1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
24 #include "libiberty.h"
27 #include "elf-vxworks.h"
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
62 static struct elf_backend_data elf32_arm_vxworks_bed
;
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
68 static reloc_howto_type elf32_arm_howto_table_1
[] =
71 HOWTO (R_ARM_NONE
, /* type */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
75 FALSE
, /* pc_relative */
77 complain_overflow_dont
,/* complain_on_overflow */
78 bfd_elf_generic_reloc
, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE
, /* partial_inplace */
83 FALSE
), /* pcrel_offset */
85 HOWTO (R_ARM_PC24
, /* type */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
89 TRUE
, /* pc_relative */
91 complain_overflow_signed
,/* complain_on_overflow */
92 bfd_elf_generic_reloc
, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE
, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE
), /* pcrel_offset */
100 HOWTO (R_ARM_ABS32
, /* type */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
104 FALSE
, /* pc_relative */
106 complain_overflow_bitfield
,/* complain_on_overflow */
107 bfd_elf_generic_reloc
, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE
, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE
), /* pcrel_offset */
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32
, /* type */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
119 TRUE
, /* pc_relative */
121 complain_overflow_bitfield
,/* complain_on_overflow */
122 bfd_elf_generic_reloc
, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE
, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE
), /* pcrel_offset */
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0
, /* type */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
134 TRUE
, /* pc_relative */
136 complain_overflow_dont
,/* complain_on_overflow */
137 bfd_elf_generic_reloc
, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE
, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE
), /* pcrel_offset */
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16
, /* type */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
149 FALSE
, /* pc_relative */
151 complain_overflow_bitfield
,/* complain_on_overflow */
152 bfd_elf_generic_reloc
, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE
, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE
), /* pcrel_offset */
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12
, /* type */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
164 FALSE
, /* pc_relative */
166 complain_overflow_bitfield
,/* complain_on_overflow */
167 bfd_elf_generic_reloc
, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE
, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE
), /* pcrel_offset */
174 HOWTO (R_ARM_THM_ABS5
, /* type */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
178 FALSE
, /* pc_relative */
180 complain_overflow_bitfield
,/* complain_on_overflow */
181 bfd_elf_generic_reloc
, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE
, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE
), /* pcrel_offset */
189 HOWTO (R_ARM_ABS8
, /* type */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
193 FALSE
, /* pc_relative */
195 complain_overflow_bitfield
,/* complain_on_overflow */
196 bfd_elf_generic_reloc
, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE
, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE
), /* pcrel_offset */
203 HOWTO (R_ARM_SBREL32
, /* type */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
207 FALSE
, /* pc_relative */
209 complain_overflow_dont
,/* complain_on_overflow */
210 bfd_elf_generic_reloc
, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE
, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE
), /* pcrel_offset */
217 HOWTO (R_ARM_THM_CALL
, /* type */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
221 TRUE
, /* pc_relative */
223 complain_overflow_signed
,/* complain_on_overflow */
224 bfd_elf_generic_reloc
, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE
, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE
), /* pcrel_offset */
231 HOWTO (R_ARM_THM_PC8
, /* type */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
235 TRUE
, /* pc_relative */
237 complain_overflow_signed
,/* complain_on_overflow */
238 bfd_elf_generic_reloc
, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE
, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE
), /* pcrel_offset */
245 HOWTO (R_ARM_BREL_ADJ
, /* type */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
249 FALSE
, /* pc_relative */
251 complain_overflow_signed
,/* complain_on_overflow */
252 bfd_elf_generic_reloc
, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE
, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE
), /* pcrel_offset */
259 HOWTO (R_ARM_SWI24
, /* type */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
263 FALSE
, /* pc_relative */
265 complain_overflow_signed
,/* complain_on_overflow */
266 bfd_elf_generic_reloc
, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE
, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE
), /* pcrel_offset */
273 HOWTO (R_ARM_THM_SWI8
, /* type */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
277 FALSE
, /* pc_relative */
279 complain_overflow_signed
,/* complain_on_overflow */
280 bfd_elf_generic_reloc
, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE
, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE
), /* pcrel_offset */
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25
, /* type */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
292 TRUE
, /* pc_relative */
294 complain_overflow_signed
,/* complain_on_overflow */
295 bfd_elf_generic_reloc
, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE
, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE
), /* pcrel_offset */
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22
, /* type */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
307 TRUE
, /* pc_relative */
309 complain_overflow_signed
,/* complain_on_overflow */
310 bfd_elf_generic_reloc
, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE
, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE
), /* pcrel_offset */
317 /* Dynamic TLS relocations. */
319 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
323 FALSE
, /* pc_relative */
325 complain_overflow_bitfield
,/* complain_on_overflow */
326 bfd_elf_generic_reloc
, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE
, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE
), /* pcrel_offset */
333 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
337 FALSE
, /* pc_relative */
339 complain_overflow_bitfield
,/* complain_on_overflow */
340 bfd_elf_generic_reloc
, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE
, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE
), /* pcrel_offset */
347 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
351 FALSE
, /* pc_relative */
353 complain_overflow_bitfield
,/* complain_on_overflow */
354 bfd_elf_generic_reloc
, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE
, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE
), /* pcrel_offset */
361 /* Relocs used in ARM Linux */
363 HOWTO (R_ARM_COPY
, /* type */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
367 FALSE
, /* pc_relative */
369 complain_overflow_bitfield
,/* complain_on_overflow */
370 bfd_elf_generic_reloc
, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE
, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE
), /* pcrel_offset */
377 HOWTO (R_ARM_GLOB_DAT
, /* type */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
381 FALSE
, /* pc_relative */
383 complain_overflow_bitfield
,/* complain_on_overflow */
384 bfd_elf_generic_reloc
, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE
, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE
), /* pcrel_offset */
391 HOWTO (R_ARM_JUMP_SLOT
, /* type */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
395 FALSE
, /* pc_relative */
397 complain_overflow_bitfield
,/* complain_on_overflow */
398 bfd_elf_generic_reloc
, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE
, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE
), /* pcrel_offset */
405 HOWTO (R_ARM_RELATIVE
, /* type */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
409 FALSE
, /* pc_relative */
411 complain_overflow_bitfield
,/* complain_on_overflow */
412 bfd_elf_generic_reloc
, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE
, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE
), /* pcrel_offset */
419 HOWTO (R_ARM_GOTOFF32
, /* type */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
423 FALSE
, /* pc_relative */
425 complain_overflow_bitfield
,/* complain_on_overflow */
426 bfd_elf_generic_reloc
, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE
, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE
), /* pcrel_offset */
433 HOWTO (R_ARM_GOTPC
, /* type */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
437 TRUE
, /* pc_relative */
439 complain_overflow_bitfield
,/* complain_on_overflow */
440 bfd_elf_generic_reloc
, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE
, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE
), /* pcrel_offset */
447 HOWTO (R_ARM_GOT32
, /* type */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
451 FALSE
, /* pc_relative */
453 complain_overflow_bitfield
,/* complain_on_overflow */
454 bfd_elf_generic_reloc
, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE
, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE
), /* pcrel_offset */
461 HOWTO (R_ARM_PLT32
, /* type */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
465 TRUE
, /* pc_relative */
467 complain_overflow_bitfield
,/* complain_on_overflow */
468 bfd_elf_generic_reloc
, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE
, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE
), /* pcrel_offset */
475 HOWTO (R_ARM_CALL
, /* type */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
479 TRUE
, /* pc_relative */
481 complain_overflow_signed
,/* complain_on_overflow */
482 bfd_elf_generic_reloc
, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE
, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE
), /* pcrel_offset */
489 HOWTO (R_ARM_JUMP24
, /* type */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
493 TRUE
, /* pc_relative */
495 complain_overflow_signed
,/* complain_on_overflow */
496 bfd_elf_generic_reloc
, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE
, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE
), /* pcrel_offset */
503 HOWTO (R_ARM_THM_JUMP24
, /* type */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
507 TRUE
, /* pc_relative */
509 complain_overflow_signed
,/* complain_on_overflow */
510 bfd_elf_generic_reloc
, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE
, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE
), /* pcrel_offset */
517 HOWTO (R_ARM_BASE_ABS
, /* type */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
521 FALSE
, /* pc_relative */
523 complain_overflow_dont
,/* complain_on_overflow */
524 bfd_elf_generic_reloc
, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE
, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE
), /* pcrel_offset */
531 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
535 TRUE
, /* pc_relative */
537 complain_overflow_dont
,/* complain_on_overflow */
538 bfd_elf_generic_reloc
, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE
, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE
), /* pcrel_offset */
545 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
549 TRUE
, /* pc_relative */
551 complain_overflow_dont
,/* complain_on_overflow */
552 bfd_elf_generic_reloc
, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE
, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE
), /* pcrel_offset */
559 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
563 TRUE
, /* pc_relative */
565 complain_overflow_dont
,/* complain_on_overflow */
566 bfd_elf_generic_reloc
, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE
, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE
), /* pcrel_offset */
573 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
577 FALSE
, /* pc_relative */
579 complain_overflow_dont
,/* complain_on_overflow */
580 bfd_elf_generic_reloc
, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE
, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE
), /* pcrel_offset */
587 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
591 FALSE
, /* pc_relative */
593 complain_overflow_dont
,/* complain_on_overflow */
594 bfd_elf_generic_reloc
, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE
, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE
), /* pcrel_offset */
601 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
605 FALSE
, /* pc_relative */
607 complain_overflow_dont
,/* complain_on_overflow */
608 bfd_elf_generic_reloc
, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE
, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE
), /* pcrel_offset */
615 HOWTO (R_ARM_TARGET1
, /* type */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
619 FALSE
, /* pc_relative */
621 complain_overflow_dont
,/* complain_on_overflow */
622 bfd_elf_generic_reloc
, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE
, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE
), /* pcrel_offset */
629 HOWTO (R_ARM_ROSEGREL32
, /* type */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
633 FALSE
, /* pc_relative */
635 complain_overflow_dont
,/* complain_on_overflow */
636 bfd_elf_generic_reloc
, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE
, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE
), /* pcrel_offset */
643 HOWTO (R_ARM_V4BX
, /* type */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
647 FALSE
, /* pc_relative */
649 complain_overflow_dont
,/* complain_on_overflow */
650 bfd_elf_generic_reloc
, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE
, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE
), /* pcrel_offset */
657 HOWTO (R_ARM_TARGET2
, /* type */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
661 FALSE
, /* pc_relative */
663 complain_overflow_signed
,/* complain_on_overflow */
664 bfd_elf_generic_reloc
, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE
, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE
), /* pcrel_offset */
671 HOWTO (R_ARM_PREL31
, /* type */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
675 TRUE
, /* pc_relative */
677 complain_overflow_signed
,/* complain_on_overflow */
678 bfd_elf_generic_reloc
, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE
, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE
), /* pcrel_offset */
685 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
689 FALSE
, /* pc_relative */
691 complain_overflow_dont
,/* complain_on_overflow */
692 bfd_elf_generic_reloc
, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE
, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE
), /* pcrel_offset */
699 HOWTO (R_ARM_MOVT_ABS
, /* type */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
703 FALSE
, /* pc_relative */
705 complain_overflow_bitfield
,/* complain_on_overflow */
706 bfd_elf_generic_reloc
, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE
, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE
), /* pcrel_offset */
713 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
717 TRUE
, /* pc_relative */
719 complain_overflow_dont
,/* complain_on_overflow */
720 bfd_elf_generic_reloc
, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE
, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE
), /* pcrel_offset */
727 HOWTO (R_ARM_MOVT_PREL
, /* type */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
731 TRUE
, /* pc_relative */
733 complain_overflow_bitfield
,/* complain_on_overflow */
734 bfd_elf_generic_reloc
, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE
, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE
), /* pcrel_offset */
741 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
745 FALSE
, /* pc_relative */
747 complain_overflow_dont
,/* complain_on_overflow */
748 bfd_elf_generic_reloc
, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE
, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE
), /* pcrel_offset */
755 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
759 FALSE
, /* pc_relative */
761 complain_overflow_bitfield
,/* complain_on_overflow */
762 bfd_elf_generic_reloc
, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE
, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE
), /* pcrel_offset */
769 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
773 TRUE
, /* pc_relative */
775 complain_overflow_dont
,/* complain_on_overflow */
776 bfd_elf_generic_reloc
, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE
, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE
), /* pcrel_offset */
783 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
787 TRUE
, /* pc_relative */
789 complain_overflow_bitfield
,/* complain_on_overflow */
790 bfd_elf_generic_reloc
, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE
, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE
), /* pcrel_offset */
797 HOWTO (R_ARM_THM_JUMP19
, /* type */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
801 TRUE
, /* pc_relative */
803 complain_overflow_signed
,/* complain_on_overflow */
804 bfd_elf_generic_reloc
, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE
, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE
), /* pcrel_offset */
811 HOWTO (R_ARM_THM_JUMP6
, /* type */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
815 TRUE
, /* pc_relative */
817 complain_overflow_unsigned
,/* complain_on_overflow */
818 bfd_elf_generic_reloc
, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE
, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE
), /* pcrel_offset */
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
828 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
832 TRUE
, /* pc_relative */
834 complain_overflow_dont
,/* complain_on_overflow */
835 bfd_elf_generic_reloc
, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE
, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE
), /* pcrel_offset */
842 HOWTO (R_ARM_THM_PC12
, /* type */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
846 TRUE
, /* pc_relative */
848 complain_overflow_dont
,/* complain_on_overflow */
849 bfd_elf_generic_reloc
, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE
, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE
), /* pcrel_offset */
856 HOWTO (R_ARM_ABS32_NOI
, /* type */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
860 FALSE
, /* pc_relative */
862 complain_overflow_dont
,/* complain_on_overflow */
863 bfd_elf_generic_reloc
, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE
, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE
), /* pcrel_offset */
870 HOWTO (R_ARM_REL32_NOI
, /* type */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
874 TRUE
, /* pc_relative */
876 complain_overflow_dont
,/* complain_on_overflow */
877 bfd_elf_generic_reloc
, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE
, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE
), /* pcrel_offset */
884 /* Group relocations. */
886 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
890 TRUE
, /* pc_relative */
892 complain_overflow_dont
,/* complain_on_overflow */
893 bfd_elf_generic_reloc
, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE
, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE
), /* pcrel_offset */
900 HOWTO (R_ARM_ALU_PC_G0
, /* type */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
904 TRUE
, /* pc_relative */
906 complain_overflow_dont
,/* complain_on_overflow */
907 bfd_elf_generic_reloc
, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE
, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE
), /* pcrel_offset */
914 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
918 TRUE
, /* pc_relative */
920 complain_overflow_dont
,/* complain_on_overflow */
921 bfd_elf_generic_reloc
, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE
, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE
), /* pcrel_offset */
928 HOWTO (R_ARM_ALU_PC_G1
, /* type */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
932 TRUE
, /* pc_relative */
934 complain_overflow_dont
,/* complain_on_overflow */
935 bfd_elf_generic_reloc
, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE
, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE
), /* pcrel_offset */
942 HOWTO (R_ARM_ALU_PC_G2
, /* type */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
946 TRUE
, /* pc_relative */
948 complain_overflow_dont
,/* complain_on_overflow */
949 bfd_elf_generic_reloc
, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE
, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE
), /* pcrel_offset */
956 HOWTO (R_ARM_LDR_PC_G1
, /* type */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
960 TRUE
, /* pc_relative */
962 complain_overflow_dont
,/* complain_on_overflow */
963 bfd_elf_generic_reloc
, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE
, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE
), /* pcrel_offset */
970 HOWTO (R_ARM_LDR_PC_G2
, /* type */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
974 TRUE
, /* pc_relative */
976 complain_overflow_dont
,/* complain_on_overflow */
977 bfd_elf_generic_reloc
, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE
, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE
), /* pcrel_offset */
984 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
988 TRUE
, /* pc_relative */
990 complain_overflow_dont
,/* complain_on_overflow */
991 bfd_elf_generic_reloc
, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE
, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE
), /* pcrel_offset */
998 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1002 TRUE
, /* pc_relative */
1004 complain_overflow_dont
,/* complain_on_overflow */
1005 bfd_elf_generic_reloc
, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE
, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE
), /* pcrel_offset */
1012 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1016 TRUE
, /* pc_relative */
1018 complain_overflow_dont
,/* complain_on_overflow */
1019 bfd_elf_generic_reloc
, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE
, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE
), /* pcrel_offset */
1026 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1030 TRUE
, /* pc_relative */
1032 complain_overflow_dont
,/* complain_on_overflow */
1033 bfd_elf_generic_reloc
, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE
, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE
), /* pcrel_offset */
1040 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1044 TRUE
, /* pc_relative */
1046 complain_overflow_dont
,/* complain_on_overflow */
1047 bfd_elf_generic_reloc
, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE
, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE
), /* pcrel_offset */
1054 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1058 TRUE
, /* pc_relative */
1060 complain_overflow_dont
,/* complain_on_overflow */
1061 bfd_elf_generic_reloc
, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE
, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE
), /* pcrel_offset */
1068 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1072 TRUE
, /* pc_relative */
1074 complain_overflow_dont
,/* complain_on_overflow */
1075 bfd_elf_generic_reloc
, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE
, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE
), /* pcrel_offset */
1082 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1086 TRUE
, /* pc_relative */
1088 complain_overflow_dont
,/* complain_on_overflow */
1089 bfd_elf_generic_reloc
, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE
, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE
), /* pcrel_offset */
1096 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1100 TRUE
, /* pc_relative */
1102 complain_overflow_dont
,/* complain_on_overflow */
1103 bfd_elf_generic_reloc
, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE
, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE
), /* pcrel_offset */
1110 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1114 TRUE
, /* pc_relative */
1116 complain_overflow_dont
,/* complain_on_overflow */
1117 bfd_elf_generic_reloc
, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE
, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE
), /* pcrel_offset */
1124 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1128 TRUE
, /* pc_relative */
1130 complain_overflow_dont
,/* complain_on_overflow */
1131 bfd_elf_generic_reloc
, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE
, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE
), /* pcrel_offset */
1138 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1142 TRUE
, /* pc_relative */
1144 complain_overflow_dont
,/* complain_on_overflow */
1145 bfd_elf_generic_reloc
, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE
, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE
), /* pcrel_offset */
1152 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1156 TRUE
, /* pc_relative */
1158 complain_overflow_dont
,/* complain_on_overflow */
1159 bfd_elf_generic_reloc
, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE
, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE
), /* pcrel_offset */
1166 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1170 TRUE
, /* pc_relative */
1172 complain_overflow_dont
,/* complain_on_overflow */
1173 bfd_elf_generic_reloc
, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE
, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE
), /* pcrel_offset */
1180 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 TRUE
, /* pc_relative */
1186 complain_overflow_dont
,/* complain_on_overflow */
1187 bfd_elf_generic_reloc
, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE
, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE
), /* pcrel_offset */
1194 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 TRUE
, /* pc_relative */
1200 complain_overflow_dont
,/* complain_on_overflow */
1201 bfd_elf_generic_reloc
, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE
, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE
), /* pcrel_offset */
1208 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 TRUE
, /* pc_relative */
1214 complain_overflow_dont
,/* complain_on_overflow */
1215 bfd_elf_generic_reloc
, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE
, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE
), /* pcrel_offset */
1222 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1226 TRUE
, /* pc_relative */
1228 complain_overflow_dont
,/* complain_on_overflow */
1229 bfd_elf_generic_reloc
, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE
, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE
), /* pcrel_offset */
1236 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1240 TRUE
, /* pc_relative */
1242 complain_overflow_dont
,/* complain_on_overflow */
1243 bfd_elf_generic_reloc
, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE
, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE
), /* pcrel_offset */
1250 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 TRUE
, /* pc_relative */
1256 complain_overflow_dont
,/* complain_on_overflow */
1257 bfd_elf_generic_reloc
, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE
, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE
), /* pcrel_offset */
1264 /* End of group relocations. */
1266 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 FALSE
, /* pc_relative */
1272 complain_overflow_dont
,/* complain_on_overflow */
1273 bfd_elf_generic_reloc
, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE
, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE
), /* pcrel_offset */
1280 HOWTO (R_ARM_MOVT_BREL
, /* type */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 FALSE
, /* pc_relative */
1286 complain_overflow_bitfield
,/* complain_on_overflow */
1287 bfd_elf_generic_reloc
, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE
, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE
), /* pcrel_offset */
1294 HOWTO (R_ARM_MOVW_BREL
, /* type */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 FALSE
, /* pc_relative */
1300 complain_overflow_dont
,/* complain_on_overflow */
1301 bfd_elf_generic_reloc
, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE
, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE
), /* pcrel_offset */
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1312 FALSE
, /* pc_relative */
1314 complain_overflow_dont
,/* complain_on_overflow */
1315 bfd_elf_generic_reloc
, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE
, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE
), /* pcrel_offset */
1322 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1326 FALSE
, /* pc_relative */
1328 complain_overflow_bitfield
,/* complain_on_overflow */
1329 bfd_elf_generic_reloc
, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE
, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE
), /* pcrel_offset */
1336 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1340 FALSE
, /* pc_relative */
1342 complain_overflow_dont
,/* complain_on_overflow */
1343 bfd_elf_generic_reloc
, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE
, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE
), /* pcrel_offset */
1350 EMPTY_HOWTO (90), /* Unallocated. */
1355 HOWTO (R_ARM_PLT32_ABS
, /* type */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 FALSE
, /* pc_relative */
1361 complain_overflow_dont
,/* complain_on_overflow */
1362 bfd_elf_generic_reloc
, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE
, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE
), /* pcrel_offset */
1369 HOWTO (R_ARM_GOT_ABS
, /* type */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 FALSE
, /* pc_relative */
1375 complain_overflow_dont
,/* complain_on_overflow */
1376 bfd_elf_generic_reloc
, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE
, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE
), /* pcrel_offset */
1383 HOWTO (R_ARM_GOT_PREL
, /* type */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 TRUE
, /* pc_relative */
1389 complain_overflow_dont
, /* complain_on_overflow */
1390 bfd_elf_generic_reloc
, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE
, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE
), /* pcrel_offset */
1397 HOWTO (R_ARM_GOT_BREL12
, /* type */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1401 FALSE
, /* pc_relative */
1403 complain_overflow_bitfield
,/* complain_on_overflow */
1404 bfd_elf_generic_reloc
, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE
, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE
), /* pcrel_offset */
1411 HOWTO (R_ARM_GOTOFF12
, /* type */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1415 FALSE
, /* pc_relative */
1417 complain_overflow_bitfield
,/* complain_on_overflow */
1418 bfd_elf_generic_reloc
, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE
, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE
), /* pcrel_offset */
1425 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 FALSE
, /* pc_relative */
1434 complain_overflow_dont
, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE
, /* partial_inplace */
1440 FALSE
), /* pcrel_offset */
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 FALSE
, /* pc_relative */
1449 complain_overflow_dont
, /* complain_on_overflow */
1450 NULL
, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE
, /* partial_inplace */
1455 FALSE
), /* pcrel_offset */
1457 HOWTO (R_ARM_THM_JUMP11
, /* type */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1461 TRUE
, /* pc_relative */
1463 complain_overflow_signed
, /* complain_on_overflow */
1464 bfd_elf_generic_reloc
, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE
, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE
), /* pcrel_offset */
1471 HOWTO (R_ARM_THM_JUMP8
, /* type */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1475 TRUE
, /* pc_relative */
1477 complain_overflow_signed
, /* complain_on_overflow */
1478 bfd_elf_generic_reloc
, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE
, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE
), /* pcrel_offset */
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32
, /* type */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 FALSE
, /* pc_relative */
1492 complain_overflow_bitfield
,/* complain_on_overflow */
1493 NULL
, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE
, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE
), /* pcrel_offset */
1500 HOWTO (R_ARM_TLS_LDM32
, /* type */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1504 FALSE
, /* pc_relative */
1506 complain_overflow_bitfield
,/* complain_on_overflow */
1507 bfd_elf_generic_reloc
, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE
, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE
), /* pcrel_offset */
1514 HOWTO (R_ARM_TLS_LDO32
, /* type */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1518 FALSE
, /* pc_relative */
1520 complain_overflow_bitfield
,/* complain_on_overflow */
1521 bfd_elf_generic_reloc
, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE
, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE
), /* pcrel_offset */
1528 HOWTO (R_ARM_TLS_IE32
, /* type */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1532 FALSE
, /* pc_relative */
1534 complain_overflow_bitfield
,/* complain_on_overflow */
1535 NULL
, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE
, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE
), /* pcrel_offset */
1542 HOWTO (R_ARM_TLS_LE32
, /* type */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 FALSE
, /* pc_relative */
1548 complain_overflow_bitfield
,/* complain_on_overflow */
1549 bfd_elf_generic_reloc
, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE
, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE
), /* pcrel_offset */
1556 HOWTO (R_ARM_TLS_LDO12
, /* type */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 FALSE
, /* pc_relative */
1562 complain_overflow_bitfield
,/* complain_on_overflow */
1563 bfd_elf_generic_reloc
, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE
, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE
), /* pcrel_offset */
1570 HOWTO (R_ARM_TLS_LE12
, /* type */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1574 FALSE
, /* pc_relative */
1576 complain_overflow_bitfield
,/* complain_on_overflow */
1577 bfd_elf_generic_reloc
, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE
, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE
), /* pcrel_offset */
1584 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1588 FALSE
, /* pc_relative */
1590 complain_overflow_bitfield
,/* complain_on_overflow */
1591 bfd_elf_generic_reloc
, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE
, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE
), /* pcrel_offset */
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1603 249-255 extended, currently unused, relocations: */
1605 static reloc_howto_type elf32_arm_howto_table_2
[4] =
1607 HOWTO (R_ARM_RREL32
, /* type */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1611 FALSE
, /* pc_relative */
1613 complain_overflow_dont
,/* complain_on_overflow */
1614 bfd_elf_generic_reloc
, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE
, /* partial_inplace */
1619 FALSE
), /* pcrel_offset */
1621 HOWTO (R_ARM_RABS32
, /* type */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1625 FALSE
, /* pc_relative */
1627 complain_overflow_dont
,/* complain_on_overflow */
1628 bfd_elf_generic_reloc
, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE
, /* partial_inplace */
1633 FALSE
), /* pcrel_offset */
1635 HOWTO (R_ARM_RPC24
, /* type */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1639 FALSE
, /* pc_relative */
1641 complain_overflow_dont
,/* complain_on_overflow */
1642 bfd_elf_generic_reloc
, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE
, /* partial_inplace */
1647 FALSE
), /* pcrel_offset */
1649 HOWTO (R_ARM_RBASE
, /* type */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1653 FALSE
, /* pc_relative */
1655 complain_overflow_dont
,/* complain_on_overflow */
1656 bfd_elf_generic_reloc
, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE
, /* partial_inplace */
1661 FALSE
) /* pcrel_offset */
1664 static reloc_howto_type
*
1665 elf32_arm_howto_from_type (unsigned int r_type
)
1667 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1668 return &elf32_arm_howto_table_1
[r_type
];
1670 if (r_type
>= R_ARM_RREL32
1671 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1672 return &elf32_arm_howto_table_2
[r_type
- R_ARM_RREL32
];
1678 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1679 Elf_Internal_Rela
* elf_reloc
)
1681 unsigned int r_type
;
1683 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1684 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1687 struct elf32_arm_reloc_map
1689 bfd_reloc_code_real_type bfd_reloc_val
;
1690 unsigned char elf_reloc_val
;
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1696 {BFD_RELOC_NONE
, R_ARM_NONE
},
1697 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1698 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1699 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1700 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1701 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1702 {BFD_RELOC_32
, R_ARM_ABS32
},
1703 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1704 {BFD_RELOC_8
, R_ARM_ABS8
},
1705 {BFD_RELOC_16
, R_ARM_ABS16
},
1706 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1707 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1714 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1715 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1716 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1717 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1718 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1719 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1720 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1721 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1722 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1723 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1724 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1725 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1726 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1727 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1728 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1729 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1732 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1733 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1734 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1735 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1736 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1737 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1738 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1739 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1740 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1741 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1742 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1746 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1748 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1749 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1750 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1751 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1752 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1753 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1754 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1755 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1756 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1757 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1758 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1760 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1762 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1763 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1764 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1765 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1766 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1767 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1768 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1769 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1770 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1771 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1772 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1773 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1776 static reloc_howto_type
*
1777 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1778 bfd_reloc_code_real_type code
)
1782 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1783 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1789 static reloc_howto_type
*
1790 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1795 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1796 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1797 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1798 return &elf32_arm_howto_table_1
[i
];
1800 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1801 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1802 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1803 return &elf32_arm_howto_table_2
[i
];
1808 /* Support for core dump NOTE sections. */
1811 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1816 switch (note
->descsz
)
1821 case 148: /* Linux/ARM 32-bit. */
1823 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1826 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1837 size
, note
->descpos
+ offset
);
1841 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1843 switch (note
->descsz
)
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd
)->core_program
1850 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1851 elf_tdata (abfd
)->core_command
1852 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1859 char *command
= elf_tdata (abfd
)->core_command
;
1860 int n
= strlen (command
);
1862 if (0 < n
&& command
[n
- 1] == ' ')
1863 command
[n
- 1] = '\0';
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1877 typedef unsigned long int insn32
;
1878 typedef unsigned short int insn16
;
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1904 /* The name of the dynamic interpreter. This is put in the .interp
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1908 #ifdef FOUR_WORD_PLT
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1914 static const bfd_vma elf32_arm_plt0_entry
[] =
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1922 /* Subsequent entries in a procedure linkage table look like
1924 static const bfd_vma elf32_arm_plt_entry
[] =
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1938 static const bfd_vma elf32_arm_plt0_entry
[] =
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1947 /* Subsequent entries in a procedure linkage table look like
1949 static const bfd_vma elf32_arm_plt_entry
[] =
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
1998 /* The entries in a PLT when using a DLL-based target with multiple
2000 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2013 static const bfd_vma arm_long_branch_stub
[] =
2015 0xe51ff004, /* ldr pc, [pc, #-4] */
2016 0x00000000, /* dcd R_ARM_ABS32(X) */
2019 static const bfd_vma arm_thumb_v4t_long_branch_stub
[] =
2021 0xe59fc000, /* ldr ip, [pc, #0] */
2022 0xe12fff1c, /* bx ip */
2023 0x00000000, /* dcd R_ARM_ABS32(X) */
2026 static const bfd_vma arm_thumb_thumb_long_branch_stub
[] =
2028 0x4e02b540, /* push {r6, lr} */
2029 /* ldr r6, [pc, #8] */
2030 0x473046fe, /* mov lr, pc */
2032 0xbf00bd40, /* pop {r6, pc} */
2034 0x00000000, /* dcd R_ARM_ABS32(X) */
2037 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub
[] =
2039 0x4e03b540, /* push {r6, lr} */
2040 /* ldr r6, [pc, #12] */
2041 0x473046fe, /* mov lr, pc */
2043 0xe8bd4040, /* pop {r6, pc} */
2044 0xe12fff1e, /* bx lr */
2045 0x00000000, /* dcd R_ARM_ABS32(X) */
2048 static const bfd_vma arm_thumb_arm_v4t_short_branch_stub
[] =
2050 0x46c04778, /* bx pc */
2052 0xea000000, /* b (X) */
2055 static const bfd_vma arm_pic_long_branch_stub
[] =
2057 0xe59fc000, /* ldr r12, [pc] */
2058 0xe08ff00c, /* add pc, pc, ip */
2059 0x00000000, /* dcd R_ARM_REL32(X) */
2062 /* Section name for stubs is the associated section name plus this
2064 #define STUB_SUFFIX ".stub"
2066 enum elf32_arm_stub_type
2069 arm_stub_long_branch
,
2070 arm_thumb_v4t_stub_long_branch
,
2071 arm_thumb_thumb_stub_long_branch
,
2072 arm_thumb_arm_v4t_stub_long_branch
,
2073 arm_thumb_arm_v4t_stub_short_branch
,
2074 arm_stub_pic_long_branch
,
2077 struct elf32_arm_stub_hash_entry
2079 /* Base hash table entry structure. */
2080 struct bfd_hash_entry root
;
2082 /* The stub section. */
2085 /* Offset within stub_sec of the beginning of this stub. */
2086 bfd_vma stub_offset
;
2088 /* Given the symbol's value and its section we can determine its final
2089 value when building the stubs (so the stub knows where to jump). */
2090 bfd_vma target_value
;
2091 asection
*target_section
;
2093 enum elf32_arm_stub_type stub_type
;
2095 /* The symbol table entry, if any, that this was derived from. */
2096 struct elf32_arm_link_hash_entry
*h
;
2098 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2099 unsigned char st_type
;
2101 /* Where this stub is being called from, or, in the case of combined
2102 stub sections, the first input section in the group. */
2105 /* The name for the local symbol at the start of this stub. The
2106 stub name in the hash table has to be unique; this does not, so
2107 it can be friendlier. */
2111 /* Used to build a map of a section. This is required for mixed-endian
2114 typedef struct elf32_elf_section_map
2119 elf32_arm_section_map
;
2121 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2125 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2126 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2127 VFP11_ERRATUM_ARM_VENEER
,
2128 VFP11_ERRATUM_THUMB_VENEER
2130 elf32_vfp11_erratum_type
;
2132 typedef struct elf32_vfp11_erratum_list
2134 struct elf32_vfp11_erratum_list
*next
;
2140 struct elf32_vfp11_erratum_list
*veneer
;
2141 unsigned int vfp_insn
;
2145 struct elf32_vfp11_erratum_list
*branch
;
2149 elf32_vfp11_erratum_type type
;
2151 elf32_vfp11_erratum_list
;
2153 typedef struct _arm_elf_section_data
2155 struct bfd_elf_section_data elf
;
2156 unsigned int mapcount
;
2157 unsigned int mapsize
;
2158 elf32_arm_section_map
*map
;
2159 unsigned int erratumcount
;
2160 elf32_vfp11_erratum_list
*erratumlist
;
2162 _arm_elf_section_data
;
2164 #define elf32_arm_section_data(sec) \
2165 ((_arm_elf_section_data *) elf_section_data (sec))
2167 /* The size of the thread control block. */
2170 struct elf_arm_obj_tdata
2172 struct elf_obj_tdata root
;
2174 /* tls_type for each local got entry. */
2175 char *local_got_tls_type
;
2177 /* Zero to warn when linking objects with incompatible enum sizes. */
2178 int no_enum_size_warning
;
2180 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2181 int no_wchar_size_warning
;
2184 #define elf_arm_tdata(bfd) \
2185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2187 #define elf32_arm_local_got_tls_type(bfd) \
2188 (elf_arm_tdata (bfd)->local_got_tls_type)
2190 #define is_arm_elf(bfd) \
2191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2192 && elf_tdata (bfd) != NULL \
2193 && elf_object_id (bfd) == ARM_ELF_TDATA)
2196 elf32_arm_mkobject (bfd
*abfd
)
2198 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2202 /* The ARM linker needs to keep track of the number of relocs that it
2203 decides to copy in check_relocs for each symbol. This is so that
2204 it can discard PC relative relocs if it doesn't need them when
2205 linking with -Bsymbolic. We store the information in a field
2206 extending the regular ELF linker hash table. */
2208 /* This structure keeps track of the number of relocs we have copied
2209 for a given symbol. */
2210 struct elf32_arm_relocs_copied
2213 struct elf32_arm_relocs_copied
* next
;
2214 /* A section in dynobj. */
2216 /* Number of relocs copied in this section. */
2217 bfd_size_type count
;
2218 /* Number of PC-relative relocs copied in this section. */
2219 bfd_size_type pc_count
;
2222 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2224 /* Arm ELF linker hash entry. */
2225 struct elf32_arm_link_hash_entry
2227 struct elf_link_hash_entry root
;
2229 /* Number of PC relative relocs copied for this symbol. */
2230 struct elf32_arm_relocs_copied
* relocs_copied
;
2232 /* We reference count Thumb references to a PLT entry separately,
2233 so that we can emit the Thumb trampoline only if needed. */
2234 bfd_signed_vma plt_thumb_refcount
;
2236 /* Some references from Thumb code may be eliminated by BL->BLX
2237 conversion, so record them separately. */
2238 bfd_signed_vma plt_maybe_thumb_refcount
;
2240 /* Since PLT entries have variable size if the Thumb prologue is
2241 used, we need to record the index into .got.plt instead of
2242 recomputing it from the PLT offset. */
2243 bfd_signed_vma plt_got_offset
;
2245 #define GOT_UNKNOWN 0
2246 #define GOT_NORMAL 1
2247 #define GOT_TLS_GD 2
2248 #define GOT_TLS_IE 4
2249 unsigned char tls_type
;
2251 /* The symbol marking the real symbol location for exported thumb
2252 symbols with Arm stubs. */
2253 struct elf_link_hash_entry
*export_glue
;
2255 /* A pointer to the most recently used stub hash entry against this
2257 struct elf32_arm_stub_hash_entry
*stub_cache
;
2260 /* Traverse an arm ELF linker hash table. */
2261 #define elf32_arm_link_hash_traverse(table, func, info) \
2262 (elf_link_hash_traverse \
2264 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2267 /* Get the ARM elf linker hash table from a link_info structure. */
2268 #define elf32_arm_hash_table(info) \
2269 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2271 #define arm_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf32_arm_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2275 /* ARM ELF linker hash table. */
2276 struct elf32_arm_link_hash_table
2278 /* The main hash table. */
2279 struct elf_link_hash_table root
;
2281 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2282 bfd_size_type thumb_glue_size
;
2284 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2285 bfd_size_type arm_glue_size
;
2287 /* The size in bytes of section containing the ARMv4 BX veneers. */
2288 bfd_size_type bx_glue_size
;
2290 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2291 veneer has been populated. */
2292 bfd_vma bx_glue_offset
[15];
2294 /* The size in bytes of the section containing glue for VFP11 erratum
2296 bfd_size_type vfp11_erratum_glue_size
;
2298 /* An arbitrary input BFD chosen to hold the glue sections. */
2299 bfd
* bfd_of_glue_owner
;
2301 /* Nonzero to output a BE8 image. */
2304 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2305 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2308 /* The relocation to use for R_ARM_TARGET2 relocations. */
2311 /* 0 = Ignore R_ARM_V4BX.
2312 1 = Convert BX to MOV PC.
2313 2 = Generate v4 interworing stubs. */
2316 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2319 /* What sort of code sequences we should look for which may trigger the
2320 VFP11 denorm erratum. */
2321 bfd_arm_vfp11_fix vfp11_fix
;
2323 /* Global counter for the number of fixes we have emitted. */
2324 int num_vfp11_fixes
;
2326 /* Nonzero to force PIC branch veneers. */
2329 /* The number of bytes in the initial entry in the PLT. */
2330 bfd_size_type plt_header_size
;
2332 /* The number of bytes in the subsequent PLT etries. */
2333 bfd_size_type plt_entry_size
;
2335 /* True if the target system is VxWorks. */
2338 /* True if the target system is Symbian OS. */
2341 /* True if the target uses REL relocations. */
2344 /* Short-cuts to get to dynamic linker sections. */
2353 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2356 /* Data for R_ARM_TLS_LDM32 relocations. */
2359 bfd_signed_vma refcount
;
2363 /* Small local sym to section mapping cache. */
2364 struct sym_sec_cache sym_sec
;
2366 /* For convenience in allocate_dynrelocs. */
2369 /* The stub hash table. */
2370 struct bfd_hash_table stub_hash_table
;
2372 /* Linker stub bfd. */
2375 /* Linker call-backs. */
2376 asection
* (*add_stub_section
) (const char *, asection
*);
2377 void (*layout_sections_again
) (void);
2379 /* Array to keep track of which stub sections have been created, and
2380 information on stub grouping. */
2383 /* This is the section to which stubs in the group will be
2386 /* The stub section. */
2390 /* Assorted information used by elf32_arm_size_stubs. */
2391 unsigned int bfd_count
;
2393 asection
**input_list
;
2396 /* Create an entry in an ARM ELF linker hash table. */
2398 static struct bfd_hash_entry
*
2399 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2400 struct bfd_hash_table
* table
,
2401 const char * string
)
2403 struct elf32_arm_link_hash_entry
* ret
=
2404 (struct elf32_arm_link_hash_entry
*) entry
;
2406 /* Allocate the structure if it has not already been allocated by a
2409 ret
= bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2411 return (struct bfd_hash_entry
*) ret
;
2413 /* Call the allocation method of the superclass. */
2414 ret
= ((struct elf32_arm_link_hash_entry
*)
2415 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2419 ret
->relocs_copied
= NULL
;
2420 ret
->tls_type
= GOT_UNKNOWN
;
2421 ret
->plt_thumb_refcount
= 0;
2422 ret
->plt_maybe_thumb_refcount
= 0;
2423 ret
->plt_got_offset
= -1;
2424 ret
->export_glue
= NULL
;
2426 ret
->stub_cache
= NULL
;
2429 return (struct bfd_hash_entry
*) ret
;
2432 /* Initialize an entry in the stub hash table. */
2434 static struct bfd_hash_entry
*
2435 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2436 struct bfd_hash_table
*table
,
2439 /* Allocate the structure if it has not already been allocated by a
2443 entry
= bfd_hash_allocate (table
,
2444 sizeof (struct elf32_arm_stub_hash_entry
));
2449 /* Call the allocation method of the superclass. */
2450 entry
= bfd_hash_newfunc (entry
, table
, string
);
2453 struct elf32_arm_stub_hash_entry
*eh
;
2455 /* Initialize the local fields. */
2456 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
2457 eh
->stub_sec
= NULL
;
2458 eh
->stub_offset
= 0;
2459 eh
->target_value
= 0;
2460 eh
->target_section
= NULL
;
2461 eh
->stub_type
= arm_stub_none
;
2469 /* Return true if NAME is the name of the relocation section associated
2473 reloc_section_p (struct elf32_arm_link_hash_table
*htab
,
2474 const char *name
, asection
*s
)
2477 return CONST_STRNEQ (name
, ".rel") && strcmp (s
->name
, name
+ 4) == 0;
2479 return CONST_STRNEQ (name
, ".rela") && strcmp (s
->name
, name
+ 5) == 0;
2482 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2483 shortcuts to them in our hash table. */
2486 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
2488 struct elf32_arm_link_hash_table
*htab
;
2490 htab
= elf32_arm_hash_table (info
);
2491 /* BPABI objects never have a GOT, or associated sections. */
2492 if (htab
->symbian_p
)
2495 if (! _bfd_elf_create_got_section (dynobj
, info
))
2498 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
2499 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
2500 if (!htab
->sgot
|| !htab
->sgotplt
)
2503 htab
->srelgot
= bfd_make_section_with_flags (dynobj
,
2504 RELOC_SECTION (htab
, ".got"),
2505 (SEC_ALLOC
| SEC_LOAD
2508 | SEC_LINKER_CREATED
2510 if (htab
->srelgot
== NULL
2511 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 2))
2516 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2517 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2521 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
2523 struct elf32_arm_link_hash_table
*htab
;
2525 htab
= elf32_arm_hash_table (info
);
2526 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
2529 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
2532 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
2533 htab
->srelplt
= bfd_get_section_by_name (dynobj
,
2534 RELOC_SECTION (htab
, ".plt"));
2535 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
2537 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
2538 RELOC_SECTION (htab
, ".bss"));
2540 if (htab
->vxworks_p
)
2542 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
2547 htab
->plt_header_size
= 0;
2548 htab
->plt_entry_size
2549 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
2553 htab
->plt_header_size
2554 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
2555 htab
->plt_entry_size
2556 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
2563 || (!info
->shared
&& !htab
->srelbss
))
2569 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2572 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
2573 struct elf_link_hash_entry
*dir
,
2574 struct elf_link_hash_entry
*ind
)
2576 struct elf32_arm_link_hash_entry
*edir
, *eind
;
2578 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
2579 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
2581 if (eind
->relocs_copied
!= NULL
)
2583 if (edir
->relocs_copied
!= NULL
)
2585 struct elf32_arm_relocs_copied
**pp
;
2586 struct elf32_arm_relocs_copied
*p
;
2588 /* Add reloc counts against the indirect sym to the direct sym
2589 list. Merge any entries against the same section. */
2590 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
; )
2592 struct elf32_arm_relocs_copied
*q
;
2594 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
2595 if (q
->section
== p
->section
)
2597 q
->pc_count
+= p
->pc_count
;
2598 q
->count
+= p
->count
;
2605 *pp
= edir
->relocs_copied
;
2608 edir
->relocs_copied
= eind
->relocs_copied
;
2609 eind
->relocs_copied
= NULL
;
2612 if (ind
->root
.type
== bfd_link_hash_indirect
)
2614 /* Copy over PLT info. */
2615 edir
->plt_thumb_refcount
+= eind
->plt_thumb_refcount
;
2616 eind
->plt_thumb_refcount
= 0;
2617 edir
->plt_maybe_thumb_refcount
+= eind
->plt_maybe_thumb_refcount
;
2618 eind
->plt_maybe_thumb_refcount
= 0;
2620 if (dir
->got
.refcount
<= 0)
2622 edir
->tls_type
= eind
->tls_type
;
2623 eind
->tls_type
= GOT_UNKNOWN
;
2627 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2630 /* Create an ARM elf linker hash table. */
2632 static struct bfd_link_hash_table
*
2633 elf32_arm_link_hash_table_create (bfd
*abfd
)
2635 struct elf32_arm_link_hash_table
*ret
;
2636 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
2638 ret
= bfd_malloc (amt
);
2642 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
2643 elf32_arm_link_hash_newfunc
,
2644 sizeof (struct elf32_arm_link_hash_entry
)))
2651 ret
->sgotplt
= NULL
;
2652 ret
->srelgot
= NULL
;
2654 ret
->srelplt
= NULL
;
2655 ret
->sdynbss
= NULL
;
2656 ret
->srelbss
= NULL
;
2657 ret
->srelplt2
= NULL
;
2658 ret
->thumb_glue_size
= 0;
2659 ret
->arm_glue_size
= 0;
2660 ret
->bx_glue_size
= 0;
2661 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
2662 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
2663 ret
->vfp11_erratum_glue_size
= 0;
2664 ret
->num_vfp11_fixes
= 0;
2665 ret
->bfd_of_glue_owner
= NULL
;
2666 ret
->byteswap_code
= 0;
2667 ret
->target1_is_rel
= 0;
2668 ret
->target2_reloc
= R_ARM_NONE
;
2669 #ifdef FOUR_WORD_PLT
2670 ret
->plt_header_size
= 16;
2671 ret
->plt_entry_size
= 16;
2673 ret
->plt_header_size
= 20;
2674 ret
->plt_entry_size
= 12;
2681 ret
->sym_sec
.abfd
= NULL
;
2683 ret
->tls_ldm_got
.refcount
= 0;
2684 ret
->stub_bfd
= NULL
;
2685 ret
->add_stub_section
= NULL
;
2686 ret
->layout_sections_again
= NULL
;
2687 ret
->stub_group
= NULL
;
2690 ret
->input_list
= NULL
;
2692 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2693 sizeof (struct elf32_arm_stub_hash_entry
)))
2699 return &ret
->root
.root
;
2702 /* Free the derived linker hash table. */
2705 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
2707 struct elf32_arm_link_hash_table
*ret
2708 = (struct elf32_arm_link_hash_table
*) hash
;
2710 bfd_hash_table_free (&ret
->stub_hash_table
);
2711 _bfd_generic_link_hash_table_free (hash
);
2714 /* Determine if we're dealing with a Thumb only architecture. */
2717 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
2719 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2723 if (arch
!= TAG_CPU_ARCH_V7
)
2726 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2727 Tag_CPU_arch_profile
);
2729 return profile
== 'M';
2732 /* Determine if we're dealing with a Thumb-2 object. */
2735 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
2737 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2739 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
2743 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
2747 case arm_thumb_thumb_stub_long_branch
:
2748 case arm_thumb_arm_v4t_stub_long_branch
:
2749 case arm_thumb_arm_v4t_stub_short_branch
:
2760 /* Determine the type of stub needed, if any, for a call. */
2762 static enum elf32_arm_stub_type
2763 arm_type_of_stub (struct bfd_link_info
*info
,
2764 asection
*input_sec
,
2765 const Elf_Internal_Rela
*rel
,
2766 unsigned char st_type
,
2767 struct elf32_arm_link_hash_entry
*hash
,
2768 bfd_vma destination
,
2774 bfd_signed_vma branch_offset
;
2775 unsigned int r_type
;
2776 struct elf32_arm_link_hash_table
* globals
;
2779 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
2781 /* We don't know the actual type of destination in case it is of
2782 type STT_SECTION: give up. */
2783 if (st_type
== STT_SECTION
)
2786 globals
= elf32_arm_hash_table (info
);
2788 thumb_only
= using_thumb_only (globals
);
2790 thumb2
= using_thumb2 (globals
);
2792 /* Determine where the call point is. */
2793 location
= (input_sec
->output_offset
2794 + input_sec
->output_section
->vma
2797 branch_offset
= (bfd_signed_vma
)(destination
- location
);
2799 r_type
= ELF32_R_TYPE (rel
->r_info
);
2801 /* If the call will go through a PLT entry then we do not need
2803 if (globals
->splt
!= NULL
&& hash
!= NULL
&& hash
->root
.plt
.offset
!= (bfd_vma
) -1)
2806 if (r_type
== R_ARM_THM_CALL
)
2809 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
2810 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
2812 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
2813 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
2814 || ((st_type
!= STT_ARM_TFUNC
) && !globals
->use_blx
))
2816 if (st_type
== STT_ARM_TFUNC
)
2818 /* Thumb to thumb. */
2821 stub_type
= (info
->shared
| globals
->pic_veneer
)
2822 ? ((globals
->use_blx
)
2823 ? arm_stub_pic_long_branch
2825 : (globals
->use_blx
)
2826 ? arm_stub_long_branch
2831 stub_type
= (info
->shared
| globals
->pic_veneer
)
2833 : (globals
->use_blx
)
2834 ? arm_thumb_thumb_stub_long_branch
2842 && sym_sec
->owner
!= NULL
2843 && !INTERWORK_FLAG (sym_sec
->owner
))
2845 (*_bfd_error_handler
)
2846 (_("%B(%s): warning: interworking not enabled.\n"
2847 " first occurrence: %B: Thumb call to ARM"),
2848 sym_sec
->owner
, input_bfd
, name
);
2851 stub_type
= (info
->shared
| globals
->pic_veneer
)
2852 ? ((globals
->use_blx
)
2853 ? arm_stub_pic_long_branch
2855 : (globals
->use_blx
)
2856 ? arm_stub_long_branch
2857 : arm_thumb_arm_v4t_stub_long_branch
;
2859 /* Handle v4t short branches. */
2860 if ((stub_type
== arm_thumb_arm_v4t_stub_long_branch
)
2861 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
2862 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
2863 stub_type
= arm_thumb_arm_v4t_stub_short_branch
;
2867 else if (r_type
== R_ARM_CALL
)
2869 if (st_type
== STT_ARM_TFUNC
)
2874 && sym_sec
->owner
!= NULL
2875 && !INTERWORK_FLAG (sym_sec
->owner
))
2877 (*_bfd_error_handler
)
2878 (_("%B(%s): warning: interworking not enabled.\n"
2879 " first occurrence: %B: Thumb call to ARM"),
2880 sym_sec
->owner
, input_bfd
, name
);
2883 /* We have an extra 2-bytes reach because of
2884 the mode change (bit 24 (H) of BLX encoding). */
2885 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
2886 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
2887 || !globals
->use_blx
)
2889 stub_type
= (info
->shared
| globals
->pic_veneer
)
2890 ? arm_stub_pic_long_branch
2891 : (globals
->use_blx
)
2892 ? arm_stub_long_branch
2893 : arm_thumb_v4t_stub_long_branch
;
2899 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
2900 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
2902 stub_type
= (info
->shared
| globals
->pic_veneer
)
2903 ? arm_stub_pic_long_branch
2904 : arm_stub_long_branch
;
2912 /* Build a name for an entry in the stub hash table. */
2915 elf32_arm_stub_name (const asection
*input_section
,
2916 const asection
*sym_sec
,
2917 const struct elf32_arm_link_hash_entry
*hash
,
2918 const Elf_Internal_Rela
*rel
)
2925 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1;
2926 stub_name
= bfd_malloc (len
);
2927 if (stub_name
!= NULL
)
2928 sprintf (stub_name
, "%08x_%s+%x",
2929 input_section
->id
& 0xffffffff,
2930 hash
->root
.root
.root
.string
,
2931 (int) rel
->r_addend
& 0xffffffff);
2935 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2936 stub_name
= bfd_malloc (len
);
2937 if (stub_name
!= NULL
)
2938 sprintf (stub_name
, "%08x_%x:%x+%x",
2939 input_section
->id
& 0xffffffff,
2940 sym_sec
->id
& 0xffffffff,
2941 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
2942 (int) rel
->r_addend
& 0xffffffff);
2948 /* Look up an entry in the stub hash. Stub entries are cached because
2949 creating the stub name takes a bit of time. */
2951 static struct elf32_arm_stub_hash_entry
*
2952 elf32_arm_get_stub_entry (const asection
*input_section
,
2953 const asection
*sym_sec
,
2954 struct elf_link_hash_entry
*hash
,
2955 const Elf_Internal_Rela
*rel
,
2956 struct elf32_arm_link_hash_table
*htab
)
2958 struct elf32_arm_stub_hash_entry
*stub_entry
;
2959 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
2960 const asection
*id_sec
;
2962 if ((input_section
->flags
& SEC_CODE
) == 0)
2965 /* If this input section is part of a group of sections sharing one
2966 stub section, then use the id of the first section in the group.
2967 Stub names need to include a section id, as there may well be
2968 more than one stub used to reach say, printf, and we need to
2969 distinguish between them. */
2970 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
2972 if (h
!= NULL
&& h
->stub_cache
!= NULL
2973 && h
->stub_cache
->h
== h
2974 && h
->stub_cache
->id_sec
== id_sec
)
2976 stub_entry
= h
->stub_cache
;
2982 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
);
2983 if (stub_name
== NULL
)
2986 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
2987 stub_name
, FALSE
, FALSE
);
2989 h
->stub_cache
= stub_entry
;
2997 /* Add a new stub entry to the stub hash. Not all fields of the new
2998 stub entry are initialised. */
3000 static struct elf32_arm_stub_hash_entry
*
3001 elf32_arm_add_stub (const char *stub_name
,
3003 struct elf32_arm_link_hash_table
*htab
)
3007 struct elf32_arm_stub_hash_entry
*stub_entry
;
3009 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3010 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3011 if (stub_sec
== NULL
)
3013 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3014 if (stub_sec
== NULL
)
3020 namelen
= strlen (link_sec
->name
);
3021 len
= namelen
+ sizeof (STUB_SUFFIX
);
3022 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
3026 memcpy (s_name
, link_sec
->name
, namelen
);
3027 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3028 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3029 if (stub_sec
== NULL
)
3031 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3033 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3036 /* Enter this entry into the linker stub hash table. */
3037 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3039 if (stub_entry
== NULL
)
3041 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3047 stub_entry
->stub_sec
= stub_sec
;
3048 stub_entry
->stub_offset
= 0;
3049 stub_entry
->id_sec
= link_sec
;
3054 /* Store an Arm insn into an output section not processed by
3055 elf32_arm_write_section. */
3058 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3059 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3061 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3062 bfd_putl32 (val
, ptr
);
3064 bfd_putb32 (val
, ptr
);
3067 /* Store a 16-bit Thumb insn into an output section not processed by
3068 elf32_arm_write_section. */
3071 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3072 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3074 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3075 bfd_putl16 (val
, ptr
);
3077 bfd_putb16 (val
, ptr
);
3081 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3084 struct elf32_arm_stub_hash_entry
*stub_entry
;
3085 struct bfd_link_info
*info
;
3086 struct elf32_arm_link_hash_table
*htab
;
3094 const bfd_vma
*template;
3096 struct elf32_arm_link_hash_table
* globals
;
3098 /* Massage our args to the form they really have. */
3099 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3100 info
= (struct bfd_link_info
*) in_arg
;
3102 globals
= elf32_arm_hash_table (info
);
3104 htab
= elf32_arm_hash_table (info
);
3105 stub_sec
= stub_entry
->stub_sec
;
3107 /* Make a note of the offset within the stubs for this entry. */
3108 stub_entry
->stub_offset
= stub_sec
->size
;
3109 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3111 stub_bfd
= stub_sec
->owner
;
3113 /* This is the address of the start of the stub. */
3114 stub_addr
= stub_sec
->output_section
->vma
+ stub_sec
->output_offset
3115 + stub_entry
->stub_offset
;
3117 /* This is the address of the stub destination. */
3118 sym_value
= (stub_entry
->target_value
3119 + stub_entry
->target_section
->output_offset
3120 + stub_entry
->target_section
->output_section
->vma
);
3122 switch (stub_entry
->stub_type
)
3124 case arm_stub_long_branch
:
3125 template = arm_long_branch_stub
;
3126 template_size
= (sizeof (arm_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3128 case arm_thumb_v4t_stub_long_branch
:
3129 template = arm_thumb_v4t_long_branch_stub
;
3130 template_size
= (sizeof (arm_thumb_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3132 case arm_thumb_thumb_stub_long_branch
:
3133 template = arm_thumb_thumb_long_branch_stub
;
3134 template_size
= (sizeof (arm_thumb_thumb_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3136 case arm_thumb_arm_v4t_stub_long_branch
:
3137 template = arm_thumb_arm_v4t_long_branch_stub
;
3138 template_size
= (sizeof (arm_thumb_arm_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3140 case arm_thumb_arm_v4t_stub_short_branch
:
3141 template = arm_thumb_arm_v4t_short_branch_stub
;
3142 template_size
= (sizeof(arm_thumb_arm_v4t_short_branch_stub
) / sizeof (bfd_vma
)) * 4;
3144 case arm_stub_pic_long_branch
:
3145 template = arm_pic_long_branch_stub
;
3146 template_size
= (sizeof (arm_pic_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3154 for (i
= 0; i
< (template_size
/ 4); i
++)
3156 /* A 0 pattern is a placeholder, every other pattern is an
3158 if (template[i
] != 0)
3159 put_arm_insn (globals
, stub_bfd
, template[i
], loc
+ size
);
3161 bfd_put_32 (stub_bfd
, template[i
], loc
+ size
);
3165 stub_sec
->size
+= size
;
3167 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3168 if (stub_entry
->st_type
== STT_ARM_TFUNC
)
3171 switch (stub_entry
->stub_type
)
3173 case arm_stub_long_branch
:
3174 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3175 stub_bfd
, stub_sec
, stub_sec
->contents
,
3176 stub_entry
->stub_offset
+ 4, sym_value
, 0);
3178 case arm_thumb_v4t_stub_long_branch
:
3179 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3180 stub_bfd
, stub_sec
, stub_sec
->contents
,
3181 stub_entry
->stub_offset
+ 8, sym_value
, 0);
3183 case arm_thumb_thumb_stub_long_branch
:
3184 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3185 stub_bfd
, stub_sec
, stub_sec
->contents
,
3186 stub_entry
->stub_offset
+ 12, sym_value
, 0);
3188 case arm_thumb_arm_v4t_stub_long_branch
:
3189 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3190 stub_bfd
, stub_sec
, stub_sec
->contents
,
3191 stub_entry
->stub_offset
+ 16, sym_value
, 0);
3193 case arm_thumb_arm_v4t_stub_short_branch
:
3195 long int rel_offset
;
3196 static const insn32 t2a3_b_insn
= 0xea000000;
3198 rel_offset
= sym_value
- (stub_addr
+ 8 + 4);
3200 put_arm_insn (globals
, stub_bfd
,
3201 (bfd_vma
) t2a3_b_insn
| ((rel_offset
>> 2) & 0x00FFFFFF),
3206 case arm_stub_pic_long_branch
:
3207 /* We want the value relative to the address 8 bytes from the
3208 start of the stub. */
3209 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32
),
3210 stub_bfd
, stub_sec
, stub_sec
->contents
,
3211 stub_entry
->stub_offset
+ 8, sym_value
, 0);
3220 /* As above, but don't actually build the stub. Just bump offset so
3221 we know stub section sizes. */
3224 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3227 struct elf32_arm_stub_hash_entry
*stub_entry
;
3228 struct elf32_arm_link_hash_table
*htab
;
3229 const bfd_vma
*template;
3234 /* Massage our args to the form they really have. */
3235 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3236 htab
= (struct elf32_arm_link_hash_table
*) in_arg
;
3238 switch (stub_entry
->stub_type
)
3240 case arm_stub_long_branch
:
3241 template = arm_long_branch_stub
;
3242 template_size
= (sizeof (arm_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3244 case arm_thumb_v4t_stub_long_branch
:
3245 template = arm_thumb_v4t_long_branch_stub
;
3246 template_size
= (sizeof (arm_thumb_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3248 case arm_thumb_thumb_stub_long_branch
:
3249 template = arm_thumb_thumb_long_branch_stub
;
3250 template_size
= (sizeof (arm_thumb_thumb_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3252 case arm_thumb_arm_v4t_stub_long_branch
:
3253 template = arm_thumb_arm_v4t_long_branch_stub
;
3254 template_size
= (sizeof (arm_thumb_arm_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3256 case arm_thumb_arm_v4t_stub_short_branch
:
3257 template = arm_thumb_arm_v4t_short_branch_stub
;
3258 template_size
= (sizeof(arm_thumb_arm_v4t_short_branch_stub
) / sizeof (bfd_vma
)) * 4;
3260 case arm_stub_pic_long_branch
:
3261 template = arm_pic_long_branch_stub
;
3262 template_size
= (sizeof (arm_pic_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3271 for (i
= 0; i
< (template_size
/ 4); i
++)
3273 size
= (size
+ 7) & ~7;
3274 stub_entry
->stub_sec
->size
+= size
;
3278 /* External entry points for sizing and building linker stubs. */
3280 /* Set up various things so that we can make a list of input sections
3281 for each output section included in the link. Returns -1 on error,
3282 0 when no stubs will be needed, and 1 on success. */
3285 elf32_arm_setup_section_lists (bfd
*output_bfd
,
3286 struct bfd_link_info
*info
)
3289 unsigned int bfd_count
;
3290 int top_id
, top_index
;
3292 asection
**input_list
, **list
;
3294 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3296 if (! is_elf_hash_table (htab
))
3299 /* Count the number of input BFDs and find the top input section id. */
3300 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3302 input_bfd
= input_bfd
->link_next
)
3305 for (section
= input_bfd
->sections
;
3307 section
= section
->next
)
3309 if (top_id
< section
->id
)
3310 top_id
= section
->id
;
3313 htab
->bfd_count
= bfd_count
;
3315 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3316 htab
->stub_group
= bfd_zmalloc (amt
);
3317 if (htab
->stub_group
== NULL
)
3320 /* We can't use output_bfd->section_count here to find the top output
3321 section index as some sections may have been removed, and
3322 _bfd_strip_section_from_output doesn't renumber the indices. */
3323 for (section
= output_bfd
->sections
, top_index
= 0;
3325 section
= section
->next
)
3327 if (top_index
< section
->index
)
3328 top_index
= section
->index
;
3331 htab
->top_index
= top_index
;
3332 amt
= sizeof (asection
*) * (top_index
+ 1);
3333 input_list
= bfd_malloc (amt
);
3334 htab
->input_list
= input_list
;
3335 if (input_list
== NULL
)
3338 /* For sections we aren't interested in, mark their entries with a
3339 value we can check later. */
3340 list
= input_list
+ top_index
;
3342 *list
= bfd_abs_section_ptr
;
3343 while (list
-- != input_list
);
3345 for (section
= output_bfd
->sections
;
3347 section
= section
->next
)
3349 if ((section
->flags
& SEC_CODE
) != 0)
3350 input_list
[section
->index
] = NULL
;
3356 /* The linker repeatedly calls this function for each input section,
3357 in the order that input sections are linked into output sections.
3358 Build lists of input sections to determine groupings between which
3359 we may insert linker stubs. */
3362 elf32_arm_next_input_section (struct bfd_link_info
*info
,
3365 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3367 if (isec
->output_section
->index
<= htab
->top_index
)
3369 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3371 if (*list
!= bfd_abs_section_ptr
)
3373 /* Steal the link_sec pointer for our list. */
3374 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3375 /* This happens to make the list in reverse order,
3376 which is what we want. */
3377 PREV_SEC (isec
) = *list
;
3383 /* See whether we can group stub sections together. Grouping stub
3384 sections may result in fewer stubs. More importantly, we need to
3385 put all .init* and .fini* stubs at the beginning of the .init or
3386 .fini output sections respectively, because glibc splits the
3387 _init and _fini functions into multiple parts. Putting a stub in
3388 the middle of a function is not a good idea. */
3391 group_sections (struct elf32_arm_link_hash_table
*htab
,
3392 bfd_size_type stub_group_size
,
3393 bfd_boolean stubs_always_before_branch
)
3395 asection
**list
= htab
->input_list
+ htab
->top_index
;
3399 asection
*tail
= *list
;
3401 if (tail
== bfd_abs_section_ptr
)
3404 while (tail
!= NULL
)
3408 bfd_size_type total
;
3412 while ((prev
= PREV_SEC (curr
)) != NULL
3413 && ((total
+= curr
->output_offset
- prev
->output_offset
)
3417 /* OK, the size from the start of CURR to the end is less
3418 than stub_group_size and thus can be handled by one stub
3419 section. (Or the tail section is itself larger than
3420 stub_group_size, in which case we may be toast.)
3421 We should really be keeping track of the total size of
3422 stubs added here, as stubs contribute to the final output
3426 prev
= PREV_SEC (tail
);
3427 /* Set up this stub group. */
3428 htab
->stub_group
[tail
->id
].link_sec
= curr
;
3430 while (tail
!= curr
&& (tail
= prev
) != NULL
);
3432 /* But wait, there's more! Input sections up to stub_group_size
3433 bytes before the stub section can be handled by it too. */
3434 if (!stubs_always_before_branch
)
3438 && ((total
+= tail
->output_offset
- prev
->output_offset
)
3442 prev
= PREV_SEC (tail
);
3443 htab
->stub_group
[tail
->id
].link_sec
= curr
;
3449 while (list
-- != htab
->input_list
);
3451 free (htab
->input_list
);
3455 /* Determine and set the size of the stub section for a final link.
3457 The basic idea here is to examine all the relocations looking for
3458 PC-relative calls to a target that is unreachable with a "bl"
3462 elf32_arm_size_stubs (bfd
*output_bfd
,
3464 struct bfd_link_info
*info
,
3465 bfd_signed_vma group_size
,
3466 asection
* (*add_stub_section
) (const char *, asection
*),
3467 void (*layout_sections_again
) (void))
3469 bfd_size_type stub_group_size
;
3470 bfd_boolean stubs_always_before_branch
;
3471 bfd_boolean stub_changed
= 0;
3472 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3474 /* Propagate mach to stub bfd, because it may not have been
3475 finalized when we created stub_bfd. */
3476 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
3477 bfd_get_mach (output_bfd
));
3479 /* Stash our params away. */
3480 htab
->stub_bfd
= stub_bfd
;
3481 htab
->add_stub_section
= add_stub_section
;
3482 htab
->layout_sections_again
= layout_sections_again
;
3483 stubs_always_before_branch
= group_size
< 0;
3485 stub_group_size
= -group_size
;
3487 stub_group_size
= group_size
;
3489 if (stub_group_size
== 1)
3491 /* Default values. */
3492 /* Thumb branch range is +-4MB has to be used as the default
3493 maximum size (a given section can contain both ARM and Thumb
3494 code, so the worst case has to be taken into account).
3496 This value is 24K less than that, which allows for 2025
3497 12-byte stubs. If we exceed that, then we will fail to link.
3498 The user will have to relink with an explicit group size
3500 stub_group_size
= 4170000;
3503 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
3508 unsigned int bfd_indx
;
3511 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
3513 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
3515 Elf_Internal_Shdr
*symtab_hdr
;
3517 Elf_Internal_Sym
*local_syms
= NULL
;
3519 /* We'll need the symbol table in a second. */
3520 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3521 if (symtab_hdr
->sh_info
== 0)
3524 /* Walk over each section attached to the input bfd. */
3525 for (section
= input_bfd
->sections
;
3527 section
= section
->next
)
3529 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
3531 /* If there aren't any relocs, then there's nothing more
3533 if ((section
->flags
& SEC_RELOC
) == 0
3534 || section
->reloc_count
== 0
3535 || (section
->flags
& SEC_CODE
) == 0)
3538 /* If this section is a link-once section that will be
3539 discarded, then don't create any stubs. */
3540 if (section
->output_section
== NULL
3541 || section
->output_section
->owner
!= output_bfd
)
3544 /* Get the relocs. */
3546 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
3547 NULL
, info
->keep_memory
);
3548 if (internal_relocs
== NULL
)
3549 goto error_ret_free_local
;
3551 /* Now examine each relocation. */
3552 irela
= internal_relocs
;
3553 irelaend
= irela
+ section
->reloc_count
;
3554 for (; irela
< irelaend
; irela
++)
3556 unsigned int r_type
, r_indx
;
3557 enum elf32_arm_stub_type stub_type
;
3558 struct elf32_arm_stub_hash_entry
*stub_entry
;
3561 bfd_vma destination
;
3562 struct elf32_arm_link_hash_entry
*hash
;
3563 const char *sym_name
;
3565 const asection
*id_sec
;
3566 unsigned char st_type
;
3568 r_type
= ELF32_R_TYPE (irela
->r_info
);
3569 r_indx
= ELF32_R_SYM (irela
->r_info
);
3571 if (r_type
>= (unsigned int) R_ARM_max
)
3573 bfd_set_error (bfd_error_bad_value
);
3574 error_ret_free_internal
:
3575 if (elf_section_data (section
)->relocs
== NULL
)
3576 free (internal_relocs
);
3577 goto error_ret_free_local
;
3580 /* Only look for stubs on call instructions. */
3581 if ((r_type
!= (unsigned int) R_ARM_CALL
)
3582 && (r_type
!= (unsigned int) R_ARM_THM_CALL
))
3585 /* Now determine the call target, its name, value,
3592 if (r_indx
< symtab_hdr
->sh_info
)
3594 /* It's a local symbol. */
3595 Elf_Internal_Sym
*sym
;
3596 Elf_Internal_Shdr
*hdr
;
3598 if (local_syms
== NULL
)
3601 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
3602 if (local_syms
== NULL
)
3604 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
3605 symtab_hdr
->sh_info
, 0,
3607 if (local_syms
== NULL
)
3608 goto error_ret_free_internal
;
3611 sym
= local_syms
+ r_indx
;
3612 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
3613 sym_sec
= hdr
->bfd_section
;
3614 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
3615 sym_value
= sym
->st_value
;
3616 destination
= (sym_value
+ irela
->r_addend
3617 + sym_sec
->output_offset
3618 + sym_sec
->output_section
->vma
);
3619 st_type
= ELF_ST_TYPE (sym
->st_info
);
3621 = bfd_elf_string_from_elf_section (input_bfd
,
3622 symtab_hdr
->sh_link
,
3627 /* It's an external symbol. */
3630 e_indx
= r_indx
- symtab_hdr
->sh_info
;
3631 hash
= ((struct elf32_arm_link_hash_entry
*)
3632 elf_sym_hashes (input_bfd
)[e_indx
]);
3634 while (hash
->root
.root
.type
== bfd_link_hash_indirect
3635 || hash
->root
.root
.type
== bfd_link_hash_warning
)
3636 hash
= ((struct elf32_arm_link_hash_entry
*)
3637 hash
->root
.root
.u
.i
.link
);
3639 if (hash
->root
.root
.type
== bfd_link_hash_defined
3640 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
3642 sym_sec
= hash
->root
.root
.u
.def
.section
;
3643 sym_value
= hash
->root
.root
.u
.def
.value
;
3644 if (sym_sec
->output_section
!= NULL
)
3645 destination
= (sym_value
+ irela
->r_addend
3646 + sym_sec
->output_offset
3647 + sym_sec
->output_section
->vma
);
3649 else if (hash
->root
.root
.type
== bfd_link_hash_undefweak
3650 || hash
->root
.root
.type
== bfd_link_hash_undefined
)
3651 /* For a shared library, these will need a PLT stub,
3652 which is treated separately.
3653 For absolute code, they cannot be handled. */
3657 bfd_set_error (bfd_error_bad_value
);
3658 goto error_ret_free_internal
;
3660 st_type
= ELF_ST_TYPE (hash
->root
.type
);
3661 sym_name
= hash
->root
.root
.root
.string
;
3664 /* Determine what (if any) linker stub is needed. */
3665 stub_type
= arm_type_of_stub (info
, section
, irela
, st_type
,
3666 hash
, destination
, sym_sec
,
3667 input_bfd
, sym_name
);
3668 if (stub_type
== arm_stub_none
)
3671 /* Support for grouping stub sections. */
3672 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3674 /* Get the name of this stub. */
3675 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
, irela
);
3677 goto error_ret_free_internal
;
3679 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3682 if (stub_entry
!= NULL
)
3684 /* The proper stub has already been created. */
3689 stub_entry
= elf32_arm_add_stub (stub_name
, section
, htab
);
3690 if (stub_entry
== NULL
)
3693 goto error_ret_free_internal
;
3696 stub_entry
->target_value
= sym_value
;
3697 stub_entry
->target_section
= sym_sec
;
3698 stub_entry
->stub_type
= stub_type
;
3699 stub_entry
->h
= hash
;
3700 stub_entry
->st_type
= st_type
;
3702 if (sym_name
== NULL
)
3703 sym_name
= "unnamed";
3704 stub_entry
->output_name
3705 = bfd_alloc (htab
->stub_bfd
,
3706 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
3707 + strlen (sym_name
));
3708 if (stub_entry
->output_name
== NULL
)
3711 goto error_ret_free_internal
;
3714 /* For historical reasons, use the existing names for
3715 ARM-to-Thumb and Thumb-to-ARM stubs. */
3716 if (r_type
== (unsigned int) R_ARM_THM_CALL
3717 && st_type
!= STT_ARM_TFUNC
)
3718 sprintf (stub_entry
->output_name
, THUMB2ARM_GLUE_ENTRY_NAME
,
3720 else if (r_type
== (unsigned int) R_ARM_CALL
3721 && st_type
== STT_ARM_TFUNC
)
3722 sprintf (stub_entry
->output_name
, ARM2THUMB_GLUE_ENTRY_NAME
,
3725 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
3728 stub_changed
= TRUE
;
3731 /* We're done with the internal relocs, free them. */
3732 if (elf_section_data (section
)->relocs
== NULL
)
3733 free (internal_relocs
);
3740 /* OK, we've added some stubs. Find out the new size of the
3742 for (stub_sec
= htab
->stub_bfd
->sections
;
3744 stub_sec
= stub_sec
->next
)
3747 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
3749 /* Ask the linker to do its stuff. */
3750 (*htab
->layout_sections_again
) ();
3751 stub_changed
= FALSE
;
3756 error_ret_free_local
:
3760 /* Build all the stubs associated with the current output file. The
3761 stubs are kept in a hash table attached to the main linker hash
3762 table. We also set up the .plt entries for statically linked PIC
3763 functions here. This function is called via arm_elf_finish in the
3767 elf32_arm_build_stubs (struct bfd_link_info
*info
)
3770 struct bfd_hash_table
*table
;
3771 struct elf32_arm_link_hash_table
*htab
;
3773 htab
= elf32_arm_hash_table (info
);
3775 for (stub_sec
= htab
->stub_bfd
->sections
;
3777 stub_sec
= stub_sec
->next
)
3781 /* Ignore non-stub sections. */
3782 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
3785 /* Allocate memory to hold the linker stubs. */
3786 size
= stub_sec
->size
;
3787 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
3788 if (stub_sec
->contents
== NULL
&& size
!= 0)
3793 /* Build the stubs as directed by the stub hash table. */
3794 table
= &htab
->stub_hash_table
;
3795 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
3800 /* Locate the Thumb encoded calling stub for NAME. */
3802 static struct elf_link_hash_entry
*
3803 find_thumb_glue (struct bfd_link_info
*link_info
,
3805 char **error_message
)
3808 struct elf_link_hash_entry
*hash
;
3809 struct elf32_arm_link_hash_table
*hash_table
;
3811 /* We need a pointer to the armelf specific hash table. */
3812 hash_table
= elf32_arm_hash_table (link_info
);
3814 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
3815 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
3817 BFD_ASSERT (tmp_name
);
3819 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
3821 hash
= elf_link_hash_lookup
3822 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
3825 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
3826 tmp_name
, name
) == -1)
3827 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
3834 /* Locate the ARM encoded calling stub for NAME. */
3836 static struct elf_link_hash_entry
*
3837 find_arm_glue (struct bfd_link_info
*link_info
,
3839 char **error_message
)
3842 struct elf_link_hash_entry
*myh
;
3843 struct elf32_arm_link_hash_table
*hash_table
;
3845 /* We need a pointer to the elfarm specific hash table. */
3846 hash_table
= elf32_arm_hash_table (link_info
);
3848 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
3849 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
3851 BFD_ASSERT (tmp_name
);
3853 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
3855 myh
= elf_link_hash_lookup
3856 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
3859 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
3860 tmp_name
, name
) == -1)
3861 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
3868 /* ARM->Thumb glue (static images):
3872 ldr r12, __func_addr
3875 .word func @ behave as if you saw a ARM_32 reloc.
3882 .word func @ behave as if you saw a ARM_32 reloc.
3884 (relocatable images)
3887 ldr r12, __func_offset
3893 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3894 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
3895 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
3896 static const insn32 a2t3_func_addr_insn
= 0x00000001;
3898 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3899 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
3900 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
3902 #define ARM2THUMB_PIC_GLUE_SIZE 16
3903 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
3904 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
3905 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
3907 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3911 __func_from_thumb: __func_from_thumb:
3913 nop ldr r6, __func_addr
3923 #define THUMB2ARM_GLUE_SIZE 8
3924 static const insn16 t2a1_bx_pc_insn
= 0x4778;
3925 static const insn16 t2a2_noop_insn
= 0x46c0;
3926 static const insn32 t2a3_b_insn
= 0xea000000;
3928 #define VFP11_ERRATUM_VENEER_SIZE 8
3930 #define ARM_BX_VENEER_SIZE 12
3931 static const insn32 armbx1_tst_insn
= 0xe3100001;
3932 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
3933 static const insn32 armbx3_bx_insn
= 0xe12fff10;
3935 #ifndef ELFARM_NABI_C_INCLUDED
3937 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
3940 bfd_byte
* contents
;
3945 BFD_ASSERT (abfd
!= NULL
);
3947 s
= bfd_get_section_by_name (abfd
, name
);
3948 BFD_ASSERT (s
!= NULL
);
3950 contents
= bfd_alloc (abfd
, size
);
3952 BFD_ASSERT (s
->size
== size
);
3953 s
->contents
= contents
;
3957 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
3959 struct elf32_arm_link_hash_table
* globals
;
3961 globals
= elf32_arm_hash_table (info
);
3962 BFD_ASSERT (globals
!= NULL
);
3964 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3965 globals
->arm_glue_size
,
3966 ARM2THUMB_GLUE_SECTION_NAME
);
3968 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3969 globals
->thumb_glue_size
,
3970 THUMB2ARM_GLUE_SECTION_NAME
);
3972 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3973 globals
->vfp11_erratum_glue_size
,
3974 VFP11_ERRATUM_VENEER_SECTION_NAME
);
3976 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3977 globals
->bx_glue_size
,
3978 ARM_BX_GLUE_SECTION_NAME
);
3983 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3984 returns the symbol identifying the stub. */
3986 static struct elf_link_hash_entry
*
3987 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
3988 struct elf_link_hash_entry
* h
)
3990 const char * name
= h
->root
.root
.string
;
3993 struct elf_link_hash_entry
* myh
;
3994 struct bfd_link_hash_entry
* bh
;
3995 struct elf32_arm_link_hash_table
* globals
;
3999 globals
= elf32_arm_hash_table (link_info
);
4001 BFD_ASSERT (globals
!= NULL
);
4002 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4004 s
= bfd_get_section_by_name
4005 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
4007 BFD_ASSERT (s
!= NULL
);
4009 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4011 BFD_ASSERT (tmp_name
);
4013 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4015 myh
= elf_link_hash_lookup
4016 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4020 /* We've already seen this guy. */
4025 /* The only trick here is using hash_table->arm_glue_size as the value.
4026 Even though the section isn't allocated yet, this is where we will be
4027 putting it. The +1 on the value marks that the stub has not been
4028 output yet - not that it is a Thumb function. */
4030 val
= globals
->arm_glue_size
+ 1;
4031 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4032 tmp_name
, BSF_GLOBAL
, s
, val
,
4033 NULL
, TRUE
, FALSE
, &bh
);
4035 myh
= (struct elf_link_hash_entry
*) bh
;
4036 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4037 myh
->forced_local
= 1;
4041 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
4042 || globals
->pic_veneer
)
4043 size
= ARM2THUMB_PIC_GLUE_SIZE
;
4044 else if (globals
->use_blx
)
4045 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
4047 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
4050 globals
->arm_glue_size
+= size
;
4056 record_thumb_to_arm_glue (struct bfd_link_info
*link_info
,
4057 struct elf_link_hash_entry
*h
)
4059 const char *name
= h
->root
.root
.string
;
4062 struct elf_link_hash_entry
*myh
;
4063 struct bfd_link_hash_entry
*bh
;
4064 struct elf32_arm_link_hash_table
*hash_table
;
4067 hash_table
= elf32_arm_hash_table (link_info
);
4069 BFD_ASSERT (hash_table
!= NULL
);
4070 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
4072 s
= bfd_get_section_by_name
4073 (hash_table
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
4075 BFD_ASSERT (s
!= NULL
);
4077 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4078 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
4080 BFD_ASSERT (tmp_name
);
4082 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
4084 myh
= elf_link_hash_lookup
4085 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4089 /* We've already seen this guy. */
4094 /* The only trick here is using hash_table->thumb_glue_size as the value.
4095 Even though the section isn't allocated yet, this is where we will be
4096 putting it. The +1 on the value marks that the stub has not been
4097 output yet - not that it is a Thumb function. */
4099 val
= hash_table
->thumb_glue_size
+ 1;
4100 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
4101 tmp_name
, BSF_GLOBAL
, s
, val
,
4102 NULL
, TRUE
, FALSE
, &bh
);
4104 /* If we mark it 'Thumb', the disassembler will do a better job. */
4105 myh
= (struct elf_link_hash_entry
*) bh
;
4106 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
4107 myh
->forced_local
= 1;
4111 #define CHANGE_TO_ARM "__%s_change_to_arm"
4112 #define BACK_FROM_ARM "__%s_back_from_arm"
4114 /* Allocate another symbol to mark where we switch to Arm mode. */
4115 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4116 + strlen (CHANGE_TO_ARM
) + 1);
4118 BFD_ASSERT (tmp_name
);
4120 sprintf (tmp_name
, CHANGE_TO_ARM
, name
);
4123 val
= hash_table
->thumb_glue_size
+ 4,
4124 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
4125 tmp_name
, BSF_LOCAL
, s
, val
,
4126 NULL
, TRUE
, FALSE
, &bh
);
4130 s
->size
+= THUMB2ARM_GLUE_SIZE
;
4131 hash_table
->thumb_glue_size
+= THUMB2ARM_GLUE_SIZE
;
4135 /* Allocate space for ARMv4 BX veneers. */
4138 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
4141 struct elf32_arm_link_hash_table
*globals
;
4143 struct elf_link_hash_entry
*myh
;
4144 struct bfd_link_hash_entry
*bh
;
4147 /* BX PC does not need a veneer. */
4151 globals
= elf32_arm_hash_table (link_info
);
4153 BFD_ASSERT (globals
!= NULL
);
4154 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4156 /* Check if this veneer has already been allocated. */
4157 if (globals
->bx_glue_offset
[reg
])
4160 s
= bfd_get_section_by_name
4161 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
4163 BFD_ASSERT (s
!= NULL
);
4165 /* Add symbol for veneer. */
4166 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
4168 BFD_ASSERT (tmp_name
);
4170 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
4172 myh
= elf_link_hash_lookup
4173 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4175 BFD_ASSERT (myh
== NULL
);
4178 val
= globals
->bx_glue_size
;
4179 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4180 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
4181 NULL
, TRUE
, FALSE
, &bh
);
4183 myh
= (struct elf_link_hash_entry
*) bh
;
4184 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4185 myh
->forced_local
= 1;
4187 s
->size
+= ARM_BX_VENEER_SIZE
;
4188 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
4189 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
4193 /* Add an entry to the code/data map for section SEC. */
4196 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
4198 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
4199 unsigned int newidx
;
4201 if (sec_data
->map
== NULL
)
4203 sec_data
->map
= bfd_malloc (sizeof (elf32_arm_section_map
));
4204 sec_data
->mapcount
= 0;
4205 sec_data
->mapsize
= 1;
4208 newidx
= sec_data
->mapcount
++;
4210 if (sec_data
->mapcount
> sec_data
->mapsize
)
4212 sec_data
->mapsize
*= 2;
4213 sec_data
->map
= bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
4214 * sizeof (elf32_arm_section_map
));
4219 sec_data
->map
[newidx
].vma
= vma
;
4220 sec_data
->map
[newidx
].type
= type
;
4225 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4226 veneers are handled for now. */
4229 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
4230 elf32_vfp11_erratum_list
*branch
,
4232 asection
*branch_sec
,
4233 unsigned int offset
)
4236 struct elf32_arm_link_hash_table
*hash_table
;
4238 struct elf_link_hash_entry
*myh
;
4239 struct bfd_link_hash_entry
*bh
;
4241 struct _arm_elf_section_data
*sec_data
;
4243 elf32_vfp11_erratum_list
*newerr
;
4245 hash_table
= elf32_arm_hash_table (link_info
);
4247 BFD_ASSERT (hash_table
!= NULL
);
4248 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
4250 s
= bfd_get_section_by_name
4251 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
4253 sec_data
= elf32_arm_section_data (s
);
4255 BFD_ASSERT (s
!= NULL
);
4257 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
4258 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
4260 BFD_ASSERT (tmp_name
);
4262 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
4263 hash_table
->num_vfp11_fixes
);
4265 myh
= elf_link_hash_lookup
4266 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4268 BFD_ASSERT (myh
== NULL
);
4271 val
= hash_table
->vfp11_erratum_glue_size
;
4272 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
4273 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
4274 NULL
, TRUE
, FALSE
, &bh
);
4276 myh
= (struct elf_link_hash_entry
*) bh
;
4277 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4278 myh
->forced_local
= 1;
4280 /* Link veneer back to calling location. */
4281 errcount
= ++(sec_data
->erratumcount
);
4282 newerr
= bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
4284 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
4286 newerr
->u
.v
.branch
= branch
;
4287 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
4288 branch
->u
.b
.veneer
= newerr
;
4290 newerr
->next
= sec_data
->erratumlist
;
4291 sec_data
->erratumlist
= newerr
;
4293 /* A symbol for the return from the veneer. */
4294 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
4295 hash_table
->num_vfp11_fixes
);
4297 myh
= elf_link_hash_lookup
4298 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4305 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
4306 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
4308 myh
= (struct elf_link_hash_entry
*) bh
;
4309 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4310 myh
->forced_local
= 1;
4314 /* Generate a mapping symbol for the veneer section, and explicitly add an
4315 entry for that symbol to the code/data map for the section. */
4316 if (hash_table
->vfp11_erratum_glue_size
== 0)
4319 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4320 ever requires this erratum fix. */
4321 _bfd_generic_link_add_one_symbol (link_info
,
4322 hash_table
->bfd_of_glue_owner
, "$a",
4323 BSF_LOCAL
, s
, 0, NULL
,
4326 myh
= (struct elf_link_hash_entry
*) bh
;
4327 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
4328 myh
->forced_local
= 1;
4330 /* The elf32_arm_init_maps function only cares about symbols from input
4331 BFDs. We must make a note of this generated mapping symbol
4332 ourselves so that code byteswapping works properly in
4333 elf32_arm_write_section. */
4334 elf32_arm_section_map_add (s
, 'a', 0);
4337 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
4338 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
4339 hash_table
->num_vfp11_fixes
++;
4341 /* The offset of the veneer. */
4345 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4346 would prevent elf_link_input_bfd() from processing the contents
4348 #define ARM_GLUE_SECTION_FLAGS \
4349 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4351 /* Create a fake section for use by the ARM backend of the linker. */
4354 arm_make_glue_section (bfd
* abfd
, const char * name
)
4358 sec
= bfd_get_section_by_name (abfd
, name
);
4363 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
4366 || !bfd_set_section_alignment (abfd
, sec
, 2))
4369 /* Set the gc mark to prevent the section from being removed by garbage
4370 collection, despite the fact that no relocs refer to this section. */
4376 /* Add the glue sections to ABFD. This function is called from the
4377 linker scripts in ld/emultempl/{armelf}.em. */
4380 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
4381 struct bfd_link_info
*info
)
4383 /* If we are only performing a partial
4384 link do not bother adding the glue. */
4385 if (info
->relocatable
)
4388 /* Linker stubs don't need glue. */
4389 if (!strcmp (abfd
->filename
, "linker stubs"))
4392 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
4393 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
4394 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
4395 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
4398 /* Select a BFD to be used to hold the sections used by the glue code.
4399 This function is called from the linker scripts in ld/emultempl/
4403 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
4405 struct elf32_arm_link_hash_table
*globals
;
4407 /* If we are only performing a partial link
4408 do not bother getting a bfd to hold the glue. */
4409 if (info
->relocatable
)
4412 /* Make sure we don't attach the glue sections to a dynamic object. */
4413 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
4415 globals
= elf32_arm_hash_table (info
);
4417 BFD_ASSERT (globals
!= NULL
);
4419 if (globals
->bfd_of_glue_owner
!= NULL
)
4422 /* Save the bfd for later use. */
4423 globals
->bfd_of_glue_owner
= abfd
;
4429 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
4431 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
4433 globals
->use_blx
= 1;
4437 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
4438 struct bfd_link_info
*link_info
)
4440 Elf_Internal_Shdr
*symtab_hdr
;
4441 Elf_Internal_Rela
*internal_relocs
= NULL
;
4442 Elf_Internal_Rela
*irel
, *irelend
;
4443 bfd_byte
*contents
= NULL
;
4446 struct elf32_arm_link_hash_table
*globals
;
4448 /* If we are only performing a partial link do not bother
4449 to construct any glue. */
4450 if (link_info
->relocatable
)
4453 /* Here we have a bfd that is to be included on the link. We have a
4454 hook to do reloc rummaging, before section sizes are nailed down. */
4455 globals
= elf32_arm_hash_table (link_info
);
4457 BFD_ASSERT (globals
!= NULL
);
4459 check_use_blx (globals
);
4461 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
4463 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4468 /* PR 5398: If we have not decided to include any loadable sections in
4469 the output then we will not have a glue owner bfd. This is OK, it
4470 just means that there is nothing else for us to do here. */
4471 if (globals
->bfd_of_glue_owner
== NULL
)
4474 /* Rummage around all the relocs and map the glue vectors. */
4475 sec
= abfd
->sections
;
4480 for (; sec
!= NULL
; sec
= sec
->next
)
4482 if (sec
->reloc_count
== 0)
4485 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
4488 symtab_hdr
= & elf_symtab_hdr (abfd
);
4490 /* Load the relocs. */
4492 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
4494 if (internal_relocs
== NULL
)
4497 irelend
= internal_relocs
+ sec
->reloc_count
;
4498 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
4501 unsigned long r_index
;
4503 struct elf_link_hash_entry
*h
;
4505 r_type
= ELF32_R_TYPE (irel
->r_info
);
4506 r_index
= ELF32_R_SYM (irel
->r_info
);
4508 /* These are the only relocation types we care about. */
4509 if ( r_type
!= R_ARM_PC24
4510 && r_type
!= R_ARM_PLT32
4511 && r_type
!= R_ARM_JUMP24
4512 && r_type
!= R_ARM_THM_JUMP24
4513 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
4516 /* Get the section contents if we haven't done so already. */
4517 if (contents
== NULL
)
4519 /* Get cached copy if it exists. */
4520 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
4521 contents
= elf_section_data (sec
)->this_hdr
.contents
;
4524 /* Go get them off disk. */
4525 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
4530 if (r_type
== R_ARM_V4BX
)
4534 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
4535 record_arm_bx_glue (link_info
, reg
);
4539 /* If the relocation is not against a symbol it cannot concern us. */
4542 /* We don't care about local symbols. */
4543 if (r_index
< symtab_hdr
->sh_info
)
4546 /* This is an external symbol. */
4547 r_index
-= symtab_hdr
->sh_info
;
4548 h
= (struct elf_link_hash_entry
*)
4549 elf_sym_hashes (abfd
)[r_index
];
4551 /* If the relocation is against a static symbol it must be within
4552 the current section and so cannot be a cross ARM/Thumb relocation. */
4556 /* If the call will go through a PLT entry then we do not need
4558 if (globals
->splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
4566 /* This one is a call from arm code. We need to look up
4567 the target of the call. If it is a thumb target, we
4569 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
4570 && !(r_type
== R_ARM_CALL
&& globals
->use_blx
))
4571 record_arm_to_thumb_glue (link_info
, h
);
4574 case R_ARM_THM_JUMP24
:
4575 /* This one is a call from thumb code. We look
4576 up the target of the call. If it is not a thumb
4577 target, we insert glue. */
4578 if (ELF_ST_TYPE (h
->type
) != STT_ARM_TFUNC
4579 && !(globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
4580 && h
->root
.type
!= bfd_link_hash_undefweak
)
4581 record_thumb_to_arm_glue (link_info
, h
);
4589 if (contents
!= NULL
4590 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
4594 if (internal_relocs
!= NULL
4595 && elf_section_data (sec
)->relocs
!= internal_relocs
)
4596 free (internal_relocs
);
4597 internal_relocs
= NULL
;
4603 if (contents
!= NULL
4604 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
4606 if (internal_relocs
!= NULL
4607 && elf_section_data (sec
)->relocs
!= internal_relocs
)
4608 free (internal_relocs
);
4615 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4618 bfd_elf32_arm_init_maps (bfd
*abfd
)
4620 Elf_Internal_Sym
*isymbuf
;
4621 Elf_Internal_Shdr
*hdr
;
4622 unsigned int i
, localsyms
;
4624 if ((abfd
->flags
& DYNAMIC
) != 0)
4627 hdr
= & elf_symtab_hdr (abfd
);
4628 localsyms
= hdr
->sh_info
;
4630 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4631 should contain the number of local symbols, which should come before any
4632 global symbols. Mapping symbols are always local. */
4633 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
4636 /* No internal symbols read? Skip this BFD. */
4637 if (isymbuf
== NULL
)
4640 for (i
= 0; i
< localsyms
; i
++)
4642 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
4643 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4647 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
4649 name
= bfd_elf_string_from_elf_section (abfd
,
4650 hdr
->sh_link
, isym
->st_name
);
4652 if (bfd_is_arm_special_symbol_name (name
,
4653 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
4654 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
4661 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
4663 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
4664 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
4666 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4667 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
4669 switch (globals
->vfp11_fix
)
4671 case BFD_ARM_VFP11_FIX_DEFAULT
:
4672 case BFD_ARM_VFP11_FIX_NONE
:
4673 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
4677 /* Give a warning, but do as the user requests anyway. */
4678 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
4679 "workaround is not necessary for target architecture"), obfd
);
4682 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
4683 /* For earlier architectures, we might need the workaround, but do not
4684 enable it by default. If users is running with broken hardware, they
4685 must enable the erratum fix explicitly. */
4686 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
4690 enum bfd_arm_vfp11_pipe
4698 /* Return a VFP register number. This is encoded as RX:X for single-precision
4699 registers, or X:RX for double-precision registers, where RX is the group of
4700 four bits in the instruction encoding and X is the single extension bit.
4701 RX and X fields are specified using their lowest (starting) bit. The return
4704 0...31: single-precision registers s0...s31
4705 32...63: double-precision registers d0...d31.
4707 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4708 encounter VFP3 instructions, so we allow the full range for DP registers. */
4711 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
4715 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
4717 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
4720 /* Set bits in *WMASK according to a register number REG as encoded by
4721 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4724 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
4729 *wmask
|= 3 << ((reg
- 32) * 2);
4732 /* Return TRUE if WMASK overwrites anything in REGS. */
4735 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
4739 for (i
= 0; i
< numregs
; i
++)
4741 unsigned int reg
= regs
[i
];
4743 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
4751 if ((wmask
& (3 << (reg
* 2))) != 0)
4758 /* In this function, we're interested in two things: finding input registers
4759 for VFP data-processing instructions, and finding the set of registers which
4760 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4761 hold the written set, so FLDM etc. are easy to deal with (we're only
4762 interested in 32 SP registers or 16 dp registers, due to the VFP version
4763 implemented by the chip in question). DP registers are marked by setting
4764 both SP registers in the write mask). */
4766 static enum bfd_arm_vfp11_pipe
4767 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
4770 enum bfd_arm_vfp11_pipe pipe
= VFP11_BAD
;
4771 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
4773 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4776 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
4777 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
4779 pqrs
= ((insn
& 0x00800000) >> 20)
4780 | ((insn
& 0x00300000) >> 19)
4781 | ((insn
& 0x00000040) >> 6);
4785 case 0: /* fmac[sd]. */
4786 case 1: /* fnmac[sd]. */
4787 case 2: /* fmsc[sd]. */
4788 case 3: /* fnmsc[sd]. */
4790 bfd_arm_vfp11_write_mask (destmask
, fd
);
4792 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
4797 case 4: /* fmul[sd]. */
4798 case 5: /* fnmul[sd]. */
4799 case 6: /* fadd[sd]. */
4800 case 7: /* fsub[sd]. */
4804 case 8: /* fdiv[sd]. */
4807 bfd_arm_vfp11_write_mask (destmask
, fd
);
4808 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
4813 case 15: /* extended opcode. */
4815 unsigned int extn
= ((insn
>> 15) & 0x1e)
4816 | ((insn
>> 7) & 1);
4820 case 0: /* fcpy[sd]. */
4821 case 1: /* fabs[sd]. */
4822 case 2: /* fneg[sd]. */
4823 case 8: /* fcmp[sd]. */
4824 case 9: /* fcmpe[sd]. */
4825 case 10: /* fcmpz[sd]. */
4826 case 11: /* fcmpez[sd]. */
4827 case 16: /* fuito[sd]. */
4828 case 17: /* fsito[sd]. */
4829 case 24: /* ftoui[sd]. */
4830 case 25: /* ftouiz[sd]. */
4831 case 26: /* ftosi[sd]. */
4832 case 27: /* ftosiz[sd]. */
4833 /* These instructions will not bounce due to underflow. */
4838 case 3: /* fsqrt[sd]. */
4839 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4840 registers to cause the erratum in previous instructions. */
4841 bfd_arm_vfp11_write_mask (destmask
, fd
);
4845 case 15: /* fcvt{ds,sd}. */
4849 bfd_arm_vfp11_write_mask (destmask
, fd
);
4851 /* Only FCVTSD can underflow. */
4852 if ((insn
& 0x100) != 0)
4871 /* Two-register transfer. */
4872 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
4874 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
4876 if ((insn
& 0x100000) == 0)
4879 bfd_arm_vfp11_write_mask (destmask
, fm
);
4882 bfd_arm_vfp11_write_mask (destmask
, fm
);
4883 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
4889 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
4891 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
4892 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
4896 case 0: /* Two-reg transfer. We should catch these above. */
4899 case 2: /* fldm[sdx]. */
4903 unsigned int i
, offset
= insn
& 0xff;
4908 for (i
= fd
; i
< fd
+ offset
; i
++)
4909 bfd_arm_vfp11_write_mask (destmask
, i
);
4913 case 4: /* fld[sd]. */
4915 bfd_arm_vfp11_write_mask (destmask
, fd
);
4924 /* Single-register transfer. Note L==0. */
4925 else if ((insn
& 0x0f100e10) == 0x0e000a10)
4927 unsigned int opcode
= (insn
>> 21) & 7;
4928 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
4932 case 0: /* fmsr/fmdlr. */
4933 case 1: /* fmdhr. */
4934 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4935 destination register. I don't know if this is exactly right,
4936 but it is the conservative choice. */
4937 bfd_arm_vfp11_write_mask (destmask
, fn
);
4951 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
4954 /* Look for potentially-troublesome code sequences which might trigger the
4955 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4956 (available from ARM) for details of the erratum. A short version is
4957 described in ld.texinfo. */
4960 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
4963 bfd_byte
*contents
= NULL
;
4965 int regs
[3], numregs
= 0;
4966 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
4967 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
4969 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4970 The states transition as follows:
4972 0 -> 1 (vector) or 0 -> 2 (scalar)
4973 A VFP FMAC-pipeline instruction has been seen. Fill
4974 regs[0]..regs[numregs-1] with its input operands. Remember this
4975 instruction in 'first_fmac'.
4978 Any instruction, except for a VFP instruction which overwrites
4983 A VFP instruction has been seen which overwrites any of regs[*].
4984 We must make a veneer! Reset state to 0 before examining next
4988 If we fail to match anything in state 2, reset to state 0 and reset
4989 the instruction pointer to the instruction after 'first_fmac'.
4991 If the VFP11 vector mode is in use, there must be at least two unrelated
4992 instructions between anti-dependent VFP11 instructions to properly avoid
4993 triggering the erratum, hence the use of the extra state 1. */
4995 /* If we are only performing a partial link do not bother
4996 to construct any glue. */
4997 if (link_info
->relocatable
)
5000 /* Skip if this bfd does not correspond to an ELF image. */
5001 if (! is_arm_elf (abfd
))
5004 /* We should have chosen a fix type by the time we get here. */
5005 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
5007 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
5010 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5012 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
5013 struct _arm_elf_section_data
*sec_data
;
5015 /* If we don't have executable progbits, we're not interested in this
5016 section. Also skip if section is to be excluded. */
5017 if (elf_section_type (sec
) != SHT_PROGBITS
5018 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
5019 || (sec
->flags
& SEC_EXCLUDE
) != 0
5020 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
5023 sec_data
= elf32_arm_section_data (sec
);
5025 if (sec_data
->mapcount
== 0)
5028 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5029 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5030 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5033 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
5034 elf32_arm_compare_mapping
);
5036 for (span
= 0; span
< sec_data
->mapcount
; span
++)
5038 unsigned int span_start
= sec_data
->map
[span
].vma
;
5039 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
5040 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
5041 char span_type
= sec_data
->map
[span
].type
;
5043 /* FIXME: Only ARM mode is supported at present. We may need to
5044 support Thumb-2 mode also at some point. */
5045 if (span_type
!= 'a')
5048 for (i
= span_start
; i
< span_end
;)
5050 unsigned int next_i
= i
+ 4;
5051 unsigned int insn
= bfd_big_endian (abfd
)
5052 ? (contents
[i
] << 24)
5053 | (contents
[i
+ 1] << 16)
5054 | (contents
[i
+ 2] << 8)
5056 : (contents
[i
+ 3] << 24)
5057 | (contents
[i
+ 2] << 16)
5058 | (contents
[i
+ 1] << 8)
5060 unsigned int writemask
= 0;
5061 enum bfd_arm_vfp11_pipe pipe
;
5066 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
5068 /* I'm assuming the VFP11 erratum can trigger with denorm
5069 operands on either the FMAC or the DS pipeline. This might
5070 lead to slightly overenthusiastic veneer insertion. */
5071 if (pipe
== VFP11_FMAC
|| pipe
== VFP11_DS
)
5073 state
= use_vector
? 1 : 2;
5075 veneer_of_insn
= insn
;
5081 int other_regs
[3], other_numregs
;
5082 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5085 if (pipe
!= VFP11_BAD
5086 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5096 int other_regs
[3], other_numregs
;
5097 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5100 if (pipe
!= VFP11_BAD
5101 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5107 next_i
= first_fmac
+ 4;
5113 abort (); /* Should be unreachable. */
5118 elf32_vfp11_erratum_list
*newerr
5119 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5122 errcount
= ++(elf32_arm_section_data (sec
)->erratumcount
);
5124 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
5129 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
5136 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
5141 newerr
->next
= sec_data
->erratumlist
;
5142 sec_data
->erratumlist
= newerr
;
5151 if (contents
!= NULL
5152 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5160 if (contents
!= NULL
5161 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5167 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5168 after sections have been laid out, using specially-named symbols. */
5171 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
5172 struct bfd_link_info
*link_info
)
5175 struct elf32_arm_link_hash_table
*globals
;
5178 if (link_info
->relocatable
)
5181 /* Skip if this bfd does not correspond to an ELF image. */
5182 if (! is_arm_elf (abfd
))
5185 globals
= elf32_arm_hash_table (link_info
);
5187 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
5188 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5190 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5192 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5193 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
5195 for (; errnode
!= NULL
; errnode
= errnode
->next
)
5197 struct elf_link_hash_entry
*myh
;
5200 switch (errnode
->type
)
5202 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
5203 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
5204 /* Find veneer symbol. */
5205 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5206 errnode
->u
.b
.veneer
->u
.v
.id
);
5208 myh
= elf_link_hash_lookup
5209 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5212 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
5213 "`%s'"), abfd
, tmp_name
);
5215 vma
= myh
->root
.u
.def
.section
->output_section
->vma
5216 + myh
->root
.u
.def
.section
->output_offset
5217 + myh
->root
.u
.def
.value
;
5219 errnode
->u
.b
.veneer
->vma
= vma
;
5222 case VFP11_ERRATUM_ARM_VENEER
:
5223 case VFP11_ERRATUM_THUMB_VENEER
:
5224 /* Find return location. */
5225 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5228 myh
= elf_link_hash_lookup
5229 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5232 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
5233 "`%s'"), abfd
, tmp_name
);
5235 vma
= myh
->root
.u
.def
.section
->output_section
->vma
5236 + myh
->root
.u
.def
.section
->output_offset
5237 + myh
->root
.u
.def
.value
;
5239 errnode
->u
.v
.branch
->vma
= vma
;
5252 /* Set target relocation values needed during linking. */
5255 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
5256 struct bfd_link_info
*link_info
,
5258 char * target2_type
,
5261 bfd_arm_vfp11_fix vfp11_fix
,
5262 int no_enum_warn
, int no_wchar_warn
,
5265 struct elf32_arm_link_hash_table
*globals
;
5267 globals
= elf32_arm_hash_table (link_info
);
5269 globals
->target1_is_rel
= target1_is_rel
;
5270 if (strcmp (target2_type
, "rel") == 0)
5271 globals
->target2_reloc
= R_ARM_REL32
;
5272 else if (strcmp (target2_type
, "abs") == 0)
5273 globals
->target2_reloc
= R_ARM_ABS32
;
5274 else if (strcmp (target2_type
, "got-rel") == 0)
5275 globals
->target2_reloc
= R_ARM_GOT_PREL
;
5278 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5281 globals
->fix_v4bx
= fix_v4bx
;
5282 globals
->use_blx
|= use_blx
;
5283 globals
->vfp11_fix
= vfp11_fix
;
5284 globals
->pic_veneer
= pic_veneer
;
5286 BFD_ASSERT (is_arm_elf (output_bfd
));
5287 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
5288 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
5291 /* Replace the target offset of a Thumb bl or b.w instruction. */
5294 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
5300 BFD_ASSERT ((offset
& 1) == 0);
5302 upper
= bfd_get_16 (abfd
, insn
);
5303 lower
= bfd_get_16 (abfd
, insn
+ 2);
5304 reloc_sign
= (offset
< 0) ? 1 : 0;
5305 upper
= (upper
& ~(bfd_vma
) 0x7ff)
5306 | ((offset
>> 12) & 0x3ff)
5307 | (reloc_sign
<< 10);
5308 lower
= (lower
& ~(bfd_vma
) 0x2fff)
5309 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
5310 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
5311 | ((offset
>> 1) & 0x7ff);
5312 bfd_put_16 (abfd
, upper
, insn
);
5313 bfd_put_16 (abfd
, lower
, insn
+ 2);
5316 /* Thumb code calling an ARM function. */
5319 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
5323 asection
* input_section
,
5324 bfd_byte
* hit_data
,
5327 bfd_signed_vma addend
,
5329 char **error_message
)
5333 long int ret_offset
;
5334 struct elf_link_hash_entry
* myh
;
5335 struct elf32_arm_link_hash_table
* globals
;
5337 myh
= find_thumb_glue (info
, name
, error_message
);
5341 globals
= elf32_arm_hash_table (info
);
5343 BFD_ASSERT (globals
!= NULL
);
5344 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5346 my_offset
= myh
->root
.u
.def
.value
;
5348 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5349 THUMB2ARM_GLUE_SECTION_NAME
);
5351 BFD_ASSERT (s
!= NULL
);
5352 BFD_ASSERT (s
->contents
!= NULL
);
5353 BFD_ASSERT (s
->output_section
!= NULL
);
5355 if ((my_offset
& 0x01) == 0x01)
5358 && sym_sec
->owner
!= NULL
5359 && !INTERWORK_FLAG (sym_sec
->owner
))
5361 (*_bfd_error_handler
)
5362 (_("%B(%s): warning: interworking not enabled.\n"
5363 " first occurrence: %B: thumb call to arm"),
5364 sym_sec
->owner
, input_bfd
, name
);
5370 myh
->root
.u
.def
.value
= my_offset
;
5372 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
5373 s
->contents
+ my_offset
);
5375 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
5376 s
->contents
+ my_offset
+ 2);
5379 /* Address of destination of the stub. */
5380 ((bfd_signed_vma
) val
)
5382 /* Offset from the start of the current section
5383 to the start of the stubs. */
5385 /* Offset of the start of this stub from the start of the stubs. */
5387 /* Address of the start of the current section. */
5388 + s
->output_section
->vma
)
5389 /* The branch instruction is 4 bytes into the stub. */
5391 /* ARM branches work from the pc of the instruction + 8. */
5394 put_arm_insn (globals
, output_bfd
,
5395 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
5396 s
->contents
+ my_offset
+ 4);
5399 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
5401 /* Now go back and fix up the original BL insn to point to here. */
5403 /* Address of where the stub is located. */
5404 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
5405 /* Address of where the BL is located. */
5406 - (input_section
->output_section
->vma
+ input_section
->output_offset
5408 /* Addend in the relocation. */
5410 /* Biassing for PC-relative addressing. */
5413 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
5418 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5420 static struct elf_link_hash_entry
*
5421 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
5428 char ** error_message
)
5431 long int ret_offset
;
5432 struct elf_link_hash_entry
* myh
;
5433 struct elf32_arm_link_hash_table
* globals
;
5435 myh
= find_arm_glue (info
, name
, error_message
);
5439 globals
= elf32_arm_hash_table (info
);
5441 BFD_ASSERT (globals
!= NULL
);
5442 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5444 my_offset
= myh
->root
.u
.def
.value
;
5446 if ((my_offset
& 0x01) == 0x01)
5449 && sym_sec
->owner
!= NULL
5450 && !INTERWORK_FLAG (sym_sec
->owner
))
5452 (*_bfd_error_handler
)
5453 (_("%B(%s): warning: interworking not enabled.\n"
5454 " first occurrence: %B: arm call to thumb"),
5455 sym_sec
->owner
, input_bfd
, name
);
5459 myh
->root
.u
.def
.value
= my_offset
;
5461 if (info
->shared
|| globals
->root
.is_relocatable_executable
5462 || globals
->pic_veneer
)
5464 /* For relocatable objects we can't use absolute addresses,
5465 so construct the address from a relative offset. */
5466 /* TODO: If the offset is small it's probably worth
5467 constructing the address with adds. */
5468 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
5469 s
->contents
+ my_offset
);
5470 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
5471 s
->contents
+ my_offset
+ 4);
5472 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
5473 s
->contents
+ my_offset
+ 8);
5474 /* Adjust the offset by 4 for the position of the add,
5475 and 8 for the pipeline offset. */
5476 ret_offset
= (val
- (s
->output_offset
5477 + s
->output_section
->vma
5480 bfd_put_32 (output_bfd
, ret_offset
,
5481 s
->contents
+ my_offset
+ 12);
5483 else if (globals
->use_blx
)
5485 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
5486 s
->contents
+ my_offset
);
5488 /* It's a thumb address. Add the low order bit. */
5489 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
5490 s
->contents
+ my_offset
+ 4);
5494 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
5495 s
->contents
+ my_offset
);
5497 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
5498 s
->contents
+ my_offset
+ 4);
5500 /* It's a thumb address. Add the low order bit. */
5501 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
5502 s
->contents
+ my_offset
+ 8);
5508 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
5513 /* Arm code calling a Thumb function. */
5516 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
5520 asection
* input_section
,
5521 bfd_byte
* hit_data
,
5524 bfd_signed_vma addend
,
5526 char **error_message
)
5528 unsigned long int tmp
;
5531 long int ret_offset
;
5532 struct elf_link_hash_entry
* myh
;
5533 struct elf32_arm_link_hash_table
* globals
;
5535 globals
= elf32_arm_hash_table (info
);
5537 BFD_ASSERT (globals
!= NULL
);
5538 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5540 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5541 ARM2THUMB_GLUE_SECTION_NAME
);
5542 BFD_ASSERT (s
!= NULL
);
5543 BFD_ASSERT (s
->contents
!= NULL
);
5544 BFD_ASSERT (s
->output_section
!= NULL
);
5546 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
5547 sym_sec
, val
, s
, error_message
);
5551 my_offset
= myh
->root
.u
.def
.value
;
5552 tmp
= bfd_get_32 (input_bfd
, hit_data
);
5553 tmp
= tmp
& 0xFF000000;
5555 /* Somehow these are both 4 too far, so subtract 8. */
5556 ret_offset
= (s
->output_offset
5558 + s
->output_section
->vma
5559 - (input_section
->output_offset
5560 + input_section
->output_section
->vma
5564 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
5566 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
5571 /* Populate Arm stub for an exported Thumb function. */
5574 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
5576 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
5578 struct elf_link_hash_entry
* myh
;
5579 struct elf32_arm_link_hash_entry
*eh
;
5580 struct elf32_arm_link_hash_table
* globals
;
5583 char *error_message
;
5585 eh
= elf32_arm_hash_entry (h
);
5586 /* Allocate stubs for exported Thumb functions on v4t. */
5587 if (eh
->export_glue
== NULL
)
5590 globals
= elf32_arm_hash_table (info
);
5592 BFD_ASSERT (globals
!= NULL
);
5593 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5595 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5596 ARM2THUMB_GLUE_SECTION_NAME
);
5597 BFD_ASSERT (s
!= NULL
);
5598 BFD_ASSERT (s
->contents
!= NULL
);
5599 BFD_ASSERT (s
->output_section
!= NULL
);
5601 sec
= eh
->export_glue
->root
.u
.def
.section
;
5603 BFD_ASSERT (sec
->output_section
!= NULL
);
5605 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
5606 + sec
->output_section
->vma
;
5608 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
5609 h
->root
.u
.def
.section
->owner
,
5610 globals
->obfd
, sec
, val
, s
,
5616 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5619 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
5624 struct elf32_arm_link_hash_table
*globals
;
5626 globals
= elf32_arm_hash_table (info
);
5628 BFD_ASSERT (globals
!= NULL
);
5629 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5631 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5632 ARM_BX_GLUE_SECTION_NAME
);
5633 BFD_ASSERT (s
!= NULL
);
5634 BFD_ASSERT (s
->contents
!= NULL
);
5635 BFD_ASSERT (s
->output_section
!= NULL
);
5637 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
5639 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
5641 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
5643 p
= s
->contents
+ glue_addr
;
5644 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
5645 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
5646 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
5647 globals
->bx_glue_offset
[reg
] |= 1;
5650 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
5653 /* Generate Arm stubs for exported Thumb symbols. */
5655 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
5656 struct bfd_link_info
*link_info
)
5658 struct elf32_arm_link_hash_table
* globals
;
5660 if (link_info
== NULL
)
5661 /* Ignore this if we are not called by the ELF backend linker. */
5664 globals
= elf32_arm_hash_table (link_info
);
5665 /* If blx is available then exported Thumb symbols are OK and there is
5667 if (globals
->use_blx
)
5670 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
5674 /* Some relocations map to different relocations depending on the
5675 target. Return the real relocation. */
5678 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
5684 if (globals
->target1_is_rel
)
5690 return globals
->target2_reloc
;
5697 /* Return the base VMA address which should be subtracted from real addresses
5698 when resolving @dtpoff relocation.
5699 This is PT_TLS segment p_vaddr. */
5702 dtpoff_base (struct bfd_link_info
*info
)
5704 /* If tls_sec is NULL, we should have signalled an error already. */
5705 if (elf_hash_table (info
)->tls_sec
== NULL
)
5707 return elf_hash_table (info
)->tls_sec
->vma
;
5710 /* Return the relocation value for @tpoff relocation
5711 if STT_TLS virtual address is ADDRESS. */
5714 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
5716 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
5719 /* If tls_sec is NULL, we should have signalled an error already. */
5720 if (htab
->tls_sec
== NULL
)
5722 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
5723 return address
- htab
->tls_sec
->vma
+ base
;
5726 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5727 VALUE is the relocation value. */
5729 static bfd_reloc_status_type
5730 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
5733 return bfd_reloc_overflow
;
5735 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
5736 bfd_put_32 (abfd
, value
, data
);
5737 return bfd_reloc_ok
;
5740 /* For a given value of n, calculate the value of G_n as required to
5741 deal with group relocations. We return it in the form of an
5742 encoded constant-and-rotation, together with the final residual. If n is
5743 specified as less than zero, then final_residual is filled with the
5744 input value and no further action is performed. */
5747 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
5751 bfd_vma encoded_g_n
= 0;
5752 bfd_vma residual
= value
; /* Also known as Y_n. */
5754 for (current_n
= 0; current_n
<= n
; current_n
++)
5758 /* Calculate which part of the value to mask. */
5765 /* Determine the most significant bit in the residual and
5766 align the resulting value to a 2-bit boundary. */
5767 for (msb
= 30; msb
>= 0; msb
-= 2)
5768 if (residual
& (3 << msb
))
5771 /* The desired shift is now (msb - 6), or zero, whichever
5778 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5779 g_n
= residual
& (0xff << shift
);
5780 encoded_g_n
= (g_n
>> shift
)
5781 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
5783 /* Calculate the residual for the next time around. */
5787 *final_residual
= residual
;
5792 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5793 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5796 identify_add_or_sub (bfd_vma insn
)
5798 int opcode
= insn
& 0x1e00000;
5800 if (opcode
== 1 << 23) /* ADD */
5803 if (opcode
== 1 << 22) /* SUB */
5809 /* Perform a relocation as part of a final link. */
5811 static bfd_reloc_status_type
5812 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
5815 asection
* input_section
,
5816 bfd_byte
* contents
,
5817 Elf_Internal_Rela
* rel
,
5819 struct bfd_link_info
* info
,
5821 const char * sym_name
,
5823 struct elf_link_hash_entry
* h
,
5824 bfd_boolean
* unresolved_reloc_p
,
5825 char ** error_message
)
5827 unsigned long r_type
= howto
->type
;
5828 unsigned long r_symndx
;
5829 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
5830 bfd
* dynobj
= NULL
;
5831 Elf_Internal_Shdr
* symtab_hdr
;
5832 struct elf_link_hash_entry
** sym_hashes
;
5833 bfd_vma
* local_got_offsets
;
5834 asection
* sgot
= NULL
;
5835 asection
* splt
= NULL
;
5836 asection
* sreloc
= NULL
;
5838 bfd_signed_vma signed_addend
;
5839 struct elf32_arm_link_hash_table
* globals
;
5841 globals
= elf32_arm_hash_table (info
);
5843 BFD_ASSERT (is_arm_elf (input_bfd
));
5845 /* Some relocation types map to different relocations depending on the
5846 target. We pick the right one here. */
5847 r_type
= arm_real_reloc_type (globals
, r_type
);
5848 if (r_type
!= howto
->type
)
5849 howto
= elf32_arm_howto_from_type (r_type
);
5851 /* If the start address has been set, then set the EF_ARM_HASENTRY
5852 flag. Setting this more than once is redundant, but the cost is
5853 not too high, and it keeps the code simple.
5855 The test is done here, rather than somewhere else, because the
5856 start address is only set just before the final link commences.
5858 Note - if the user deliberately sets a start address of 0, the
5859 flag will not be set. */
5860 if (bfd_get_start_address (output_bfd
) != 0)
5861 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
5863 dynobj
= elf_hash_table (info
)->dynobj
;
5866 sgot
= bfd_get_section_by_name (dynobj
, ".got");
5867 splt
= bfd_get_section_by_name (dynobj
, ".plt");
5869 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
5870 sym_hashes
= elf_sym_hashes (input_bfd
);
5871 local_got_offsets
= elf_local_got_offsets (input_bfd
);
5872 r_symndx
= ELF32_R_SYM (rel
->r_info
);
5874 if (globals
->use_rel
)
5876 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
5878 if (addend
& ((howto
->src_mask
+ 1) >> 1))
5881 signed_addend
&= ~ howto
->src_mask
;
5882 signed_addend
|= addend
;
5885 signed_addend
= addend
;
5888 addend
= signed_addend
= rel
->r_addend
;
5893 /* We don't need to find a value for this symbol. It's just a
5895 *unresolved_reloc_p
= FALSE
;
5896 return bfd_reloc_ok
;
5899 if (!globals
->vxworks_p
)
5900 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
5904 case R_ARM_ABS32_NOI
:
5906 case R_ARM_REL32_NOI
:
5912 /* Handle relocations which should use the PLT entry. ABS32/REL32
5913 will use the symbol's value, which may point to a PLT entry, but we
5914 don't need to handle that here. If we created a PLT entry, all
5915 branches in this object should go to it. */
5916 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
5917 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
)
5920 && h
->plt
.offset
!= (bfd_vma
) -1)
5922 /* If we've created a .plt section, and assigned a PLT entry to
5923 this function, it should not be known to bind locally. If
5924 it were, we would have cleared the PLT entry. */
5925 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
5927 value
= (splt
->output_section
->vma
5928 + splt
->output_offset
5930 *unresolved_reloc_p
= FALSE
;
5931 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
5932 contents
, rel
->r_offset
, value
,
5936 /* When generating a shared object or relocatable executable, these
5937 relocations are copied into the output file to be resolved at
5939 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
5940 && (input_section
->flags
& SEC_ALLOC
)
5941 && !(elf32_arm_hash_table (info
)->vxworks_p
5942 && strcmp (input_section
->output_section
->name
,
5944 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
5945 || !SYMBOL_CALLS_LOCAL (info
, h
))
5947 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
5948 || h
->root
.type
!= bfd_link_hash_undefweak
)
5949 && r_type
!= R_ARM_PC24
5950 && r_type
!= R_ARM_CALL
5951 && r_type
!= R_ARM_JUMP24
5952 && r_type
!= R_ARM_PREL31
5953 && r_type
!= R_ARM_PLT32
)
5955 Elf_Internal_Rela outrel
;
5957 bfd_boolean skip
, relocate
;
5959 *unresolved_reloc_p
= FALSE
;
5965 name
= (bfd_elf_string_from_elf_section
5967 elf_elfheader (input_bfd
)->e_shstrndx
,
5968 elf_section_data (input_section
)->rel_hdr
.sh_name
));
5970 return bfd_reloc_notsupported
;
5972 BFD_ASSERT (reloc_section_p (globals
, name
, input_section
));
5974 sreloc
= bfd_get_section_by_name (dynobj
, name
);
5975 BFD_ASSERT (sreloc
!= NULL
);
5981 outrel
.r_addend
= addend
;
5983 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
5985 if (outrel
.r_offset
== (bfd_vma
) -1)
5987 else if (outrel
.r_offset
== (bfd_vma
) -2)
5988 skip
= TRUE
, relocate
= TRUE
;
5989 outrel
.r_offset
+= (input_section
->output_section
->vma
5990 + input_section
->output_offset
);
5993 memset (&outrel
, 0, sizeof outrel
);
5998 || !h
->def_regular
))
5999 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
6004 /* This symbol is local, or marked to become local. */
6005 if (sym_flags
== STT_ARM_TFUNC
)
6007 if (globals
->symbian_p
)
6011 /* On Symbian OS, the data segment and text segement
6012 can be relocated independently. Therefore, we
6013 must indicate the segment to which this
6014 relocation is relative. The BPABI allows us to
6015 use any symbol in the right segment; we just use
6016 the section symbol as it is convenient. (We
6017 cannot use the symbol given by "h" directly as it
6018 will not appear in the dynamic symbol table.)
6020 Note that the dynamic linker ignores the section
6021 symbol value, so we don't subtract osec->vma
6022 from the emitted reloc addend. */
6024 osec
= sym_sec
->output_section
;
6026 osec
= input_section
->output_section
;
6027 symbol
= elf_section_data (osec
)->dynindx
;
6030 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6032 if ((osec
->flags
& SEC_READONLY
) == 0
6033 && htab
->data_index_section
!= NULL
)
6034 osec
= htab
->data_index_section
;
6036 osec
= htab
->text_index_section
;
6037 symbol
= elf_section_data (osec
)->dynindx
;
6039 BFD_ASSERT (symbol
!= 0);
6042 /* On SVR4-ish systems, the dynamic loader cannot
6043 relocate the text and data segments independently,
6044 so the symbol does not matter. */
6046 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
6047 if (globals
->use_rel
)
6050 outrel
.r_addend
+= value
;
6053 loc
= sreloc
->contents
;
6054 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
6055 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6057 /* If this reloc is against an external symbol, we do not want to
6058 fiddle with the addend. Otherwise, we need to include the symbol
6059 value so that it becomes an addend for the dynamic reloc. */
6061 return bfd_reloc_ok
;
6063 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6064 contents
, rel
->r_offset
, value
,
6067 else switch (r_type
)
6070 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6072 case R_ARM_XPC25
: /* Arm BLX instruction. */
6075 case R_ARM_PC24
: /* Arm B/BL instruction. */
6079 bfd_signed_vma branch_offset
;
6080 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
6082 from
= (input_section
->output_section
->vma
6083 + input_section
->output_offset
6085 branch_offset
= (bfd_signed_vma
)(value
- from
);
6087 if (r_type
== R_ARM_XPC25
)
6089 /* Check for Arm calling Arm function. */
6090 /* FIXME: Should we translate the instruction into a BL
6091 instruction instead ? */
6092 if (sym_flags
!= STT_ARM_TFUNC
)
6093 (*_bfd_error_handler
)
6094 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6096 h
? h
->root
.root
.string
: "(local)");
6098 else if (r_type
!= R_ARM_CALL
)
6100 /* Check for Arm calling Thumb function. */
6101 if (sym_flags
== STT_ARM_TFUNC
)
6103 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
6104 output_bfd
, input_section
,
6105 hit_data
, sym_sec
, rel
->r_offset
,
6106 signed_addend
, value
,
6108 return bfd_reloc_ok
;
6110 return bfd_reloc_dangerous
;
6114 /* Check if a stub has to be inserted because the
6115 destination is too far or we are changing mode. */
6116 if (r_type
== R_ARM_CALL
)
6118 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
6119 || branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
6120 || sym_flags
== STT_ARM_TFUNC
)
6122 /* The target is out of reach, so redirect the
6123 branch to the local stub for this function. */
6125 stub_entry
= elf32_arm_get_stub_entry (input_section
,
6128 if (stub_entry
!= NULL
)
6129 value
= (stub_entry
->stub_offset
6130 + stub_entry
->stub_sec
->output_offset
6131 + stub_entry
->stub_sec
->output_section
->vma
);
6135 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6137 S is the address of the symbol in the relocation.
6138 P is address of the instruction being relocated.
6139 A is the addend (extracted from the instruction) in bytes.
6141 S is held in 'value'.
6142 P is the base address of the section containing the
6143 instruction plus the offset of the reloc into that
6145 (input_section->output_section->vma +
6146 input_section->output_offset +
6148 A is the addend, converted into bytes, ie:
6151 Note: None of these operations have knowledge of the pipeline
6152 size of the processor, thus it is up to the assembler to
6153 encode this information into the addend. */
6154 value
-= (input_section
->output_section
->vma
6155 + input_section
->output_offset
);
6156 value
-= rel
->r_offset
;
6157 if (globals
->use_rel
)
6158 value
+= (signed_addend
<< howto
->size
);
6160 /* RELA addends do not have to be adjusted by howto->size. */
6161 value
+= signed_addend
;
6163 signed_addend
= value
;
6164 signed_addend
>>= howto
->rightshift
;
6166 /* A branch to an undefined weak symbol is turned into a jump to
6167 the next instruction. */
6168 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
)
6170 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000)
6175 /* Perform a signed range check. */
6176 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
6177 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
6178 return bfd_reloc_overflow
;
6180 addend
= (value
& 2);
6182 value
= (signed_addend
& howto
->dst_mask
)
6183 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
6185 /* Set the H bit in the BLX instruction. */
6186 if (sym_flags
== STT_ARM_TFUNC
)
6191 value
&= ~(bfd_vma
)(1 << 24);
6193 if (r_type
== R_ARM_CALL
)
6195 /* Select the correct instruction (BL or BLX). */
6196 /* Only if we are not handling a BL to a stub. In this
6197 case, mode switching is performed by the stub. */
6198 if (sym_flags
== STT_ARM_TFUNC
&& !stub_entry
)
6202 value
&= ~(bfd_vma
)(1 << 28);
6212 if (sym_flags
== STT_ARM_TFUNC
)
6216 case R_ARM_ABS32_NOI
:
6222 if (sym_flags
== STT_ARM_TFUNC
)
6224 value
-= (input_section
->output_section
->vma
6225 + input_section
->output_offset
+ rel
->r_offset
);
6228 case R_ARM_REL32_NOI
:
6230 value
-= (input_section
->output_section
->vma
6231 + input_section
->output_offset
+ rel
->r_offset
);
6235 value
-= (input_section
->output_section
->vma
6236 + input_section
->output_offset
+ rel
->r_offset
);
6237 value
+= signed_addend
;
6238 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
6240 /* Check for overflow. */
6241 if ((value
^ (value
>> 1)) & (1 << 30))
6242 return bfd_reloc_overflow
;
6244 value
&= 0x7fffffff;
6245 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
6246 if (sym_flags
== STT_ARM_TFUNC
)
6251 bfd_put_32 (input_bfd
, value
, hit_data
);
6252 return bfd_reloc_ok
;
6256 if ((long) value
> 0x7f || (long) value
< -0x80)
6257 return bfd_reloc_overflow
;
6259 bfd_put_8 (input_bfd
, value
, hit_data
);
6260 return bfd_reloc_ok
;
6265 if ((long) value
> 0x7fff || (long) value
< -0x8000)
6266 return bfd_reloc_overflow
;
6268 bfd_put_16 (input_bfd
, value
, hit_data
);
6269 return bfd_reloc_ok
;
6271 case R_ARM_THM_ABS5
:
6272 /* Support ldr and str instructions for the thumb. */
6273 if (globals
->use_rel
)
6275 /* Need to refetch addend. */
6276 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
6277 /* ??? Need to determine shift amount from operand size. */
6278 addend
>>= howto
->rightshift
;
6282 /* ??? Isn't value unsigned? */
6283 if ((long) value
> 0x1f || (long) value
< -0x10)
6284 return bfd_reloc_overflow
;
6286 /* ??? Value needs to be properly shifted into place first. */
6287 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
6288 bfd_put_16 (input_bfd
, value
, hit_data
);
6289 return bfd_reloc_ok
;
6291 case R_ARM_THM_ALU_PREL_11_0
:
6292 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6295 bfd_signed_vma relocation
;
6297 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
6298 | bfd_get_16 (input_bfd
, hit_data
+ 2);
6300 if (globals
->use_rel
)
6302 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
6303 | ((insn
& (1 << 26)) >> 15);
6304 if (insn
& 0xf00000)
6305 signed_addend
= -signed_addend
;
6308 relocation
= value
+ signed_addend
;
6309 relocation
-= (input_section
->output_section
->vma
6310 + input_section
->output_offset
6313 value
= abs (relocation
);
6315 if (value
>= 0x1000)
6316 return bfd_reloc_overflow
;
6318 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
6319 | ((value
& 0x700) << 4)
6320 | ((value
& 0x800) << 15);
6324 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
6325 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
6327 return bfd_reloc_ok
;
6330 case R_ARM_THM_PC12
:
6331 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6334 bfd_signed_vma relocation
;
6336 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
6337 | bfd_get_16 (input_bfd
, hit_data
+ 2);
6339 if (globals
->use_rel
)
6341 signed_addend
= insn
& 0xfff;
6342 if (!(insn
& (1 << 23)))
6343 signed_addend
= -signed_addend
;
6346 relocation
= value
+ signed_addend
;
6347 relocation
-= (input_section
->output_section
->vma
6348 + input_section
->output_offset
6351 value
= abs (relocation
);
6353 if (value
>= 0x1000)
6354 return bfd_reloc_overflow
;
6356 insn
= (insn
& 0xff7ff000) | value
;
6357 if (relocation
>= 0)
6360 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
6361 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
6363 return bfd_reloc_ok
;
6366 case R_ARM_THM_XPC22
:
6367 case R_ARM_THM_CALL
:
6368 case R_ARM_THM_JUMP24
:
6369 /* Thumb BL (branch long instruction). */
6373 bfd_boolean overflow
= FALSE
;
6374 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
6375 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
6376 bfd_signed_vma reloc_signed_max
;
6377 bfd_signed_vma reloc_signed_min
;
6379 bfd_signed_vma signed_check
;
6381 int thumb2
= using_thumb2 (globals
);
6383 /* A branch to an undefined weak symbol is turned into a jump to
6384 the next instruction. */
6385 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
)
6387 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
6388 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
6389 return bfd_reloc_ok
;
6392 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6393 with Thumb-1) involving the J1 and J2 bits. */
6394 if (globals
->use_rel
)
6396 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
6397 bfd_vma upper
= upper_insn
& 0x3ff;
6398 bfd_vma lower
= lower_insn
& 0x7ff;
6399 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
6400 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
6401 bfd_vma i1
= j1
^ s
? 0 : 1;
6402 bfd_vma i2
= j2
^ s
? 0 : 1;
6404 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
6406 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
6408 signed_addend
= addend
;
6411 if (r_type
== R_ARM_THM_XPC22
)
6413 /* Check for Thumb to Thumb call. */
6414 /* FIXME: Should we translate the instruction into a BL
6415 instruction instead ? */
6416 if (sym_flags
== STT_ARM_TFUNC
)
6417 (*_bfd_error_handler
)
6418 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6420 h
? h
->root
.root
.string
: "(local)");
6424 /* If it is not a call to Thumb, assume call to Arm.
6425 If it is a call relative to a section name, then it is not a
6426 function call at all, but rather a long jump. Calls through
6427 the PLT do not require stubs. */
6428 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
6429 && (h
== NULL
|| splt
== NULL
6430 || h
->plt
.offset
== (bfd_vma
) -1))
6432 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
6434 /* Convert BL to BLX. */
6435 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
6437 else if (r_type
!= R_ARM_THM_CALL
)
6439 if (elf32_thumb_to_arm_stub
6440 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
6441 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
6443 return bfd_reloc_ok
;
6445 return bfd_reloc_dangerous
;
6448 else if (sym_flags
== STT_ARM_TFUNC
&& globals
->use_blx
6449 && r_type
== R_ARM_THM_CALL
)
6451 /* Make sure this is a BL. */
6452 lower_insn
|= 0x1800;
6456 /* Handle calls via the PLT. */
6457 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6459 value
= (splt
->output_section
->vma
6460 + splt
->output_offset
6462 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
6464 /* If the Thumb BLX instruction is available, convert the
6465 BL to a BLX instruction to call the ARM-mode PLT entry. */
6466 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
6469 /* Target the Thumb stub before the ARM PLT entry. */
6470 value
-= PLT_THUMB_STUB_SIZE
;
6471 *unresolved_reloc_p
= FALSE
;
6474 if (r_type
== R_ARM_THM_CALL
)
6476 /* Check if a stub has to be inserted because the destination
6479 bfd_signed_vma branch_offset
;
6480 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
6482 from
= (input_section
->output_section
->vma
6483 + input_section
->output_offset
6485 branch_offset
= (bfd_signed_vma
)(value
- from
);
6488 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
6489 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
6492 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
6493 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
6494 || ((sym_flags
!= STT_ARM_TFUNC
) && !globals
->use_blx
))
6496 /* The target is out of reach or we are changing modes, so
6497 redirect the branch to the local stub for this
6499 stub_entry
= elf32_arm_get_stub_entry (input_section
,
6502 if (stub_entry
!= NULL
)
6503 value
= (stub_entry
->stub_offset
6504 + stub_entry
->stub_sec
->output_offset
6505 + stub_entry
->stub_sec
->output_section
->vma
);
6507 /* If this call becomes a call to Arm, force BLX. */
6508 if (globals
->use_blx
)
6511 && !arm_stub_is_thumb (stub_entry
->stub_type
))
6512 || (sym_flags
!= STT_ARM_TFUNC
))
6513 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
6518 relocation
= value
+ signed_addend
;
6520 relocation
-= (input_section
->output_section
->vma
6521 + input_section
->output_offset
6524 check
= relocation
>> howto
->rightshift
;
6526 /* If this is a signed value, the rightshift just dropped
6527 leading 1 bits (assuming twos complement). */
6528 if ((bfd_signed_vma
) relocation
>= 0)
6529 signed_check
= check
;
6531 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
6533 /* Calculate the permissable maximum and minimum values for
6534 this relocation according to whether we're relocating for
6536 bitsize
= howto
->bitsize
;
6539 reloc_signed_max
= ((1 << (bitsize
- 1)) - 1) >> howto
->rightshift
;
6540 reloc_signed_min
= ~reloc_signed_max
;
6542 /* Assumes two's complement. */
6543 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
6546 if ((lower_insn
& 0x5000) == 0x4000)
6547 /* For a BLX instruction, make sure that the relocation is rounded up
6548 to a word boundary. This follows the semantics of the instruction
6549 which specifies that bit 1 of the target address will come from bit
6550 1 of the base address. */
6551 relocation
= (relocation
+ 2) & ~ 3;
6553 /* Put RELOCATION back into the insn. Assumes two's complement.
6554 We use the Thumb-2 encoding, which is safe even if dealing with
6555 a Thumb-1 instruction by virtue of our overflow check above. */
6556 reloc_sign
= (signed_check
< 0) ? 1 : 0;
6557 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
6558 | ((relocation
>> 12) & 0x3ff)
6559 | (reloc_sign
<< 10);
6560 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
6561 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
6562 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
6563 | ((relocation
>> 1) & 0x7ff);
6565 /* Put the relocated value back in the object file: */
6566 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
6567 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
6569 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
6573 case R_ARM_THM_JUMP19
:
6574 /* Thumb32 conditional branch instruction. */
6577 bfd_boolean overflow
= FALSE
;
6578 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
6579 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
6580 bfd_signed_vma reloc_signed_max
= 0xffffe;
6581 bfd_signed_vma reloc_signed_min
= -0x100000;
6582 bfd_signed_vma signed_check
;
6584 /* Need to refetch the addend, reconstruct the top three bits,
6585 and squish the two 11 bit pieces together. */
6586 if (globals
->use_rel
)
6588 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
6589 bfd_vma upper
= (upper_insn
& 0x003f);
6590 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
6591 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
6592 bfd_vma lower
= (lower_insn
& 0x07ff);
6597 upper
-= 0x0100; /* Sign extend. */
6599 addend
= (upper
<< 12) | (lower
<< 1);
6600 signed_addend
= addend
;
6603 /* Handle calls via the PLT. */
6604 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6606 value
= (splt
->output_section
->vma
6607 + splt
->output_offset
6609 /* Target the Thumb stub before the ARM PLT entry. */
6610 value
-= PLT_THUMB_STUB_SIZE
;
6611 *unresolved_reloc_p
= FALSE
;
6614 /* ??? Should handle interworking? GCC might someday try to
6615 use this for tail calls. */
6617 relocation
= value
+ signed_addend
;
6618 relocation
-= (input_section
->output_section
->vma
6619 + input_section
->output_offset
6621 signed_check
= (bfd_signed_vma
) relocation
;
6623 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
6626 /* Put RELOCATION back into the insn. */
6628 bfd_vma S
= (relocation
& 0x00100000) >> 20;
6629 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
6630 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
6631 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
6632 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
6634 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
6635 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
6638 /* Put the relocated value back in the object file: */
6639 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
6640 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
6642 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
6645 case R_ARM_THM_JUMP11
:
6646 case R_ARM_THM_JUMP8
:
6647 case R_ARM_THM_JUMP6
:
6648 /* Thumb B (branch) instruction). */
6650 bfd_signed_vma relocation
;
6651 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
6652 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
6653 bfd_signed_vma signed_check
;
6655 /* CZB cannot jump backward. */
6656 if (r_type
== R_ARM_THM_JUMP6
)
6657 reloc_signed_min
= 0;
6659 if (globals
->use_rel
)
6661 /* Need to refetch addend. */
6662 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
6663 if (addend
& ((howto
->src_mask
+ 1) >> 1))
6666 signed_addend
&= ~ howto
->src_mask
;
6667 signed_addend
|= addend
;
6670 signed_addend
= addend
;
6671 /* The value in the insn has been right shifted. We need to
6672 undo this, so that we can perform the address calculation
6673 in terms of bytes. */
6674 signed_addend
<<= howto
->rightshift
;
6676 relocation
= value
+ signed_addend
;
6678 relocation
-= (input_section
->output_section
->vma
6679 + input_section
->output_offset
6682 relocation
>>= howto
->rightshift
;
6683 signed_check
= relocation
;
6685 if (r_type
== R_ARM_THM_JUMP6
)
6686 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
6688 relocation
&= howto
->dst_mask
;
6689 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
6691 bfd_put_16 (input_bfd
, relocation
, hit_data
);
6693 /* Assumes two's complement. */
6694 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
6695 return bfd_reloc_overflow
;
6697 return bfd_reloc_ok
;
6700 case R_ARM_ALU_PCREL7_0
:
6701 case R_ARM_ALU_PCREL15_8
:
6702 case R_ARM_ALU_PCREL23_15
:
6707 insn
= bfd_get_32 (input_bfd
, hit_data
);
6708 if (globals
->use_rel
)
6710 /* Extract the addend. */
6711 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
6712 signed_addend
= addend
;
6714 relocation
= value
+ signed_addend
;
6716 relocation
-= (input_section
->output_section
->vma
6717 + input_section
->output_offset
6719 insn
= (insn
& ~0xfff)
6720 | ((howto
->bitpos
<< 7) & 0xf00)
6721 | ((relocation
>> howto
->bitpos
) & 0xff);
6722 bfd_put_32 (input_bfd
, value
, hit_data
);
6724 return bfd_reloc_ok
;
6726 case R_ARM_GNU_VTINHERIT
:
6727 case R_ARM_GNU_VTENTRY
:
6728 return bfd_reloc_ok
;
6730 case R_ARM_GOTOFF32
:
6731 /* Relocation is relative to the start of the
6732 global offset table. */
6734 BFD_ASSERT (sgot
!= NULL
);
6736 return bfd_reloc_notsupported
;
6738 /* If we are addressing a Thumb function, we need to adjust the
6739 address by one, so that attempts to call the function pointer will
6740 correctly interpret it as Thumb code. */
6741 if (sym_flags
== STT_ARM_TFUNC
)
6744 /* Note that sgot->output_offset is not involved in this
6745 calculation. We always want the start of .got. If we
6746 define _GLOBAL_OFFSET_TABLE in a different way, as is
6747 permitted by the ABI, we might have to change this
6749 value
-= sgot
->output_section
->vma
;
6750 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6751 contents
, rel
->r_offset
, value
,
6755 /* Use global offset table as symbol value. */
6756 BFD_ASSERT (sgot
!= NULL
);
6759 return bfd_reloc_notsupported
;
6761 *unresolved_reloc_p
= FALSE
;
6762 value
= sgot
->output_section
->vma
;
6763 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6764 contents
, rel
->r_offset
, value
,
6768 case R_ARM_GOT_PREL
:
6769 /* Relocation is to the entry for this symbol in the
6770 global offset table. */
6772 return bfd_reloc_notsupported
;
6779 off
= h
->got
.offset
;
6780 BFD_ASSERT (off
!= (bfd_vma
) -1);
6781 dyn
= globals
->root
.dynamic_sections_created
;
6783 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
6785 && SYMBOL_REFERENCES_LOCAL (info
, h
))
6786 || (ELF_ST_VISIBILITY (h
->other
)
6787 && h
->root
.type
== bfd_link_hash_undefweak
))
6789 /* This is actually a static link, or it is a -Bsymbolic link
6790 and the symbol is defined locally. We must initialize this
6791 entry in the global offset table. Since the offset must
6792 always be a multiple of 4, we use the least significant bit
6793 to record whether we have initialized it already.
6795 When doing a dynamic link, we create a .rel(a).got relocation
6796 entry to initialize the value. This is done in the
6797 finish_dynamic_symbol routine. */
6802 /* If we are addressing a Thumb function, we need to
6803 adjust the address by one, so that attempts to
6804 call the function pointer will correctly
6805 interpret it as Thumb code. */
6806 if (sym_flags
== STT_ARM_TFUNC
)
6809 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
6814 *unresolved_reloc_p
= FALSE
;
6816 value
= sgot
->output_offset
+ off
;
6822 BFD_ASSERT (local_got_offsets
!= NULL
&&
6823 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
6825 off
= local_got_offsets
[r_symndx
];
6827 /* The offset must always be a multiple of 4. We use the
6828 least significant bit to record whether we have already
6829 generated the necessary reloc. */
6834 /* If we are addressing a Thumb function, we need to
6835 adjust the address by one, so that attempts to
6836 call the function pointer will correctly
6837 interpret it as Thumb code. */
6838 if (sym_flags
== STT_ARM_TFUNC
)
6841 if (globals
->use_rel
)
6842 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
6847 Elf_Internal_Rela outrel
;
6850 srelgot
= (bfd_get_section_by_name
6851 (dynobj
, RELOC_SECTION (globals
, ".got")));
6852 BFD_ASSERT (srelgot
!= NULL
);
6854 outrel
.r_addend
= addend
+ value
;
6855 outrel
.r_offset
= (sgot
->output_section
->vma
6856 + sgot
->output_offset
6858 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
6859 loc
= srelgot
->contents
;
6860 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
6861 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6864 local_got_offsets
[r_symndx
] |= 1;
6867 value
= sgot
->output_offset
+ off
;
6869 if (r_type
!= R_ARM_GOT32
)
6870 value
+= sgot
->output_section
->vma
;
6872 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6873 contents
, rel
->r_offset
, value
,
6876 case R_ARM_TLS_LDO32
:
6877 value
= value
- dtpoff_base (info
);
6879 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6880 contents
, rel
->r_offset
, value
,
6883 case R_ARM_TLS_LDM32
:
6887 if (globals
->sgot
== NULL
)
6890 off
= globals
->tls_ldm_got
.offset
;
6896 /* If we don't know the module number, create a relocation
6900 Elf_Internal_Rela outrel
;
6903 if (globals
->srelgot
== NULL
)
6906 outrel
.r_addend
= 0;
6907 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
6908 + globals
->sgot
->output_offset
+ off
);
6909 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
6911 if (globals
->use_rel
)
6912 bfd_put_32 (output_bfd
, outrel
.r_addend
,
6913 globals
->sgot
->contents
+ off
);
6915 loc
= globals
->srelgot
->contents
;
6916 loc
+= globals
->srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
6917 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6920 bfd_put_32 (output_bfd
, 1, globals
->sgot
->contents
+ off
);
6922 globals
->tls_ldm_got
.offset
|= 1;
6925 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
6926 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
6928 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6929 contents
, rel
->r_offset
, value
,
6933 case R_ARM_TLS_GD32
:
6934 case R_ARM_TLS_IE32
:
6940 if (globals
->sgot
== NULL
)
6947 dyn
= globals
->root
.dynamic_sections_created
;
6948 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
6950 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
6952 *unresolved_reloc_p
= FALSE
;
6955 off
= h
->got
.offset
;
6956 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
6960 if (local_got_offsets
== NULL
)
6962 off
= local_got_offsets
[r_symndx
];
6963 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
6966 if (tls_type
== GOT_UNKNOWN
)
6973 bfd_boolean need_relocs
= FALSE
;
6974 Elf_Internal_Rela outrel
;
6975 bfd_byte
*loc
= NULL
;
6978 /* The GOT entries have not been initialized yet. Do it
6979 now, and emit any relocations. If both an IE GOT and a
6980 GD GOT are necessary, we emit the GD first. */
6982 if ((info
->shared
|| indx
!= 0)
6984 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6985 || h
->root
.type
!= bfd_link_hash_undefweak
))
6988 if (globals
->srelgot
== NULL
)
6990 loc
= globals
->srelgot
->contents
;
6991 loc
+= globals
->srelgot
->reloc_count
* RELOC_SIZE (globals
);
6994 if (tls_type
& GOT_TLS_GD
)
6998 outrel
.r_addend
= 0;
6999 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7000 + globals
->sgot
->output_offset
7002 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
7004 if (globals
->use_rel
)
7005 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7006 globals
->sgot
->contents
+ cur_off
);
7008 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7009 globals
->srelgot
->reloc_count
++;
7010 loc
+= RELOC_SIZE (globals
);
7013 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7014 globals
->sgot
->contents
+ cur_off
+ 4);
7017 outrel
.r_addend
= 0;
7018 outrel
.r_info
= ELF32_R_INFO (indx
,
7019 R_ARM_TLS_DTPOFF32
);
7020 outrel
.r_offset
+= 4;
7022 if (globals
->use_rel
)
7023 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7024 globals
->sgot
->contents
+ cur_off
+ 4);
7027 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7028 globals
->srelgot
->reloc_count
++;
7029 loc
+= RELOC_SIZE (globals
);
7034 /* If we are not emitting relocations for a
7035 general dynamic reference, then we must be in a
7036 static link or an executable link with the
7037 symbol binding locally. Mark it as belonging
7038 to module 1, the executable. */
7039 bfd_put_32 (output_bfd
, 1,
7040 globals
->sgot
->contents
+ cur_off
);
7041 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7042 globals
->sgot
->contents
+ cur_off
+ 4);
7048 if (tls_type
& GOT_TLS_IE
)
7053 outrel
.r_addend
= value
- dtpoff_base (info
);
7055 outrel
.r_addend
= 0;
7056 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7057 + globals
->sgot
->output_offset
7059 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
7061 if (globals
->use_rel
)
7062 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7063 globals
->sgot
->contents
+ cur_off
);
7065 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7066 globals
->srelgot
->reloc_count
++;
7067 loc
+= RELOC_SIZE (globals
);
7070 bfd_put_32 (output_bfd
, tpoff (info
, value
),
7071 globals
->sgot
->contents
+ cur_off
);
7078 local_got_offsets
[r_symndx
] |= 1;
7081 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
7083 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
7084 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
7086 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7087 contents
, rel
->r_offset
, value
,
7091 case R_ARM_TLS_LE32
:
7094 (*_bfd_error_handler
)
7095 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7096 input_bfd
, input_section
,
7097 (long) rel
->r_offset
, howto
->name
);
7101 value
= tpoff (info
, value
);
7103 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7104 contents
, rel
->r_offset
, value
,
7108 if (globals
->fix_v4bx
)
7110 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7112 /* Ensure that we have a BX instruction. */
7113 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
7115 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
7117 /* Branch to veneer. */
7119 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
7120 glue_addr
-= input_section
->output_section
->vma
7121 + input_section
->output_offset
7122 + rel
->r_offset
+ 8;
7123 insn
= (insn
& 0xf0000000) | 0x0a000000
7124 | ((glue_addr
>> 2) & 0x00ffffff);
7128 /* Preserve Rm (lowest four bits) and the condition code
7129 (highest four bits). Other bits encode MOV PC,Rm. */
7130 insn
= (insn
& 0xf000000f) | 0x01a0f000;
7133 bfd_put_32 (input_bfd
, insn
, hit_data
);
7135 return bfd_reloc_ok
;
7137 case R_ARM_MOVW_ABS_NC
:
7138 case R_ARM_MOVT_ABS
:
7139 case R_ARM_MOVW_PREL_NC
:
7140 case R_ARM_MOVT_PREL
:
7141 /* Until we properly support segment-base-relative addressing then
7142 we assume the segment base to be zero, as for the group relocations.
7143 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7144 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7145 case R_ARM_MOVW_BREL_NC
:
7146 case R_ARM_MOVW_BREL
:
7147 case R_ARM_MOVT_BREL
:
7149 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7151 if (globals
->use_rel
)
7153 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
7154 signed_addend
= (addend
^ 0x8000) - 0x8000;
7157 value
+= signed_addend
;
7159 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
7160 value
-= (input_section
->output_section
->vma
7161 + input_section
->output_offset
+ rel
->r_offset
);
7163 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
7164 return bfd_reloc_overflow
;
7166 if (sym_flags
== STT_ARM_TFUNC
)
7169 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
7170 || r_type
== R_ARM_MOVT_BREL
)
7174 insn
|= value
& 0xfff;
7175 insn
|= (value
& 0xf000) << 4;
7176 bfd_put_32 (input_bfd
, insn
, hit_data
);
7178 return bfd_reloc_ok
;
7180 case R_ARM_THM_MOVW_ABS_NC
:
7181 case R_ARM_THM_MOVT_ABS
:
7182 case R_ARM_THM_MOVW_PREL_NC
:
7183 case R_ARM_THM_MOVT_PREL
:
7184 /* Until we properly support segment-base-relative addressing then
7185 we assume the segment base to be zero, as for the above relocations.
7186 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7187 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7188 as R_ARM_THM_MOVT_ABS. */
7189 case R_ARM_THM_MOVW_BREL_NC
:
7190 case R_ARM_THM_MOVW_BREL
:
7191 case R_ARM_THM_MOVT_BREL
:
7195 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
7196 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
7198 if (globals
->use_rel
)
7200 addend
= ((insn
>> 4) & 0xf000)
7201 | ((insn
>> 15) & 0x0800)
7202 | ((insn
>> 4) & 0x0700)
7204 signed_addend
= (addend
^ 0x8000) - 0x8000;
7207 value
+= signed_addend
;
7209 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
7210 value
-= (input_section
->output_section
->vma
7211 + input_section
->output_offset
+ rel
->r_offset
);
7213 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
7214 return bfd_reloc_overflow
;
7216 if (sym_flags
== STT_ARM_TFUNC
)
7219 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
7220 || r_type
== R_ARM_THM_MOVT_BREL
)
7224 insn
|= (value
& 0xf000) << 4;
7225 insn
|= (value
& 0x0800) << 15;
7226 insn
|= (value
& 0x0700) << 4;
7227 insn
|= (value
& 0x00ff);
7229 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7230 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7232 return bfd_reloc_ok
;
7234 case R_ARM_ALU_PC_G0_NC
:
7235 case R_ARM_ALU_PC_G1_NC
:
7236 case R_ARM_ALU_PC_G0
:
7237 case R_ARM_ALU_PC_G1
:
7238 case R_ARM_ALU_PC_G2
:
7239 case R_ARM_ALU_SB_G0_NC
:
7240 case R_ARM_ALU_SB_G1_NC
:
7241 case R_ARM_ALU_SB_G0
:
7242 case R_ARM_ALU_SB_G1
:
7243 case R_ARM_ALU_SB_G2
:
7245 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7246 bfd_vma pc
= input_section
->output_section
->vma
7247 + input_section
->output_offset
+ rel
->r_offset
;
7248 /* sb should be the origin of the *segment* containing the symbol.
7249 It is not clear how to obtain this OS-dependent value, so we
7250 make an arbitrary choice of zero. */
7254 bfd_signed_vma signed_value
;
7257 /* Determine which group of bits to select. */
7260 case R_ARM_ALU_PC_G0_NC
:
7261 case R_ARM_ALU_PC_G0
:
7262 case R_ARM_ALU_SB_G0_NC
:
7263 case R_ARM_ALU_SB_G0
:
7267 case R_ARM_ALU_PC_G1_NC
:
7268 case R_ARM_ALU_PC_G1
:
7269 case R_ARM_ALU_SB_G1_NC
:
7270 case R_ARM_ALU_SB_G1
:
7274 case R_ARM_ALU_PC_G2
:
7275 case R_ARM_ALU_SB_G2
:
7283 /* If REL, extract the addend from the insn. If RELA, it will
7284 have already been fetched for us. */
7285 if (globals
->use_rel
)
7288 bfd_vma constant
= insn
& 0xff;
7289 bfd_vma rotation
= (insn
& 0xf00) >> 8;
7292 signed_addend
= constant
;
7295 /* Compensate for the fact that in the instruction, the
7296 rotation is stored in multiples of 2 bits. */
7299 /* Rotate "constant" right by "rotation" bits. */
7300 signed_addend
= (constant
>> rotation
) |
7301 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
7304 /* Determine if the instruction is an ADD or a SUB.
7305 (For REL, this determines the sign of the addend.) */
7306 negative
= identify_add_or_sub (insn
);
7309 (*_bfd_error_handler
)
7310 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7311 input_bfd
, input_section
,
7312 (long) rel
->r_offset
, howto
->name
);
7313 return bfd_reloc_overflow
;
7316 signed_addend
*= negative
;
7319 /* Compute the value (X) to go in the place. */
7320 if (r_type
== R_ARM_ALU_PC_G0_NC
7321 || r_type
== R_ARM_ALU_PC_G1_NC
7322 || r_type
== R_ARM_ALU_PC_G0
7323 || r_type
== R_ARM_ALU_PC_G1
7324 || r_type
== R_ARM_ALU_PC_G2
)
7326 signed_value
= value
- pc
+ signed_addend
;
7328 /* Section base relative. */
7329 signed_value
= value
- sb
+ signed_addend
;
7331 /* If the target symbol is a Thumb function, then set the
7332 Thumb bit in the address. */
7333 if (sym_flags
== STT_ARM_TFUNC
)
7336 /* Calculate the value of the relevant G_n, in encoded
7337 constant-with-rotation format. */
7338 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
7341 /* Check for overflow if required. */
7342 if ((r_type
== R_ARM_ALU_PC_G0
7343 || r_type
== R_ARM_ALU_PC_G1
7344 || r_type
== R_ARM_ALU_PC_G2
7345 || r_type
== R_ARM_ALU_SB_G0
7346 || r_type
== R_ARM_ALU_SB_G1
7347 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
7349 (*_bfd_error_handler
)
7350 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7351 input_bfd
, input_section
,
7352 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7353 return bfd_reloc_overflow
;
7356 /* Mask out the value and the ADD/SUB part of the opcode; take care
7357 not to destroy the S bit. */
7360 /* Set the opcode according to whether the value to go in the
7361 place is negative. */
7362 if (signed_value
< 0)
7367 /* Encode the offset. */
7370 bfd_put_32 (input_bfd
, insn
, hit_data
);
7372 return bfd_reloc_ok
;
7374 case R_ARM_LDR_PC_G0
:
7375 case R_ARM_LDR_PC_G1
:
7376 case R_ARM_LDR_PC_G2
:
7377 case R_ARM_LDR_SB_G0
:
7378 case R_ARM_LDR_SB_G1
:
7379 case R_ARM_LDR_SB_G2
:
7381 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7382 bfd_vma pc
= input_section
->output_section
->vma
7383 + input_section
->output_offset
+ rel
->r_offset
;
7384 bfd_vma sb
= 0; /* See note above. */
7386 bfd_signed_vma signed_value
;
7389 /* Determine which groups of bits to calculate. */
7392 case R_ARM_LDR_PC_G0
:
7393 case R_ARM_LDR_SB_G0
:
7397 case R_ARM_LDR_PC_G1
:
7398 case R_ARM_LDR_SB_G1
:
7402 case R_ARM_LDR_PC_G2
:
7403 case R_ARM_LDR_SB_G2
:
7411 /* If REL, extract the addend from the insn. If RELA, it will
7412 have already been fetched for us. */
7413 if (globals
->use_rel
)
7415 int negative
= (insn
& (1 << 23)) ? 1 : -1;
7416 signed_addend
= negative
* (insn
& 0xfff);
7419 /* Compute the value (X) to go in the place. */
7420 if (r_type
== R_ARM_LDR_PC_G0
7421 || r_type
== R_ARM_LDR_PC_G1
7422 || r_type
== R_ARM_LDR_PC_G2
)
7424 signed_value
= value
- pc
+ signed_addend
;
7426 /* Section base relative. */
7427 signed_value
= value
- sb
+ signed_addend
;
7429 /* Calculate the value of the relevant G_{n-1} to obtain
7430 the residual at that stage. */
7431 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
7433 /* Check for overflow. */
7434 if (residual
>= 0x1000)
7436 (*_bfd_error_handler
)
7437 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7438 input_bfd
, input_section
,
7439 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7440 return bfd_reloc_overflow
;
7443 /* Mask out the value and U bit. */
7446 /* Set the U bit if the value to go in the place is non-negative. */
7447 if (signed_value
>= 0)
7450 /* Encode the offset. */
7453 bfd_put_32 (input_bfd
, insn
, hit_data
);
7455 return bfd_reloc_ok
;
7457 case R_ARM_LDRS_PC_G0
:
7458 case R_ARM_LDRS_PC_G1
:
7459 case R_ARM_LDRS_PC_G2
:
7460 case R_ARM_LDRS_SB_G0
:
7461 case R_ARM_LDRS_SB_G1
:
7462 case R_ARM_LDRS_SB_G2
:
7464 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7465 bfd_vma pc
= input_section
->output_section
->vma
7466 + input_section
->output_offset
+ rel
->r_offset
;
7467 bfd_vma sb
= 0; /* See note above. */
7469 bfd_signed_vma signed_value
;
7472 /* Determine which groups of bits to calculate. */
7475 case R_ARM_LDRS_PC_G0
:
7476 case R_ARM_LDRS_SB_G0
:
7480 case R_ARM_LDRS_PC_G1
:
7481 case R_ARM_LDRS_SB_G1
:
7485 case R_ARM_LDRS_PC_G2
:
7486 case R_ARM_LDRS_SB_G2
:
7494 /* If REL, extract the addend from the insn. If RELA, it will
7495 have already been fetched for us. */
7496 if (globals
->use_rel
)
7498 int negative
= (insn
& (1 << 23)) ? 1 : -1;
7499 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
7502 /* Compute the value (X) to go in the place. */
7503 if (r_type
== R_ARM_LDRS_PC_G0
7504 || r_type
== R_ARM_LDRS_PC_G1
7505 || r_type
== R_ARM_LDRS_PC_G2
)
7507 signed_value
= value
- pc
+ signed_addend
;
7509 /* Section base relative. */
7510 signed_value
= value
- sb
+ signed_addend
;
7512 /* Calculate the value of the relevant G_{n-1} to obtain
7513 the residual at that stage. */
7514 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
7516 /* Check for overflow. */
7517 if (residual
>= 0x100)
7519 (*_bfd_error_handler
)
7520 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7521 input_bfd
, input_section
,
7522 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7523 return bfd_reloc_overflow
;
7526 /* Mask out the value and U bit. */
7529 /* Set the U bit if the value to go in the place is non-negative. */
7530 if (signed_value
>= 0)
7533 /* Encode the offset. */
7534 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
7536 bfd_put_32 (input_bfd
, insn
, hit_data
);
7538 return bfd_reloc_ok
;
7540 case R_ARM_LDC_PC_G0
:
7541 case R_ARM_LDC_PC_G1
:
7542 case R_ARM_LDC_PC_G2
:
7543 case R_ARM_LDC_SB_G0
:
7544 case R_ARM_LDC_SB_G1
:
7545 case R_ARM_LDC_SB_G2
:
7547 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7548 bfd_vma pc
= input_section
->output_section
->vma
7549 + input_section
->output_offset
+ rel
->r_offset
;
7550 bfd_vma sb
= 0; /* See note above. */
7552 bfd_signed_vma signed_value
;
7555 /* Determine which groups of bits to calculate. */
7558 case R_ARM_LDC_PC_G0
:
7559 case R_ARM_LDC_SB_G0
:
7563 case R_ARM_LDC_PC_G1
:
7564 case R_ARM_LDC_SB_G1
:
7568 case R_ARM_LDC_PC_G2
:
7569 case R_ARM_LDC_SB_G2
:
7577 /* If REL, extract the addend from the insn. If RELA, it will
7578 have already been fetched for us. */
7579 if (globals
->use_rel
)
7581 int negative
= (insn
& (1 << 23)) ? 1 : -1;
7582 signed_addend
= negative
* ((insn
& 0xff) << 2);
7585 /* Compute the value (X) to go in the place. */
7586 if (r_type
== R_ARM_LDC_PC_G0
7587 || r_type
== R_ARM_LDC_PC_G1
7588 || r_type
== R_ARM_LDC_PC_G2
)
7590 signed_value
= value
- pc
+ signed_addend
;
7592 /* Section base relative. */
7593 signed_value
= value
- sb
+ signed_addend
;
7595 /* Calculate the value of the relevant G_{n-1} to obtain
7596 the residual at that stage. */
7597 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
7599 /* Check for overflow. (The absolute value to go in the place must be
7600 divisible by four and, after having been divided by four, must
7601 fit in eight bits.) */
7602 if ((residual
& 0x3) != 0 || residual
>= 0x400)
7604 (*_bfd_error_handler
)
7605 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7606 input_bfd
, input_section
,
7607 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7608 return bfd_reloc_overflow
;
7611 /* Mask out the value and U bit. */
7614 /* Set the U bit if the value to go in the place is non-negative. */
7615 if (signed_value
>= 0)
7618 /* Encode the offset. */
7619 insn
|= residual
>> 2;
7621 bfd_put_32 (input_bfd
, insn
, hit_data
);
7623 return bfd_reloc_ok
;
7626 return bfd_reloc_notsupported
;
7630 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7632 arm_add_to_rel (bfd
* abfd
,
7634 reloc_howto_type
* howto
,
7635 bfd_signed_vma increment
)
7637 bfd_signed_vma addend
;
7639 if (howto
->type
== R_ARM_THM_CALL
7640 || howto
->type
== R_ARM_THM_JUMP24
)
7642 int upper_insn
, lower_insn
;
7645 upper_insn
= bfd_get_16 (abfd
, address
);
7646 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
7647 upper
= upper_insn
& 0x7ff;
7648 lower
= lower_insn
& 0x7ff;
7650 addend
= (upper
<< 12) | (lower
<< 1);
7651 addend
+= increment
;
7654 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
7655 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
7657 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
7658 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
7664 contents
= bfd_get_32 (abfd
, address
);
7666 /* Get the (signed) value from the instruction. */
7667 addend
= contents
& howto
->src_mask
;
7668 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7670 bfd_signed_vma mask
;
7673 mask
&= ~ howto
->src_mask
;
7677 /* Add in the increment, (which is a byte value). */
7678 switch (howto
->type
)
7681 addend
+= increment
;
7688 addend
<<= howto
->size
;
7689 addend
+= increment
;
7691 /* Should we check for overflow here ? */
7693 /* Drop any undesired bits. */
7694 addend
>>= howto
->rightshift
;
7698 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
7700 bfd_put_32 (abfd
, contents
, address
);
7704 #define IS_ARM_TLS_RELOC(R_TYPE) \
7705 ((R_TYPE) == R_ARM_TLS_GD32 \
7706 || (R_TYPE) == R_ARM_TLS_LDO32 \
7707 || (R_TYPE) == R_ARM_TLS_LDM32 \
7708 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7709 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7710 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7711 || (R_TYPE) == R_ARM_TLS_LE32 \
7712 || (R_TYPE) == R_ARM_TLS_IE32)
7714 /* Relocate an ARM ELF section. */
7717 elf32_arm_relocate_section (bfd
* output_bfd
,
7718 struct bfd_link_info
* info
,
7720 asection
* input_section
,
7721 bfd_byte
* contents
,
7722 Elf_Internal_Rela
* relocs
,
7723 Elf_Internal_Sym
* local_syms
,
7724 asection
** local_sections
)
7726 Elf_Internal_Shdr
*symtab_hdr
;
7727 struct elf_link_hash_entry
**sym_hashes
;
7728 Elf_Internal_Rela
*rel
;
7729 Elf_Internal_Rela
*relend
;
7731 struct elf32_arm_link_hash_table
* globals
;
7733 globals
= elf32_arm_hash_table (info
);
7735 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
7736 sym_hashes
= elf_sym_hashes (input_bfd
);
7739 relend
= relocs
+ input_section
->reloc_count
;
7740 for (; rel
< relend
; rel
++)
7743 reloc_howto_type
* howto
;
7744 unsigned long r_symndx
;
7745 Elf_Internal_Sym
* sym
;
7747 struct elf_link_hash_entry
* h
;
7749 bfd_reloc_status_type r
;
7752 bfd_boolean unresolved_reloc
= FALSE
;
7753 char *error_message
= NULL
;
7755 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7756 r_type
= ELF32_R_TYPE (rel
->r_info
);
7757 r_type
= arm_real_reloc_type (globals
, r_type
);
7759 if ( r_type
== R_ARM_GNU_VTENTRY
7760 || r_type
== R_ARM_GNU_VTINHERIT
)
7763 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
7764 howto
= bfd_reloc
.howto
;
7770 if (r_symndx
< symtab_hdr
->sh_info
)
7772 sym
= local_syms
+ r_symndx
;
7773 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
7774 sec
= local_sections
[r_symndx
];
7775 if (globals
->use_rel
)
7777 relocation
= (sec
->output_section
->vma
7778 + sec
->output_offset
7780 if (!info
->relocatable
7781 && (sec
->flags
& SEC_MERGE
)
7782 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7785 bfd_vma addend
, value
;
7789 case R_ARM_MOVW_ABS_NC
:
7790 case R_ARM_MOVT_ABS
:
7791 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7792 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
7793 addend
= (addend
^ 0x8000) - 0x8000;
7796 case R_ARM_THM_MOVW_ABS_NC
:
7797 case R_ARM_THM_MOVT_ABS
:
7798 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
7800 value
|= bfd_get_16 (input_bfd
,
7801 contents
+ rel
->r_offset
+ 2);
7802 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
7803 | ((value
& 0x04000000) >> 15);
7804 addend
= (addend
^ 0x8000) - 0x8000;
7808 if (howto
->rightshift
7809 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
7811 (*_bfd_error_handler
)
7812 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7813 input_bfd
, input_section
,
7814 (long) rel
->r_offset
, howto
->name
);
7818 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7820 /* Get the (signed) value from the instruction. */
7821 addend
= value
& howto
->src_mask
;
7822 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7824 bfd_signed_vma mask
;
7827 mask
&= ~ howto
->src_mask
;
7835 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
7837 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
7839 /* Cases here must match those in the preceeding
7840 switch statement. */
7843 case R_ARM_MOVW_ABS_NC
:
7844 case R_ARM_MOVT_ABS
:
7845 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
7847 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
7850 case R_ARM_THM_MOVW_ABS_NC
:
7851 case R_ARM_THM_MOVT_ABS
:
7852 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
7853 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
7854 bfd_put_16 (input_bfd
, value
>> 16,
7855 contents
+ rel
->r_offset
);
7856 bfd_put_16 (input_bfd
, value
,
7857 contents
+ rel
->r_offset
+ 2);
7861 value
= (value
& ~ howto
->dst_mask
)
7862 | (addend
& howto
->dst_mask
);
7863 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
7869 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
7875 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
7876 r_symndx
, symtab_hdr
, sym_hashes
,
7878 unresolved_reloc
, warned
);
7883 if (sec
!= NULL
&& elf_discarded_section (sec
))
7885 /* For relocs against symbols from removed linkonce sections,
7886 or sections discarded by a linker script, we just want the
7887 section contents zeroed. Avoid any special processing. */
7888 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
7894 if (info
->relocatable
)
7896 /* This is a relocatable link. We don't have to change
7897 anything, unless the reloc is against a section symbol,
7898 in which case we have to adjust according to where the
7899 section symbol winds up in the output section. */
7900 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7902 if (globals
->use_rel
)
7903 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
7904 howto
, (bfd_signed_vma
) sec
->output_offset
);
7906 rel
->r_addend
+= sec
->output_offset
;
7912 name
= h
->root
.root
.string
;
7915 name
= (bfd_elf_string_from_elf_section
7916 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
7917 if (name
== NULL
|| *name
== '\0')
7918 name
= bfd_section_name (input_bfd
, sec
);
7922 && r_type
!= R_ARM_NONE
7924 || h
->root
.type
== bfd_link_hash_defined
7925 || h
->root
.type
== bfd_link_hash_defweak
)
7926 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
7928 (*_bfd_error_handler
)
7929 ((sym_type
== STT_TLS
7930 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7931 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7934 (long) rel
->r_offset
,
7939 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
7940 input_section
, contents
, rel
,
7941 relocation
, info
, sec
, name
,
7942 (h
? ELF_ST_TYPE (h
->type
) :
7943 ELF_ST_TYPE (sym
->st_info
)), h
,
7944 &unresolved_reloc
, &error_message
);
7946 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7947 because such sections are not SEC_ALLOC and thus ld.so will
7948 not process them. */
7949 if (unresolved_reloc
7950 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
7953 (*_bfd_error_handler
)
7954 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7957 (long) rel
->r_offset
,
7959 h
->root
.root
.string
);
7963 if (r
!= bfd_reloc_ok
)
7967 case bfd_reloc_overflow
:
7968 /* If the overflowing reloc was to an undefined symbol,
7969 we have already printed one error message and there
7970 is no point complaining again. */
7972 h
->root
.type
!= bfd_link_hash_undefined
)
7973 && (!((*info
->callbacks
->reloc_overflow
)
7974 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
7975 (bfd_vma
) 0, input_bfd
, input_section
,
7980 case bfd_reloc_undefined
:
7981 if (!((*info
->callbacks
->undefined_symbol
)
7982 (info
, name
, input_bfd
, input_section
,
7983 rel
->r_offset
, TRUE
)))
7987 case bfd_reloc_outofrange
:
7988 error_message
= _("out of range");
7991 case bfd_reloc_notsupported
:
7992 error_message
= _("unsupported relocation");
7995 case bfd_reloc_dangerous
:
7996 /* error_message should already be set. */
8000 error_message
= _("unknown error");
8004 BFD_ASSERT (error_message
!= NULL
);
8005 if (!((*info
->callbacks
->reloc_dangerous
)
8006 (info
, error_message
, input_bfd
, input_section
,
8017 /* Set the right machine number. */
8020 elf32_arm_object_p (bfd
*abfd
)
8024 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
8026 if (mach
!= bfd_mach_arm_unknown
)
8027 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
8029 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
8030 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
8033 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
8038 /* Function to keep ARM specific flags in the ELF header. */
8041 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
8043 if (elf_flags_init (abfd
)
8044 && elf_elfheader (abfd
)->e_flags
!= flags
)
8046 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
8048 if (flags
& EF_ARM_INTERWORK
)
8049 (*_bfd_error_handler
)
8050 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8054 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8060 elf_elfheader (abfd
)->e_flags
= flags
;
8061 elf_flags_init (abfd
) = TRUE
;
8067 /* Copy backend specific data from one object module to another. */
8070 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
8075 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
8078 in_flags
= elf_elfheader (ibfd
)->e_flags
;
8079 out_flags
= elf_elfheader (obfd
)->e_flags
;
8081 if (elf_flags_init (obfd
)
8082 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
8083 && in_flags
!= out_flags
)
8085 /* Cannot mix APCS26 and APCS32 code. */
8086 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
8089 /* Cannot mix float APCS and non-float APCS code. */
8090 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
8093 /* If the src and dest have different interworking flags
8094 then turn off the interworking bit. */
8095 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
8097 if (out_flags
& EF_ARM_INTERWORK
)
8099 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8102 in_flags
&= ~EF_ARM_INTERWORK
;
8105 /* Likewise for PIC, though don't warn for this case. */
8106 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
8107 in_flags
&= ~EF_ARM_PIC
;
8110 elf_elfheader (obfd
)->e_flags
= in_flags
;
8111 elf_flags_init (obfd
) = TRUE
;
8113 /* Also copy the EI_OSABI field. */
8114 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
8115 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
8117 /* Copy object attributes. */
8118 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
8123 /* Values for Tag_ABI_PCS_R9_use. */
8132 /* Values for Tag_ABI_PCS_RW_data. */
8135 AEABI_PCS_RW_data_absolute
,
8136 AEABI_PCS_RW_data_PCrel
,
8137 AEABI_PCS_RW_data_SBrel
,
8138 AEABI_PCS_RW_data_unused
8141 /* Values for Tag_ABI_enum_size. */
8147 AEABI_enum_forced_wide
8150 /* Determine whether an object attribute tag takes an integer, a
8154 elf32_arm_obj_attrs_arg_type (int tag
)
8156 if (tag
== Tag_compatibility
)
8158 else if (tag
== 4 || tag
== 5)
8163 return (tag
& 1) != 0 ? 2 : 1;
8166 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8167 are conflicting attributes. */
8170 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
8172 obj_attribute
*in_attr
;
8173 obj_attribute
*out_attr
;
8174 obj_attribute_list
*in_list
;
8175 /* Some tags have 0 = don't care, 1 = strong requirement,
8176 2 = weak requirement. */
8177 static const int order_312
[3] = {3, 1, 2};
8178 /* For use with Tag_VFP_arch. */
8179 static const int order_01243
[5] = {0, 1, 2, 4, 3};
8182 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
8184 /* This is the first object. Copy the attributes. */
8185 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
8187 /* Use the Tag_null value to indicate the attributes have been
8189 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
8194 in_attr
= elf_known_obj_attributes_proc (ibfd
);
8195 out_attr
= elf_known_obj_attributes_proc (obfd
);
8196 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8197 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
8199 /* Ignore mismatches if teh object doesn't use floating point. */
8200 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
8201 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
8202 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
8205 (_("ERROR: %B uses VFP register arguments, %B does not"),
8211 for (i
= 4; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
8213 /* Merge this attribute with existing attributes. */
8216 case Tag_CPU_raw_name
:
8218 /* Use whichever has the greatest architecture requirements. We
8219 won't necessarily have both the above tags, so make sure input
8220 name is non-NULL. */
8221 if (in_attr
[Tag_CPU_arch
].i
> out_attr
[Tag_CPU_arch
].i
8223 out_attr
[i
].s
= _bfd_elf_attr_strdup (obfd
, in_attr
[i
].s
);
8226 case Tag_ABI_optimization_goals
:
8227 case Tag_ABI_FP_optimization_goals
:
8228 /* Use the first value seen. */
8232 case Tag_ARM_ISA_use
:
8233 case Tag_THUMB_ISA_use
:
8236 /* ??? Do NEON and WMMX conflict? */
8237 case Tag_ABI_FP_rounding
:
8238 case Tag_ABI_FP_denormal
:
8239 case Tag_ABI_FP_exceptions
:
8240 case Tag_ABI_FP_user_exceptions
:
8241 case Tag_ABI_FP_number_model
:
8242 case Tag_ABI_align8_preserved
:
8243 case Tag_ABI_HardFP_use
:
8244 /* Use the largest value specified. */
8245 if (in_attr
[i
].i
> out_attr
[i
].i
)
8246 out_attr
[i
].i
= in_attr
[i
].i
;
8249 case Tag_CPU_arch_profile
:
8250 /* Warn if conflicting architecture profiles used. */
8251 if (out_attr
[i
].i
&& in_attr
[i
].i
&& in_attr
[i
].i
!= out_attr
[i
].i
)
8254 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8255 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
8259 out_attr
[i
].i
= in_attr
[i
].i
;
8262 if (in_attr
[i
].i
> 4 || out_attr
[i
].i
> 4
8263 || order_01243
[in_attr
[i
].i
] > order_01243
[out_attr
[i
].i
])
8264 out_attr
[i
].i
= in_attr
[i
].i
;
8266 case Tag_PCS_config
:
8267 if (out_attr
[i
].i
== 0)
8268 out_attr
[i
].i
= in_attr
[i
].i
;
8269 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
8271 /* It's sometimes ok to mix different configs, so this is only
8274 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
8277 case Tag_ABI_PCS_R9_use
:
8278 if (in_attr
[i
].i
!= out_attr
[i
].i
8279 && out_attr
[i
].i
!= AEABI_R9_unused
8280 && in_attr
[i
].i
!= AEABI_R9_unused
)
8283 (_("ERROR: %B: Conflicting use of R9"), ibfd
);
8286 if (out_attr
[i
].i
== AEABI_R9_unused
)
8287 out_attr
[i
].i
= in_attr
[i
].i
;
8289 case Tag_ABI_PCS_RW_data
:
8290 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
8291 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
8292 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
8295 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8299 /* Use the smallest value specified. */
8300 if (in_attr
[i
].i
< out_attr
[i
].i
)
8301 out_attr
[i
].i
= in_attr
[i
].i
;
8303 case Tag_ABI_PCS_RO_data
:
8304 /* Use the smallest value specified. */
8305 if (in_attr
[i
].i
< out_attr
[i
].i
)
8306 out_attr
[i
].i
= in_attr
[i
].i
;
8308 case Tag_ABI_PCS_GOT_use
:
8309 if (in_attr
[i
].i
> 2 || out_attr
[i
].i
> 2
8310 || order_312
[in_attr
[i
].i
] < order_312
[out_attr
[i
].i
])
8311 out_attr
[i
].i
= in_attr
[i
].i
;
8313 case Tag_ABI_PCS_wchar_t
:
8314 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
8315 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
8318 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8319 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
8321 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
8322 out_attr
[i
].i
= in_attr
[i
].i
;
8324 case Tag_ABI_align8_needed
:
8325 /* ??? Check against Tag_ABI_align8_preserved. */
8326 if (in_attr
[i
].i
> 2 || out_attr
[i
].i
> 2
8327 || order_312
[in_attr
[i
].i
] < order_312
[out_attr
[i
].i
])
8328 out_attr
[i
].i
= in_attr
[i
].i
;
8330 case Tag_ABI_enum_size
:
8331 if (in_attr
[i
].i
!= AEABI_enum_unused
)
8333 if (out_attr
[i
].i
== AEABI_enum_unused
8334 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
8336 /* The existing object is compatible with anything.
8337 Use whatever requirements the new object has. */
8338 out_attr
[i
].i
= in_attr
[i
].i
;
8340 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
8341 && out_attr
[i
].i
!= in_attr
[i
].i
8342 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
8344 const char *aeabi_enum_names
[] =
8345 { "", "variable-size", "32-bit", "" };
8347 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8348 ibfd
, aeabi_enum_names
[in_attr
[i
].i
],
8349 aeabi_enum_names
[out_attr
[i
].i
]);
8353 case Tag_ABI_VFP_args
:
8356 case Tag_ABI_WMMX_args
:
8357 if (in_attr
[i
].i
!= out_attr
[i
].i
)
8360 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8365 default: /* All known attributes should be explicitly covered. */
8369 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
8370 switch (in_attr
[i
].type
)
8374 out_attr
[i
].type
= 1;
8379 out_attr
[i
].type
= 2;
8387 /* Merge Tag_compatibility attributes and any common GNU ones. */
8388 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
8390 /* Check for any attributes not known on ARM. */
8391 in_list
= elf_other_obj_attributes_proc (ibfd
);
8392 while (in_list
&& in_list
->tag
== Tag_compatibility
)
8393 in_list
= in_list
->next
;
8395 for (; in_list
; in_list
= in_list
->next
)
8397 if ((in_list
->tag
& 128) < 64)
8400 (_("Warning: %B: Unknown EABI object attribute %d"),
8401 ibfd
, in_list
->tag
);
8409 /* Return TRUE if the two EABI versions are incompatible. */
8412 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
8414 /* v4 and v5 are the same spec before and after it was released,
8415 so allow mixing them. */
8416 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
8417 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
8420 return (iver
== over
);
8423 /* Merge backend specific data from an object file to the output
8424 object file when linking. */
8427 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
8431 bfd_boolean flags_compatible
= TRUE
;
8434 /* Check if we have the same endianess. */
8435 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
8438 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
8441 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
8444 /* The input BFD must have had its flags initialised. */
8445 /* The following seems bogus to me -- The flags are initialized in
8446 the assembler but I don't think an elf_flags_init field is
8447 written into the object. */
8448 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8450 in_flags
= elf_elfheader (ibfd
)->e_flags
;
8451 out_flags
= elf_elfheader (obfd
)->e_flags
;
8453 /* In theory there is no reason why we couldn't handle this. However
8454 in practice it isn't even close to working and there is no real
8455 reason to want it. */
8456 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
8457 && !(ibfd
->flags
& DYNAMIC
)
8458 && (in_flags
& EF_ARM_BE8
))
8460 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8465 if (!elf_flags_init (obfd
))
8467 /* If the input is the default architecture and had the default
8468 flags then do not bother setting the flags for the output
8469 architecture, instead allow future merges to do this. If no
8470 future merges ever set these flags then they will retain their
8471 uninitialised values, which surprise surprise, correspond
8472 to the default values. */
8473 if (bfd_get_arch_info (ibfd
)->the_default
8474 && elf_elfheader (ibfd
)->e_flags
== 0)
8477 elf_flags_init (obfd
) = TRUE
;
8478 elf_elfheader (obfd
)->e_flags
= in_flags
;
8480 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
8481 && bfd_get_arch_info (obfd
)->the_default
)
8482 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
8487 /* Determine what should happen if the input ARM architecture
8488 does not match the output ARM architecture. */
8489 if (! bfd_arm_merge_machines (ibfd
, obfd
))
8492 /* Identical flags must be compatible. */
8493 if (in_flags
== out_flags
)
8496 /* Check to see if the input BFD actually contains any sections. If
8497 not, its flags may not have been initialised either, but it
8498 cannot actually cause any incompatiblity. Do not short-circuit
8499 dynamic objects; their section list may be emptied by
8500 elf_link_add_object_symbols.
8502 Also check to see if there are no code sections in the input.
8503 In this case there is no need to check for code specific flags.
8504 XXX - do we need to worry about floating-point format compatability
8505 in data sections ? */
8506 if (!(ibfd
->flags
& DYNAMIC
))
8508 bfd_boolean null_input_bfd
= TRUE
;
8509 bfd_boolean only_data_sections
= TRUE
;
8511 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8513 /* Ignore synthetic glue sections. */
8514 if (strcmp (sec
->name
, ".glue_7")
8515 && strcmp (sec
->name
, ".glue_7t"))
8517 if ((bfd_get_section_flags (ibfd
, sec
)
8518 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
8519 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
8520 only_data_sections
= FALSE
;
8522 null_input_bfd
= FALSE
;
8527 if (null_input_bfd
|| only_data_sections
)
8531 /* Complain about various flag mismatches. */
8532 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
8533 EF_ARM_EABI_VERSION (out_flags
)))
8536 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8538 (in_flags
& EF_ARM_EABIMASK
) >> 24,
8539 (out_flags
& EF_ARM_EABIMASK
) >> 24);
8543 /* Not sure what needs to be checked for EABI versions >= 1. */
8544 /* VxWorks libraries do not use these flags. */
8545 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
8546 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
8547 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
8549 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
8552 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8554 in_flags
& EF_ARM_APCS_26
? 26 : 32,
8555 out_flags
& EF_ARM_APCS_26
? 26 : 32);
8556 flags_compatible
= FALSE
;
8559 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
8561 if (in_flags
& EF_ARM_APCS_FLOAT
)
8563 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8567 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8570 flags_compatible
= FALSE
;
8573 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
8575 if (in_flags
& EF_ARM_VFP_FLOAT
)
8577 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8581 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8584 flags_compatible
= FALSE
;
8587 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
8589 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
8591 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8595 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8598 flags_compatible
= FALSE
;
8601 #ifdef EF_ARM_SOFT_FLOAT
8602 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
8604 /* We can allow interworking between code that is VFP format
8605 layout, and uses either soft float or integer regs for
8606 passing floating point arguments and results. We already
8607 know that the APCS_FLOAT flags match; similarly for VFP
8609 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
8610 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
8612 if (in_flags
& EF_ARM_SOFT_FLOAT
)
8614 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8618 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8621 flags_compatible
= FALSE
;
8626 /* Interworking mismatch is only a warning. */
8627 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
8629 if (in_flags
& EF_ARM_INTERWORK
)
8632 (_("Warning: %B supports interworking, whereas %B does not"),
8638 (_("Warning: %B does not support interworking, whereas %B does"),
8644 return flags_compatible
;
8647 /* Display the flags field. */
8650 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
8652 FILE * file
= (FILE *) ptr
;
8653 unsigned long flags
;
8655 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
8657 /* Print normal ELF private data. */
8658 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
8660 flags
= elf_elfheader (abfd
)->e_flags
;
8661 /* Ignore init flag - it may not be set, despite the flags field
8662 containing valid data. */
8664 /* xgettext:c-format */
8665 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
8667 switch (EF_ARM_EABI_VERSION (flags
))
8669 case EF_ARM_EABI_UNKNOWN
:
8670 /* The following flag bits are GNU extensions and not part of the
8671 official ARM ELF extended ABI. Hence they are only decoded if
8672 the EABI version is not set. */
8673 if (flags
& EF_ARM_INTERWORK
)
8674 fprintf (file
, _(" [interworking enabled]"));
8676 if (flags
& EF_ARM_APCS_26
)
8677 fprintf (file
, " [APCS-26]");
8679 fprintf (file
, " [APCS-32]");
8681 if (flags
& EF_ARM_VFP_FLOAT
)
8682 fprintf (file
, _(" [VFP float format]"));
8683 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
8684 fprintf (file
, _(" [Maverick float format]"));
8686 fprintf (file
, _(" [FPA float format]"));
8688 if (flags
& EF_ARM_APCS_FLOAT
)
8689 fprintf (file
, _(" [floats passed in float registers]"));
8691 if (flags
& EF_ARM_PIC
)
8692 fprintf (file
, _(" [position independent]"));
8694 if (flags
& EF_ARM_NEW_ABI
)
8695 fprintf (file
, _(" [new ABI]"));
8697 if (flags
& EF_ARM_OLD_ABI
)
8698 fprintf (file
, _(" [old ABI]"));
8700 if (flags
& EF_ARM_SOFT_FLOAT
)
8701 fprintf (file
, _(" [software FP]"));
8703 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
8704 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
8705 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
8706 | EF_ARM_MAVERICK_FLOAT
);
8709 case EF_ARM_EABI_VER1
:
8710 fprintf (file
, _(" [Version1 EABI]"));
8712 if (flags
& EF_ARM_SYMSARESORTED
)
8713 fprintf (file
, _(" [sorted symbol table]"));
8715 fprintf (file
, _(" [unsorted symbol table]"));
8717 flags
&= ~ EF_ARM_SYMSARESORTED
;
8720 case EF_ARM_EABI_VER2
:
8721 fprintf (file
, _(" [Version2 EABI]"));
8723 if (flags
& EF_ARM_SYMSARESORTED
)
8724 fprintf (file
, _(" [sorted symbol table]"));
8726 fprintf (file
, _(" [unsorted symbol table]"));
8728 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
8729 fprintf (file
, _(" [dynamic symbols use segment index]"));
8731 if (flags
& EF_ARM_MAPSYMSFIRST
)
8732 fprintf (file
, _(" [mapping symbols precede others]"));
8734 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
8735 | EF_ARM_MAPSYMSFIRST
);
8738 case EF_ARM_EABI_VER3
:
8739 fprintf (file
, _(" [Version3 EABI]"));
8742 case EF_ARM_EABI_VER4
:
8743 fprintf (file
, _(" [Version4 EABI]"));
8746 case EF_ARM_EABI_VER5
:
8747 fprintf (file
, _(" [Version5 EABI]"));
8749 if (flags
& EF_ARM_BE8
)
8750 fprintf (file
, _(" [BE8]"));
8752 if (flags
& EF_ARM_LE8
)
8753 fprintf (file
, _(" [LE8]"));
8755 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
8759 fprintf (file
, _(" <EABI version unrecognised>"));
8763 flags
&= ~ EF_ARM_EABIMASK
;
8765 if (flags
& EF_ARM_RELEXEC
)
8766 fprintf (file
, _(" [relocatable executable]"));
8768 if (flags
& EF_ARM_HASENTRY
)
8769 fprintf (file
, _(" [has entry point]"));
8771 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
8774 fprintf (file
, _("<Unrecognised flag bits set>"));
8782 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
8784 switch (ELF_ST_TYPE (elf_sym
->st_info
))
8787 return ELF_ST_TYPE (elf_sym
->st_info
);
8790 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8791 This allows us to distinguish between data used by Thumb instructions
8792 and non-data (which is probably code) inside Thumb regions of an
8794 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
8795 return ELF_ST_TYPE (elf_sym
->st_info
);
8806 elf32_arm_gc_mark_hook (asection
*sec
,
8807 struct bfd_link_info
*info
,
8808 Elf_Internal_Rela
*rel
,
8809 struct elf_link_hash_entry
*h
,
8810 Elf_Internal_Sym
*sym
)
8813 switch (ELF32_R_TYPE (rel
->r_info
))
8815 case R_ARM_GNU_VTINHERIT
:
8816 case R_ARM_GNU_VTENTRY
:
8820 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
8823 /* Update the got entry reference counts for the section being removed. */
8826 elf32_arm_gc_sweep_hook (bfd
* abfd
,
8827 struct bfd_link_info
* info
,
8829 const Elf_Internal_Rela
* relocs
)
8831 Elf_Internal_Shdr
*symtab_hdr
;
8832 struct elf_link_hash_entry
**sym_hashes
;
8833 bfd_signed_vma
*local_got_refcounts
;
8834 const Elf_Internal_Rela
*rel
, *relend
;
8835 struct elf32_arm_link_hash_table
* globals
;
8837 if (info
->relocatable
)
8840 globals
= elf32_arm_hash_table (info
);
8842 elf_section_data (sec
)->local_dynrel
= NULL
;
8844 symtab_hdr
= & elf_symtab_hdr (abfd
);
8845 sym_hashes
= elf_sym_hashes (abfd
);
8846 local_got_refcounts
= elf_local_got_refcounts (abfd
);
8848 check_use_blx (globals
);
8850 relend
= relocs
+ sec
->reloc_count
;
8851 for (rel
= relocs
; rel
< relend
; rel
++)
8853 unsigned long r_symndx
;
8854 struct elf_link_hash_entry
*h
= NULL
;
8857 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8858 if (r_symndx
>= symtab_hdr
->sh_info
)
8860 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
8861 while (h
->root
.type
== bfd_link_hash_indirect
8862 || h
->root
.type
== bfd_link_hash_warning
)
8863 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8866 r_type
= ELF32_R_TYPE (rel
->r_info
);
8867 r_type
= arm_real_reloc_type (globals
, r_type
);
8871 case R_ARM_GOT_PREL
:
8872 case R_ARM_TLS_GD32
:
8873 case R_ARM_TLS_IE32
:
8876 if (h
->got
.refcount
> 0)
8877 h
->got
.refcount
-= 1;
8879 else if (local_got_refcounts
!= NULL
)
8881 if (local_got_refcounts
[r_symndx
] > 0)
8882 local_got_refcounts
[r_symndx
] -= 1;
8886 case R_ARM_TLS_LDM32
:
8887 elf32_arm_hash_table (info
)->tls_ldm_got
.refcount
-= 1;
8891 case R_ARM_ABS32_NOI
:
8893 case R_ARM_REL32_NOI
:
8899 case R_ARM_THM_CALL
:
8900 case R_ARM_THM_JUMP24
:
8901 case R_ARM_THM_JUMP19
:
8902 case R_ARM_MOVW_ABS_NC
:
8903 case R_ARM_MOVT_ABS
:
8904 case R_ARM_MOVW_PREL_NC
:
8905 case R_ARM_MOVT_PREL
:
8906 case R_ARM_THM_MOVW_ABS_NC
:
8907 case R_ARM_THM_MOVT_ABS
:
8908 case R_ARM_THM_MOVW_PREL_NC
:
8909 case R_ARM_THM_MOVT_PREL
:
8910 /* Should the interworking branches be here also? */
8914 struct elf32_arm_link_hash_entry
*eh
;
8915 struct elf32_arm_relocs_copied
**pp
;
8916 struct elf32_arm_relocs_copied
*p
;
8918 eh
= (struct elf32_arm_link_hash_entry
*) h
;
8920 if (h
->plt
.refcount
> 0)
8922 h
->plt
.refcount
-= 1;
8923 if (r_type
== R_ARM_THM_CALL
)
8924 eh
->plt_maybe_thumb_refcount
--;
8926 if (r_type
== R_ARM_THM_JUMP24
8927 || r_type
== R_ARM_THM_JUMP19
)
8928 eh
->plt_thumb_refcount
--;
8931 if (r_type
== R_ARM_ABS32
8932 || r_type
== R_ARM_REL32
8933 || r_type
== R_ARM_ABS32_NOI
8934 || r_type
== R_ARM_REL32_NOI
)
8936 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
;
8938 if (p
->section
== sec
)
8941 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32
8942 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32_NOI
)
8960 /* Look through the relocs for a section during the first phase. */
8963 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
8964 asection
*sec
, const Elf_Internal_Rela
*relocs
)
8966 Elf_Internal_Shdr
*symtab_hdr
;
8967 struct elf_link_hash_entry
**sym_hashes
;
8968 const Elf_Internal_Rela
*rel
;
8969 const Elf_Internal_Rela
*rel_end
;
8972 bfd_vma
*local_got_offsets
;
8973 struct elf32_arm_link_hash_table
*htab
;
8974 bfd_boolean needs_plt
;
8976 if (info
->relocatable
)
8979 BFD_ASSERT (is_arm_elf (abfd
));
8981 htab
= elf32_arm_hash_table (info
);
8984 /* Create dynamic sections for relocatable executables so that we can
8985 copy relocations. */
8986 if (htab
->root
.is_relocatable_executable
8987 && ! htab
->root
.dynamic_sections_created
)
8989 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
8993 dynobj
= elf_hash_table (info
)->dynobj
;
8994 local_got_offsets
= elf_local_got_offsets (abfd
);
8996 symtab_hdr
= & elf_symtab_hdr (abfd
);
8997 sym_hashes
= elf_sym_hashes (abfd
);
8999 rel_end
= relocs
+ sec
->reloc_count
;
9000 for (rel
= relocs
; rel
< rel_end
; rel
++)
9002 struct elf_link_hash_entry
*h
;
9003 struct elf32_arm_link_hash_entry
*eh
;
9004 unsigned long r_symndx
;
9007 r_symndx
= ELF32_R_SYM (rel
->r_info
);
9008 r_type
= ELF32_R_TYPE (rel
->r_info
);
9009 r_type
= arm_real_reloc_type (htab
, r_type
);
9011 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
9013 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
9018 if (r_symndx
< symtab_hdr
->sh_info
)
9022 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
9023 while (h
->root
.type
== bfd_link_hash_indirect
9024 || h
->root
.type
== bfd_link_hash_warning
)
9025 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9028 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9033 case R_ARM_GOT_PREL
:
9034 case R_ARM_TLS_GD32
:
9035 case R_ARM_TLS_IE32
:
9036 /* This symbol requires a global offset table entry. */
9038 int tls_type
, old_tls_type
;
9042 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
9043 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
9044 default: tls_type
= GOT_NORMAL
; break;
9050 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
9054 bfd_signed_vma
*local_got_refcounts
;
9056 /* This is a global offset table entry for a local symbol. */
9057 local_got_refcounts
= elf_local_got_refcounts (abfd
);
9058 if (local_got_refcounts
== NULL
)
9062 size
= symtab_hdr
->sh_info
;
9063 size
*= (sizeof (bfd_signed_vma
) + sizeof (char));
9064 local_got_refcounts
= bfd_zalloc (abfd
, size
);
9065 if (local_got_refcounts
== NULL
)
9067 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
9068 elf32_arm_local_got_tls_type (abfd
)
9069 = (char *) (local_got_refcounts
+ symtab_hdr
->sh_info
);
9071 local_got_refcounts
[r_symndx
] += 1;
9072 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
9075 /* We will already have issued an error message if there is a
9076 TLS / non-TLS mismatch, based on the symbol type. We don't
9077 support any linker relaxations. So just combine any TLS
9079 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
9080 && tls_type
!= GOT_NORMAL
)
9081 tls_type
|= old_tls_type
;
9083 if (old_tls_type
!= tls_type
)
9086 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
9088 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
9093 case R_ARM_TLS_LDM32
:
9094 if (r_type
== R_ARM_TLS_LDM32
)
9095 htab
->tls_ldm_got
.refcount
++;
9098 case R_ARM_GOTOFF32
:
9100 if (htab
->sgot
== NULL
)
9102 if (htab
->root
.dynobj
== NULL
)
9103 htab
->root
.dynobj
= abfd
;
9104 if (!create_got_section (htab
->root
.dynobj
, info
))
9110 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9111 ldr __GOTT_INDEX__ offsets. */
9112 if (!htab
->vxworks_p
)
9121 case R_ARM_THM_CALL
:
9122 case R_ARM_THM_JUMP24
:
9123 case R_ARM_THM_JUMP19
:
9128 case R_ARM_ABS32_NOI
:
9130 case R_ARM_REL32_NOI
:
9131 case R_ARM_MOVW_ABS_NC
:
9132 case R_ARM_MOVT_ABS
:
9133 case R_ARM_MOVW_PREL_NC
:
9134 case R_ARM_MOVT_PREL
:
9135 case R_ARM_THM_MOVW_ABS_NC
:
9136 case R_ARM_THM_MOVT_ABS
:
9137 case R_ARM_THM_MOVW_PREL_NC
:
9138 case R_ARM_THM_MOVT_PREL
:
9142 /* Should the interworking branches be listed here? */
9145 /* If this reloc is in a read-only section, we might
9146 need a copy reloc. We can't check reliably at this
9147 stage whether the section is read-only, as input
9148 sections have not yet been mapped to output sections.
9149 Tentatively set the flag for now, and correct in
9150 adjust_dynamic_symbol. */
9154 /* We may need a .plt entry if the function this reloc
9155 refers to is in a different object. We can't tell for
9156 sure yet, because something later might force the
9161 /* If we create a PLT entry, this relocation will reference
9162 it, even if it's an ABS32 relocation. */
9163 h
->plt
.refcount
+= 1;
9165 /* It's too early to use htab->use_blx here, so we have to
9166 record possible blx references separately from
9167 relocs that definitely need a thumb stub. */
9169 if (r_type
== R_ARM_THM_CALL
)
9170 eh
->plt_maybe_thumb_refcount
+= 1;
9172 if (r_type
== R_ARM_THM_JUMP24
9173 || r_type
== R_ARM_THM_JUMP19
)
9174 eh
->plt_thumb_refcount
+= 1;
9177 /* If we are creating a shared library or relocatable executable,
9178 and this is a reloc against a global symbol, or a non PC
9179 relative reloc against a local symbol, then we need to copy
9180 the reloc into the shared library. However, if we are linking
9181 with -Bsymbolic, we do not need to copy a reloc against a
9182 global symbol which is defined in an object we are
9183 including in the link (i.e., DEF_REGULAR is set). At
9184 this point we have not seen all the input files, so it is
9185 possible that DEF_REGULAR is not set now but will be set
9186 later (it is never cleared). We account for that
9187 possibility below by storing information in the
9188 relocs_copied field of the hash table entry. */
9189 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
9190 && (sec
->flags
& SEC_ALLOC
) != 0
9191 && ((r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
)
9192 || (h
!= NULL
&& ! h
->needs_plt
9193 && (! info
->symbolic
|| ! h
->def_regular
))))
9195 struct elf32_arm_relocs_copied
*p
, **head
;
9197 /* When creating a shared object, we must copy these
9198 reloc types into the output file. We create a reloc
9199 section in dynobj and make room for this reloc. */
9204 name
= (bfd_elf_string_from_elf_section
9206 elf_elfheader (abfd
)->e_shstrndx
,
9207 elf_section_data (sec
)->rel_hdr
.sh_name
));
9211 BFD_ASSERT (reloc_section_p (htab
, name
, sec
));
9213 sreloc
= bfd_get_section_by_name (dynobj
, name
);
9218 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
9219 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
9220 if ((sec
->flags
& SEC_ALLOC
) != 0
9221 /* BPABI objects never have dynamic
9222 relocations mapped. */
9223 && !htab
->symbian_p
)
9224 flags
|= SEC_ALLOC
| SEC_LOAD
;
9225 sreloc
= bfd_make_section_with_flags (dynobj
,
9229 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
9233 elf_section_data (sec
)->sreloc
= sreloc
;
9236 /* If this is a global symbol, we count the number of
9237 relocations we need for this symbol. */
9240 head
= &((struct elf32_arm_link_hash_entry
*) h
)->relocs_copied
;
9244 /* Track dynamic relocs needed for local syms too.
9245 We really need local syms available to do this
9251 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
9256 vpp
= &elf_section_data (s
)->local_dynrel
;
9257 head
= (struct elf32_arm_relocs_copied
**) vpp
;
9261 if (p
== NULL
|| p
->section
!= sec
)
9263 bfd_size_type amt
= sizeof *p
;
9265 p
= bfd_alloc (htab
->root
.dynobj
, amt
);
9275 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
9281 /* This relocation describes the C++ object vtable hierarchy.
9282 Reconstruct it for later use during GC. */
9283 case R_ARM_GNU_VTINHERIT
:
9284 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
9288 /* This relocation describes which C++ vtable entries are actually
9289 used. Record for later use during GC. */
9290 case R_ARM_GNU_VTENTRY
:
9291 BFD_ASSERT (h
!= NULL
);
9293 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
9302 /* Unwinding tables are not referenced directly. This pass marks them as
9303 required if the corresponding code section is marked. */
9306 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
9307 elf_gc_mark_hook_fn gc_mark_hook
)
9310 Elf_Internal_Shdr
**elf_shdrp
;
9313 /* Marking EH data may cause additional code sections to be marked,
9314 requiring multiple passes. */
9319 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
9323 if (! is_arm_elf (sub
))
9326 elf_shdrp
= elf_elfsections (sub
);
9327 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
9329 Elf_Internal_Shdr
*hdr
;
9331 hdr
= &elf_section_data (o
)->this_hdr
;
9332 if (hdr
->sh_type
== SHT_ARM_EXIDX
9334 && hdr
->sh_link
< elf_numsections (sub
)
9336 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
9339 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
9349 /* Treat mapping symbols as special target symbols. */
9352 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
9354 return bfd_is_arm_special_symbol_name (sym
->name
,
9355 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
9358 /* This is a copy of elf_find_function() from elf.c except that
9359 ARM mapping symbols are ignored when looking for function names
9360 and STT_ARM_TFUNC is considered to a function type. */
9363 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
9367 const char ** filename_ptr
,
9368 const char ** functionname_ptr
)
9370 const char * filename
= NULL
;
9371 asymbol
* func
= NULL
;
9372 bfd_vma low_func
= 0;
9375 for (p
= symbols
; *p
!= NULL
; p
++)
9379 q
= (elf_symbol_type
*) *p
;
9381 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
9386 filename
= bfd_asymbol_name (&q
->symbol
);
9391 /* Skip mapping symbols. */
9392 if ((q
->symbol
.flags
& BSF_LOCAL
)
9393 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
9394 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
9397 if (bfd_get_section (&q
->symbol
) == section
9398 && q
->symbol
.value
>= low_func
9399 && q
->symbol
.value
<= offset
)
9401 func
= (asymbol
*) q
;
9402 low_func
= q
->symbol
.value
;
9412 *filename_ptr
= filename
;
9413 if (functionname_ptr
)
9414 *functionname_ptr
= bfd_asymbol_name (func
);
9420 /* Find the nearest line to a particular section and offset, for error
9421 reporting. This code is a duplicate of the code in elf.c, except
9422 that it uses arm_elf_find_function. */
9425 elf32_arm_find_nearest_line (bfd
* abfd
,
9429 const char ** filename_ptr
,
9430 const char ** functionname_ptr
,
9431 unsigned int * line_ptr
)
9433 bfd_boolean found
= FALSE
;
9435 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9437 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
9438 filename_ptr
, functionname_ptr
,
9440 & elf_tdata (abfd
)->dwarf2_find_line_info
))
9442 if (!*functionname_ptr
)
9443 arm_elf_find_function (abfd
, section
, symbols
, offset
,
9444 *filename_ptr
? NULL
: filename_ptr
,
9450 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
9451 & found
, filename_ptr
,
9452 functionname_ptr
, line_ptr
,
9453 & elf_tdata (abfd
)->line_info
))
9456 if (found
&& (*functionname_ptr
|| *line_ptr
))
9459 if (symbols
== NULL
)
9462 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
9463 filename_ptr
, functionname_ptr
))
9471 elf32_arm_find_inliner_info (bfd
* abfd
,
9472 const char ** filename_ptr
,
9473 const char ** functionname_ptr
,
9474 unsigned int * line_ptr
)
9477 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
9478 functionname_ptr
, line_ptr
,
9479 & elf_tdata (abfd
)->dwarf2_find_line_info
);
9483 /* Adjust a symbol defined by a dynamic object and referenced by a
9484 regular object. The current definition is in some section of the
9485 dynamic object, but we're not including those sections. We have to
9486 change the definition to something the rest of the link can
9490 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
9491 struct elf_link_hash_entry
* h
)
9495 struct elf32_arm_link_hash_entry
* eh
;
9496 struct elf32_arm_link_hash_table
*globals
;
9498 globals
= elf32_arm_hash_table (info
);
9499 dynobj
= elf_hash_table (info
)->dynobj
;
9501 /* Make sure we know what is going on here. */
9502 BFD_ASSERT (dynobj
!= NULL
9504 || h
->u
.weakdef
!= NULL
9507 && !h
->def_regular
)));
9509 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9511 /* If this is a function, put it in the procedure linkage table. We
9512 will fill in the contents of the procedure linkage table later,
9513 when we know the address of the .got section. */
9514 if (h
->type
== STT_FUNC
|| h
->type
== STT_ARM_TFUNC
9517 if (h
->plt
.refcount
<= 0
9518 || SYMBOL_CALLS_LOCAL (info
, h
)
9519 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
9520 && h
->root
.type
== bfd_link_hash_undefweak
))
9522 /* This case can occur if we saw a PLT32 reloc in an input
9523 file, but the symbol was never referred to by a dynamic
9524 object, or if all references were garbage collected. In
9525 such a case, we don't actually need to build a procedure
9526 linkage table, and we can just do a PC24 reloc instead. */
9527 h
->plt
.offset
= (bfd_vma
) -1;
9528 eh
->plt_thumb_refcount
= 0;
9529 eh
->plt_maybe_thumb_refcount
= 0;
9537 /* It's possible that we incorrectly decided a .plt reloc was
9538 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9539 in check_relocs. We can't decide accurately between function
9540 and non-function syms in check-relocs; Objects loaded later in
9541 the link may change h->type. So fix it now. */
9542 h
->plt
.offset
= (bfd_vma
) -1;
9543 eh
->plt_thumb_refcount
= 0;
9544 eh
->plt_maybe_thumb_refcount
= 0;
9547 /* If this is a weak symbol, and there is a real definition, the
9548 processor independent code will have arranged for us to see the
9549 real definition first, and we can just use the same value. */
9550 if (h
->u
.weakdef
!= NULL
)
9552 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
9553 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
9554 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
9555 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
9559 /* If there are no non-GOT references, we do not need a copy
9561 if (!h
->non_got_ref
)
9564 /* This is a reference to a symbol defined by a dynamic object which
9565 is not a function. */
9567 /* If we are creating a shared library, we must presume that the
9568 only references to the symbol are via the global offset table.
9569 For such cases we need not do anything here; the relocations will
9570 be handled correctly by relocate_section. Relocatable executables
9571 can reference data in shared objects directly, so we don't need to
9572 do anything here. */
9573 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
9578 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
9579 h
->root
.root
.string
);
9583 /* We must allocate the symbol in our .dynbss section, which will
9584 become part of the .bss section of the executable. There will be
9585 an entry for this symbol in the .dynsym section. The dynamic
9586 object will contain position independent code, so all references
9587 from the dynamic object to this symbol will go through the global
9588 offset table. The dynamic linker will use the .dynsym entry to
9589 determine the address it must put in the global offset table, so
9590 both the dynamic object and the regular object will refer to the
9591 same memory location for the variable. */
9592 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
9593 BFD_ASSERT (s
!= NULL
);
9595 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9596 copy the initial value out of the dynamic object and into the
9597 runtime process image. We need to remember the offset into the
9598 .rel(a).bss section we are going to use. */
9599 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
9603 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
9604 BFD_ASSERT (srel
!= NULL
);
9605 srel
->size
+= RELOC_SIZE (globals
);
9609 return _bfd_elf_adjust_dynamic_copy (h
, s
);
9612 /* Allocate space in .plt, .got and associated reloc sections for
9616 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
9618 struct bfd_link_info
*info
;
9619 struct elf32_arm_link_hash_table
*htab
;
9620 struct elf32_arm_link_hash_entry
*eh
;
9621 struct elf32_arm_relocs_copied
*p
;
9622 bfd_signed_vma thumb_refs
;
9624 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9626 if (h
->root
.type
== bfd_link_hash_indirect
)
9629 if (h
->root
.type
== bfd_link_hash_warning
)
9630 /* When warning symbols are created, they **replace** the "real"
9631 entry in the hash table, thus we never get to see the real
9632 symbol in a hash traversal. So look at it now. */
9633 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9635 info
= (struct bfd_link_info
*) inf
;
9636 htab
= elf32_arm_hash_table (info
);
9638 if (htab
->root
.dynamic_sections_created
9639 && h
->plt
.refcount
> 0)
9641 /* Make sure this symbol is output as a dynamic symbol.
9642 Undefined weak syms won't yet be marked as dynamic. */
9643 if (h
->dynindx
== -1
9644 && !h
->forced_local
)
9646 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9651 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
9653 asection
*s
= htab
->splt
;
9655 /* If this is the first .plt entry, make room for the special
9658 s
->size
+= htab
->plt_header_size
;
9660 h
->plt
.offset
= s
->size
;
9662 /* If we will insert a Thumb trampoline before this PLT, leave room
9664 thumb_refs
= eh
->plt_thumb_refcount
;
9666 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
9670 h
->plt
.offset
+= PLT_THUMB_STUB_SIZE
;
9671 s
->size
+= PLT_THUMB_STUB_SIZE
;
9674 /* If this symbol is not defined in a regular file, and we are
9675 not generating a shared library, then set the symbol to this
9676 location in the .plt. This is required to make function
9677 pointers compare as equal between the normal executable and
9678 the shared library. */
9682 h
->root
.u
.def
.section
= s
;
9683 h
->root
.u
.def
.value
= h
->plt
.offset
;
9685 /* Make sure the function is not marked as Thumb, in case
9686 it is the target of an ABS32 relocation, which will
9687 point to the PLT entry. */
9688 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
9689 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
9692 /* Make room for this entry. */
9693 s
->size
+= htab
->plt_entry_size
;
9695 if (!htab
->symbian_p
)
9697 /* We also need to make an entry in the .got.plt section, which
9698 will be placed in the .got section by the linker script. */
9699 eh
->plt_got_offset
= htab
->sgotplt
->size
;
9700 htab
->sgotplt
->size
+= 4;
9703 /* We also need to make an entry in the .rel(a).plt section. */
9704 htab
->srelplt
->size
+= RELOC_SIZE (htab
);
9706 /* VxWorks executables have a second set of relocations for
9707 each PLT entry. They go in a separate relocation section,
9708 which is processed by the kernel loader. */
9709 if (htab
->vxworks_p
&& !info
->shared
)
9711 /* There is a relocation for the initial PLT entry:
9712 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9713 if (h
->plt
.offset
== htab
->plt_header_size
)
9714 htab
->srelplt2
->size
+= RELOC_SIZE (htab
);
9716 /* There are two extra relocations for each subsequent
9717 PLT entry: an R_ARM_32 relocation for the GOT entry,
9718 and an R_ARM_32 relocation for the PLT entry. */
9719 htab
->srelplt2
->size
+= RELOC_SIZE (htab
) * 2;
9724 h
->plt
.offset
= (bfd_vma
) -1;
9730 h
->plt
.offset
= (bfd_vma
) -1;
9734 if (h
->got
.refcount
> 0)
9738 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
9741 /* Make sure this symbol is output as a dynamic symbol.
9742 Undefined weak syms won't yet be marked as dynamic. */
9743 if (h
->dynindx
== -1
9744 && !h
->forced_local
)
9746 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9750 if (!htab
->symbian_p
)
9753 h
->got
.offset
= s
->size
;
9755 if (tls_type
== GOT_UNKNOWN
)
9758 if (tls_type
== GOT_NORMAL
)
9759 /* Non-TLS symbols need one GOT slot. */
9763 if (tls_type
& GOT_TLS_GD
)
9764 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9766 if (tls_type
& GOT_TLS_IE
)
9767 /* R_ARM_TLS_IE32 needs one GOT slot. */
9771 dyn
= htab
->root
.dynamic_sections_created
;
9774 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
9776 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
9779 if (tls_type
!= GOT_NORMAL
9780 && (info
->shared
|| indx
!= 0)
9781 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9782 || h
->root
.type
!= bfd_link_hash_undefweak
))
9784 if (tls_type
& GOT_TLS_IE
)
9785 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
9787 if (tls_type
& GOT_TLS_GD
)
9788 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
9790 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
9791 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
9793 else if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9794 || h
->root
.type
!= bfd_link_hash_undefweak
)
9796 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
9797 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
9801 h
->got
.offset
= (bfd_vma
) -1;
9803 /* Allocate stubs for exported Thumb functions on v4t. */
9804 if (!htab
->use_blx
&& h
->dynindx
!= -1
9806 && ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
9807 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
9809 struct elf_link_hash_entry
* th
;
9810 struct bfd_link_hash_entry
* bh
;
9811 struct elf_link_hash_entry
* myh
;
9815 /* Create a new symbol to regist the real location of the function. */
9816 s
= h
->root
.u
.def
.section
;
9817 sprintf (name
, "__real_%s", h
->root
.root
.string
);
9818 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
9819 name
, BSF_GLOBAL
, s
,
9820 h
->root
.u
.def
.value
,
9821 NULL
, TRUE
, FALSE
, &bh
);
9823 myh
= (struct elf_link_hash_entry
*) bh
;
9824 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
9825 myh
->forced_local
= 1;
9826 eh
->export_glue
= myh
;
9827 th
= record_arm_to_thumb_glue (info
, h
);
9828 /* Point the symbol at the stub. */
9829 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
9830 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
9831 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
9834 if (eh
->relocs_copied
== NULL
)
9837 /* In the shared -Bsymbolic case, discard space allocated for
9838 dynamic pc-relative relocs against symbols which turn out to be
9839 defined in regular objects. For the normal shared case, discard
9840 space for pc-relative relocs that have become local due to symbol
9841 visibility changes. */
9843 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
9845 /* The only relocs that use pc_count are R_ARM_REL32 and
9846 R_ARM_REL32_NOI, which will appear on something like
9847 ".long foo - .". We want calls to protected symbols to resolve
9848 directly to the function rather than going via the plt. If people
9849 want function pointer comparisons to work as expected then they
9850 should avoid writing assembly like ".long foo - .". */
9851 if (SYMBOL_CALLS_LOCAL (info
, h
))
9853 struct elf32_arm_relocs_copied
**pp
;
9855 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
9857 p
->count
-= p
->pc_count
;
9866 if (elf32_arm_hash_table (info
)->vxworks_p
)
9868 struct elf32_arm_relocs_copied
**pp
;
9870 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
9872 if (strcmp (p
->section
->output_section
->name
, ".tls_vars") == 0)
9879 /* Also discard relocs on undefined weak syms with non-default
9881 if (eh
->relocs_copied
!= NULL
9882 && h
->root
.type
== bfd_link_hash_undefweak
)
9884 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
9885 eh
->relocs_copied
= NULL
;
9887 /* Make sure undefined weak symbols are output as a dynamic
9889 else if (h
->dynindx
== -1
9890 && !h
->forced_local
)
9892 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9897 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
9898 && h
->root
.type
== bfd_link_hash_new
)
9900 /* Output absolute symbols so that we can create relocations
9901 against them. For normal symbols we output a relocation
9902 against the section that contains them. */
9903 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9910 /* For the non-shared case, discard space for relocs against
9911 symbols which turn out to need copy relocs or are not
9917 || (htab
->root
.dynamic_sections_created
9918 && (h
->root
.type
== bfd_link_hash_undefweak
9919 || h
->root
.type
== bfd_link_hash_undefined
))))
9921 /* Make sure this symbol is output as a dynamic symbol.
9922 Undefined weak syms won't yet be marked as dynamic. */
9923 if (h
->dynindx
== -1
9924 && !h
->forced_local
)
9926 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9930 /* If that succeeded, we know we'll be keeping all the
9932 if (h
->dynindx
!= -1)
9936 eh
->relocs_copied
= NULL
;
9941 /* Finally, allocate space. */
9942 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
9944 asection
*sreloc
= elf_section_data (p
->section
)->sreloc
;
9945 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
9951 /* Find any dynamic relocs that apply to read-only sections. */
9954 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
9956 struct elf32_arm_link_hash_entry
* eh
;
9957 struct elf32_arm_relocs_copied
* p
;
9959 if (h
->root
.type
== bfd_link_hash_warning
)
9960 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9962 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9963 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
9965 asection
*s
= p
->section
;
9967 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
9969 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
9971 info
->flags
|= DF_TEXTREL
;
9973 /* Not an error, just cut short the traversal. */
9981 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
9984 struct elf32_arm_link_hash_table
*globals
;
9986 globals
= elf32_arm_hash_table (info
);
9987 globals
->byteswap_code
= byteswap_code
;
9990 /* Set the sizes of the dynamic sections. */
9993 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
9994 struct bfd_link_info
* info
)
10001 struct elf32_arm_link_hash_table
*htab
;
10003 htab
= elf32_arm_hash_table (info
);
10004 dynobj
= elf_hash_table (info
)->dynobj
;
10005 BFD_ASSERT (dynobj
!= NULL
);
10006 check_use_blx (htab
);
10008 if (elf_hash_table (info
)->dynamic_sections_created
)
10010 /* Set the contents of the .interp section to the interpreter. */
10011 if (info
->executable
)
10013 s
= bfd_get_section_by_name (dynobj
, ".interp");
10014 BFD_ASSERT (s
!= NULL
);
10015 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
10016 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
10020 /* Set up .got offsets for local syms, and space for local dynamic
10022 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
10024 bfd_signed_vma
*local_got
;
10025 bfd_signed_vma
*end_local_got
;
10026 char *local_tls_type
;
10027 bfd_size_type locsymcount
;
10028 Elf_Internal_Shdr
*symtab_hdr
;
10030 bfd_boolean is_vxworks
= elf32_arm_hash_table (info
)->vxworks_p
;
10032 if (! is_arm_elf (ibfd
))
10035 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
10037 struct elf32_arm_relocs_copied
*p
;
10039 for (p
= elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
10041 if (!bfd_is_abs_section (p
->section
)
10042 && bfd_is_abs_section (p
->section
->output_section
))
10044 /* Input section has been discarded, either because
10045 it is a copy of a linkonce section or due to
10046 linker script /DISCARD/, so we'll be discarding
10049 else if (is_vxworks
10050 && strcmp (p
->section
->output_section
->name
,
10053 /* Relocations in vxworks .tls_vars sections are
10054 handled specially by the loader. */
10056 else if (p
->count
!= 0)
10058 srel
= elf_section_data (p
->section
)->sreloc
;
10059 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
10060 if ((p
->section
->output_section
->flags
& SEC_READONLY
) != 0)
10061 info
->flags
|= DF_TEXTREL
;
10066 local_got
= elf_local_got_refcounts (ibfd
);
10070 symtab_hdr
= & elf_symtab_hdr (ibfd
);
10071 locsymcount
= symtab_hdr
->sh_info
;
10072 end_local_got
= local_got
+ locsymcount
;
10073 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
10075 srel
= htab
->srelgot
;
10076 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
10078 if (*local_got
> 0)
10080 *local_got
= s
->size
;
10081 if (*local_tls_type
& GOT_TLS_GD
)
10082 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10084 if (*local_tls_type
& GOT_TLS_IE
)
10086 if (*local_tls_type
== GOT_NORMAL
)
10089 if (info
->shared
|| *local_tls_type
== GOT_TLS_GD
)
10090 srel
->size
+= RELOC_SIZE (htab
);
10093 *local_got
= (bfd_vma
) -1;
10097 if (htab
->tls_ldm_got
.refcount
> 0)
10099 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10100 for R_ARM_TLS_LDM32 relocations. */
10101 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
10102 htab
->sgot
->size
+= 8;
10104 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
10107 htab
->tls_ldm_got
.offset
= -1;
10109 /* Allocate global sym .plt and .got entries, and space for global
10110 sym dynamic relocs. */
10111 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
10113 /* Here we rummage through the found bfds to collect glue information. */
10114 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
10116 if (! is_arm_elf (ibfd
))
10119 /* Initialise mapping tables for code/data. */
10120 bfd_elf32_arm_init_maps (ibfd
);
10122 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
10123 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
10124 /* xgettext:c-format */
10125 _bfd_error_handler (_("Errors encountered processing file %s"),
10129 /* The check_relocs and adjust_dynamic_symbol entry points have
10130 determined the sizes of the various dynamic sections. Allocate
10131 memory for them. */
10134 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
10138 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
10141 /* It's OK to base decisions on the section name, because none
10142 of the dynobj section names depend upon the input files. */
10143 name
= bfd_get_section_name (dynobj
, s
);
10145 if (strcmp (name
, ".plt") == 0)
10147 /* Remember whether there is a PLT. */
10148 plt
= s
->size
!= 0;
10150 else if (CONST_STRNEQ (name
, ".rel"))
10154 /* Remember whether there are any reloc sections other
10155 than .rel(a).plt and .rela.plt.unloaded. */
10156 if (s
!= htab
->srelplt
&& s
!= htab
->srelplt2
)
10159 /* We use the reloc_count field as a counter if we need
10160 to copy relocs into the output file. */
10161 s
->reloc_count
= 0;
10164 else if (! CONST_STRNEQ (name
, ".got")
10165 && strcmp (name
, ".dynbss") != 0)
10167 /* It's not one of our sections, so don't allocate space. */
10173 /* If we don't need this section, strip it from the
10174 output file. This is mostly to handle .rel(a).bss and
10175 .rel(a).plt. We must create both sections in
10176 create_dynamic_sections, because they must be created
10177 before the linker maps input sections to output
10178 sections. The linker does that before
10179 adjust_dynamic_symbol is called, and it is that
10180 function which decides whether anything needs to go
10181 into these sections. */
10182 s
->flags
|= SEC_EXCLUDE
;
10186 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
10189 /* Allocate memory for the section contents. */
10190 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
10191 if (s
->contents
== NULL
)
10195 if (elf_hash_table (info
)->dynamic_sections_created
)
10197 /* Add some entries to the .dynamic section. We fill in the
10198 values later, in elf32_arm_finish_dynamic_sections, but we
10199 must add the entries now so that we get the correct size for
10200 the .dynamic section. The DT_DEBUG entry is filled in by the
10201 dynamic linker and used by the debugger. */
10202 #define add_dynamic_entry(TAG, VAL) \
10203 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10205 if (info
->executable
)
10207 if (!add_dynamic_entry (DT_DEBUG
, 0))
10213 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
10214 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
10215 || !add_dynamic_entry (DT_PLTREL
,
10216 htab
->use_rel
? DT_REL
: DT_RELA
)
10217 || !add_dynamic_entry (DT_JMPREL
, 0))
10225 if (!add_dynamic_entry (DT_REL
, 0)
10226 || !add_dynamic_entry (DT_RELSZ
, 0)
10227 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
10232 if (!add_dynamic_entry (DT_RELA
, 0)
10233 || !add_dynamic_entry (DT_RELASZ
, 0)
10234 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
10239 /* If any dynamic relocs apply to a read-only section,
10240 then we need a DT_TEXTREL entry. */
10241 if ((info
->flags
& DF_TEXTREL
) == 0)
10242 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
10245 if ((info
->flags
& DF_TEXTREL
) != 0)
10247 if (!add_dynamic_entry (DT_TEXTREL
, 0))
10250 if (htab
->vxworks_p
10251 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
10254 #undef add_dynamic_entry
10259 /* Finish up dynamic symbol handling. We set the contents of various
10260 dynamic sections here. */
10263 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
10264 struct bfd_link_info
* info
,
10265 struct elf_link_hash_entry
* h
,
10266 Elf_Internal_Sym
* sym
)
10269 struct elf32_arm_link_hash_table
*htab
;
10270 struct elf32_arm_link_hash_entry
*eh
;
10272 dynobj
= elf_hash_table (info
)->dynobj
;
10273 htab
= elf32_arm_hash_table (info
);
10274 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10276 if (h
->plt
.offset
!= (bfd_vma
) -1)
10282 Elf_Internal_Rela rel
;
10284 /* This symbol has an entry in the procedure linkage table. Set
10287 BFD_ASSERT (h
->dynindx
!= -1);
10289 splt
= bfd_get_section_by_name (dynobj
, ".plt");
10290 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".plt"));
10291 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
10293 /* Fill in the entry in the procedure linkage table. */
10294 if (htab
->symbian_p
)
10296 put_arm_insn (htab
, output_bfd
,
10297 elf32_arm_symbian_plt_entry
[0],
10298 splt
->contents
+ h
->plt
.offset
);
10299 bfd_put_32 (output_bfd
,
10300 elf32_arm_symbian_plt_entry
[1],
10301 splt
->contents
+ h
->plt
.offset
+ 4);
10303 /* Fill in the entry in the .rel.plt section. */
10304 rel
.r_offset
= (splt
->output_section
->vma
10305 + splt
->output_offset
10306 + h
->plt
.offset
+ 4);
10307 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
10309 /* Get the index in the procedure linkage table which
10310 corresponds to this symbol. This is the index of this symbol
10311 in all the symbols for which we are making plt entries. The
10312 first entry in the procedure linkage table is reserved. */
10313 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
10314 / htab
->plt_entry_size
);
10318 bfd_vma got_offset
, got_address
, plt_address
;
10319 bfd_vma got_displacement
;
10323 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
10324 BFD_ASSERT (sgot
!= NULL
);
10326 /* Get the offset into the .got.plt table of the entry that
10327 corresponds to this function. */
10328 got_offset
= eh
->plt_got_offset
;
10330 /* Get the index in the procedure linkage table which
10331 corresponds to this symbol. This is the index of this symbol
10332 in all the symbols for which we are making plt entries. The
10333 first three entries in .got.plt are reserved; after that
10334 symbols appear in the same order as in .plt. */
10335 plt_index
= (got_offset
- 12) / 4;
10337 /* Calculate the address of the GOT entry. */
10338 got_address
= (sgot
->output_section
->vma
10339 + sgot
->output_offset
10342 /* ...and the address of the PLT entry. */
10343 plt_address
= (splt
->output_section
->vma
10344 + splt
->output_offset
10347 ptr
= htab
->splt
->contents
+ h
->plt
.offset
;
10348 if (htab
->vxworks_p
&& info
->shared
)
10353 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
10355 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
10357 val
|= got_address
- sgot
->output_section
->vma
;
10359 val
|= plt_index
* RELOC_SIZE (htab
);
10360 if (i
== 2 || i
== 5)
10361 bfd_put_32 (output_bfd
, val
, ptr
);
10363 put_arm_insn (htab
, output_bfd
, val
, ptr
);
10366 else if (htab
->vxworks_p
)
10371 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
10373 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
10375 val
|= got_address
;
10377 val
|= 0xffffff & -((h
->plt
.offset
+ i
* 4 + 8) >> 2);
10379 val
|= plt_index
* RELOC_SIZE (htab
);
10380 if (i
== 2 || i
== 5)
10381 bfd_put_32 (output_bfd
, val
, ptr
);
10383 put_arm_insn (htab
, output_bfd
, val
, ptr
);
10386 loc
= (htab
->srelplt2
->contents
10387 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
10389 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10390 referencing the GOT for this PLT entry. */
10391 rel
.r_offset
= plt_address
+ 8;
10392 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
10393 rel
.r_addend
= got_offset
;
10394 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10395 loc
+= RELOC_SIZE (htab
);
10397 /* Create the R_ARM_ABS32 relocation referencing the
10398 beginning of the PLT for this GOT entry. */
10399 rel
.r_offset
= got_address
;
10400 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
10402 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10406 bfd_signed_vma thumb_refs
;
10407 /* Calculate the displacement between the PLT slot and the
10408 entry in the GOT. The eight-byte offset accounts for the
10409 value produced by adding to pc in the first instruction
10410 of the PLT stub. */
10411 got_displacement
= got_address
- (plt_address
+ 8);
10413 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
10415 thumb_refs
= eh
->plt_thumb_refcount
;
10416 if (!htab
->use_blx
)
10417 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
10419 if (thumb_refs
> 0)
10421 put_thumb_insn (htab
, output_bfd
,
10422 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
10423 put_thumb_insn (htab
, output_bfd
,
10424 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
10427 put_arm_insn (htab
, output_bfd
,
10428 elf32_arm_plt_entry
[0]
10429 | ((got_displacement
& 0x0ff00000) >> 20),
10431 put_arm_insn (htab
, output_bfd
,
10432 elf32_arm_plt_entry
[1]
10433 | ((got_displacement
& 0x000ff000) >> 12),
10435 put_arm_insn (htab
, output_bfd
,
10436 elf32_arm_plt_entry
[2]
10437 | (got_displacement
& 0x00000fff),
10439 #ifdef FOUR_WORD_PLT
10440 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
10444 /* Fill in the entry in the global offset table. */
10445 bfd_put_32 (output_bfd
,
10446 (splt
->output_section
->vma
10447 + splt
->output_offset
),
10448 sgot
->contents
+ got_offset
);
10450 /* Fill in the entry in the .rel(a).plt section. */
10452 rel
.r_offset
= got_address
;
10453 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
10456 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
10457 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10459 if (!h
->def_regular
)
10461 /* Mark the symbol as undefined, rather than as defined in
10462 the .plt section. Leave the value alone. */
10463 sym
->st_shndx
= SHN_UNDEF
;
10464 /* If the symbol is weak, we do need to clear the value.
10465 Otherwise, the PLT entry would provide a definition for
10466 the symbol even if the symbol wasn't defined anywhere,
10467 and so the symbol would never be NULL. */
10468 if (!h
->ref_regular_nonweak
)
10473 if (h
->got
.offset
!= (bfd_vma
) -1
10474 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_GD
) == 0
10475 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_IE
) == 0)
10479 Elf_Internal_Rela rel
;
10483 /* This symbol has an entry in the global offset table. Set it
10485 sgot
= bfd_get_section_by_name (dynobj
, ".got");
10486 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".got"));
10487 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
10489 offset
= (h
->got
.offset
& ~(bfd_vma
) 1);
10491 rel
.r_offset
= (sgot
->output_section
->vma
10492 + sgot
->output_offset
10495 /* If this is a static link, or it is a -Bsymbolic link and the
10496 symbol is defined locally or was forced to be local because
10497 of a version file, we just want to emit a RELATIVE reloc.
10498 The entry in the global offset table will already have been
10499 initialized in the relocate_section function. */
10501 && SYMBOL_REFERENCES_LOCAL (info
, h
))
10503 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
10504 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
10505 if (!htab
->use_rel
)
10507 rel
.r_addend
= bfd_get_32 (output_bfd
, sgot
->contents
+ offset
);
10508 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
10513 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
10514 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
10515 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
10518 loc
= srel
->contents
+ srel
->reloc_count
++ * RELOC_SIZE (htab
);
10519 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10525 Elf_Internal_Rela rel
;
10528 /* This symbol needs a copy reloc. Set it up. */
10529 BFD_ASSERT (h
->dynindx
!= -1
10530 && (h
->root
.type
== bfd_link_hash_defined
10531 || h
->root
.type
== bfd_link_hash_defweak
));
10533 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
10534 RELOC_SECTION (htab
, ".bss"));
10535 BFD_ASSERT (s
!= NULL
);
10538 rel
.r_offset
= (h
->root
.u
.def
.value
10539 + h
->root
.u
.def
.section
->output_section
->vma
10540 + h
->root
.u
.def
.section
->output_offset
);
10541 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
10542 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
10543 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10546 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10547 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10548 to the ".got" section. */
10549 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
10550 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
10551 sym
->st_shndx
= SHN_ABS
;
10556 /* Finish up the dynamic sections. */
10559 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
10565 dynobj
= elf_hash_table (info
)->dynobj
;
10567 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
10568 BFD_ASSERT (elf32_arm_hash_table (info
)->symbian_p
|| sgot
!= NULL
);
10569 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
10571 if (elf_hash_table (info
)->dynamic_sections_created
)
10574 Elf32_External_Dyn
*dyncon
, *dynconend
;
10575 struct elf32_arm_link_hash_table
*htab
;
10577 htab
= elf32_arm_hash_table (info
);
10578 splt
= bfd_get_section_by_name (dynobj
, ".plt");
10579 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
10581 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
10582 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
10584 for (; dyncon
< dynconend
; dyncon
++)
10586 Elf_Internal_Dyn dyn
;
10590 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
10597 if (htab
->vxworks_p
10598 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
10599 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10604 goto get_vma_if_bpabi
;
10607 goto get_vma_if_bpabi
;
10610 goto get_vma_if_bpabi
;
10612 name
= ".gnu.version";
10613 goto get_vma_if_bpabi
;
10615 name
= ".gnu.version_d";
10616 goto get_vma_if_bpabi
;
10618 name
= ".gnu.version_r";
10619 goto get_vma_if_bpabi
;
10625 name
= RELOC_SECTION (htab
, ".plt");
10627 s
= bfd_get_section_by_name (output_bfd
, name
);
10628 BFD_ASSERT (s
!= NULL
);
10629 if (!htab
->symbian_p
)
10630 dyn
.d_un
.d_ptr
= s
->vma
;
10632 /* In the BPABI, tags in the PT_DYNAMIC section point
10633 at the file offset, not the memory address, for the
10634 convenience of the post linker. */
10635 dyn
.d_un
.d_ptr
= s
->filepos
;
10636 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10640 if (htab
->symbian_p
)
10645 s
= bfd_get_section_by_name (output_bfd
,
10646 RELOC_SECTION (htab
, ".plt"));
10647 BFD_ASSERT (s
!= NULL
);
10648 dyn
.d_un
.d_val
= s
->size
;
10649 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10654 if (!htab
->symbian_p
)
10656 /* My reading of the SVR4 ABI indicates that the
10657 procedure linkage table relocs (DT_JMPREL) should be
10658 included in the overall relocs (DT_REL). This is
10659 what Solaris does. However, UnixWare can not handle
10660 that case. Therefore, we override the DT_RELSZ entry
10661 here to make it not include the JMPREL relocs. Since
10662 the linker script arranges for .rel(a).plt to follow all
10663 other relocation sections, we don't have to worry
10664 about changing the DT_REL entry. */
10665 s
= bfd_get_section_by_name (output_bfd
,
10666 RELOC_SECTION (htab
, ".plt"));
10668 dyn
.d_un
.d_val
-= s
->size
;
10669 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10672 /* Fall through. */
10676 /* In the BPABI, the DT_REL tag must point at the file
10677 offset, not the VMA, of the first relocation
10678 section. So, we use code similar to that in
10679 elflink.c, but do not check for SHF_ALLOC on the
10680 relcoation section, since relocations sections are
10681 never allocated under the BPABI. The comments above
10682 about Unixware notwithstanding, we include all of the
10683 relocations here. */
10684 if (htab
->symbian_p
)
10687 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10688 ? SHT_REL
: SHT_RELA
);
10689 dyn
.d_un
.d_val
= 0;
10690 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
10692 Elf_Internal_Shdr
*hdr
10693 = elf_elfsections (output_bfd
)[i
];
10694 if (hdr
->sh_type
== type
)
10696 if (dyn
.d_tag
== DT_RELSZ
10697 || dyn
.d_tag
== DT_RELASZ
)
10698 dyn
.d_un
.d_val
+= hdr
->sh_size
;
10699 else if ((ufile_ptr
) hdr
->sh_offset
10700 <= dyn
.d_un
.d_val
- 1)
10701 dyn
.d_un
.d_val
= hdr
->sh_offset
;
10704 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10708 /* Set the bottom bit of DT_INIT/FINI if the
10709 corresponding function is Thumb. */
10711 name
= info
->init_function
;
10714 name
= info
->fini_function
;
10716 /* If it wasn't set by elf_bfd_final_link
10717 then there is nothing to adjust. */
10718 if (dyn
.d_un
.d_val
!= 0)
10720 struct elf_link_hash_entry
* eh
;
10722 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10723 FALSE
, FALSE
, TRUE
);
10725 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
10727 dyn
.d_un
.d_val
|= 1;
10728 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10735 /* Fill in the first entry in the procedure linkage table. */
10736 if (splt
->size
> 0 && elf32_arm_hash_table (info
)->plt_header_size
)
10738 const bfd_vma
*plt0_entry
;
10739 bfd_vma got_address
, plt_address
, got_displacement
;
10741 /* Calculate the addresses of the GOT and PLT. */
10742 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
10743 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
10745 if (htab
->vxworks_p
)
10747 /* The VxWorks GOT is relocated by the dynamic linker.
10748 Therefore, we must emit relocations rather than simply
10749 computing the values now. */
10750 Elf_Internal_Rela rel
;
10752 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
10753 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
10754 splt
->contents
+ 0);
10755 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
10756 splt
->contents
+ 4);
10757 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
10758 splt
->contents
+ 8);
10759 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
10761 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10762 rel
.r_offset
= plt_address
+ 12;
10763 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
10765 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
10766 htab
->srelplt2
->contents
);
10770 got_displacement
= got_address
- (plt_address
+ 16);
10772 plt0_entry
= elf32_arm_plt0_entry
;
10773 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
10774 splt
->contents
+ 0);
10775 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
10776 splt
->contents
+ 4);
10777 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
10778 splt
->contents
+ 8);
10779 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
10780 splt
->contents
+ 12);
10782 #ifdef FOUR_WORD_PLT
10783 /* The displacement value goes in the otherwise-unused
10784 last word of the second entry. */
10785 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
10787 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
10792 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10793 really seem like the right value. */
10794 if (splt
->output_section
->owner
== output_bfd
)
10795 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
10797 if (htab
->vxworks_p
&& !info
->shared
&& htab
->splt
->size
> 0)
10799 /* Correct the .rel(a).plt.unloaded relocations. They will have
10800 incorrect symbol indexes. */
10804 num_plts
= ((htab
->splt
->size
- htab
->plt_header_size
)
10805 / htab
->plt_entry_size
);
10806 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
10808 for (; num_plts
; num_plts
--)
10810 Elf_Internal_Rela rel
;
10812 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
10813 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
10814 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
10815 p
+= RELOC_SIZE (htab
);
10817 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
10818 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
10819 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
10820 p
+= RELOC_SIZE (htab
);
10825 /* Fill in the first three entries in the global offset table. */
10828 if (sgot
->size
> 0)
10831 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
10833 bfd_put_32 (output_bfd
,
10834 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
10836 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
10837 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
10840 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
10847 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
10849 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
10850 struct elf32_arm_link_hash_table
*globals
;
10852 i_ehdrp
= elf_elfheader (abfd
);
10854 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
10855 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
10857 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
10858 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
10862 globals
= elf32_arm_hash_table (link_info
);
10863 if (globals
->byteswap_code
)
10864 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
10868 static enum elf_reloc_type_class
10869 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
10871 switch ((int) ELF32_R_TYPE (rela
->r_info
))
10873 case R_ARM_RELATIVE
:
10874 return reloc_class_relative
;
10875 case R_ARM_JUMP_SLOT
:
10876 return reloc_class_plt
;
10878 return reloc_class_copy
;
10880 return reloc_class_normal
;
10884 /* Set the right machine number for an Arm ELF file. */
10887 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
10889 if (hdr
->sh_type
== SHT_NOTE
)
10890 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
10896 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
10898 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
10901 /* Return TRUE if this is an unwinding table entry. */
10904 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
10906 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
10907 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
10911 /* Set the type and flags for an ARM section. We do this by
10912 the section name, which is a hack, but ought to work. */
10915 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
10919 name
= bfd_get_section_name (abfd
, sec
);
10921 if (is_arm_elf_unwind_section_name (abfd
, name
))
10923 hdr
->sh_type
= SHT_ARM_EXIDX
;
10924 hdr
->sh_flags
|= SHF_LINK_ORDER
;
10929 /* Handle an ARM specific section when reading an object file. This is
10930 called when bfd_section_from_shdr finds a section with an unknown
10934 elf32_arm_section_from_shdr (bfd
*abfd
,
10935 Elf_Internal_Shdr
* hdr
,
10939 /* There ought to be a place to keep ELF backend specific flags, but
10940 at the moment there isn't one. We just keep track of the
10941 sections by their name, instead. Fortunately, the ABI gives
10942 names for all the ARM specific sections, so we will probably get
10944 switch (hdr
->sh_type
)
10946 case SHT_ARM_EXIDX
:
10947 case SHT_ARM_PREEMPTMAP
:
10948 case SHT_ARM_ATTRIBUTES
:
10955 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
10961 /* A structure used to record a list of sections, independently
10962 of the next and prev fields in the asection structure. */
10963 typedef struct section_list
10966 struct section_list
* next
;
10967 struct section_list
* prev
;
10971 /* Unfortunately we need to keep a list of sections for which
10972 an _arm_elf_section_data structure has been allocated. This
10973 is because it is possible for functions like elf32_arm_write_section
10974 to be called on a section which has had an elf_data_structure
10975 allocated for it (and so the used_by_bfd field is valid) but
10976 for which the ARM extended version of this structure - the
10977 _arm_elf_section_data structure - has not been allocated. */
10978 static section_list
* sections_with_arm_elf_section_data
= NULL
;
10981 record_section_with_arm_elf_section_data (asection
* sec
)
10983 struct section_list
* entry
;
10985 entry
= bfd_malloc (sizeof (* entry
));
10989 entry
->next
= sections_with_arm_elf_section_data
;
10990 entry
->prev
= NULL
;
10991 if (entry
->next
!= NULL
)
10992 entry
->next
->prev
= entry
;
10993 sections_with_arm_elf_section_data
= entry
;
10996 static struct section_list
*
10997 find_arm_elf_section_entry (asection
* sec
)
10999 struct section_list
* entry
;
11000 static struct section_list
* last_entry
= NULL
;
11002 /* This is a short cut for the typical case where the sections are added
11003 to the sections_with_arm_elf_section_data list in forward order and
11004 then looked up here in backwards order. This makes a real difference
11005 to the ld-srec/sec64k.exp linker test. */
11006 entry
= sections_with_arm_elf_section_data
;
11007 if (last_entry
!= NULL
)
11009 if (last_entry
->sec
== sec
)
11010 entry
= last_entry
;
11011 else if (last_entry
->next
!= NULL
11012 && last_entry
->next
->sec
== sec
)
11013 entry
= last_entry
->next
;
11016 for (; entry
; entry
= entry
->next
)
11017 if (entry
->sec
== sec
)
11021 /* Record the entry prior to this one - it is the entry we are most
11022 likely to want to locate next time. Also this way if we have been
11023 called from unrecord_section_with_arm_elf_section_data() we will not
11024 be caching a pointer that is about to be freed. */
11025 last_entry
= entry
->prev
;
11030 static _arm_elf_section_data
*
11031 get_arm_elf_section_data (asection
* sec
)
11033 struct section_list
* entry
;
11035 entry
= find_arm_elf_section_entry (sec
);
11038 return elf32_arm_section_data (entry
->sec
);
11044 unrecord_section_with_arm_elf_section_data (asection
* sec
)
11046 struct section_list
* entry
;
11048 entry
= find_arm_elf_section_entry (sec
);
11052 if (entry
->prev
!= NULL
)
11053 entry
->prev
->next
= entry
->next
;
11054 if (entry
->next
!= NULL
)
11055 entry
->next
->prev
= entry
->prev
;
11056 if (entry
== sections_with_arm_elf_section_data
)
11057 sections_with_arm_elf_section_data
= entry
->next
;
11066 struct bfd_link_info
*info
;
11069 bfd_boolean (*func
) (void *, const char *, Elf_Internal_Sym
*,
11070 asection
*, struct elf_link_hash_entry
*);
11071 } output_arch_syminfo
;
11073 enum map_symbol_type
11081 /* Output a single mapping symbol. */
11084 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
11085 enum map_symbol_type type
,
11088 static const char *names
[3] = {"$a", "$t", "$d"};
11089 struct elf32_arm_link_hash_table
*htab
;
11090 Elf_Internal_Sym sym
;
11092 htab
= elf32_arm_hash_table (osi
->info
);
11093 sym
.st_value
= osi
->sec
->output_section
->vma
11094 + osi
->sec
->output_offset
11098 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
11099 sym
.st_shndx
= osi
->sec_shndx
;
11100 if (!osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
))
11106 /* Output mapping symbols for PLT entries associated with H. */
11109 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
11111 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
11112 struct elf32_arm_link_hash_table
*htab
;
11113 struct elf32_arm_link_hash_entry
*eh
;
11116 htab
= elf32_arm_hash_table (osi
->info
);
11118 if (h
->root
.type
== bfd_link_hash_indirect
)
11121 if (h
->root
.type
== bfd_link_hash_warning
)
11122 /* When warning symbols are created, they **replace** the "real"
11123 entry in the hash table, thus we never get to see the real
11124 symbol in a hash traversal. So look at it now. */
11125 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11127 if (h
->plt
.offset
== (bfd_vma
) -1)
11130 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11131 addr
= h
->plt
.offset
;
11132 if (htab
->symbian_p
)
11134 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11136 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
11139 else if (htab
->vxworks_p
)
11141 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11143 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
11145 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
11147 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
11152 bfd_signed_vma thumb_refs
;
11154 thumb_refs
= eh
->plt_thumb_refcount
;
11155 if (!htab
->use_blx
)
11156 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
11158 if (thumb_refs
> 0)
11160 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
11163 #ifdef FOUR_WORD_PLT
11164 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11166 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
11169 /* A three-word PLT with no Thumb thunk contains only Arm code,
11170 so only need to output a mapping symbol for the first PLT entry and
11171 entries with thumb thunks. */
11172 if (thumb_refs
> 0 || addr
== 20)
11174 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11183 /* Output a single local symbol for a generated stub. */
11186 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
11187 bfd_vma offset
, bfd_vma size
)
11189 struct elf32_arm_link_hash_table
*htab
;
11190 Elf_Internal_Sym sym
;
11192 htab
= elf32_arm_hash_table (osi
->info
);
11193 sym
.st_value
= osi
->sec
->output_section
->vma
11194 + osi
->sec
->output_offset
11196 sym
.st_size
= size
;
11198 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
11199 sym
.st_shndx
= osi
->sec_shndx
;
11200 if (!osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
))
11206 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
11209 struct elf32_arm_stub_hash_entry
*stub_entry
;
11210 struct bfd_link_info
*info
;
11211 struct elf32_arm_link_hash_table
*htab
;
11212 asection
*stub_sec
;
11215 output_arch_syminfo
*osi
;
11217 /* Massage our args to the form they really have. */
11218 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
11219 osi
= (output_arch_syminfo
*) in_arg
;
11223 htab
= elf32_arm_hash_table (info
);
11224 stub_sec
= stub_entry
->stub_sec
;
11226 /* Ensure this stub is attached to the current section being
11228 if (stub_sec
!= osi
->sec
)
11231 addr
= (bfd_vma
) stub_entry
->stub_offset
;
11232 stub_name
= stub_entry
->output_name
;
11234 switch (stub_entry
->stub_type
)
11236 case arm_stub_long_branch
:
11237 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, 8))
11239 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11241 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
11244 case arm_thumb_v4t_stub_long_branch
:
11245 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, 12))
11247 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11249 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
11252 case arm_thumb_thumb_stub_long_branch
:
11253 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1, 16))
11255 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
))
11257 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
11260 case arm_thumb_arm_v4t_stub_long_branch
:
11261 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1, 20))
11263 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
))
11265 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 8))
11267 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 16))
11270 case arm_thumb_arm_v4t_stub_short_branch
:
11271 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1, 8))
11273 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 4))
11276 case arm_stub_pic_long_branch
:
11277 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, 12))
11279 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11281 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
11291 /* Output mapping symbols for linker generated sections. */
11294 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
11295 struct bfd_link_info
*info
,
11297 bfd_boolean (*func
) (void *, const char *,
11298 Elf_Internal_Sym
*,
11300 struct elf_link_hash_entry
*))
11302 output_arch_syminfo osi
;
11303 struct elf32_arm_link_hash_table
*htab
;
11305 bfd_size_type size
;
11307 htab
= elf32_arm_hash_table (info
);
11308 check_use_blx (htab
);
11314 /* ARM->Thumb glue. */
11315 if (htab
->arm_glue_size
> 0)
11317 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
11318 ARM2THUMB_GLUE_SECTION_NAME
);
11320 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11321 (output_bfd
, osi
.sec
->output_section
);
11322 if (info
->shared
|| htab
->root
.is_relocatable_executable
11323 || htab
->pic_veneer
)
11324 size
= ARM2THUMB_PIC_GLUE_SIZE
;
11325 else if (htab
->use_blx
)
11326 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
11328 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
11330 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
11332 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
11333 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
11337 /* Thumb->ARM glue. */
11338 if (htab
->thumb_glue_size
> 0)
11340 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
11341 THUMB2ARM_GLUE_SECTION_NAME
);
11343 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11344 (output_bfd
, osi
.sec
->output_section
);
11345 size
= THUMB2ARM_GLUE_SIZE
;
11347 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
11349 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
11350 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
11354 /* ARMv4 BX veneers. */
11355 if (htab
->bx_glue_size
> 0)
11357 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
11358 ARM_BX_GLUE_SECTION_NAME
);
11360 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11361 (output_bfd
, osi
.sec
->output_section
);
11363 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
11366 /* Long calls stubs. */
11367 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
11369 asection
* stub_sec
;
11371 for (stub_sec
= htab
->stub_bfd
->sections
;
11373 stub_sec
= stub_sec
->next
)
11375 /* Ignore non-stub sections. */
11376 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
11379 osi
.sec
= stub_sec
;
11381 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11382 (output_bfd
, osi
.sec
->output_section
);
11384 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
11388 /* Finally, output mapping symbols for the PLT. */
11389 if (!htab
->splt
|| htab
->splt
->size
== 0)
11392 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
11393 htab
->splt
->output_section
);
11394 osi
.sec
= htab
->splt
;
11395 /* Output mapping symbols for the plt header. SymbianOS does not have a
11397 if (htab
->vxworks_p
)
11399 /* VxWorks shared libraries have no PLT header. */
11402 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
11404 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
11408 else if (!htab
->symbian_p
)
11410 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
11412 #ifndef FOUR_WORD_PLT
11413 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
11418 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, (void *) &osi
);
11422 /* Allocate target specific section data. */
11425 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
11427 if (!sec
->used_by_bfd
)
11429 _arm_elf_section_data
*sdata
;
11430 bfd_size_type amt
= sizeof (*sdata
);
11432 sdata
= bfd_zalloc (abfd
, amt
);
11435 sec
->used_by_bfd
= sdata
;
11438 record_section_with_arm_elf_section_data (sec
);
11440 return _bfd_elf_new_section_hook (abfd
, sec
);
11444 /* Used to order a list of mapping symbols by address. */
11447 elf32_arm_compare_mapping (const void * a
, const void * b
)
11449 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
11450 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
11452 if (amap
->vma
> bmap
->vma
)
11454 else if (amap
->vma
< bmap
->vma
)
11456 else if (amap
->type
> bmap
->type
)
11457 /* Ensure results do not depend on the host qsort for objects with
11458 multiple mapping symbols at the same address by sorting on type
11461 else if (amap
->type
< bmap
->type
)
11468 /* Do code byteswapping. Return FALSE afterwards so that the section is
11469 written out as normal. */
11472 elf32_arm_write_section (bfd
*output_bfd
,
11473 struct bfd_link_info
*link_info
,
11475 bfd_byte
*contents
)
11477 int mapcount
, errcount
;
11478 _arm_elf_section_data
*arm_data
;
11479 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
11480 elf32_arm_section_map
*map
;
11481 elf32_vfp11_erratum_list
*errnode
;
11484 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
11488 /* If this section has not been allocated an _arm_elf_section_data
11489 structure then we cannot record anything. */
11490 arm_data
= get_arm_elf_section_data (sec
);
11491 if (arm_data
== NULL
)
11494 mapcount
= arm_data
->mapcount
;
11495 map
= arm_data
->map
;
11496 errcount
= arm_data
->erratumcount
;
11500 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
11502 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
11503 errnode
= errnode
->next
)
11505 bfd_vma index
= errnode
->vma
- offset
;
11507 switch (errnode
->type
)
11509 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
11511 bfd_vma branch_to_veneer
;
11512 /* Original condition code of instruction, plus bit mask for
11513 ARM B instruction. */
11514 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
11517 /* The instruction is before the label. */
11520 /* Above offset included in -4 below. */
11521 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
11522 - errnode
->vma
- 4;
11524 if ((signed) branch_to_veneer
< -(1 << 25)
11525 || (signed) branch_to_veneer
>= (1 << 25))
11526 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
11527 "range"), output_bfd
);
11529 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
11530 contents
[endianflip
^ index
] = insn
& 0xff;
11531 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
11532 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
11533 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
11537 case VFP11_ERRATUM_ARM_VENEER
:
11539 bfd_vma branch_from_veneer
;
11542 /* Take size of veneer into account. */
11543 branch_from_veneer
= errnode
->u
.v
.branch
->vma
11544 - errnode
->vma
- 12;
11546 if ((signed) branch_from_veneer
< -(1 << 25)
11547 || (signed) branch_from_veneer
>= (1 << 25))
11548 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
11549 "range"), output_bfd
);
11551 /* Original instruction. */
11552 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
11553 contents
[endianflip
^ index
] = insn
& 0xff;
11554 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
11555 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
11556 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
11558 /* Branch back to insn after original insn. */
11559 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
11560 contents
[endianflip
^ (index
+ 4)] = insn
& 0xff;
11561 contents
[endianflip
^ (index
+ 5)] = (insn
>> 8) & 0xff;
11562 contents
[endianflip
^ (index
+ 6)] = (insn
>> 16) & 0xff;
11563 contents
[endianflip
^ (index
+ 7)] = (insn
>> 24) & 0xff;
11576 if (globals
->byteswap_code
)
11578 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
11581 for (i
= 0; i
< mapcount
; i
++)
11583 if (i
== mapcount
- 1)
11586 end
= map
[i
+ 1].vma
;
11588 switch (map
[i
].type
)
11591 /* Byte swap code words. */
11592 while (ptr
+ 3 < end
)
11594 tmp
= contents
[ptr
];
11595 contents
[ptr
] = contents
[ptr
+ 3];
11596 contents
[ptr
+ 3] = tmp
;
11597 tmp
= contents
[ptr
+ 1];
11598 contents
[ptr
+ 1] = contents
[ptr
+ 2];
11599 contents
[ptr
+ 2] = tmp
;
11605 /* Byte swap code halfwords. */
11606 while (ptr
+ 1 < end
)
11608 tmp
= contents
[ptr
];
11609 contents
[ptr
] = contents
[ptr
+ 1];
11610 contents
[ptr
+ 1] = tmp
;
11616 /* Leave data alone. */
11624 arm_data
->mapcount
= 0;
11625 arm_data
->mapsize
= 0;
11626 arm_data
->map
= NULL
;
11627 unrecord_section_with_arm_elf_section_data (sec
);
11633 unrecord_section_via_map_over_sections (bfd
* abfd ATTRIBUTE_UNUSED
,
11635 void * ignore ATTRIBUTE_UNUSED
)
11637 unrecord_section_with_arm_elf_section_data (sec
);
11641 elf32_arm_close_and_cleanup (bfd
* abfd
)
11643 if (abfd
->sections
)
11644 bfd_map_over_sections (abfd
,
11645 unrecord_section_via_map_over_sections
,
11648 return _bfd_elf_close_and_cleanup (abfd
);
11652 elf32_arm_bfd_free_cached_info (bfd
* abfd
)
11654 if (abfd
->sections
)
11655 bfd_map_over_sections (abfd
,
11656 unrecord_section_via_map_over_sections
,
11659 return _bfd_free_cached_info (abfd
);
11662 /* Display STT_ARM_TFUNC symbols as functions. */
11665 elf32_arm_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
11668 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
11670 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_ARM_TFUNC
)
11671 elfsym
->symbol
.flags
|= BSF_FUNCTION
;
11675 /* Mangle thumb function symbols as we read them in. */
11678 elf32_arm_swap_symbol_in (bfd
* abfd
,
11681 Elf_Internal_Sym
*dst
)
11683 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
11686 /* New EABI objects mark thumb function symbols by setting the low bit of
11687 the address. Turn these into STT_ARM_TFUNC. */
11688 if (ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
11689 && (dst
->st_value
& 1))
11691 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_ARM_TFUNC
);
11692 dst
->st_value
&= ~(bfd_vma
) 1;
11698 /* Mangle thumb function symbols as we write them out. */
11701 elf32_arm_swap_symbol_out (bfd
*abfd
,
11702 const Elf_Internal_Sym
*src
,
11706 Elf_Internal_Sym newsym
;
11708 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11709 of the address set, as per the new EABI. We do this unconditionally
11710 because objcopy does not set the elf header flags until after
11711 it writes out the symbol table. */
11712 if (ELF_ST_TYPE (src
->st_info
) == STT_ARM_TFUNC
)
11715 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
11716 if (newsym
.st_shndx
!= SHN_UNDEF
)
11718 /* Do this only for defined symbols. At link type, the static
11719 linker will simulate the work of dynamic linker of resolving
11720 symbols and will carry over the thumbness of found symbols to
11721 the output symbol table. It's not clear how it happens, but
11722 the thumbness of undefined symbols can well be different at
11723 runtime, and writing '1' for them will be confusing for users
11724 and possibly for dynamic linker itself.
11726 newsym
.st_value
|= 1;
11731 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
11734 /* Add the PT_ARM_EXIDX program header. */
11737 elf32_arm_modify_segment_map (bfd
*abfd
,
11738 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
11740 struct elf_segment_map
*m
;
11743 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
11744 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
11746 /* If there is already a PT_ARM_EXIDX header, then we do not
11747 want to add another one. This situation arises when running
11748 "strip"; the input binary already has the header. */
11749 m
= elf_tdata (abfd
)->segment_map
;
11750 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
11754 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
11757 m
->p_type
= PT_ARM_EXIDX
;
11759 m
->sections
[0] = sec
;
11761 m
->next
= elf_tdata (abfd
)->segment_map
;
11762 elf_tdata (abfd
)->segment_map
= m
;
11769 /* We may add a PT_ARM_EXIDX program header. */
11772 elf32_arm_additional_program_headers (bfd
*abfd
,
11773 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
11777 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
11778 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
11784 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11787 elf32_arm_is_function_type (unsigned int type
)
11789 return (type
== STT_FUNC
) || (type
== STT_ARM_TFUNC
);
11792 /* We use this to override swap_symbol_in and swap_symbol_out. */
11793 const struct elf_size_info elf32_arm_size_info
=
11795 sizeof (Elf32_External_Ehdr
),
11796 sizeof (Elf32_External_Phdr
),
11797 sizeof (Elf32_External_Shdr
),
11798 sizeof (Elf32_External_Rel
),
11799 sizeof (Elf32_External_Rela
),
11800 sizeof (Elf32_External_Sym
),
11801 sizeof (Elf32_External_Dyn
),
11802 sizeof (Elf_External_Note
),
11806 ELFCLASS32
, EV_CURRENT
,
11807 bfd_elf32_write_out_phdrs
,
11808 bfd_elf32_write_shdrs_and_ehdr
,
11809 bfd_elf32_checksum_contents
,
11810 bfd_elf32_write_relocs
,
11811 elf32_arm_swap_symbol_in
,
11812 elf32_arm_swap_symbol_out
,
11813 bfd_elf32_slurp_reloc_table
,
11814 bfd_elf32_slurp_symbol_table
,
11815 bfd_elf32_swap_dyn_in
,
11816 bfd_elf32_swap_dyn_out
,
11817 bfd_elf32_swap_reloc_in
,
11818 bfd_elf32_swap_reloc_out
,
11819 bfd_elf32_swap_reloca_in
,
11820 bfd_elf32_swap_reloca_out
11823 #define ELF_ARCH bfd_arch_arm
11824 #define ELF_MACHINE_CODE EM_ARM
11825 #ifdef __QNXTARGET__
11826 #define ELF_MAXPAGESIZE 0x1000
11828 #define ELF_MAXPAGESIZE 0x8000
11830 #define ELF_MINPAGESIZE 0x1000
11831 #define ELF_COMMONPAGESIZE 0x1000
11833 #define bfd_elf32_mkobject elf32_arm_mkobject
11835 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11836 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11837 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11838 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11839 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11840 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11841 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11842 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11843 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11844 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11845 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11846 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11847 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11848 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11850 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11851 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11852 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11853 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11854 #define elf_backend_check_relocs elf32_arm_check_relocs
11855 #define elf_backend_relocate_section elf32_arm_relocate_section
11856 #define elf_backend_write_section elf32_arm_write_section
11857 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11858 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11859 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11860 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11861 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11862 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11863 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11864 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11865 #define elf_backend_object_p elf32_arm_object_p
11866 #define elf_backend_section_flags elf32_arm_section_flags
11867 #define elf_backend_fake_sections elf32_arm_fake_sections
11868 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11869 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11870 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11871 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11872 #define elf_backend_size_info elf32_arm_size_info
11873 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11874 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11875 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11876 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11877 #define elf_backend_is_function_type elf32_arm_is_function_type
11879 #define elf_backend_can_refcount 1
11880 #define elf_backend_can_gc_sections 1
11881 #define elf_backend_plt_readonly 1
11882 #define elf_backend_want_got_plt 1
11883 #define elf_backend_want_plt_sym 0
11884 #define elf_backend_may_use_rel_p 1
11885 #define elf_backend_may_use_rela_p 0
11886 #define elf_backend_default_use_rela_p 0
11888 #define elf_backend_got_header_size 12
11890 #undef elf_backend_obj_attrs_vendor
11891 #define elf_backend_obj_attrs_vendor "aeabi"
11892 #undef elf_backend_obj_attrs_section
11893 #define elf_backend_obj_attrs_section ".ARM.attributes"
11894 #undef elf_backend_obj_attrs_arg_type
11895 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11896 #undef elf_backend_obj_attrs_section_type
11897 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11899 #include "elf32-target.h"
11901 /* VxWorks Targets. */
11903 #undef TARGET_LITTLE_SYM
11904 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11905 #undef TARGET_LITTLE_NAME
11906 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11907 #undef TARGET_BIG_SYM
11908 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11909 #undef TARGET_BIG_NAME
11910 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11912 /* Like elf32_arm_link_hash_table_create -- but overrides
11913 appropriately for VxWorks. */
11915 static struct bfd_link_hash_table
*
11916 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
11918 struct bfd_link_hash_table
*ret
;
11920 ret
= elf32_arm_link_hash_table_create (abfd
);
11923 struct elf32_arm_link_hash_table
*htab
11924 = (struct elf32_arm_link_hash_table
*) ret
;
11926 htab
->vxworks_p
= 1;
11932 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
11934 elf32_arm_final_write_processing (abfd
, linker
);
11935 elf_vxworks_final_write_processing (abfd
, linker
);
11939 #define elf32_bed elf32_arm_vxworks_bed
11941 #undef bfd_elf32_bfd_link_hash_table_create
11942 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11943 #undef elf_backend_add_symbol_hook
11944 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11945 #undef elf_backend_final_write_processing
11946 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11947 #undef elf_backend_emit_relocs
11948 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11950 #undef elf_backend_may_use_rel_p
11951 #define elf_backend_may_use_rel_p 0
11952 #undef elf_backend_may_use_rela_p
11953 #define elf_backend_may_use_rela_p 1
11954 #undef elf_backend_default_use_rela_p
11955 #define elf_backend_default_use_rela_p 1
11956 #undef elf_backend_want_plt_sym
11957 #define elf_backend_want_plt_sym 1
11958 #undef ELF_MAXPAGESIZE
11959 #define ELF_MAXPAGESIZE 0x1000
11961 #include "elf32-target.h"
11964 /* Symbian OS Targets. */
11966 #undef TARGET_LITTLE_SYM
11967 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
11968 #undef TARGET_LITTLE_NAME
11969 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
11970 #undef TARGET_BIG_SYM
11971 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
11972 #undef TARGET_BIG_NAME
11973 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
11975 /* Like elf32_arm_link_hash_table_create -- but overrides
11976 appropriately for Symbian OS. */
11978 static struct bfd_link_hash_table
*
11979 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
11981 struct bfd_link_hash_table
*ret
;
11983 ret
= elf32_arm_link_hash_table_create (abfd
);
11986 struct elf32_arm_link_hash_table
*htab
11987 = (struct elf32_arm_link_hash_table
*)ret
;
11988 /* There is no PLT header for Symbian OS. */
11989 htab
->plt_header_size
= 0;
11990 /* The PLT entries are each one instruction and one word. */
11991 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
11992 htab
->symbian_p
= 1;
11993 /* Symbian uses armv5t or above, so use_blx is always true. */
11995 htab
->root
.is_relocatable_executable
= 1;
12000 static const struct bfd_elf_special_section
12001 elf32_arm_symbian_special_sections
[] =
12003 /* In a BPABI executable, the dynamic linking sections do not go in
12004 the loadable read-only segment. The post-linker may wish to
12005 refer to these sections, but they are not part of the final
12007 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
12008 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
12009 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
12010 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
12011 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
12012 /* These sections do not need to be writable as the SymbianOS
12013 postlinker will arrange things so that no dynamic relocation is
12015 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
12016 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
12017 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
12018 { NULL
, 0, 0, 0, 0 }
12022 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
12023 struct bfd_link_info
*link_info
)
12025 /* BPABI objects are never loaded directly by an OS kernel; they are
12026 processed by a postlinker first, into an OS-specific format. If
12027 the D_PAGED bit is set on the file, BFD will align segments on
12028 page boundaries, so that an OS can directly map the file. With
12029 BPABI objects, that just results in wasted space. In addition,
12030 because we clear the D_PAGED bit, map_sections_to_segments will
12031 recognize that the program headers should not be mapped into any
12032 loadable segment. */
12033 abfd
->flags
&= ~D_PAGED
;
12034 elf32_arm_begin_write_processing (abfd
, link_info
);
12038 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
12039 struct bfd_link_info
*info
)
12041 struct elf_segment_map
*m
;
12044 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12045 segment. However, because the .dynamic section is not marked
12046 with SEC_LOAD, the generic ELF code will not create such a
12048 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
12051 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
12052 if (m
->p_type
== PT_DYNAMIC
)
12057 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
12058 m
->next
= elf_tdata (abfd
)->segment_map
;
12059 elf_tdata (abfd
)->segment_map
= m
;
12063 /* Also call the generic arm routine. */
12064 return elf32_arm_modify_segment_map (abfd
, info
);
12067 /* Return address for Ith PLT stub in section PLT, for relocation REL
12068 or (bfd_vma) -1 if it should not be included. */
12071 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
12072 const arelent
*rel ATTRIBUTE_UNUSED
)
12074 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
12079 #define elf32_bed elf32_arm_symbian_bed
12081 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12082 will process them and then discard them. */
12083 #undef ELF_DYNAMIC_SEC_FLAGS
12084 #define ELF_DYNAMIC_SEC_FLAGS \
12085 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12087 #undef elf_backend_add_symbol_hook
12088 #undef elf_backend_emit_relocs
12090 #undef bfd_elf32_bfd_link_hash_table_create
12091 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12092 #undef elf_backend_special_sections
12093 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12094 #undef elf_backend_begin_write_processing
12095 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12096 #undef elf_backend_final_write_processing
12097 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12099 #undef elf_backend_modify_segment_map
12100 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12102 /* There is no .got section for BPABI objects, and hence no header. */
12103 #undef elf_backend_got_header_size
12104 #define elf_backend_got_header_size 0
12106 /* Similarly, there is no .got.plt section. */
12107 #undef elf_backend_want_got_plt
12108 #define elf_backend_want_got_plt 0
12110 #undef elf_backend_plt_sym_val
12111 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12113 #undef elf_backend_may_use_rel_p
12114 #define elf_backend_may_use_rel_p 1
12115 #undef elf_backend_may_use_rela_p
12116 #define elf_backend_may_use_rela_p 0
12117 #undef elf_backend_default_use_rela_p
12118 #define elf_backend_default_use_rela_p 0
12119 #undef elf_backend_want_plt_sym
12120 #define elf_backend_want_plt_sym 0
12121 #undef ELF_MAXPAGESIZE
12122 #define ELF_MAXPAGESIZE 0x8000
12124 #include "elf32-target.h"