 2;
6692 veneer_of_insn
= insn
;
6698 int other_regs
[3], other_numregs
;
6699 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6702 if (vpipe
!= VFP11_BAD
6703 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6713 int other_regs
[3], other_numregs
;
6714 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6717 if (vpipe
!= VFP11_BAD
6718 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6724 next_i
= first_fmac
+ 4;
6730 abort (); /* Should be unreachable. */
6735 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
6736 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6738 elf32_arm_section_data (sec
)->erratumcount
+= 1;
6740 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
6745 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
6752 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
6757 newerr
->next
= sec_data
->erratumlist
;
6758 sec_data
->erratumlist
= newerr
;
6767 if (contents
!= NULL
6768 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6776 if (contents
!= NULL
6777 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6783 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6784 after sections have been laid out, using specially-named symbols. */
6787 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
6788 struct bfd_link_info
*link_info
)
6791 struct elf32_arm_link_hash_table
*globals
;
6794 if (link_info
->relocatable
)
6797 /* Skip if this bfd does not correspond to an ELF image. */
6798 if (! is_arm_elf (abfd
))
6801 globals
= elf32_arm_hash_table (link_info
);
6802 if (globals
== NULL
)
6805 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
6806 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6808 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6810 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6811 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6813 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6815 struct elf_link_hash_entry
*myh
;
6818 switch (errnode
->type
)
6820 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6821 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6822 /* Find veneer symbol. */
6823 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6824 errnode
->u
.b
.veneer
->u
.v
.id
);
6826 myh
= elf_link_hash_lookup
6827 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6830 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6831 "`%s'"), abfd
, tmp_name
);
6833 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6834 + myh
->root
.u
.def
.section
->output_offset
6835 + myh
->root
.u
.def
.value
;
6837 errnode
->u
.b
.veneer
->vma
= vma
;
6840 case VFP11_ERRATUM_ARM_VENEER
:
6841 case VFP11_ERRATUM_THUMB_VENEER
:
6842 /* Find return location. */
6843 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6846 myh
= elf_link_hash_lookup
6847 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6850 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6851 "`%s'"), abfd
, tmp_name
);
6853 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6854 + myh
->root
.u
.def
.section
->output_offset
6855 + myh
->root
.u
.def
.value
;
6857 errnode
->u
.v
.branch
->vma
= vma
;
6870 /* Set target relocation values needed during linking. */
6873 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6874 struct bfd_link_info
*link_info
,
6876 char * target2_type
,
6879 bfd_arm_vfp11_fix vfp11_fix
,
6880 int no_enum_warn
, int no_wchar_warn
,
6881 int pic_veneer
, int fix_cortex_a8
,
6884 struct elf32_arm_link_hash_table
*globals
;
6886 globals
= elf32_arm_hash_table (link_info
);
6887 if (globals
== NULL
)
6890 globals
->target1_is_rel
= target1_is_rel
;
6891 if (strcmp (target2_type
, "rel") == 0)
6892 globals
->target2_reloc
= R_ARM_REL32
;
6893 else if (strcmp (target2_type
, "abs") == 0)
6894 globals
->target2_reloc
= R_ARM_ABS32
;
6895 else if (strcmp (target2_type
, "got-rel") == 0)
6896 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6899 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6902 globals
->fix_v4bx
= fix_v4bx
;
6903 globals
->use_blx
|= use_blx
;
6904 globals
->vfp11_fix
= vfp11_fix
;
6905 globals
->pic_veneer
= pic_veneer
;
6906 globals
->fix_cortex_a8
= fix_cortex_a8
;
6907 globals
->fix_arm1176
= fix_arm1176
;
6909 BFD_ASSERT (is_arm_elf (output_bfd
));
6910 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6911 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6914 /* Replace the target offset of a Thumb bl or b.w instruction. */
6917 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6923 BFD_ASSERT ((offset
& 1) == 0);
6925 upper
= bfd_get_16 (abfd
, insn
);
6926 lower
= bfd_get_16 (abfd
, insn
+ 2);
6927 reloc_sign
= (offset
< 0) ? 1 : 0;
6928 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6929 | ((offset
>> 12) & 0x3ff)
6930 | (reloc_sign
<< 10);
6931 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6932 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6933 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6934 | ((offset
>> 1) & 0x7ff);
6935 bfd_put_16 (abfd
, upper
, insn
);
6936 bfd_put_16 (abfd
, lower
, insn
+ 2);
6939 /* Thumb code calling an ARM function. */
6942 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6946 asection
* input_section
,
6947 bfd_byte
* hit_data
,
6950 bfd_signed_vma addend
,
6952 char **error_message
)
6956 long int ret_offset
;
6957 struct elf_link_hash_entry
* myh
;
6958 struct elf32_arm_link_hash_table
* globals
;
6960 myh
= find_thumb_glue (info
, name
, error_message
);
6964 globals
= elf32_arm_hash_table (info
);
6965 BFD_ASSERT (globals
!= NULL
);
6966 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6968 my_offset
= myh
->root
.u
.def
.value
;
6970 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6971 THUMB2ARM_GLUE_SECTION_NAME
);
6973 BFD_ASSERT (s
!= NULL
);
6974 BFD_ASSERT (s
->contents
!= NULL
);
6975 BFD_ASSERT (s
->output_section
!= NULL
);
6977 if ((my_offset
& 0x01) == 0x01)
6980 && sym_sec
->owner
!= NULL
6981 && !INTERWORK_FLAG (sym_sec
->owner
))
6983 (*_bfd_error_handler
)
6984 (_("%B(%s): warning: interworking not enabled.\n"
6985 " first occurrence: %B: Thumb call to ARM"),
6986 sym_sec
->owner
, input_bfd
, name
);
6992 myh
->root
.u
.def
.value
= my_offset
;
6994 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
6995 s
->contents
+ my_offset
);
6997 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
6998 s
->contents
+ my_offset
+ 2);
7001 /* Address of destination of the stub. */
7002 ((bfd_signed_vma
) val
)
7004 /* Offset from the start of the current section
7005 to the start of the stubs. */
7007 /* Offset of the start of this stub from the start of the stubs. */
7009 /* Address of the start of the current section. */
7010 + s
->output_section
->vma
)
7011 /* The branch instruction is 4 bytes into the stub. */
7013 /* ARM branches work from the pc of the instruction + 8. */
7016 put_arm_insn (globals
, output_bfd
,
7017 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
7018 s
->contents
+ my_offset
+ 4);
7021 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
7023 /* Now go back and fix up the original BL insn to point to here. */
7025 /* Address of where the stub is located. */
7026 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
7027 /* Address of where the BL is located. */
7028 - (input_section
->output_section
->vma
+ input_section
->output_offset
7030 /* Addend in the relocation. */
7032 /* Biassing for PC-relative addressing. */
7035 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
7040 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7042 static struct elf_link_hash_entry
*
7043 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
7050 char ** error_message
)
7053 long int ret_offset
;
7054 struct elf_link_hash_entry
* myh
;
7055 struct elf32_arm_link_hash_table
* globals
;
7057 myh
= find_arm_glue (info
, name
, error_message
);
7061 globals
= elf32_arm_hash_table (info
);
7062 BFD_ASSERT (globals
!= NULL
);
7063 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7065 my_offset
= myh
->root
.u
.def
.value
;
7067 if ((my_offset
& 0x01) == 0x01)
7070 && sym_sec
->owner
!= NULL
7071 && !INTERWORK_FLAG (sym_sec
->owner
))
7073 (*_bfd_error_handler
)
7074 (_("%B(%s): warning: interworking not enabled.\n"
7075 " first occurrence: %B: arm call to thumb"),
7076 sym_sec
->owner
, input_bfd
, name
);
7080 myh
->root
.u
.def
.value
= my_offset
;
7082 if (info
->shared
|| globals
->root
.is_relocatable_executable
7083 || globals
->pic_veneer
)
7085 /* For relocatable objects we can't use absolute addresses,
7086 so construct the address from a relative offset. */
7087 /* TODO: If the offset is small it's probably worth
7088 constructing the address with adds. */
7089 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
7090 s
->contents
+ my_offset
);
7091 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
7092 s
->contents
+ my_offset
+ 4);
7093 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
7094 s
->contents
+ my_offset
+ 8);
7095 /* Adjust the offset by 4 for the position of the add,
7096 and 8 for the pipeline offset. */
7097 ret_offset
= (val
- (s
->output_offset
7098 + s
->output_section
->vma
7101 bfd_put_32 (output_bfd
, ret_offset
,
7102 s
->contents
+ my_offset
+ 12);
7104 else if (globals
->use_blx
)
7106 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
7107 s
->contents
+ my_offset
);
7109 /* It's a thumb address. Add the low order bit. */
7110 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
7111 s
->contents
+ my_offset
+ 4);
7115 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
7116 s
->contents
+ my_offset
);
7118 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
7119 s
->contents
+ my_offset
+ 4);
7121 /* It's a thumb address. Add the low order bit. */
7122 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
7123 s
->contents
+ my_offset
+ 8);
7129 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
7134 /* Arm code calling a Thumb function. */
7137 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
7141 asection
* input_section
,
7142 bfd_byte
* hit_data
,
7145 bfd_signed_vma addend
,
7147 char **error_message
)
7149 unsigned long int tmp
;
7152 long int ret_offset
;
7153 struct elf_link_hash_entry
* myh
;
7154 struct elf32_arm_link_hash_table
* globals
;
7156 globals
= elf32_arm_hash_table (info
);
7157 BFD_ASSERT (globals
!= NULL
);
7158 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7160 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
7161 ARM2THUMB_GLUE_SECTION_NAME
);
7162 BFD_ASSERT (s
!= NULL
);
7163 BFD_ASSERT (s
->contents
!= NULL
);
7164 BFD_ASSERT (s
->output_section
!= NULL
);
7166 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
7167 sym_sec
, val
, s
, error_message
);
7171 my_offset
= myh
->root
.u
.def
.value
;
7172 tmp
= bfd_get_32 (input_bfd
, hit_data
);
7173 tmp
= tmp
& 0xFF000000;
7175 /* Somehow these are both 4 too far, so subtract 8. */
7176 ret_offset
= (s
->output_offset
7178 + s
->output_section
->vma
7179 - (input_section
->output_offset
7180 + input_section
->output_section
->vma
7184 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
7186 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
7191 /* Populate Arm stub for an exported Thumb function. */
7194 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
7196 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
7198 struct elf_link_hash_entry
* myh
;
7199 struct elf32_arm_link_hash_entry
*eh
;
7200 struct elf32_arm_link_hash_table
* globals
;
7203 char *error_message
;
7205 eh
= elf32_arm_hash_entry (h
);
7206 /* Allocate stubs for exported Thumb functions on v4t. */
7207 if (eh
->export_glue
== NULL
)
7210 globals
= elf32_arm_hash_table (info
);
7211 BFD_ASSERT (globals
!= NULL
);
7212 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7214 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
7215 ARM2THUMB_GLUE_SECTION_NAME
);
7216 BFD_ASSERT (s
!= NULL
);
7217 BFD_ASSERT (s
->contents
!= NULL
);
7218 BFD_ASSERT (s
->output_section
!= NULL
);
7220 sec
= eh
->export_glue
->root
.u
.def
.section
;
7222 BFD_ASSERT (sec
->output_section
!= NULL
);
7224 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
7225 + sec
->output_section
->vma
;
7227 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
7228 h
->root
.u
.def
.section
->owner
,
7229 globals
->obfd
, sec
, val
, s
,
7235 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7238 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
7243 struct elf32_arm_link_hash_table
*globals
;
7245 globals
= elf32_arm_hash_table (info
);
7246 BFD_ASSERT (globals
!= NULL
);
7247 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7249 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
7250 ARM_BX_GLUE_SECTION_NAME
);
7251 BFD_ASSERT (s
!= NULL
);
7252 BFD_ASSERT (s
->contents
!= NULL
);
7253 BFD_ASSERT (s
->output_section
!= NULL
);
7255 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
7257 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
7259 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
7261 p
= s
->contents
+ glue_addr
;
7262 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
7263 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
7264 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
7265 globals
->bx_glue_offset
[reg
] |= 1;
7268 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
7271 /* Generate Arm stubs for exported Thumb symbols. */
7273 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
7274 struct bfd_link_info
*link_info
)
7276 struct elf32_arm_link_hash_table
* globals
;
7278 if (link_info
== NULL
)
7279 /* Ignore this if we are not called by the ELF backend linker. */
7282 globals
= elf32_arm_hash_table (link_info
);
7283 if (globals
== NULL
)
7286 /* If blx is available then exported Thumb symbols are OK and there is
7288 if (globals
->use_blx
)
7291 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
7295 /* Reserve space for COUNT dynamic relocations in relocation selection
7299 elf32_arm_allocate_dynrelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7300 bfd_size_type count
)
7302 struct elf32_arm_link_hash_table
*htab
;
7304 htab
= elf32_arm_hash_table (info
);
7305 BFD_ASSERT (htab
->root
.dynamic_sections_created
);
7308 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7311 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7312 dynamic, the relocations should go in SRELOC, otherwise they should
7313 go in the special .rel.iplt section. */
7316 elf32_arm_allocate_irelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7317 bfd_size_type count
)
7319 struct elf32_arm_link_hash_table
*htab
;
7321 htab
= elf32_arm_hash_table (info
);
7322 if (!htab
->root
.dynamic_sections_created
)
7323 htab
->root
.irelplt
->size
+= RELOC_SIZE (htab
) * count
;
7326 BFD_ASSERT (sreloc
!= NULL
);
7327 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7331 /* Add relocation REL to the end of relocation section SRELOC. */
7334 elf32_arm_add_dynreloc (bfd
*output_bfd
, struct bfd_link_info
*info
,
7335 asection
*sreloc
, Elf_Internal_Rela
*rel
)
7338 struct elf32_arm_link_hash_table
*htab
;
7340 htab
= elf32_arm_hash_table (info
);
7341 if (!htab
->root
.dynamic_sections_created
7342 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_IRELATIVE
)
7343 sreloc
= htab
->root
.irelplt
;
7346 loc
= sreloc
->contents
;
7347 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (htab
);
7348 if (sreloc
->reloc_count
* RELOC_SIZE (htab
) > sreloc
->size
)
7350 SWAP_RELOC_OUT (htab
) (output_bfd
, rel
, loc
);
7353 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7354 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7358 elf32_arm_allocate_plt_entry (struct bfd_link_info
*info
,
7359 bfd_boolean is_iplt_entry
,
7360 union gotplt_union
*root_plt
,
7361 struct arm_plt_info
*arm_plt
)
7363 struct elf32_arm_link_hash_table
*htab
;
7367 htab
= elf32_arm_hash_table (info
);
7371 splt
= htab
->root
.iplt
;
7372 sgotplt
= htab
->root
.igotplt
;
7374 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7375 elf32_arm_allocate_irelocs (info
, htab
->root
.irelplt
, 1);
7379 splt
= htab
->root
.splt
;
7380 sgotplt
= htab
->root
.sgotplt
;
7382 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7383 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
7385 /* If this is the first .plt entry, make room for the special
7387 if (splt
->size
== 0)
7388 splt
->size
+= htab
->plt_header_size
;
7391 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7392 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7393 splt
->size
+= PLT_THUMB_STUB_SIZE
;
7394 root_plt
->offset
= splt
->size
;
7395 splt
->size
+= htab
->plt_entry_size
;
7397 if (!htab
->symbian_p
)
7399 /* We also need to make an entry in the .got.plt section, which
7400 will be placed in the .got section by the linker script. */
7401 arm_plt
->got_offset
= sgotplt
->size
- 8 * htab
->num_tls_desc
;
7406 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7407 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7408 Otherwise, DYNINDX is the index of the symbol in the dynamic
7409 symbol table and SYM_VALUE is undefined.
7411 ROOT_PLT points to the offset of the PLT entry from the start of its
7412 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7413 bookkeeping information. */
7416 elf32_arm_populate_plt_entry (bfd
*output_bfd
, struct bfd_link_info
*info
,
7417 union gotplt_union
*root_plt
,
7418 struct arm_plt_info
*arm_plt
,
7419 int dynindx
, bfd_vma sym_value
)
7421 struct elf32_arm_link_hash_table
*htab
;
7427 Elf_Internal_Rela rel
;
7428 bfd_vma plt_header_size
;
7429 bfd_vma got_header_size
;
7431 htab
= elf32_arm_hash_table (info
);
7433 /* Pick the appropriate sections and sizes. */
7436 splt
= htab
->root
.iplt
;
7437 sgot
= htab
->root
.igotplt
;
7438 srel
= htab
->root
.irelplt
;
7440 /* There are no reserved entries in .igot.plt, and no special
7441 first entry in .iplt. */
7442 got_header_size
= 0;
7443 plt_header_size
= 0;
7447 splt
= htab
->root
.splt
;
7448 sgot
= htab
->root
.sgotplt
;
7449 srel
= htab
->root
.srelplt
;
7451 got_header_size
= get_elf_backend_data (output_bfd
)->got_header_size
;
7452 plt_header_size
= htab
->plt_header_size
;
7454 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
7456 /* Fill in the entry in the procedure linkage table. */
7457 if (htab
->symbian_p
)
7459 BFD_ASSERT (dynindx
>= 0);
7460 put_arm_insn (htab
, output_bfd
,
7461 elf32_arm_symbian_plt_entry
[0],
7462 splt
->contents
+ root_plt
->offset
);
7463 bfd_put_32 (output_bfd
,
7464 elf32_arm_symbian_plt_entry
[1],
7465 splt
->contents
+ root_plt
->offset
+ 4);
7467 /* Fill in the entry in the .rel.plt section. */
7468 rel
.r_offset
= (splt
->output_section
->vma
7469 + splt
->output_offset
7470 + root_plt
->offset
+ 4);
7471 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_GLOB_DAT
);
7473 /* Get the index in the procedure linkage table which
7474 corresponds to this symbol. This is the index of this symbol
7475 in all the symbols for which we are making plt entries. The
7476 first entry in the procedure linkage table is reserved. */
7477 plt_index
= ((root_plt
->offset
- plt_header_size
)
7478 / htab
->plt_entry_size
);
7482 bfd_vma got_offset
, got_address
, plt_address
;
7483 bfd_vma got_displacement
, initial_got_entry
;
7486 BFD_ASSERT (sgot
!= NULL
);
7488 /* Get the offset into the .(i)got.plt table of the entry that
7489 corresponds to this function. */
7490 got_offset
= (arm_plt
->got_offset
& -2);
7492 /* Get the index in the procedure linkage table which
7493 corresponds to this symbol. This is the index of this symbol
7494 in all the symbols for which we are making plt entries.
7495 After the reserved .got.plt entries, all symbols appear in
7496 the same order as in .plt. */
7497 plt_index
= (got_offset
- got_header_size
) / 4;
7499 /* Calculate the address of the GOT entry. */
7500 got_address
= (sgot
->output_section
->vma
7501 + sgot
->output_offset
7504 /* ...and the address of the PLT entry. */
7505 plt_address
= (splt
->output_section
->vma
7506 + splt
->output_offset
7507 + root_plt
->offset
);
7509 ptr
= splt
->contents
+ root_plt
->offset
;
7510 if (htab
->vxworks_p
&& info
->shared
)
7515 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7517 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
7519 val
|= got_address
- sgot
->output_section
->vma
;
7521 val
|= plt_index
* RELOC_SIZE (htab
);
7522 if (i
== 2 || i
== 5)
7523 bfd_put_32 (output_bfd
, val
, ptr
);
7525 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7528 else if (htab
->vxworks_p
)
7533 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7535 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
7539 val
|= 0xffffff & -((root_plt
->offset
+ i
* 4 + 8) >> 2);
7541 val
|= plt_index
* RELOC_SIZE (htab
);
7542 if (i
== 2 || i
== 5)
7543 bfd_put_32 (output_bfd
, val
, ptr
);
7545 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7548 loc
= (htab
->srelplt2
->contents
7549 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
7551 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7552 referencing the GOT for this PLT entry. */
7553 rel
.r_offset
= plt_address
+ 8;
7554 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
7555 rel
.r_addend
= got_offset
;
7556 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7557 loc
+= RELOC_SIZE (htab
);
7559 /* Create the R_ARM_ABS32 relocation referencing the
7560 beginning of the PLT for this GOT entry. */
7561 rel
.r_offset
= got_address
;
7562 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
7564 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7568 /* Calculate the displacement between the PLT slot and the
7569 entry in the GOT. The eight-byte offset accounts for the
7570 value produced by adding to pc in the first instruction
7572 got_displacement
= got_address
- (plt_address
+ 8);
7574 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
7576 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7578 put_thumb_insn (htab
, output_bfd
,
7579 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
7580 put_thumb_insn (htab
, output_bfd
,
7581 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
7584 put_arm_insn (htab
, output_bfd
,
7585 elf32_arm_plt_entry
[0]
7586 | ((got_displacement
& 0x0ff00000) >> 20),
7588 put_arm_insn (htab
, output_bfd
,
7589 elf32_arm_plt_entry
[1]
7590 | ((got_displacement
& 0x000ff000) >> 12),
7592 put_arm_insn (htab
, output_bfd
,
7593 elf32_arm_plt_entry
[2]
7594 | (got_displacement
& 0x00000fff),
7596 #ifdef FOUR_WORD_PLT
7597 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
7601 /* Fill in the entry in the .rel(a).(i)plt section. */
7602 rel
.r_offset
= got_address
;
7606 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7607 The dynamic linker or static executable then calls SYM_VALUE
7608 to determine the correct run-time value of the .igot.plt entry. */
7609 rel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
7610 initial_got_entry
= sym_value
;
7614 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_JUMP_SLOT
);
7615 initial_got_entry
= (splt
->output_section
->vma
7616 + splt
->output_offset
);
7619 /* Fill in the entry in the global offset table. */
7620 bfd_put_32 (output_bfd
, initial_got_entry
,
7621 sgot
->contents
+ got_offset
);
7624 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
7625 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7628 /* Some relocations map to different relocations depending on the
7629 target. Return the real relocation. */
7632 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
7638 if (globals
->target1_is_rel
)
7644 return globals
->target2_reloc
;
7651 /* Return the base VMA address which should be subtracted from real addresses
7652 when resolving @dtpoff relocation.
7653 This is PT_TLS segment p_vaddr. */
7656 dtpoff_base (struct bfd_link_info
*info
)
7658 /* If tls_sec is NULL, we should have signalled an error already. */
7659 if (elf_hash_table (info
)->tls_sec
== NULL
)
7661 return elf_hash_table (info
)->tls_sec
->vma
;
7664 /* Return the relocation value for @tpoff relocation
7665 if STT_TLS virtual address is ADDRESS. */
7668 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
7670 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
7673 /* If tls_sec is NULL, we should have signalled an error already. */
7674 if (htab
->tls_sec
== NULL
)
7676 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
7677 return address
- htab
->tls_sec
->vma
+ base
;
7680 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7681 VALUE is the relocation value. */
7683 static bfd_reloc_status_type
7684 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
7687 return bfd_reloc_overflow
;
7689 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
7690 bfd_put_32 (abfd
, value
, data
);
7691 return bfd_reloc_ok
;
7694 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7695 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7696 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7698 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7699 is to then call final_link_relocate. Return other values in the
7702 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7703 the pre-relaxed code. It would be nice if the relocs were updated
7704 to match the optimization. */
7706 static bfd_reloc_status_type
7707 elf32_arm_tls_relax (struct elf32_arm_link_hash_table
*globals
,
7708 bfd
*input_bfd
, asection
*input_sec
, bfd_byte
*contents
,
7709 Elf_Internal_Rela
*rel
, unsigned long is_local
)
7713 switch (ELF32_R_TYPE (rel
->r_info
))
7716 return bfd_reloc_notsupported
;
7718 case R_ARM_TLS_GOTDESC
:
7723 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7725 insn
-= 5; /* THUMB */
7727 insn
-= 8; /* ARM */
7729 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7730 return bfd_reloc_continue
;
7732 case R_ARM_THM_TLS_DESCSEQ
:
7734 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
);
7735 if ((insn
& 0xff78) == 0x4478) /* add rx, pc */
7739 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7741 else if ((insn
& 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7745 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7748 bfd_put_16 (input_bfd
, insn
& 0xf83f, contents
+ rel
->r_offset
);
7750 else if ((insn
& 0xff87) == 0x4780) /* blx rx */
7754 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7757 bfd_put_16 (input_bfd
, 0x4600 | (insn
& 0x78),
7758 contents
+ rel
->r_offset
);
7762 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
7763 /* It's a 32 bit instruction, fetch the rest of it for
7764 error generation. */
7766 | bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
+ 2);
7767 (*_bfd_error_handler
)
7768 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7769 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7770 return bfd_reloc_notsupported
;
7774 case R_ARM_TLS_DESCSEQ
:
7776 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7777 if ((insn
& 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7781 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xffff),
7782 contents
+ rel
->r_offset
);
7784 else if ((insn
& 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7788 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7791 bfd_put_32 (input_bfd
, insn
& 0xfffff000,
7792 contents
+ rel
->r_offset
);
7794 else if ((insn
& 0xfffffff0) == 0xe12fff30) /* blx rx */
7798 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7801 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xf),
7802 contents
+ rel
->r_offset
);
7806 (*_bfd_error_handler
)
7807 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7808 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7809 return bfd_reloc_notsupported
;
7813 case R_ARM_TLS_CALL
:
7814 /* GD->IE relaxation, turn the instruction into 'nop' or
7815 'ldr r0, [pc,r0]' */
7816 insn
= is_local
? 0xe1a00000 : 0xe79f0000;
7817 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7820 case R_ARM_THM_TLS_CALL
:
7821 /* GD->IE relaxation */
7823 /* add r0,pc; ldr r0, [r0] */
7825 else if (arch_has_thumb2_nop (globals
))
7832 bfd_put_16 (input_bfd
, insn
>> 16, contents
+ rel
->r_offset
);
7833 bfd_put_16 (input_bfd
, insn
& 0xffff, contents
+ rel
->r_offset
+ 2);
7836 return bfd_reloc_ok
;
7839 /* For a given value of n, calculate the value of G_n as required to
7840 deal with group relocations. We return it in the form of an
7841 encoded constant-and-rotation, together with the final residual. If n is
7842 specified as less than zero, then final_residual is filled with the
7843 input value and no further action is performed. */
7846 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
7850 bfd_vma encoded_g_n
= 0;
7851 bfd_vma residual
= value
; /* Also known as Y_n. */
7853 for (current_n
= 0; current_n
<= n
; current_n
++)
7857 /* Calculate which part of the value to mask. */
7864 /* Determine the most significant bit in the residual and
7865 align the resulting value to a 2-bit boundary. */
7866 for (msb
= 30; msb
>= 0; msb
-= 2)
7867 if (residual
& (3 << msb
))
7870 /* The desired shift is now (msb - 6), or zero, whichever
7877 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7878 g_n
= residual
& (0xff << shift
);
7879 encoded_g_n
= (g_n
>> shift
)
7880 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
7882 /* Calculate the residual for the next time around. */
7886 *final_residual
= residual
;
7891 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7892 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7895 identify_add_or_sub (bfd_vma insn
)
7897 int opcode
= insn
& 0x1e00000;
7899 if (opcode
== 1 << 23) /* ADD */
7902 if (opcode
== 1 << 22) /* SUB */
7908 /* Perform a relocation as part of a final link. */
7910 static bfd_reloc_status_type
7911 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
7914 asection
* input_section
,
7915 bfd_byte
* contents
,
7916 Elf_Internal_Rela
* rel
,
7918 struct bfd_link_info
* info
,
7920 const char * sym_name
,
7921 unsigned char st_type
,
7922 enum arm_st_branch_type branch_type
,
7923 struct elf_link_hash_entry
* h
,
7924 bfd_boolean
* unresolved_reloc_p
,
7925 char ** error_message
)
7927 unsigned long r_type
= howto
->type
;
7928 unsigned long r_symndx
;
7929 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
7930 bfd_vma
* local_got_offsets
;
7931 bfd_vma
* local_tlsdesc_gotents
;
7934 asection
* sreloc
= NULL
;
7937 bfd_signed_vma signed_addend
;
7938 unsigned char dynreloc_st_type
;
7939 bfd_vma dynreloc_value
;
7940 struct elf32_arm_link_hash_table
* globals
;
7941 struct elf32_arm_link_hash_entry
*eh
;
7942 union gotplt_union
*root_plt
;
7943 struct arm_plt_info
*arm_plt
;
7945 bfd_vma gotplt_offset
;
7946 bfd_boolean has_iplt_entry
;
7948 globals
= elf32_arm_hash_table (info
);
7949 if (globals
== NULL
)
7950 return bfd_reloc_notsupported
;
7952 BFD_ASSERT (is_arm_elf (input_bfd
));
7954 /* Some relocation types map to different relocations depending on the
7955 target. We pick the right one here. */
7956 r_type
= arm_real_reloc_type (globals
, r_type
);
7958 /* It is possible to have linker relaxations on some TLS access
7959 models. Update our information here. */
7960 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
7962 if (r_type
!= howto
->type
)
7963 howto
= elf32_arm_howto_from_type (r_type
);
7965 /* If the start address has been set, then set the EF_ARM_HASENTRY
7966 flag. Setting this more than once is redundant, but the cost is
7967 not too high, and it keeps the code simple.
7969 The test is done here, rather than somewhere else, because the
7970 start address is only set just before the final link commences.
7972 Note - if the user deliberately sets a start address of 0, the
7973 flag will not be set. */
7974 if (bfd_get_start_address (output_bfd
) != 0)
7975 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
7977 eh
= (struct elf32_arm_link_hash_entry
*) h
;
7978 sgot
= globals
->root
.sgot
;
7979 local_got_offsets
= elf_local_got_offsets (input_bfd
);
7980 local_tlsdesc_gotents
= elf32_arm_local_tlsdesc_gotent (input_bfd
);
7982 if (globals
->root
.dynamic_sections_created
)
7983 srelgot
= globals
->root
.srelgot
;
7987 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7989 if (globals
->use_rel
)
7991 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
7993 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7996 signed_addend
&= ~ howto
->src_mask
;
7997 signed_addend
|= addend
;
8000 signed_addend
= addend
;
8003 addend
= signed_addend
= rel
->r_addend
;
8005 /* Record the symbol information that should be used in dynamic
8007 dynreloc_st_type
= st_type
;
8008 dynreloc_value
= value
;
8009 if (branch_type
== ST_BRANCH_TO_THUMB
)
8010 dynreloc_value
|= 1;
8012 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8013 VALUE appropriately for relocations that we resolve at link time. */
8014 has_iplt_entry
= FALSE
;
8015 if (elf32_arm_get_plt_info (input_bfd
, eh
, r_symndx
, &root_plt
, &arm_plt
)
8016 && root_plt
->offset
!= (bfd_vma
) -1)
8018 plt_offset
= root_plt
->offset
;
8019 gotplt_offset
= arm_plt
->got_offset
;
8021 if (h
== NULL
|| eh
->is_iplt
)
8023 has_iplt_entry
= TRUE
;
8024 splt
= globals
->root
.iplt
;
8026 /* Populate .iplt entries here, because not all of them will
8027 be seen by finish_dynamic_symbol. The lower bit is set if
8028 we have already populated the entry. */
8033 elf32_arm_populate_plt_entry (output_bfd
, info
, root_plt
, arm_plt
,
8034 -1, dynreloc_value
);
8035 root_plt
->offset
|= 1;
8038 /* Static relocations always resolve to the .iplt entry. */
8040 value
= (splt
->output_section
->vma
8041 + splt
->output_offset
8043 branch_type
= ST_BRANCH_TO_ARM
;
8045 /* If there are non-call relocations that resolve to the .iplt
8046 entry, then all dynamic ones must too. */
8047 if (arm_plt
->noncall_refcount
!= 0)
8049 dynreloc_st_type
= st_type
;
8050 dynreloc_value
= value
;
8054 /* We populate the .plt entry in finish_dynamic_symbol. */
8055 splt
= globals
->root
.splt
;
8060 plt_offset
= (bfd_vma
) -1;
8061 gotplt_offset
= (bfd_vma
) -1;
8067 /* We don't need to find a value for this symbol. It's just a
8069 *unresolved_reloc_p
= FALSE
;
8070 return bfd_reloc_ok
;
8073 if (!globals
->vxworks_p
)
8074 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
8078 case R_ARM_ABS32_NOI
:
8080 case R_ARM_REL32_NOI
:
8086 /* Handle relocations which should use the PLT entry. ABS32/REL32
8087 will use the symbol's value, which may point to a PLT entry, but we
8088 don't need to handle that here. If we created a PLT entry, all
8089 branches in this object should go to it, except if the PLT is too
8090 far away, in which case a long branch stub should be inserted. */
8091 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
8092 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
8093 && r_type
!= R_ARM_CALL
8094 && r_type
!= R_ARM_JUMP24
8095 && r_type
!= R_ARM_PLT32
)
8096 && plt_offset
!= (bfd_vma
) -1)
8098 /* If we've created a .plt section, and assigned a PLT entry
8099 to this function, it must either be a STT_GNU_IFUNC reference
8100 or not be known to bind locally. In other cases, we should
8101 have cleared the PLT entry by now. */
8102 BFD_ASSERT (has_iplt_entry
|| !SYMBOL_CALLS_LOCAL (info
, h
));
8104 value
= (splt
->output_section
->vma
8105 + splt
->output_offset
8107 *unresolved_reloc_p
= FALSE
;
8108 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8109 contents
, rel
->r_offset
, value
,
8113 /* When generating a shared object or relocatable executable, these
8114 relocations are copied into the output file to be resolved at
8116 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
8117 && (input_section
->flags
& SEC_ALLOC
)
8118 && !(globals
->vxworks_p
8119 && strcmp (input_section
->output_section
->name
,
8121 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
8122 || !SYMBOL_CALLS_LOCAL (info
, h
))
8123 && (!strstr (input_section
->name
, STUB_SUFFIX
))
8125 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8126 || h
->root
.type
!= bfd_link_hash_undefweak
)
8127 && r_type
!= R_ARM_PC24
8128 && r_type
!= R_ARM_CALL
8129 && r_type
!= R_ARM_JUMP24
8130 && r_type
!= R_ARM_PREL31
8131 && r_type
!= R_ARM_PLT32
)
8133 Elf_Internal_Rela outrel
;
8134 bfd_boolean skip
, relocate
;
8136 *unresolved_reloc_p
= FALSE
;
8138 if (sreloc
== NULL
&& globals
->root
.dynamic_sections_created
)
8140 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
8141 ! globals
->use_rel
);
8144 return bfd_reloc_notsupported
;
8150 outrel
.r_addend
= addend
;
8152 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
8154 if (outrel
.r_offset
== (bfd_vma
) -1)
8156 else if (outrel
.r_offset
== (bfd_vma
) -2)
8157 skip
= TRUE
, relocate
= TRUE
;
8158 outrel
.r_offset
+= (input_section
->output_section
->vma
8159 + input_section
->output_offset
);
8162 memset (&outrel
, 0, sizeof outrel
);
8167 || !h
->def_regular
))
8168 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
8173 /* This symbol is local, or marked to become local. */
8174 BFD_ASSERT (r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
);
8175 if (globals
->symbian_p
)
8179 /* On Symbian OS, the data segment and text segement
8180 can be relocated independently. Therefore, we
8181 must indicate the segment to which this
8182 relocation is relative. The BPABI allows us to
8183 use any symbol in the right segment; we just use
8184 the section symbol as it is convenient. (We
8185 cannot use the symbol given by "h" directly as it
8186 will not appear in the dynamic symbol table.)
8188 Note that the dynamic linker ignores the section
8189 symbol value, so we don't subtract osec->vma
8190 from the emitted reloc addend. */
8192 osec
= sym_sec
->output_section
;
8194 osec
= input_section
->output_section
;
8195 symbol
= elf_section_data (osec
)->dynindx
;
8198 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
8200 if ((osec
->flags
& SEC_READONLY
) == 0
8201 && htab
->data_index_section
!= NULL
)
8202 osec
= htab
->data_index_section
;
8204 osec
= htab
->text_index_section
;
8205 symbol
= elf_section_data (osec
)->dynindx
;
8207 BFD_ASSERT (symbol
!= 0);
8210 /* On SVR4-ish systems, the dynamic loader cannot
8211 relocate the text and data segments independently,
8212 so the symbol does not matter. */
8214 if (dynreloc_st_type
== STT_GNU_IFUNC
)
8215 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8216 to the .iplt entry. Instead, every non-call reference
8217 must use an R_ARM_IRELATIVE relocation to obtain the
8218 correct run-time address. */
8219 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_IRELATIVE
);
8221 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
8222 if (globals
->use_rel
)
8225 outrel
.r_addend
+= dynreloc_value
;
8228 elf32_arm_add_dynreloc (output_bfd
, info
, sreloc
, &outrel
);
8230 /* If this reloc is against an external symbol, we do not want to
8231 fiddle with the addend. Otherwise, we need to include the symbol
8232 value so that it becomes an addend for the dynamic reloc. */
8234 return bfd_reloc_ok
;
8236 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8237 contents
, rel
->r_offset
,
8238 dynreloc_value
, (bfd_vma
) 0);
8240 else switch (r_type
)
8243 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
8245 case R_ARM_XPC25
: /* Arm BLX instruction. */
8248 case R_ARM_PC24
: /* Arm B/BL instruction. */
8251 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
8253 if (r_type
== R_ARM_XPC25
)
8255 /* Check for Arm calling Arm function. */
8256 /* FIXME: Should we translate the instruction into a BL
8257 instruction instead ? */
8258 if (branch_type
!= ST_BRANCH_TO_THUMB
)
8259 (*_bfd_error_handler
)
8260 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8262 h
? h
->root
.root
.string
: "(local)");
8264 else if (r_type
== R_ARM_PC24
)
8266 /* Check for Arm calling Thumb function. */
8267 if (branch_type
== ST_BRANCH_TO_THUMB
)
8269 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
8270 output_bfd
, input_section
,
8271 hit_data
, sym_sec
, rel
->r_offset
,
8272 signed_addend
, value
,
8274 return bfd_reloc_ok
;
8276 return bfd_reloc_dangerous
;
8280 /* Check if a stub has to be inserted because the
8281 destination is too far or we are changing mode. */
8282 if ( r_type
== R_ARM_CALL
8283 || r_type
== R_ARM_JUMP24
8284 || r_type
== R_ARM_PLT32
)
8286 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
8287 struct elf32_arm_link_hash_entry
*hash
;
8289 hash
= (struct elf32_arm_link_hash_entry
*) h
;
8290 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
8291 st_type
, &branch_type
,
8292 hash
, value
, sym_sec
,
8293 input_bfd
, sym_name
);
8295 if (stub_type
!= arm_stub_none
)
8297 /* The target is out of reach, so redirect the
8298 branch to the local stub for this function. */
8299 stub_entry
= elf32_arm_get_stub_entry (input_section
,
8304 if (stub_entry
!= NULL
)
8305 value
= (stub_entry
->stub_offset
8306 + stub_entry
->stub_sec
->output_offset
8307 + stub_entry
->stub_sec
->output_section
->vma
);
8309 if (plt_offset
!= (bfd_vma
) -1)
8310 *unresolved_reloc_p
= FALSE
;
8315 /* If the call goes through a PLT entry, make sure to
8316 check distance to the right destination address. */
8317 if (plt_offset
!= (bfd_vma
) -1)
8319 value
= (splt
->output_section
->vma
8320 + splt
->output_offset
8322 *unresolved_reloc_p
= FALSE
;
8323 /* The PLT entry is in ARM mode, regardless of the
8325 branch_type
= ST_BRANCH_TO_ARM
;
8330 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8332 S is the address of the symbol in the relocation.
8333 P is address of the instruction being relocated.
8334 A is the addend (extracted from the instruction) in bytes.
8336 S is held in 'value'.
8337 P is the base address of the section containing the
8338 instruction plus the offset of the reloc into that
8340 (input_section->output_section->vma +
8341 input_section->output_offset +
8343 A is the addend, converted into bytes, ie:
8346 Note: None of these operations have knowledge of the pipeline
8347 size of the processor, thus it is up to the assembler to
8348 encode this information into the addend. */
8349 value
-= (input_section
->output_section
->vma
8350 + input_section
->output_offset
);
8351 value
-= rel
->r_offset
;
8352 if (globals
->use_rel
)
8353 value
+= (signed_addend
<< howto
->size
);
8355 /* RELA addends do not have to be adjusted by howto->size. */
8356 value
+= signed_addend
;
8358 signed_addend
= value
;
8359 signed_addend
>>= howto
->rightshift
;
8361 /* A branch to an undefined weak symbol is turned into a jump to
8362 the next instruction unless a PLT entry will be created.
8363 Do the same for local undefined symbols (but not for STN_UNDEF).
8364 The jump to the next instruction is optimized as a NOP depending
8365 on the architecture. */
8366 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
8367 && plt_offset
== (bfd_vma
) -1)
8368 : r_symndx
!= STN_UNDEF
&& bfd_is_und_section (sym_sec
))
8370 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
8372 if (arch_has_arm_nop (globals
))
8373 value
|= 0x0320f000;
8375 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8379 /* Perform a signed range check. */
8380 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
8381 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
8382 return bfd_reloc_overflow
;
8384 addend
= (value
& 2);
8386 value
= (signed_addend
& howto
->dst_mask
)
8387 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
8389 if (r_type
== R_ARM_CALL
)
8391 /* Set the H bit in the BLX instruction. */
8392 if (branch_type
== ST_BRANCH_TO_THUMB
)
8397 value
&= ~(bfd_vma
)(1 << 24);
8400 /* Select the correct instruction (BL or BLX). */
8401 /* Only if we are not handling a BL to a stub. In this
8402 case, mode switching is performed by the stub. */
8403 if (branch_type
== ST_BRANCH_TO_THUMB
&& !stub_entry
)
8405 else if (stub_entry
|| branch_type
!= ST_BRANCH_UNKNOWN
)
8407 value
&= ~(bfd_vma
)(1 << 28);
8417 if (branch_type
== ST_BRANCH_TO_THUMB
)
8421 case R_ARM_ABS32_NOI
:
8427 if (branch_type
== ST_BRANCH_TO_THUMB
)
8429 value
-= (input_section
->output_section
->vma
8430 + input_section
->output_offset
+ rel
->r_offset
);
8433 case R_ARM_REL32_NOI
:
8435 value
-= (input_section
->output_section
->vma
8436 + input_section
->output_offset
+ rel
->r_offset
);
8440 value
-= (input_section
->output_section
->vma
8441 + input_section
->output_offset
+ rel
->r_offset
);
8442 value
+= signed_addend
;
8443 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
8445 /* Check for overflow. */
8446 if ((value
^ (value
>> 1)) & (1 << 30))
8447 return bfd_reloc_overflow
;
8449 value
&= 0x7fffffff;
8450 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
8451 if (branch_type
== ST_BRANCH_TO_THUMB
)
8456 bfd_put_32 (input_bfd
, value
, hit_data
);
8457 return bfd_reloc_ok
;
8462 /* There is no way to tell whether the user intended to use a signed or
8463 unsigned addend. When checking for overflow we accept either,
8464 as specified by the AAELF. */
8465 if ((long) value
> 0xff || (long) value
< -0x80)
8466 return bfd_reloc_overflow
;
8468 bfd_put_8 (input_bfd
, value
, hit_data
);
8469 return bfd_reloc_ok
;
8474 /* See comment for R_ARM_ABS8. */
8475 if ((long) value
> 0xffff || (long) value
< -0x8000)
8476 return bfd_reloc_overflow
;
8478 bfd_put_16 (input_bfd
, value
, hit_data
);
8479 return bfd_reloc_ok
;
8481 case R_ARM_THM_ABS5
:
8482 /* Support ldr and str instructions for the thumb. */
8483 if (globals
->use_rel
)
8485 /* Need to refetch addend. */
8486 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
8487 /* ??? Need to determine shift amount from operand size. */
8488 addend
>>= howto
->rightshift
;
8492 /* ??? Isn't value unsigned? */
8493 if ((long) value
> 0x1f || (long) value
< -0x10)
8494 return bfd_reloc_overflow
;
8496 /* ??? Value needs to be properly shifted into place first. */
8497 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
8498 bfd_put_16 (input_bfd
, value
, hit_data
);
8499 return bfd_reloc_ok
;
8501 case R_ARM_THM_ALU_PREL_11_0
:
8502 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8505 bfd_signed_vma relocation
;
8507 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8508 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8510 if (globals
->use_rel
)
8512 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
8513 | ((insn
& (1 << 26)) >> 15);
8514 if (insn
& 0xf00000)
8515 signed_addend
= -signed_addend
;
8518 relocation
= value
+ signed_addend
;
8519 relocation
-= (input_section
->output_section
->vma
8520 + input_section
->output_offset
8523 value
= abs (relocation
);
8525 if (value
>= 0x1000)
8526 return bfd_reloc_overflow
;
8528 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
8529 | ((value
& 0x700) << 4)
8530 | ((value
& 0x800) << 15);
8534 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8535 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8537 return bfd_reloc_ok
;
8541 /* PR 10073: This reloc is not generated by the GNU toolchain,
8542 but it is supported for compatibility with third party libraries
8543 generated by other compilers, specifically the ARM/IAR. */
8546 bfd_signed_vma relocation
;
8548 insn
= bfd_get_16 (input_bfd
, hit_data
);
8550 if (globals
->use_rel
)
8551 addend
= (insn
& 0x00ff) << 2;
8553 relocation
= value
+ addend
;
8554 relocation
-= (input_section
->output_section
->vma
8555 + input_section
->output_offset
8558 value
= abs (relocation
);
8560 /* We do not check for overflow of this reloc. Although strictly
8561 speaking this is incorrect, it appears to be necessary in order
8562 to work with IAR generated relocs. Since GCC and GAS do not
8563 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8564 a problem for them. */
8567 insn
= (insn
& 0xff00) | (value
>> 2);
8569 bfd_put_16 (input_bfd
, insn
, hit_data
);
8571 return bfd_reloc_ok
;
8574 case R_ARM_THM_PC12
:
8575 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8578 bfd_signed_vma relocation
;
8580 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8581 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8583 if (globals
->use_rel
)
8585 signed_addend
= insn
& 0xfff;
8586 if (!(insn
& (1 << 23)))
8587 signed_addend
= -signed_addend
;
8590 relocation
= value
+ signed_addend
;
8591 relocation
-= (input_section
->output_section
->vma
8592 + input_section
->output_offset
8595 value
= abs (relocation
);
8597 if (value
>= 0x1000)
8598 return bfd_reloc_overflow
;
8600 insn
= (insn
& 0xff7ff000) | value
;
8601 if (relocation
>= 0)
8604 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8605 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8607 return bfd_reloc_ok
;
8610 case R_ARM_THM_XPC22
:
8611 case R_ARM_THM_CALL
:
8612 case R_ARM_THM_JUMP24
:
8613 /* Thumb BL (branch long instruction). */
8617 bfd_boolean overflow
= FALSE
;
8618 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8619 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8620 bfd_signed_vma reloc_signed_max
;
8621 bfd_signed_vma reloc_signed_min
;
8623 bfd_signed_vma signed_check
;
8625 const int thumb2
= using_thumb2 (globals
);
8627 /* A branch to an undefined weak symbol is turned into a jump to
8628 the next instruction unless a PLT entry will be created.
8629 The jump to the next instruction is optimized as a NOP.W for
8630 Thumb-2 enabled architectures. */
8631 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
8632 && plt_offset
== (bfd_vma
) -1)
8634 if (arch_has_thumb2_nop (globals
))
8636 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
8637 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
8641 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
8642 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
8644 return bfd_reloc_ok
;
8647 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8648 with Thumb-1) involving the J1 and J2 bits. */
8649 if (globals
->use_rel
)
8651 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
8652 bfd_vma upper
= upper_insn
& 0x3ff;
8653 bfd_vma lower
= lower_insn
& 0x7ff;
8654 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
8655 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
8656 bfd_vma i1
= j1
^ s
? 0 : 1;
8657 bfd_vma i2
= j2
^ s
? 0 : 1;
8659 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
8661 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
8663 signed_addend
= addend
;
8666 if (r_type
== R_ARM_THM_XPC22
)
8668 /* Check for Thumb to Thumb call. */
8669 /* FIXME: Should we translate the instruction into a BL
8670 instruction instead ? */
8671 if (branch_type
== ST_BRANCH_TO_THUMB
)
8672 (*_bfd_error_handler
)
8673 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8675 h
? h
->root
.root
.string
: "(local)");
8679 /* If it is not a call to Thumb, assume call to Arm.
8680 If it is a call relative to a section name, then it is not a
8681 function call at all, but rather a long jump. Calls through
8682 the PLT do not require stubs. */
8683 if (branch_type
== ST_BRANCH_TO_ARM
&& plt_offset
== (bfd_vma
) -1)
8685 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
8687 /* Convert BL to BLX. */
8688 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8690 else if (( r_type
!= R_ARM_THM_CALL
)
8691 && (r_type
!= R_ARM_THM_JUMP24
))
8693 if (elf32_thumb_to_arm_stub
8694 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
8695 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
8697 return bfd_reloc_ok
;
8699 return bfd_reloc_dangerous
;
8702 else if (branch_type
== ST_BRANCH_TO_THUMB
8704 && r_type
== R_ARM_THM_CALL
)
8706 /* Make sure this is a BL. */
8707 lower_insn
|= 0x1800;
8711 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
8712 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
8714 /* Check if a stub has to be inserted because the destination
8716 struct elf32_arm_stub_hash_entry
*stub_entry
;
8717 struct elf32_arm_link_hash_entry
*hash
;
8719 hash
= (struct elf32_arm_link_hash_entry
*) h
;
8721 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
8722 st_type
, &branch_type
,
8723 hash
, value
, sym_sec
,
8724 input_bfd
, sym_name
);
8726 if (stub_type
!= arm_stub_none
)
8728 /* The target is out of reach or we are changing modes, so
8729 redirect the branch to the local stub for this
8731 stub_entry
= elf32_arm_get_stub_entry (input_section
,
8735 if (stub_entry
!= NULL
)
8737 value
= (stub_entry
->stub_offset
8738 + stub_entry
->stub_sec
->output_offset
8739 + stub_entry
->stub_sec
->output_section
->vma
);
8741 if (plt_offset
!= (bfd_vma
) -1)
8742 *unresolved_reloc_p
= FALSE
;
8745 /* If this call becomes a call to Arm, force BLX. */
8746 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
8749 && !arm_stub_is_thumb (stub_entry
->stub_type
))
8750 || branch_type
!= ST_BRANCH_TO_THUMB
)
8751 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8756 /* Handle calls via the PLT. */
8757 if (stub_type
== arm_stub_none
&& plt_offset
!= (bfd_vma
) -1)
8759 value
= (splt
->output_section
->vma
8760 + splt
->output_offset
8763 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
8765 /* If the Thumb BLX instruction is available, convert
8766 the BL to a BLX instruction to call the ARM-mode
8768 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8769 branch_type
= ST_BRANCH_TO_ARM
;
8773 /* Target the Thumb stub before the ARM PLT entry. */
8774 value
-= PLT_THUMB_STUB_SIZE
;
8775 branch_type
= ST_BRANCH_TO_THUMB
;
8777 *unresolved_reloc_p
= FALSE
;
8780 relocation
= value
+ signed_addend
;
8782 relocation
-= (input_section
->output_section
->vma
8783 + input_section
->output_offset
8786 check
= relocation
>> howto
->rightshift
;
8788 /* If this is a signed value, the rightshift just dropped
8789 leading 1 bits (assuming twos complement). */
8790 if ((bfd_signed_vma
) relocation
>= 0)
8791 signed_check
= check
;
8793 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
8795 /* Calculate the permissable maximum and minimum values for
8796 this relocation according to whether we're relocating for
8798 bitsize
= howto
->bitsize
;
8801 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
8802 reloc_signed_min
= ~reloc_signed_max
;
8804 /* Assumes two's complement. */
8805 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8808 if ((lower_insn
& 0x5000) == 0x4000)
8809 /* For a BLX instruction, make sure that the relocation is rounded up
8810 to a word boundary. This follows the semantics of the instruction
8811 which specifies that bit 1 of the target address will come from bit
8812 1 of the base address. */
8813 relocation
= (relocation
+ 2) & ~ 3;
8815 /* Put RELOCATION back into the insn. Assumes two's complement.
8816 We use the Thumb-2 encoding, which is safe even if dealing with
8817 a Thumb-1 instruction by virtue of our overflow check above. */
8818 reloc_sign
= (signed_check
< 0) ? 1 : 0;
8819 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
8820 | ((relocation
>> 12) & 0x3ff)
8821 | (reloc_sign
<< 10);
8822 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
8823 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
8824 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
8825 | ((relocation
>> 1) & 0x7ff);
8827 /* Put the relocated value back in the object file: */
8828 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8829 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8831 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8835 case R_ARM_THM_JUMP19
:
8836 /* Thumb32 conditional branch instruction. */
8839 bfd_boolean overflow
= FALSE
;
8840 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8841 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8842 bfd_signed_vma reloc_signed_max
= 0xffffe;
8843 bfd_signed_vma reloc_signed_min
= -0x100000;
8844 bfd_signed_vma signed_check
;
8846 /* Need to refetch the addend, reconstruct the top three bits,
8847 and squish the two 11 bit pieces together. */
8848 if (globals
->use_rel
)
8850 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
8851 bfd_vma upper
= (upper_insn
& 0x003f);
8852 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
8853 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
8854 bfd_vma lower
= (lower_insn
& 0x07ff);
8859 upper
-= 0x0100; /* Sign extend. */
8861 addend
= (upper
<< 12) | (lower
<< 1);
8862 signed_addend
= addend
;
8865 /* Handle calls via the PLT. */
8866 if (plt_offset
!= (bfd_vma
) -1)
8868 value
= (splt
->output_section
->vma
8869 + splt
->output_offset
8871 /* Target the Thumb stub before the ARM PLT entry. */
8872 value
-= PLT_THUMB_STUB_SIZE
;
8873 *unresolved_reloc_p
= FALSE
;
8876 /* ??? Should handle interworking? GCC might someday try to
8877 use this for tail calls. */
8879 relocation
= value
+ signed_addend
;
8880 relocation
-= (input_section
->output_section
->vma
8881 + input_section
->output_offset
8883 signed_check
= (bfd_signed_vma
) relocation
;
8885 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8888 /* Put RELOCATION back into the insn. */
8890 bfd_vma S
= (relocation
& 0x00100000) >> 20;
8891 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
8892 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
8893 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
8894 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
8896 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
8897 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
8900 /* Put the relocated value back in the object file: */
8901 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8902 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8904 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8907 case R_ARM_THM_JUMP11
:
8908 case R_ARM_THM_JUMP8
:
8909 case R_ARM_THM_JUMP6
:
8910 /* Thumb B (branch) instruction). */
8912 bfd_signed_vma relocation
;
8913 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
8914 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
8915 bfd_signed_vma signed_check
;
8917 /* CZB cannot jump backward. */
8918 if (r_type
== R_ARM_THM_JUMP6
)
8919 reloc_signed_min
= 0;
8921 if (globals
->use_rel
)
8923 /* Need to refetch addend. */
8924 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
8925 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8928 signed_addend
&= ~ howto
->src_mask
;
8929 signed_addend
|= addend
;
8932 signed_addend
= addend
;
8933 /* The value in the insn has been right shifted. We need to
8934 undo this, so that we can perform the address calculation
8935 in terms of bytes. */
8936 signed_addend
<<= howto
->rightshift
;
8938 relocation
= value
+ signed_addend
;
8940 relocation
-= (input_section
->output_section
->vma
8941 + input_section
->output_offset
8944 relocation
>>= howto
->rightshift
;
8945 signed_check
= relocation
;
8947 if (r_type
== R_ARM_THM_JUMP6
)
8948 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
8950 relocation
&= howto
->dst_mask
;
8951 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
8953 bfd_put_16 (input_bfd
, relocation
, hit_data
);
8955 /* Assumes two's complement. */
8956 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8957 return bfd_reloc_overflow
;
8959 return bfd_reloc_ok
;
8962 case R_ARM_ALU_PCREL7_0
:
8963 case R_ARM_ALU_PCREL15_8
:
8964 case R_ARM_ALU_PCREL23_15
:
8969 insn
= bfd_get_32 (input_bfd
, hit_data
);
8970 if (globals
->use_rel
)
8972 /* Extract the addend. */
8973 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
8974 signed_addend
= addend
;
8976 relocation
= value
+ signed_addend
;
8978 relocation
-= (input_section
->output_section
->vma
8979 + input_section
->output_offset
8981 insn
= (insn
& ~0xfff)
8982 | ((howto
->bitpos
<< 7) & 0xf00)
8983 | ((relocation
>> howto
->bitpos
) & 0xff);
8984 bfd_put_32 (input_bfd
, value
, hit_data
);
8986 return bfd_reloc_ok
;
8988 case R_ARM_GNU_VTINHERIT
:
8989 case R_ARM_GNU_VTENTRY
:
8990 return bfd_reloc_ok
;
8992 case R_ARM_GOTOFF32
:
8993 /* Relocation is relative to the start of the
8994 global offset table. */
8996 BFD_ASSERT (sgot
!= NULL
);
8998 return bfd_reloc_notsupported
;
9000 /* If we are addressing a Thumb function, we need to adjust the
9001 address by one, so that attempts to call the function pointer will
9002 correctly interpret it as Thumb code. */
9003 if (branch_type
== ST_BRANCH_TO_THUMB
)
9006 /* Note that sgot->output_offset is not involved in this
9007 calculation. We always want the start of .got. If we
9008 define _GLOBAL_OFFSET_TABLE in a different way, as is
9009 permitted by the ABI, we might have to change this
9011 value
-= sgot
->output_section
->vma
;
9012 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9013 contents
, rel
->r_offset
, value
,
9017 /* Use global offset table as symbol value. */
9018 BFD_ASSERT (sgot
!= NULL
);
9021 return bfd_reloc_notsupported
;
9023 *unresolved_reloc_p
= FALSE
;
9024 value
= sgot
->output_section
->vma
;
9025 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9026 contents
, rel
->r_offset
, value
,
9030 case R_ARM_GOT_PREL
:
9031 /* Relocation is to the entry for this symbol in the
9032 global offset table. */
9034 return bfd_reloc_notsupported
;
9036 if (dynreloc_st_type
== STT_GNU_IFUNC
9037 && plt_offset
!= (bfd_vma
) -1
9038 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, h
)))
9040 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9041 symbol, and the relocation resolves directly to the runtime
9042 target rather than to the .iplt entry. This means that any
9043 .got entry would be the same value as the .igot.plt entry,
9044 so there's no point creating both. */
9045 sgot
= globals
->root
.igotplt
;
9046 value
= sgot
->output_offset
+ gotplt_offset
;
9052 off
= h
->got
.offset
;
9053 BFD_ASSERT (off
!= (bfd_vma
) -1);
9056 /* We have already processsed one GOT relocation against
9059 if (globals
->root
.dynamic_sections_created
9060 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
9061 *unresolved_reloc_p
= FALSE
;
9065 Elf_Internal_Rela outrel
;
9067 if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
9069 /* If the symbol doesn't resolve locally in a static
9070 object, we have an undefined reference. If the
9071 symbol doesn't resolve locally in a dynamic object,
9072 it should be resolved by the dynamic linker. */
9073 if (globals
->root
.dynamic_sections_created
)
9075 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
9076 *unresolved_reloc_p
= FALSE
;
9080 outrel
.r_addend
= 0;
9084 if (dynreloc_st_type
== STT_GNU_IFUNC
)
9085 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9086 else if (info
->shared
)
9087 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
9090 outrel
.r_addend
= dynreloc_value
;
9093 /* The GOT entry is initialized to zero by default.
9094 See if we should install a different value. */
9095 if (outrel
.r_addend
!= 0
9096 && (outrel
.r_info
== 0 || globals
->use_rel
))
9098 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9099 sgot
->contents
+ off
);
9100 outrel
.r_addend
= 0;
9103 if (outrel
.r_info
!= 0)
9105 outrel
.r_offset
= (sgot
->output_section
->vma
9106 + sgot
->output_offset
9108 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9112 value
= sgot
->output_offset
+ off
;
9118 BFD_ASSERT (local_got_offsets
!= NULL
&&
9119 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
9121 off
= local_got_offsets
[r_symndx
];
9123 /* The offset must always be a multiple of 4. We use the
9124 least significant bit to record whether we have already
9125 generated the necessary reloc. */
9130 if (globals
->use_rel
)
9131 bfd_put_32 (output_bfd
, dynreloc_value
, sgot
->contents
+ off
);
9133 if (info
->shared
|| dynreloc_st_type
== STT_GNU_IFUNC
)
9135 Elf_Internal_Rela outrel
;
9137 outrel
.r_addend
= addend
+ dynreloc_value
;
9138 outrel
.r_offset
= (sgot
->output_section
->vma
9139 + sgot
->output_offset
9141 if (dynreloc_st_type
== STT_GNU_IFUNC
)
9142 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9144 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
9145 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9148 local_got_offsets
[r_symndx
] |= 1;
9151 value
= sgot
->output_offset
+ off
;
9153 if (r_type
!= R_ARM_GOT32
)
9154 value
+= sgot
->output_section
->vma
;
9156 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9157 contents
, rel
->r_offset
, value
,
9160 case R_ARM_TLS_LDO32
:
9161 value
= value
- dtpoff_base (info
);
9163 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9164 contents
, rel
->r_offset
, value
,
9167 case R_ARM_TLS_LDM32
:
9174 off
= globals
->tls_ldm_got
.offset
;
9180 /* If we don't know the module number, create a relocation
9184 Elf_Internal_Rela outrel
;
9186 if (srelgot
== NULL
)
9189 outrel
.r_addend
= 0;
9190 outrel
.r_offset
= (sgot
->output_section
->vma
9191 + sgot
->output_offset
+ off
);
9192 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
9194 if (globals
->use_rel
)
9195 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9196 sgot
->contents
+ off
);
9198 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9201 bfd_put_32 (output_bfd
, 1, sgot
->contents
+ off
);
9203 globals
->tls_ldm_got
.offset
|= 1;
9206 value
= sgot
->output_section
->vma
+ sgot
->output_offset
+ off
9207 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
9209 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9210 contents
, rel
->r_offset
, value
,
9214 case R_ARM_TLS_CALL
:
9215 case R_ARM_THM_TLS_CALL
:
9216 case R_ARM_TLS_GD32
:
9217 case R_ARM_TLS_IE32
:
9218 case R_ARM_TLS_GOTDESC
:
9219 case R_ARM_TLS_DESCSEQ
:
9220 case R_ARM_THM_TLS_DESCSEQ
:
9222 bfd_vma off
, offplt
;
9226 BFD_ASSERT (sgot
!= NULL
);
9231 dyn
= globals
->root
.dynamic_sections_created
;
9232 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
9234 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
9236 *unresolved_reloc_p
= FALSE
;
9239 off
= h
->got
.offset
;
9240 offplt
= elf32_arm_hash_entry (h
)->tlsdesc_got
;
9241 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
9245 BFD_ASSERT (local_got_offsets
!= NULL
);
9246 off
= local_got_offsets
[r_symndx
];
9247 offplt
= local_tlsdesc_gotents
[r_symndx
];
9248 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
9251 /* Linker relaxations happens from one of the
9252 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9253 if (ELF32_R_TYPE(rel
->r_info
) != r_type
)
9254 tls_type
= GOT_TLS_IE
;
9256 BFD_ASSERT (tls_type
!= GOT_UNKNOWN
);
9262 bfd_boolean need_relocs
= FALSE
;
9263 Elf_Internal_Rela outrel
;
9266 /* The GOT entries have not been initialized yet. Do it
9267 now, and emit any relocations. If both an IE GOT and a
9268 GD GOT are necessary, we emit the GD first. */
9270 if ((info
->shared
|| indx
!= 0)
9272 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9273 || h
->root
.type
!= bfd_link_hash_undefweak
))
9276 BFD_ASSERT (srelgot
!= NULL
);
9279 if (tls_type
& GOT_TLS_GDESC
)
9283 /* We should have relaxed, unless this is an undefined
9285 BFD_ASSERT ((h
&& (h
->root
.type
== bfd_link_hash_undefweak
))
9287 BFD_ASSERT (globals
->sgotplt_jump_table_size
+ offplt
+ 8
9288 <= globals
->root
.sgotplt
->size
);
9290 outrel
.r_addend
= 0;
9291 outrel
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
9292 + globals
->root
.sgotplt
->output_offset
9294 + globals
->sgotplt_jump_table_size
);
9296 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DESC
);
9297 sreloc
= globals
->root
.srelplt
;
9298 loc
= sreloc
->contents
;
9299 loc
+= globals
->next_tls_desc_index
++ * RELOC_SIZE (globals
);
9300 BFD_ASSERT (loc
+ RELOC_SIZE (globals
)
9301 <= sreloc
->contents
+ sreloc
->size
);
9303 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
9305 /* For globals, the first word in the relocation gets
9306 the relocation index and the top bit set, or zero,
9307 if we're binding now. For locals, it gets the
9308 symbol's offset in the tls section. */
9309 bfd_put_32 (output_bfd
,
9310 !h
? value
- elf_hash_table (info
)->tls_sec
->vma
9311 : info
->flags
& DF_BIND_NOW
? 0
9312 : 0x80000000 | ELF32_R_SYM (outrel
.r_info
),
9313 globals
->root
.sgotplt
->contents
+ offplt
+
9314 globals
->sgotplt_jump_table_size
);
9316 /* Second word in the relocation is always zero. */
9317 bfd_put_32 (output_bfd
, 0,
9318 globals
->root
.sgotplt
->contents
+ offplt
+
9319 globals
->sgotplt_jump_table_size
+ 4);
9321 if (tls_type
& GOT_TLS_GD
)
9325 outrel
.r_addend
= 0;
9326 outrel
.r_offset
= (sgot
->output_section
->vma
9327 + sgot
->output_offset
9329 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
9331 if (globals
->use_rel
)
9332 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9333 sgot
->contents
+ cur_off
);
9335 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9338 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9339 sgot
->contents
+ cur_off
+ 4);
9342 outrel
.r_addend
= 0;
9343 outrel
.r_info
= ELF32_R_INFO (indx
,
9344 R_ARM_TLS_DTPOFF32
);
9345 outrel
.r_offset
+= 4;
9347 if (globals
->use_rel
)
9348 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9349 sgot
->contents
+ cur_off
+ 4);
9351 elf32_arm_add_dynreloc (output_bfd
, info
,
9357 /* If we are not emitting relocations for a
9358 general dynamic reference, then we must be in a
9359 static link or an executable link with the
9360 symbol binding locally. Mark it as belonging
9361 to module 1, the executable. */
9362 bfd_put_32 (output_bfd
, 1,
9363 sgot
->contents
+ cur_off
);
9364 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9365 sgot
->contents
+ cur_off
+ 4);
9371 if (tls_type
& GOT_TLS_IE
)
9376 outrel
.r_addend
= value
- dtpoff_base (info
);
9378 outrel
.r_addend
= 0;
9379 outrel
.r_offset
= (sgot
->output_section
->vma
9380 + sgot
->output_offset
9382 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
9384 if (globals
->use_rel
)
9385 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9386 sgot
->contents
+ cur_off
);
9388 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9391 bfd_put_32 (output_bfd
, tpoff (info
, value
),
9392 sgot
->contents
+ cur_off
);
9399 local_got_offsets
[r_symndx
] |= 1;
9402 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
9404 else if (tls_type
& GOT_TLS_GDESC
)
9407 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
9408 || ELF32_R_TYPE(rel
->r_info
) == R_ARM_THM_TLS_CALL
)
9410 bfd_signed_vma offset
;
9411 /* TLS stubs are arm mode. The original symbol is a
9412 data object, so branch_type is bogus. */
9413 branch_type
= ST_BRANCH_TO_ARM
;
9414 enum elf32_arm_stub_type stub_type
9415 = arm_type_of_stub (info
, input_section
, rel
,
9416 st_type
, &branch_type
,
9417 (struct elf32_arm_link_hash_entry
*)h
,
9418 globals
->tls_trampoline
, globals
->root
.splt
,
9419 input_bfd
, sym_name
);
9421 if (stub_type
!= arm_stub_none
)
9423 struct elf32_arm_stub_hash_entry
*stub_entry
9424 = elf32_arm_get_stub_entry
9425 (input_section
, globals
->root
.splt
, 0, rel
,
9426 globals
, stub_type
);
9427 offset
= (stub_entry
->stub_offset
9428 + stub_entry
->stub_sec
->output_offset
9429 + stub_entry
->stub_sec
->output_section
->vma
);
9432 offset
= (globals
->root
.splt
->output_section
->vma
9433 + globals
->root
.splt
->output_offset
9434 + globals
->tls_trampoline
);
9436 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
)
9440 offset
-= (input_section
->output_section
->vma
+
9441 input_section
->output_offset
+ rel
->r_offset
+ 8);
9445 value
= inst
| (globals
->use_blx
? 0xfa000000 : 0xeb000000);
9449 /* Thumb blx encodes the offset in a complicated
9451 unsigned upper_insn
, lower_insn
;
9454 offset
-= (input_section
->output_section
->vma
+
9455 input_section
->output_offset
9456 + rel
->r_offset
+ 4);
9458 if (stub_type
!= arm_stub_none
9459 && arm_stub_is_thumb (stub_type
))
9461 lower_insn
= 0xd000;
9465 lower_insn
= 0xc000;
9466 /* Round up the offset to a word boundary */
9467 offset
= (offset
+ 2) & ~2;
9471 upper_insn
= (0xf000
9472 | ((offset
>> 12) & 0x3ff)
9474 lower_insn
|= (((!((offset
>> 23) & 1)) ^ neg
) << 13)
9475 | (((!((offset
>> 22) & 1)) ^ neg
) << 11)
9476 | ((offset
>> 1) & 0x7ff);
9477 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
9478 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
9479 return bfd_reloc_ok
;
9482 /* These relocations needs special care, as besides the fact
9483 they point somewhere in .gotplt, the addend must be
9484 adjusted accordingly depending on the type of instruction
9486 else if ((r_type
== R_ARM_TLS_GOTDESC
) && (tls_type
& GOT_TLS_GDESC
))
9488 unsigned long data
, insn
;
9491 data
= bfd_get_32 (input_bfd
, hit_data
);
9497 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
- data
);
9498 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
9500 | bfd_get_16 (input_bfd
,
9501 contents
+ rel
->r_offset
- data
+ 2);
9502 if ((insn
& 0xf800c000) == 0xf000c000)
9505 else if ((insn
& 0xffffff00) == 0x4400)
9510 (*_bfd_error_handler
)
9511 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9512 input_bfd
, input_section
,
9513 (unsigned long)rel
->r_offset
, insn
);
9514 return bfd_reloc_notsupported
;
9519 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
- data
);
9524 case 0xfa: /* blx */
9528 case 0xe0: /* add */
9533 (*_bfd_error_handler
)
9534 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9535 input_bfd
, input_section
,
9536 (unsigned long)rel
->r_offset
, insn
);
9537 return bfd_reloc_notsupported
;
9541 value
+= ((globals
->root
.sgotplt
->output_section
->vma
9542 + globals
->root
.sgotplt
->output_offset
+ off
)
9543 - (input_section
->output_section
->vma
9544 + input_section
->output_offset
9546 + globals
->sgotplt_jump_table_size
);
9549 value
= ((globals
->root
.sgot
->output_section
->vma
9550 + globals
->root
.sgot
->output_offset
+ off
)
9551 - (input_section
->output_section
->vma
9552 + input_section
->output_offset
+ rel
->r_offset
));
9554 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9555 contents
, rel
->r_offset
, value
,
9559 case R_ARM_TLS_LE32
:
9560 if (info
->shared
&& !info
->pie
)
9562 (*_bfd_error_handler
)
9563 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9564 input_bfd
, input_section
,
9565 (long) rel
->r_offset
, howto
->name
);
9566 return (bfd_reloc_status_type
) FALSE
;
9569 value
= tpoff (info
, value
);
9571 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9572 contents
, rel
->r_offset
, value
,
9576 if (globals
->fix_v4bx
)
9578 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9580 /* Ensure that we have a BX instruction. */
9581 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
9583 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
9585 /* Branch to veneer. */
9587 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
9588 glue_addr
-= input_section
->output_section
->vma
9589 + input_section
->output_offset
9590 + rel
->r_offset
+ 8;
9591 insn
= (insn
& 0xf0000000) | 0x0a000000
9592 | ((glue_addr
>> 2) & 0x00ffffff);
9596 /* Preserve Rm (lowest four bits) and the condition code
9597 (highest four bits). Other bits encode MOV PC,Rm. */
9598 insn
= (insn
& 0xf000000f) | 0x01a0f000;
9601 bfd_put_32 (input_bfd
, insn
, hit_data
);
9603 return bfd_reloc_ok
;
9605 case R_ARM_MOVW_ABS_NC
:
9606 case R_ARM_MOVT_ABS
:
9607 case R_ARM_MOVW_PREL_NC
:
9608 case R_ARM_MOVT_PREL
:
9609 /* Until we properly support segment-base-relative addressing then
9610 we assume the segment base to be zero, as for the group relocations.
9611 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9612 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9613 case R_ARM_MOVW_BREL_NC
:
9614 case R_ARM_MOVW_BREL
:
9615 case R_ARM_MOVT_BREL
:
9617 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9619 if (globals
->use_rel
)
9621 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
9622 signed_addend
= (addend
^ 0x8000) - 0x8000;
9625 value
+= signed_addend
;
9627 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
9628 value
-= (input_section
->output_section
->vma
9629 + input_section
->output_offset
+ rel
->r_offset
);
9631 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
9632 return bfd_reloc_overflow
;
9634 if (branch_type
== ST_BRANCH_TO_THUMB
)
9637 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
9638 || r_type
== R_ARM_MOVT_BREL
)
9642 insn
|= value
& 0xfff;
9643 insn
|= (value
& 0xf000) << 4;
9644 bfd_put_32 (input_bfd
, insn
, hit_data
);
9646 return bfd_reloc_ok
;
9648 case R_ARM_THM_MOVW_ABS_NC
:
9649 case R_ARM_THM_MOVT_ABS
:
9650 case R_ARM_THM_MOVW_PREL_NC
:
9651 case R_ARM_THM_MOVT_PREL
:
9652 /* Until we properly support segment-base-relative addressing then
9653 we assume the segment base to be zero, as for the above relocations.
9654 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9655 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9656 as R_ARM_THM_MOVT_ABS. */
9657 case R_ARM_THM_MOVW_BREL_NC
:
9658 case R_ARM_THM_MOVW_BREL
:
9659 case R_ARM_THM_MOVT_BREL
:
9663 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
9664 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
9666 if (globals
->use_rel
)
9668 addend
= ((insn
>> 4) & 0xf000)
9669 | ((insn
>> 15) & 0x0800)
9670 | ((insn
>> 4) & 0x0700)
9672 signed_addend
= (addend
^ 0x8000) - 0x8000;
9675 value
+= signed_addend
;
9677 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
9678 value
-= (input_section
->output_section
->vma
9679 + input_section
->output_offset
+ rel
->r_offset
);
9681 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
9682 return bfd_reloc_overflow
;
9684 if (branch_type
== ST_BRANCH_TO_THUMB
)
9687 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
9688 || r_type
== R_ARM_THM_MOVT_BREL
)
9692 insn
|= (value
& 0xf000) << 4;
9693 insn
|= (value
& 0x0800) << 15;
9694 insn
|= (value
& 0x0700) << 4;
9695 insn
|= (value
& 0x00ff);
9697 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
9698 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
9700 return bfd_reloc_ok
;
9702 case R_ARM_ALU_PC_G0_NC
:
9703 case R_ARM_ALU_PC_G1_NC
:
9704 case R_ARM_ALU_PC_G0
:
9705 case R_ARM_ALU_PC_G1
:
9706 case R_ARM_ALU_PC_G2
:
9707 case R_ARM_ALU_SB_G0_NC
:
9708 case R_ARM_ALU_SB_G1_NC
:
9709 case R_ARM_ALU_SB_G0
:
9710 case R_ARM_ALU_SB_G1
:
9711 case R_ARM_ALU_SB_G2
:
9713 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9714 bfd_vma pc
= input_section
->output_section
->vma
9715 + input_section
->output_offset
+ rel
->r_offset
;
9716 /* sb should be the origin of the *segment* containing the symbol.
9717 It is not clear how to obtain this OS-dependent value, so we
9718 make an arbitrary choice of zero. */
9722 bfd_signed_vma signed_value
;
9725 /* Determine which group of bits to select. */
9728 case R_ARM_ALU_PC_G0_NC
:
9729 case R_ARM_ALU_PC_G0
:
9730 case R_ARM_ALU_SB_G0_NC
:
9731 case R_ARM_ALU_SB_G0
:
9735 case R_ARM_ALU_PC_G1_NC
:
9736 case R_ARM_ALU_PC_G1
:
9737 case R_ARM_ALU_SB_G1_NC
:
9738 case R_ARM_ALU_SB_G1
:
9742 case R_ARM_ALU_PC_G2
:
9743 case R_ARM_ALU_SB_G2
:
9751 /* If REL, extract the addend from the insn. If RELA, it will
9752 have already been fetched for us. */
9753 if (globals
->use_rel
)
9756 bfd_vma constant
= insn
& 0xff;
9757 bfd_vma rotation
= (insn
& 0xf00) >> 8;
9760 signed_addend
= constant
;
9763 /* Compensate for the fact that in the instruction, the
9764 rotation is stored in multiples of 2 bits. */
9767 /* Rotate "constant" right by "rotation" bits. */
9768 signed_addend
= (constant
>> rotation
) |
9769 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
9772 /* Determine if the instruction is an ADD or a SUB.
9773 (For REL, this determines the sign of the addend.) */
9774 negative
= identify_add_or_sub (insn
);
9777 (*_bfd_error_handler
)
9778 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9779 input_bfd
, input_section
,
9780 (long) rel
->r_offset
, howto
->name
);
9781 return bfd_reloc_overflow
;
9784 signed_addend
*= negative
;
9787 /* Compute the value (X) to go in the place. */
9788 if (r_type
== R_ARM_ALU_PC_G0_NC
9789 || r_type
== R_ARM_ALU_PC_G1_NC
9790 || r_type
== R_ARM_ALU_PC_G0
9791 || r_type
== R_ARM_ALU_PC_G1
9792 || r_type
== R_ARM_ALU_PC_G2
)
9794 signed_value
= value
- pc
+ signed_addend
;
9796 /* Section base relative. */
9797 signed_value
= value
- sb
+ signed_addend
;
9799 /* If the target symbol is a Thumb function, then set the
9800 Thumb bit in the address. */
9801 if (branch_type
== ST_BRANCH_TO_THUMB
)
9804 /* Calculate the value of the relevant G_n, in encoded
9805 constant-with-rotation format. */
9806 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
9809 /* Check for overflow if required. */
9810 if ((r_type
== R_ARM_ALU_PC_G0
9811 || r_type
== R_ARM_ALU_PC_G1
9812 || r_type
== R_ARM_ALU_PC_G2
9813 || r_type
== R_ARM_ALU_SB_G0
9814 || r_type
== R_ARM_ALU_SB_G1
9815 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
9817 (*_bfd_error_handler
)
9818 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9819 input_bfd
, input_section
,
9820 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9821 return bfd_reloc_overflow
;
9824 /* Mask out the value and the ADD/SUB part of the opcode; take care
9825 not to destroy the S bit. */
9828 /* Set the opcode according to whether the value to go in the
9829 place is negative. */
9830 if (signed_value
< 0)
9835 /* Encode the offset. */
9838 bfd_put_32 (input_bfd
, insn
, hit_data
);
9840 return bfd_reloc_ok
;
9842 case R_ARM_LDR_PC_G0
:
9843 case R_ARM_LDR_PC_G1
:
9844 case R_ARM_LDR_PC_G2
:
9845 case R_ARM_LDR_SB_G0
:
9846 case R_ARM_LDR_SB_G1
:
9847 case R_ARM_LDR_SB_G2
:
9849 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9850 bfd_vma pc
= input_section
->output_section
->vma
9851 + input_section
->output_offset
+ rel
->r_offset
;
9852 bfd_vma sb
= 0; /* See note above. */
9854 bfd_signed_vma signed_value
;
9857 /* Determine which groups of bits to calculate. */
9860 case R_ARM_LDR_PC_G0
:
9861 case R_ARM_LDR_SB_G0
:
9865 case R_ARM_LDR_PC_G1
:
9866 case R_ARM_LDR_SB_G1
:
9870 case R_ARM_LDR_PC_G2
:
9871 case R_ARM_LDR_SB_G2
:
9879 /* If REL, extract the addend from the insn. If RELA, it will
9880 have already been fetched for us. */
9881 if (globals
->use_rel
)
9883 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9884 signed_addend
= negative
* (insn
& 0xfff);
9887 /* Compute the value (X) to go in the place. */
9888 if (r_type
== R_ARM_LDR_PC_G0
9889 || r_type
== R_ARM_LDR_PC_G1
9890 || r_type
== R_ARM_LDR_PC_G2
)
9892 signed_value
= value
- pc
+ signed_addend
;
9894 /* Section base relative. */
9895 signed_value
= value
- sb
+ signed_addend
;
9897 /* Calculate the value of the relevant G_{n-1} to obtain
9898 the residual at that stage. */
9899 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9901 /* Check for overflow. */
9902 if (residual
>= 0x1000)
9904 (*_bfd_error_handler
)
9905 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9906 input_bfd
, input_section
,
9907 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9908 return bfd_reloc_overflow
;
9911 /* Mask out the value and U bit. */
9914 /* Set the U bit if the value to go in the place is non-negative. */
9915 if (signed_value
>= 0)
9918 /* Encode the offset. */
9921 bfd_put_32 (input_bfd
, insn
, hit_data
);
9923 return bfd_reloc_ok
;
9925 case R_ARM_LDRS_PC_G0
:
9926 case R_ARM_LDRS_PC_G1
:
9927 case R_ARM_LDRS_PC_G2
:
9928 case R_ARM_LDRS_SB_G0
:
9929 case R_ARM_LDRS_SB_G1
:
9930 case R_ARM_LDRS_SB_G2
:
9932 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9933 bfd_vma pc
= input_section
->output_section
->vma
9934 + input_section
->output_offset
+ rel
->r_offset
;
9935 bfd_vma sb
= 0; /* See note above. */
9937 bfd_signed_vma signed_value
;
9940 /* Determine which groups of bits to calculate. */
9943 case R_ARM_LDRS_PC_G0
:
9944 case R_ARM_LDRS_SB_G0
:
9948 case R_ARM_LDRS_PC_G1
:
9949 case R_ARM_LDRS_SB_G1
:
9953 case R_ARM_LDRS_PC_G2
:
9954 case R_ARM_LDRS_SB_G2
:
9962 /* If REL, extract the addend from the insn. If RELA, it will
9963 have already been fetched for us. */
9964 if (globals
->use_rel
)
9966 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9967 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
9970 /* Compute the value (X) to go in the place. */
9971 if (r_type
== R_ARM_LDRS_PC_G0
9972 || r_type
== R_ARM_LDRS_PC_G1
9973 || r_type
== R_ARM_LDRS_PC_G2
)
9975 signed_value
= value
- pc
+ signed_addend
;
9977 /* Section base relative. */
9978 signed_value
= value
- sb
+ signed_addend
;
9980 /* Calculate the value of the relevant G_{n-1} to obtain
9981 the residual at that stage. */
9982 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9984 /* Check for overflow. */
9985 if (residual
>= 0x100)
9987 (*_bfd_error_handler
)
9988 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9989 input_bfd
, input_section
,
9990 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9991 return bfd_reloc_overflow
;
9994 /* Mask out the value and U bit. */
9997 /* Set the U bit if the value to go in the place is non-negative. */
9998 if (signed_value
>= 0)
10001 /* Encode the offset. */
10002 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
10004 bfd_put_32 (input_bfd
, insn
, hit_data
);
10006 return bfd_reloc_ok
;
10008 case R_ARM_LDC_PC_G0
:
10009 case R_ARM_LDC_PC_G1
:
10010 case R_ARM_LDC_PC_G2
:
10011 case R_ARM_LDC_SB_G0
:
10012 case R_ARM_LDC_SB_G1
:
10013 case R_ARM_LDC_SB_G2
:
10015 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
10016 bfd_vma pc
= input_section
->output_section
->vma
10017 + input_section
->output_offset
+ rel
->r_offset
;
10018 bfd_vma sb
= 0; /* See note above. */
10020 bfd_signed_vma signed_value
;
10023 /* Determine which groups of bits to calculate. */
10026 case R_ARM_LDC_PC_G0
:
10027 case R_ARM_LDC_SB_G0
:
10031 case R_ARM_LDC_PC_G1
:
10032 case R_ARM_LDC_SB_G1
:
10036 case R_ARM_LDC_PC_G2
:
10037 case R_ARM_LDC_SB_G2
:
10045 /* If REL, extract the addend from the insn. If RELA, it will
10046 have already been fetched for us. */
10047 if (globals
->use_rel
)
10049 int negative
= (insn
& (1 << 23)) ? 1 : -1;
10050 signed_addend
= negative
* ((insn
& 0xff) << 2);
10053 /* Compute the value (X) to go in the place. */
10054 if (r_type
== R_ARM_LDC_PC_G0
10055 || r_type
== R_ARM_LDC_PC_G1
10056 || r_type
== R_ARM_LDC_PC_G2
)
10058 signed_value
= value
- pc
+ signed_addend
;
10060 /* Section base relative. */
10061 signed_value
= value
- sb
+ signed_addend
;
10063 /* Calculate the value of the relevant G_{n-1} to obtain
10064 the residual at that stage. */
10065 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
10067 /* Check for overflow. (The absolute value to go in the place must be
10068 divisible by four and, after having been divided by four, must
10069 fit in eight bits.) */
10070 if ((residual
& 0x3) != 0 || residual
>= 0x400)
10072 (*_bfd_error_handler
)
10073 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10074 input_bfd
, input_section
,
10075 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
10076 return bfd_reloc_overflow
;
10079 /* Mask out the value and U bit. */
10080 insn
&= 0xff7fff00;
10082 /* Set the U bit if the value to go in the place is non-negative. */
10083 if (signed_value
>= 0)
10086 /* Encode the offset. */
10087 insn
|= residual
>> 2;
10089 bfd_put_32 (input_bfd
, insn
, hit_data
);
10091 return bfd_reloc_ok
;
10094 return bfd_reloc_notsupported
;
10098 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10100 arm_add_to_rel (bfd
* abfd
,
10101 bfd_byte
* address
,
10102 reloc_howto_type
* howto
,
10103 bfd_signed_vma increment
)
10105 bfd_signed_vma addend
;
10107 if (howto
->type
== R_ARM_THM_CALL
10108 || howto
->type
== R_ARM_THM_JUMP24
)
10110 int upper_insn
, lower_insn
;
10113 upper_insn
= bfd_get_16 (abfd
, address
);
10114 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
10115 upper
= upper_insn
& 0x7ff;
10116 lower
= lower_insn
& 0x7ff;
10118 addend
= (upper
<< 12) | (lower
<< 1);
10119 addend
+= increment
;
10122 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
10123 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
10125 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
10126 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
10132 contents
= bfd_get_32 (abfd
, address
);
10134 /* Get the (signed) value from the instruction. */
10135 addend
= contents
& howto
->src_mask
;
10136 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10138 bfd_signed_vma mask
;
10141 mask
&= ~ howto
->src_mask
;
10145 /* Add in the increment, (which is a byte value). */
10146 switch (howto
->type
)
10149 addend
+= increment
;
10156 addend
<<= howto
->size
;
10157 addend
+= increment
;
10159 /* Should we check for overflow here ? */
10161 /* Drop any undesired bits. */
10162 addend
>>= howto
->rightshift
;
10166 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
10168 bfd_put_32 (abfd
, contents
, address
);
10172 #define IS_ARM_TLS_RELOC(R_TYPE) \
10173 ((R_TYPE) == R_ARM_TLS_GD32 \
10174 || (R_TYPE) == R_ARM_TLS_LDO32 \
10175 || (R_TYPE) == R_ARM_TLS_LDM32 \
10176 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10177 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10178 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10179 || (R_TYPE) == R_ARM_TLS_LE32 \
10180 || (R_TYPE) == R_ARM_TLS_IE32 \
10181 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10183 /* Specific set of relocations for the gnu tls dialect. */
10184 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10185 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10186 || (R_TYPE) == R_ARM_TLS_CALL \
10187 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10188 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10189 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10191 /* Relocate an ARM ELF section. */
10194 elf32_arm_relocate_section (bfd
* output_bfd
,
10195 struct bfd_link_info
* info
,
10197 asection
* input_section
,
10198 bfd_byte
* contents
,
10199 Elf_Internal_Rela
* relocs
,
10200 Elf_Internal_Sym
* local_syms
,
10201 asection
** local_sections
)
10203 Elf_Internal_Shdr
*symtab_hdr
;
10204 struct elf_link_hash_entry
**sym_hashes
;
10205 Elf_Internal_Rela
*rel
;
10206 Elf_Internal_Rela
*relend
;
10208 struct elf32_arm_link_hash_table
* globals
;
10210 globals
= elf32_arm_hash_table (info
);
10211 if (globals
== NULL
)
10214 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
10215 sym_hashes
= elf_sym_hashes (input_bfd
);
10218 relend
= relocs
+ input_section
->reloc_count
;
10219 for (; rel
< relend
; rel
++)
10222 reloc_howto_type
* howto
;
10223 unsigned long r_symndx
;
10224 Elf_Internal_Sym
* sym
;
10226 struct elf_link_hash_entry
* h
;
10227 bfd_vma relocation
;
10228 bfd_reloc_status_type r
;
10231 bfd_boolean unresolved_reloc
= FALSE
;
10232 char *error_message
= NULL
;
10234 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10235 r_type
= ELF32_R_TYPE (rel
->r_info
);
10236 r_type
= arm_real_reloc_type (globals
, r_type
);
10238 if ( r_type
== R_ARM_GNU_VTENTRY
10239 || r_type
== R_ARM_GNU_VTINHERIT
)
10242 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
10243 howto
= bfd_reloc
.howto
;
10249 if (r_symndx
< symtab_hdr
->sh_info
)
10251 sym
= local_syms
+ r_symndx
;
10252 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
10253 sec
= local_sections
[r_symndx
];
10255 /* An object file might have a reference to a local
10256 undefined symbol. This is a daft object file, but we
10257 should at least do something about it. V4BX & NONE
10258 relocations do not use the symbol and are explicitly
10259 allowed to use the undefined symbol, so allow those.
10260 Likewise for relocations against STN_UNDEF. */
10261 if (r_type
!= R_ARM_V4BX
10262 && r_type
!= R_ARM_NONE
10263 && r_symndx
!= STN_UNDEF
10264 && bfd_is_und_section (sec
)
10265 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
10267 if (!info
->callbacks
->undefined_symbol
10268 (info
, bfd_elf_string_from_elf_section
10269 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
10270 input_bfd
, input_section
,
10271 rel
->r_offset
, TRUE
))
10275 if (globals
->use_rel
)
10277 relocation
= (sec
->output_section
->vma
10278 + sec
->output_offset
10280 if (!info
->relocatable
10281 && (sec
->flags
& SEC_MERGE
)
10282 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10285 bfd_vma addend
, value
;
10289 case R_ARM_MOVW_ABS_NC
:
10290 case R_ARM_MOVT_ABS
:
10291 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10292 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
10293 addend
= (addend
^ 0x8000) - 0x8000;
10296 case R_ARM_THM_MOVW_ABS_NC
:
10297 case R_ARM_THM_MOVT_ABS
:
10298 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
10300 value
|= bfd_get_16 (input_bfd
,
10301 contents
+ rel
->r_offset
+ 2);
10302 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
10303 | ((value
& 0x04000000) >> 15);
10304 addend
= (addend
^ 0x8000) - 0x8000;
10308 if (howto
->rightshift
10309 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
10311 (*_bfd_error_handler
)
10312 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10313 input_bfd
, input_section
,
10314 (long) rel
->r_offset
, howto
->name
);
10318 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10320 /* Get the (signed) value from the instruction. */
10321 addend
= value
& howto
->src_mask
;
10322 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10324 bfd_signed_vma mask
;
10327 mask
&= ~ howto
->src_mask
;
10335 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
10337 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
10339 /* Cases here must match those in the preceding
10340 switch statement. */
10343 case R_ARM_MOVW_ABS_NC
:
10344 case R_ARM_MOVT_ABS
:
10345 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
10346 | (addend
& 0xfff);
10347 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10350 case R_ARM_THM_MOVW_ABS_NC
:
10351 case R_ARM_THM_MOVT_ABS
:
10352 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
10353 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
10354 bfd_put_16 (input_bfd
, value
>> 16,
10355 contents
+ rel
->r_offset
);
10356 bfd_put_16 (input_bfd
, value
,
10357 contents
+ rel
->r_offset
+ 2);
10361 value
= (value
& ~ howto
->dst_mask
)
10362 | (addend
& howto
->dst_mask
);
10363 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10369 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
10373 bfd_boolean warned
;
10375 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
10376 r_symndx
, symtab_hdr
, sym_hashes
,
10377 h
, sec
, relocation
,
10378 unresolved_reloc
, warned
);
10380 sym_type
= h
->type
;
10383 if (sec
!= NULL
&& elf_discarded_section (sec
))
10384 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
10385 rel
, relend
, howto
, contents
);
10387 if (info
->relocatable
)
10389 /* This is a relocatable link. We don't have to change
10390 anything, unless the reloc is against a section symbol,
10391 in which case we have to adjust according to where the
10392 section symbol winds up in the output section. */
10393 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10395 if (globals
->use_rel
)
10396 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
10397 howto
, (bfd_signed_vma
) sec
->output_offset
);
10399 rel
->r_addend
+= sec
->output_offset
;
10405 name
= h
->root
.root
.string
;
10408 name
= (bfd_elf_string_from_elf_section
10409 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
10410 if (name
== NULL
|| *name
== '\0')
10411 name
= bfd_section_name (input_bfd
, sec
);
10414 if (r_symndx
!= STN_UNDEF
10415 && r_type
!= R_ARM_NONE
10417 || h
->root
.type
== bfd_link_hash_defined
10418 || h
->root
.type
== bfd_link_hash_defweak
)
10419 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
10421 (*_bfd_error_handler
)
10422 ((sym_type
== STT_TLS
10423 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10424 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10427 (long) rel
->r_offset
,
10432 /* We call elf32_arm_final_link_relocate unless we're completely
10433 done, i.e., the relaxation produced the final output we want,
10434 and we won't let anybody mess with it. Also, we have to do
10435 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10436 both in relaxed and non-relaxed cases */
10437 if ((elf32_arm_tls_transition (info
, r_type
, h
) != (unsigned)r_type
)
10438 || (IS_ARM_TLS_GNU_RELOC (r_type
)
10439 && !((h
? elf32_arm_hash_entry (h
)->tls_type
:
10440 elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
])
10443 r
= elf32_arm_tls_relax (globals
, input_bfd
, input_section
,
10444 contents
, rel
, h
== NULL
);
10445 /* This may have been marked unresolved because it came from
10446 a shared library. But we've just dealt with that. */
10447 unresolved_reloc
= 0;
10450 r
= bfd_reloc_continue
;
10452 if (r
== bfd_reloc_continue
)
10453 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
10454 input_section
, contents
, rel
,
10455 relocation
, info
, sec
, name
, sym_type
,
10456 (h
? h
->target_internal
10457 : ARM_SYM_BRANCH_TYPE (sym
)), h
,
10458 &unresolved_reloc
, &error_message
);
10460 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10461 because such sections are not SEC_ALLOC and thus ld.so will
10462 not process them. */
10463 if (unresolved_reloc
10464 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
10466 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
10467 rel
->r_offset
) != (bfd_vma
) -1)
10469 (*_bfd_error_handler
)
10470 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10473 (long) rel
->r_offset
,
10475 h
->root
.root
.string
);
10479 if (r
!= bfd_reloc_ok
)
10483 case bfd_reloc_overflow
:
10484 /* If the overflowing reloc was to an undefined symbol,
10485 we have already printed one error message and there
10486 is no point complaining again. */
10488 h
->root
.type
!= bfd_link_hash_undefined
)
10489 && (!((*info
->callbacks
->reloc_overflow
)
10490 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
10491 (bfd_vma
) 0, input_bfd
, input_section
,
10496 case bfd_reloc_undefined
:
10497 if (!((*info
->callbacks
->undefined_symbol
)
10498 (info
, name
, input_bfd
, input_section
,
10499 rel
->r_offset
, TRUE
)))
10503 case bfd_reloc_outofrange
:
10504 error_message
= _("out of range");
10507 case bfd_reloc_notsupported
:
10508 error_message
= _("unsupported relocation");
10511 case bfd_reloc_dangerous
:
10512 /* error_message should already be set. */
10516 error_message
= _("unknown error");
10517 /* Fall through. */
10520 BFD_ASSERT (error_message
!= NULL
);
10521 if (!((*info
->callbacks
->reloc_dangerous
)
10522 (info
, error_message
, input_bfd
, input_section
,
10533 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10534 adds the edit to the start of the list. (The list must be built in order of
10535 ascending TINDEX: the function's callers are primarily responsible for
10536 maintaining that condition). */
10539 add_unwind_table_edit (arm_unwind_table_edit
**head
,
10540 arm_unwind_table_edit
**tail
,
10541 arm_unwind_edit_type type
,
10542 asection
*linked_section
,
10543 unsigned int tindex
)
10545 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
10546 xmalloc (sizeof (arm_unwind_table_edit
));
10548 new_edit
->type
= type
;
10549 new_edit
->linked_section
= linked_section
;
10550 new_edit
->index
= tindex
;
10554 new_edit
->next
= NULL
;
10557 (*tail
)->next
= new_edit
;
10559 (*tail
) = new_edit
;
10562 (*head
) = new_edit
;
10566 new_edit
->next
= *head
;
10575 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
10577 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10579 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
10583 if (!exidx_sec
->rawsize
)
10584 exidx_sec
->rawsize
= exidx_sec
->size
;
10586 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
10587 out_sec
= exidx_sec
->output_section
;
10588 /* Adjust size of output section. */
10589 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
10592 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10594 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
10596 struct _arm_elf_section_data
*exidx_arm_data
;
10598 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
10599 add_unwind_table_edit (
10600 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
10601 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
10602 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
10604 adjust_exidx_size(exidx_sec
, 8);
10607 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10608 made to those tables, such that:
10610 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10611 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10612 codes which have been inlined into the index).
10614 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10616 The edits are applied when the tables are written
10617 (in elf32_arm_write_section).
10621 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
10622 unsigned int num_text_sections
,
10623 struct bfd_link_info
*info
,
10624 bfd_boolean merge_exidx_entries
)
10627 unsigned int last_second_word
= 0, i
;
10628 asection
*last_exidx_sec
= NULL
;
10629 asection
*last_text_sec
= NULL
;
10630 int last_unwind_type
= -1;
10632 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10634 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
10638 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
10640 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
10641 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
10643 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
10646 if (elf_sec
->linked_to
)
10648 Elf_Internal_Shdr
*linked_hdr
10649 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
10650 struct _arm_elf_section_data
*linked_sec_arm_data
10651 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
10653 if (linked_sec_arm_data
== NULL
)
10656 /* Link this .ARM.exidx section back from the text section it
10658 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
10663 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10664 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10665 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10667 for (i
= 0; i
< num_text_sections
; i
++)
10669 asection
*sec
= text_section_order
[i
];
10670 asection
*exidx_sec
;
10671 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
10672 struct _arm_elf_section_data
*exidx_arm_data
;
10673 bfd_byte
*contents
= NULL
;
10674 int deleted_exidx_bytes
= 0;
10676 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
10677 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
10678 Elf_Internal_Shdr
*hdr
;
10681 if (arm_data
== NULL
)
10684 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
10685 if (exidx_sec
== NULL
)
10687 /* Section has no unwind data. */
10688 if (last_unwind_type
== 0 || !last_exidx_sec
)
10691 /* Ignore zero sized sections. */
10692 if (sec
->size
== 0)
10695 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
10696 last_unwind_type
= 0;
10700 /* Skip /DISCARD/ sections. */
10701 if (bfd_is_abs_section (exidx_sec
->output_section
))
10704 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
10705 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
10708 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
10709 if (exidx_arm_data
== NULL
)
10712 ibfd
= exidx_sec
->owner
;
10714 if (hdr
->contents
!= NULL
)
10715 contents
= hdr
->contents
;
10716 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
10720 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
10722 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
10726 /* An EXIDX_CANTUNWIND entry. */
10727 if (second_word
== 1)
10729 if (last_unwind_type
== 0)
10733 /* Inlined unwinding data. Merge if equal to previous. */
10734 else if ((second_word
& 0x80000000) != 0)
10736 if (merge_exidx_entries
10737 && last_second_word
== second_word
&& last_unwind_type
== 1)
10740 last_second_word
= second_word
;
10742 /* Normal table entry. In theory we could merge these too,
10743 but duplicate entries are likely to be much less common. */
10749 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
10750 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
10752 deleted_exidx_bytes
+= 8;
10755 last_unwind_type
= unwind_type
;
10758 /* Free contents if we allocated it ourselves. */
10759 if (contents
!= hdr
->contents
)
10762 /* Record edits to be applied later (in elf32_arm_write_section). */
10763 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
10764 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
10766 if (deleted_exidx_bytes
> 0)
10767 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
10769 last_exidx_sec
= exidx_sec
;
10770 last_text_sec
= sec
;
10773 /* Add terminating CANTUNWIND entry. */
10774 if (last_exidx_sec
&& last_unwind_type
!= 0)
10775 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
10781 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
10782 bfd
*ibfd
, const char *name
)
10784 asection
*sec
, *osec
;
10786 sec
= bfd_get_section_by_name (ibfd
, name
);
10787 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
10790 osec
= sec
->output_section
;
10791 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
10794 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
10795 sec
->output_offset
, sec
->size
))
10802 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10804 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
10805 asection
*sec
, *osec
;
10807 if (globals
== NULL
)
10810 /* Invoke the regular ELF backend linker to do all the work. */
10811 if (!bfd_elf_final_link (abfd
, info
))
10814 /* Process stub sections (eg BE8 encoding, ...). */
10815 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
10817 for (i
=0; i
<htab
->top_id
; i
++)
10819 sec
= htab
->stub_group
[i
].stub_sec
;
10820 /* Only process it once, in its link_sec slot. */
10821 if (sec
&& i
== htab
->stub_group
[i
].link_sec
->id
)
10823 osec
= sec
->output_section
;
10824 elf32_arm_write_section (abfd
, info
, sec
, sec
->contents
);
10825 if (! bfd_set_section_contents (abfd
, osec
, sec
->contents
,
10826 sec
->output_offset
, sec
->size
))
10831 /* Write out any glue sections now that we have created all the
10833 if (globals
->bfd_of_glue_owner
!= NULL
)
10835 if (! elf32_arm_output_glue_section (info
, abfd
,
10836 globals
->bfd_of_glue_owner
,
10837 ARM2THUMB_GLUE_SECTION_NAME
))
10840 if (! elf32_arm_output_glue_section (info
, abfd
,
10841 globals
->bfd_of_glue_owner
,
10842 THUMB2ARM_GLUE_SECTION_NAME
))
10845 if (! elf32_arm_output_glue_section (info
, abfd
,
10846 globals
->bfd_of_glue_owner
,
10847 VFP11_ERRATUM_VENEER_SECTION_NAME
))
10850 if (! elf32_arm_output_glue_section (info
, abfd
,
10851 globals
->bfd_of_glue_owner
,
10852 ARM_BX_GLUE_SECTION_NAME
))
10859 /* Set the right machine number. */
10862 elf32_arm_object_p (bfd
*abfd
)
10866 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
10868 if (mach
!= bfd_mach_arm_unknown
)
10869 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
10871 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
10872 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
10875 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
10880 /* Function to keep ARM specific flags in the ELF header. */
10883 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
10885 if (elf_flags_init (abfd
)
10886 && elf_elfheader (abfd
)->e_flags
!= flags
)
10888 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
10890 if (flags
& EF_ARM_INTERWORK
)
10891 (*_bfd_error_handler
)
10892 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10896 (_("Warning: Clearing the interworking flag of %B due to outside request"),
10902 elf_elfheader (abfd
)->e_flags
= flags
;
10903 elf_flags_init (abfd
) = TRUE
;
10909 /* Copy backend specific data from one object module to another. */
10912 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
10915 flagword out_flags
;
10917 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
10920 in_flags
= elf_elfheader (ibfd
)->e_flags
;
10921 out_flags
= elf_elfheader (obfd
)->e_flags
;
10923 if (elf_flags_init (obfd
)
10924 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
10925 && in_flags
!= out_flags
)
10927 /* Cannot mix APCS26 and APCS32 code. */
10928 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
10931 /* Cannot mix float APCS and non-float APCS code. */
10932 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
10935 /* If the src and dest have different interworking flags
10936 then turn off the interworking bit. */
10937 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
10939 if (out_flags
& EF_ARM_INTERWORK
)
10941 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10944 in_flags
&= ~EF_ARM_INTERWORK
;
10947 /* Likewise for PIC, though don't warn for this case. */
10948 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
10949 in_flags
&= ~EF_ARM_PIC
;
10952 elf_elfheader (obfd
)->e_flags
= in_flags
;
10953 elf_flags_init (obfd
) = TRUE
;
10955 /* Also copy the EI_OSABI field. */
10956 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
10957 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
10959 /* Copy object attributes. */
10960 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
10965 /* Values for Tag_ABI_PCS_R9_use. */
10974 /* Values for Tag_ABI_PCS_RW_data. */
10977 AEABI_PCS_RW_data_absolute
,
10978 AEABI_PCS_RW_data_PCrel
,
10979 AEABI_PCS_RW_data_SBrel
,
10980 AEABI_PCS_RW_data_unused
10983 /* Values for Tag_ABI_enum_size. */
10989 AEABI_enum_forced_wide
10992 /* Determine whether an object attribute tag takes an integer, a
10996 elf32_arm_obj_attrs_arg_type (int tag
)
10998 if (tag
== Tag_compatibility
)
10999 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
11000 else if (tag
== Tag_nodefaults
)
11001 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
11002 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
11003 return ATTR_TYPE_FLAG_STR_VAL
;
11005 return ATTR_TYPE_FLAG_INT_VAL
;
11007 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
11010 /* The ABI defines that Tag_conformance should be emitted first, and that
11011 Tag_nodefaults should be second (if either is defined). This sets those
11012 two positions, and bumps up the position of all the remaining tags to
11015 elf32_arm_obj_attrs_order (int num
)
11017 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
)
11018 return Tag_conformance
;
11019 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
+ 1)
11020 return Tag_nodefaults
;
11021 if ((num
- 2) < Tag_nodefaults
)
11023 if ((num
- 1) < Tag_conformance
)
11028 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11030 elf32_arm_obj_attrs_handle_unknown (bfd
*abfd
, int tag
)
11032 if ((tag
& 127) < 64)
11035 (_("%B: Unknown mandatory EABI object attribute %d"),
11037 bfd_set_error (bfd_error_bad_value
);
11043 (_("Warning: %B: Unknown EABI object attribute %d"),
11049 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11050 Returns -1 if no architecture could be read. */
11053 get_secondary_compatible_arch (bfd
*abfd
)
11055 obj_attribute
*attr
=
11056 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
11058 /* Note: the tag and its argument below are uleb128 values, though
11059 currently-defined values fit in one byte for each. */
11061 && attr
->s
[0] == Tag_CPU_arch
11062 && (attr
->s
[1] & 128) != 128
11063 && attr
->s
[2] == 0)
11066 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11070 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11071 The tag is removed if ARCH is -1. */
11074 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
11076 obj_attribute
*attr
=
11077 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
11085 /* Note: the tag and its argument below are uleb128 values, though
11086 currently-defined values fit in one byte for each. */
11088 attr
->s
= (char *) bfd_alloc (abfd
, 3);
11089 attr
->s
[0] = Tag_CPU_arch
;
11094 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11098 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
11099 int newtag
, int secondary_compat
)
11101 #define T(X) TAG_CPU_ARCH_##X
11102 int tagl
, tagh
, result
;
11105 T(V6T2
), /* PRE_V4. */
11107 T(V6T2
), /* V4T. */
11108 T(V6T2
), /* V5T. */
11109 T(V6T2
), /* V5TE. */
11110 T(V6T2
), /* V5TEJ. */
11113 T(V6T2
) /* V6T2. */
11117 T(V6K
), /* PRE_V4. */
11121 T(V6K
), /* V5TE. */
11122 T(V6K
), /* V5TEJ. */
11124 T(V6KZ
), /* V6KZ. */
11130 T(V7
), /* PRE_V4. */
11135 T(V7
), /* V5TEJ. */
11148 T(V6K
), /* V5TE. */
11149 T(V6K
), /* V5TEJ. */
11151 T(V6KZ
), /* V6KZ. */
11155 T(V6_M
) /* V6_M. */
11157 const int v6s_m
[] =
11163 T(V6K
), /* V5TE. */
11164 T(V6K
), /* V5TEJ. */
11166 T(V6KZ
), /* V6KZ. */
11170 T(V6S_M
), /* V6_M. */
11171 T(V6S_M
) /* V6S_M. */
11173 const int v7e_m
[] =
11177 T(V7E_M
), /* V4T. */
11178 T(V7E_M
), /* V5T. */
11179 T(V7E_M
), /* V5TE. */
11180 T(V7E_M
), /* V5TEJ. */
11181 T(V7E_M
), /* V6. */
11182 T(V7E_M
), /* V6KZ. */
11183 T(V7E_M
), /* V6T2. */
11184 T(V7E_M
), /* V6K. */
11185 T(V7E_M
), /* V7. */
11186 T(V7E_M
), /* V6_M. */
11187 T(V7E_M
), /* V6S_M. */
11188 T(V7E_M
) /* V7E_M. */
11190 const int v4t_plus_v6_m
[] =
11196 T(V5TE
), /* V5TE. */
11197 T(V5TEJ
), /* V5TEJ. */
11199 T(V6KZ
), /* V6KZ. */
11200 T(V6T2
), /* V6T2. */
11203 T(V6_M
), /* V6_M. */
11204 T(V6S_M
), /* V6S_M. */
11205 T(V7E_M
), /* V7E_M. */
11206 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
11208 const int *comb
[] =
11216 /* Pseudo-architecture. */
11220 /* Check we've not got a higher architecture than we know about. */
11222 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
11224 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
11228 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11230 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
11231 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
11232 oldtag
= T(V4T_PLUS_V6_M
);
11234 /* And override the new tag if we have a Tag_also_compatible_with on the
11237 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
11238 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
11239 newtag
= T(V4T_PLUS_V6_M
);
11241 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
11242 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
11244 /* Architectures before V6KZ add features monotonically. */
11245 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
11248 result
= comb
[tagh
- T(V6T2
)][tagl
];
11250 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11251 as the canonical version. */
11252 if (result
== T(V4T_PLUS_V6_M
))
11255 *secondary_compat_out
= T(V6_M
);
11258 *secondary_compat_out
= -1;
11262 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11263 ibfd
, oldtag
, newtag
);
11271 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11272 are conflicting attributes. */
11275 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
11277 obj_attribute
*in_attr
;
11278 obj_attribute
*out_attr
;
11279 /* Some tags have 0 = don't care, 1 = strong requirement,
11280 2 = weak requirement. */
11281 static const int order_021
[3] = {0, 2, 1};
11283 bfd_boolean result
= TRUE
;
11285 /* Skip the linker stubs file. This preserves previous behavior
11286 of accepting unknown attributes in the first input file - but
11288 if (ibfd
->flags
& BFD_LINKER_CREATED
)
11291 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
11293 /* This is the first object. Copy the attributes. */
11294 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
11296 out_attr
= elf_known_obj_attributes_proc (obfd
);
11298 /* Use the Tag_null value to indicate the attributes have been
11302 /* We do not output objects with Tag_MPextension_use_legacy - we move
11303 the attribute's value to Tag_MPextension_use. */
11304 if (out_attr
[Tag_MPextension_use_legacy
].i
!= 0)
11306 if (out_attr
[Tag_MPextension_use
].i
!= 0
11307 && out_attr
[Tag_MPextension_use_legacy
].i
11308 != out_attr
[Tag_MPextension_use
].i
)
11311 (_("Error: %B has both the current and legacy "
11312 "Tag_MPextension_use attributes"), ibfd
);
11316 out_attr
[Tag_MPextension_use
] =
11317 out_attr
[Tag_MPextension_use_legacy
];
11318 out_attr
[Tag_MPextension_use_legacy
].type
= 0;
11319 out_attr
[Tag_MPextension_use_legacy
].i
= 0;
11325 in_attr
= elf_known_obj_attributes_proc (ibfd
);
11326 out_attr
= elf_known_obj_attributes_proc (obfd
);
11327 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11328 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
11330 /* Ignore mismatches if the object doesn't use floating point. */
11331 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
11332 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
11333 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
11336 (_("error: %B uses VFP register arguments, %B does not"),
11337 in_attr
[Tag_ABI_VFP_args
].i
? ibfd
: obfd
,
11338 in_attr
[Tag_ABI_VFP_args
].i
? obfd
: ibfd
);
11343 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
11345 /* Merge this attribute with existing attributes. */
11348 case Tag_CPU_raw_name
:
11350 /* These are merged after Tag_CPU_arch. */
11353 case Tag_ABI_optimization_goals
:
11354 case Tag_ABI_FP_optimization_goals
:
11355 /* Use the first value seen. */
11360 int secondary_compat
= -1, secondary_compat_out
= -1;
11361 unsigned int saved_out_attr
= out_attr
[i
].i
;
11362 static const char *name_table
[] = {
11363 /* These aren't real CPU names, but we can't guess
11364 that from the architecture version alone. */
11380 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11381 secondary_compat
= get_secondary_compatible_arch (ibfd
);
11382 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
11383 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
11384 &secondary_compat_out
,
11387 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
11389 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11390 if (out_attr
[i
].i
== saved_out_attr
)
11391 ; /* Leave the names alone. */
11392 else if (out_attr
[i
].i
== in_attr
[i
].i
)
11394 /* The output architecture has been changed to match the
11395 input architecture. Use the input names. */
11396 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
11397 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
11399 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
11400 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
11405 out_attr
[Tag_CPU_name
].s
= NULL
;
11406 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
11409 /* If we still don't have a value for Tag_CPU_name,
11410 make one up now. Tag_CPU_raw_name remains blank. */
11411 if (out_attr
[Tag_CPU_name
].s
== NULL
11412 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
11413 out_attr
[Tag_CPU_name
].s
=
11414 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
11418 case Tag_ARM_ISA_use
:
11419 case Tag_THUMB_ISA_use
:
11420 case Tag_WMMX_arch
:
11421 case Tag_Advanced_SIMD_arch
:
11422 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11423 case Tag_ABI_FP_rounding
:
11424 case Tag_ABI_FP_exceptions
:
11425 case Tag_ABI_FP_user_exceptions
:
11426 case Tag_ABI_FP_number_model
:
11427 case Tag_FP_HP_extension
:
11428 case Tag_CPU_unaligned_access
:
11430 case Tag_MPextension_use
:
11431 /* Use the largest value specified. */
11432 if (in_attr
[i
].i
> out_attr
[i
].i
)
11433 out_attr
[i
].i
= in_attr
[i
].i
;
11436 case Tag_ABI_align_preserved
:
11437 case Tag_ABI_PCS_RO_data
:
11438 /* Use the smallest value specified. */
11439 if (in_attr
[i
].i
< out_attr
[i
].i
)
11440 out_attr
[i
].i
= in_attr
[i
].i
;
11443 case Tag_ABI_align_needed
:
11444 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
11445 && (in_attr
[Tag_ABI_align_preserved
].i
== 0
11446 || out_attr
[Tag_ABI_align_preserved
].i
== 0))
11448 /* This error message should be enabled once all non-conformant
11449 binaries in the toolchain have had the attributes set
11452 (_("error: %B: 8-byte data alignment conflicts with %B"),
11456 /* Fall through. */
11457 case Tag_ABI_FP_denormal
:
11458 case Tag_ABI_PCS_GOT_use
:
11459 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11460 value if greater than 2 (for future-proofing). */
11461 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
11462 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
11463 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
11464 out_attr
[i
].i
= in_attr
[i
].i
;
11467 case Tag_Virtualization_use
:
11468 /* The virtualization tag effectively stores two bits of
11469 information: the intended use of TrustZone (in bit 0), and the
11470 intended use of Virtualization (in bit 1). */
11471 if (out_attr
[i
].i
== 0)
11472 out_attr
[i
].i
= in_attr
[i
].i
;
11473 else if (in_attr
[i
].i
!= 0
11474 && in_attr
[i
].i
!= out_attr
[i
].i
)
11476 if (in_attr
[i
].i
<= 3 && out_attr
[i
].i
<= 3)
11481 (_("error: %B: unable to merge virtualization attributes "
11489 case Tag_CPU_arch_profile
:
11490 if (out_attr
[i
].i
!= in_attr
[i
].i
)
11492 /* 0 will merge with anything.
11493 'A' and 'S' merge to 'A'.
11494 'R' and 'S' merge to 'R'.
11495 'M' and 'A|R|S' is an error. */
11496 if (out_attr
[i
].i
== 0
11497 || (out_attr
[i
].i
== 'S'
11498 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
11499 out_attr
[i
].i
= in_attr
[i
].i
;
11500 else if (in_attr
[i
].i
== 0
11501 || (in_attr
[i
].i
== 'S'
11502 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
11503 ; /* Do nothing. */
11507 (_("error: %B: Conflicting architecture profiles %c/%c"),
11509 in_attr
[i
].i
? in_attr
[i
].i
: '0',
11510 out_attr
[i
].i
? out_attr
[i
].i
: '0');
11517 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11518 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11519 when it's 0. It might mean absence of FP hardware if
11520 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11522 static const struct
11526 } vfp_versions
[7] =
11540 /* If the output has no requirement about FP hardware,
11541 follow the requirement of the input. */
11542 if (out_attr
[i
].i
== 0)
11544 BFD_ASSERT (out_attr
[Tag_ABI_HardFP_use
].i
== 0);
11545 out_attr
[i
].i
= in_attr
[i
].i
;
11546 out_attr
[Tag_ABI_HardFP_use
].i
11547 = in_attr
[Tag_ABI_HardFP_use
].i
;
11550 /* If the input has no requirement about FP hardware, do
11552 else if (in_attr
[i
].i
== 0)
11554 BFD_ASSERT (in_attr
[Tag_ABI_HardFP_use
].i
== 0);
11558 /* Both the input and the output have nonzero Tag_FP_arch.
11559 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11561 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11563 if (in_attr
[Tag_ABI_HardFP_use
].i
== 0
11564 && out_attr
[Tag_ABI_HardFP_use
].i
== 0)
11566 /* If the input and the output have different Tag_ABI_HardFP_use,
11567 the combination of them is 3 (SP & DP). */
11568 else if (in_attr
[Tag_ABI_HardFP_use
].i
11569 != out_attr
[Tag_ABI_HardFP_use
].i
)
11570 out_attr
[Tag_ABI_HardFP_use
].i
= 3;
11572 /* Now we can handle Tag_FP_arch. */
11574 /* Values greater than 6 aren't defined, so just pick the
11576 if (in_attr
[i
].i
> 6 && in_attr
[i
].i
> out_attr
[i
].i
)
11578 out_attr
[i
] = in_attr
[i
];
11581 /* The output uses the superset of input features
11582 (ISA version) and registers. */
11583 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
11584 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
11585 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
11586 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
11587 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
11588 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
11589 /* This assumes all possible supersets are also a valid
11591 for (newval
= 6; newval
> 0; newval
--)
11593 if (regs
== vfp_versions
[newval
].regs
11594 && ver
== vfp_versions
[newval
].ver
)
11597 out_attr
[i
].i
= newval
;
11600 case Tag_PCS_config
:
11601 if (out_attr
[i
].i
== 0)
11602 out_attr
[i
].i
= in_attr
[i
].i
;
11603 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= in_attr
[i
].i
)
11605 /* It's sometimes ok to mix different configs, so this is only
11608 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
11611 case Tag_ABI_PCS_R9_use
:
11612 if (in_attr
[i
].i
!= out_attr
[i
].i
11613 && out_attr
[i
].i
!= AEABI_R9_unused
11614 && in_attr
[i
].i
!= AEABI_R9_unused
)
11617 (_("error: %B: Conflicting use of R9"), ibfd
);
11620 if (out_attr
[i
].i
== AEABI_R9_unused
)
11621 out_attr
[i
].i
= in_attr
[i
].i
;
11623 case Tag_ABI_PCS_RW_data
:
11624 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
11625 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
11626 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
11629 (_("error: %B: SB relative addressing conflicts with use of R9"),
11633 /* Use the smallest value specified. */
11634 if (in_attr
[i
].i
< out_attr
[i
].i
)
11635 out_attr
[i
].i
= in_attr
[i
].i
;
11637 case Tag_ABI_PCS_wchar_t
:
11638 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
11639 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
11642 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11643 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
11645 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
11646 out_attr
[i
].i
= in_attr
[i
].i
;
11648 case Tag_ABI_enum_size
:
11649 if (in_attr
[i
].i
!= AEABI_enum_unused
)
11651 if (out_attr
[i
].i
== AEABI_enum_unused
11652 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
11654 /* The existing object is compatible with anything.
11655 Use whatever requirements the new object has. */
11656 out_attr
[i
].i
= in_attr
[i
].i
;
11658 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
11659 && out_attr
[i
].i
!= in_attr
[i
].i
11660 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
11662 static const char *aeabi_enum_names
[] =
11663 { "", "variable-size", "32-bit", "" };
11664 const char *in_name
=
11665 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
11666 ? aeabi_enum_names
[in_attr
[i
].i
]
11668 const char *out_name
=
11669 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
11670 ? aeabi_enum_names
[out_attr
[i
].i
]
11673 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11674 ibfd
, in_name
, out_name
);
11678 case Tag_ABI_VFP_args
:
11681 case Tag_ABI_WMMX_args
:
11682 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11685 (_("error: %B uses iWMMXt register arguments, %B does not"),
11690 case Tag_compatibility
:
11691 /* Merged in target-independent code. */
11693 case Tag_ABI_HardFP_use
:
11694 /* This is handled along with Tag_FP_arch. */
11696 case Tag_ABI_FP_16bit_format
:
11697 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
11699 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11702 (_("error: fp16 format mismatch between %B and %B"),
11707 if (in_attr
[i
].i
!= 0)
11708 out_attr
[i
].i
= in_attr
[i
].i
;
11712 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11713 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11714 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11715 CPU. We will merge as follows: If the input attribute's value
11716 is one then the output attribute's value remains unchanged. If
11717 the input attribute's value is zero or two then if the output
11718 attribute's value is one the output value is set to the input
11719 value, otherwise the output value must be the same as the
11721 if (in_attr
[i
].i
!= 1 && out_attr
[i
].i
!= 1)
11723 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11726 (_("DIV usage mismatch between %B and %B"),
11732 if (in_attr
[i
].i
!= 1)
11733 out_attr
[i
].i
= in_attr
[i
].i
;
11737 case Tag_MPextension_use_legacy
:
11738 /* We don't output objects with Tag_MPextension_use_legacy - we
11739 move the value to Tag_MPextension_use. */
11740 if (in_attr
[i
].i
!= 0 && in_attr
[Tag_MPextension_use
].i
!= 0)
11742 if (in_attr
[Tag_MPextension_use
].i
!= in_attr
[i
].i
)
11745 (_("%B has has both the current and legacy "
11746 "Tag_MPextension_use attributes"),
11752 if (in_attr
[i
].i
> out_attr
[Tag_MPextension_use
].i
)
11753 out_attr
[Tag_MPextension_use
] = in_attr
[i
];
11757 case Tag_nodefaults
:
11758 /* This tag is set if it exists, but the value is unused (and is
11759 typically zero). We don't actually need to do anything here -
11760 the merge happens automatically when the type flags are merged
11763 case Tag_also_compatible_with
:
11764 /* Already done in Tag_CPU_arch. */
11766 case Tag_conformance
:
11767 /* Keep the attribute if it matches. Throw it away otherwise.
11768 No attribute means no claim to conform. */
11769 if (!in_attr
[i
].s
|| !out_attr
[i
].s
11770 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
11771 out_attr
[i
].s
= NULL
;
11776 = result
&& _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
11779 /* If out_attr was copied from in_attr then it won't have a type yet. */
11780 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
11781 out_attr
[i
].type
= in_attr
[i
].type
;
11784 /* Merge Tag_compatibility attributes and any common GNU ones. */
11785 if (!_bfd_elf_merge_object_attributes (ibfd
, obfd
))
11788 /* Check for any attributes not known on ARM. */
11789 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
11795 /* Return TRUE if the two EABI versions are incompatible. */
11798 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
11800 /* v4 and v5 are the same spec before and after it was released,
11801 so allow mixing them. */
11802 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
11803 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
11806 return (iver
== over
);
11809 /* Merge backend specific data from an object file to the output
11810 object file when linking. */
11813 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
);
11815 /* Display the flags field. */
11818 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
11820 FILE * file
= (FILE *) ptr
;
11821 unsigned long flags
;
11823 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
11825 /* Print normal ELF private data. */
11826 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
11828 flags
= elf_elfheader (abfd
)->e_flags
;
11829 /* Ignore init flag - it may not be set, despite the flags field
11830 containing valid data. */
11832 /* xgettext:c-format */
11833 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
11835 switch (EF_ARM_EABI_VERSION (flags
))
11837 case EF_ARM_EABI_UNKNOWN
:
11838 /* The following flag bits are GNU extensions and not part of the
11839 official ARM ELF extended ABI. Hence they are only decoded if
11840 the EABI version is not set. */
11841 if (flags
& EF_ARM_INTERWORK
)
11842 fprintf (file
, _(" [interworking enabled]"));
11844 if (flags
& EF_ARM_APCS_26
)
11845 fprintf (file
, " [APCS-26]");
11847 fprintf (file
, " [APCS-32]");
11849 if (flags
& EF_ARM_VFP_FLOAT
)
11850 fprintf (file
, _(" [VFP float format]"));
11851 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
11852 fprintf (file
, _(" [Maverick float format]"));
11854 fprintf (file
, _(" [FPA float format]"));
11856 if (flags
& EF_ARM_APCS_FLOAT
)
11857 fprintf (file
, _(" [floats passed in float registers]"));
11859 if (flags
& EF_ARM_PIC
)
11860 fprintf (file
, _(" [position independent]"));
11862 if (flags
& EF_ARM_NEW_ABI
)
11863 fprintf (file
, _(" [new ABI]"));
11865 if (flags
& EF_ARM_OLD_ABI
)
11866 fprintf (file
, _(" [old ABI]"));
11868 if (flags
& EF_ARM_SOFT_FLOAT
)
11869 fprintf (file
, _(" [software FP]"));
11871 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
11872 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
11873 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
11874 | EF_ARM_MAVERICK_FLOAT
);
11877 case EF_ARM_EABI_VER1
:
11878 fprintf (file
, _(" [Version1 EABI]"));
11880 if (flags
& EF_ARM_SYMSARESORTED
)
11881 fprintf (file
, _(" [sorted symbol table]"));
11883 fprintf (file
, _(" [unsorted symbol table]"));
11885 flags
&= ~ EF_ARM_SYMSARESORTED
;
11888 case EF_ARM_EABI_VER2
:
11889 fprintf (file
, _(" [Version2 EABI]"));
11891 if (flags
& EF_ARM_SYMSARESORTED
)
11892 fprintf (file
, _(" [sorted symbol table]"));
11894 fprintf (file
, _(" [unsorted symbol table]"));
11896 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
11897 fprintf (file
, _(" [dynamic symbols use segment index]"));
11899 if (flags
& EF_ARM_MAPSYMSFIRST
)
11900 fprintf (file
, _(" [mapping symbols precede others]"));
11902 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
11903 | EF_ARM_MAPSYMSFIRST
);
11906 case EF_ARM_EABI_VER3
:
11907 fprintf (file
, _(" [Version3 EABI]"));
11910 case EF_ARM_EABI_VER4
:
11911 fprintf (file
, _(" [Version4 EABI]"));
11914 case EF_ARM_EABI_VER5
:
11915 fprintf (file
, _(" [Version5 EABI]"));
11917 if (flags
& EF_ARM_BE8
)
11918 fprintf (file
, _(" [BE8]"));
11920 if (flags
& EF_ARM_LE8
)
11921 fprintf (file
, _(" [LE8]"));
11923 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
11927 fprintf (file
, _(" <EABI version unrecognised>"));
11931 flags
&= ~ EF_ARM_EABIMASK
;
11933 if (flags
& EF_ARM_RELEXEC
)
11934 fprintf (file
, _(" [relocatable executable]"));
11936 if (flags
& EF_ARM_HASENTRY
)
11937 fprintf (file
, _(" [has entry point]"));
11939 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
11942 fprintf (file
, _("<Unrecognised flag bits set>"));
11944 fputc ('\n', file
);
11950 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
11952 switch (ELF_ST_TYPE (elf_sym
->st_info
))
11954 case STT_ARM_TFUNC
:
11955 return ELF_ST_TYPE (elf_sym
->st_info
);
11957 case STT_ARM_16BIT
:
11958 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11959 This allows us to distinguish between data used by Thumb instructions
11960 and non-data (which is probably code) inside Thumb regions of an
11962 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
11963 return ELF_ST_TYPE (elf_sym
->st_info
);
11974 elf32_arm_gc_mark_hook (asection
*sec
,
11975 struct bfd_link_info
*info
,
11976 Elf_Internal_Rela
*rel
,
11977 struct elf_link_hash_entry
*h
,
11978 Elf_Internal_Sym
*sym
)
11981 switch (ELF32_R_TYPE (rel
->r_info
))
11983 case R_ARM_GNU_VTINHERIT
:
11984 case R_ARM_GNU_VTENTRY
:
11988 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
11991 /* Update the got entry reference counts for the section being removed. */
11994 elf32_arm_gc_sweep_hook (bfd
* abfd
,
11995 struct bfd_link_info
* info
,
11997 const Elf_Internal_Rela
* relocs
)
11999 Elf_Internal_Shdr
*symtab_hdr
;
12000 struct elf_link_hash_entry
**sym_hashes
;
12001 bfd_signed_vma
*local_got_refcounts
;
12002 const Elf_Internal_Rela
*rel
, *relend
;
12003 struct elf32_arm_link_hash_table
* globals
;
12005 if (info
->relocatable
)
12008 globals
= elf32_arm_hash_table (info
);
12009 if (globals
== NULL
)
12012 elf_section_data (sec
)->local_dynrel
= NULL
;
12014 symtab_hdr
= & elf_symtab_hdr (abfd
);
12015 sym_hashes
= elf_sym_hashes (abfd
);
12016 local_got_refcounts
= elf_local_got_refcounts (abfd
);
12018 check_use_blx (globals
);
12020 relend
= relocs
+ sec
->reloc_count
;
12021 for (rel
= relocs
; rel
< relend
; rel
++)
12023 unsigned long r_symndx
;
12024 struct elf_link_hash_entry
*h
= NULL
;
12025 struct elf32_arm_link_hash_entry
*eh
;
12027 bfd_boolean call_reloc_p
;
12028 bfd_boolean may_become_dynamic_p
;
12029 bfd_boolean may_need_local_target_p
;
12030 union gotplt_union
*root_plt
;
12031 struct arm_plt_info
*arm_plt
;
12033 r_symndx
= ELF32_R_SYM (rel
->r_info
);
12034 if (r_symndx
>= symtab_hdr
->sh_info
)
12036 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
12037 while (h
->root
.type
== bfd_link_hash_indirect
12038 || h
->root
.type
== bfd_link_hash_warning
)
12039 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12041 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12043 call_reloc_p
= FALSE
;
12044 may_become_dynamic_p
= FALSE
;
12045 may_need_local_target_p
= FALSE
;
12047 r_type
= ELF32_R_TYPE (rel
->r_info
);
12048 r_type
= arm_real_reloc_type (globals
, r_type
);
12052 case R_ARM_GOT_PREL
:
12053 case R_ARM_TLS_GD32
:
12054 case R_ARM_TLS_IE32
:
12057 if (h
->got
.refcount
> 0)
12058 h
->got
.refcount
-= 1;
12060 else if (local_got_refcounts
!= NULL
)
12062 if (local_got_refcounts
[r_symndx
] > 0)
12063 local_got_refcounts
[r_symndx
] -= 1;
12067 case R_ARM_TLS_LDM32
:
12068 globals
->tls_ldm_got
.refcount
-= 1;
12076 case R_ARM_THM_CALL
:
12077 case R_ARM_THM_JUMP24
:
12078 case R_ARM_THM_JUMP19
:
12079 call_reloc_p
= TRUE
;
12080 may_need_local_target_p
= TRUE
;
12084 if (!globals
->vxworks_p
)
12086 may_need_local_target_p
= TRUE
;
12089 /* Fall through. */
12091 case R_ARM_ABS32_NOI
:
12093 case R_ARM_REL32_NOI
:
12094 case R_ARM_MOVW_ABS_NC
:
12095 case R_ARM_MOVT_ABS
:
12096 case R_ARM_MOVW_PREL_NC
:
12097 case R_ARM_MOVT_PREL
:
12098 case R_ARM_THM_MOVW_ABS_NC
:
12099 case R_ARM_THM_MOVT_ABS
:
12100 case R_ARM_THM_MOVW_PREL_NC
:
12101 case R_ARM_THM_MOVT_PREL
:
12102 /* Should the interworking branches be here also? */
12103 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
12104 && (sec
->flags
& SEC_ALLOC
) != 0)
12107 && (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
))
12109 call_reloc_p
= TRUE
;
12110 may_need_local_target_p
= TRUE
;
12113 may_become_dynamic_p
= TRUE
;
12116 may_need_local_target_p
= TRUE
;
12123 if (may_need_local_target_p
12124 && elf32_arm_get_plt_info (abfd
, eh
, r_symndx
, &root_plt
, &arm_plt
))
12126 BFD_ASSERT (root_plt
->refcount
> 0);
12127 root_plt
->refcount
-= 1;
12130 arm_plt
->noncall_refcount
--;
12132 if (r_type
== R_ARM_THM_CALL
)
12133 arm_plt
->maybe_thumb_refcount
--;
12135 if (r_type
== R_ARM_THM_JUMP24
12136 || r_type
== R_ARM_THM_JUMP19
)
12137 arm_plt
->thumb_refcount
--;
12140 if (may_become_dynamic_p
)
12142 struct elf_dyn_relocs
**pp
;
12143 struct elf_dyn_relocs
*p
;
12146 pp
= &(eh
->dyn_relocs
);
12149 Elf_Internal_Sym
*isym
;
12151 isym
= bfd_sym_from_r_symndx (&globals
->sym_cache
,
12155 pp
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
12159 for (; (p
= *pp
) != NULL
; pp
= &p
->next
)
12162 /* Everything must go for SEC. */
12172 /* Look through the relocs for a section during the first phase. */
12175 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
12176 asection
*sec
, const Elf_Internal_Rela
*relocs
)
12178 Elf_Internal_Shdr
*symtab_hdr
;
12179 struct elf_link_hash_entry
**sym_hashes
;
12180 const Elf_Internal_Rela
*rel
;
12181 const Elf_Internal_Rela
*rel_end
;
12184 struct elf32_arm_link_hash_table
*htab
;
12185 bfd_boolean call_reloc_p
;
12186 bfd_boolean may_become_dynamic_p
;
12187 bfd_boolean may_need_local_target_p
;
12188 unsigned long nsyms
;
12190 if (info
->relocatable
)
12193 BFD_ASSERT (is_arm_elf (abfd
));
12195 htab
= elf32_arm_hash_table (info
);
12201 /* Create dynamic sections for relocatable executables so that we can
12202 copy relocations. */
12203 if (htab
->root
.is_relocatable_executable
12204 && ! htab
->root
.dynamic_sections_created
)
12206 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
12210 if (htab
->root
.dynobj
== NULL
)
12211 htab
->root
.dynobj
= abfd
;
12212 if (!create_ifunc_sections (info
))
12215 dynobj
= htab
->root
.dynobj
;
12217 symtab_hdr
= & elf_symtab_hdr (abfd
);
12218 sym_hashes
= elf_sym_hashes (abfd
);
12219 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
12221 rel_end
= relocs
+ sec
->reloc_count
;
12222 for (rel
= relocs
; rel
< rel_end
; rel
++)
12224 Elf_Internal_Sym
*isym
;
12225 struct elf_link_hash_entry
*h
;
12226 struct elf32_arm_link_hash_entry
*eh
;
12227 unsigned long r_symndx
;
12230 r_symndx
= ELF32_R_SYM (rel
->r_info
);
12231 r_type
= ELF32_R_TYPE (rel
->r_info
);
12232 r_type
= arm_real_reloc_type (htab
, r_type
);
12234 if (r_symndx
>= nsyms
12235 /* PR 9934: It is possible to have relocations that do not
12236 refer to symbols, thus it is also possible to have an
12237 object file containing relocations but no symbol table. */
12238 && (r_symndx
> STN_UNDEF
|| nsyms
> 0))
12240 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
12249 if (r_symndx
< symtab_hdr
->sh_info
)
12251 /* A local symbol. */
12252 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
12259 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
12260 while (h
->root
.type
== bfd_link_hash_indirect
12261 || h
->root
.type
== bfd_link_hash_warning
)
12262 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12266 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12268 call_reloc_p
= FALSE
;
12269 may_become_dynamic_p
= FALSE
;
12270 may_need_local_target_p
= FALSE
;
12272 /* Could be done earlier, if h were already available. */
12273 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
12277 case R_ARM_GOT_PREL
:
12278 case R_ARM_TLS_GD32
:
12279 case R_ARM_TLS_IE32
:
12280 case R_ARM_TLS_GOTDESC
:
12281 case R_ARM_TLS_DESCSEQ
:
12282 case R_ARM_THM_TLS_DESCSEQ
:
12283 case R_ARM_TLS_CALL
:
12284 case R_ARM_THM_TLS_CALL
:
12285 /* This symbol requires a global offset table entry. */
12287 int tls_type
, old_tls_type
;
12291 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
12293 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
12295 case R_ARM_TLS_GOTDESC
:
12296 case R_ARM_TLS_CALL
: case R_ARM_THM_TLS_CALL
:
12297 case R_ARM_TLS_DESCSEQ
: case R_ARM_THM_TLS_DESCSEQ
:
12298 tls_type
= GOT_TLS_GDESC
; break;
12300 default: tls_type
= GOT_NORMAL
; break;
12306 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
12310 /* This is a global offset table entry for a local symbol. */
12311 if (!elf32_arm_allocate_local_sym_info (abfd
))
12313 elf_local_got_refcounts (abfd
)[r_symndx
] += 1;
12314 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
12317 /* If a variable is accessed with both tls methods, two
12318 slots may be created. */
12319 if (GOT_TLS_GD_ANY_P (old_tls_type
)
12320 && GOT_TLS_GD_ANY_P (tls_type
))
12321 tls_type
|= old_tls_type
;
12323 /* We will already have issued an error message if there
12324 is a TLS/non-TLS mismatch, based on the symbol
12325 type. So just combine any TLS types needed. */
12326 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
12327 && tls_type
!= GOT_NORMAL
)
12328 tls_type
|= old_tls_type
;
12330 /* If the symbol is accessed in both IE and GDESC
12331 method, we're able to relax. Turn off the GDESC flag,
12332 without messing up with any other kind of tls types
12333 that may be involved */
12334 if ((tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GDESC
))
12335 tls_type
&= ~GOT_TLS_GDESC
;
12337 if (old_tls_type
!= tls_type
)
12340 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
12342 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
12345 /* Fall through. */
12347 case R_ARM_TLS_LDM32
:
12348 if (r_type
== R_ARM_TLS_LDM32
)
12349 htab
->tls_ldm_got
.refcount
++;
12350 /* Fall through. */
12352 case R_ARM_GOTOFF32
:
12354 if (htab
->root
.sgot
== NULL
12355 && !create_got_section (htab
->root
.dynobj
, info
))
12364 case R_ARM_THM_CALL
:
12365 case R_ARM_THM_JUMP24
:
12366 case R_ARM_THM_JUMP19
:
12367 call_reloc_p
= TRUE
;
12368 may_need_local_target_p
= TRUE
;
12372 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12373 ldr __GOTT_INDEX__ offsets. */
12374 if (!htab
->vxworks_p
)
12376 may_need_local_target_p
= TRUE
;
12379 /* Fall through. */
12381 case R_ARM_MOVW_ABS_NC
:
12382 case R_ARM_MOVT_ABS
:
12383 case R_ARM_THM_MOVW_ABS_NC
:
12384 case R_ARM_THM_MOVT_ABS
:
12387 (*_bfd_error_handler
)
12388 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12389 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
12390 (h
) ? h
->root
.root
.string
: "a local symbol");
12391 bfd_set_error (bfd_error_bad_value
);
12395 /* Fall through. */
12397 case R_ARM_ABS32_NOI
:
12399 case R_ARM_REL32_NOI
:
12400 case R_ARM_MOVW_PREL_NC
:
12401 case R_ARM_MOVT_PREL
:
12402 case R_ARM_THM_MOVW_PREL_NC
:
12403 case R_ARM_THM_MOVT_PREL
:
12405 /* Should the interworking branches be listed here? */
12406 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
12407 && (sec
->flags
& SEC_ALLOC
) != 0)
12410 && (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
))
12412 /* In shared libraries and relocatable executables,
12413 we treat local relative references as calls;
12414 see the related SYMBOL_CALLS_LOCAL code in
12415 allocate_dynrelocs. */
12416 call_reloc_p
= TRUE
;
12417 may_need_local_target_p
= TRUE
;
12420 /* We are creating a shared library or relocatable
12421 executable, and this is a reloc against a global symbol,
12422 or a non-PC-relative reloc against a local symbol.
12423 We may need to copy the reloc into the output. */
12424 may_become_dynamic_p
= TRUE
;
12427 may_need_local_target_p
= TRUE
;
12430 /* This relocation describes the C++ object vtable hierarchy.
12431 Reconstruct it for later use during GC. */
12432 case R_ARM_GNU_VTINHERIT
:
12433 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
12437 /* This relocation describes which C++ vtable entries are actually
12438 used. Record for later use during GC. */
12439 case R_ARM_GNU_VTENTRY
:
12440 BFD_ASSERT (h
!= NULL
);
12442 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
12450 /* We may need a .plt entry if the function this reloc
12451 refers to is in a different object, regardless of the
12452 symbol's type. We can't tell for sure yet, because
12453 something later might force the symbol local. */
12455 else if (may_need_local_target_p
)
12456 /* If this reloc is in a read-only section, we might
12457 need a copy reloc. We can't check reliably at this
12458 stage whether the section is read-only, as input
12459 sections have not yet been mapped to output sections.
12460 Tentatively set the flag for now, and correct in
12461 adjust_dynamic_symbol. */
12462 h
->non_got_ref
= 1;
12465 if (may_need_local_target_p
12466 && (h
!= NULL
|| ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
))
12468 union gotplt_union
*root_plt
;
12469 struct arm_plt_info
*arm_plt
;
12470 struct arm_local_iplt_info
*local_iplt
;
12474 root_plt
= &h
->plt
;
12475 arm_plt
= &eh
->plt
;
12479 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
12480 if (local_iplt
== NULL
)
12482 root_plt
= &local_iplt
->root
;
12483 arm_plt
= &local_iplt
->arm
;
12486 /* If the symbol is a function that doesn't bind locally,
12487 this relocation will need a PLT entry. */
12488 root_plt
->refcount
+= 1;
12491 arm_plt
->noncall_refcount
++;
12493 /* It's too early to use htab->use_blx here, so we have to
12494 record possible blx references separately from
12495 relocs that definitely need a thumb stub. */
12497 if (r_type
== R_ARM_THM_CALL
)
12498 arm_plt
->maybe_thumb_refcount
+= 1;
12500 if (r_type
== R_ARM_THM_JUMP24
12501 || r_type
== R_ARM_THM_JUMP19
)
12502 arm_plt
->thumb_refcount
+= 1;
12505 if (may_become_dynamic_p
)
12507 struct elf_dyn_relocs
*p
, **head
;
12509 /* Create a reloc section in dynobj. */
12510 if (sreloc
== NULL
)
12512 sreloc
= _bfd_elf_make_dynamic_reloc_section
12513 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
12515 if (sreloc
== NULL
)
12518 /* BPABI objects never have dynamic relocations mapped. */
12519 if (htab
->symbian_p
)
12523 flags
= bfd_get_section_flags (dynobj
, sreloc
);
12524 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
12525 bfd_set_section_flags (dynobj
, sreloc
, flags
);
12529 /* If this is a global symbol, count the number of
12530 relocations we need for this symbol. */
12532 head
= &((struct elf32_arm_link_hash_entry
*) h
)->dyn_relocs
;
12535 head
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
12541 if (p
== NULL
|| p
->sec
!= sec
)
12543 bfd_size_type amt
= sizeof *p
;
12545 p
= (struct elf_dyn_relocs
*) bfd_alloc (htab
->root
.dynobj
, amt
);
12555 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
12564 /* Unwinding tables are not referenced directly. This pass marks them as
12565 required if the corresponding code section is marked. */
12568 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
12569 elf_gc_mark_hook_fn gc_mark_hook
)
12572 Elf_Internal_Shdr
**elf_shdrp
;
12575 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
12577 /* Marking EH data may cause additional code sections to be marked,
12578 requiring multiple passes. */
12583 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
12587 if (! is_arm_elf (sub
))
12590 elf_shdrp
= elf_elfsections (sub
);
12591 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12593 Elf_Internal_Shdr
*hdr
;
12595 hdr
= &elf_section_data (o
)->this_hdr
;
12596 if (hdr
->sh_type
== SHT_ARM_EXIDX
12598 && hdr
->sh_link
< elf_numsections (sub
)
12600 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
12603 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12613 /* Treat mapping symbols as special target symbols. */
12616 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
12618 return bfd_is_arm_special_symbol_name (sym
->name
,
12619 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
12622 /* This is a copy of elf_find_function() from elf.c except that
12623 ARM mapping symbols are ignored when looking for function names
12624 and STT_ARM_TFUNC is considered to a function type. */
12627 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
12628 asection
* section
,
12629 asymbol
** symbols
,
12631 const char ** filename_ptr
,
12632 const char ** functionname_ptr
)
12634 const char * filename
= NULL
;
12635 asymbol
* func
= NULL
;
12636 bfd_vma low_func
= 0;
12639 for (p
= symbols
; *p
!= NULL
; p
++)
12641 elf_symbol_type
*q
;
12643 q
= (elf_symbol_type
*) *p
;
12645 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
12650 filename
= bfd_asymbol_name (&q
->symbol
);
12653 case STT_ARM_TFUNC
:
12655 /* Skip mapping symbols. */
12656 if ((q
->symbol
.flags
& BSF_LOCAL
)
12657 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
12658 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
12660 /* Fall through. */
12661 if (bfd_get_section (&q
->symbol
) == section
12662 && q
->symbol
.value
>= low_func
12663 && q
->symbol
.value
<= offset
)
12665 func
= (asymbol
*) q
;
12666 low_func
= q
->symbol
.value
;
12676 *filename_ptr
= filename
;
12677 if (functionname_ptr
)
12678 *functionname_ptr
= bfd_asymbol_name (func
);
12684 /* Find the nearest line to a particular section and offset, for error
12685 reporting. This code is a duplicate of the code in elf.c, except
12686 that it uses arm_elf_find_function. */
12689 elf32_arm_find_nearest_line (bfd
* abfd
,
12690 asection
* section
,
12691 asymbol
** symbols
,
12693 const char ** filename_ptr
,
12694 const char ** functionname_ptr
,
12695 unsigned int * line_ptr
)
12697 bfd_boolean found
= FALSE
;
12699 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12701 if (_bfd_dwarf2_find_nearest_line (abfd
, dwarf_debug_sections
,
12702 section
, symbols
, offset
,
12703 filename_ptr
, functionname_ptr
,
12705 & elf_tdata (abfd
)->dwarf2_find_line_info
))
12707 if (!*functionname_ptr
)
12708 arm_elf_find_function (abfd
, section
, symbols
, offset
,
12709 *filename_ptr
? NULL
: filename_ptr
,
12715 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
12716 & found
, filename_ptr
,
12717 functionname_ptr
, line_ptr
,
12718 & elf_tdata (abfd
)->line_info
))
12721 if (found
&& (*functionname_ptr
|| *line_ptr
))
12724 if (symbols
== NULL
)
12727 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
12728 filename_ptr
, functionname_ptr
))
12736 elf32_arm_find_inliner_info (bfd
* abfd
,
12737 const char ** filename_ptr
,
12738 const char ** functionname_ptr
,
12739 unsigned int * line_ptr
)
12742 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
12743 functionname_ptr
, line_ptr
,
12744 & elf_tdata (abfd
)->dwarf2_find_line_info
);
12748 /* Adjust a symbol defined by a dynamic object and referenced by a
12749 regular object. The current definition is in some section of the
12750 dynamic object, but we're not including those sections. We have to
12751 change the definition to something the rest of the link can
12755 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
12756 struct elf_link_hash_entry
* h
)
12760 struct elf32_arm_link_hash_entry
* eh
;
12761 struct elf32_arm_link_hash_table
*globals
;
12763 globals
= elf32_arm_hash_table (info
);
12764 if (globals
== NULL
)
12767 dynobj
= elf_hash_table (info
)->dynobj
;
12769 /* Make sure we know what is going on here. */
12770 BFD_ASSERT (dynobj
!= NULL
12772 || h
->type
== STT_GNU_IFUNC
12773 || h
->u
.weakdef
!= NULL
12776 && !h
->def_regular
)));
12778 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12780 /* If this is a function, put it in the procedure linkage table. We
12781 will fill in the contents of the procedure linkage table later,
12782 when we know the address of the .got section. */
12783 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
12785 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12786 symbol binds locally. */
12787 if (h
->plt
.refcount
<= 0
12788 || (h
->type
!= STT_GNU_IFUNC
12789 && (SYMBOL_CALLS_LOCAL (info
, h
)
12790 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
12791 && h
->root
.type
== bfd_link_hash_undefweak
))))
12793 /* This case can occur if we saw a PLT32 reloc in an input
12794 file, but the symbol was never referred to by a dynamic
12795 object, or if all references were garbage collected. In
12796 such a case, we don't actually need to build a procedure
12797 linkage table, and we can just do a PC24 reloc instead. */
12798 h
->plt
.offset
= (bfd_vma
) -1;
12799 eh
->plt
.thumb_refcount
= 0;
12800 eh
->plt
.maybe_thumb_refcount
= 0;
12801 eh
->plt
.noncall_refcount
= 0;
12809 /* It's possible that we incorrectly decided a .plt reloc was
12810 needed for an R_ARM_PC24 or similar reloc to a non-function sym
12811 in check_relocs. We can't decide accurately between function
12812 and non-function syms in check-relocs; Objects loaded later in
12813 the link may change h->type. So fix it now. */
12814 h
->plt
.offset
= (bfd_vma
) -1;
12815 eh
->plt
.thumb_refcount
= 0;
12816 eh
->plt
.maybe_thumb_refcount
= 0;
12817 eh
->plt
.noncall_refcount
= 0;
12820 /* If this is a weak symbol, and there is a real definition, the
12821 processor independent code will have arranged for us to see the
12822 real definition first, and we can just use the same value. */
12823 if (h
->u
.weakdef
!= NULL
)
12825 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
12826 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
12827 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
12828 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
12832 /* If there are no non-GOT references, we do not need a copy
12834 if (!h
->non_got_ref
)
12837 /* This is a reference to a symbol defined by a dynamic object which
12838 is not a function. */
12840 /* If we are creating a shared library, we must presume that the
12841 only references to the symbol are via the global offset table.
12842 For such cases we need not do anything here; the relocations will
12843 be handled correctly by relocate_section. Relocatable executables
12844 can reference data in shared objects directly, so we don't need to
12845 do anything here. */
12846 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
12851 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
12852 h
->root
.root
.string
);
12856 /* We must allocate the symbol in our .dynbss section, which will
12857 become part of the .bss section of the executable. There will be
12858 an entry for this symbol in the .dynsym section. The dynamic
12859 object will contain position independent code, so all references
12860 from the dynamic object to this symbol will go through the global
12861 offset table. The dynamic linker will use the .dynsym entry to
12862 determine the address it must put in the global offset table, so
12863 both the dynamic object and the regular object will refer to the
12864 same memory location for the variable. */
12865 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
12866 BFD_ASSERT (s
!= NULL
);
12868 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12869 copy the initial value out of the dynamic object and into the
12870 runtime process image. We need to remember the offset into the
12871 .rel(a).bss section we are going to use. */
12872 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
12876 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
12877 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
12881 return _bfd_elf_adjust_dynamic_copy (h
, s
);
12884 /* Allocate space in .plt, .got and associated reloc sections for
12888 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry
*h
, void * inf
)
12890 struct bfd_link_info
*info
;
12891 struct elf32_arm_link_hash_table
*htab
;
12892 struct elf32_arm_link_hash_entry
*eh
;
12893 struct elf_dyn_relocs
*p
;
12895 if (h
->root
.type
== bfd_link_hash_indirect
)
12898 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12900 info
= (struct bfd_link_info
*) inf
;
12901 htab
= elf32_arm_hash_table (info
);
12905 if ((htab
->root
.dynamic_sections_created
|| h
->type
== STT_GNU_IFUNC
)
12906 && h
->plt
.refcount
> 0)
12908 /* Make sure this symbol is output as a dynamic symbol.
12909 Undefined weak syms won't yet be marked as dynamic. */
12910 if (h
->dynindx
== -1
12911 && !h
->forced_local
)
12913 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12917 /* If the call in the PLT entry binds locally, the associated
12918 GOT entry should use an R_ARM_IRELATIVE relocation instead of
12919 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
12920 than the .plt section. */
12921 if (h
->type
== STT_GNU_IFUNC
&& SYMBOL_CALLS_LOCAL (info
, h
))
12924 if (eh
->plt
.noncall_refcount
== 0
12925 && SYMBOL_REFERENCES_LOCAL (info
, h
))
12926 /* All non-call references can be resolved directly.
12927 This means that they can (and in some cases, must)
12928 resolve directly to the run-time target, rather than
12929 to the PLT. That in turns means that any .got entry
12930 would be equal to the .igot.plt entry, so there's
12931 no point having both. */
12932 h
->got
.refcount
= 0;
12937 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
12939 elf32_arm_allocate_plt_entry (info
, eh
->is_iplt
, &h
->plt
, &eh
->plt
);
12941 /* If this symbol is not defined in a regular file, and we are
12942 not generating a shared library, then set the symbol to this
12943 location in the .plt. This is required to make function
12944 pointers compare as equal between the normal executable and
12945 the shared library. */
12947 && !h
->def_regular
)
12949 h
->root
.u
.def
.section
= htab
->root
.splt
;
12950 h
->root
.u
.def
.value
= h
->plt
.offset
;
12952 /* Make sure the function is not marked as Thumb, in case
12953 it is the target of an ABS32 relocation, which will
12954 point to the PLT entry. */
12955 h
->target_internal
= ST_BRANCH_TO_ARM
;
12958 htab
->next_tls_desc_index
++;
12960 /* VxWorks executables have a second set of relocations for
12961 each PLT entry. They go in a separate relocation section,
12962 which is processed by the kernel loader. */
12963 if (htab
->vxworks_p
&& !info
->shared
)
12965 /* There is a relocation for the initial PLT entry:
12966 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
12967 if (h
->plt
.offset
== htab
->plt_header_size
)
12968 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 1);
12970 /* There are two extra relocations for each subsequent
12971 PLT entry: an R_ARM_32 relocation for the GOT entry,
12972 and an R_ARM_32 relocation for the PLT entry. */
12973 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 2);
12978 h
->plt
.offset
= (bfd_vma
) -1;
12984 h
->plt
.offset
= (bfd_vma
) -1;
12988 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12989 eh
->tlsdesc_got
= (bfd_vma
) -1;
12991 if (h
->got
.refcount
> 0)
12995 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
12998 /* Make sure this symbol is output as a dynamic symbol.
12999 Undefined weak syms won't yet be marked as dynamic. */
13000 if (h
->dynindx
== -1
13001 && !h
->forced_local
)
13003 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13007 if (!htab
->symbian_p
)
13009 s
= htab
->root
.sgot
;
13010 h
->got
.offset
= s
->size
;
13012 if (tls_type
== GOT_UNKNOWN
)
13015 if (tls_type
== GOT_NORMAL
)
13016 /* Non-TLS symbols need one GOT slot. */
13020 if (tls_type
& GOT_TLS_GDESC
)
13022 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13024 = (htab
->root
.sgotplt
->size
13025 - elf32_arm_compute_jump_table_size (htab
));
13026 htab
->root
.sgotplt
->size
+= 8;
13027 h
->got
.offset
= (bfd_vma
) -2;
13028 /* plt.got_offset needs to know there's a TLS_DESC
13029 reloc in the middle of .got.plt. */
13030 htab
->num_tls_desc
++;
13033 if (tls_type
& GOT_TLS_GD
)
13035 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13036 the symbol is both GD and GDESC, got.offset may
13037 have been overwritten. */
13038 h
->got
.offset
= s
->size
;
13042 if (tls_type
& GOT_TLS_IE
)
13043 /* R_ARM_TLS_IE32 needs one GOT slot. */
13047 dyn
= htab
->root
.dynamic_sections_created
;
13050 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
13052 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
13055 if (tls_type
!= GOT_NORMAL
13056 && (info
->shared
|| indx
!= 0)
13057 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
13058 || h
->root
.type
!= bfd_link_hash_undefweak
))
13060 if (tls_type
& GOT_TLS_IE
)
13061 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13063 if (tls_type
& GOT_TLS_GD
)
13064 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13066 if (tls_type
& GOT_TLS_GDESC
)
13068 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
13069 /* GDESC needs a trampoline to jump to. */
13070 htab
->tls_trampoline
= -1;
13073 /* Only GD needs it. GDESC just emits one relocation per
13075 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
13076 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13078 else if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
13080 if (htab
->root
.dynamic_sections_created
)
13081 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13082 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13084 else if (h
->type
== STT_GNU_IFUNC
13085 && eh
->plt
.noncall_refcount
== 0)
13086 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13087 they all resolve dynamically instead. Reserve room for the
13088 GOT entry's R_ARM_IRELATIVE relocation. */
13089 elf32_arm_allocate_irelocs (info
, htab
->root
.srelgot
, 1);
13090 else if (info
->shared
)
13091 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13092 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13096 h
->got
.offset
= (bfd_vma
) -1;
13098 /* Allocate stubs for exported Thumb functions on v4t. */
13099 if (!htab
->use_blx
&& h
->dynindx
!= -1
13101 && h
->target_internal
== ST_BRANCH_TO_THUMB
13102 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
13104 struct elf_link_hash_entry
* th
;
13105 struct bfd_link_hash_entry
* bh
;
13106 struct elf_link_hash_entry
* myh
;
13110 /* Create a new symbol to regist the real location of the function. */
13111 s
= h
->root
.u
.def
.section
;
13112 sprintf (name
, "__real_%s", h
->root
.root
.string
);
13113 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
13114 name
, BSF_GLOBAL
, s
,
13115 h
->root
.u
.def
.value
,
13116 NULL
, TRUE
, FALSE
, &bh
);
13118 myh
= (struct elf_link_hash_entry
*) bh
;
13119 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
13120 myh
->forced_local
= 1;
13121 myh
->target_internal
= ST_BRANCH_TO_THUMB
;
13122 eh
->export_glue
= myh
;
13123 th
= record_arm_to_thumb_glue (info
, h
);
13124 /* Point the symbol at the stub. */
13125 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
13126 h
->target_internal
= ST_BRANCH_TO_ARM
;
13127 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
13128 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
13131 if (eh
->dyn_relocs
== NULL
)
13134 /* In the shared -Bsymbolic case, discard space allocated for
13135 dynamic pc-relative relocs against symbols which turn out to be
13136 defined in regular objects. For the normal shared case, discard
13137 space for pc-relative relocs that have become local due to symbol
13138 visibility changes. */
13140 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
13142 /* The only relocs that use pc_count are R_ARM_REL32 and
13143 R_ARM_REL32_NOI, which will appear on something like
13144 ".long foo - .". We want calls to protected symbols to resolve
13145 directly to the function rather than going via the plt. If people
13146 want function pointer comparisons to work as expected then they
13147 should avoid writing assembly like ".long foo - .". */
13148 if (SYMBOL_CALLS_LOCAL (info
, h
))
13150 struct elf_dyn_relocs
**pp
;
13152 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13154 p
->count
-= p
->pc_count
;
13163 if (htab
->vxworks_p
)
13165 struct elf_dyn_relocs
**pp
;
13167 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13169 if (strcmp (p
->sec
->output_section
->name
, ".tls_vars") == 0)
13176 /* Also discard relocs on undefined weak syms with non-default
13178 if (eh
->dyn_relocs
!= NULL
13179 && h
->root
.type
== bfd_link_hash_undefweak
)
13181 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
13182 eh
->dyn_relocs
= NULL
;
13184 /* Make sure undefined weak symbols are output as a dynamic
13186 else if (h
->dynindx
== -1
13187 && !h
->forced_local
)
13189 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13194 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
13195 && h
->root
.type
== bfd_link_hash_new
)
13197 /* Output absolute symbols so that we can create relocations
13198 against them. For normal symbols we output a relocation
13199 against the section that contains them. */
13200 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13207 /* For the non-shared case, discard space for relocs against
13208 symbols which turn out to need copy relocs or are not
13211 if (!h
->non_got_ref
13212 && ((h
->def_dynamic
13213 && !h
->def_regular
)
13214 || (htab
->root
.dynamic_sections_created
13215 && (h
->root
.type
== bfd_link_hash_undefweak
13216 || h
->root
.type
== bfd_link_hash_undefined
))))
13218 /* Make sure this symbol is output as a dynamic symbol.
13219 Undefined weak syms won't yet be marked as dynamic. */
13220 if (h
->dynindx
== -1
13221 && !h
->forced_local
)
13223 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13227 /* If that succeeded, we know we'll be keeping all the
13229 if (h
->dynindx
!= -1)
13233 eh
->dyn_relocs
= NULL
;
13238 /* Finally, allocate space. */
13239 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13241 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
13242 if (h
->type
== STT_GNU_IFUNC
13243 && eh
->plt
.noncall_refcount
== 0
13244 && SYMBOL_REFERENCES_LOCAL (info
, h
))
13245 elf32_arm_allocate_irelocs (info
, sreloc
, p
->count
);
13247 elf32_arm_allocate_dynrelocs (info
, sreloc
, p
->count
);
13253 /* Find any dynamic relocs that apply to read-only sections. */
13256 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
13258 struct elf32_arm_link_hash_entry
* eh
;
13259 struct elf_dyn_relocs
* p
;
13261 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13262 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13264 asection
*s
= p
->sec
;
13266 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
13268 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
13270 info
->flags
|= DF_TEXTREL
;
13272 /* Not an error, just cut short the traversal. */
13280 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
13283 struct elf32_arm_link_hash_table
*globals
;
13285 globals
= elf32_arm_hash_table (info
);
13286 if (globals
== NULL
)
13289 globals
->byteswap_code
= byteswap_code
;
13292 /* Set the sizes of the dynamic sections. */
13295 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
13296 struct bfd_link_info
* info
)
13301 bfd_boolean relocs
;
13303 struct elf32_arm_link_hash_table
*htab
;
13305 htab
= elf32_arm_hash_table (info
);
13309 dynobj
= elf_hash_table (info
)->dynobj
;
13310 BFD_ASSERT (dynobj
!= NULL
);
13311 check_use_blx (htab
);
13313 if (elf_hash_table (info
)->dynamic_sections_created
)
13315 /* Set the contents of the .interp section to the interpreter. */
13316 if (info
->executable
)
13318 s
= bfd_get_section_by_name (dynobj
, ".interp");
13319 BFD_ASSERT (s
!= NULL
);
13320 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
13321 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
13325 /* Set up .got offsets for local syms, and space for local dynamic
13327 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
13329 bfd_signed_vma
*local_got
;
13330 bfd_signed_vma
*end_local_got
;
13331 struct arm_local_iplt_info
**local_iplt_ptr
, *local_iplt
;
13332 char *local_tls_type
;
13333 bfd_vma
*local_tlsdesc_gotent
;
13334 bfd_size_type locsymcount
;
13335 Elf_Internal_Shdr
*symtab_hdr
;
13337 bfd_boolean is_vxworks
= htab
->vxworks_p
;
13338 unsigned int symndx
;
13340 if (! is_arm_elf (ibfd
))
13343 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
13345 struct elf_dyn_relocs
*p
;
13347 for (p
= (struct elf_dyn_relocs
*)
13348 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
13350 if (!bfd_is_abs_section (p
->sec
)
13351 && bfd_is_abs_section (p
->sec
->output_section
))
13353 /* Input section has been discarded, either because
13354 it is a copy of a linkonce section or due to
13355 linker script /DISCARD/, so we'll be discarding
13358 else if (is_vxworks
13359 && strcmp (p
->sec
->output_section
->name
,
13362 /* Relocations in vxworks .tls_vars sections are
13363 handled specially by the loader. */
13365 else if (p
->count
!= 0)
13367 srel
= elf_section_data (p
->sec
)->sreloc
;
13368 elf32_arm_allocate_dynrelocs (info
, srel
, p
->count
);
13369 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
13370 info
->flags
|= DF_TEXTREL
;
13375 local_got
= elf_local_got_refcounts (ibfd
);
13379 symtab_hdr
= & elf_symtab_hdr (ibfd
);
13380 locsymcount
= symtab_hdr
->sh_info
;
13381 end_local_got
= local_got
+ locsymcount
;
13382 local_iplt_ptr
= elf32_arm_local_iplt (ibfd
);
13383 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
13384 local_tlsdesc_gotent
= elf32_arm_local_tlsdesc_gotent (ibfd
);
13386 s
= htab
->root
.sgot
;
13387 srel
= htab
->root
.srelgot
;
13388 for (; local_got
< end_local_got
;
13389 ++local_got
, ++local_iplt_ptr
, ++local_tls_type
,
13390 ++local_tlsdesc_gotent
, ++symndx
)
13392 *local_tlsdesc_gotent
= (bfd_vma
) -1;
13393 local_iplt
= *local_iplt_ptr
;
13394 if (local_iplt
!= NULL
)
13396 struct elf_dyn_relocs
*p
;
13398 if (local_iplt
->root
.refcount
> 0)
13400 elf32_arm_allocate_plt_entry (info
, TRUE
,
13403 if (local_iplt
->arm
.noncall_refcount
== 0)
13404 /* All references to the PLT are calls, so all
13405 non-call references can resolve directly to the
13406 run-time target. This means that the .got entry
13407 would be the same as the .igot.plt entry, so there's
13408 no point creating both. */
13413 BFD_ASSERT (local_iplt
->arm
.noncall_refcount
== 0);
13414 local_iplt
->root
.offset
= (bfd_vma
) -1;
13417 for (p
= local_iplt
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13421 psrel
= elf_section_data (p
->sec
)->sreloc
;
13422 if (local_iplt
->arm
.noncall_refcount
== 0)
13423 elf32_arm_allocate_irelocs (info
, psrel
, p
->count
);
13425 elf32_arm_allocate_dynrelocs (info
, psrel
, p
->count
);
13428 if (*local_got
> 0)
13430 Elf_Internal_Sym
*isym
;
13432 *local_got
= s
->size
;
13433 if (*local_tls_type
& GOT_TLS_GD
)
13434 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13436 if (*local_tls_type
& GOT_TLS_GDESC
)
13438 *local_tlsdesc_gotent
= htab
->root
.sgotplt
->size
13439 - elf32_arm_compute_jump_table_size (htab
);
13440 htab
->root
.sgotplt
->size
+= 8;
13441 *local_got
= (bfd_vma
) -2;
13442 /* plt.got_offset needs to know there's a TLS_DESC
13443 reloc in the middle of .got.plt. */
13444 htab
->num_tls_desc
++;
13446 if (*local_tls_type
& GOT_TLS_IE
)
13449 if (*local_tls_type
& GOT_NORMAL
)
13451 /* If the symbol is both GD and GDESC, *local_got
13452 may have been overwritten. */
13453 *local_got
= s
->size
;
13457 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
, ibfd
, symndx
);
13461 /* If all references to an STT_GNU_IFUNC PLT are calls,
13462 then all non-call references, including this GOT entry,
13463 resolve directly to the run-time target. */
13464 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
13465 && (local_iplt
== NULL
13466 || local_iplt
->arm
.noncall_refcount
== 0))
13467 elf32_arm_allocate_irelocs (info
, srel
, 1);
13468 else if ((info
->shared
&& !(*local_tls_type
& GOT_TLS_GDESC
))
13469 || *local_tls_type
& GOT_TLS_GD
)
13470 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
13472 if (info
->shared
&& *local_tls_type
& GOT_TLS_GDESC
)
13474 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
13475 htab
->tls_trampoline
= -1;
13479 *local_got
= (bfd_vma
) -1;
13483 if (htab
->tls_ldm_got
.refcount
> 0)
13485 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13486 for R_ARM_TLS_LDM32 relocations. */
13487 htab
->tls_ldm_got
.offset
= htab
->root
.sgot
->size
;
13488 htab
->root
.sgot
->size
+= 8;
13490 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13493 htab
->tls_ldm_got
.offset
= -1;
13495 /* Allocate global sym .plt and .got entries, and space for global
13496 sym dynamic relocs. */
13497 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs_for_symbol
, info
);
13499 /* Here we rummage through the found bfds to collect glue information. */
13500 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
13502 if (! is_arm_elf (ibfd
))
13505 /* Initialise mapping tables for code/data. */
13506 bfd_elf32_arm_init_maps (ibfd
);
13508 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
13509 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
13510 /* xgettext:c-format */
13511 _bfd_error_handler (_("Errors encountered processing file %s"),
13515 /* Allocate space for the glue sections now that we've sized them. */
13516 bfd_elf32_arm_allocate_interworking_sections (info
);
13518 /* For every jump slot reserved in the sgotplt, reloc_count is
13519 incremented. However, when we reserve space for TLS descriptors,
13520 it's not incremented, so in order to compute the space reserved
13521 for them, it suffices to multiply the reloc count by the jump
13523 if (htab
->root
.srelplt
)
13524 htab
->sgotplt_jump_table_size
= elf32_arm_compute_jump_table_size(htab
);
13526 if (htab
->tls_trampoline
)
13528 if (htab
->root
.splt
->size
== 0)
13529 htab
->root
.splt
->size
+= htab
->plt_header_size
;
13531 htab
->tls_trampoline
= htab
->root
.splt
->size
;
13532 htab
->root
.splt
->size
+= htab
->plt_entry_size
;
13534 /* If we're not using lazy TLS relocations, don't generate the
13535 PLT and GOT entries they require. */
13536 if (!(info
->flags
& DF_BIND_NOW
))
13538 htab
->dt_tlsdesc_got
= htab
->root
.sgot
->size
;
13539 htab
->root
.sgot
->size
+= 4;
13541 htab
->dt_tlsdesc_plt
= htab
->root
.splt
->size
;
13542 htab
->root
.splt
->size
+= 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline
);
13546 /* The check_relocs and adjust_dynamic_symbol entry points have
13547 determined the sizes of the various dynamic sections. Allocate
13548 memory for them. */
13551 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
13555 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
13558 /* It's OK to base decisions on the section name, because none
13559 of the dynobj section names depend upon the input files. */
13560 name
= bfd_get_section_name (dynobj
, s
);
13562 if (s
== htab
->root
.splt
)
13564 /* Remember whether there is a PLT. */
13565 plt
= s
->size
!= 0;
13567 else if (CONST_STRNEQ (name
, ".rel"))
13571 /* Remember whether there are any reloc sections other
13572 than .rel(a).plt and .rela.plt.unloaded. */
13573 if (s
!= htab
->root
.srelplt
&& s
!= htab
->srelplt2
)
13576 /* We use the reloc_count field as a counter if we need
13577 to copy relocs into the output file. */
13578 s
->reloc_count
= 0;
13581 else if (s
!= htab
->root
.sgot
13582 && s
!= htab
->root
.sgotplt
13583 && s
!= htab
->root
.iplt
13584 && s
!= htab
->root
.igotplt
13585 && s
!= htab
->sdynbss
)
13587 /* It's not one of our sections, so don't allocate space. */
13593 /* If we don't need this section, strip it from the
13594 output file. This is mostly to handle .rel(a).bss and
13595 .rel(a).plt. We must create both sections in
13596 create_dynamic_sections, because they must be created
13597 before the linker maps input sections to output
13598 sections. The linker does that before
13599 adjust_dynamic_symbol is called, and it is that
13600 function which decides whether anything needs to go
13601 into these sections. */
13602 s
->flags
|= SEC_EXCLUDE
;
13606 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
13609 /* Allocate memory for the section contents. */
13610 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
13611 if (s
->contents
== NULL
)
13615 if (elf_hash_table (info
)->dynamic_sections_created
)
13617 /* Add some entries to the .dynamic section. We fill in the
13618 values later, in elf32_arm_finish_dynamic_sections, but we
13619 must add the entries now so that we get the correct size for
13620 the .dynamic section. The DT_DEBUG entry is filled in by the
13621 dynamic linker and used by the debugger. */
13622 #define add_dynamic_entry(TAG, VAL) \
13623 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13625 if (info
->executable
)
13627 if (!add_dynamic_entry (DT_DEBUG
, 0))
13633 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
13634 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
13635 || !add_dynamic_entry (DT_PLTREL
,
13636 htab
->use_rel
? DT_REL
: DT_RELA
)
13637 || !add_dynamic_entry (DT_JMPREL
, 0))
13640 if (htab
->dt_tlsdesc_plt
&&
13641 (!add_dynamic_entry (DT_TLSDESC_PLT
,0)
13642 || !add_dynamic_entry (DT_TLSDESC_GOT
,0)))
13650 if (!add_dynamic_entry (DT_REL
, 0)
13651 || !add_dynamic_entry (DT_RELSZ
, 0)
13652 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
13657 if (!add_dynamic_entry (DT_RELA
, 0)
13658 || !add_dynamic_entry (DT_RELASZ
, 0)
13659 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
13664 /* If any dynamic relocs apply to a read-only section,
13665 then we need a DT_TEXTREL entry. */
13666 if ((info
->flags
& DF_TEXTREL
) == 0)
13667 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
13670 if ((info
->flags
& DF_TEXTREL
) != 0)
13672 if (!add_dynamic_entry (DT_TEXTREL
, 0))
13675 if (htab
->vxworks_p
13676 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
13679 #undef add_dynamic_entry
13684 /* Size sections even though they're not dynamic. We use it to setup
13685 _TLS_MODULE_BASE_, if needed. */
13688 elf32_arm_always_size_sections (bfd
*output_bfd
,
13689 struct bfd_link_info
*info
)
13693 if (info
->relocatable
)
13696 tls_sec
= elf_hash_table (info
)->tls_sec
;
13700 struct elf_link_hash_entry
*tlsbase
;
13702 tlsbase
= elf_link_hash_lookup
13703 (elf_hash_table (info
), "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
13707 struct bfd_link_hash_entry
*bh
= NULL
;
13708 const struct elf_backend_data
*bed
13709 = get_elf_backend_data (output_bfd
);
13711 if (!(_bfd_generic_link_add_one_symbol
13712 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
13713 tls_sec
, 0, NULL
, FALSE
,
13714 bed
->collect
, &bh
)))
13717 tlsbase
->type
= STT_TLS
;
13718 tlsbase
= (struct elf_link_hash_entry
*)bh
;
13719 tlsbase
->def_regular
= 1;
13720 tlsbase
->other
= STV_HIDDEN
;
13721 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
13727 /* Finish up dynamic symbol handling. We set the contents of various
13728 dynamic sections here. */
13731 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
13732 struct bfd_link_info
* info
,
13733 struct elf_link_hash_entry
* h
,
13734 Elf_Internal_Sym
* sym
)
13736 struct elf32_arm_link_hash_table
*htab
;
13737 struct elf32_arm_link_hash_entry
*eh
;
13739 htab
= elf32_arm_hash_table (info
);
13743 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13745 if (h
->plt
.offset
!= (bfd_vma
) -1)
13749 BFD_ASSERT (h
->dynindx
!= -1);
13750 elf32_arm_populate_plt_entry (output_bfd
, info
, &h
->plt
, &eh
->plt
,
13754 if (!h
->def_regular
)
13756 /* Mark the symbol as undefined, rather than as defined in
13757 the .plt section. Leave the value alone. */
13758 sym
->st_shndx
= SHN_UNDEF
;
13759 /* If the symbol is weak, we do need to clear the value.
13760 Otherwise, the PLT entry would provide a definition for
13761 the symbol even if the symbol wasn't defined anywhere,
13762 and so the symbol would never be NULL. */
13763 if (!h
->ref_regular_nonweak
)
13766 else if (eh
->is_iplt
&& eh
->plt
.noncall_refcount
!= 0)
13768 /* At least one non-call relocation references this .iplt entry,
13769 so the .iplt entry is the function's canonical address. */
13770 sym
->st_info
= ELF_ST_INFO (ELF_ST_BIND (sym
->st_info
), STT_FUNC
);
13771 sym
->st_target_internal
= ST_BRANCH_TO_ARM
;
13772 sym
->st_shndx
= (_bfd_elf_section_from_bfd_section
13773 (output_bfd
, htab
->root
.iplt
->output_section
));
13774 sym
->st_value
= (h
->plt
.offset
13775 + htab
->root
.iplt
->output_section
->vma
13776 + htab
->root
.iplt
->output_offset
);
13783 Elf_Internal_Rela rel
;
13785 /* This symbol needs a copy reloc. Set it up. */
13786 BFD_ASSERT (h
->dynindx
!= -1
13787 && (h
->root
.type
== bfd_link_hash_defined
13788 || h
->root
.type
== bfd_link_hash_defweak
));
13791 BFD_ASSERT (s
!= NULL
);
13794 rel
.r_offset
= (h
->root
.u
.def
.value
13795 + h
->root
.u
.def
.section
->output_section
->vma
13796 + h
->root
.u
.def
.section
->output_offset
);
13797 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
13798 elf32_arm_add_dynreloc (output_bfd
, info
, s
, &rel
);
13801 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13802 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13803 to the ".got" section. */
13804 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
13805 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
13806 sym
->st_shndx
= SHN_ABS
;
13812 arm_put_trampoline (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
13814 const unsigned long *template, unsigned count
)
13818 for (ix
= 0; ix
!= count
; ix
++)
13820 unsigned long insn
= template[ix
];
13822 /* Emit mov pc,rx if bx is not permitted. */
13823 if (htab
->fix_v4bx
== 1 && (insn
& 0x0ffffff0) == 0x012fff10)
13824 insn
= (insn
& 0xf000000f) | 0x01a0f000;
13825 put_arm_insn (htab
, output_bfd
, insn
, (char *)contents
+ ix
*4);
13829 /* Finish up the dynamic sections. */
13832 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
13837 struct elf32_arm_link_hash_table
*htab
;
13839 htab
= elf32_arm_hash_table (info
);
13843 dynobj
= elf_hash_table (info
)->dynobj
;
13845 sgot
= htab
->root
.sgotplt
;
13846 /* A broken linker script might have discarded the dynamic sections.
13847 Catch this here so that we do not seg-fault later on. */
13848 if (sgot
!= NULL
&& bfd_is_abs_section (sgot
->output_section
))
13850 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
13852 if (elf_hash_table (info
)->dynamic_sections_created
)
13855 Elf32_External_Dyn
*dyncon
, *dynconend
;
13857 splt
= htab
->root
.splt
;
13858 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
13859 BFD_ASSERT (htab
->symbian_p
|| sgot
!= NULL
);
13861 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
13862 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
13864 for (; dyncon
< dynconend
; dyncon
++)
13866 Elf_Internal_Dyn dyn
;
13870 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
13877 if (htab
->vxworks_p
13878 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
13879 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13884 goto get_vma_if_bpabi
;
13887 goto get_vma_if_bpabi
;
13890 goto get_vma_if_bpabi
;
13892 name
= ".gnu.version";
13893 goto get_vma_if_bpabi
;
13895 name
= ".gnu.version_d";
13896 goto get_vma_if_bpabi
;
13898 name
= ".gnu.version_r";
13899 goto get_vma_if_bpabi
;
13905 name
= RELOC_SECTION (htab
, ".plt");
13907 s
= bfd_get_section_by_name (output_bfd
, name
);
13908 BFD_ASSERT (s
!= NULL
);
13909 if (!htab
->symbian_p
)
13910 dyn
.d_un
.d_ptr
= s
->vma
;
13912 /* In the BPABI, tags in the PT_DYNAMIC section point
13913 at the file offset, not the memory address, for the
13914 convenience of the post linker. */
13915 dyn
.d_un
.d_ptr
= s
->filepos
;
13916 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13920 if (htab
->symbian_p
)
13925 s
= htab
->root
.srelplt
;
13926 BFD_ASSERT (s
!= NULL
);
13927 dyn
.d_un
.d_val
= s
->size
;
13928 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13933 if (!htab
->symbian_p
)
13935 /* My reading of the SVR4 ABI indicates that the
13936 procedure linkage table relocs (DT_JMPREL) should be
13937 included in the overall relocs (DT_REL). This is
13938 what Solaris does. However, UnixWare can not handle
13939 that case. Therefore, we override the DT_RELSZ entry
13940 here to make it not include the JMPREL relocs. Since
13941 the linker script arranges for .rel(a).plt to follow all
13942 other relocation sections, we don't have to worry
13943 about changing the DT_REL entry. */
13944 s
= htab
->root
.srelplt
;
13946 dyn
.d_un
.d_val
-= s
->size
;
13947 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13950 /* Fall through. */
13954 /* In the BPABI, the DT_REL tag must point at the file
13955 offset, not the VMA, of the first relocation
13956 section. So, we use code similar to that in
13957 elflink.c, but do not check for SHF_ALLOC on the
13958 relcoation section, since relocations sections are
13959 never allocated under the BPABI. The comments above
13960 about Unixware notwithstanding, we include all of the
13961 relocations here. */
13962 if (htab
->symbian_p
)
13965 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
13966 ? SHT_REL
: SHT_RELA
);
13967 dyn
.d_un
.d_val
= 0;
13968 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
13970 Elf_Internal_Shdr
*hdr
13971 = elf_elfsections (output_bfd
)[i
];
13972 if (hdr
->sh_type
== type
)
13974 if (dyn
.d_tag
== DT_RELSZ
13975 || dyn
.d_tag
== DT_RELASZ
)
13976 dyn
.d_un
.d_val
+= hdr
->sh_size
;
13977 else if ((ufile_ptr
) hdr
->sh_offset
13978 <= dyn
.d_un
.d_val
- 1)
13979 dyn
.d_un
.d_val
= hdr
->sh_offset
;
13982 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13986 case DT_TLSDESC_PLT
:
13987 s
= htab
->root
.splt
;
13988 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
13989 + htab
->dt_tlsdesc_plt
);
13990 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13993 case DT_TLSDESC_GOT
:
13994 s
= htab
->root
.sgot
;
13995 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
13996 + htab
->dt_tlsdesc_got
);
13997 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14000 /* Set the bottom bit of DT_INIT/FINI if the
14001 corresponding function is Thumb. */
14003 name
= info
->init_function
;
14006 name
= info
->fini_function
;
14008 /* If it wasn't set by elf_bfd_final_link
14009 then there is nothing to adjust. */
14010 if (dyn
.d_un
.d_val
!= 0)
14012 struct elf_link_hash_entry
* eh
;
14014 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
14015 FALSE
, FALSE
, TRUE
);
14016 if (eh
!= NULL
&& eh
->target_internal
== ST_BRANCH_TO_THUMB
)
14018 dyn
.d_un
.d_val
|= 1;
14019 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14026 /* Fill in the first entry in the procedure linkage table. */
14027 if (splt
->size
> 0 && htab
->plt_header_size
)
14029 const bfd_vma
*plt0_entry
;
14030 bfd_vma got_address
, plt_address
, got_displacement
;
14032 /* Calculate the addresses of the GOT and PLT. */
14033 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
14034 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
14036 if (htab
->vxworks_p
)
14038 /* The VxWorks GOT is relocated by the dynamic linker.
14039 Therefore, we must emit relocations rather than simply
14040 computing the values now. */
14041 Elf_Internal_Rela rel
;
14043 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
14044 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
14045 splt
->contents
+ 0);
14046 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
14047 splt
->contents
+ 4);
14048 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
14049 splt
->contents
+ 8);
14050 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
14052 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14053 rel
.r_offset
= plt_address
+ 12;
14054 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
14056 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
14057 htab
->srelplt2
->contents
);
14061 got_displacement
= got_address
- (plt_address
+ 16);
14063 plt0_entry
= elf32_arm_plt0_entry
;
14064 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
14065 splt
->contents
+ 0);
14066 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
14067 splt
->contents
+ 4);
14068 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
14069 splt
->contents
+ 8);
14070 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
14071 splt
->contents
+ 12);
14073 #ifdef FOUR_WORD_PLT
14074 /* The displacement value goes in the otherwise-unused
14075 last word of the second entry. */
14076 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
14078 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
14083 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14084 really seem like the right value. */
14085 if (splt
->output_section
->owner
== output_bfd
)
14086 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
14088 if (htab
->dt_tlsdesc_plt
)
14090 bfd_vma got_address
14091 = sgot
->output_section
->vma
+ sgot
->output_offset
;
14092 bfd_vma gotplt_address
= (htab
->root
.sgot
->output_section
->vma
14093 + htab
->root
.sgot
->output_offset
);
14094 bfd_vma plt_address
14095 = splt
->output_section
->vma
+ splt
->output_offset
;
14097 arm_put_trampoline (htab
, output_bfd
,
14098 splt
->contents
+ htab
->dt_tlsdesc_plt
,
14099 dl_tlsdesc_lazy_trampoline
, 6);
14101 bfd_put_32 (output_bfd
,
14102 gotplt_address
+ htab
->dt_tlsdesc_got
14103 - (plt_address
+ htab
->dt_tlsdesc_plt
)
14104 - dl_tlsdesc_lazy_trampoline
[6],
14105 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24);
14106 bfd_put_32 (output_bfd
,
14107 got_address
- (plt_address
+ htab
->dt_tlsdesc_plt
)
14108 - dl_tlsdesc_lazy_trampoline
[7],
14109 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24 + 4);
14112 if (htab
->tls_trampoline
)
14114 arm_put_trampoline (htab
, output_bfd
,
14115 splt
->contents
+ htab
->tls_trampoline
,
14116 tls_trampoline
, 3);
14117 #ifdef FOUR_WORD_PLT
14118 bfd_put_32 (output_bfd
, 0x00000000,
14119 splt
->contents
+ htab
->tls_trampoline
+ 12);
14123 if (htab
->vxworks_p
&& !info
->shared
&& htab
->root
.splt
->size
> 0)
14125 /* Correct the .rel(a).plt.unloaded relocations. They will have
14126 incorrect symbol indexes. */
14130 num_plts
= ((htab
->root
.splt
->size
- htab
->plt_header_size
)
14131 / htab
->plt_entry_size
);
14132 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
14134 for (; num_plts
; num_plts
--)
14136 Elf_Internal_Rela rel
;
14138 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14139 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
14140 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14141 p
+= RELOC_SIZE (htab
);
14143 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14144 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
14145 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14146 p
+= RELOC_SIZE (htab
);
14151 /* Fill in the first three entries in the global offset table. */
14154 if (sgot
->size
> 0)
14157 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
14159 bfd_put_32 (output_bfd
,
14160 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
14162 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
14163 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
14166 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
14173 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
14175 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
14176 struct elf32_arm_link_hash_table
*globals
;
14178 i_ehdrp
= elf_elfheader (abfd
);
14180 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
14181 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
14183 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
14184 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
14188 globals
= elf32_arm_hash_table (link_info
);
14189 if (globals
!= NULL
&& globals
->byteswap_code
)
14190 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
14194 static enum elf_reloc_type_class
14195 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
14197 switch ((int) ELF32_R_TYPE (rela
->r_info
))
14199 case R_ARM_RELATIVE
:
14200 return reloc_class_relative
;
14201 case R_ARM_JUMP_SLOT
:
14202 return reloc_class_plt
;
14204 return reloc_class_copy
;
14206 return reloc_class_normal
;
14211 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
14213 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
14216 /* Return TRUE if this is an unwinding table entry. */
14219 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
14221 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
14222 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
14226 /* Set the type and flags for an ARM section. We do this by
14227 the section name, which is a hack, but ought to work. */
14230 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
14234 name
= bfd_get_section_name (abfd
, sec
);
14236 if (is_arm_elf_unwind_section_name (abfd
, name
))
14238 hdr
->sh_type
= SHT_ARM_EXIDX
;
14239 hdr
->sh_flags
|= SHF_LINK_ORDER
;
14244 /* Handle an ARM specific section when reading an object file. This is
14245 called when bfd_section_from_shdr finds a section with an unknown
14249 elf32_arm_section_from_shdr (bfd
*abfd
,
14250 Elf_Internal_Shdr
* hdr
,
14254 /* There ought to be a place to keep ELF backend specific flags, but
14255 at the moment there isn't one. We just keep track of the
14256 sections by their name, instead. Fortunately, the ABI gives
14257 names for all the ARM specific sections, so we will probably get
14259 switch (hdr
->sh_type
)
14261 case SHT_ARM_EXIDX
:
14262 case SHT_ARM_PREEMPTMAP
:
14263 case SHT_ARM_ATTRIBUTES
:
14270 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
14276 static _arm_elf_section_data
*
14277 get_arm_elf_section_data (asection
* sec
)
14279 if (sec
&& sec
->owner
&& is_arm_elf (sec
->owner
))
14280 return elf32_arm_section_data (sec
);
14288 struct bfd_link_info
*info
;
14291 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
14292 asection
*, struct elf_link_hash_entry
*);
14293 } output_arch_syminfo
;
14295 enum map_symbol_type
14303 /* Output a single mapping symbol. */
14306 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
14307 enum map_symbol_type type
,
14310 static const char *names
[3] = {"$a", "$t", "$d"};
14311 Elf_Internal_Sym sym
;
14313 sym
.st_value
= osi
->sec
->output_section
->vma
14314 + osi
->sec
->output_offset
14318 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
14319 sym
.st_shndx
= osi
->sec_shndx
;
14320 sym
.st_target_internal
= 0;
14321 elf32_arm_section_map_add (osi
->sec
, names
[type
][1], offset
);
14322 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
14325 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14326 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14329 elf32_arm_output_plt_map_1 (output_arch_syminfo
*osi
,
14330 bfd_boolean is_iplt_entry_p
,
14331 union gotplt_union
*root_plt
,
14332 struct arm_plt_info
*arm_plt
)
14334 struct elf32_arm_link_hash_table
*htab
;
14335 bfd_vma addr
, plt_header_size
;
14337 if (root_plt
->offset
== (bfd_vma
) -1)
14340 htab
= elf32_arm_hash_table (osi
->info
);
14344 if (is_iplt_entry_p
)
14346 osi
->sec
= htab
->root
.iplt
;
14347 plt_header_size
= 0;
14351 osi
->sec
= htab
->root
.splt
;
14352 plt_header_size
= htab
->plt_header_size
;
14354 osi
->sec_shndx
= (_bfd_elf_section_from_bfd_section
14355 (osi
->info
->output_bfd
, osi
->sec
->output_section
));
14357 addr
= root_plt
->offset
& -2;
14358 if (htab
->symbian_p
)
14360 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14362 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
14365 else if (htab
->vxworks_p
)
14367 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14369 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
14371 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
14373 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
14378 bfd_boolean thumb_stub_p
;
14380 thumb_stub_p
= elf32_arm_plt_needs_thumb_stub_p (osi
->info
, arm_plt
);
14383 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
14386 #ifdef FOUR_WORD_PLT
14387 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14389 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
14392 /* A three-word PLT with no Thumb thunk contains only Arm code,
14393 so only need to output a mapping symbol for the first PLT entry and
14394 entries with thumb thunks. */
14395 if (thumb_stub_p
|| addr
== plt_header_size
)
14397 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14406 /* Output mapping symbols for PLT entries associated with H. */
14409 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
14411 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
14412 struct elf32_arm_link_hash_entry
*eh
;
14414 if (h
->root
.type
== bfd_link_hash_indirect
)
14417 if (h
->root
.type
== bfd_link_hash_warning
)
14418 /* When warning symbols are created, they **replace** the "real"
14419 entry in the hash table, thus we never get to see the real
14420 symbol in a hash traversal. So look at it now. */
14421 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
14423 eh
= (struct elf32_arm_link_hash_entry
*) h
;
14424 return elf32_arm_output_plt_map_1 (osi
, SYMBOL_CALLS_LOCAL (osi
->info
, h
),
14425 &h
->plt
, &eh
->plt
);
14428 /* Output a single local symbol for a generated stub. */
14431 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
14432 bfd_vma offset
, bfd_vma size
)
14434 Elf_Internal_Sym sym
;
14436 sym
.st_value
= osi
->sec
->output_section
->vma
14437 + osi
->sec
->output_offset
14439 sym
.st_size
= size
;
14441 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
14442 sym
.st_shndx
= osi
->sec_shndx
;
14443 sym
.st_target_internal
= 0;
14444 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
14448 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
14451 struct elf32_arm_stub_hash_entry
*stub_entry
;
14452 asection
*stub_sec
;
14455 output_arch_syminfo
*osi
;
14456 const insn_sequence
*template_sequence
;
14457 enum stub_insn_type prev_type
;
14460 enum map_symbol_type sym_type
;
14462 /* Massage our args to the form they really have. */
14463 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
14464 osi
= (output_arch_syminfo
*) in_arg
;
14466 stub_sec
= stub_entry
->stub_sec
;
14468 /* Ensure this stub is attached to the current section being
14470 if (stub_sec
!= osi
->sec
)
14473 addr
= (bfd_vma
) stub_entry
->stub_offset
;
14474 stub_name
= stub_entry
->output_name
;
14476 template_sequence
= stub_entry
->stub_template
;
14477 switch (template_sequence
[0].type
)
14480 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
14485 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
14486 stub_entry
->stub_size
))
14494 prev_type
= DATA_TYPE
;
14496 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
14498 switch (template_sequence
[i
].type
)
14501 sym_type
= ARM_MAP_ARM
;
14506 sym_type
= ARM_MAP_THUMB
;
14510 sym_type
= ARM_MAP_DATA
;
14518 if (template_sequence
[i
].type
!= prev_type
)
14520 prev_type
= template_sequence
[i
].type
;
14521 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
14525 switch (template_sequence
[i
].type
)
14549 /* Output mapping symbols for linker generated sections,
14550 and for those data-only sections that do not have a
14554 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
14555 struct bfd_link_info
*info
,
14557 int (*func
) (void *, const char *,
14558 Elf_Internal_Sym
*,
14560 struct elf_link_hash_entry
*))
14562 output_arch_syminfo osi
;
14563 struct elf32_arm_link_hash_table
*htab
;
14565 bfd_size_type size
;
14568 htab
= elf32_arm_hash_table (info
);
14572 check_use_blx (htab
);
14578 /* Add a $d mapping symbol to data-only sections that
14579 don't have any mapping symbol. This may result in (harmless) redundant
14580 mapping symbols. */
14581 for (input_bfd
= info
->input_bfds
;
14583 input_bfd
= input_bfd
->link_next
)
14585 if ((input_bfd
->flags
& (BFD_LINKER_CREATED
| HAS_SYMS
)) == HAS_SYMS
)
14586 for (osi
.sec
= input_bfd
->sections
;
14588 osi
.sec
= osi
.sec
->next
)
14590 if (osi
.sec
->output_section
!= NULL
14591 && ((osi
.sec
->output_section
->flags
& (SEC_ALLOC
| SEC_CODE
))
14593 && (osi
.sec
->flags
& (SEC_HAS_CONTENTS
| SEC_LINKER_CREATED
))
14594 == SEC_HAS_CONTENTS
14595 && get_arm_elf_section_data (osi
.sec
) != NULL
14596 && get_arm_elf_section_data (osi
.sec
)->mapcount
== 0
14597 && osi
.sec
->size
> 0
14598 && (osi
.sec
->flags
& SEC_EXCLUDE
) == 0)
14600 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14601 (output_bfd
, osi
.sec
->output_section
);
14602 if (osi
.sec_shndx
!= (int)SHN_BAD
)
14603 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 0);
14608 /* ARM->Thumb glue. */
14609 if (htab
->arm_glue_size
> 0)
14611 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
14612 ARM2THUMB_GLUE_SECTION_NAME
);
14614 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14615 (output_bfd
, osi
.sec
->output_section
);
14616 if (info
->shared
|| htab
->root
.is_relocatable_executable
14617 || htab
->pic_veneer
)
14618 size
= ARM2THUMB_PIC_GLUE_SIZE
;
14619 else if (htab
->use_blx
)
14620 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
14622 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
14624 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
14626 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
14627 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
14631 /* Thumb->ARM glue. */
14632 if (htab
->thumb_glue_size
> 0)
14634 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
14635 THUMB2ARM_GLUE_SECTION_NAME
);
14637 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14638 (output_bfd
, osi
.sec
->output_section
);
14639 size
= THUMB2ARM_GLUE_SIZE
;
14641 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
14643 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
14644 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
14648 /* ARMv4 BX veneers. */
14649 if (htab
->bx_glue_size
> 0)
14651 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
14652 ARM_BX_GLUE_SECTION_NAME
);
14654 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14655 (output_bfd
, osi
.sec
->output_section
);
14657 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
14660 /* Long calls stubs. */
14661 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
14663 asection
* stub_sec
;
14665 for (stub_sec
= htab
->stub_bfd
->sections
;
14667 stub_sec
= stub_sec
->next
)
14669 /* Ignore non-stub sections. */
14670 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
14673 osi
.sec
= stub_sec
;
14675 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14676 (output_bfd
, osi
.sec
->output_section
);
14678 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
14682 /* Finally, output mapping symbols for the PLT. */
14683 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
14685 osi
.sec
= htab
->root
.splt
;
14686 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
14687 (output_bfd
, osi
.sec
->output_section
));
14689 /* Output mapping symbols for the plt header. SymbianOS does not have a
14691 if (htab
->vxworks_p
)
14693 /* VxWorks shared libraries have no PLT header. */
14696 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
14698 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
14702 else if (!htab
->symbian_p
)
14704 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
14706 #ifndef FOUR_WORD_PLT
14707 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
14712 if ((htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
14713 || (htab
->root
.iplt
&& htab
->root
.iplt
->size
> 0))
14715 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, &osi
);
14716 for (input_bfd
= info
->input_bfds
;
14718 input_bfd
= input_bfd
->link_next
)
14720 struct arm_local_iplt_info
**local_iplt
;
14721 unsigned int i
, num_syms
;
14723 local_iplt
= elf32_arm_local_iplt (input_bfd
);
14724 if (local_iplt
!= NULL
)
14726 num_syms
= elf_symtab_hdr (input_bfd
).sh_info
;
14727 for (i
= 0; i
< num_syms
; i
++)
14728 if (local_iplt
[i
] != NULL
14729 && !elf32_arm_output_plt_map_1 (&osi
, TRUE
,
14730 &local_iplt
[i
]->root
,
14731 &local_iplt
[i
]->arm
))
14736 if (htab
->dt_tlsdesc_plt
!= 0)
14738 /* Mapping symbols for the lazy tls trampoline. */
14739 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->dt_tlsdesc_plt
))
14742 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
14743 htab
->dt_tlsdesc_plt
+ 24))
14746 if (htab
->tls_trampoline
!= 0)
14748 /* Mapping symbols for the tls trampoline. */
14749 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->tls_trampoline
))
14751 #ifdef FOUR_WORD_PLT
14752 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
14753 htab
->tls_trampoline
+ 12))
14761 /* Allocate target specific section data. */
14764 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
14766 if (!sec
->used_by_bfd
)
14768 _arm_elf_section_data
*sdata
;
14769 bfd_size_type amt
= sizeof (*sdata
);
14771 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
14774 sec
->used_by_bfd
= sdata
;
14777 return _bfd_elf_new_section_hook (abfd
, sec
);
14781 /* Used to order a list of mapping symbols by address. */
14784 elf32_arm_compare_mapping (const void * a
, const void * b
)
14786 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
14787 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
14789 if (amap
->vma
> bmap
->vma
)
14791 else if (amap
->vma
< bmap
->vma
)
14793 else if (amap
->type
> bmap
->type
)
14794 /* Ensure results do not depend on the host qsort for objects with
14795 multiple mapping symbols at the same address by sorting on type
14798 else if (amap
->type
< bmap
->type
)
14804 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
14806 static unsigned long
14807 offset_prel31 (unsigned long addr
, bfd_vma offset
)
14809 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
14812 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14816 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
14818 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
14819 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
14821 /* High bit of first word is supposed to be zero. */
14822 if ((first_word
& 0x80000000ul
) == 0)
14823 first_word
= offset_prel31 (first_word
, offset
);
14825 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14826 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
14827 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
14828 second_word
= offset_prel31 (second_word
, offset
);
14830 bfd_put_32 (output_bfd
, first_word
, to
);
14831 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
14834 /* Data for make_branch_to_a8_stub(). */
14836 struct a8_branch_to_stub_data
{
14837 asection
*writing_section
;
14838 bfd_byte
*contents
;
14842 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
14843 places for a particular section. */
14846 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
14849 struct elf32_arm_stub_hash_entry
*stub_entry
;
14850 struct a8_branch_to_stub_data
*data
;
14851 bfd_byte
*contents
;
14852 unsigned long branch_insn
;
14853 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
14854 bfd_signed_vma branch_offset
;
14856 unsigned int target
;
14858 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
14859 data
= (struct a8_branch_to_stub_data
*) in_arg
;
14861 if (stub_entry
->target_section
!= data
->writing_section
14862 || stub_entry
->stub_type
< arm_stub_a8_veneer_lwm
)
14865 contents
= data
->contents
;
14867 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
14868 + stub_entry
->target_section
->output_offset
14869 + stub_entry
->target_value
;
14871 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
14872 + stub_entry
->stub_sec
->output_offset
14873 + stub_entry
->stub_offset
;
14875 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
14876 veneered_insn_loc
&= ~3u;
14878 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
14880 abfd
= stub_entry
->target_section
->owner
;
14881 target
= stub_entry
->target_value
;
14883 /* We attempt to avoid this condition by setting stubs_always_after_branch
14884 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14885 This check is just to be on the safe side... */
14886 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
14888 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
14889 "allocated in unsafe location"), abfd
);
14893 switch (stub_entry
->stub_type
)
14895 case arm_stub_a8_veneer_b
:
14896 case arm_stub_a8_veneer_b_cond
:
14897 branch_insn
= 0xf0009000;
14900 case arm_stub_a8_veneer_blx
:
14901 branch_insn
= 0xf000e800;
14904 case arm_stub_a8_veneer_bl
:
14906 unsigned int i1
, j1
, i2
, j2
, s
;
14908 branch_insn
= 0xf000d000;
14911 if (branch_offset
< -16777216 || branch_offset
> 16777214)
14913 /* There's not much we can do apart from complain if this
14915 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
14916 "of range (input file too large)"), abfd
);
14920 /* i1 = not(j1 eor s), so:
14922 j1 = (not i1) eor s. */
14924 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
14925 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
14926 i2
= (branch_offset
>> 22) & 1;
14927 i1
= (branch_offset
>> 23) & 1;
14928 s
= (branch_offset
>> 24) & 1;
14931 branch_insn
|= j2
<< 11;
14932 branch_insn
|= j1
<< 13;
14933 branch_insn
|= s
<< 26;
14942 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[target
]);
14943 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[target
+ 2]);
14948 /* Do code byteswapping. Return FALSE afterwards so that the section is
14949 written out as normal. */
14952 elf32_arm_write_section (bfd
*output_bfd
,
14953 struct bfd_link_info
*link_info
,
14955 bfd_byte
*contents
)
14957 unsigned int mapcount
, errcount
;
14958 _arm_elf_section_data
*arm_data
;
14959 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
14960 elf32_arm_section_map
*map
;
14961 elf32_vfp11_erratum_list
*errnode
;
14964 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
14968 if (globals
== NULL
)
14971 /* If this section has not been allocated an _arm_elf_section_data
14972 structure then we cannot record anything. */
14973 arm_data
= get_arm_elf_section_data (sec
);
14974 if (arm_data
== NULL
)
14977 mapcount
= arm_data
->mapcount
;
14978 map
= arm_data
->map
;
14979 errcount
= arm_data
->erratumcount
;
14983 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
14985 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
14986 errnode
= errnode
->next
)
14988 bfd_vma target
= errnode
->vma
- offset
;
14990 switch (errnode
->type
)
14992 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
14994 bfd_vma branch_to_veneer
;
14995 /* Original condition code of instruction, plus bit mask for
14996 ARM B instruction. */
14997 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
15000 /* The instruction is before the label. */
15003 /* Above offset included in -4 below. */
15004 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
15005 - errnode
->vma
- 4;
15007 if ((signed) branch_to_veneer
< -(1 << 25)
15008 || (signed) branch_to_veneer
>= (1 << 25))
15009 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
15010 "range"), output_bfd
);
15012 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
15013 contents
[endianflip
^ target
] = insn
& 0xff;
15014 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
15015 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
15016 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
15020 case VFP11_ERRATUM_ARM_VENEER
:
15022 bfd_vma branch_from_veneer
;
15025 /* Take size of veneer into account. */
15026 branch_from_veneer
= errnode
->u
.v
.branch
->vma
15027 - errnode
->vma
- 12;
15029 if ((signed) branch_from_veneer
< -(1 << 25)
15030 || (signed) branch_from_veneer
>= (1 << 25))
15031 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
15032 "range"), output_bfd
);
15034 /* Original instruction. */
15035 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
15036 contents
[endianflip
^ target
] = insn
& 0xff;
15037 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
15038 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
15039 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
15041 /* Branch back to insn after original insn. */
15042 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
15043 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
15044 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
15045 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
15046 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
15056 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
15058 arm_unwind_table_edit
*edit_node
15059 = arm_data
->u
.exidx
.unwind_edit_list
;
15060 /* Now, sec->size is the size of the section we will write. The original
15061 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15062 markers) was sec->rawsize. (This isn't the case if we perform no
15063 edits, then rawsize will be zero and we should use size). */
15064 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
15065 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
15066 unsigned int in_index
, out_index
;
15067 bfd_vma add_to_offsets
= 0;
15069 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
15073 unsigned int edit_index
= edit_node
->index
;
15075 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
15077 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
15078 contents
+ in_index
* 8, add_to_offsets
);
15082 else if (in_index
== edit_index
15083 || (in_index
* 8 >= input_size
15084 && edit_index
== UINT_MAX
))
15086 switch (edit_node
->type
)
15088 case DELETE_EXIDX_ENTRY
:
15090 add_to_offsets
+= 8;
15093 case INSERT_EXIDX_CANTUNWIND_AT_END
:
15095 asection
*text_sec
= edit_node
->linked_section
;
15096 bfd_vma text_offset
= text_sec
->output_section
->vma
15097 + text_sec
->output_offset
15099 bfd_vma exidx_offset
= offset
+ out_index
* 8;
15100 unsigned long prel31_offset
;
15102 /* Note: this is meant to be equivalent to an
15103 R_ARM_PREL31 relocation. These synthetic
15104 EXIDX_CANTUNWIND markers are not relocated by the
15105 usual BFD method. */
15106 prel31_offset
= (text_offset
- exidx_offset
)
15109 /* First address we can't unwind. */
15110 bfd_put_32 (output_bfd
, prel31_offset
,
15111 &edited_contents
[out_index
* 8]);
15113 /* Code for EXIDX_CANTUNWIND. */
15114 bfd_put_32 (output_bfd
, 0x1,
15115 &edited_contents
[out_index
* 8 + 4]);
15118 add_to_offsets
-= 8;
15123 edit_node
= edit_node
->next
;
15128 /* No more edits, copy remaining entries verbatim. */
15129 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
15130 contents
+ in_index
* 8, add_to_offsets
);
15136 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
15137 bfd_set_section_contents (output_bfd
, sec
->output_section
,
15139 (file_ptr
) sec
->output_offset
, sec
->size
);
15144 /* Fix code to point to Cortex-A8 erratum stubs. */
15145 if (globals
->fix_cortex_a8
)
15147 struct a8_branch_to_stub_data data
;
15149 data
.writing_section
= sec
;
15150 data
.contents
= contents
;
15152 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
15159 if (globals
->byteswap_code
)
15161 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
15164 for (i
= 0; i
< mapcount
; i
++)
15166 if (i
== mapcount
- 1)
15169 end
= map
[i
+ 1].vma
;
15171 switch (map
[i
].type
)
15174 /* Byte swap code words. */
15175 while (ptr
+ 3 < end
)
15177 tmp
= contents
[ptr
];
15178 contents
[ptr
] = contents
[ptr
+ 3];
15179 contents
[ptr
+ 3] = tmp
;
15180 tmp
= contents
[ptr
+ 1];
15181 contents
[ptr
+ 1] = contents
[ptr
+ 2];
15182 contents
[ptr
+ 2] = tmp
;
15188 /* Byte swap code halfwords. */
15189 while (ptr
+ 1 < end
)
15191 tmp
= contents
[ptr
];
15192 contents
[ptr
] = contents
[ptr
+ 1];
15193 contents
[ptr
+ 1] = tmp
;
15199 /* Leave data alone. */
15207 arm_data
->mapcount
= -1;
15208 arm_data
->mapsize
= 0;
15209 arm_data
->map
= NULL
;
15214 /* Mangle thumb function symbols as we read them in. */
15217 elf32_arm_swap_symbol_in (bfd
* abfd
,
15220 Elf_Internal_Sym
*dst
)
15222 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
15225 /* New EABI objects mark thumb function symbols by setting the low bit of
15227 if (ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
15228 || ELF_ST_TYPE (dst
->st_info
) == STT_GNU_IFUNC
)
15230 if (dst
->st_value
& 1)
15232 dst
->st_value
&= ~(bfd_vma
) 1;
15233 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15236 dst
->st_target_internal
= ST_BRANCH_TO_ARM
;
15238 else if (ELF_ST_TYPE (dst
->st_info
) == STT_ARM_TFUNC
)
15240 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_FUNC
);
15241 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15243 else if (ELF_ST_TYPE (dst
->st_info
) == STT_SECTION
)
15244 dst
->st_target_internal
= ST_BRANCH_LONG
;
15246 dst
->st_target_internal
= ST_BRANCH_UNKNOWN
;
15252 /* Mangle thumb function symbols as we write them out. */
15255 elf32_arm_swap_symbol_out (bfd
*abfd
,
15256 const Elf_Internal_Sym
*src
,
15260 Elf_Internal_Sym newsym
;
15262 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15263 of the address set, as per the new EABI. We do this unconditionally
15264 because objcopy does not set the elf header flags until after
15265 it writes out the symbol table. */
15266 if (src
->st_target_internal
== ST_BRANCH_TO_THUMB
)
15269 if (ELF_ST_TYPE (src
->st_info
) != STT_GNU_IFUNC
)
15270 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
15271 if (newsym
.st_shndx
!= SHN_UNDEF
)
15273 /* Do this only for defined symbols. At link type, the static
15274 linker will simulate the work of dynamic linker of resolving
15275 symbols and will carry over the thumbness of found symbols to
15276 the output symbol table. It's not clear how it happens, but
15277 the thumbness of undefined symbols can well be different at
15278 runtime, and writing '1' for them will be confusing for users
15279 and possibly for dynamic linker itself.
15281 newsym
.st_value
|= 1;
15286 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
15289 /* Add the PT_ARM_EXIDX program header. */
15292 elf32_arm_modify_segment_map (bfd
*abfd
,
15293 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15295 struct elf_segment_map
*m
;
15298 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15299 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15301 /* If there is already a PT_ARM_EXIDX header, then we do not
15302 want to add another one. This situation arises when running
15303 "strip"; the input binary already has the header. */
15304 m
= elf_tdata (abfd
)->segment_map
;
15305 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
15309 m
= (struct elf_segment_map
*)
15310 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
15313 m
->p_type
= PT_ARM_EXIDX
;
15315 m
->sections
[0] = sec
;
15317 m
->next
= elf_tdata (abfd
)->segment_map
;
15318 elf_tdata (abfd
)->segment_map
= m
;
15325 /* We may add a PT_ARM_EXIDX program header. */
15328 elf32_arm_additional_program_headers (bfd
*abfd
,
15329 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15333 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15334 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15340 /* Hook called by the linker routine which adds symbols from an object
15344 elf32_arm_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
15345 Elf_Internal_Sym
*sym
, const char **namep
,
15346 flagword
*flagsp
, asection
**secp
, bfd_vma
*valp
)
15348 if ((abfd
->flags
& DYNAMIC
) == 0
15349 && (ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
15350 || ELF_ST_BIND (sym
->st_info
) == STB_GNU_UNIQUE
))
15351 elf_tdata (info
->output_bfd
)->has_gnu_symbols
= TRUE
;
15353 if (elf32_arm_hash_table (info
)->vxworks_p
15354 && !elf_vxworks_add_symbol_hook (abfd
, info
, sym
, namep
,
15355 flagsp
, secp
, valp
))
15361 /* We use this to override swap_symbol_in and swap_symbol_out. */
15362 const struct elf_size_info elf32_arm_size_info
=
15364 sizeof (Elf32_External_Ehdr
),
15365 sizeof (Elf32_External_Phdr
),
15366 sizeof (Elf32_External_Shdr
),
15367 sizeof (Elf32_External_Rel
),
15368 sizeof (Elf32_External_Rela
),
15369 sizeof (Elf32_External_Sym
),
15370 sizeof (Elf32_External_Dyn
),
15371 sizeof (Elf_External_Note
),
15375 ELFCLASS32
, EV_CURRENT
,
15376 bfd_elf32_write_out_phdrs
,
15377 bfd_elf32_write_shdrs_and_ehdr
,
15378 bfd_elf32_checksum_contents
,
15379 bfd_elf32_write_relocs
,
15380 elf32_arm_swap_symbol_in
,
15381 elf32_arm_swap_symbol_out
,
15382 bfd_elf32_slurp_reloc_table
,
15383 bfd_elf32_slurp_symbol_table
,
15384 bfd_elf32_swap_dyn_in
,
15385 bfd_elf32_swap_dyn_out
,
15386 bfd_elf32_swap_reloc_in
,
15387 bfd_elf32_swap_reloc_out
,
15388 bfd_elf32_swap_reloca_in
,
15389 bfd_elf32_swap_reloca_out
15392 #define ELF_ARCH bfd_arch_arm
15393 #define ELF_TARGET_ID ARM_ELF_DATA
15394 #define ELF_MACHINE_CODE EM_ARM
15395 #ifdef __QNXTARGET__
15396 #define ELF_MAXPAGESIZE 0x1000
15398 #define ELF_MAXPAGESIZE 0x8000
15400 #define ELF_MINPAGESIZE 0x1000
15401 #define ELF_COMMONPAGESIZE 0x1000
15403 #define bfd_elf32_mkobject elf32_arm_mkobject
15405 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15406 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15407 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15408 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15409 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15410 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15411 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15412 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15413 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15414 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15415 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15416 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15417 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15419 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15420 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15421 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15422 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15423 #define elf_backend_check_relocs elf32_arm_check_relocs
15424 #define elf_backend_relocate_section elf32_arm_relocate_section
15425 #define elf_backend_write_section elf32_arm_write_section
15426 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15427 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15428 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15429 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15430 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15431 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15432 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15433 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15434 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15435 #define elf_backend_object_p elf32_arm_object_p
15436 #define elf_backend_fake_sections elf32_arm_fake_sections
15437 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15438 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15439 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15440 #define elf_backend_size_info elf32_arm_size_info
15441 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15442 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15443 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15444 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15445 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15447 #define elf_backend_can_refcount 1
15448 #define elf_backend_can_gc_sections 1
15449 #define elf_backend_plt_readonly 1
15450 #define elf_backend_want_got_plt 1
15451 #define elf_backend_want_plt_sym 0
15452 #define elf_backend_may_use_rel_p 1
15453 #define elf_backend_may_use_rela_p 0
15454 #define elf_backend_default_use_rela_p 0
15456 #define elf_backend_got_header_size 12
15458 #undef elf_backend_obj_attrs_vendor
15459 #define elf_backend_obj_attrs_vendor "aeabi"
15460 #undef elf_backend_obj_attrs_section
15461 #define elf_backend_obj_attrs_section ".ARM.attributes"
15462 #undef elf_backend_obj_attrs_arg_type
15463 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15464 #undef elf_backend_obj_attrs_section_type
15465 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15466 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15467 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15469 #include "elf32-target.h"
15471 /* VxWorks Targets. */
15473 #undef TARGET_LITTLE_SYM
15474 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15475 #undef TARGET_LITTLE_NAME
15476 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15477 #undef TARGET_BIG_SYM
15478 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15479 #undef TARGET_BIG_NAME
15480 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15482 /* Like elf32_arm_link_hash_table_create -- but overrides
15483 appropriately for VxWorks. */
15485 static struct bfd_link_hash_table
*
15486 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
15488 struct bfd_link_hash_table
*ret
;
15490 ret
= elf32_arm_link_hash_table_create (abfd
);
15493 struct elf32_arm_link_hash_table
*htab
15494 = (struct elf32_arm_link_hash_table
*) ret
;
15496 htab
->vxworks_p
= 1;
15502 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
15504 elf32_arm_final_write_processing (abfd
, linker
);
15505 elf_vxworks_final_write_processing (abfd
, linker
);
15509 #define elf32_bed elf32_arm_vxworks_bed
15511 #undef bfd_elf32_bfd_link_hash_table_create
15512 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15513 #undef elf_backend_final_write_processing
15514 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15515 #undef elf_backend_emit_relocs
15516 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15518 #undef elf_backend_may_use_rel_p
15519 #define elf_backend_may_use_rel_p 0
15520 #undef elf_backend_may_use_rela_p
15521 #define elf_backend_may_use_rela_p 1
15522 #undef elf_backend_default_use_rela_p
15523 #define elf_backend_default_use_rela_p 1
15524 #undef elf_backend_want_plt_sym
15525 #define elf_backend_want_plt_sym 1
15526 #undef ELF_MAXPAGESIZE
15527 #define ELF_MAXPAGESIZE 0x1000
15529 #include "elf32-target.h"
15532 /* Merge backend specific data from an object file to the output
15533 object file when linking. */
15536 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
15538 flagword out_flags
;
15540 bfd_boolean flags_compatible
= TRUE
;
15543 /* Check if we have the same endianness. */
15544 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
15547 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
15550 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
15553 /* The input BFD must have had its flags initialised. */
15554 /* The following seems bogus to me -- The flags are initialized in
15555 the assembler but I don't think an elf_flags_init field is
15556 written into the object. */
15557 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15559 in_flags
= elf_elfheader (ibfd
)->e_flags
;
15560 out_flags
= elf_elfheader (obfd
)->e_flags
;
15562 /* In theory there is no reason why we couldn't handle this. However
15563 in practice it isn't even close to working and there is no real
15564 reason to want it. */
15565 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
15566 && !(ibfd
->flags
& DYNAMIC
)
15567 && (in_flags
& EF_ARM_BE8
))
15569 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15574 if (!elf_flags_init (obfd
))
15576 /* If the input is the default architecture and had the default
15577 flags then do not bother setting the flags for the output
15578 architecture, instead allow future merges to do this. If no
15579 future merges ever set these flags then they will retain their
15580 uninitialised values, which surprise surprise, correspond
15581 to the default values. */
15582 if (bfd_get_arch_info (ibfd
)->the_default
15583 && elf_elfheader (ibfd
)->e_flags
== 0)
15586 elf_flags_init (obfd
) = TRUE
;
15587 elf_elfheader (obfd
)->e_flags
= in_flags
;
15589 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
15590 && bfd_get_arch_info (obfd
)->the_default
)
15591 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
15596 /* Determine what should happen if the input ARM architecture
15597 does not match the output ARM architecture. */
15598 if (! bfd_arm_merge_machines (ibfd
, obfd
))
15601 /* Identical flags must be compatible. */
15602 if (in_flags
== out_flags
)
15605 /* Check to see if the input BFD actually contains any sections. If
15606 not, its flags may not have been initialised either, but it
15607 cannot actually cause any incompatiblity. Do not short-circuit
15608 dynamic objects; their section list may be emptied by
15609 elf_link_add_object_symbols.
15611 Also check to see if there are no code sections in the input.
15612 In this case there is no need to check for code specific flags.
15613 XXX - do we need to worry about floating-point format compatability
15614 in data sections ? */
15615 if (!(ibfd
->flags
& DYNAMIC
))
15617 bfd_boolean null_input_bfd
= TRUE
;
15618 bfd_boolean only_data_sections
= TRUE
;
15620 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
15622 /* Ignore synthetic glue sections. */
15623 if (strcmp (sec
->name
, ".glue_7")
15624 && strcmp (sec
->name
, ".glue_7t"))
15626 if ((bfd_get_section_flags (ibfd
, sec
)
15627 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
15628 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
15629 only_data_sections
= FALSE
;
15631 null_input_bfd
= FALSE
;
15636 if (null_input_bfd
|| only_data_sections
)
15640 /* Complain about various flag mismatches. */
15641 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
15642 EF_ARM_EABI_VERSION (out_flags
)))
15645 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15647 (in_flags
& EF_ARM_EABIMASK
) >> 24,
15648 (out_flags
& EF_ARM_EABIMASK
) >> 24);
15652 /* Not sure what needs to be checked for EABI versions >= 1. */
15653 /* VxWorks libraries do not use these flags. */
15654 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
15655 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
15656 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
15658 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
15661 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15663 in_flags
& EF_ARM_APCS_26
? 26 : 32,
15664 out_flags
& EF_ARM_APCS_26
? 26 : 32);
15665 flags_compatible
= FALSE
;
15668 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
15670 if (in_flags
& EF_ARM_APCS_FLOAT
)
15672 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15676 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15679 flags_compatible
= FALSE
;
15682 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
15684 if (in_flags
& EF_ARM_VFP_FLOAT
)
15686 (_("error: %B uses VFP instructions, whereas %B does not"),
15690 (_("error: %B uses FPA instructions, whereas %B does not"),
15693 flags_compatible
= FALSE
;
15696 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
15698 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
15700 (_("error: %B uses Maverick instructions, whereas %B does not"),
15704 (_("error: %B does not use Maverick instructions, whereas %B does"),
15707 flags_compatible
= FALSE
;
15710 #ifdef EF_ARM_SOFT_FLOAT
15711 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
15713 /* We can allow interworking between code that is VFP format
15714 layout, and uses either soft float or integer regs for
15715 passing floating point arguments and results. We already
15716 know that the APCS_FLOAT flags match; similarly for VFP
15718 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
15719 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
15721 if (in_flags
& EF_ARM_SOFT_FLOAT
)
15723 (_("error: %B uses software FP, whereas %B uses hardware FP"),
15727 (_("error: %B uses hardware FP, whereas %B uses software FP"),
15730 flags_compatible
= FALSE
;
15735 /* Interworking mismatch is only a warning. */
15736 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
15738 if (in_flags
& EF_ARM_INTERWORK
)
15741 (_("Warning: %B supports interworking, whereas %B does not"),
15747 (_("Warning: %B does not support interworking, whereas %B does"),
15753 return flags_compatible
;
15757 /* Symbian OS Targets. */
15759 #undef TARGET_LITTLE_SYM
15760 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
15761 #undef TARGET_LITTLE_NAME
15762 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
15763 #undef TARGET_BIG_SYM
15764 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
15765 #undef TARGET_BIG_NAME
15766 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
15768 /* Like elf32_arm_link_hash_table_create -- but overrides
15769 appropriately for Symbian OS. */
15771 static struct bfd_link_hash_table
*
15772 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
15774 struct bfd_link_hash_table
*ret
;
15776 ret
= elf32_arm_link_hash_table_create (abfd
);
15779 struct elf32_arm_link_hash_table
*htab
15780 = (struct elf32_arm_link_hash_table
*)ret
;
15781 /* There is no PLT header for Symbian OS. */
15782 htab
->plt_header_size
= 0;
15783 /* The PLT entries are each one instruction and one word. */
15784 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
15785 htab
->symbian_p
= 1;
15786 /* Symbian uses armv5t or above, so use_blx is always true. */
15788 htab
->root
.is_relocatable_executable
= 1;
15793 static const struct bfd_elf_special_section
15794 elf32_arm_symbian_special_sections
[] =
15796 /* In a BPABI executable, the dynamic linking sections do not go in
15797 the loadable read-only segment. The post-linker may wish to
15798 refer to these sections, but they are not part of the final
15800 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
15801 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
15802 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
15803 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
15804 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
15805 /* These sections do not need to be writable as the SymbianOS
15806 postlinker will arrange things so that no dynamic relocation is
15808 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
15809 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
15810 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
15811 { NULL
, 0, 0, 0, 0 }
15815 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
15816 struct bfd_link_info
*link_info
)
15818 /* BPABI objects are never loaded directly by an OS kernel; they are
15819 processed by a postlinker first, into an OS-specific format. If
15820 the D_PAGED bit is set on the file, BFD will align segments on
15821 page boundaries, so that an OS can directly map the file. With
15822 BPABI objects, that just results in wasted space. In addition,
15823 because we clear the D_PAGED bit, map_sections_to_segments will
15824 recognize that the program headers should not be mapped into any
15825 loadable segment. */
15826 abfd
->flags
&= ~D_PAGED
;
15827 elf32_arm_begin_write_processing (abfd
, link_info
);
15831 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
15832 struct bfd_link_info
*info
)
15834 struct elf_segment_map
*m
;
15837 /* BPABI shared libraries and executables should have a PT_DYNAMIC
15838 segment. However, because the .dynamic section is not marked
15839 with SEC_LOAD, the generic ELF code will not create such a
15841 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
15844 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
15845 if (m
->p_type
== PT_DYNAMIC
)
15850 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
15851 m
->next
= elf_tdata (abfd
)->segment_map
;
15852 elf_tdata (abfd
)->segment_map
= m
;
15856 /* Also call the generic arm routine. */
15857 return elf32_arm_modify_segment_map (abfd
, info
);
15860 /* Return address for Ith PLT stub in section PLT, for relocation REL
15861 or (bfd_vma) -1 if it should not be included. */
15864 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
15865 const arelent
*rel ATTRIBUTE_UNUSED
)
15867 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
15872 #define elf32_bed elf32_arm_symbian_bed
15874 /* The dynamic sections are not allocated on SymbianOS; the postlinker
15875 will process them and then discard them. */
15876 #undef ELF_DYNAMIC_SEC_FLAGS
15877 #define ELF_DYNAMIC_SEC_FLAGS \
15878 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15880 #undef elf_backend_emit_relocs
15882 #undef bfd_elf32_bfd_link_hash_table_create
15883 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
15884 #undef elf_backend_special_sections
15885 #define elf_backend_special_sections elf32_arm_symbian_special_sections
15886 #undef elf_backend_begin_write_processing
15887 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
15888 #undef elf_backend_final_write_processing
15889 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15891 #undef elf_backend_modify_segment_map
15892 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15894 /* There is no .got section for BPABI objects, and hence no header. */
15895 #undef elf_backend_got_header_size
15896 #define elf_backend_got_header_size 0
15898 /* Similarly, there is no .got.plt section. */
15899 #undef elf_backend_want_got_plt
15900 #define elf_backend_want_got_plt 0
15902 #undef elf_backend_plt_sym_val
15903 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
15905 #undef elf_backend_may_use_rel_p
15906 #define elf_backend_may_use_rel_p 1
15907 #undef elf_backend_may_use_rela_p
15908 #define elf_backend_may_use_rela_p 0
15909 #undef elf_backend_default_use_rela_p
15910 #define elf_backend_default_use_rela_p 0
15911 #undef elf_backend_want_plt_sym
15912 #define elf_backend_want_plt_sym 0
15913 #undef ELF_MAXPAGESIZE
15914 #define ELF_MAXPAGESIZE 0x8000
15916 #include "elf32-target.h"