Set BFD target to "plugin" for "nm --plugin".
[binutils.git] / bfd / elf32-arm.c
blobfb3e0a3a2340a9a842818f0424bde5388c6fa0b1
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
22 #include "sysdep.h"
23 #include <limits.h>
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
66 asection *sec,
67 bfd_byte *contents);
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71 in that slot. */
73 static reloc_howto_type elf32_arm_howto_table_1[] =
75 /* No relocation. */
76 HOWTO (R_ARM_NONE, /* type */
77 0, /* rightshift */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
79 0, /* bitsize */
80 FALSE, /* pc_relative */
81 0, /* bitpos */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
86 0, /* src_mask */
87 0, /* dst_mask */
88 FALSE), /* pcrel_offset */
90 HOWTO (R_ARM_PC24, /* type */
91 2, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 24, /* bitsize */
94 TRUE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
106 0, /* rightshift */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
108 32, /* bitsize */
109 FALSE, /* pc_relative */
110 0, /* bitpos */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 32, /* bitsize */
124 TRUE, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0, /* type */
136 0, /* rightshift */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
138 32, /* bitsize */
139 TRUE, /* pc_relative */
140 0, /* bitpos */
141 complain_overflow_dont,/* complain_on_overflow */
142 bfd_elf_generic_reloc, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
151 0, /* rightshift */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
153 16, /* bitsize */
154 FALSE, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
166 0, /* rightshift */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
168 12, /* bitsize */
169 FALSE, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE), /* pcrel_offset */
179 HOWTO (R_ARM_THM_ABS5, /* type */
180 6, /* rightshift */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
182 5, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
193 /* 8 bit absolute */
194 HOWTO (R_ARM_ABS8, /* type */
195 0, /* rightshift */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
197 8, /* bitsize */
198 FALSE, /* pc_relative */
199 0, /* bitpos */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
208 HOWTO (R_ARM_SBREL32, /* type */
209 0, /* rightshift */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
211 32, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
222 HOWTO (R_ARM_THM_CALL, /* type */
223 1, /* rightshift */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
225 24, /* bitsize */
226 TRUE, /* pc_relative */
227 0, /* bitpos */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE), /* pcrel_offset */
236 HOWTO (R_ARM_THM_PC8, /* type */
237 1, /* rightshift */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
239 8, /* bitsize */
240 TRUE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
250 HOWTO (R_ARM_BREL_ADJ, /* type */
251 1, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
253 32, /* bitsize */
254 FALSE, /* pc_relative */
255 0, /* bitpos */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
264 HOWTO (R_ARM_SWI24, /* type */
265 0, /* rightshift */
266 0, /* size (0 = byte, 1 = short, 2 = long) */
267 0, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_signed,/* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_ARM_SWI24", /* name */
273 FALSE, /* partial_inplace */
274 0x00000000, /* src_mask */
275 0x00000000, /* dst_mask */
276 FALSE), /* pcrel_offset */
278 HOWTO (R_ARM_THM_SWI8, /* type */
279 0, /* rightshift */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
281 0, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
294 2, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 25, /* bitsize */
297 TRUE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
309 2, /* rightshift */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
311 22, /* bitsize */
312 TRUE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE), /* pcrel_offset */
322 /* Dynamic TLS relocations. */
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
353 0, /* rightshift */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
355 32, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
366 /* Relocs used in ARM Linux */
368 HOWTO (R_ARM_COPY, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 FALSE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
382 HOWTO (R_ARM_GLOB_DAT, /* type */
383 0, /* rightshift */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
385 32, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
410 HOWTO (R_ARM_RELATIVE, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 32, /* bitsize */
414 FALSE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
424 HOWTO (R_ARM_GOTOFF32, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 FALSE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
438 HOWTO (R_ARM_GOTPC, /* type */
439 0, /* rightshift */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
441 32, /* bitsize */
442 TRUE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
452 HOWTO (R_ARM_GOT32, /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
466 HOWTO (R_ARM_PLT32, /* type */
467 2, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
469 24, /* bitsize */
470 TRUE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
480 HOWTO (R_ARM_CALL, /* type */
481 2, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 24, /* bitsize */
484 TRUE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
494 HOWTO (R_ARM_JUMP24, /* type */
495 2, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 24, /* bitsize */
498 TRUE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
508 HOWTO (R_ARM_THM_JUMP24, /* type */
509 1, /* rightshift */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
511 24, /* bitsize */
512 TRUE, /* pc_relative */
513 0, /* bitpos */
514 complain_overflow_signed,/* complain_on_overflow */
515 bfd_elf_generic_reloc, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
522 HOWTO (R_ARM_BASE_ABS, /* type */
523 0, /* rightshift */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 12, /* bitsize */
540 TRUE, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 12, /* bitsize */
554 TRUE, /* pc_relative */
555 8, /* bitpos */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 12, /* bitsize */
568 TRUE, /* pc_relative */
569 16, /* bitpos */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 12, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 8, /* bitsize */
596 FALSE, /* pc_relative */
597 12, /* bitpos */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 8, /* bitsize */
610 FALSE, /* pc_relative */
611 20, /* bitpos */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
620 HOWTO (R_ARM_TARGET1, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
634 HOWTO (R_ARM_ROSEGREL32, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 32, /* bitsize */
638 FALSE, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
648 HOWTO (R_ARM_V4BX, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 FALSE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
662 HOWTO (R_ARM_TARGET2, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 32, /* bitsize */
666 FALSE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
676 HOWTO (R_ARM_PREL31, /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 31, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
691 0, /* rightshift */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
693 16, /* bitsize */
694 FALSE, /* pc_relative */
695 0, /* bitpos */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE), /* pcrel_offset */
704 HOWTO (R_ARM_MOVT_ABS, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 FALSE, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE), /* pcrel_offset */
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
719 0, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 16, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE), /* pcrel_offset */
732 HOWTO (R_ARM_MOVT_PREL, /* type */
733 0, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE), /* pcrel_offset */
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 FALSE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 0, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 TRUE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
789 0, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 TRUE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
802 HOWTO (R_ARM_THM_JUMP19, /* type */
803 1, /* rightshift */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
805 19, /* bitsize */
806 TRUE, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
816 HOWTO (R_ARM_THM_JUMP6, /* type */
817 1, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 6, /* bitsize */
820 TRUE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832 versa. */
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 13, /* bitsize */
837 TRUE, /* pc_relative */
838 0, /* bitpos */
839 complain_overflow_dont,/* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE), /* pcrel_offset */
847 HOWTO (R_ARM_THM_PC12, /* type */
848 0, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 13, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont,/* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
861 HOWTO (R_ARM_ABS32_NOI, /* type */
862 0, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 32, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
875 HOWTO (R_ARM_REL32_NOI, /* type */
876 0, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 32, /* bitsize */
879 TRUE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
889 /* Group relocations. */
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
892 0, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 32, /* bitsize */
895 TRUE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
906 0, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 32, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
920 0, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 32, /* bitsize */
923 TRUE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 32, /* bitsize */
937 TRUE, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 32, /* bitsize */
951 TRUE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 32, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 32, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 32, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1004 0, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 32, /* bitsize */
1007 TRUE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 32, /* bitsize */
1021 TRUE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 32, /* bitsize */
1035 TRUE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 32, /* bitsize */
1049 TRUE, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1060 0, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 32, /* bitsize */
1063 TRUE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 32, /* bitsize */
1077 TRUE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1088 0, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 32, /* bitsize */
1091 TRUE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1102 0, /* rightshift */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1104 32, /* bitsize */
1105 TRUE, /* pc_relative */
1106 0, /* bitpos */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1116 0, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 32, /* bitsize */
1119 TRUE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1130 0, /* rightshift */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1132 32, /* bitsize */
1133 TRUE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1144 0, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 32, /* bitsize */
1147 TRUE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1158 0, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 32, /* bitsize */
1161 TRUE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 32, /* bitsize */
1175 TRUE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1186 0, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 32, /* bitsize */
1189 TRUE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1200 0, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 32, /* bitsize */
1203 TRUE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 32, /* bitsize */
1217 TRUE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1228 0, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 32, /* bitsize */
1231 TRUE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1242 0, /* rightshift */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1244 32, /* bitsize */
1245 TRUE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1256 0, /* rightshift */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 32, /* bitsize */
1259 TRUE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1269 /* End of group relocations. */
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1272 0, /* rightshift */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1274 16, /* bitsize */
1275 FALSE, /* pc_relative */
1276 0, /* bitpos */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1286 0, /* rightshift */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 16, /* bitsize */
1289 FALSE, /* pc_relative */
1290 0, /* bitpos */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 16, /* bitsize */
1303 FALSE, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 16, /* bitsize */
1317 FALSE, /* pc_relative */
1318 0, /* bitpos */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1328 0, /* rightshift */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1330 16, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1355 EMPTY_HOWTO (90), /* Unallocated. */
1356 EMPTY_HOWTO (91),
1357 EMPTY_HOWTO (92),
1358 EMPTY_HOWTO (93),
1360 HOWTO (R_ARM_PLT32_ABS, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_dont,/* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 "R_ARM_PLT32_ABS", /* name */
1369 FALSE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1374 HOWTO (R_ARM_GOT_ABS, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 32, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_GOT_ABS", /* name */
1383 FALSE, /* partial_inplace */
1384 0xffffffff, /* src_mask */
1385 0xffffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1388 HOWTO (R_ARM_GOT_PREL, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 32, /* bitsize */
1392 TRUE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_dont, /* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_GOT_PREL", /* name */
1397 FALSE, /* partial_inplace */
1398 0xffffffff, /* src_mask */
1399 0xffffffff, /* dst_mask */
1400 TRUE), /* pcrel_offset */
1402 HOWTO (R_ARM_GOT_BREL12, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 12, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_bitfield,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_GOT_BREL12", /* name */
1411 FALSE, /* partial_inplace */
1412 0x00000fff, /* src_mask */
1413 0x00000fff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
1416 HOWTO (R_ARM_GOTOFF12, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 12, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_bitfield,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_GOTOFF12", /* name */
1425 FALSE, /* partial_inplace */
1426 0x00000fff, /* src_mask */
1427 0x00000fff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1430 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1432 /* GNU extension to record C++ vtable member usage */
1433 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1434 0, /* rightshift */
1435 2, /* size (0 = byte, 1 = short, 2 = long) */
1436 0, /* bitsize */
1437 FALSE, /* pc_relative */
1438 0, /* bitpos */
1439 complain_overflow_dont, /* complain_on_overflow */
1440 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1441 "R_ARM_GNU_VTENTRY", /* name */
1442 FALSE, /* partial_inplace */
1443 0, /* src_mask */
1444 0, /* dst_mask */
1445 FALSE), /* pcrel_offset */
1447 /* GNU extension to record C++ vtable hierarchy */
1448 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1449 0, /* rightshift */
1450 2, /* size (0 = byte, 1 = short, 2 = long) */
1451 0, /* bitsize */
1452 FALSE, /* pc_relative */
1453 0, /* bitpos */
1454 complain_overflow_dont, /* complain_on_overflow */
1455 NULL, /* special_function */
1456 "R_ARM_GNU_VTINHERIT", /* name */
1457 FALSE, /* partial_inplace */
1458 0, /* src_mask */
1459 0, /* dst_mask */
1460 FALSE), /* pcrel_offset */
1462 HOWTO (R_ARM_THM_JUMP11, /* type */
1463 1, /* rightshift */
1464 1, /* size (0 = byte, 1 = short, 2 = long) */
1465 11, /* bitsize */
1466 TRUE, /* pc_relative */
1467 0, /* bitpos */
1468 complain_overflow_signed, /* complain_on_overflow */
1469 bfd_elf_generic_reloc, /* special_function */
1470 "R_ARM_THM_JUMP11", /* name */
1471 FALSE, /* partial_inplace */
1472 0x000007ff, /* src_mask */
1473 0x000007ff, /* dst_mask */
1474 TRUE), /* pcrel_offset */
1476 HOWTO (R_ARM_THM_JUMP8, /* type */
1477 1, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 8, /* bitsize */
1480 TRUE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_signed, /* complain_on_overflow */
1483 bfd_elf_generic_reloc, /* special_function */
1484 "R_ARM_THM_JUMP8", /* name */
1485 FALSE, /* partial_inplace */
1486 0x000000ff, /* src_mask */
1487 0x000000ff, /* dst_mask */
1488 TRUE), /* pcrel_offset */
1490 /* TLS relocations */
1491 HOWTO (R_ARM_TLS_GD32, /* type */
1492 0, /* rightshift */
1493 2, /* size (0 = byte, 1 = short, 2 = long) */
1494 32, /* bitsize */
1495 FALSE, /* pc_relative */
1496 0, /* bitpos */
1497 complain_overflow_bitfield,/* complain_on_overflow */
1498 NULL, /* special_function */
1499 "R_ARM_TLS_GD32", /* name */
1500 TRUE, /* partial_inplace */
1501 0xffffffff, /* src_mask */
1502 0xffffffff, /* dst_mask */
1503 FALSE), /* pcrel_offset */
1505 HOWTO (R_ARM_TLS_LDM32, /* type */
1506 0, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 32, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_bitfield,/* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 "R_ARM_TLS_LDM32", /* name */
1514 TRUE, /* partial_inplace */
1515 0xffffffff, /* src_mask */
1516 0xffffffff, /* dst_mask */
1517 FALSE), /* pcrel_offset */
1519 HOWTO (R_ARM_TLS_LDO32, /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 32, /* bitsize */
1523 FALSE, /* pc_relative */
1524 0, /* bitpos */
1525 complain_overflow_bitfield,/* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 "R_ARM_TLS_LDO32", /* name */
1528 TRUE, /* partial_inplace */
1529 0xffffffff, /* src_mask */
1530 0xffffffff, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1533 HOWTO (R_ARM_TLS_IE32, /* type */
1534 0, /* rightshift */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1536 32, /* bitsize */
1537 FALSE, /* pc_relative */
1538 0, /* bitpos */
1539 complain_overflow_bitfield,/* complain_on_overflow */
1540 NULL, /* special_function */
1541 "R_ARM_TLS_IE32", /* name */
1542 TRUE, /* partial_inplace */
1543 0xffffffff, /* src_mask */
1544 0xffffffff, /* dst_mask */
1545 FALSE), /* pcrel_offset */
1547 HOWTO (R_ARM_TLS_LE32, /* type */
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 bfd_elf_generic_reloc, /* special_function */
1555 "R_ARM_TLS_LE32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
1561 HOWTO (R_ARM_TLS_LDO12, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 12, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDO12", /* name */
1570 FALSE, /* partial_inplace */
1571 0x00000fff, /* src_mask */
1572 0x00000fff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
1575 HOWTO (R_ARM_TLS_LE12, /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 12, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LE12", /* name */
1584 FALSE, /* partial_inplace */
1585 0x00000fff, /* src_mask */
1586 0x00000fff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1589 HOWTO (R_ARM_TLS_IE12GP, /* type */
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 12, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 bfd_elf_generic_reloc, /* special_function */
1597 "R_ARM_TLS_IE12GP", /* name */
1598 FALSE, /* partial_inplace */
1599 0x00000fff, /* src_mask */
1600 0x00000fff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1604 /* 112-127 private relocations
1605 128 R_ARM_ME_TOO, obsolete
1606 129-255 unallocated in AAELF.
1608 249-255 extended, currently unused, relocations: */
1610 static reloc_howto_type elf32_arm_howto_table_2[4] =
1612 HOWTO (R_ARM_RREL32, /* type */
1613 0, /* rightshift */
1614 0, /* size (0 = byte, 1 = short, 2 = long) */
1615 0, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont,/* complain_on_overflow */
1619 bfd_elf_generic_reloc, /* special_function */
1620 "R_ARM_RREL32", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1626 HOWTO (R_ARM_RABS32, /* type */
1627 0, /* rightshift */
1628 0, /* size (0 = byte, 1 = short, 2 = long) */
1629 0, /* bitsize */
1630 FALSE, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_dont,/* complain_on_overflow */
1633 bfd_elf_generic_reloc, /* special_function */
1634 "R_ARM_RABS32", /* name */
1635 FALSE, /* partial_inplace */
1636 0, /* src_mask */
1637 0, /* dst_mask */
1638 FALSE), /* pcrel_offset */
1640 HOWTO (R_ARM_RPC24, /* type */
1641 0, /* rightshift */
1642 0, /* size (0 = byte, 1 = short, 2 = long) */
1643 0, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont,/* complain_on_overflow */
1647 bfd_elf_generic_reloc, /* special_function */
1648 "R_ARM_RPC24", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1654 HOWTO (R_ARM_RBASE, /* type */
1655 0, /* rightshift */
1656 0, /* size (0 = byte, 1 = short, 2 = long) */
1657 0, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_dont,/* complain_on_overflow */
1661 bfd_elf_generic_reloc, /* special_function */
1662 "R_ARM_RBASE", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0, /* dst_mask */
1666 FALSE) /* pcrel_offset */
1669 static reloc_howto_type *
1670 elf32_arm_howto_from_type (unsigned int r_type)
1672 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1673 return &elf32_arm_howto_table_1[r_type];
1675 if (r_type >= R_ARM_RREL32
1676 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1677 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1679 return NULL;
1682 static void
1683 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1684 Elf_Internal_Rela * elf_reloc)
1686 unsigned int r_type;
1688 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1689 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1692 struct elf32_arm_reloc_map
1694 bfd_reloc_code_real_type bfd_reloc_val;
1695 unsigned char elf_reloc_val;
1698 /* All entries in this list must also be present in elf32_arm_howto_table. */
1699 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1701 {BFD_RELOC_NONE, R_ARM_NONE},
1702 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1703 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1704 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1705 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1706 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1707 {BFD_RELOC_32, R_ARM_ABS32},
1708 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1709 {BFD_RELOC_8, R_ARM_ABS8},
1710 {BFD_RELOC_16, R_ARM_ABS16},
1711 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1712 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1719 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1720 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1721 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1722 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1723 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1724 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1725 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1728 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1729 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1730 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1731 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1732 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1733 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1734 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1735 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1736 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1737 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1738 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1739 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1740 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1741 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1742 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1743 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1744 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1745 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1746 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1747 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1748 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1749 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1750 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1751 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1752 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1753 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1754 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1755 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1756 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1757 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1758 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1759 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1760 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1761 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1762 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1763 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1764 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1765 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1766 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1767 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1768 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1769 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1770 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1771 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1772 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1773 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1774 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1775 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1776 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1777 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1778 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1779 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1782 static reloc_howto_type *
1783 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1784 bfd_reloc_code_real_type code)
1786 unsigned int i;
1788 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1789 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1790 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1792 return NULL;
1795 static reloc_howto_type *
1796 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1797 const char *r_name)
1799 unsigned int i;
1801 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1802 if (elf32_arm_howto_table_1[i].name != NULL
1803 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1804 return &elf32_arm_howto_table_1[i];
1806 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1807 if (elf32_arm_howto_table_2[i].name != NULL
1808 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1809 return &elf32_arm_howto_table_2[i];
1811 return NULL;
1814 /* Support for core dump NOTE sections. */
1816 static bfd_boolean
1817 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1819 int offset;
1820 size_t size;
1822 switch (note->descsz)
1824 default:
1825 return FALSE;
1827 case 148: /* Linux/ARM 32-bit. */
1828 /* pr_cursig */
1829 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1831 /* pr_pid */
1832 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1834 /* pr_reg */
1835 offset = 72;
1836 size = 72;
1838 break;
1841 /* Make a ".reg/999" section. */
1842 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1843 size, note->descpos + offset);
1846 static bfd_boolean
1847 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1849 switch (note->descsz)
1851 default:
1852 return FALSE;
1854 case 124: /* Linux/ARM elf_prpsinfo. */
1855 elf_tdata (abfd)->core_program
1856 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1857 elf_tdata (abfd)->core_command
1858 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1861 /* Note that for some reason, a spurious space is tacked
1862 onto the end of the args in some (at least one anyway)
1863 implementations, so strip it off if it exists. */
1865 char *command = elf_tdata (abfd)->core_command;
1866 int n = strlen (command);
1868 if (0 < n && command[n - 1] == ' ')
1869 command[n - 1] = '\0';
1872 return TRUE;
1875 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1876 #define TARGET_LITTLE_NAME "elf32-littlearm"
1877 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1878 #define TARGET_BIG_NAME "elf32-bigarm"
1880 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1881 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1883 typedef unsigned long int insn32;
1884 typedef unsigned short int insn16;
1886 /* In lieu of proper flags, assume all EABIv4 or later objects are
1887 interworkable. */
1888 #define INTERWORK_FLAG(abfd) \
1889 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1890 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1891 || ((abfd)->flags & BFD_LINKER_CREATED))
1893 /* The linker script knows the section names for placement.
1894 The entry_names are used to do simple name mangling on the stubs.
1895 Given a function name, and its type, the stub can be found. The
1896 name can be changed. The only requirement is the %s be present. */
1897 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1898 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1900 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1901 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1903 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1904 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1906 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1907 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1909 #define STUB_ENTRY_NAME "__%s_veneer"
1911 /* The name of the dynamic interpreter. This is put in the .interp
1912 section. */
1913 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1915 #ifdef FOUR_WORD_PLT
1917 /* The first entry in a procedure linkage table looks like
1918 this. It is set up so that any shared library function that is
1919 called before the relocation has been set up calls the dynamic
1920 linker first. */
1921 static const bfd_vma elf32_arm_plt0_entry [] =
1923 0xe52de004, /* str lr, [sp, #-4]! */
1924 0xe59fe010, /* ldr lr, [pc, #16] */
1925 0xe08fe00e, /* add lr, pc, lr */
1926 0xe5bef008, /* ldr pc, [lr, #8]! */
1929 /* Subsequent entries in a procedure linkage table look like
1930 this. */
1931 static const bfd_vma elf32_arm_plt_entry [] =
1933 0xe28fc600, /* add ip, pc, #NN */
1934 0xe28cca00, /* add ip, ip, #NN */
1935 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1936 0x00000000, /* unused */
1939 #else
1941 /* The first entry in a procedure linkage table looks like
1942 this. It is set up so that any shared library function that is
1943 called before the relocation has been set up calls the dynamic
1944 linker first. */
1945 static const bfd_vma elf32_arm_plt0_entry [] =
1947 0xe52de004, /* str lr, [sp, #-4]! */
1948 0xe59fe004, /* ldr lr, [pc, #4] */
1949 0xe08fe00e, /* add lr, pc, lr */
1950 0xe5bef008, /* ldr pc, [lr, #8]! */
1951 0x00000000, /* &GOT[0] - . */
1954 /* Subsequent entries in a procedure linkage table look like
1955 this. */
1956 static const bfd_vma elf32_arm_plt_entry [] =
1958 0xe28fc600, /* add ip, pc, #0xNN00000 */
1959 0xe28cca00, /* add ip, ip, #0xNN000 */
1960 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1963 #endif
1965 /* The format of the first entry in the procedure linkage table
1966 for a VxWorks executable. */
1967 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1969 0xe52dc008, /* str ip,[sp,#-8]! */
1970 0xe59fc000, /* ldr ip,[pc] */
1971 0xe59cf008, /* ldr pc,[ip,#8] */
1972 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1975 /* The format of subsequent entries in a VxWorks executable. */
1976 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1978 0xe59fc000, /* ldr ip,[pc] */
1979 0xe59cf000, /* ldr pc,[ip] */
1980 0x00000000, /* .long @got */
1981 0xe59fc000, /* ldr ip,[pc] */
1982 0xea000000, /* b _PLT */
1983 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1986 /* The format of entries in a VxWorks shared library. */
1987 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1989 0xe59fc000, /* ldr ip,[pc] */
1990 0xe79cf009, /* ldr pc,[ip,r9] */
1991 0x00000000, /* .long @got */
1992 0xe59fc000, /* ldr ip,[pc] */
1993 0xe599f008, /* ldr pc,[r9,#8] */
1994 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1997 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1998 #define PLT_THUMB_STUB_SIZE 4
1999 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2001 0x4778, /* bx pc */
2002 0x46c0 /* nop */
2005 /* The entries in a PLT when using a DLL-based target with multiple
2006 address spaces. */
2007 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2009 0xe51ff004, /* ldr pc, [pc, #-4] */
2010 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2013 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2014 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2015 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2016 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2017 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2018 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2020 enum stub_insn_type
2022 THUMB16_TYPE = 1,
2023 THUMB32_TYPE,
2024 ARM_TYPE,
2025 DATA_TYPE
2028 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2029 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2030 is inserted in arm_build_one_stub(). */
2031 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2032 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2033 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2034 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2035 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2036 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2038 typedef struct
2040 bfd_vma data;
2041 enum stub_insn_type type;
2042 unsigned int r_type;
2043 int reloc_addend;
2044 } insn_sequence;
2046 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2047 to reach the stub if necessary. */
2048 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2050 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2051 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2054 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2055 available. */
2056 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2058 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2059 ARM_INSN(0xe12fff1c), /* bx ip */
2060 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2063 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2064 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2066 THUMB16_INSN(0xb401), /* push {r0} */
2067 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2068 THUMB16_INSN(0x4684), /* mov ip, r0 */
2069 THUMB16_INSN(0xbc01), /* pop {r0} */
2070 THUMB16_INSN(0x4760), /* bx ip */
2071 THUMB16_INSN(0xbf00), /* nop */
2072 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2075 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2076 allowed. */
2077 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2079 THUMB16_INSN(0x4778), /* bx pc */
2080 THUMB16_INSN(0x46c0), /* nop */
2081 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2082 ARM_INSN(0xe12fff1c), /* bx ip */
2083 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2086 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2087 available. */
2088 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2090 THUMB16_INSN(0x4778), /* bx pc */
2091 THUMB16_INSN(0x46c0), /* nop */
2092 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2093 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2096 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2097 one, when the destination is close enough. */
2098 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2100 THUMB16_INSN(0x4778), /* bx pc */
2101 THUMB16_INSN(0x46c0), /* nop */
2102 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2105 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2106 blx to reach the stub if necessary. */
2107 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2109 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2110 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2111 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2114 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2115 blx to reach the stub if necessary. We can not add into pc;
2116 it is not guaranteed to mode switch (different in ARMv6 and
2117 ARMv7). */
2118 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2120 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2121 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2122 ARM_INSN(0xe12fff1c), /* bx ip */
2123 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2126 /* V4T ARM -> ARM long branch stub, PIC. */
2127 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2129 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2130 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2131 ARM_INSN(0xe12fff1c), /* bx ip */
2132 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2135 /* V4T Thumb -> ARM long branch stub, PIC. */
2136 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2138 THUMB16_INSN(0x4778), /* bx pc */
2139 THUMB16_INSN(0x46c0), /* nop */
2140 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2141 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2142 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2145 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2146 architectures. */
2147 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2149 THUMB16_INSN(0xb401), /* push {r0} */
2150 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2151 THUMB16_INSN(0x46fc), /* mov ip, pc */
2152 THUMB16_INSN(0x4484), /* add ip, r0 */
2153 THUMB16_INSN(0xbc01), /* pop {r0} */
2154 THUMB16_INSN(0x4760), /* bx ip */
2155 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2158 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2159 allowed. */
2160 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2162 THUMB16_INSN(0x4778), /* bx pc */
2163 THUMB16_INSN(0x46c0), /* nop */
2164 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2165 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2166 ARM_INSN(0xe12fff1c), /* bx ip */
2167 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2170 /* Cortex-A8 erratum-workaround stubs. */
2172 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2173 can't use a conditional branch to reach this stub). */
2175 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2177 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2178 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2179 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2182 /* Stub used for b.w and bl.w instructions. */
2184 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2186 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2189 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2191 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2194 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2195 instruction (which switches to ARM mode) to point to this stub. Jump to the
2196 real destination using an ARM-mode branch. */
2198 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2200 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2203 /* Section name for stubs is the associated section name plus this
2204 string. */
2205 #define STUB_SUFFIX ".stub"
2207 /* One entry per long/short branch stub defined above. */
2208 #define DEF_STUBS \
2209 DEF_STUB(long_branch_any_any) \
2210 DEF_STUB(long_branch_v4t_arm_thumb) \
2211 DEF_STUB(long_branch_thumb_only) \
2212 DEF_STUB(long_branch_v4t_thumb_thumb) \
2213 DEF_STUB(long_branch_v4t_thumb_arm) \
2214 DEF_STUB(short_branch_v4t_thumb_arm) \
2215 DEF_STUB(long_branch_any_arm_pic) \
2216 DEF_STUB(long_branch_any_thumb_pic) \
2217 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2219 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2220 DEF_STUB(long_branch_thumb_only_pic) \
2221 DEF_STUB(a8_veneer_b_cond) \
2222 DEF_STUB(a8_veneer_b) \
2223 DEF_STUB(a8_veneer_bl) \
2224 DEF_STUB(a8_veneer_blx)
2226 #define DEF_STUB(x) arm_stub_##x,
2227 enum elf32_arm_stub_type {
2228 arm_stub_none,
2229 DEF_STUBS
2230 /* Note the first a8_veneer type */
2231 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2233 #undef DEF_STUB
2235 typedef struct
2237 const insn_sequence* template_sequence;
2238 int template_size;
2239 } stub_def;
2241 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2242 static const stub_def stub_definitions[] = {
2243 {NULL, 0},
2244 DEF_STUBS
2247 struct elf32_arm_stub_hash_entry
2249 /* Base hash table entry structure. */
2250 struct bfd_hash_entry root;
2252 /* The stub section. */
2253 asection *stub_sec;
2255 /* Offset within stub_sec of the beginning of this stub. */
2256 bfd_vma stub_offset;
2258 /* Given the symbol's value and its section we can determine its final
2259 value when building the stubs (so the stub knows where to jump). */
2260 bfd_vma target_value;
2261 asection *target_section;
2263 /* Offset to apply to relocation referencing target_value. */
2264 bfd_vma target_addend;
2266 /* The instruction which caused this stub to be generated (only valid for
2267 Cortex-A8 erratum workaround stubs at present). */
2268 unsigned long orig_insn;
2270 /* The stub type. */
2271 enum elf32_arm_stub_type stub_type;
2272 /* Its encoding size in bytes. */
2273 int stub_size;
2274 /* Its template. */
2275 const insn_sequence *stub_template;
2276 /* The size of the template (number of entries). */
2277 int stub_template_size;
2279 /* The symbol table entry, if any, that this was derived from. */
2280 struct elf32_arm_link_hash_entry *h;
2282 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2283 unsigned char st_type;
2285 /* Where this stub is being called from, or, in the case of combined
2286 stub sections, the first input section in the group. */
2287 asection *id_sec;
2289 /* The name for the local symbol at the start of this stub. The
2290 stub name in the hash table has to be unique; this does not, so
2291 it can be friendlier. */
2292 char *output_name;
2295 /* Used to build a map of a section. This is required for mixed-endian
2296 code/data. */
2298 typedef struct elf32_elf_section_map
2300 bfd_vma vma;
2301 char type;
2303 elf32_arm_section_map;
2305 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2307 typedef enum
2309 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2310 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2311 VFP11_ERRATUM_ARM_VENEER,
2312 VFP11_ERRATUM_THUMB_VENEER
2314 elf32_vfp11_erratum_type;
2316 typedef struct elf32_vfp11_erratum_list
2318 struct elf32_vfp11_erratum_list *next;
2319 bfd_vma vma;
2320 union
2322 struct
2324 struct elf32_vfp11_erratum_list *veneer;
2325 unsigned int vfp_insn;
2326 } b;
2327 struct
2329 struct elf32_vfp11_erratum_list *branch;
2330 unsigned int id;
2331 } v;
2332 } u;
2333 elf32_vfp11_erratum_type type;
2335 elf32_vfp11_erratum_list;
2337 typedef enum
2339 DELETE_EXIDX_ENTRY,
2340 INSERT_EXIDX_CANTUNWIND_AT_END
2342 arm_unwind_edit_type;
2344 /* A (sorted) list of edits to apply to an unwind table. */
2345 typedef struct arm_unwind_table_edit
2347 arm_unwind_edit_type type;
2348 /* Note: we sometimes want to insert an unwind entry corresponding to a
2349 section different from the one we're currently writing out, so record the
2350 (text) section this edit relates to here. */
2351 asection *linked_section;
2352 unsigned int index;
2353 struct arm_unwind_table_edit *next;
2355 arm_unwind_table_edit;
2357 typedef struct _arm_elf_section_data
2359 /* Information about mapping symbols. */
2360 struct bfd_elf_section_data elf;
2361 unsigned int mapcount;
2362 unsigned int mapsize;
2363 elf32_arm_section_map *map;
2364 /* Information about CPU errata. */
2365 unsigned int erratumcount;
2366 elf32_vfp11_erratum_list *erratumlist;
2367 /* Information about unwind tables. */
2368 union
2370 /* Unwind info attached to a text section. */
2371 struct
2373 asection *arm_exidx_sec;
2374 } text;
2376 /* Unwind info attached to an .ARM.exidx section. */
2377 struct
2379 arm_unwind_table_edit *unwind_edit_list;
2380 arm_unwind_table_edit *unwind_edit_tail;
2381 } exidx;
2382 } u;
2384 _arm_elf_section_data;
2386 #define elf32_arm_section_data(sec) \
2387 ((_arm_elf_section_data *) elf_section_data (sec))
2389 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2390 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2391 so may be created multiple times: we use an array of these entries whilst
2392 relaxing which we can refresh easily, then create stubs for each potentially
2393 erratum-triggering instruction once we've settled on a solution. */
2395 struct a8_erratum_fix {
2396 bfd *input_bfd;
2397 asection *section;
2398 bfd_vma offset;
2399 bfd_vma addend;
2400 unsigned long orig_insn;
2401 char *stub_name;
2402 enum elf32_arm_stub_type stub_type;
2403 int st_type;
2406 /* A table of relocs applied to branches which might trigger Cortex-A8
2407 erratum. */
2409 struct a8_erratum_reloc {
2410 bfd_vma from;
2411 bfd_vma destination;
2412 struct elf32_arm_link_hash_entry *hash;
2413 const char *sym_name;
2414 unsigned int r_type;
2415 unsigned char st_type;
2416 bfd_boolean non_a8_stub;
2419 /* The size of the thread control block. */
2420 #define TCB_SIZE 8
2422 struct elf_arm_obj_tdata
2424 struct elf_obj_tdata root;
2426 /* tls_type for each local got entry. */
2427 char *local_got_tls_type;
2429 /* Zero to warn when linking objects with incompatible enum sizes. */
2430 int no_enum_size_warning;
2432 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2433 int no_wchar_size_warning;
2436 #define elf_arm_tdata(bfd) \
2437 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2439 #define elf32_arm_local_got_tls_type(bfd) \
2440 (elf_arm_tdata (bfd)->local_got_tls_type)
2442 #define is_arm_elf(bfd) \
2443 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2444 && elf_tdata (bfd) != NULL \
2445 && elf_object_id (bfd) == ARM_ELF_DATA)
2447 static bfd_boolean
2448 elf32_arm_mkobject (bfd *abfd)
2450 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2451 ARM_ELF_DATA);
2454 /* The ARM linker needs to keep track of the number of relocs that it
2455 decides to copy in check_relocs for each symbol. This is so that
2456 it can discard PC relative relocs if it doesn't need them when
2457 linking with -Bsymbolic. We store the information in a field
2458 extending the regular ELF linker hash table. */
2460 /* This structure keeps track of the number of relocs we have copied
2461 for a given symbol. */
2462 struct elf32_arm_relocs_copied
2464 /* Next section. */
2465 struct elf32_arm_relocs_copied * next;
2466 /* A section in dynobj. */
2467 asection * section;
2468 /* Number of relocs copied in this section. */
2469 bfd_size_type count;
2470 /* Number of PC-relative relocs copied in this section. */
2471 bfd_size_type pc_count;
2474 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2476 /* Arm ELF linker hash entry. */
2477 struct elf32_arm_link_hash_entry
2479 struct elf_link_hash_entry root;
2481 /* Number of PC relative relocs copied for this symbol. */
2482 struct elf32_arm_relocs_copied * relocs_copied;
2484 /* We reference count Thumb references to a PLT entry separately,
2485 so that we can emit the Thumb trampoline only if needed. */
2486 bfd_signed_vma plt_thumb_refcount;
2488 /* Some references from Thumb code may be eliminated by BL->BLX
2489 conversion, so record them separately. */
2490 bfd_signed_vma plt_maybe_thumb_refcount;
2492 /* Since PLT entries have variable size if the Thumb prologue is
2493 used, we need to record the index into .got.plt instead of
2494 recomputing it from the PLT offset. */
2495 bfd_signed_vma plt_got_offset;
2497 #define GOT_UNKNOWN 0
2498 #define GOT_NORMAL 1
2499 #define GOT_TLS_GD 2
2500 #define GOT_TLS_IE 4
2501 unsigned char tls_type;
2503 /* The symbol marking the real symbol location for exported thumb
2504 symbols with Arm stubs. */
2505 struct elf_link_hash_entry *export_glue;
2507 /* A pointer to the most recently used stub hash entry against this
2508 symbol. */
2509 struct elf32_arm_stub_hash_entry *stub_cache;
2512 /* Traverse an arm ELF linker hash table. */
2513 #define elf32_arm_link_hash_traverse(table, func, info) \
2514 (elf_link_hash_traverse \
2515 (&(table)->root, \
2516 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2517 (info)))
2519 /* Get the ARM elf linker hash table from a link_info structure. */
2520 #define elf32_arm_hash_table(info) \
2521 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2522 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2524 #define arm_stub_hash_lookup(table, string, create, copy) \
2525 ((struct elf32_arm_stub_hash_entry *) \
2526 bfd_hash_lookup ((table), (string), (create), (copy)))
2528 /* Array to keep track of which stub sections have been created, and
2529 information on stub grouping. */
2530 struct map_stub
2532 /* This is the section to which stubs in the group will be
2533 attached. */
2534 asection *link_sec;
2535 /* The stub section. */
2536 asection *stub_sec;
2539 /* ARM ELF linker hash table. */
2540 struct elf32_arm_link_hash_table
2542 /* The main hash table. */
2543 struct elf_link_hash_table root;
2545 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2546 bfd_size_type thumb_glue_size;
2548 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2549 bfd_size_type arm_glue_size;
2551 /* The size in bytes of section containing the ARMv4 BX veneers. */
2552 bfd_size_type bx_glue_size;
2554 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2555 veneer has been populated. */
2556 bfd_vma bx_glue_offset[15];
2558 /* The size in bytes of the section containing glue for VFP11 erratum
2559 veneers. */
2560 bfd_size_type vfp11_erratum_glue_size;
2562 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2563 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2564 elf32_arm_write_section(). */
2565 struct a8_erratum_fix *a8_erratum_fixes;
2566 unsigned int num_a8_erratum_fixes;
2568 /* An arbitrary input BFD chosen to hold the glue sections. */
2569 bfd * bfd_of_glue_owner;
2571 /* Nonzero to output a BE8 image. */
2572 int byteswap_code;
2574 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2575 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2576 int target1_is_rel;
2578 /* The relocation to use for R_ARM_TARGET2 relocations. */
2579 int target2_reloc;
2581 /* 0 = Ignore R_ARM_V4BX.
2582 1 = Convert BX to MOV PC.
2583 2 = Generate v4 interworing stubs. */
2584 int fix_v4bx;
2586 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2587 int fix_cortex_a8;
2589 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2590 int use_blx;
2592 /* What sort of code sequences we should look for which may trigger the
2593 VFP11 denorm erratum. */
2594 bfd_arm_vfp11_fix vfp11_fix;
2596 /* Global counter for the number of fixes we have emitted. */
2597 int num_vfp11_fixes;
2599 /* Nonzero to force PIC branch veneers. */
2600 int pic_veneer;
2602 /* The number of bytes in the initial entry in the PLT. */
2603 bfd_size_type plt_header_size;
2605 /* The number of bytes in the subsequent PLT etries. */
2606 bfd_size_type plt_entry_size;
2608 /* True if the target system is VxWorks. */
2609 int vxworks_p;
2611 /* True if the target system is Symbian OS. */
2612 int symbian_p;
2614 /* True if the target uses REL relocations. */
2615 int use_rel;
2617 /* Short-cuts to get to dynamic linker sections. */
2618 asection *sgot;
2619 asection *sgotplt;
2620 asection *srelgot;
2621 asection *splt;
2622 asection *srelplt;
2623 asection *sdynbss;
2624 asection *srelbss;
2626 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2627 asection *srelplt2;
2629 /* Data for R_ARM_TLS_LDM32 relocations. */
2630 union
2632 bfd_signed_vma refcount;
2633 bfd_vma offset;
2634 } tls_ldm_got;
2636 /* Small local sym cache. */
2637 struct sym_cache sym_cache;
2639 /* For convenience in allocate_dynrelocs. */
2640 bfd * obfd;
2642 /* The stub hash table. */
2643 struct bfd_hash_table stub_hash_table;
2645 /* Linker stub bfd. */
2646 bfd *stub_bfd;
2648 /* Linker call-backs. */
2649 asection * (*add_stub_section) (const char *, asection *);
2650 void (*layout_sections_again) (void);
2652 /* Array to keep track of which stub sections have been created, and
2653 information on stub grouping. */
2654 struct map_stub *stub_group;
2656 /* Number of elements in stub_group. */
2657 int top_id;
2659 /* Assorted information used by elf32_arm_size_stubs. */
2660 unsigned int bfd_count;
2661 int top_index;
2662 asection **input_list;
2665 /* Create an entry in an ARM ELF linker hash table. */
2667 static struct bfd_hash_entry *
2668 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2669 struct bfd_hash_table * table,
2670 const char * string)
2672 struct elf32_arm_link_hash_entry * ret =
2673 (struct elf32_arm_link_hash_entry *) entry;
2675 /* Allocate the structure if it has not already been allocated by a
2676 subclass. */
2677 if (ret == NULL)
2678 ret = (struct elf32_arm_link_hash_entry *)
2679 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2680 if (ret == NULL)
2681 return (struct bfd_hash_entry *) ret;
2683 /* Call the allocation method of the superclass. */
2684 ret = ((struct elf32_arm_link_hash_entry *)
2685 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2686 table, string));
2687 if (ret != NULL)
2689 ret->relocs_copied = NULL;
2690 ret->tls_type = GOT_UNKNOWN;
2691 ret->plt_thumb_refcount = 0;
2692 ret->plt_maybe_thumb_refcount = 0;
2693 ret->plt_got_offset = -1;
2694 ret->export_glue = NULL;
2696 ret->stub_cache = NULL;
2699 return (struct bfd_hash_entry *) ret;
2702 /* Initialize an entry in the stub hash table. */
2704 static struct bfd_hash_entry *
2705 stub_hash_newfunc (struct bfd_hash_entry *entry,
2706 struct bfd_hash_table *table,
2707 const char *string)
2709 /* Allocate the structure if it has not already been allocated by a
2710 subclass. */
2711 if (entry == NULL)
2713 entry = (struct bfd_hash_entry *)
2714 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
2715 if (entry == NULL)
2716 return entry;
2719 /* Call the allocation method of the superclass. */
2720 entry = bfd_hash_newfunc (entry, table, string);
2721 if (entry != NULL)
2723 struct elf32_arm_stub_hash_entry *eh;
2725 /* Initialize the local fields. */
2726 eh = (struct elf32_arm_stub_hash_entry *) entry;
2727 eh->stub_sec = NULL;
2728 eh->stub_offset = 0;
2729 eh->target_value = 0;
2730 eh->target_section = NULL;
2731 eh->target_addend = 0;
2732 eh->orig_insn = 0;
2733 eh->stub_type = arm_stub_none;
2734 eh->stub_size = 0;
2735 eh->stub_template = NULL;
2736 eh->stub_template_size = 0;
2737 eh->h = NULL;
2738 eh->id_sec = NULL;
2739 eh->output_name = NULL;
2742 return entry;
2745 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2746 shortcuts to them in our hash table. */
2748 static bfd_boolean
2749 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2751 struct elf32_arm_link_hash_table *htab;
2753 htab = elf32_arm_hash_table (info);
2754 if (htab == NULL)
2755 return FALSE;
2757 /* BPABI objects never have a GOT, or associated sections. */
2758 if (htab->symbian_p)
2759 return TRUE;
2761 if (! _bfd_elf_create_got_section (dynobj, info))
2762 return FALSE;
2764 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2765 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2766 if (!htab->sgot || !htab->sgotplt)
2767 abort ();
2769 htab->srelgot = bfd_get_section_by_name (dynobj,
2770 RELOC_SECTION (htab, ".got"));
2771 if (htab->srelgot == NULL)
2772 return FALSE;
2773 return TRUE;
2776 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2777 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2778 hash table. */
2780 static bfd_boolean
2781 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2783 struct elf32_arm_link_hash_table *htab;
2785 htab = elf32_arm_hash_table (info);
2786 if (htab == NULL)
2787 return FALSE;
2789 if (!htab->sgot && !create_got_section (dynobj, info))
2790 return FALSE;
2792 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2793 return FALSE;
2795 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2796 htab->srelplt = bfd_get_section_by_name (dynobj,
2797 RELOC_SECTION (htab, ".plt"));
2798 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2799 if (!info->shared)
2800 htab->srelbss = bfd_get_section_by_name (dynobj,
2801 RELOC_SECTION (htab, ".bss"));
2803 if (htab->vxworks_p)
2805 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2806 return FALSE;
2808 if (info->shared)
2810 htab->plt_header_size = 0;
2811 htab->plt_entry_size
2812 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2814 else
2816 htab->plt_header_size
2817 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2818 htab->plt_entry_size
2819 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2823 if (!htab->splt
2824 || !htab->srelplt
2825 || !htab->sdynbss
2826 || (!info->shared && !htab->srelbss))
2827 abort ();
2829 return TRUE;
2832 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2834 static void
2835 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2836 struct elf_link_hash_entry *dir,
2837 struct elf_link_hash_entry *ind)
2839 struct elf32_arm_link_hash_entry *edir, *eind;
2841 edir = (struct elf32_arm_link_hash_entry *) dir;
2842 eind = (struct elf32_arm_link_hash_entry *) ind;
2844 if (eind->relocs_copied != NULL)
2846 if (edir->relocs_copied != NULL)
2848 struct elf32_arm_relocs_copied **pp;
2849 struct elf32_arm_relocs_copied *p;
2851 /* Add reloc counts against the indirect sym to the direct sym
2852 list. Merge any entries against the same section. */
2853 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2855 struct elf32_arm_relocs_copied *q;
2857 for (q = edir->relocs_copied; q != NULL; q = q->next)
2858 if (q->section == p->section)
2860 q->pc_count += p->pc_count;
2861 q->count += p->count;
2862 *pp = p->next;
2863 break;
2865 if (q == NULL)
2866 pp = &p->next;
2868 *pp = edir->relocs_copied;
2871 edir->relocs_copied = eind->relocs_copied;
2872 eind->relocs_copied = NULL;
2875 if (ind->root.type == bfd_link_hash_indirect)
2877 /* Copy over PLT info. */
2878 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2879 eind->plt_thumb_refcount = 0;
2880 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2881 eind->plt_maybe_thumb_refcount = 0;
2883 if (dir->got.refcount <= 0)
2885 edir->tls_type = eind->tls_type;
2886 eind->tls_type = GOT_UNKNOWN;
2890 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2893 /* Create an ARM elf linker hash table. */
2895 static struct bfd_link_hash_table *
2896 elf32_arm_link_hash_table_create (bfd *abfd)
2898 struct elf32_arm_link_hash_table *ret;
2899 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2901 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
2902 if (ret == NULL)
2903 return NULL;
2905 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2906 elf32_arm_link_hash_newfunc,
2907 sizeof (struct elf32_arm_link_hash_entry),
2908 ARM_ELF_DATA))
2910 free (ret);
2911 return NULL;
2914 ret->sgot = NULL;
2915 ret->sgotplt = NULL;
2916 ret->srelgot = NULL;
2917 ret->splt = NULL;
2918 ret->srelplt = NULL;
2919 ret->sdynbss = NULL;
2920 ret->srelbss = NULL;
2921 ret->srelplt2 = NULL;
2922 ret->thumb_glue_size = 0;
2923 ret->arm_glue_size = 0;
2924 ret->bx_glue_size = 0;
2925 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2926 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2927 ret->vfp11_erratum_glue_size = 0;
2928 ret->num_vfp11_fixes = 0;
2929 ret->fix_cortex_a8 = 0;
2930 ret->bfd_of_glue_owner = NULL;
2931 ret->byteswap_code = 0;
2932 ret->target1_is_rel = 0;
2933 ret->target2_reloc = R_ARM_NONE;
2934 #ifdef FOUR_WORD_PLT
2935 ret->plt_header_size = 16;
2936 ret->plt_entry_size = 16;
2937 #else
2938 ret->plt_header_size = 20;
2939 ret->plt_entry_size = 12;
2940 #endif
2941 ret->fix_v4bx = 0;
2942 ret->use_blx = 0;
2943 ret->vxworks_p = 0;
2944 ret->symbian_p = 0;
2945 ret->use_rel = 1;
2946 ret->sym_cache.abfd = NULL;
2947 ret->obfd = abfd;
2948 ret->tls_ldm_got.refcount = 0;
2949 ret->stub_bfd = NULL;
2950 ret->add_stub_section = NULL;
2951 ret->layout_sections_again = NULL;
2952 ret->stub_group = NULL;
2953 ret->top_id = 0;
2954 ret->bfd_count = 0;
2955 ret->top_index = 0;
2956 ret->input_list = NULL;
2958 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2959 sizeof (struct elf32_arm_stub_hash_entry)))
2961 free (ret);
2962 return NULL;
2965 return &ret->root.root;
2968 /* Free the derived linker hash table. */
2970 static void
2971 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2973 struct elf32_arm_link_hash_table *ret
2974 = (struct elf32_arm_link_hash_table *) hash;
2976 bfd_hash_table_free (&ret->stub_hash_table);
2977 _bfd_generic_link_hash_table_free (hash);
2980 /* Determine if we're dealing with a Thumb only architecture. */
2982 static bfd_boolean
2983 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2985 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2986 Tag_CPU_arch);
2987 int profile;
2989 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
2990 return TRUE;
2992 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
2993 return FALSE;
2995 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2996 Tag_CPU_arch_profile);
2998 return profile == 'M';
3001 /* Determine if we're dealing with a Thumb-2 object. */
3003 static bfd_boolean
3004 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3006 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3007 Tag_CPU_arch);
3008 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3011 /* Determine what kind of NOPs are available. */
3013 static bfd_boolean
3014 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3016 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3017 Tag_CPU_arch);
3018 return arch == TAG_CPU_ARCH_V6T2
3019 || arch == TAG_CPU_ARCH_V6K
3020 || arch == TAG_CPU_ARCH_V7
3021 || arch == TAG_CPU_ARCH_V7E_M;
3024 static bfd_boolean
3025 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3027 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3028 Tag_CPU_arch);
3029 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3030 || arch == TAG_CPU_ARCH_V7E_M);
3033 static bfd_boolean
3034 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3036 switch (stub_type)
3038 case arm_stub_long_branch_thumb_only:
3039 case arm_stub_long_branch_v4t_thumb_arm:
3040 case arm_stub_short_branch_v4t_thumb_arm:
3041 case arm_stub_long_branch_v4t_thumb_arm_pic:
3042 case arm_stub_long_branch_thumb_only_pic:
3043 return TRUE;
3044 case arm_stub_none:
3045 BFD_FAIL ();
3046 return FALSE;
3047 break;
3048 default:
3049 return FALSE;
3053 /* Determine the type of stub needed, if any, for a call. */
3055 static enum elf32_arm_stub_type
3056 arm_type_of_stub (struct bfd_link_info *info,
3057 asection *input_sec,
3058 const Elf_Internal_Rela *rel,
3059 int *actual_st_type,
3060 struct elf32_arm_link_hash_entry *hash,
3061 bfd_vma destination,
3062 asection *sym_sec,
3063 bfd *input_bfd,
3064 const char *name)
3066 bfd_vma location;
3067 bfd_signed_vma branch_offset;
3068 unsigned int r_type;
3069 struct elf32_arm_link_hash_table * globals;
3070 int thumb2;
3071 int thumb_only;
3072 enum elf32_arm_stub_type stub_type = arm_stub_none;
3073 int use_plt = 0;
3074 int st_type = *actual_st_type;
3076 /* We don't know the actual type of destination in case it is of
3077 type STT_SECTION: give up. */
3078 if (st_type == STT_SECTION)
3079 return stub_type;
3081 globals = elf32_arm_hash_table (info);
3082 if (globals == NULL)
3083 return stub_type;
3085 thumb_only = using_thumb_only (globals);
3087 thumb2 = using_thumb2 (globals);
3089 /* Determine where the call point is. */
3090 location = (input_sec->output_offset
3091 + input_sec->output_section->vma
3092 + rel->r_offset);
3094 r_type = ELF32_R_TYPE (rel->r_info);
3096 /* Keep a simpler condition, for the sake of clarity. */
3097 if (globals->splt != NULL
3098 && hash != NULL
3099 && hash->root.plt.offset != (bfd_vma) -1)
3101 use_plt = 1;
3103 /* Note when dealing with PLT entries: the main PLT stub is in
3104 ARM mode, so if the branch is in Thumb mode, another
3105 Thumb->ARM stub will be inserted later just before the ARM
3106 PLT stub. We don't take this extra distance into account
3107 here, because if a long branch stub is needed, we'll add a
3108 Thumb->Arm one and branch directly to the ARM PLT entry
3109 because it avoids spreading offset corrections in several
3110 places. */
3112 destination = (globals->splt->output_section->vma
3113 + globals->splt->output_offset
3114 + hash->root.plt.offset);
3115 st_type = STT_FUNC;
3118 branch_offset = (bfd_signed_vma)(destination - location);
3120 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3122 /* Handle cases where:
3123 - this call goes too far (different Thumb/Thumb2 max
3124 distance)
3125 - it's a Thumb->Arm call and blx is not available, or it's a
3126 Thumb->Arm branch (not bl). A stub is needed in this case,
3127 but only if this call is not through a PLT entry. Indeed,
3128 PLT stubs handle mode switching already.
3130 if ((!thumb2
3131 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3132 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3133 || (thumb2
3134 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3135 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3136 || ((st_type != STT_ARM_TFUNC)
3137 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3138 || (r_type == R_ARM_THM_JUMP24))
3139 && !use_plt))
3141 if (st_type == STT_ARM_TFUNC)
3143 /* Thumb to thumb. */
3144 if (!thumb_only)
3146 stub_type = (info->shared | globals->pic_veneer)
3147 /* PIC stubs. */
3148 ? ((globals->use_blx
3149 && (r_type ==R_ARM_THM_CALL))
3150 /* V5T and above. Stub starts with ARM code, so
3151 we must be able to switch mode before
3152 reaching it, which is only possible for 'bl'
3153 (ie R_ARM_THM_CALL relocation). */
3154 ? arm_stub_long_branch_any_thumb_pic
3155 /* On V4T, use Thumb code only. */
3156 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3158 /* non-PIC stubs. */
3159 : ((globals->use_blx
3160 && (r_type ==R_ARM_THM_CALL))
3161 /* V5T and above. */
3162 ? arm_stub_long_branch_any_any
3163 /* V4T. */
3164 : arm_stub_long_branch_v4t_thumb_thumb);
3166 else
3168 stub_type = (info->shared | globals->pic_veneer)
3169 /* PIC stub. */
3170 ? arm_stub_long_branch_thumb_only_pic
3171 /* non-PIC stub. */
3172 : arm_stub_long_branch_thumb_only;
3175 else
3177 /* Thumb to arm. */
3178 if (sym_sec != NULL
3179 && sym_sec->owner != NULL
3180 && !INTERWORK_FLAG (sym_sec->owner))
3182 (*_bfd_error_handler)
3183 (_("%B(%s): warning: interworking not enabled.\n"
3184 " first occurrence: %B: Thumb call to ARM"),
3185 sym_sec->owner, input_bfd, name);
3188 stub_type = (info->shared | globals->pic_veneer)
3189 /* PIC stubs. */
3190 ? ((globals->use_blx
3191 && (r_type ==R_ARM_THM_CALL))
3192 /* V5T and above. */
3193 ? arm_stub_long_branch_any_arm_pic
3194 /* V4T PIC stub. */
3195 : arm_stub_long_branch_v4t_thumb_arm_pic)
3197 /* non-PIC stubs. */
3198 : ((globals->use_blx
3199 && (r_type ==R_ARM_THM_CALL))
3200 /* V5T and above. */
3201 ? arm_stub_long_branch_any_any
3202 /* V4T. */
3203 : arm_stub_long_branch_v4t_thumb_arm);
3205 /* Handle v4t short branches. */
3206 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3207 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3208 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3209 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3213 else if (r_type == R_ARM_CALL
3214 || r_type == R_ARM_JUMP24
3215 || r_type == R_ARM_PLT32)
3217 if (st_type == STT_ARM_TFUNC)
3219 /* Arm to thumb. */
3221 if (sym_sec != NULL
3222 && sym_sec->owner != NULL
3223 && !INTERWORK_FLAG (sym_sec->owner))
3225 (*_bfd_error_handler)
3226 (_("%B(%s): warning: interworking not enabled.\n"
3227 " first occurrence: %B: ARM call to Thumb"),
3228 sym_sec->owner, input_bfd, name);
3231 /* We have an extra 2-bytes reach because of
3232 the mode change (bit 24 (H) of BLX encoding). */
3233 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3234 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3235 || ((r_type == R_ARM_CALL) && !globals->use_blx)
3236 || (r_type == R_ARM_JUMP24)
3237 || (r_type == R_ARM_PLT32))
3239 stub_type = (info->shared | globals->pic_veneer)
3240 /* PIC stubs. */
3241 ? ((globals->use_blx)
3242 /* V5T and above. */
3243 ? arm_stub_long_branch_any_thumb_pic
3244 /* V4T stub. */
3245 : arm_stub_long_branch_v4t_arm_thumb_pic)
3247 /* non-PIC stubs. */
3248 : ((globals->use_blx)
3249 /* V5T and above. */
3250 ? arm_stub_long_branch_any_any
3251 /* V4T. */
3252 : arm_stub_long_branch_v4t_arm_thumb);
3255 else
3257 /* Arm to arm. */
3258 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3259 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3261 stub_type = (info->shared | globals->pic_veneer)
3262 /* PIC stubs. */
3263 ? arm_stub_long_branch_any_arm_pic
3264 /* non-PIC stubs. */
3265 : arm_stub_long_branch_any_any;
3270 /* If a stub is needed, record the actual destination type. */
3271 if (stub_type != arm_stub_none)
3273 *actual_st_type = st_type;
3276 return stub_type;
3279 /* Build a name for an entry in the stub hash table. */
3281 static char *
3282 elf32_arm_stub_name (const asection *input_section,
3283 const asection *sym_sec,
3284 const struct elf32_arm_link_hash_entry *hash,
3285 const Elf_Internal_Rela *rel,
3286 enum elf32_arm_stub_type stub_type)
3288 char *stub_name;
3289 bfd_size_type len;
3291 if (hash)
3293 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3294 stub_name = (char *) bfd_malloc (len);
3295 if (stub_name != NULL)
3296 sprintf (stub_name, "%08x_%s+%x_%d",
3297 input_section->id & 0xffffffff,
3298 hash->root.root.root.string,
3299 (int) rel->r_addend & 0xffffffff,
3300 (int) stub_type);
3302 else
3304 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3305 stub_name = (char *) bfd_malloc (len);
3306 if (stub_name != NULL)
3307 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3308 input_section->id & 0xffffffff,
3309 sym_sec->id & 0xffffffff,
3310 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3311 (int) rel->r_addend & 0xffffffff,
3312 (int) stub_type);
3315 return stub_name;
3318 /* Look up an entry in the stub hash. Stub entries are cached because
3319 creating the stub name takes a bit of time. */
3321 static struct elf32_arm_stub_hash_entry *
3322 elf32_arm_get_stub_entry (const asection *input_section,
3323 const asection *sym_sec,
3324 struct elf_link_hash_entry *hash,
3325 const Elf_Internal_Rela *rel,
3326 struct elf32_arm_link_hash_table *htab,
3327 enum elf32_arm_stub_type stub_type)
3329 struct elf32_arm_stub_hash_entry *stub_entry;
3330 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3331 const asection *id_sec;
3333 if ((input_section->flags & SEC_CODE) == 0)
3334 return NULL;
3336 /* If this input section is part of a group of sections sharing one
3337 stub section, then use the id of the first section in the group.
3338 Stub names need to include a section id, as there may well be
3339 more than one stub used to reach say, printf, and we need to
3340 distinguish between them. */
3341 id_sec = htab->stub_group[input_section->id].link_sec;
3343 if (h != NULL && h->stub_cache != NULL
3344 && h->stub_cache->h == h
3345 && h->stub_cache->id_sec == id_sec
3346 && h->stub_cache->stub_type == stub_type)
3348 stub_entry = h->stub_cache;
3350 else
3352 char *stub_name;
3354 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3355 if (stub_name == NULL)
3356 return NULL;
3358 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3359 stub_name, FALSE, FALSE);
3360 if (h != NULL)
3361 h->stub_cache = stub_entry;
3363 free (stub_name);
3366 return stub_entry;
3369 /* Find or create a stub section. Returns a pointer to the stub section, and
3370 the section to which the stub section will be attached (in *LINK_SEC_P).
3371 LINK_SEC_P may be NULL. */
3373 static asection *
3374 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3375 struct elf32_arm_link_hash_table *htab)
3377 asection *link_sec;
3378 asection *stub_sec;
3380 link_sec = htab->stub_group[section->id].link_sec;
3381 stub_sec = htab->stub_group[section->id].stub_sec;
3382 if (stub_sec == NULL)
3384 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3385 if (stub_sec == NULL)
3387 size_t namelen;
3388 bfd_size_type len;
3389 char *s_name;
3391 namelen = strlen (link_sec->name);
3392 len = namelen + sizeof (STUB_SUFFIX);
3393 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3394 if (s_name == NULL)
3395 return NULL;
3397 memcpy (s_name, link_sec->name, namelen);
3398 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3399 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3400 if (stub_sec == NULL)
3401 return NULL;
3402 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3404 htab->stub_group[section->id].stub_sec = stub_sec;
3407 if (link_sec_p)
3408 *link_sec_p = link_sec;
3410 return stub_sec;
3413 /* Add a new stub entry to the stub hash. Not all fields of the new
3414 stub entry are initialised. */
3416 static struct elf32_arm_stub_hash_entry *
3417 elf32_arm_add_stub (const char *stub_name,
3418 asection *section,
3419 struct elf32_arm_link_hash_table *htab)
3421 asection *link_sec;
3422 asection *stub_sec;
3423 struct elf32_arm_stub_hash_entry *stub_entry;
3425 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3426 if (stub_sec == NULL)
3427 return NULL;
3429 /* Enter this entry into the linker stub hash table. */
3430 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3431 TRUE, FALSE);
3432 if (stub_entry == NULL)
3434 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3435 section->owner,
3436 stub_name);
3437 return NULL;
3440 stub_entry->stub_sec = stub_sec;
3441 stub_entry->stub_offset = 0;
3442 stub_entry->id_sec = link_sec;
3444 return stub_entry;
3447 /* Store an Arm insn into an output section not processed by
3448 elf32_arm_write_section. */
3450 static void
3451 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3452 bfd * output_bfd, bfd_vma val, void * ptr)
3454 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3455 bfd_putl32 (val, ptr);
3456 else
3457 bfd_putb32 (val, ptr);
3460 /* Store a 16-bit Thumb insn into an output section not processed by
3461 elf32_arm_write_section. */
3463 static void
3464 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3465 bfd * output_bfd, bfd_vma val, void * ptr)
3467 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3468 bfd_putl16 (val, ptr);
3469 else
3470 bfd_putb16 (val, ptr);
3473 static bfd_reloc_status_type elf32_arm_final_link_relocate
3474 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3475 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3476 const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3478 static unsigned int
3479 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
3481 switch (stub_type)
3483 case arm_stub_a8_veneer_b_cond:
3484 case arm_stub_a8_veneer_b:
3485 case arm_stub_a8_veneer_bl:
3486 return 2;
3488 case arm_stub_long_branch_any_any:
3489 case arm_stub_long_branch_v4t_arm_thumb:
3490 case arm_stub_long_branch_thumb_only:
3491 case arm_stub_long_branch_v4t_thumb_thumb:
3492 case arm_stub_long_branch_v4t_thumb_arm:
3493 case arm_stub_short_branch_v4t_thumb_arm:
3494 case arm_stub_long_branch_any_arm_pic:
3495 case arm_stub_long_branch_any_thumb_pic:
3496 case arm_stub_long_branch_v4t_thumb_thumb_pic:
3497 case arm_stub_long_branch_v4t_arm_thumb_pic:
3498 case arm_stub_long_branch_v4t_thumb_arm_pic:
3499 case arm_stub_long_branch_thumb_only_pic:
3500 case arm_stub_a8_veneer_blx:
3501 return 4;
3503 default:
3504 abort (); /* Should be unreachable. */
3508 static bfd_boolean
3509 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3510 void * in_arg)
3512 #define MAXRELOCS 2
3513 struct elf32_arm_stub_hash_entry *stub_entry;
3514 struct elf32_arm_link_hash_table *globals;
3515 struct bfd_link_info *info;
3516 asection *stub_sec;
3517 bfd *stub_bfd;
3518 bfd_byte *loc;
3519 bfd_vma sym_value;
3520 int template_size;
3521 int size;
3522 const insn_sequence *template_sequence;
3523 int i;
3524 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3525 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3526 int nrelocs = 0;
3528 /* Massage our args to the form they really have. */
3529 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3530 info = (struct bfd_link_info *) in_arg;
3532 globals = elf32_arm_hash_table (info);
3533 if (globals == NULL)
3534 return FALSE;
3536 stub_sec = stub_entry->stub_sec;
3538 if ((globals->fix_cortex_a8 < 0)
3539 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
3540 /* We have to do less-strictly-aligned fixes last. */
3541 return TRUE;
3543 /* Make a note of the offset within the stubs for this entry. */
3544 stub_entry->stub_offset = stub_sec->size;
3545 loc = stub_sec->contents + stub_entry->stub_offset;
3547 stub_bfd = stub_sec->owner;
3549 /* This is the address of the stub destination. */
3550 sym_value = (stub_entry->target_value
3551 + stub_entry->target_section->output_offset
3552 + stub_entry->target_section->output_section->vma);
3554 template_sequence = stub_entry->stub_template;
3555 template_size = stub_entry->stub_template_size;
3557 size = 0;
3558 for (i = 0; i < template_size; i++)
3560 switch (template_sequence[i].type)
3562 case THUMB16_TYPE:
3564 bfd_vma data = (bfd_vma) template_sequence[i].data;
3565 if (template_sequence[i].reloc_addend != 0)
3567 /* We've borrowed the reloc_addend field to mean we should
3568 insert a condition code into this (Thumb-1 branch)
3569 instruction. See THUMB16_BCOND_INSN. */
3570 BFD_ASSERT ((data & 0xff00) == 0xd000);
3571 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3573 bfd_put_16 (stub_bfd, data, loc + size);
3574 size += 2;
3576 break;
3578 case THUMB32_TYPE:
3579 bfd_put_16 (stub_bfd,
3580 (template_sequence[i].data >> 16) & 0xffff,
3581 loc + size);
3582 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
3583 loc + size + 2);
3584 if (template_sequence[i].r_type != R_ARM_NONE)
3586 stub_reloc_idx[nrelocs] = i;
3587 stub_reloc_offset[nrelocs++] = size;
3589 size += 4;
3590 break;
3592 case ARM_TYPE:
3593 bfd_put_32 (stub_bfd, template_sequence[i].data,
3594 loc + size);
3595 /* Handle cases where the target is encoded within the
3596 instruction. */
3597 if (template_sequence[i].r_type == R_ARM_JUMP24)
3599 stub_reloc_idx[nrelocs] = i;
3600 stub_reloc_offset[nrelocs++] = size;
3602 size += 4;
3603 break;
3605 case DATA_TYPE:
3606 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
3607 stub_reloc_idx[nrelocs] = i;
3608 stub_reloc_offset[nrelocs++] = size;
3609 size += 4;
3610 break;
3612 default:
3613 BFD_FAIL ();
3614 return FALSE;
3618 stub_sec->size += size;
3620 /* Stub size has already been computed in arm_size_one_stub. Check
3621 consistency. */
3622 BFD_ASSERT (size == stub_entry->stub_size);
3624 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3625 if (stub_entry->st_type == STT_ARM_TFUNC)
3626 sym_value |= 1;
3628 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3629 in each stub. */
3630 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
3632 for (i = 0; i < nrelocs; i++)
3633 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3634 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3635 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3636 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
3638 Elf_Internal_Rela rel;
3639 bfd_boolean unresolved_reloc;
3640 char *error_message;
3641 int sym_flags
3642 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
3643 ? STT_ARM_TFUNC : 0;
3644 bfd_vma points_to = sym_value + stub_entry->target_addend;
3646 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3647 rel.r_info = ELF32_R_INFO (0,
3648 template_sequence[stub_reloc_idx[i]].r_type);
3649 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
3651 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3652 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3653 template should refer back to the instruction after the original
3654 branch. */
3655 points_to = sym_value;
3657 /* There may be unintended consequences if this is not true. */
3658 BFD_ASSERT (stub_entry->h == NULL);
3660 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3661 properly. We should probably use this function unconditionally,
3662 rather than only for certain relocations listed in the enclosing
3663 conditional, for the sake of consistency. */
3664 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3665 (template_sequence[stub_reloc_idx[i]].r_type),
3666 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3667 points_to, info, stub_entry->target_section, "", sym_flags,
3668 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3669 &error_message);
3671 else
3673 Elf_Internal_Rela rel;
3674 bfd_boolean unresolved_reloc;
3675 char *error_message;
3676 bfd_vma points_to = sym_value + stub_entry->target_addend
3677 + template_sequence[stub_reloc_idx[i]].reloc_addend;
3679 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3680 rel.r_info = ELF32_R_INFO (0,
3681 template_sequence[stub_reloc_idx[i]].r_type);
3682 rel.r_addend = 0;
3684 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3685 (template_sequence[stub_reloc_idx[i]].r_type),
3686 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3687 points_to, info, stub_entry->target_section, "", stub_entry->st_type,
3688 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3689 &error_message);
3692 return TRUE;
3693 #undef MAXRELOCS
3696 /* Calculate the template, template size and instruction size for a stub.
3697 Return value is the instruction size. */
3699 static unsigned int
3700 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3701 const insn_sequence **stub_template,
3702 int *stub_template_size)
3704 const insn_sequence *template_sequence = NULL;
3705 int template_size = 0, i;
3706 unsigned int size;
3708 template_sequence = stub_definitions[stub_type].template_sequence;
3709 template_size = stub_definitions[stub_type].template_size;
3711 size = 0;
3712 for (i = 0; i < template_size; i++)
3714 switch (template_sequence[i].type)
3716 case THUMB16_TYPE:
3717 size += 2;
3718 break;
3720 case ARM_TYPE:
3721 case THUMB32_TYPE:
3722 case DATA_TYPE:
3723 size += 4;
3724 break;
3726 default:
3727 BFD_FAIL ();
3728 return FALSE;
3732 if (stub_template)
3733 *stub_template = template_sequence;
3735 if (stub_template_size)
3736 *stub_template_size = template_size;
3738 return size;
3741 /* As above, but don't actually build the stub. Just bump offset so
3742 we know stub section sizes. */
3744 static bfd_boolean
3745 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3746 void *in_arg ATTRIBUTE_UNUSED)
3748 struct elf32_arm_stub_hash_entry *stub_entry;
3749 const insn_sequence *template_sequence;
3750 int template_size, size;
3752 /* Massage our args to the form they really have. */
3753 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3755 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3756 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3758 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
3759 &template_size);
3761 stub_entry->stub_size = size;
3762 stub_entry->stub_template = template_sequence;
3763 stub_entry->stub_template_size = template_size;
3765 size = (size + 7) & ~7;
3766 stub_entry->stub_sec->size += size;
3768 return TRUE;
3771 /* External entry points for sizing and building linker stubs. */
3773 /* Set up various things so that we can make a list of input sections
3774 for each output section included in the link. Returns -1 on error,
3775 0 when no stubs will be needed, and 1 on success. */
3778 elf32_arm_setup_section_lists (bfd *output_bfd,
3779 struct bfd_link_info *info)
3781 bfd *input_bfd;
3782 unsigned int bfd_count;
3783 int top_id, top_index;
3784 asection *section;
3785 asection **input_list, **list;
3786 bfd_size_type amt;
3787 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3789 if (htab == NULL)
3790 return 0;
3791 if (! is_elf_hash_table (htab))
3792 return 0;
3794 /* Count the number of input BFDs and find the top input section id. */
3795 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3796 input_bfd != NULL;
3797 input_bfd = input_bfd->link_next)
3799 bfd_count += 1;
3800 for (section = input_bfd->sections;
3801 section != NULL;
3802 section = section->next)
3804 if (top_id < section->id)
3805 top_id = section->id;
3808 htab->bfd_count = bfd_count;
3810 amt = sizeof (struct map_stub) * (top_id + 1);
3811 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
3812 if (htab->stub_group == NULL)
3813 return -1;
3814 htab->top_id = top_id;
3816 /* We can't use output_bfd->section_count here to find the top output
3817 section index as some sections may have been removed, and
3818 _bfd_strip_section_from_output doesn't renumber the indices. */
3819 for (section = output_bfd->sections, top_index = 0;
3820 section != NULL;
3821 section = section->next)
3823 if (top_index < section->index)
3824 top_index = section->index;
3827 htab->top_index = top_index;
3828 amt = sizeof (asection *) * (top_index + 1);
3829 input_list = (asection **) bfd_malloc (amt);
3830 htab->input_list = input_list;
3831 if (input_list == NULL)
3832 return -1;
3834 /* For sections we aren't interested in, mark their entries with a
3835 value we can check later. */
3836 list = input_list + top_index;
3838 *list = bfd_abs_section_ptr;
3839 while (list-- != input_list);
3841 for (section = output_bfd->sections;
3842 section != NULL;
3843 section = section->next)
3845 if ((section->flags & SEC_CODE) != 0)
3846 input_list[section->index] = NULL;
3849 return 1;
3852 /* The linker repeatedly calls this function for each input section,
3853 in the order that input sections are linked into output sections.
3854 Build lists of input sections to determine groupings between which
3855 we may insert linker stubs. */
3857 void
3858 elf32_arm_next_input_section (struct bfd_link_info *info,
3859 asection *isec)
3861 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3863 if (htab == NULL)
3864 return;
3866 if (isec->output_section->index <= htab->top_index)
3868 asection **list = htab->input_list + isec->output_section->index;
3870 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3872 /* Steal the link_sec pointer for our list. */
3873 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3874 /* This happens to make the list in reverse order,
3875 which we reverse later. */
3876 PREV_SEC (isec) = *list;
3877 *list = isec;
3882 /* See whether we can group stub sections together. Grouping stub
3883 sections may result in fewer stubs. More importantly, we need to
3884 put all .init* and .fini* stubs at the end of the .init or
3885 .fini output sections respectively, because glibc splits the
3886 _init and _fini functions into multiple parts. Putting a stub in
3887 the middle of a function is not a good idea. */
3889 static void
3890 group_sections (struct elf32_arm_link_hash_table *htab,
3891 bfd_size_type stub_group_size,
3892 bfd_boolean stubs_always_after_branch)
3894 asection **list = htab->input_list;
3898 asection *tail = *list;
3899 asection *head;
3901 if (tail == bfd_abs_section_ptr)
3902 continue;
3904 /* Reverse the list: we must avoid placing stubs at the
3905 beginning of the section because the beginning of the text
3906 section may be required for an interrupt vector in bare metal
3907 code. */
3908 #define NEXT_SEC PREV_SEC
3909 head = NULL;
3910 while (tail != NULL)
3912 /* Pop from tail. */
3913 asection *item = tail;
3914 tail = PREV_SEC (item);
3916 /* Push on head. */
3917 NEXT_SEC (item) = head;
3918 head = item;
3921 while (head != NULL)
3923 asection *curr;
3924 asection *next;
3925 bfd_vma stub_group_start = head->output_offset;
3926 bfd_vma end_of_next;
3928 curr = head;
3929 while (NEXT_SEC (curr) != NULL)
3931 next = NEXT_SEC (curr);
3932 end_of_next = next->output_offset + next->size;
3933 if (end_of_next - stub_group_start >= stub_group_size)
3934 /* End of NEXT is too far from start, so stop. */
3935 break;
3936 /* Add NEXT to the group. */
3937 curr = next;
3940 /* OK, the size from the start to the start of CURR is less
3941 than stub_group_size and thus can be handled by one stub
3942 section. (Or the head section is itself larger than
3943 stub_group_size, in which case we may be toast.)
3944 We should really be keeping track of the total size of
3945 stubs added here, as stubs contribute to the final output
3946 section size. */
3949 next = NEXT_SEC (head);
3950 /* Set up this stub group. */
3951 htab->stub_group[head->id].link_sec = curr;
3953 while (head != curr && (head = next) != NULL);
3955 /* But wait, there's more! Input sections up to stub_group_size
3956 bytes after the stub section can be handled by it too. */
3957 if (!stubs_always_after_branch)
3959 stub_group_start = curr->output_offset + curr->size;
3961 while (next != NULL)
3963 end_of_next = next->output_offset + next->size;
3964 if (end_of_next - stub_group_start >= stub_group_size)
3965 /* End of NEXT is too far from stubs, so stop. */
3966 break;
3967 /* Add NEXT to the stub group. */
3968 head = next;
3969 next = NEXT_SEC (head);
3970 htab->stub_group[head->id].link_sec = curr;
3973 head = next;
3976 while (list++ != htab->input_list + htab->top_index);
3978 free (htab->input_list);
3979 #undef PREV_SEC
3980 #undef NEXT_SEC
3983 /* Comparison function for sorting/searching relocations relating to Cortex-A8
3984 erratum fix. */
3986 static int
3987 a8_reloc_compare (const void *a, const void *b)
3989 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
3990 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
3992 if (ra->from < rb->from)
3993 return -1;
3994 else if (ra->from > rb->from)
3995 return 1;
3996 else
3997 return 0;
4000 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4001 const char *, char **);
4003 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4004 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4005 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4006 otherwise. */
4008 static bfd_boolean
4009 cortex_a8_erratum_scan (bfd *input_bfd,
4010 struct bfd_link_info *info,
4011 struct a8_erratum_fix **a8_fixes_p,
4012 unsigned int *num_a8_fixes_p,
4013 unsigned int *a8_fix_table_size_p,
4014 struct a8_erratum_reloc *a8_relocs,
4015 unsigned int num_a8_relocs,
4016 unsigned prev_num_a8_fixes,
4017 bfd_boolean *stub_changed_p)
4019 asection *section;
4020 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4021 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4022 unsigned int num_a8_fixes = *num_a8_fixes_p;
4023 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4025 if (htab == NULL)
4026 return FALSE;
4028 for (section = input_bfd->sections;
4029 section != NULL;
4030 section = section->next)
4032 bfd_byte *contents = NULL;
4033 struct _arm_elf_section_data *sec_data;
4034 unsigned int span;
4035 bfd_vma base_vma;
4037 if (elf_section_type (section) != SHT_PROGBITS
4038 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4039 || (section->flags & SEC_EXCLUDE) != 0
4040 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4041 || (section->output_section == bfd_abs_section_ptr))
4042 continue;
4044 base_vma = section->output_section->vma + section->output_offset;
4046 if (elf_section_data (section)->this_hdr.contents != NULL)
4047 contents = elf_section_data (section)->this_hdr.contents;
4048 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4049 return TRUE;
4051 sec_data = elf32_arm_section_data (section);
4053 for (span = 0; span < sec_data->mapcount; span++)
4055 unsigned int span_start = sec_data->map[span].vma;
4056 unsigned int span_end = (span == sec_data->mapcount - 1)
4057 ? section->size : sec_data->map[span + 1].vma;
4058 unsigned int i;
4059 char span_type = sec_data->map[span].type;
4060 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4062 if (span_type != 't')
4063 continue;
4065 /* Span is entirely within a single 4KB region: skip scanning. */
4066 if (((base_vma + span_start) & ~0xfff)
4067 == ((base_vma + span_end) & ~0xfff))
4068 continue;
4070 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4072 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4073 * The branch target is in the same 4KB region as the
4074 first half of the branch.
4075 * The instruction before the branch is a 32-bit
4076 length non-branch instruction. */
4077 for (i = span_start; i < span_end;)
4079 unsigned int insn = bfd_getl16 (&contents[i]);
4080 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4081 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4083 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4084 insn_32bit = TRUE;
4086 if (insn_32bit)
4088 /* Load the rest of the insn (in manual-friendly order). */
4089 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4091 /* Encoding T4: B<c>.W. */
4092 is_b = (insn & 0xf800d000) == 0xf0009000;
4093 /* Encoding T1: BL<c>.W. */
4094 is_bl = (insn & 0xf800d000) == 0xf000d000;
4095 /* Encoding T2: BLX<c>.W. */
4096 is_blx = (insn & 0xf800d000) == 0xf000c000;
4097 /* Encoding T3: B<c>.W (not permitted in IT block). */
4098 is_bcc = (insn & 0xf800d000) == 0xf0008000
4099 && (insn & 0x07f00000) != 0x03800000;
4102 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4104 if (((base_vma + i) & 0xfff) == 0xffe
4105 && insn_32bit
4106 && is_32bit_branch
4107 && last_was_32bit
4108 && ! last_was_branch)
4110 bfd_signed_vma offset = 0;
4111 bfd_boolean force_target_arm = FALSE;
4112 bfd_boolean force_target_thumb = FALSE;
4113 bfd_vma target;
4114 enum elf32_arm_stub_type stub_type = arm_stub_none;
4115 struct a8_erratum_reloc key, *found;
4117 key.from = base_vma + i;
4118 found = (struct a8_erratum_reloc *)
4119 bsearch (&key, a8_relocs, num_a8_relocs,
4120 sizeof (struct a8_erratum_reloc),
4121 &a8_reloc_compare);
4123 if (found)
4125 char *error_message = NULL;
4126 struct elf_link_hash_entry *entry;
4127 bfd_boolean use_plt = FALSE;
4129 /* We don't care about the error returned from this
4130 function, only if there is glue or not. */
4131 entry = find_thumb_glue (info, found->sym_name,
4132 &error_message);
4134 if (entry)
4135 found->non_a8_stub = TRUE;
4137 /* Keep a simpler condition, for the sake of clarity. */
4138 if (htab->splt != NULL && found->hash != NULL
4139 && found->hash->root.plt.offset != (bfd_vma) -1)
4140 use_plt = TRUE;
4142 if (found->r_type == R_ARM_THM_CALL)
4144 if (found->st_type != STT_ARM_TFUNC || use_plt)
4145 force_target_arm = TRUE;
4146 else
4147 force_target_thumb = TRUE;
4151 /* Check if we have an offending branch instruction. */
4153 if (found && found->non_a8_stub)
4154 /* We've already made a stub for this instruction, e.g.
4155 it's a long branch or a Thumb->ARM stub. Assume that
4156 stub will suffice to work around the A8 erratum (see
4157 setting of always_after_branch above). */
4159 else if (is_bcc)
4161 offset = (insn & 0x7ff) << 1;
4162 offset |= (insn & 0x3f0000) >> 4;
4163 offset |= (insn & 0x2000) ? 0x40000 : 0;
4164 offset |= (insn & 0x800) ? 0x80000 : 0;
4165 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4166 if (offset & 0x100000)
4167 offset |= ~ ((bfd_signed_vma) 0xfffff);
4168 stub_type = arm_stub_a8_veneer_b_cond;
4170 else if (is_b || is_bl || is_blx)
4172 int s = (insn & 0x4000000) != 0;
4173 int j1 = (insn & 0x2000) != 0;
4174 int j2 = (insn & 0x800) != 0;
4175 int i1 = !(j1 ^ s);
4176 int i2 = !(j2 ^ s);
4178 offset = (insn & 0x7ff) << 1;
4179 offset |= (insn & 0x3ff0000) >> 4;
4180 offset |= i2 << 22;
4181 offset |= i1 << 23;
4182 offset |= s << 24;
4183 if (offset & 0x1000000)
4184 offset |= ~ ((bfd_signed_vma) 0xffffff);
4186 if (is_blx)
4187 offset &= ~ ((bfd_signed_vma) 3);
4189 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4190 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4193 if (stub_type != arm_stub_none)
4195 bfd_vma pc_for_insn = base_vma + i + 4;
4197 /* The original instruction is a BL, but the target is
4198 an ARM instruction. If we were not making a stub,
4199 the BL would have been converted to a BLX. Use the
4200 BLX stub instead in that case. */
4201 if (htab->use_blx && force_target_arm
4202 && stub_type == arm_stub_a8_veneer_bl)
4204 stub_type = arm_stub_a8_veneer_blx;
4205 is_blx = TRUE;
4206 is_bl = FALSE;
4208 /* Conversely, if the original instruction was
4209 BLX but the target is Thumb mode, use the BL
4210 stub. */
4211 else if (force_target_thumb
4212 && stub_type == arm_stub_a8_veneer_blx)
4214 stub_type = arm_stub_a8_veneer_bl;
4215 is_blx = FALSE;
4216 is_bl = TRUE;
4219 if (is_blx)
4220 pc_for_insn &= ~ ((bfd_vma) 3);
4222 /* If we found a relocation, use the proper destination,
4223 not the offset in the (unrelocated) instruction.
4224 Note this is always done if we switched the stub type
4225 above. */
4226 if (found)
4227 offset =
4228 (bfd_signed_vma) (found->destination - pc_for_insn);
4230 target = pc_for_insn + offset;
4232 /* The BLX stub is ARM-mode code. Adjust the offset to
4233 take the different PC value (+8 instead of +4) into
4234 account. */
4235 if (stub_type == arm_stub_a8_veneer_blx)
4236 offset += 4;
4238 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4240 char *stub_name = NULL;
4242 if (num_a8_fixes == a8_fix_table_size)
4244 a8_fix_table_size *= 2;
4245 a8_fixes = (struct a8_erratum_fix *)
4246 bfd_realloc (a8_fixes,
4247 sizeof (struct a8_erratum_fix)
4248 * a8_fix_table_size);
4251 if (num_a8_fixes < prev_num_a8_fixes)
4253 /* If we're doing a subsequent scan,
4254 check if we've found the same fix as
4255 before, and try and reuse the stub
4256 name. */
4257 stub_name = a8_fixes[num_a8_fixes].stub_name;
4258 if ((a8_fixes[num_a8_fixes].section != section)
4259 || (a8_fixes[num_a8_fixes].offset != i))
4261 free (stub_name);
4262 stub_name = NULL;
4263 *stub_changed_p = TRUE;
4267 if (!stub_name)
4269 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4270 if (stub_name != NULL)
4271 sprintf (stub_name, "%x:%x", section->id, i);
4274 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4275 a8_fixes[num_a8_fixes].section = section;
4276 a8_fixes[num_a8_fixes].offset = i;
4277 a8_fixes[num_a8_fixes].addend = offset;
4278 a8_fixes[num_a8_fixes].orig_insn = insn;
4279 a8_fixes[num_a8_fixes].stub_name = stub_name;
4280 a8_fixes[num_a8_fixes].stub_type = stub_type;
4281 a8_fixes[num_a8_fixes].st_type =
4282 is_blx ? STT_FUNC : STT_ARM_TFUNC;
4284 num_a8_fixes++;
4289 i += insn_32bit ? 4 : 2;
4290 last_was_32bit = insn_32bit;
4291 last_was_branch = is_32bit_branch;
4295 if (elf_section_data (section)->this_hdr.contents == NULL)
4296 free (contents);
4299 *a8_fixes_p = a8_fixes;
4300 *num_a8_fixes_p = num_a8_fixes;
4301 *a8_fix_table_size_p = a8_fix_table_size;
4303 return FALSE;
4306 /* Determine and set the size of the stub section for a final link.
4308 The basic idea here is to examine all the relocations looking for
4309 PC-relative calls to a target that is unreachable with a "bl"
4310 instruction. */
4312 bfd_boolean
4313 elf32_arm_size_stubs (bfd *output_bfd,
4314 bfd *stub_bfd,
4315 struct bfd_link_info *info,
4316 bfd_signed_vma group_size,
4317 asection * (*add_stub_section) (const char *, asection *),
4318 void (*layout_sections_again) (void))
4320 bfd_size_type stub_group_size;
4321 bfd_boolean stubs_always_after_branch;
4322 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4323 struct a8_erratum_fix *a8_fixes = NULL;
4324 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4325 struct a8_erratum_reloc *a8_relocs = NULL;
4326 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4328 if (htab == NULL)
4329 return FALSE;
4331 if (htab->fix_cortex_a8)
4333 a8_fixes = (struct a8_erratum_fix *)
4334 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4335 a8_relocs = (struct a8_erratum_reloc *)
4336 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4339 /* Propagate mach to stub bfd, because it may not have been
4340 finalized when we created stub_bfd. */
4341 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4342 bfd_get_mach (output_bfd));
4344 /* Stash our params away. */
4345 htab->stub_bfd = stub_bfd;
4346 htab->add_stub_section = add_stub_section;
4347 htab->layout_sections_again = layout_sections_again;
4348 stubs_always_after_branch = group_size < 0;
4350 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4351 as the first half of a 32-bit branch straddling two 4K pages. This is a
4352 crude way of enforcing that. */
4353 if (htab->fix_cortex_a8)
4354 stubs_always_after_branch = 1;
4356 if (group_size < 0)
4357 stub_group_size = -group_size;
4358 else
4359 stub_group_size = group_size;
4361 if (stub_group_size == 1)
4363 /* Default values. */
4364 /* Thumb branch range is +-4MB has to be used as the default
4365 maximum size (a given section can contain both ARM and Thumb
4366 code, so the worst case has to be taken into account).
4368 This value is 24K less than that, which allows for 2025
4369 12-byte stubs. If we exceed that, then we will fail to link.
4370 The user will have to relink with an explicit group size
4371 option. */
4372 stub_group_size = 4170000;
4375 group_sections (htab, stub_group_size, stubs_always_after_branch);
4377 /* If we're applying the cortex A8 fix, we need to determine the
4378 program header size now, because we cannot change it later --
4379 that could alter section placements. Notice the A8 erratum fix
4380 ends up requiring the section addresses to remain unchanged
4381 modulo the page size. That's something we cannot represent
4382 inside BFD, and we don't want to force the section alignment to
4383 be the page size. */
4384 if (htab->fix_cortex_a8)
4385 (*htab->layout_sections_again) ();
4387 while (1)
4389 bfd *input_bfd;
4390 unsigned int bfd_indx;
4391 asection *stub_sec;
4392 bfd_boolean stub_changed = FALSE;
4393 unsigned prev_num_a8_fixes = num_a8_fixes;
4395 num_a8_fixes = 0;
4396 for (input_bfd = info->input_bfds, bfd_indx = 0;
4397 input_bfd != NULL;
4398 input_bfd = input_bfd->link_next, bfd_indx++)
4400 Elf_Internal_Shdr *symtab_hdr;
4401 asection *section;
4402 Elf_Internal_Sym *local_syms = NULL;
4404 num_a8_relocs = 0;
4406 /* We'll need the symbol table in a second. */
4407 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4408 if (symtab_hdr->sh_info == 0)
4409 continue;
4411 /* Walk over each section attached to the input bfd. */
4412 for (section = input_bfd->sections;
4413 section != NULL;
4414 section = section->next)
4416 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4418 /* If there aren't any relocs, then there's nothing more
4419 to do. */
4420 if ((section->flags & SEC_RELOC) == 0
4421 || section->reloc_count == 0
4422 || (section->flags & SEC_CODE) == 0)
4423 continue;
4425 /* If this section is a link-once section that will be
4426 discarded, then don't create any stubs. */
4427 if (section->output_section == NULL
4428 || section->output_section->owner != output_bfd)
4429 continue;
4431 /* Get the relocs. */
4432 internal_relocs
4433 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4434 NULL, info->keep_memory);
4435 if (internal_relocs == NULL)
4436 goto error_ret_free_local;
4438 /* Now examine each relocation. */
4439 irela = internal_relocs;
4440 irelaend = irela + section->reloc_count;
4441 for (; irela < irelaend; irela++)
4443 unsigned int r_type, r_indx;
4444 enum elf32_arm_stub_type stub_type;
4445 struct elf32_arm_stub_hash_entry *stub_entry;
4446 asection *sym_sec;
4447 bfd_vma sym_value;
4448 bfd_vma destination;
4449 struct elf32_arm_link_hash_entry *hash;
4450 const char *sym_name;
4451 char *stub_name;
4452 const asection *id_sec;
4453 int st_type;
4454 bfd_boolean created_stub = FALSE;
4456 r_type = ELF32_R_TYPE (irela->r_info);
4457 r_indx = ELF32_R_SYM (irela->r_info);
4459 if (r_type >= (unsigned int) R_ARM_max)
4461 bfd_set_error (bfd_error_bad_value);
4462 error_ret_free_internal:
4463 if (elf_section_data (section)->relocs == NULL)
4464 free (internal_relocs);
4465 goto error_ret_free_local;
4468 /* Only look for stubs on branch instructions. */
4469 if ((r_type != (unsigned int) R_ARM_CALL)
4470 && (r_type != (unsigned int) R_ARM_THM_CALL)
4471 && (r_type != (unsigned int) R_ARM_JUMP24)
4472 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4473 && (r_type != (unsigned int) R_ARM_THM_XPC22)
4474 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4475 && (r_type != (unsigned int) R_ARM_PLT32))
4476 continue;
4478 /* Now determine the call target, its name, value,
4479 section. */
4480 sym_sec = NULL;
4481 sym_value = 0;
4482 destination = 0;
4483 hash = NULL;
4484 sym_name = NULL;
4485 if (r_indx < symtab_hdr->sh_info)
4487 /* It's a local symbol. */
4488 Elf_Internal_Sym *sym;
4490 if (local_syms == NULL)
4492 local_syms
4493 = (Elf_Internal_Sym *) symtab_hdr->contents;
4494 if (local_syms == NULL)
4495 local_syms
4496 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4497 symtab_hdr->sh_info, 0,
4498 NULL, NULL, NULL);
4499 if (local_syms == NULL)
4500 goto error_ret_free_internal;
4503 sym = local_syms + r_indx;
4504 if (sym->st_shndx == SHN_UNDEF)
4505 sym_sec = bfd_und_section_ptr;
4506 else if (sym->st_shndx == SHN_ABS)
4507 sym_sec = bfd_abs_section_ptr;
4508 else if (sym->st_shndx == SHN_COMMON)
4509 sym_sec = bfd_com_section_ptr;
4510 else
4511 sym_sec =
4512 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
4514 if (!sym_sec)
4515 /* This is an undefined symbol. It can never
4516 be resolved. */
4517 continue;
4519 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4520 sym_value = sym->st_value;
4521 destination = (sym_value + irela->r_addend
4522 + sym_sec->output_offset
4523 + sym_sec->output_section->vma);
4524 st_type = ELF_ST_TYPE (sym->st_info);
4525 sym_name
4526 = bfd_elf_string_from_elf_section (input_bfd,
4527 symtab_hdr->sh_link,
4528 sym->st_name);
4530 else
4532 /* It's an external symbol. */
4533 int e_indx;
4535 e_indx = r_indx - symtab_hdr->sh_info;
4536 hash = ((struct elf32_arm_link_hash_entry *)
4537 elf_sym_hashes (input_bfd)[e_indx]);
4539 while (hash->root.root.type == bfd_link_hash_indirect
4540 || hash->root.root.type == bfd_link_hash_warning)
4541 hash = ((struct elf32_arm_link_hash_entry *)
4542 hash->root.root.u.i.link);
4544 if (hash->root.root.type == bfd_link_hash_defined
4545 || hash->root.root.type == bfd_link_hash_defweak)
4547 sym_sec = hash->root.root.u.def.section;
4548 sym_value = hash->root.root.u.def.value;
4550 struct elf32_arm_link_hash_table *globals =
4551 elf32_arm_hash_table (info);
4553 /* For a destination in a shared library,
4554 use the PLT stub as target address to
4555 decide whether a branch stub is
4556 needed. */
4557 if (globals != NULL
4558 && globals->splt != NULL
4559 && hash != NULL
4560 && hash->root.plt.offset != (bfd_vma) -1)
4562 sym_sec = globals->splt;
4563 sym_value = hash->root.plt.offset;
4564 if (sym_sec->output_section != NULL)
4565 destination = (sym_value
4566 + sym_sec->output_offset
4567 + sym_sec->output_section->vma);
4569 else if (sym_sec->output_section != NULL)
4570 destination = (sym_value + irela->r_addend
4571 + sym_sec->output_offset
4572 + sym_sec->output_section->vma);
4574 else if ((hash->root.root.type == bfd_link_hash_undefined)
4575 || (hash->root.root.type == bfd_link_hash_undefweak))
4577 /* For a shared library, use the PLT stub as
4578 target address to decide whether a long
4579 branch stub is needed.
4580 For absolute code, they cannot be handled. */
4581 struct elf32_arm_link_hash_table *globals =
4582 elf32_arm_hash_table (info);
4584 if (globals != NULL
4585 && globals->splt != NULL
4586 && hash != NULL
4587 && hash->root.plt.offset != (bfd_vma) -1)
4589 sym_sec = globals->splt;
4590 sym_value = hash->root.plt.offset;
4591 if (sym_sec->output_section != NULL)
4592 destination = (sym_value
4593 + sym_sec->output_offset
4594 + sym_sec->output_section->vma);
4596 else
4597 continue;
4599 else
4601 bfd_set_error (bfd_error_bad_value);
4602 goto error_ret_free_internal;
4604 st_type = ELF_ST_TYPE (hash->root.type);
4605 sym_name = hash->root.root.root.string;
4610 /* Determine what (if any) linker stub is needed. */
4611 stub_type = arm_type_of_stub (info, section, irela,
4612 &st_type, hash,
4613 destination, sym_sec,
4614 input_bfd, sym_name);
4615 if (stub_type == arm_stub_none)
4616 break;
4618 /* Support for grouping stub sections. */
4619 id_sec = htab->stub_group[section->id].link_sec;
4621 /* Get the name of this stub. */
4622 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4623 irela, stub_type);
4624 if (!stub_name)
4625 goto error_ret_free_internal;
4627 /* We've either created a stub for this reloc already,
4628 or we are about to. */
4629 created_stub = TRUE;
4631 stub_entry = arm_stub_hash_lookup
4632 (&htab->stub_hash_table, stub_name,
4633 FALSE, FALSE);
4634 if (stub_entry != NULL)
4636 /* The proper stub has already been created. */
4637 free (stub_name);
4638 stub_entry->target_value = sym_value;
4639 break;
4642 stub_entry = elf32_arm_add_stub (stub_name, section,
4643 htab);
4644 if (stub_entry == NULL)
4646 free (stub_name);
4647 goto error_ret_free_internal;
4650 stub_entry->target_value = sym_value;
4651 stub_entry->target_section = sym_sec;
4652 stub_entry->stub_type = stub_type;
4653 stub_entry->h = hash;
4654 stub_entry->st_type = st_type;
4656 if (sym_name == NULL)
4657 sym_name = "unnamed";
4658 stub_entry->output_name = (char *)
4659 bfd_alloc (htab->stub_bfd,
4660 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4661 + strlen (sym_name));
4662 if (stub_entry->output_name == NULL)
4664 free (stub_name);
4665 goto error_ret_free_internal;
4668 /* For historical reasons, use the existing names for
4669 ARM-to-Thumb and Thumb-to-ARM stubs. */
4670 if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4671 || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4672 && st_type != STT_ARM_TFUNC)
4673 sprintf (stub_entry->output_name,
4674 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4675 else if ( ((r_type == (unsigned int) R_ARM_CALL)
4676 || (r_type == (unsigned int) R_ARM_JUMP24))
4677 && st_type == STT_ARM_TFUNC)
4678 sprintf (stub_entry->output_name,
4679 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4680 else
4681 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4682 sym_name);
4684 stub_changed = TRUE;
4686 while (0);
4688 /* Look for relocations which might trigger Cortex-A8
4689 erratum. */
4690 if (htab->fix_cortex_a8
4691 && (r_type == (unsigned int) R_ARM_THM_JUMP24
4692 || r_type == (unsigned int) R_ARM_THM_JUMP19
4693 || r_type == (unsigned int) R_ARM_THM_CALL
4694 || r_type == (unsigned int) R_ARM_THM_XPC22))
4696 bfd_vma from = section->output_section->vma
4697 + section->output_offset
4698 + irela->r_offset;
4700 if ((from & 0xfff) == 0xffe)
4702 /* Found a candidate. Note we haven't checked the
4703 destination is within 4K here: if we do so (and
4704 don't create an entry in a8_relocs) we can't tell
4705 that a branch should have been relocated when
4706 scanning later. */
4707 if (num_a8_relocs == a8_reloc_table_size)
4709 a8_reloc_table_size *= 2;
4710 a8_relocs = (struct a8_erratum_reloc *)
4711 bfd_realloc (a8_relocs,
4712 sizeof (struct a8_erratum_reloc)
4713 * a8_reloc_table_size);
4716 a8_relocs[num_a8_relocs].from = from;
4717 a8_relocs[num_a8_relocs].destination = destination;
4718 a8_relocs[num_a8_relocs].r_type = r_type;
4719 a8_relocs[num_a8_relocs].st_type = st_type;
4720 a8_relocs[num_a8_relocs].sym_name = sym_name;
4721 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4722 a8_relocs[num_a8_relocs].hash = hash;
4724 num_a8_relocs++;
4729 /* We're done with the internal relocs, free them. */
4730 if (elf_section_data (section)->relocs == NULL)
4731 free (internal_relocs);
4734 if (htab->fix_cortex_a8)
4736 /* Sort relocs which might apply to Cortex-A8 erratum. */
4737 qsort (a8_relocs, num_a8_relocs,
4738 sizeof (struct a8_erratum_reloc),
4739 &a8_reloc_compare);
4741 /* Scan for branches which might trigger Cortex-A8 erratum. */
4742 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4743 &num_a8_fixes, &a8_fix_table_size,
4744 a8_relocs, num_a8_relocs,
4745 prev_num_a8_fixes, &stub_changed)
4746 != 0)
4747 goto error_ret_free_local;
4751 if (prev_num_a8_fixes != num_a8_fixes)
4752 stub_changed = TRUE;
4754 if (!stub_changed)
4755 break;
4757 /* OK, we've added some stubs. Find out the new size of the
4758 stub sections. */
4759 for (stub_sec = htab->stub_bfd->sections;
4760 stub_sec != NULL;
4761 stub_sec = stub_sec->next)
4763 /* Ignore non-stub sections. */
4764 if (!strstr (stub_sec->name, STUB_SUFFIX))
4765 continue;
4767 stub_sec->size = 0;
4770 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4772 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4773 if (htab->fix_cortex_a8)
4774 for (i = 0; i < num_a8_fixes; i++)
4776 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4777 a8_fixes[i].section, htab);
4779 if (stub_sec == NULL)
4780 goto error_ret_free_local;
4782 stub_sec->size
4783 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4784 NULL);
4788 /* Ask the linker to do its stuff. */
4789 (*htab->layout_sections_again) ();
4792 /* Add stubs for Cortex-A8 erratum fixes now. */
4793 if (htab->fix_cortex_a8)
4795 for (i = 0; i < num_a8_fixes; i++)
4797 struct elf32_arm_stub_hash_entry *stub_entry;
4798 char *stub_name = a8_fixes[i].stub_name;
4799 asection *section = a8_fixes[i].section;
4800 unsigned int section_id = a8_fixes[i].section->id;
4801 asection *link_sec = htab->stub_group[section_id].link_sec;
4802 asection *stub_sec = htab->stub_group[section_id].stub_sec;
4803 const insn_sequence *template_sequence;
4804 int template_size, size = 0;
4806 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4807 TRUE, FALSE);
4808 if (stub_entry == NULL)
4810 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4811 section->owner,
4812 stub_name);
4813 return FALSE;
4816 stub_entry->stub_sec = stub_sec;
4817 stub_entry->stub_offset = 0;
4818 stub_entry->id_sec = link_sec;
4819 stub_entry->stub_type = a8_fixes[i].stub_type;
4820 stub_entry->target_section = a8_fixes[i].section;
4821 stub_entry->target_value = a8_fixes[i].offset;
4822 stub_entry->target_addend = a8_fixes[i].addend;
4823 stub_entry->orig_insn = a8_fixes[i].orig_insn;
4824 stub_entry->st_type = a8_fixes[i].st_type;
4826 size = find_stub_size_and_template (a8_fixes[i].stub_type,
4827 &template_sequence,
4828 &template_size);
4830 stub_entry->stub_size = size;
4831 stub_entry->stub_template = template_sequence;
4832 stub_entry->stub_template_size = template_size;
4835 /* Stash the Cortex-A8 erratum fix array for use later in
4836 elf32_arm_write_section(). */
4837 htab->a8_erratum_fixes = a8_fixes;
4838 htab->num_a8_erratum_fixes = num_a8_fixes;
4840 else
4842 htab->a8_erratum_fixes = NULL;
4843 htab->num_a8_erratum_fixes = 0;
4845 return TRUE;
4847 error_ret_free_local:
4848 return FALSE;
4851 /* Build all the stubs associated with the current output file. The
4852 stubs are kept in a hash table attached to the main linker hash
4853 table. We also set up the .plt entries for statically linked PIC
4854 functions here. This function is called via arm_elf_finish in the
4855 linker. */
4857 bfd_boolean
4858 elf32_arm_build_stubs (struct bfd_link_info *info)
4860 asection *stub_sec;
4861 struct bfd_hash_table *table;
4862 struct elf32_arm_link_hash_table *htab;
4864 htab = elf32_arm_hash_table (info);
4865 if (htab == NULL)
4866 return FALSE;
4868 for (stub_sec = htab->stub_bfd->sections;
4869 stub_sec != NULL;
4870 stub_sec = stub_sec->next)
4872 bfd_size_type size;
4874 /* Ignore non-stub sections. */
4875 if (!strstr (stub_sec->name, STUB_SUFFIX))
4876 continue;
4878 /* Allocate memory to hold the linker stubs. */
4879 size = stub_sec->size;
4880 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
4881 if (stub_sec->contents == NULL && size != 0)
4882 return FALSE;
4883 stub_sec->size = 0;
4886 /* Build the stubs as directed by the stub hash table. */
4887 table = &htab->stub_hash_table;
4888 bfd_hash_traverse (table, arm_build_one_stub, info);
4889 if (htab->fix_cortex_a8)
4891 /* Place the cortex a8 stubs last. */
4892 htab->fix_cortex_a8 = -1;
4893 bfd_hash_traverse (table, arm_build_one_stub, info);
4896 return TRUE;
4899 /* Locate the Thumb encoded calling stub for NAME. */
4901 static struct elf_link_hash_entry *
4902 find_thumb_glue (struct bfd_link_info *link_info,
4903 const char *name,
4904 char **error_message)
4906 char *tmp_name;
4907 struct elf_link_hash_entry *hash;
4908 struct elf32_arm_link_hash_table *hash_table;
4910 /* We need a pointer to the armelf specific hash table. */
4911 hash_table = elf32_arm_hash_table (link_info);
4912 if (hash_table == NULL)
4913 return NULL;
4915 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4916 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4918 BFD_ASSERT (tmp_name);
4920 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4922 hash = elf_link_hash_lookup
4923 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4925 if (hash == NULL
4926 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4927 tmp_name, name) == -1)
4928 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4930 free (tmp_name);
4932 return hash;
4935 /* Locate the ARM encoded calling stub for NAME. */
4937 static struct elf_link_hash_entry *
4938 find_arm_glue (struct bfd_link_info *link_info,
4939 const char *name,
4940 char **error_message)
4942 char *tmp_name;
4943 struct elf_link_hash_entry *myh;
4944 struct elf32_arm_link_hash_table *hash_table;
4946 /* We need a pointer to the elfarm specific hash table. */
4947 hash_table = elf32_arm_hash_table (link_info);
4948 if (hash_table == NULL)
4949 return NULL;
4951 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4952 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4954 BFD_ASSERT (tmp_name);
4956 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4958 myh = elf_link_hash_lookup
4959 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4961 if (myh == NULL
4962 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4963 tmp_name, name) == -1)
4964 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4966 free (tmp_name);
4968 return myh;
4971 /* ARM->Thumb glue (static images):
4973 .arm
4974 __func_from_arm:
4975 ldr r12, __func_addr
4976 bx r12
4977 __func_addr:
4978 .word func @ behave as if you saw a ARM_32 reloc.
4980 (v5t static images)
4981 .arm
4982 __func_from_arm:
4983 ldr pc, __func_addr
4984 __func_addr:
4985 .word func @ behave as if you saw a ARM_32 reloc.
4987 (relocatable images)
4988 .arm
4989 __func_from_arm:
4990 ldr r12, __func_offset
4991 add r12, r12, pc
4992 bx r12
4993 __func_offset:
4994 .word func - . */
4996 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4997 static const insn32 a2t1_ldr_insn = 0xe59fc000;
4998 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4999 static const insn32 a2t3_func_addr_insn = 0x00000001;
5001 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5002 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5003 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5005 #define ARM2THUMB_PIC_GLUE_SIZE 16
5006 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5007 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5008 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5010 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5012 .thumb .thumb
5013 .align 2 .align 2
5014 __func_from_thumb: __func_from_thumb:
5015 bx pc push {r6, lr}
5016 nop ldr r6, __func_addr
5017 .arm mov lr, pc
5018 b func bx r6
5019 .arm
5020 ;; back_to_thumb
5021 ldmia r13! {r6, lr}
5022 bx lr
5023 __func_addr:
5024 .word func */
5026 #define THUMB2ARM_GLUE_SIZE 8
5027 static const insn16 t2a1_bx_pc_insn = 0x4778;
5028 static const insn16 t2a2_noop_insn = 0x46c0;
5029 static const insn32 t2a3_b_insn = 0xea000000;
5031 #define VFP11_ERRATUM_VENEER_SIZE 8
5033 #define ARM_BX_VENEER_SIZE 12
5034 static const insn32 armbx1_tst_insn = 0xe3100001;
5035 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5036 static const insn32 armbx3_bx_insn = 0xe12fff10;
5038 #ifndef ELFARM_NABI_C_INCLUDED
5039 static void
5040 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5042 asection * s;
5043 bfd_byte * contents;
5045 if (size == 0)
5047 /* Do not include empty glue sections in the output. */
5048 if (abfd != NULL)
5050 s = bfd_get_section_by_name (abfd, name);
5051 if (s != NULL)
5052 s->flags |= SEC_EXCLUDE;
5054 return;
5057 BFD_ASSERT (abfd != NULL);
5059 s = bfd_get_section_by_name (abfd, name);
5060 BFD_ASSERT (s != NULL);
5062 contents = (bfd_byte *) bfd_alloc (abfd, size);
5064 BFD_ASSERT (s->size == size);
5065 s->contents = contents;
5068 bfd_boolean
5069 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5071 struct elf32_arm_link_hash_table * globals;
5073 globals = elf32_arm_hash_table (info);
5074 BFD_ASSERT (globals != NULL);
5076 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5077 globals->arm_glue_size,
5078 ARM2THUMB_GLUE_SECTION_NAME);
5080 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5081 globals->thumb_glue_size,
5082 THUMB2ARM_GLUE_SECTION_NAME);
5084 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5085 globals->vfp11_erratum_glue_size,
5086 VFP11_ERRATUM_VENEER_SECTION_NAME);
5088 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5089 globals->bx_glue_size,
5090 ARM_BX_GLUE_SECTION_NAME);
5092 return TRUE;
5095 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5096 returns the symbol identifying the stub. */
5098 static struct elf_link_hash_entry *
5099 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5100 struct elf_link_hash_entry * h)
5102 const char * name = h->root.root.string;
5103 asection * s;
5104 char * tmp_name;
5105 struct elf_link_hash_entry * myh;
5106 struct bfd_link_hash_entry * bh;
5107 struct elf32_arm_link_hash_table * globals;
5108 bfd_vma val;
5109 bfd_size_type size;
5111 globals = elf32_arm_hash_table (link_info);
5112 BFD_ASSERT (globals != NULL);
5113 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5115 s = bfd_get_section_by_name
5116 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5118 BFD_ASSERT (s != NULL);
5120 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5121 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5123 BFD_ASSERT (tmp_name);
5125 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5127 myh = elf_link_hash_lookup
5128 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5130 if (myh != NULL)
5132 /* We've already seen this guy. */
5133 free (tmp_name);
5134 return myh;
5137 /* The only trick here is using hash_table->arm_glue_size as the value.
5138 Even though the section isn't allocated yet, this is where we will be
5139 putting it. The +1 on the value marks that the stub has not been
5140 output yet - not that it is a Thumb function. */
5141 bh = NULL;
5142 val = globals->arm_glue_size + 1;
5143 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5144 tmp_name, BSF_GLOBAL, s, val,
5145 NULL, TRUE, FALSE, &bh);
5147 myh = (struct elf_link_hash_entry *) bh;
5148 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5149 myh->forced_local = 1;
5151 free (tmp_name);
5153 if (link_info->shared || globals->root.is_relocatable_executable
5154 || globals->pic_veneer)
5155 size = ARM2THUMB_PIC_GLUE_SIZE;
5156 else if (globals->use_blx)
5157 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5158 else
5159 size = ARM2THUMB_STATIC_GLUE_SIZE;
5161 s->size += size;
5162 globals->arm_glue_size += size;
5164 return myh;
5167 /* Allocate space for ARMv4 BX veneers. */
5169 static void
5170 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5172 asection * s;
5173 struct elf32_arm_link_hash_table *globals;
5174 char *tmp_name;
5175 struct elf_link_hash_entry *myh;
5176 struct bfd_link_hash_entry *bh;
5177 bfd_vma val;
5179 /* BX PC does not need a veneer. */
5180 if (reg == 15)
5181 return;
5183 globals = elf32_arm_hash_table (link_info);
5184 BFD_ASSERT (globals != NULL);
5185 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5187 /* Check if this veneer has already been allocated. */
5188 if (globals->bx_glue_offset[reg])
5189 return;
5191 s = bfd_get_section_by_name
5192 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5194 BFD_ASSERT (s != NULL);
5196 /* Add symbol for veneer. */
5197 tmp_name = (char *)
5198 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5200 BFD_ASSERT (tmp_name);
5202 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5204 myh = elf_link_hash_lookup
5205 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5207 BFD_ASSERT (myh == NULL);
5209 bh = NULL;
5210 val = globals->bx_glue_size;
5211 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5212 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5213 NULL, TRUE, FALSE, &bh);
5215 myh = (struct elf_link_hash_entry *) bh;
5216 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5217 myh->forced_local = 1;
5219 s->size += ARM_BX_VENEER_SIZE;
5220 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5221 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5225 /* Add an entry to the code/data map for section SEC. */
5227 static void
5228 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5230 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5231 unsigned int newidx;
5233 if (sec_data->map == NULL)
5235 sec_data->map = (elf32_arm_section_map *)
5236 bfd_malloc (sizeof (elf32_arm_section_map));
5237 sec_data->mapcount = 0;
5238 sec_data->mapsize = 1;
5241 newidx = sec_data->mapcount++;
5243 if (sec_data->mapcount > sec_data->mapsize)
5245 sec_data->mapsize *= 2;
5246 sec_data->map = (elf32_arm_section_map *)
5247 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5248 * sizeof (elf32_arm_section_map));
5251 if (sec_data->map)
5253 sec_data->map[newidx].vma = vma;
5254 sec_data->map[newidx].type = type;
5259 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5260 veneers are handled for now. */
5262 static bfd_vma
5263 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5264 elf32_vfp11_erratum_list *branch,
5265 bfd *branch_bfd,
5266 asection *branch_sec,
5267 unsigned int offset)
5269 asection *s;
5270 struct elf32_arm_link_hash_table *hash_table;
5271 char *tmp_name;
5272 struct elf_link_hash_entry *myh;
5273 struct bfd_link_hash_entry *bh;
5274 bfd_vma val;
5275 struct _arm_elf_section_data *sec_data;
5276 elf32_vfp11_erratum_list *newerr;
5278 hash_table = elf32_arm_hash_table (link_info);
5279 BFD_ASSERT (hash_table != NULL);
5280 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5282 s = bfd_get_section_by_name
5283 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5285 sec_data = elf32_arm_section_data (s);
5287 BFD_ASSERT (s != NULL);
5289 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5290 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5292 BFD_ASSERT (tmp_name);
5294 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5295 hash_table->num_vfp11_fixes);
5297 myh = elf_link_hash_lookup
5298 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5300 BFD_ASSERT (myh == NULL);
5302 bh = NULL;
5303 val = hash_table->vfp11_erratum_glue_size;
5304 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5305 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5306 NULL, TRUE, FALSE, &bh);
5308 myh = (struct elf_link_hash_entry *) bh;
5309 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5310 myh->forced_local = 1;
5312 /* Link veneer back to calling location. */
5313 sec_data->erratumcount += 1;
5314 newerr = (elf32_vfp11_erratum_list *)
5315 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5317 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5318 newerr->vma = -1;
5319 newerr->u.v.branch = branch;
5320 newerr->u.v.id = hash_table->num_vfp11_fixes;
5321 branch->u.b.veneer = newerr;
5323 newerr->next = sec_data->erratumlist;
5324 sec_data->erratumlist = newerr;
5326 /* A symbol for the return from the veneer. */
5327 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5328 hash_table->num_vfp11_fixes);
5330 myh = elf_link_hash_lookup
5331 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5333 if (myh != NULL)
5334 abort ();
5336 bh = NULL;
5337 val = offset + 4;
5338 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5339 branch_sec, val, NULL, TRUE, FALSE, &bh);
5341 myh = (struct elf_link_hash_entry *) bh;
5342 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5343 myh->forced_local = 1;
5345 free (tmp_name);
5347 /* Generate a mapping symbol for the veneer section, and explicitly add an
5348 entry for that symbol to the code/data map for the section. */
5349 if (hash_table->vfp11_erratum_glue_size == 0)
5351 bh = NULL;
5352 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5353 ever requires this erratum fix. */
5354 _bfd_generic_link_add_one_symbol (link_info,
5355 hash_table->bfd_of_glue_owner, "$a",
5356 BSF_LOCAL, s, 0, NULL,
5357 TRUE, FALSE, &bh);
5359 myh = (struct elf_link_hash_entry *) bh;
5360 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5361 myh->forced_local = 1;
5363 /* The elf32_arm_init_maps function only cares about symbols from input
5364 BFDs. We must make a note of this generated mapping symbol
5365 ourselves so that code byteswapping works properly in
5366 elf32_arm_write_section. */
5367 elf32_arm_section_map_add (s, 'a', 0);
5370 s->size += VFP11_ERRATUM_VENEER_SIZE;
5371 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5372 hash_table->num_vfp11_fixes++;
5374 /* The offset of the veneer. */
5375 return val;
5378 #define ARM_GLUE_SECTION_FLAGS \
5379 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5380 | SEC_READONLY | SEC_LINKER_CREATED)
5382 /* Create a fake section for use by the ARM backend of the linker. */
5384 static bfd_boolean
5385 arm_make_glue_section (bfd * abfd, const char * name)
5387 asection * sec;
5389 sec = bfd_get_section_by_name (abfd, name);
5390 if (sec != NULL)
5391 /* Already made. */
5392 return TRUE;
5394 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5396 if (sec == NULL
5397 || !bfd_set_section_alignment (abfd, sec, 2))
5398 return FALSE;
5400 /* Set the gc mark to prevent the section from being removed by garbage
5401 collection, despite the fact that no relocs refer to this section. */
5402 sec->gc_mark = 1;
5404 return TRUE;
5407 /* Add the glue sections to ABFD. This function is called from the
5408 linker scripts in ld/emultempl/{armelf}.em. */
5410 bfd_boolean
5411 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5412 struct bfd_link_info *info)
5414 /* If we are only performing a partial
5415 link do not bother adding the glue. */
5416 if (info->relocatable)
5417 return TRUE;
5419 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5420 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5421 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5422 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5425 /* Select a BFD to be used to hold the sections used by the glue code.
5426 This function is called from the linker scripts in ld/emultempl/
5427 {armelf/pe}.em. */
5429 bfd_boolean
5430 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5432 struct elf32_arm_link_hash_table *globals;
5434 /* If we are only performing a partial link
5435 do not bother getting a bfd to hold the glue. */
5436 if (info->relocatable)
5437 return TRUE;
5439 /* Make sure we don't attach the glue sections to a dynamic object. */
5440 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5442 globals = elf32_arm_hash_table (info);
5443 BFD_ASSERT (globals != NULL);
5445 if (globals->bfd_of_glue_owner != NULL)
5446 return TRUE;
5448 /* Save the bfd for later use. */
5449 globals->bfd_of_glue_owner = abfd;
5451 return TRUE;
5454 static void
5455 check_use_blx (struct elf32_arm_link_hash_table *globals)
5457 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5458 Tag_CPU_arch) > 2)
5459 globals->use_blx = 1;
5462 bfd_boolean
5463 bfd_elf32_arm_process_before_allocation (bfd *abfd,
5464 struct bfd_link_info *link_info)
5466 Elf_Internal_Shdr *symtab_hdr;
5467 Elf_Internal_Rela *internal_relocs = NULL;
5468 Elf_Internal_Rela *irel, *irelend;
5469 bfd_byte *contents = NULL;
5471 asection *sec;
5472 struct elf32_arm_link_hash_table *globals;
5474 /* If we are only performing a partial link do not bother
5475 to construct any glue. */
5476 if (link_info->relocatable)
5477 return TRUE;
5479 /* Here we have a bfd that is to be included on the link. We have a
5480 hook to do reloc rummaging, before section sizes are nailed down. */
5481 globals = elf32_arm_hash_table (link_info);
5482 BFD_ASSERT (globals != NULL);
5484 check_use_blx (globals);
5486 if (globals->byteswap_code && !bfd_big_endian (abfd))
5488 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5489 abfd);
5490 return FALSE;
5493 /* PR 5398: If we have not decided to include any loadable sections in
5494 the output then we will not have a glue owner bfd. This is OK, it
5495 just means that there is nothing else for us to do here. */
5496 if (globals->bfd_of_glue_owner == NULL)
5497 return TRUE;
5499 /* Rummage around all the relocs and map the glue vectors. */
5500 sec = abfd->sections;
5502 if (sec == NULL)
5503 return TRUE;
5505 for (; sec != NULL; sec = sec->next)
5507 if (sec->reloc_count == 0)
5508 continue;
5510 if ((sec->flags & SEC_EXCLUDE) != 0)
5511 continue;
5513 symtab_hdr = & elf_symtab_hdr (abfd);
5515 /* Load the relocs. */
5516 internal_relocs
5517 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
5519 if (internal_relocs == NULL)
5520 goto error_return;
5522 irelend = internal_relocs + sec->reloc_count;
5523 for (irel = internal_relocs; irel < irelend; irel++)
5525 long r_type;
5526 unsigned long r_index;
5528 struct elf_link_hash_entry *h;
5530 r_type = ELF32_R_TYPE (irel->r_info);
5531 r_index = ELF32_R_SYM (irel->r_info);
5533 /* These are the only relocation types we care about. */
5534 if ( r_type != R_ARM_PC24
5535 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
5536 continue;
5538 /* Get the section contents if we haven't done so already. */
5539 if (contents == NULL)
5541 /* Get cached copy if it exists. */
5542 if (elf_section_data (sec)->this_hdr.contents != NULL)
5543 contents = elf_section_data (sec)->this_hdr.contents;
5544 else
5546 /* Go get them off disk. */
5547 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5548 goto error_return;
5552 if (r_type == R_ARM_V4BX)
5554 int reg;
5556 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5557 record_arm_bx_glue (link_info, reg);
5558 continue;
5561 /* If the relocation is not against a symbol it cannot concern us. */
5562 h = NULL;
5564 /* We don't care about local symbols. */
5565 if (r_index < symtab_hdr->sh_info)
5566 continue;
5568 /* This is an external symbol. */
5569 r_index -= symtab_hdr->sh_info;
5570 h = (struct elf_link_hash_entry *)
5571 elf_sym_hashes (abfd)[r_index];
5573 /* If the relocation is against a static symbol it must be within
5574 the current section and so cannot be a cross ARM/Thumb relocation. */
5575 if (h == NULL)
5576 continue;
5578 /* If the call will go through a PLT entry then we do not need
5579 glue. */
5580 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
5581 continue;
5583 switch (r_type)
5585 case R_ARM_PC24:
5586 /* This one is a call from arm code. We need to look up
5587 the target of the call. If it is a thumb target, we
5588 insert glue. */
5589 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
5590 record_arm_to_thumb_glue (link_info, h);
5591 break;
5593 default:
5594 abort ();
5598 if (contents != NULL
5599 && elf_section_data (sec)->this_hdr.contents != contents)
5600 free (contents);
5601 contents = NULL;
5603 if (internal_relocs != NULL
5604 && elf_section_data (sec)->relocs != internal_relocs)
5605 free (internal_relocs);
5606 internal_relocs = NULL;
5609 return TRUE;
5611 error_return:
5612 if (contents != NULL
5613 && elf_section_data (sec)->this_hdr.contents != contents)
5614 free (contents);
5615 if (internal_relocs != NULL
5616 && elf_section_data (sec)->relocs != internal_relocs)
5617 free (internal_relocs);
5619 return FALSE;
5621 #endif
5624 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5626 void
5627 bfd_elf32_arm_init_maps (bfd *abfd)
5629 Elf_Internal_Sym *isymbuf;
5630 Elf_Internal_Shdr *hdr;
5631 unsigned int i, localsyms;
5633 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5634 if (! is_arm_elf (abfd))
5635 return;
5637 if ((abfd->flags & DYNAMIC) != 0)
5638 return;
5640 hdr = & elf_symtab_hdr (abfd);
5641 localsyms = hdr->sh_info;
5643 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5644 should contain the number of local symbols, which should come before any
5645 global symbols. Mapping symbols are always local. */
5646 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5647 NULL);
5649 /* No internal symbols read? Skip this BFD. */
5650 if (isymbuf == NULL)
5651 return;
5653 for (i = 0; i < localsyms; i++)
5655 Elf_Internal_Sym *isym = &isymbuf[i];
5656 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5657 const char *name;
5659 if (sec != NULL
5660 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5662 name = bfd_elf_string_from_elf_section (abfd,
5663 hdr->sh_link, isym->st_name);
5665 if (bfd_is_arm_special_symbol_name (name,
5666 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5667 elf32_arm_section_map_add (sec, name[1], isym->st_value);
5673 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5674 say what they wanted. */
5676 void
5677 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5679 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5680 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5682 if (globals == NULL)
5683 return;
5685 if (globals->fix_cortex_a8 == -1)
5687 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5688 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5689 && (out_attr[Tag_CPU_arch_profile].i == 'A'
5690 || out_attr[Tag_CPU_arch_profile].i == 0))
5691 globals->fix_cortex_a8 = 1;
5692 else
5693 globals->fix_cortex_a8 = 0;
5698 void
5699 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5701 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5702 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5704 if (globals == NULL)
5705 return;
5706 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5707 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5709 switch (globals->vfp11_fix)
5711 case BFD_ARM_VFP11_FIX_DEFAULT:
5712 case BFD_ARM_VFP11_FIX_NONE:
5713 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5714 break;
5716 default:
5717 /* Give a warning, but do as the user requests anyway. */
5718 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5719 "workaround is not necessary for target architecture"), obfd);
5722 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5723 /* For earlier architectures, we might need the workaround, but do not
5724 enable it by default. If users is running with broken hardware, they
5725 must enable the erratum fix explicitly. */
5726 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5730 enum bfd_arm_vfp11_pipe
5732 VFP11_FMAC,
5733 VFP11_LS,
5734 VFP11_DS,
5735 VFP11_BAD
5738 /* Return a VFP register number. This is encoded as RX:X for single-precision
5739 registers, or X:RX for double-precision registers, where RX is the group of
5740 four bits in the instruction encoding and X is the single extension bit.
5741 RX and X fields are specified using their lowest (starting) bit. The return
5742 value is:
5744 0...31: single-precision registers s0...s31
5745 32...63: double-precision registers d0...d31.
5747 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5748 encounter VFP3 instructions, so we allow the full range for DP registers. */
5750 static unsigned int
5751 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5752 unsigned int x)
5754 if (is_double)
5755 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5756 else
5757 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5760 /* Set bits in *WMASK according to a register number REG as encoded by
5761 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5763 static void
5764 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5766 if (reg < 32)
5767 *wmask |= 1 << reg;
5768 else if (reg < 48)
5769 *wmask |= 3 << ((reg - 32) * 2);
5772 /* Return TRUE if WMASK overwrites anything in REGS. */
5774 static bfd_boolean
5775 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5777 int i;
5779 for (i = 0; i < numregs; i++)
5781 unsigned int reg = regs[i];
5783 if (reg < 32 && (wmask & (1 << reg)) != 0)
5784 return TRUE;
5786 reg -= 32;
5788 if (reg >= 16)
5789 continue;
5791 if ((wmask & (3 << (reg * 2))) != 0)
5792 return TRUE;
5795 return FALSE;
5798 /* In this function, we're interested in two things: finding input registers
5799 for VFP data-processing instructions, and finding the set of registers which
5800 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5801 hold the written set, so FLDM etc. are easy to deal with (we're only
5802 interested in 32 SP registers or 16 dp registers, due to the VFP version
5803 implemented by the chip in question). DP registers are marked by setting
5804 both SP registers in the write mask). */
5806 static enum bfd_arm_vfp11_pipe
5807 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5808 int *numregs)
5810 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
5811 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5813 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5815 unsigned int pqrs;
5816 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5817 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5819 pqrs = ((insn & 0x00800000) >> 20)
5820 | ((insn & 0x00300000) >> 19)
5821 | ((insn & 0x00000040) >> 6);
5823 switch (pqrs)
5825 case 0: /* fmac[sd]. */
5826 case 1: /* fnmac[sd]. */
5827 case 2: /* fmsc[sd]. */
5828 case 3: /* fnmsc[sd]. */
5829 vpipe = VFP11_FMAC;
5830 bfd_arm_vfp11_write_mask (destmask, fd);
5831 regs[0] = fd;
5832 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5833 regs[2] = fm;
5834 *numregs = 3;
5835 break;
5837 case 4: /* fmul[sd]. */
5838 case 5: /* fnmul[sd]. */
5839 case 6: /* fadd[sd]. */
5840 case 7: /* fsub[sd]. */
5841 vpipe = VFP11_FMAC;
5842 goto vfp_binop;
5844 case 8: /* fdiv[sd]. */
5845 vpipe = VFP11_DS;
5846 vfp_binop:
5847 bfd_arm_vfp11_write_mask (destmask, fd);
5848 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5849 regs[1] = fm;
5850 *numregs = 2;
5851 break;
5853 case 15: /* extended opcode. */
5855 unsigned int extn = ((insn >> 15) & 0x1e)
5856 | ((insn >> 7) & 1);
5858 switch (extn)
5860 case 0: /* fcpy[sd]. */
5861 case 1: /* fabs[sd]. */
5862 case 2: /* fneg[sd]. */
5863 case 8: /* fcmp[sd]. */
5864 case 9: /* fcmpe[sd]. */
5865 case 10: /* fcmpz[sd]. */
5866 case 11: /* fcmpez[sd]. */
5867 case 16: /* fuito[sd]. */
5868 case 17: /* fsito[sd]. */
5869 case 24: /* ftoui[sd]. */
5870 case 25: /* ftouiz[sd]. */
5871 case 26: /* ftosi[sd]. */
5872 case 27: /* ftosiz[sd]. */
5873 /* These instructions will not bounce due to underflow. */
5874 *numregs = 0;
5875 vpipe = VFP11_FMAC;
5876 break;
5878 case 3: /* fsqrt[sd]. */
5879 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5880 registers to cause the erratum in previous instructions. */
5881 bfd_arm_vfp11_write_mask (destmask, fd);
5882 vpipe = VFP11_DS;
5883 break;
5885 case 15: /* fcvt{ds,sd}. */
5887 int rnum = 0;
5889 bfd_arm_vfp11_write_mask (destmask, fd);
5891 /* Only FCVTSD can underflow. */
5892 if ((insn & 0x100) != 0)
5893 regs[rnum++] = fm;
5895 *numregs = rnum;
5897 vpipe = VFP11_FMAC;
5899 break;
5901 default:
5902 return VFP11_BAD;
5905 break;
5907 default:
5908 return VFP11_BAD;
5911 /* Two-register transfer. */
5912 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5914 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5916 if ((insn & 0x100000) == 0)
5918 if (is_double)
5919 bfd_arm_vfp11_write_mask (destmask, fm);
5920 else
5922 bfd_arm_vfp11_write_mask (destmask, fm);
5923 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5927 vpipe = VFP11_LS;
5929 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5931 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5932 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5934 switch (puw)
5936 case 0: /* Two-reg transfer. We should catch these above. */
5937 abort ();
5939 case 2: /* fldm[sdx]. */
5940 case 3:
5941 case 5:
5943 unsigned int i, offset = insn & 0xff;
5945 if (is_double)
5946 offset >>= 1;
5948 for (i = fd; i < fd + offset; i++)
5949 bfd_arm_vfp11_write_mask (destmask, i);
5951 break;
5953 case 4: /* fld[sd]. */
5954 case 6:
5955 bfd_arm_vfp11_write_mask (destmask, fd);
5956 break;
5958 default:
5959 return VFP11_BAD;
5962 vpipe = VFP11_LS;
5964 /* Single-register transfer. Note L==0. */
5965 else if ((insn & 0x0f100e10) == 0x0e000a10)
5967 unsigned int opcode = (insn >> 21) & 7;
5968 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5970 switch (opcode)
5972 case 0: /* fmsr/fmdlr. */
5973 case 1: /* fmdhr. */
5974 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5975 destination register. I don't know if this is exactly right,
5976 but it is the conservative choice. */
5977 bfd_arm_vfp11_write_mask (destmask, fn);
5978 break;
5980 case 7: /* fmxr. */
5981 break;
5984 vpipe = VFP11_LS;
5987 return vpipe;
5991 static int elf32_arm_compare_mapping (const void * a, const void * b);
5994 /* Look for potentially-troublesome code sequences which might trigger the
5995 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5996 (available from ARM) for details of the erratum. A short version is
5997 described in ld.texinfo. */
5999 bfd_boolean
6000 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6002 asection *sec;
6003 bfd_byte *contents = NULL;
6004 int state = 0;
6005 int regs[3], numregs = 0;
6006 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6007 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6009 if (globals == NULL)
6010 return FALSE;
6012 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6013 The states transition as follows:
6015 0 -> 1 (vector) or 0 -> 2 (scalar)
6016 A VFP FMAC-pipeline instruction has been seen. Fill
6017 regs[0]..regs[numregs-1] with its input operands. Remember this
6018 instruction in 'first_fmac'.
6020 1 -> 2
6021 Any instruction, except for a VFP instruction which overwrites
6022 regs[*].
6024 1 -> 3 [ -> 0 ] or
6025 2 -> 3 [ -> 0 ]
6026 A VFP instruction has been seen which overwrites any of regs[*].
6027 We must make a veneer! Reset state to 0 before examining next
6028 instruction.
6030 2 -> 0
6031 If we fail to match anything in state 2, reset to state 0 and reset
6032 the instruction pointer to the instruction after 'first_fmac'.
6034 If the VFP11 vector mode is in use, there must be at least two unrelated
6035 instructions between anti-dependent VFP11 instructions to properly avoid
6036 triggering the erratum, hence the use of the extra state 1. */
6038 /* If we are only performing a partial link do not bother
6039 to construct any glue. */
6040 if (link_info->relocatable)
6041 return TRUE;
6043 /* Skip if this bfd does not correspond to an ELF image. */
6044 if (! is_arm_elf (abfd))
6045 return TRUE;
6047 /* We should have chosen a fix type by the time we get here. */
6048 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6050 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6051 return TRUE;
6053 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6054 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6055 return TRUE;
6057 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6059 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6060 struct _arm_elf_section_data *sec_data;
6062 /* If we don't have executable progbits, we're not interested in this
6063 section. Also skip if section is to be excluded. */
6064 if (elf_section_type (sec) != SHT_PROGBITS
6065 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6066 || (sec->flags & SEC_EXCLUDE) != 0
6067 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6068 || sec->output_section == bfd_abs_section_ptr
6069 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6070 continue;
6072 sec_data = elf32_arm_section_data (sec);
6074 if (sec_data->mapcount == 0)
6075 continue;
6077 if (elf_section_data (sec)->this_hdr.contents != NULL)
6078 contents = elf_section_data (sec)->this_hdr.contents;
6079 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6080 goto error_return;
6082 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6083 elf32_arm_compare_mapping);
6085 for (span = 0; span < sec_data->mapcount; span++)
6087 unsigned int span_start = sec_data->map[span].vma;
6088 unsigned int span_end = (span == sec_data->mapcount - 1)
6089 ? sec->size : sec_data->map[span + 1].vma;
6090 char span_type = sec_data->map[span].type;
6092 /* FIXME: Only ARM mode is supported at present. We may need to
6093 support Thumb-2 mode also at some point. */
6094 if (span_type != 'a')
6095 continue;
6097 for (i = span_start; i < span_end;)
6099 unsigned int next_i = i + 4;
6100 unsigned int insn = bfd_big_endian (abfd)
6101 ? (contents[i] << 24)
6102 | (contents[i + 1] << 16)
6103 | (contents[i + 2] << 8)
6104 | contents[i + 3]
6105 : (contents[i + 3] << 24)
6106 | (contents[i + 2] << 16)
6107 | (contents[i + 1] << 8)
6108 | contents[i];
6109 unsigned int writemask = 0;
6110 enum bfd_arm_vfp11_pipe vpipe;
6112 switch (state)
6114 case 0:
6115 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6116 &numregs);
6117 /* I'm assuming the VFP11 erratum can trigger with denorm
6118 operands on either the FMAC or the DS pipeline. This might
6119 lead to slightly overenthusiastic veneer insertion. */
6120 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6122 state = use_vector ? 1 : 2;
6123 first_fmac = i;
6124 veneer_of_insn = insn;
6126 break;
6128 case 1:
6130 int other_regs[3], other_numregs;
6131 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6132 other_regs,
6133 &other_numregs);
6134 if (vpipe != VFP11_BAD
6135 && bfd_arm_vfp11_antidependency (writemask, regs,
6136 numregs))
6137 state = 3;
6138 else
6139 state = 2;
6141 break;
6143 case 2:
6145 int other_regs[3], other_numregs;
6146 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6147 other_regs,
6148 &other_numregs);
6149 if (vpipe != VFP11_BAD
6150 && bfd_arm_vfp11_antidependency (writemask, regs,
6151 numregs))
6152 state = 3;
6153 else
6155 state = 0;
6156 next_i = first_fmac + 4;
6159 break;
6161 case 3:
6162 abort (); /* Should be unreachable. */
6165 if (state == 3)
6167 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6168 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6170 elf32_arm_section_data (sec)->erratumcount += 1;
6172 newerr->u.b.vfp_insn = veneer_of_insn;
6174 switch (span_type)
6176 case 'a':
6177 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6178 break;
6180 default:
6181 abort ();
6184 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6185 first_fmac);
6187 newerr->vma = -1;
6189 newerr->next = sec_data->erratumlist;
6190 sec_data->erratumlist = newerr;
6192 state = 0;
6195 i = next_i;
6199 if (contents != NULL
6200 && elf_section_data (sec)->this_hdr.contents != contents)
6201 free (contents);
6202 contents = NULL;
6205 return TRUE;
6207 error_return:
6208 if (contents != NULL
6209 && elf_section_data (sec)->this_hdr.contents != contents)
6210 free (contents);
6212 return FALSE;
6215 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6216 after sections have been laid out, using specially-named symbols. */
6218 void
6219 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6220 struct bfd_link_info *link_info)
6222 asection *sec;
6223 struct elf32_arm_link_hash_table *globals;
6224 char *tmp_name;
6226 if (link_info->relocatable)
6227 return;
6229 /* Skip if this bfd does not correspond to an ELF image. */
6230 if (! is_arm_elf (abfd))
6231 return;
6233 globals = elf32_arm_hash_table (link_info);
6234 if (globals == NULL)
6235 return;
6237 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6238 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6240 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6242 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6243 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6245 for (; errnode != NULL; errnode = errnode->next)
6247 struct elf_link_hash_entry *myh;
6248 bfd_vma vma;
6250 switch (errnode->type)
6252 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6253 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6254 /* Find veneer symbol. */
6255 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6256 errnode->u.b.veneer->u.v.id);
6258 myh = elf_link_hash_lookup
6259 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6261 if (myh == NULL)
6262 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6263 "`%s'"), abfd, tmp_name);
6265 vma = myh->root.u.def.section->output_section->vma
6266 + myh->root.u.def.section->output_offset
6267 + myh->root.u.def.value;
6269 errnode->u.b.veneer->vma = vma;
6270 break;
6272 case VFP11_ERRATUM_ARM_VENEER:
6273 case VFP11_ERRATUM_THUMB_VENEER:
6274 /* Find return location. */
6275 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6276 errnode->u.v.id);
6278 myh = elf_link_hash_lookup
6279 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6281 if (myh == NULL)
6282 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6283 "`%s'"), abfd, tmp_name);
6285 vma = myh->root.u.def.section->output_section->vma
6286 + myh->root.u.def.section->output_offset
6287 + myh->root.u.def.value;
6289 errnode->u.v.branch->vma = vma;
6290 break;
6292 default:
6293 abort ();
6298 free (tmp_name);
6302 /* Set target relocation values needed during linking. */
6304 void
6305 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6306 struct bfd_link_info *link_info,
6307 int target1_is_rel,
6308 char * target2_type,
6309 int fix_v4bx,
6310 int use_blx,
6311 bfd_arm_vfp11_fix vfp11_fix,
6312 int no_enum_warn, int no_wchar_warn,
6313 int pic_veneer, int fix_cortex_a8)
6315 struct elf32_arm_link_hash_table *globals;
6317 globals = elf32_arm_hash_table (link_info);
6318 if (globals == NULL)
6319 return;
6321 globals->target1_is_rel = target1_is_rel;
6322 if (strcmp (target2_type, "rel") == 0)
6323 globals->target2_reloc = R_ARM_REL32;
6324 else if (strcmp (target2_type, "abs") == 0)
6325 globals->target2_reloc = R_ARM_ABS32;
6326 else if (strcmp (target2_type, "got-rel") == 0)
6327 globals->target2_reloc = R_ARM_GOT_PREL;
6328 else
6330 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6331 target2_type);
6333 globals->fix_v4bx = fix_v4bx;
6334 globals->use_blx |= use_blx;
6335 globals->vfp11_fix = vfp11_fix;
6336 globals->pic_veneer = pic_veneer;
6337 globals->fix_cortex_a8 = fix_cortex_a8;
6339 BFD_ASSERT (is_arm_elf (output_bfd));
6340 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6341 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6344 /* Replace the target offset of a Thumb bl or b.w instruction. */
6346 static void
6347 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6349 bfd_vma upper;
6350 bfd_vma lower;
6351 int reloc_sign;
6353 BFD_ASSERT ((offset & 1) == 0);
6355 upper = bfd_get_16 (abfd, insn);
6356 lower = bfd_get_16 (abfd, insn + 2);
6357 reloc_sign = (offset < 0) ? 1 : 0;
6358 upper = (upper & ~(bfd_vma) 0x7ff)
6359 | ((offset >> 12) & 0x3ff)
6360 | (reloc_sign << 10);
6361 lower = (lower & ~(bfd_vma) 0x2fff)
6362 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6363 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6364 | ((offset >> 1) & 0x7ff);
6365 bfd_put_16 (abfd, upper, insn);
6366 bfd_put_16 (abfd, lower, insn + 2);
6369 /* Thumb code calling an ARM function. */
6371 static int
6372 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6373 const char * name,
6374 bfd * input_bfd,
6375 bfd * output_bfd,
6376 asection * input_section,
6377 bfd_byte * hit_data,
6378 asection * sym_sec,
6379 bfd_vma offset,
6380 bfd_signed_vma addend,
6381 bfd_vma val,
6382 char **error_message)
6384 asection * s = 0;
6385 bfd_vma my_offset;
6386 long int ret_offset;
6387 struct elf_link_hash_entry * myh;
6388 struct elf32_arm_link_hash_table * globals;
6390 myh = find_thumb_glue (info, name, error_message);
6391 if (myh == NULL)
6392 return FALSE;
6394 globals = elf32_arm_hash_table (info);
6395 BFD_ASSERT (globals != NULL);
6396 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6398 my_offset = myh->root.u.def.value;
6400 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6401 THUMB2ARM_GLUE_SECTION_NAME);
6403 BFD_ASSERT (s != NULL);
6404 BFD_ASSERT (s->contents != NULL);
6405 BFD_ASSERT (s->output_section != NULL);
6407 if ((my_offset & 0x01) == 0x01)
6409 if (sym_sec != NULL
6410 && sym_sec->owner != NULL
6411 && !INTERWORK_FLAG (sym_sec->owner))
6413 (*_bfd_error_handler)
6414 (_("%B(%s): warning: interworking not enabled.\n"
6415 " first occurrence: %B: thumb call to arm"),
6416 sym_sec->owner, input_bfd, name);
6418 return FALSE;
6421 --my_offset;
6422 myh->root.u.def.value = my_offset;
6424 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6425 s->contents + my_offset);
6427 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6428 s->contents + my_offset + 2);
6430 ret_offset =
6431 /* Address of destination of the stub. */
6432 ((bfd_signed_vma) val)
6433 - ((bfd_signed_vma)
6434 /* Offset from the start of the current section
6435 to the start of the stubs. */
6436 (s->output_offset
6437 /* Offset of the start of this stub from the start of the stubs. */
6438 + my_offset
6439 /* Address of the start of the current section. */
6440 + s->output_section->vma)
6441 /* The branch instruction is 4 bytes into the stub. */
6443 /* ARM branches work from the pc of the instruction + 8. */
6444 + 8);
6446 put_arm_insn (globals, output_bfd,
6447 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6448 s->contents + my_offset + 4);
6451 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6453 /* Now go back and fix up the original BL insn to point to here. */
6454 ret_offset =
6455 /* Address of where the stub is located. */
6456 (s->output_section->vma + s->output_offset + my_offset)
6457 /* Address of where the BL is located. */
6458 - (input_section->output_section->vma + input_section->output_offset
6459 + offset)
6460 /* Addend in the relocation. */
6461 - addend
6462 /* Biassing for PC-relative addressing. */
6463 - 8;
6465 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6467 return TRUE;
6470 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6472 static struct elf_link_hash_entry *
6473 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6474 const char * name,
6475 bfd * input_bfd,
6476 bfd * output_bfd,
6477 asection * sym_sec,
6478 bfd_vma val,
6479 asection * s,
6480 char ** error_message)
6482 bfd_vma my_offset;
6483 long int ret_offset;
6484 struct elf_link_hash_entry * myh;
6485 struct elf32_arm_link_hash_table * globals;
6487 myh = find_arm_glue (info, name, error_message);
6488 if (myh == NULL)
6489 return NULL;
6491 globals = elf32_arm_hash_table (info);
6492 BFD_ASSERT (globals != NULL);
6493 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6495 my_offset = myh->root.u.def.value;
6497 if ((my_offset & 0x01) == 0x01)
6499 if (sym_sec != NULL
6500 && sym_sec->owner != NULL
6501 && !INTERWORK_FLAG (sym_sec->owner))
6503 (*_bfd_error_handler)
6504 (_("%B(%s): warning: interworking not enabled.\n"
6505 " first occurrence: %B: arm call to thumb"),
6506 sym_sec->owner, input_bfd, name);
6509 --my_offset;
6510 myh->root.u.def.value = my_offset;
6512 if (info->shared || globals->root.is_relocatable_executable
6513 || globals->pic_veneer)
6515 /* For relocatable objects we can't use absolute addresses,
6516 so construct the address from a relative offset. */
6517 /* TODO: If the offset is small it's probably worth
6518 constructing the address with adds. */
6519 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6520 s->contents + my_offset);
6521 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6522 s->contents + my_offset + 4);
6523 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6524 s->contents + my_offset + 8);
6525 /* Adjust the offset by 4 for the position of the add,
6526 and 8 for the pipeline offset. */
6527 ret_offset = (val - (s->output_offset
6528 + s->output_section->vma
6529 + my_offset + 12))
6530 | 1;
6531 bfd_put_32 (output_bfd, ret_offset,
6532 s->contents + my_offset + 12);
6534 else if (globals->use_blx)
6536 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6537 s->contents + my_offset);
6539 /* It's a thumb address. Add the low order bit. */
6540 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6541 s->contents + my_offset + 4);
6543 else
6545 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6546 s->contents + my_offset);
6548 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6549 s->contents + my_offset + 4);
6551 /* It's a thumb address. Add the low order bit. */
6552 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6553 s->contents + my_offset + 8);
6555 my_offset += 12;
6559 BFD_ASSERT (my_offset <= globals->arm_glue_size);
6561 return myh;
6564 /* Arm code calling a Thumb function. */
6566 static int
6567 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6568 const char * name,
6569 bfd * input_bfd,
6570 bfd * output_bfd,
6571 asection * input_section,
6572 bfd_byte * hit_data,
6573 asection * sym_sec,
6574 bfd_vma offset,
6575 bfd_signed_vma addend,
6576 bfd_vma val,
6577 char **error_message)
6579 unsigned long int tmp;
6580 bfd_vma my_offset;
6581 asection * s;
6582 long int ret_offset;
6583 struct elf_link_hash_entry * myh;
6584 struct elf32_arm_link_hash_table * globals;
6586 globals = elf32_arm_hash_table (info);
6587 BFD_ASSERT (globals != NULL);
6588 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6590 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6591 ARM2THUMB_GLUE_SECTION_NAME);
6592 BFD_ASSERT (s != NULL);
6593 BFD_ASSERT (s->contents != NULL);
6594 BFD_ASSERT (s->output_section != NULL);
6596 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
6597 sym_sec, val, s, error_message);
6598 if (!myh)
6599 return FALSE;
6601 my_offset = myh->root.u.def.value;
6602 tmp = bfd_get_32 (input_bfd, hit_data);
6603 tmp = tmp & 0xFF000000;
6605 /* Somehow these are both 4 too far, so subtract 8. */
6606 ret_offset = (s->output_offset
6607 + my_offset
6608 + s->output_section->vma
6609 - (input_section->output_offset
6610 + input_section->output_section->vma
6611 + offset + addend)
6612 - 8);
6614 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6616 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
6618 return TRUE;
6621 /* Populate Arm stub for an exported Thumb function. */
6623 static bfd_boolean
6624 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6626 struct bfd_link_info * info = (struct bfd_link_info *) inf;
6627 asection * s;
6628 struct elf_link_hash_entry * myh;
6629 struct elf32_arm_link_hash_entry *eh;
6630 struct elf32_arm_link_hash_table * globals;
6631 asection *sec;
6632 bfd_vma val;
6633 char *error_message;
6635 eh = elf32_arm_hash_entry (h);
6636 /* Allocate stubs for exported Thumb functions on v4t. */
6637 if (eh->export_glue == NULL)
6638 return TRUE;
6640 globals = elf32_arm_hash_table (info);
6641 BFD_ASSERT (globals != NULL);
6642 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6644 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6645 ARM2THUMB_GLUE_SECTION_NAME);
6646 BFD_ASSERT (s != NULL);
6647 BFD_ASSERT (s->contents != NULL);
6648 BFD_ASSERT (s->output_section != NULL);
6650 sec = eh->export_glue->root.u.def.section;
6652 BFD_ASSERT (sec->output_section != NULL);
6654 val = eh->export_glue->root.u.def.value + sec->output_offset
6655 + sec->output_section->vma;
6657 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6658 h->root.u.def.section->owner,
6659 globals->obfd, sec, val, s,
6660 &error_message);
6661 BFD_ASSERT (myh);
6662 return TRUE;
6665 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6667 static bfd_vma
6668 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6670 bfd_byte *p;
6671 bfd_vma glue_addr;
6672 asection *s;
6673 struct elf32_arm_link_hash_table *globals;
6675 globals = elf32_arm_hash_table (info);
6676 BFD_ASSERT (globals != NULL);
6677 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6679 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6680 ARM_BX_GLUE_SECTION_NAME);
6681 BFD_ASSERT (s != NULL);
6682 BFD_ASSERT (s->contents != NULL);
6683 BFD_ASSERT (s->output_section != NULL);
6685 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6687 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6689 if ((globals->bx_glue_offset[reg] & 1) == 0)
6691 p = s->contents + glue_addr;
6692 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6693 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6694 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6695 globals->bx_glue_offset[reg] |= 1;
6698 return glue_addr + s->output_section->vma + s->output_offset;
6701 /* Generate Arm stubs for exported Thumb symbols. */
6702 static void
6703 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
6704 struct bfd_link_info *link_info)
6706 struct elf32_arm_link_hash_table * globals;
6708 if (link_info == NULL)
6709 /* Ignore this if we are not called by the ELF backend linker. */
6710 return;
6712 globals = elf32_arm_hash_table (link_info);
6713 if (globals == NULL)
6714 return;
6716 /* If blx is available then exported Thumb symbols are OK and there is
6717 nothing to do. */
6718 if (globals->use_blx)
6719 return;
6721 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6722 link_info);
6725 /* Some relocations map to different relocations depending on the
6726 target. Return the real relocation. */
6728 static int
6729 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6730 int r_type)
6732 switch (r_type)
6734 case R_ARM_TARGET1:
6735 if (globals->target1_is_rel)
6736 return R_ARM_REL32;
6737 else
6738 return R_ARM_ABS32;
6740 case R_ARM_TARGET2:
6741 return globals->target2_reloc;
6743 default:
6744 return r_type;
6748 /* Return the base VMA address which should be subtracted from real addresses
6749 when resolving @dtpoff relocation.
6750 This is PT_TLS segment p_vaddr. */
6752 static bfd_vma
6753 dtpoff_base (struct bfd_link_info *info)
6755 /* If tls_sec is NULL, we should have signalled an error already. */
6756 if (elf_hash_table (info)->tls_sec == NULL)
6757 return 0;
6758 return elf_hash_table (info)->tls_sec->vma;
6761 /* Return the relocation value for @tpoff relocation
6762 if STT_TLS virtual address is ADDRESS. */
6764 static bfd_vma
6765 tpoff (struct bfd_link_info *info, bfd_vma address)
6767 struct elf_link_hash_table *htab = elf_hash_table (info);
6768 bfd_vma base;
6770 /* If tls_sec is NULL, we should have signalled an error already. */
6771 if (htab->tls_sec == NULL)
6772 return 0;
6773 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6774 return address - htab->tls_sec->vma + base;
6777 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6778 VALUE is the relocation value. */
6780 static bfd_reloc_status_type
6781 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6783 if (value > 0xfff)
6784 return bfd_reloc_overflow;
6786 value |= bfd_get_32 (abfd, data) & 0xfffff000;
6787 bfd_put_32 (abfd, value, data);
6788 return bfd_reloc_ok;
6791 /* For a given value of n, calculate the value of G_n as required to
6792 deal with group relocations. We return it in the form of an
6793 encoded constant-and-rotation, together with the final residual. If n is
6794 specified as less than zero, then final_residual is filled with the
6795 input value and no further action is performed. */
6797 static bfd_vma
6798 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6800 int current_n;
6801 bfd_vma g_n;
6802 bfd_vma encoded_g_n = 0;
6803 bfd_vma residual = value; /* Also known as Y_n. */
6805 for (current_n = 0; current_n <= n; current_n++)
6807 int shift;
6809 /* Calculate which part of the value to mask. */
6810 if (residual == 0)
6811 shift = 0;
6812 else
6814 int msb;
6816 /* Determine the most significant bit in the residual and
6817 align the resulting value to a 2-bit boundary. */
6818 for (msb = 30; msb >= 0; msb -= 2)
6819 if (residual & (3 << msb))
6820 break;
6822 /* The desired shift is now (msb - 6), or zero, whichever
6823 is the greater. */
6824 shift = msb - 6;
6825 if (shift < 0)
6826 shift = 0;
6829 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6830 g_n = residual & (0xff << shift);
6831 encoded_g_n = (g_n >> shift)
6832 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6834 /* Calculate the residual for the next time around. */
6835 residual &= ~g_n;
6838 *final_residual = residual;
6840 return encoded_g_n;
6843 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6844 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6846 static int
6847 identify_add_or_sub (bfd_vma insn)
6849 int opcode = insn & 0x1e00000;
6851 if (opcode == 1 << 23) /* ADD */
6852 return 1;
6854 if (opcode == 1 << 22) /* SUB */
6855 return -1;
6857 return 0;
6860 /* Perform a relocation as part of a final link. */
6862 static bfd_reloc_status_type
6863 elf32_arm_final_link_relocate (reloc_howto_type * howto,
6864 bfd * input_bfd,
6865 bfd * output_bfd,
6866 asection * input_section,
6867 bfd_byte * contents,
6868 Elf_Internal_Rela * rel,
6869 bfd_vma value,
6870 struct bfd_link_info * info,
6871 asection * sym_sec,
6872 const char * sym_name,
6873 int sym_flags,
6874 struct elf_link_hash_entry * h,
6875 bfd_boolean * unresolved_reloc_p,
6876 char ** error_message)
6878 unsigned long r_type = howto->type;
6879 unsigned long r_symndx;
6880 bfd_byte * hit_data = contents + rel->r_offset;
6881 bfd * dynobj = NULL;
6882 bfd_vma * local_got_offsets;
6883 asection * sgot = NULL;
6884 asection * splt = NULL;
6885 asection * sreloc = NULL;
6886 bfd_vma addend;
6887 bfd_signed_vma signed_addend;
6888 struct elf32_arm_link_hash_table * globals;
6890 globals = elf32_arm_hash_table (info);
6891 if (globals == NULL)
6892 return bfd_reloc_notsupported;
6894 BFD_ASSERT (is_arm_elf (input_bfd));
6896 /* Some relocation types map to different relocations depending on the
6897 target. We pick the right one here. */
6898 r_type = arm_real_reloc_type (globals, r_type);
6899 if (r_type != howto->type)
6900 howto = elf32_arm_howto_from_type (r_type);
6902 /* If the start address has been set, then set the EF_ARM_HASENTRY
6903 flag. Setting this more than once is redundant, but the cost is
6904 not too high, and it keeps the code simple.
6906 The test is done here, rather than somewhere else, because the
6907 start address is only set just before the final link commences.
6909 Note - if the user deliberately sets a start address of 0, the
6910 flag will not be set. */
6911 if (bfd_get_start_address (output_bfd) != 0)
6912 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6914 dynobj = elf_hash_table (info)->dynobj;
6915 if (dynobj)
6917 sgot = bfd_get_section_by_name (dynobj, ".got");
6918 splt = bfd_get_section_by_name (dynobj, ".plt");
6920 local_got_offsets = elf_local_got_offsets (input_bfd);
6921 r_symndx = ELF32_R_SYM (rel->r_info);
6923 if (globals->use_rel)
6925 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6927 if (addend & ((howto->src_mask + 1) >> 1))
6929 signed_addend = -1;
6930 signed_addend &= ~ howto->src_mask;
6931 signed_addend |= addend;
6933 else
6934 signed_addend = addend;
6936 else
6937 addend = signed_addend = rel->r_addend;
6939 switch (r_type)
6941 case R_ARM_NONE:
6942 /* We don't need to find a value for this symbol. It's just a
6943 marker. */
6944 *unresolved_reloc_p = FALSE;
6945 return bfd_reloc_ok;
6947 case R_ARM_ABS12:
6948 if (!globals->vxworks_p)
6949 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6951 case R_ARM_PC24:
6952 case R_ARM_ABS32:
6953 case R_ARM_ABS32_NOI:
6954 case R_ARM_REL32:
6955 case R_ARM_REL32_NOI:
6956 case R_ARM_CALL:
6957 case R_ARM_JUMP24:
6958 case R_ARM_XPC25:
6959 case R_ARM_PREL31:
6960 case R_ARM_PLT32:
6961 /* Handle relocations which should use the PLT entry. ABS32/REL32
6962 will use the symbol's value, which may point to a PLT entry, but we
6963 don't need to handle that here. If we created a PLT entry, all
6964 branches in this object should go to it, except if the PLT is too
6965 far away, in which case a long branch stub should be inserted. */
6966 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6967 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6968 && r_type != R_ARM_CALL
6969 && r_type != R_ARM_JUMP24
6970 && r_type != R_ARM_PLT32)
6971 && h != NULL
6972 && splt != NULL
6973 && h->plt.offset != (bfd_vma) -1)
6975 /* If we've created a .plt section, and assigned a PLT entry to
6976 this function, it should not be known to bind locally. If
6977 it were, we would have cleared the PLT entry. */
6978 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6980 value = (splt->output_section->vma
6981 + splt->output_offset
6982 + h->plt.offset);
6983 *unresolved_reloc_p = FALSE;
6984 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6985 contents, rel->r_offset, value,
6986 rel->r_addend);
6989 /* When generating a shared object or relocatable executable, these
6990 relocations are copied into the output file to be resolved at
6991 run time. */
6992 if ((info->shared || globals->root.is_relocatable_executable)
6993 && (input_section->flags & SEC_ALLOC)
6994 && !(globals->vxworks_p
6995 && strcmp (input_section->output_section->name,
6996 ".tls_vars") == 0)
6997 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6998 || !SYMBOL_CALLS_LOCAL (info, h))
6999 && (!strstr (input_section->name, STUB_SUFFIX))
7000 && (h == NULL
7001 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7002 || h->root.type != bfd_link_hash_undefweak)
7003 && r_type != R_ARM_PC24
7004 && r_type != R_ARM_CALL
7005 && r_type != R_ARM_JUMP24
7006 && r_type != R_ARM_PREL31
7007 && r_type != R_ARM_PLT32)
7009 Elf_Internal_Rela outrel;
7010 bfd_byte *loc;
7011 bfd_boolean skip, relocate;
7013 *unresolved_reloc_p = FALSE;
7015 if (sreloc == NULL)
7017 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
7018 ! globals->use_rel);
7020 if (sreloc == NULL)
7021 return bfd_reloc_notsupported;
7024 skip = FALSE;
7025 relocate = FALSE;
7027 outrel.r_addend = addend;
7028 outrel.r_offset =
7029 _bfd_elf_section_offset (output_bfd, info, input_section,
7030 rel->r_offset);
7031 if (outrel.r_offset == (bfd_vma) -1)
7032 skip = TRUE;
7033 else if (outrel.r_offset == (bfd_vma) -2)
7034 skip = TRUE, relocate = TRUE;
7035 outrel.r_offset += (input_section->output_section->vma
7036 + input_section->output_offset);
7038 if (skip)
7039 memset (&outrel, 0, sizeof outrel);
7040 else if (h != NULL
7041 && h->dynindx != -1
7042 && (!info->shared
7043 || !info->symbolic
7044 || !h->def_regular))
7045 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
7046 else
7048 int symbol;
7050 /* This symbol is local, or marked to become local. */
7051 if (sym_flags == STT_ARM_TFUNC)
7052 value |= 1;
7053 if (globals->symbian_p)
7055 asection *osec;
7057 /* On Symbian OS, the data segment and text segement
7058 can be relocated independently. Therefore, we
7059 must indicate the segment to which this
7060 relocation is relative. The BPABI allows us to
7061 use any symbol in the right segment; we just use
7062 the section symbol as it is convenient. (We
7063 cannot use the symbol given by "h" directly as it
7064 will not appear in the dynamic symbol table.)
7066 Note that the dynamic linker ignores the section
7067 symbol value, so we don't subtract osec->vma
7068 from the emitted reloc addend. */
7069 if (sym_sec)
7070 osec = sym_sec->output_section;
7071 else
7072 osec = input_section->output_section;
7073 symbol = elf_section_data (osec)->dynindx;
7074 if (symbol == 0)
7076 struct elf_link_hash_table *htab = elf_hash_table (info);
7078 if ((osec->flags & SEC_READONLY) == 0
7079 && htab->data_index_section != NULL)
7080 osec = htab->data_index_section;
7081 else
7082 osec = htab->text_index_section;
7083 symbol = elf_section_data (osec)->dynindx;
7085 BFD_ASSERT (symbol != 0);
7087 else
7088 /* On SVR4-ish systems, the dynamic loader cannot
7089 relocate the text and data segments independently,
7090 so the symbol does not matter. */
7091 symbol = 0;
7092 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
7093 if (globals->use_rel)
7094 relocate = TRUE;
7095 else
7096 outrel.r_addend += value;
7099 loc = sreloc->contents;
7100 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
7101 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7103 /* If this reloc is against an external symbol, we do not want to
7104 fiddle with the addend. Otherwise, we need to include the symbol
7105 value so that it becomes an addend for the dynamic reloc. */
7106 if (! relocate)
7107 return bfd_reloc_ok;
7109 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7110 contents, rel->r_offset, value,
7111 (bfd_vma) 0);
7113 else switch (r_type)
7115 case R_ARM_ABS12:
7116 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7118 case R_ARM_XPC25: /* Arm BLX instruction. */
7119 case R_ARM_CALL:
7120 case R_ARM_JUMP24:
7121 case R_ARM_PC24: /* Arm B/BL instruction. */
7122 case R_ARM_PLT32:
7124 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7126 if (r_type == R_ARM_XPC25)
7128 /* Check for Arm calling Arm function. */
7129 /* FIXME: Should we translate the instruction into a BL
7130 instruction instead ? */
7131 if (sym_flags != STT_ARM_TFUNC)
7132 (*_bfd_error_handler)
7133 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7134 input_bfd,
7135 h ? h->root.root.string : "(local)");
7137 else if (r_type == R_ARM_PC24)
7139 /* Check for Arm calling Thumb function. */
7140 if (sym_flags == STT_ARM_TFUNC)
7142 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7143 output_bfd, input_section,
7144 hit_data, sym_sec, rel->r_offset,
7145 signed_addend, value,
7146 error_message))
7147 return bfd_reloc_ok;
7148 else
7149 return bfd_reloc_dangerous;
7153 /* Check if a stub has to be inserted because the
7154 destination is too far or we are changing mode. */
7155 if ( r_type == R_ARM_CALL
7156 || r_type == R_ARM_JUMP24
7157 || r_type == R_ARM_PLT32)
7159 enum elf32_arm_stub_type stub_type = arm_stub_none;
7160 struct elf32_arm_link_hash_entry *hash;
7162 hash = (struct elf32_arm_link_hash_entry *) h;
7163 stub_type = arm_type_of_stub (info, input_section, rel,
7164 &sym_flags, hash,
7165 value, sym_sec,
7166 input_bfd, sym_name);
7168 if (stub_type != arm_stub_none)
7170 /* The target is out of reach, so redirect the
7171 branch to the local stub for this function. */
7173 stub_entry = elf32_arm_get_stub_entry (input_section,
7174 sym_sec, h,
7175 rel, globals,
7176 stub_type);
7177 if (stub_entry != NULL)
7178 value = (stub_entry->stub_offset
7179 + stub_entry->stub_sec->output_offset
7180 + stub_entry->stub_sec->output_section->vma);
7182 else
7184 /* If the call goes through a PLT entry, make sure to
7185 check distance to the right destination address. */
7186 if (h != NULL
7187 && splt != NULL
7188 && h->plt.offset != (bfd_vma) -1)
7190 value = (splt->output_section->vma
7191 + splt->output_offset
7192 + h->plt.offset);
7193 *unresolved_reloc_p = FALSE;
7194 /* The PLT entry is in ARM mode, regardless of the
7195 target function. */
7196 sym_flags = STT_FUNC;
7201 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7202 where:
7203 S is the address of the symbol in the relocation.
7204 P is address of the instruction being relocated.
7205 A is the addend (extracted from the instruction) in bytes.
7207 S is held in 'value'.
7208 P is the base address of the section containing the
7209 instruction plus the offset of the reloc into that
7210 section, ie:
7211 (input_section->output_section->vma +
7212 input_section->output_offset +
7213 rel->r_offset).
7214 A is the addend, converted into bytes, ie:
7215 (signed_addend * 4)
7217 Note: None of these operations have knowledge of the pipeline
7218 size of the processor, thus it is up to the assembler to
7219 encode this information into the addend. */
7220 value -= (input_section->output_section->vma
7221 + input_section->output_offset);
7222 value -= rel->r_offset;
7223 if (globals->use_rel)
7224 value += (signed_addend << howto->size);
7225 else
7226 /* RELA addends do not have to be adjusted by howto->size. */
7227 value += signed_addend;
7229 signed_addend = value;
7230 signed_addend >>= howto->rightshift;
7232 /* A branch to an undefined weak symbol is turned into a jump to
7233 the next instruction unless a PLT entry will be created.
7234 Do the same for local undefined symbols.
7235 The jump to the next instruction is optimized as a NOP depending
7236 on the architecture. */
7237 if (h ? (h->root.type == bfd_link_hash_undefweak
7238 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7239 : bfd_is_und_section (sym_sec))
7241 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7243 if (arch_has_arm_nop (globals))
7244 value |= 0x0320f000;
7245 else
7246 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
7248 else
7250 /* Perform a signed range check. */
7251 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
7252 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7253 return bfd_reloc_overflow;
7255 addend = (value & 2);
7257 value = (signed_addend & howto->dst_mask)
7258 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
7260 if (r_type == R_ARM_CALL)
7262 /* Set the H bit in the BLX instruction. */
7263 if (sym_flags == STT_ARM_TFUNC)
7265 if (addend)
7266 value |= (1 << 24);
7267 else
7268 value &= ~(bfd_vma)(1 << 24);
7271 /* Select the correct instruction (BL or BLX). */
7272 /* Only if we are not handling a BL to a stub. In this
7273 case, mode switching is performed by the stub. */
7274 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
7275 value |= (1 << 28);
7276 else
7278 value &= ~(bfd_vma)(1 << 28);
7279 value |= (1 << 24);
7284 break;
7286 case R_ARM_ABS32:
7287 value += addend;
7288 if (sym_flags == STT_ARM_TFUNC)
7289 value |= 1;
7290 break;
7292 case R_ARM_ABS32_NOI:
7293 value += addend;
7294 break;
7296 case R_ARM_REL32:
7297 value += addend;
7298 if (sym_flags == STT_ARM_TFUNC)
7299 value |= 1;
7300 value -= (input_section->output_section->vma
7301 + input_section->output_offset + rel->r_offset);
7302 break;
7304 case R_ARM_REL32_NOI:
7305 value += addend;
7306 value -= (input_section->output_section->vma
7307 + input_section->output_offset + rel->r_offset);
7308 break;
7310 case R_ARM_PREL31:
7311 value -= (input_section->output_section->vma
7312 + input_section->output_offset + rel->r_offset);
7313 value += signed_addend;
7314 if (! h || h->root.type != bfd_link_hash_undefweak)
7316 /* Check for overflow. */
7317 if ((value ^ (value >> 1)) & (1 << 30))
7318 return bfd_reloc_overflow;
7320 value &= 0x7fffffff;
7321 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7322 if (sym_flags == STT_ARM_TFUNC)
7323 value |= 1;
7324 break;
7327 bfd_put_32 (input_bfd, value, hit_data);
7328 return bfd_reloc_ok;
7330 case R_ARM_ABS8:
7331 value += addend;
7333 /* There is no way to tell whether the user intended to use a signed or
7334 unsigned addend. When checking for overflow we accept either,
7335 as specified by the AAELF. */
7336 if ((long) value > 0xff || (long) value < -0x80)
7337 return bfd_reloc_overflow;
7339 bfd_put_8 (input_bfd, value, hit_data);
7340 return bfd_reloc_ok;
7342 case R_ARM_ABS16:
7343 value += addend;
7345 /* See comment for R_ARM_ABS8. */
7346 if ((long) value > 0xffff || (long) value < -0x8000)
7347 return bfd_reloc_overflow;
7349 bfd_put_16 (input_bfd, value, hit_data);
7350 return bfd_reloc_ok;
7352 case R_ARM_THM_ABS5:
7353 /* Support ldr and str instructions for the thumb. */
7354 if (globals->use_rel)
7356 /* Need to refetch addend. */
7357 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7358 /* ??? Need to determine shift amount from operand size. */
7359 addend >>= howto->rightshift;
7361 value += addend;
7363 /* ??? Isn't value unsigned? */
7364 if ((long) value > 0x1f || (long) value < -0x10)
7365 return bfd_reloc_overflow;
7367 /* ??? Value needs to be properly shifted into place first. */
7368 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7369 bfd_put_16 (input_bfd, value, hit_data);
7370 return bfd_reloc_ok;
7372 case R_ARM_THM_ALU_PREL_11_0:
7373 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7375 bfd_vma insn;
7376 bfd_signed_vma relocation;
7378 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7379 | bfd_get_16 (input_bfd, hit_data + 2);
7381 if (globals->use_rel)
7383 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7384 | ((insn & (1 << 26)) >> 15);
7385 if (insn & 0xf00000)
7386 signed_addend = -signed_addend;
7389 relocation = value + signed_addend;
7390 relocation -= (input_section->output_section->vma
7391 + input_section->output_offset
7392 + rel->r_offset);
7394 value = abs (relocation);
7396 if (value >= 0x1000)
7397 return bfd_reloc_overflow;
7399 insn = (insn & 0xfb0f8f00) | (value & 0xff)
7400 | ((value & 0x700) << 4)
7401 | ((value & 0x800) << 15);
7402 if (relocation < 0)
7403 insn |= 0xa00000;
7405 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7406 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7408 return bfd_reloc_ok;
7411 case R_ARM_THM_PC8:
7412 /* PR 10073: This reloc is not generated by the GNU toolchain,
7413 but it is supported for compatibility with third party libraries
7414 generated by other compilers, specifically the ARM/IAR. */
7416 bfd_vma insn;
7417 bfd_signed_vma relocation;
7419 insn = bfd_get_16 (input_bfd, hit_data);
7421 if (globals->use_rel)
7422 addend = (insn & 0x00ff) << 2;
7424 relocation = value + addend;
7425 relocation -= (input_section->output_section->vma
7426 + input_section->output_offset
7427 + rel->r_offset);
7429 value = abs (relocation);
7431 /* We do not check for overflow of this reloc. Although strictly
7432 speaking this is incorrect, it appears to be necessary in order
7433 to work with IAR generated relocs. Since GCC and GAS do not
7434 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7435 a problem for them. */
7436 value &= 0x3fc;
7438 insn = (insn & 0xff00) | (value >> 2);
7440 bfd_put_16 (input_bfd, insn, hit_data);
7442 return bfd_reloc_ok;
7445 case R_ARM_THM_PC12:
7446 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7448 bfd_vma insn;
7449 bfd_signed_vma relocation;
7451 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7452 | bfd_get_16 (input_bfd, hit_data + 2);
7454 if (globals->use_rel)
7456 signed_addend = insn & 0xfff;
7457 if (!(insn & (1 << 23)))
7458 signed_addend = -signed_addend;
7461 relocation = value + signed_addend;
7462 relocation -= (input_section->output_section->vma
7463 + input_section->output_offset
7464 + rel->r_offset);
7466 value = abs (relocation);
7468 if (value >= 0x1000)
7469 return bfd_reloc_overflow;
7471 insn = (insn & 0xff7ff000) | value;
7472 if (relocation >= 0)
7473 insn |= (1 << 23);
7475 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7476 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7478 return bfd_reloc_ok;
7481 case R_ARM_THM_XPC22:
7482 case R_ARM_THM_CALL:
7483 case R_ARM_THM_JUMP24:
7484 /* Thumb BL (branch long instruction). */
7486 bfd_vma relocation;
7487 bfd_vma reloc_sign;
7488 bfd_boolean overflow = FALSE;
7489 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7490 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7491 bfd_signed_vma reloc_signed_max;
7492 bfd_signed_vma reloc_signed_min;
7493 bfd_vma check;
7494 bfd_signed_vma signed_check;
7495 int bitsize;
7496 const int thumb2 = using_thumb2 (globals);
7498 /* A branch to an undefined weak symbol is turned into a jump to
7499 the next instruction unless a PLT entry will be created.
7500 The jump to the next instruction is optimized as a NOP.W for
7501 Thumb-2 enabled architectures. */
7502 if (h && h->root.type == bfd_link_hash_undefweak
7503 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7505 if (arch_has_thumb2_nop (globals))
7507 bfd_put_16 (input_bfd, 0xf3af, hit_data);
7508 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7510 else
7512 bfd_put_16 (input_bfd, 0xe000, hit_data);
7513 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7515 return bfd_reloc_ok;
7518 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7519 with Thumb-1) involving the J1 and J2 bits. */
7520 if (globals->use_rel)
7522 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7523 bfd_vma upper = upper_insn & 0x3ff;
7524 bfd_vma lower = lower_insn & 0x7ff;
7525 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7526 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7527 bfd_vma i1 = j1 ^ s ? 0 : 1;
7528 bfd_vma i2 = j2 ^ s ? 0 : 1;
7530 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7531 /* Sign extend. */
7532 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7534 signed_addend = addend;
7537 if (r_type == R_ARM_THM_XPC22)
7539 /* Check for Thumb to Thumb call. */
7540 /* FIXME: Should we translate the instruction into a BL
7541 instruction instead ? */
7542 if (sym_flags == STT_ARM_TFUNC)
7543 (*_bfd_error_handler)
7544 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7545 input_bfd,
7546 h ? h->root.root.string : "(local)");
7548 else
7550 /* If it is not a call to Thumb, assume call to Arm.
7551 If it is a call relative to a section name, then it is not a
7552 function call at all, but rather a long jump. Calls through
7553 the PLT do not require stubs. */
7554 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7555 && (h == NULL || splt == NULL
7556 || h->plt.offset == (bfd_vma) -1))
7558 if (globals->use_blx && r_type == R_ARM_THM_CALL)
7560 /* Convert BL to BLX. */
7561 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7563 else if (( r_type != R_ARM_THM_CALL)
7564 && (r_type != R_ARM_THM_JUMP24))
7566 if (elf32_thumb_to_arm_stub
7567 (info, sym_name, input_bfd, output_bfd, input_section,
7568 hit_data, sym_sec, rel->r_offset, signed_addend, value,
7569 error_message))
7570 return bfd_reloc_ok;
7571 else
7572 return bfd_reloc_dangerous;
7575 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7576 && r_type == R_ARM_THM_CALL)
7578 /* Make sure this is a BL. */
7579 lower_insn |= 0x1800;
7583 enum elf32_arm_stub_type stub_type = arm_stub_none;
7584 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
7586 /* Check if a stub has to be inserted because the destination
7587 is too far. */
7588 struct elf32_arm_stub_hash_entry *stub_entry;
7589 struct elf32_arm_link_hash_entry *hash;
7591 hash = (struct elf32_arm_link_hash_entry *) h;
7593 stub_type = arm_type_of_stub (info, input_section, rel,
7594 &sym_flags, hash, value, sym_sec,
7595 input_bfd, sym_name);
7597 if (stub_type != arm_stub_none)
7599 /* The target is out of reach or we are changing modes, so
7600 redirect the branch to the local stub for this
7601 function. */
7602 stub_entry = elf32_arm_get_stub_entry (input_section,
7603 sym_sec, h,
7604 rel, globals,
7605 stub_type);
7606 if (stub_entry != NULL)
7607 value = (stub_entry->stub_offset
7608 + stub_entry->stub_sec->output_offset
7609 + stub_entry->stub_sec->output_section->vma);
7611 /* If this call becomes a call to Arm, force BLX. */
7612 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
7614 if ((stub_entry
7615 && !arm_stub_is_thumb (stub_entry->stub_type))
7616 || (sym_flags != STT_ARM_TFUNC))
7617 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7622 /* Handle calls via the PLT. */
7623 if (stub_type == arm_stub_none
7624 && h != NULL
7625 && splt != NULL
7626 && h->plt.offset != (bfd_vma) -1)
7628 value = (splt->output_section->vma
7629 + splt->output_offset
7630 + h->plt.offset);
7632 if (globals->use_blx && r_type == R_ARM_THM_CALL)
7634 /* If the Thumb BLX instruction is available, convert
7635 the BL to a BLX instruction to call the ARM-mode
7636 PLT entry. */
7637 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7638 sym_flags = STT_FUNC;
7640 else
7642 /* Target the Thumb stub before the ARM PLT entry. */
7643 value -= PLT_THUMB_STUB_SIZE;
7644 sym_flags = STT_ARM_TFUNC;
7646 *unresolved_reloc_p = FALSE;
7649 relocation = value + signed_addend;
7651 relocation -= (input_section->output_section->vma
7652 + input_section->output_offset
7653 + rel->r_offset);
7655 check = relocation >> howto->rightshift;
7657 /* If this is a signed value, the rightshift just dropped
7658 leading 1 bits (assuming twos complement). */
7659 if ((bfd_signed_vma) relocation >= 0)
7660 signed_check = check;
7661 else
7662 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7664 /* Calculate the permissable maximum and minimum values for
7665 this relocation according to whether we're relocating for
7666 Thumb-2 or not. */
7667 bitsize = howto->bitsize;
7668 if (!thumb2)
7669 bitsize -= 2;
7670 reloc_signed_max = (1 << (bitsize - 1)) - 1;
7671 reloc_signed_min = ~reloc_signed_max;
7673 /* Assumes two's complement. */
7674 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7675 overflow = TRUE;
7677 if ((lower_insn & 0x5000) == 0x4000)
7678 /* For a BLX instruction, make sure that the relocation is rounded up
7679 to a word boundary. This follows the semantics of the instruction
7680 which specifies that bit 1 of the target address will come from bit
7681 1 of the base address. */
7682 relocation = (relocation + 2) & ~ 3;
7684 /* Put RELOCATION back into the insn. Assumes two's complement.
7685 We use the Thumb-2 encoding, which is safe even if dealing with
7686 a Thumb-1 instruction by virtue of our overflow check above. */
7687 reloc_sign = (signed_check < 0) ? 1 : 0;
7688 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7689 | ((relocation >> 12) & 0x3ff)
7690 | (reloc_sign << 10);
7691 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
7692 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7693 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7694 | ((relocation >> 1) & 0x7ff);
7696 /* Put the relocated value back in the object file: */
7697 bfd_put_16 (input_bfd, upper_insn, hit_data);
7698 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7700 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7702 break;
7704 case R_ARM_THM_JUMP19:
7705 /* Thumb32 conditional branch instruction. */
7707 bfd_vma relocation;
7708 bfd_boolean overflow = FALSE;
7709 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7710 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7711 bfd_signed_vma reloc_signed_max = 0xffffe;
7712 bfd_signed_vma reloc_signed_min = -0x100000;
7713 bfd_signed_vma signed_check;
7715 /* Need to refetch the addend, reconstruct the top three bits,
7716 and squish the two 11 bit pieces together. */
7717 if (globals->use_rel)
7719 bfd_vma S = (upper_insn & 0x0400) >> 10;
7720 bfd_vma upper = (upper_insn & 0x003f);
7721 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
7722 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
7723 bfd_vma lower = (lower_insn & 0x07ff);
7725 upper |= J1 << 6;
7726 upper |= J2 << 7;
7727 upper |= (!S) << 8;
7728 upper -= 0x0100; /* Sign extend. */
7730 addend = (upper << 12) | (lower << 1);
7731 signed_addend = addend;
7734 /* Handle calls via the PLT. */
7735 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7737 value = (splt->output_section->vma
7738 + splt->output_offset
7739 + h->plt.offset);
7740 /* Target the Thumb stub before the ARM PLT entry. */
7741 value -= PLT_THUMB_STUB_SIZE;
7742 *unresolved_reloc_p = FALSE;
7745 /* ??? Should handle interworking? GCC might someday try to
7746 use this for tail calls. */
7748 relocation = value + signed_addend;
7749 relocation -= (input_section->output_section->vma
7750 + input_section->output_offset
7751 + rel->r_offset);
7752 signed_check = (bfd_signed_vma) relocation;
7754 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7755 overflow = TRUE;
7757 /* Put RELOCATION back into the insn. */
7759 bfd_vma S = (relocation & 0x00100000) >> 20;
7760 bfd_vma J2 = (relocation & 0x00080000) >> 19;
7761 bfd_vma J1 = (relocation & 0x00040000) >> 18;
7762 bfd_vma hi = (relocation & 0x0003f000) >> 12;
7763 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
7765 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
7766 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7769 /* Put the relocated value back in the object file: */
7770 bfd_put_16 (input_bfd, upper_insn, hit_data);
7771 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7773 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7776 case R_ARM_THM_JUMP11:
7777 case R_ARM_THM_JUMP8:
7778 case R_ARM_THM_JUMP6:
7779 /* Thumb B (branch) instruction). */
7781 bfd_signed_vma relocation;
7782 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7783 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
7784 bfd_signed_vma signed_check;
7786 /* CZB cannot jump backward. */
7787 if (r_type == R_ARM_THM_JUMP6)
7788 reloc_signed_min = 0;
7790 if (globals->use_rel)
7792 /* Need to refetch addend. */
7793 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7794 if (addend & ((howto->src_mask + 1) >> 1))
7796 signed_addend = -1;
7797 signed_addend &= ~ howto->src_mask;
7798 signed_addend |= addend;
7800 else
7801 signed_addend = addend;
7802 /* The value in the insn has been right shifted. We need to
7803 undo this, so that we can perform the address calculation
7804 in terms of bytes. */
7805 signed_addend <<= howto->rightshift;
7807 relocation = value + signed_addend;
7809 relocation -= (input_section->output_section->vma
7810 + input_section->output_offset
7811 + rel->r_offset);
7813 relocation >>= howto->rightshift;
7814 signed_check = relocation;
7816 if (r_type == R_ARM_THM_JUMP6)
7817 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7818 else
7819 relocation &= howto->dst_mask;
7820 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
7822 bfd_put_16 (input_bfd, relocation, hit_data);
7824 /* Assumes two's complement. */
7825 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7826 return bfd_reloc_overflow;
7828 return bfd_reloc_ok;
7831 case R_ARM_ALU_PCREL7_0:
7832 case R_ARM_ALU_PCREL15_8:
7833 case R_ARM_ALU_PCREL23_15:
7835 bfd_vma insn;
7836 bfd_vma relocation;
7838 insn = bfd_get_32 (input_bfd, hit_data);
7839 if (globals->use_rel)
7841 /* Extract the addend. */
7842 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7843 signed_addend = addend;
7845 relocation = value + signed_addend;
7847 relocation -= (input_section->output_section->vma
7848 + input_section->output_offset
7849 + rel->r_offset);
7850 insn = (insn & ~0xfff)
7851 | ((howto->bitpos << 7) & 0xf00)
7852 | ((relocation >> howto->bitpos) & 0xff);
7853 bfd_put_32 (input_bfd, value, hit_data);
7855 return bfd_reloc_ok;
7857 case R_ARM_GNU_VTINHERIT:
7858 case R_ARM_GNU_VTENTRY:
7859 return bfd_reloc_ok;
7861 case R_ARM_GOTOFF32:
7862 /* Relocation is relative to the start of the
7863 global offset table. */
7865 BFD_ASSERT (sgot != NULL);
7866 if (sgot == NULL)
7867 return bfd_reloc_notsupported;
7869 /* If we are addressing a Thumb function, we need to adjust the
7870 address by one, so that attempts to call the function pointer will
7871 correctly interpret it as Thumb code. */
7872 if (sym_flags == STT_ARM_TFUNC)
7873 value += 1;
7875 /* Note that sgot->output_offset is not involved in this
7876 calculation. We always want the start of .got. If we
7877 define _GLOBAL_OFFSET_TABLE in a different way, as is
7878 permitted by the ABI, we might have to change this
7879 calculation. */
7880 value -= sgot->output_section->vma;
7881 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7882 contents, rel->r_offset, value,
7883 rel->r_addend);
7885 case R_ARM_GOTPC:
7886 /* Use global offset table as symbol value. */
7887 BFD_ASSERT (sgot != NULL);
7889 if (sgot == NULL)
7890 return bfd_reloc_notsupported;
7892 *unresolved_reloc_p = FALSE;
7893 value = sgot->output_section->vma;
7894 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7895 contents, rel->r_offset, value,
7896 rel->r_addend);
7898 case R_ARM_GOT32:
7899 case R_ARM_GOT_PREL:
7900 /* Relocation is to the entry for this symbol in the
7901 global offset table. */
7902 if (sgot == NULL)
7903 return bfd_reloc_notsupported;
7905 if (h != NULL)
7907 bfd_vma off;
7908 bfd_boolean dyn;
7910 off = h->got.offset;
7911 BFD_ASSERT (off != (bfd_vma) -1);
7912 dyn = globals->root.dynamic_sections_created;
7914 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7915 || (info->shared
7916 && SYMBOL_REFERENCES_LOCAL (info, h))
7917 || (ELF_ST_VISIBILITY (h->other)
7918 && h->root.type == bfd_link_hash_undefweak))
7920 /* This is actually a static link, or it is a -Bsymbolic link
7921 and the symbol is defined locally. We must initialize this
7922 entry in the global offset table. Since the offset must
7923 always be a multiple of 4, we use the least significant bit
7924 to record whether we have initialized it already.
7926 When doing a dynamic link, we create a .rel(a).got relocation
7927 entry to initialize the value. This is done in the
7928 finish_dynamic_symbol routine. */
7929 if ((off & 1) != 0)
7930 off &= ~1;
7931 else
7933 /* If we are addressing a Thumb function, we need to
7934 adjust the address by one, so that attempts to
7935 call the function pointer will correctly
7936 interpret it as Thumb code. */
7937 if (sym_flags == STT_ARM_TFUNC)
7938 value |= 1;
7940 bfd_put_32 (output_bfd, value, sgot->contents + off);
7941 h->got.offset |= 1;
7944 else
7945 *unresolved_reloc_p = FALSE;
7947 value = sgot->output_offset + off;
7949 else
7951 bfd_vma off;
7953 BFD_ASSERT (local_got_offsets != NULL &&
7954 local_got_offsets[r_symndx] != (bfd_vma) -1);
7956 off = local_got_offsets[r_symndx];
7958 /* The offset must always be a multiple of 4. We use the
7959 least significant bit to record whether we have already
7960 generated the necessary reloc. */
7961 if ((off & 1) != 0)
7962 off &= ~1;
7963 else
7965 /* If we are addressing a Thumb function, we need to
7966 adjust the address by one, so that attempts to
7967 call the function pointer will correctly
7968 interpret it as Thumb code. */
7969 if (sym_flags == STT_ARM_TFUNC)
7970 value |= 1;
7972 if (globals->use_rel)
7973 bfd_put_32 (output_bfd, value, sgot->contents + off);
7975 if (info->shared)
7977 asection * srelgot;
7978 Elf_Internal_Rela outrel;
7979 bfd_byte *loc;
7981 srelgot = (bfd_get_section_by_name
7982 (dynobj, RELOC_SECTION (globals, ".got")));
7983 BFD_ASSERT (srelgot != NULL);
7985 outrel.r_addend = addend + value;
7986 outrel.r_offset = (sgot->output_section->vma
7987 + sgot->output_offset
7988 + off);
7989 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7990 loc = srelgot->contents;
7991 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7992 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7995 local_got_offsets[r_symndx] |= 1;
7998 value = sgot->output_offset + off;
8000 if (r_type != R_ARM_GOT32)
8001 value += sgot->output_section->vma;
8003 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8004 contents, rel->r_offset, value,
8005 rel->r_addend);
8007 case R_ARM_TLS_LDO32:
8008 value = value - dtpoff_base (info);
8010 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8011 contents, rel->r_offset, value,
8012 rel->r_addend);
8014 case R_ARM_TLS_LDM32:
8016 bfd_vma off;
8018 if (globals->sgot == NULL)
8019 abort ();
8021 off = globals->tls_ldm_got.offset;
8023 if ((off & 1) != 0)
8024 off &= ~1;
8025 else
8027 /* If we don't know the module number, create a relocation
8028 for it. */
8029 if (info->shared)
8031 Elf_Internal_Rela outrel;
8032 bfd_byte *loc;
8034 if (globals->srelgot == NULL)
8035 abort ();
8037 outrel.r_addend = 0;
8038 outrel.r_offset = (globals->sgot->output_section->vma
8039 + globals->sgot->output_offset + off);
8040 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
8042 if (globals->use_rel)
8043 bfd_put_32 (output_bfd, outrel.r_addend,
8044 globals->sgot->contents + off);
8046 loc = globals->srelgot->contents;
8047 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
8048 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8050 else
8051 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
8053 globals->tls_ldm_got.offset |= 1;
8056 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8057 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8059 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8060 contents, rel->r_offset, value,
8061 rel->r_addend);
8064 case R_ARM_TLS_GD32:
8065 case R_ARM_TLS_IE32:
8067 bfd_vma off;
8068 int indx;
8069 char tls_type;
8071 if (globals->sgot == NULL)
8072 abort ();
8074 indx = 0;
8075 if (h != NULL)
8077 bfd_boolean dyn;
8078 dyn = globals->root.dynamic_sections_created;
8079 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8080 && (!info->shared
8081 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8083 *unresolved_reloc_p = FALSE;
8084 indx = h->dynindx;
8086 off = h->got.offset;
8087 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
8089 else
8091 if (local_got_offsets == NULL)
8092 abort ();
8093 off = local_got_offsets[r_symndx];
8094 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
8097 if (tls_type == GOT_UNKNOWN)
8098 abort ();
8100 if ((off & 1) != 0)
8101 off &= ~1;
8102 else
8104 bfd_boolean need_relocs = FALSE;
8105 Elf_Internal_Rela outrel;
8106 bfd_byte *loc = NULL;
8107 int cur_off = off;
8109 /* The GOT entries have not been initialized yet. Do it
8110 now, and emit any relocations. If both an IE GOT and a
8111 GD GOT are necessary, we emit the GD first. */
8113 if ((info->shared || indx != 0)
8114 && (h == NULL
8115 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8116 || h->root.type != bfd_link_hash_undefweak))
8118 need_relocs = TRUE;
8119 if (globals->srelgot == NULL)
8120 abort ();
8121 loc = globals->srelgot->contents;
8122 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
8125 if (tls_type & GOT_TLS_GD)
8127 if (need_relocs)
8129 outrel.r_addend = 0;
8130 outrel.r_offset = (globals->sgot->output_section->vma
8131 + globals->sgot->output_offset
8132 + cur_off);
8133 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
8135 if (globals->use_rel)
8136 bfd_put_32 (output_bfd, outrel.r_addend,
8137 globals->sgot->contents + cur_off);
8139 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8140 globals->srelgot->reloc_count++;
8141 loc += RELOC_SIZE (globals);
8143 if (indx == 0)
8144 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8145 globals->sgot->contents + cur_off + 4);
8146 else
8148 outrel.r_addend = 0;
8149 outrel.r_info = ELF32_R_INFO (indx,
8150 R_ARM_TLS_DTPOFF32);
8151 outrel.r_offset += 4;
8153 if (globals->use_rel)
8154 bfd_put_32 (output_bfd, outrel.r_addend,
8155 globals->sgot->contents + cur_off + 4);
8158 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8159 globals->srelgot->reloc_count++;
8160 loc += RELOC_SIZE (globals);
8163 else
8165 /* If we are not emitting relocations for a
8166 general dynamic reference, then we must be in a
8167 static link or an executable link with the
8168 symbol binding locally. Mark it as belonging
8169 to module 1, the executable. */
8170 bfd_put_32 (output_bfd, 1,
8171 globals->sgot->contents + cur_off);
8172 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8173 globals->sgot->contents + cur_off + 4);
8176 cur_off += 8;
8179 if (tls_type & GOT_TLS_IE)
8181 if (need_relocs)
8183 if (indx == 0)
8184 outrel.r_addend = value - dtpoff_base (info);
8185 else
8186 outrel.r_addend = 0;
8187 outrel.r_offset = (globals->sgot->output_section->vma
8188 + globals->sgot->output_offset
8189 + cur_off);
8190 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8192 if (globals->use_rel)
8193 bfd_put_32 (output_bfd, outrel.r_addend,
8194 globals->sgot->contents + cur_off);
8196 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8197 globals->srelgot->reloc_count++;
8198 loc += RELOC_SIZE (globals);
8200 else
8201 bfd_put_32 (output_bfd, tpoff (info, value),
8202 globals->sgot->contents + cur_off);
8203 cur_off += 4;
8206 if (h != NULL)
8207 h->got.offset |= 1;
8208 else
8209 local_got_offsets[r_symndx] |= 1;
8212 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8213 off += 8;
8214 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8215 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8217 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8218 contents, rel->r_offset, value,
8219 rel->r_addend);
8222 case R_ARM_TLS_LE32:
8223 if (info->shared)
8225 (*_bfd_error_handler)
8226 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8227 input_bfd, input_section,
8228 (long) rel->r_offset, howto->name);
8229 return (bfd_reloc_status_type) FALSE;
8231 else
8232 value = tpoff (info, value);
8234 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8235 contents, rel->r_offset, value,
8236 rel->r_addend);
8238 case R_ARM_V4BX:
8239 if (globals->fix_v4bx)
8241 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8243 /* Ensure that we have a BX instruction. */
8244 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
8246 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8248 /* Branch to veneer. */
8249 bfd_vma glue_addr;
8250 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8251 glue_addr -= input_section->output_section->vma
8252 + input_section->output_offset
8253 + rel->r_offset + 8;
8254 insn = (insn & 0xf0000000) | 0x0a000000
8255 | ((glue_addr >> 2) & 0x00ffffff);
8257 else
8259 /* Preserve Rm (lowest four bits) and the condition code
8260 (highest four bits). Other bits encode MOV PC,Rm. */
8261 insn = (insn & 0xf000000f) | 0x01a0f000;
8264 bfd_put_32 (input_bfd, insn, hit_data);
8266 return bfd_reloc_ok;
8268 case R_ARM_MOVW_ABS_NC:
8269 case R_ARM_MOVT_ABS:
8270 case R_ARM_MOVW_PREL_NC:
8271 case R_ARM_MOVT_PREL:
8272 /* Until we properly support segment-base-relative addressing then
8273 we assume the segment base to be zero, as for the group relocations.
8274 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8275 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8276 case R_ARM_MOVW_BREL_NC:
8277 case R_ARM_MOVW_BREL:
8278 case R_ARM_MOVT_BREL:
8280 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8282 if (globals->use_rel)
8284 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
8285 signed_addend = (addend ^ 0x8000) - 0x8000;
8288 value += signed_addend;
8290 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8291 value -= (input_section->output_section->vma
8292 + input_section->output_offset + rel->r_offset);
8294 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8295 return bfd_reloc_overflow;
8297 if (sym_flags == STT_ARM_TFUNC)
8298 value |= 1;
8300 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8301 || r_type == R_ARM_MOVT_BREL)
8302 value >>= 16;
8304 insn &= 0xfff0f000;
8305 insn |= value & 0xfff;
8306 insn |= (value & 0xf000) << 4;
8307 bfd_put_32 (input_bfd, insn, hit_data);
8309 return bfd_reloc_ok;
8311 case R_ARM_THM_MOVW_ABS_NC:
8312 case R_ARM_THM_MOVT_ABS:
8313 case R_ARM_THM_MOVW_PREL_NC:
8314 case R_ARM_THM_MOVT_PREL:
8315 /* Until we properly support segment-base-relative addressing then
8316 we assume the segment base to be zero, as for the above relocations.
8317 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8318 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8319 as R_ARM_THM_MOVT_ABS. */
8320 case R_ARM_THM_MOVW_BREL_NC:
8321 case R_ARM_THM_MOVW_BREL:
8322 case R_ARM_THM_MOVT_BREL:
8324 bfd_vma insn;
8326 insn = bfd_get_16 (input_bfd, hit_data) << 16;
8327 insn |= bfd_get_16 (input_bfd, hit_data + 2);
8329 if (globals->use_rel)
8331 addend = ((insn >> 4) & 0xf000)
8332 | ((insn >> 15) & 0x0800)
8333 | ((insn >> 4) & 0x0700)
8334 | (insn & 0x00ff);
8335 signed_addend = (addend ^ 0x8000) - 0x8000;
8338 value += signed_addend;
8340 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8341 value -= (input_section->output_section->vma
8342 + input_section->output_offset + rel->r_offset);
8344 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8345 return bfd_reloc_overflow;
8347 if (sym_flags == STT_ARM_TFUNC)
8348 value |= 1;
8350 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8351 || r_type == R_ARM_THM_MOVT_BREL)
8352 value >>= 16;
8354 insn &= 0xfbf08f00;
8355 insn |= (value & 0xf000) << 4;
8356 insn |= (value & 0x0800) << 15;
8357 insn |= (value & 0x0700) << 4;
8358 insn |= (value & 0x00ff);
8360 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8361 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8363 return bfd_reloc_ok;
8365 case R_ARM_ALU_PC_G0_NC:
8366 case R_ARM_ALU_PC_G1_NC:
8367 case R_ARM_ALU_PC_G0:
8368 case R_ARM_ALU_PC_G1:
8369 case R_ARM_ALU_PC_G2:
8370 case R_ARM_ALU_SB_G0_NC:
8371 case R_ARM_ALU_SB_G1_NC:
8372 case R_ARM_ALU_SB_G0:
8373 case R_ARM_ALU_SB_G1:
8374 case R_ARM_ALU_SB_G2:
8376 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8377 bfd_vma pc = input_section->output_section->vma
8378 + input_section->output_offset + rel->r_offset;
8379 /* sb should be the origin of the *segment* containing the symbol.
8380 It is not clear how to obtain this OS-dependent value, so we
8381 make an arbitrary choice of zero. */
8382 bfd_vma sb = 0;
8383 bfd_vma residual;
8384 bfd_vma g_n;
8385 bfd_signed_vma signed_value;
8386 int group = 0;
8388 /* Determine which group of bits to select. */
8389 switch (r_type)
8391 case R_ARM_ALU_PC_G0_NC:
8392 case R_ARM_ALU_PC_G0:
8393 case R_ARM_ALU_SB_G0_NC:
8394 case R_ARM_ALU_SB_G0:
8395 group = 0;
8396 break;
8398 case R_ARM_ALU_PC_G1_NC:
8399 case R_ARM_ALU_PC_G1:
8400 case R_ARM_ALU_SB_G1_NC:
8401 case R_ARM_ALU_SB_G1:
8402 group = 1;
8403 break;
8405 case R_ARM_ALU_PC_G2:
8406 case R_ARM_ALU_SB_G2:
8407 group = 2;
8408 break;
8410 default:
8411 abort ();
8414 /* If REL, extract the addend from the insn. If RELA, it will
8415 have already been fetched for us. */
8416 if (globals->use_rel)
8418 int negative;
8419 bfd_vma constant = insn & 0xff;
8420 bfd_vma rotation = (insn & 0xf00) >> 8;
8422 if (rotation == 0)
8423 signed_addend = constant;
8424 else
8426 /* Compensate for the fact that in the instruction, the
8427 rotation is stored in multiples of 2 bits. */
8428 rotation *= 2;
8430 /* Rotate "constant" right by "rotation" bits. */
8431 signed_addend = (constant >> rotation) |
8432 (constant << (8 * sizeof (bfd_vma) - rotation));
8435 /* Determine if the instruction is an ADD or a SUB.
8436 (For REL, this determines the sign of the addend.) */
8437 negative = identify_add_or_sub (insn);
8438 if (negative == 0)
8440 (*_bfd_error_handler)
8441 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8442 input_bfd, input_section,
8443 (long) rel->r_offset, howto->name);
8444 return bfd_reloc_overflow;
8447 signed_addend *= negative;
8450 /* Compute the value (X) to go in the place. */
8451 if (r_type == R_ARM_ALU_PC_G0_NC
8452 || r_type == R_ARM_ALU_PC_G1_NC
8453 || r_type == R_ARM_ALU_PC_G0
8454 || r_type == R_ARM_ALU_PC_G1
8455 || r_type == R_ARM_ALU_PC_G2)
8456 /* PC relative. */
8457 signed_value = value - pc + signed_addend;
8458 else
8459 /* Section base relative. */
8460 signed_value = value - sb + signed_addend;
8462 /* If the target symbol is a Thumb function, then set the
8463 Thumb bit in the address. */
8464 if (sym_flags == STT_ARM_TFUNC)
8465 signed_value |= 1;
8467 /* Calculate the value of the relevant G_n, in encoded
8468 constant-with-rotation format. */
8469 g_n = calculate_group_reloc_mask (abs (signed_value), group,
8470 &residual);
8472 /* Check for overflow if required. */
8473 if ((r_type == R_ARM_ALU_PC_G0
8474 || r_type == R_ARM_ALU_PC_G1
8475 || r_type == R_ARM_ALU_PC_G2
8476 || r_type == R_ARM_ALU_SB_G0
8477 || r_type == R_ARM_ALU_SB_G1
8478 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8480 (*_bfd_error_handler)
8481 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8482 input_bfd, input_section,
8483 (long) rel->r_offset, abs (signed_value), howto->name);
8484 return bfd_reloc_overflow;
8487 /* Mask out the value and the ADD/SUB part of the opcode; take care
8488 not to destroy the S bit. */
8489 insn &= 0xff1ff000;
8491 /* Set the opcode according to whether the value to go in the
8492 place is negative. */
8493 if (signed_value < 0)
8494 insn |= 1 << 22;
8495 else
8496 insn |= 1 << 23;
8498 /* Encode the offset. */
8499 insn |= g_n;
8501 bfd_put_32 (input_bfd, insn, hit_data);
8503 return bfd_reloc_ok;
8505 case R_ARM_LDR_PC_G0:
8506 case R_ARM_LDR_PC_G1:
8507 case R_ARM_LDR_PC_G2:
8508 case R_ARM_LDR_SB_G0:
8509 case R_ARM_LDR_SB_G1:
8510 case R_ARM_LDR_SB_G2:
8512 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8513 bfd_vma pc = input_section->output_section->vma
8514 + input_section->output_offset + rel->r_offset;
8515 bfd_vma sb = 0; /* See note above. */
8516 bfd_vma residual;
8517 bfd_signed_vma signed_value;
8518 int group = 0;
8520 /* Determine which groups of bits to calculate. */
8521 switch (r_type)
8523 case R_ARM_LDR_PC_G0:
8524 case R_ARM_LDR_SB_G0:
8525 group = 0;
8526 break;
8528 case R_ARM_LDR_PC_G1:
8529 case R_ARM_LDR_SB_G1:
8530 group = 1;
8531 break;
8533 case R_ARM_LDR_PC_G2:
8534 case R_ARM_LDR_SB_G2:
8535 group = 2;
8536 break;
8538 default:
8539 abort ();
8542 /* If REL, extract the addend from the insn. If RELA, it will
8543 have already been fetched for us. */
8544 if (globals->use_rel)
8546 int negative = (insn & (1 << 23)) ? 1 : -1;
8547 signed_addend = negative * (insn & 0xfff);
8550 /* Compute the value (X) to go in the place. */
8551 if (r_type == R_ARM_LDR_PC_G0
8552 || r_type == R_ARM_LDR_PC_G1
8553 || r_type == R_ARM_LDR_PC_G2)
8554 /* PC relative. */
8555 signed_value = value - pc + signed_addend;
8556 else
8557 /* Section base relative. */
8558 signed_value = value - sb + signed_addend;
8560 /* Calculate the value of the relevant G_{n-1} to obtain
8561 the residual at that stage. */
8562 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8564 /* Check for overflow. */
8565 if (residual >= 0x1000)
8567 (*_bfd_error_handler)
8568 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8569 input_bfd, input_section,
8570 (long) rel->r_offset, abs (signed_value), howto->name);
8571 return bfd_reloc_overflow;
8574 /* Mask out the value and U bit. */
8575 insn &= 0xff7ff000;
8577 /* Set the U bit if the value to go in the place is non-negative. */
8578 if (signed_value >= 0)
8579 insn |= 1 << 23;
8581 /* Encode the offset. */
8582 insn |= residual;
8584 bfd_put_32 (input_bfd, insn, hit_data);
8586 return bfd_reloc_ok;
8588 case R_ARM_LDRS_PC_G0:
8589 case R_ARM_LDRS_PC_G1:
8590 case R_ARM_LDRS_PC_G2:
8591 case R_ARM_LDRS_SB_G0:
8592 case R_ARM_LDRS_SB_G1:
8593 case R_ARM_LDRS_SB_G2:
8595 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8596 bfd_vma pc = input_section->output_section->vma
8597 + input_section->output_offset + rel->r_offset;
8598 bfd_vma sb = 0; /* See note above. */
8599 bfd_vma residual;
8600 bfd_signed_vma signed_value;
8601 int group = 0;
8603 /* Determine which groups of bits to calculate. */
8604 switch (r_type)
8606 case R_ARM_LDRS_PC_G0:
8607 case R_ARM_LDRS_SB_G0:
8608 group = 0;
8609 break;
8611 case R_ARM_LDRS_PC_G1:
8612 case R_ARM_LDRS_SB_G1:
8613 group = 1;
8614 break;
8616 case R_ARM_LDRS_PC_G2:
8617 case R_ARM_LDRS_SB_G2:
8618 group = 2;
8619 break;
8621 default:
8622 abort ();
8625 /* If REL, extract the addend from the insn. If RELA, it will
8626 have already been fetched for us. */
8627 if (globals->use_rel)
8629 int negative = (insn & (1 << 23)) ? 1 : -1;
8630 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8633 /* Compute the value (X) to go in the place. */
8634 if (r_type == R_ARM_LDRS_PC_G0
8635 || r_type == R_ARM_LDRS_PC_G1
8636 || r_type == R_ARM_LDRS_PC_G2)
8637 /* PC relative. */
8638 signed_value = value - pc + signed_addend;
8639 else
8640 /* Section base relative. */
8641 signed_value = value - sb + signed_addend;
8643 /* Calculate the value of the relevant G_{n-1} to obtain
8644 the residual at that stage. */
8645 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8647 /* Check for overflow. */
8648 if (residual >= 0x100)
8650 (*_bfd_error_handler)
8651 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8652 input_bfd, input_section,
8653 (long) rel->r_offset, abs (signed_value), howto->name);
8654 return bfd_reloc_overflow;
8657 /* Mask out the value and U bit. */
8658 insn &= 0xff7ff0f0;
8660 /* Set the U bit if the value to go in the place is non-negative. */
8661 if (signed_value >= 0)
8662 insn |= 1 << 23;
8664 /* Encode the offset. */
8665 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8667 bfd_put_32 (input_bfd, insn, hit_data);
8669 return bfd_reloc_ok;
8671 case R_ARM_LDC_PC_G0:
8672 case R_ARM_LDC_PC_G1:
8673 case R_ARM_LDC_PC_G2:
8674 case R_ARM_LDC_SB_G0:
8675 case R_ARM_LDC_SB_G1:
8676 case R_ARM_LDC_SB_G2:
8678 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8679 bfd_vma pc = input_section->output_section->vma
8680 + input_section->output_offset + rel->r_offset;
8681 bfd_vma sb = 0; /* See note above. */
8682 bfd_vma residual;
8683 bfd_signed_vma signed_value;
8684 int group = 0;
8686 /* Determine which groups of bits to calculate. */
8687 switch (r_type)
8689 case R_ARM_LDC_PC_G0:
8690 case R_ARM_LDC_SB_G0:
8691 group = 0;
8692 break;
8694 case R_ARM_LDC_PC_G1:
8695 case R_ARM_LDC_SB_G1:
8696 group = 1;
8697 break;
8699 case R_ARM_LDC_PC_G2:
8700 case R_ARM_LDC_SB_G2:
8701 group = 2;
8702 break;
8704 default:
8705 abort ();
8708 /* If REL, extract the addend from the insn. If RELA, it will
8709 have already been fetched for us. */
8710 if (globals->use_rel)
8712 int negative = (insn & (1 << 23)) ? 1 : -1;
8713 signed_addend = negative * ((insn & 0xff) << 2);
8716 /* Compute the value (X) to go in the place. */
8717 if (r_type == R_ARM_LDC_PC_G0
8718 || r_type == R_ARM_LDC_PC_G1
8719 || r_type == R_ARM_LDC_PC_G2)
8720 /* PC relative. */
8721 signed_value = value - pc + signed_addend;
8722 else
8723 /* Section base relative. */
8724 signed_value = value - sb + signed_addend;
8726 /* Calculate the value of the relevant G_{n-1} to obtain
8727 the residual at that stage. */
8728 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8730 /* Check for overflow. (The absolute value to go in the place must be
8731 divisible by four and, after having been divided by four, must
8732 fit in eight bits.) */
8733 if ((residual & 0x3) != 0 || residual >= 0x400)
8735 (*_bfd_error_handler)
8736 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8737 input_bfd, input_section,
8738 (long) rel->r_offset, abs (signed_value), howto->name);
8739 return bfd_reloc_overflow;
8742 /* Mask out the value and U bit. */
8743 insn &= 0xff7fff00;
8745 /* Set the U bit if the value to go in the place is non-negative. */
8746 if (signed_value >= 0)
8747 insn |= 1 << 23;
8749 /* Encode the offset. */
8750 insn |= residual >> 2;
8752 bfd_put_32 (input_bfd, insn, hit_data);
8754 return bfd_reloc_ok;
8756 default:
8757 return bfd_reloc_notsupported;
8761 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8762 static void
8763 arm_add_to_rel (bfd * abfd,
8764 bfd_byte * address,
8765 reloc_howto_type * howto,
8766 bfd_signed_vma increment)
8768 bfd_signed_vma addend;
8770 if (howto->type == R_ARM_THM_CALL
8771 || howto->type == R_ARM_THM_JUMP24)
8773 int upper_insn, lower_insn;
8774 int upper, lower;
8776 upper_insn = bfd_get_16 (abfd, address);
8777 lower_insn = bfd_get_16 (abfd, address + 2);
8778 upper = upper_insn & 0x7ff;
8779 lower = lower_insn & 0x7ff;
8781 addend = (upper << 12) | (lower << 1);
8782 addend += increment;
8783 addend >>= 1;
8785 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8786 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8788 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8789 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
8791 else
8793 bfd_vma contents;
8795 contents = bfd_get_32 (abfd, address);
8797 /* Get the (signed) value from the instruction. */
8798 addend = contents & howto->src_mask;
8799 if (addend & ((howto->src_mask + 1) >> 1))
8801 bfd_signed_vma mask;
8803 mask = -1;
8804 mask &= ~ howto->src_mask;
8805 addend |= mask;
8808 /* Add in the increment, (which is a byte value). */
8809 switch (howto->type)
8811 default:
8812 addend += increment;
8813 break;
8815 case R_ARM_PC24:
8816 case R_ARM_PLT32:
8817 case R_ARM_CALL:
8818 case R_ARM_JUMP24:
8819 addend <<= howto->size;
8820 addend += increment;
8822 /* Should we check for overflow here ? */
8824 /* Drop any undesired bits. */
8825 addend >>= howto->rightshift;
8826 break;
8829 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8831 bfd_put_32 (abfd, contents, address);
8835 #define IS_ARM_TLS_RELOC(R_TYPE) \
8836 ((R_TYPE) == R_ARM_TLS_GD32 \
8837 || (R_TYPE) == R_ARM_TLS_LDO32 \
8838 || (R_TYPE) == R_ARM_TLS_LDM32 \
8839 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8840 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8841 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8842 || (R_TYPE) == R_ARM_TLS_LE32 \
8843 || (R_TYPE) == R_ARM_TLS_IE32)
8845 /* Relocate an ARM ELF section. */
8847 static bfd_boolean
8848 elf32_arm_relocate_section (bfd * output_bfd,
8849 struct bfd_link_info * info,
8850 bfd * input_bfd,
8851 asection * input_section,
8852 bfd_byte * contents,
8853 Elf_Internal_Rela * relocs,
8854 Elf_Internal_Sym * local_syms,
8855 asection ** local_sections)
8857 Elf_Internal_Shdr *symtab_hdr;
8858 struct elf_link_hash_entry **sym_hashes;
8859 Elf_Internal_Rela *rel;
8860 Elf_Internal_Rela *relend;
8861 const char *name;
8862 struct elf32_arm_link_hash_table * globals;
8864 globals = elf32_arm_hash_table (info);
8865 if (globals == NULL)
8866 return FALSE;
8868 symtab_hdr = & elf_symtab_hdr (input_bfd);
8869 sym_hashes = elf_sym_hashes (input_bfd);
8871 rel = relocs;
8872 relend = relocs + input_section->reloc_count;
8873 for (; rel < relend; rel++)
8875 int r_type;
8876 reloc_howto_type * howto;
8877 unsigned long r_symndx;
8878 Elf_Internal_Sym * sym;
8879 asection * sec;
8880 struct elf_link_hash_entry * h;
8881 bfd_vma relocation;
8882 bfd_reloc_status_type r;
8883 arelent bfd_reloc;
8884 char sym_type;
8885 bfd_boolean unresolved_reloc = FALSE;
8886 char *error_message = NULL;
8888 r_symndx = ELF32_R_SYM (rel->r_info);
8889 r_type = ELF32_R_TYPE (rel->r_info);
8890 r_type = arm_real_reloc_type (globals, r_type);
8892 if ( r_type == R_ARM_GNU_VTENTRY
8893 || r_type == R_ARM_GNU_VTINHERIT)
8894 continue;
8896 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
8897 howto = bfd_reloc.howto;
8899 h = NULL;
8900 sym = NULL;
8901 sec = NULL;
8903 if (r_symndx < symtab_hdr->sh_info)
8905 sym = local_syms + r_symndx;
8906 sym_type = ELF32_ST_TYPE (sym->st_info);
8907 sec = local_sections[r_symndx];
8909 /* An object file might have a reference to a local
8910 undefined symbol. This is a daft object file, but we
8911 should at least do something about it. V4BX & NONE
8912 relocations do not use the symbol and are explicitly
8913 allowed to use the undefined symbol, so allow those. */
8914 if (r_type != R_ARM_V4BX
8915 && r_type != R_ARM_NONE
8916 && bfd_is_und_section (sec)
8917 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8919 if (!info->callbacks->undefined_symbol
8920 (info, bfd_elf_string_from_elf_section
8921 (input_bfd, symtab_hdr->sh_link, sym->st_name),
8922 input_bfd, input_section,
8923 rel->r_offset, TRUE))
8924 return FALSE;
8927 if (globals->use_rel)
8929 relocation = (sec->output_section->vma
8930 + sec->output_offset
8931 + sym->st_value);
8932 if (!info->relocatable
8933 && (sec->flags & SEC_MERGE)
8934 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8936 asection *msec;
8937 bfd_vma addend, value;
8939 switch (r_type)
8941 case R_ARM_MOVW_ABS_NC:
8942 case R_ARM_MOVT_ABS:
8943 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8944 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8945 addend = (addend ^ 0x8000) - 0x8000;
8946 break;
8948 case R_ARM_THM_MOVW_ABS_NC:
8949 case R_ARM_THM_MOVT_ABS:
8950 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8951 << 16;
8952 value |= bfd_get_16 (input_bfd,
8953 contents + rel->r_offset + 2);
8954 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8955 | ((value & 0x04000000) >> 15);
8956 addend = (addend ^ 0x8000) - 0x8000;
8957 break;
8959 default:
8960 if (howto->rightshift
8961 || (howto->src_mask & (howto->src_mask + 1)))
8963 (*_bfd_error_handler)
8964 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8965 input_bfd, input_section,
8966 (long) rel->r_offset, howto->name);
8967 return FALSE;
8970 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8972 /* Get the (signed) value from the instruction. */
8973 addend = value & howto->src_mask;
8974 if (addend & ((howto->src_mask + 1) >> 1))
8976 bfd_signed_vma mask;
8978 mask = -1;
8979 mask &= ~ howto->src_mask;
8980 addend |= mask;
8982 break;
8985 msec = sec;
8986 addend =
8987 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8988 - relocation;
8989 addend += msec->output_section->vma + msec->output_offset;
8991 /* Cases here must match those in the preceeding
8992 switch statement. */
8993 switch (r_type)
8995 case R_ARM_MOVW_ABS_NC:
8996 case R_ARM_MOVT_ABS:
8997 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8998 | (addend & 0xfff);
8999 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
9000 break;
9002 case R_ARM_THM_MOVW_ABS_NC:
9003 case R_ARM_THM_MOVT_ABS:
9004 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
9005 | (addend & 0xff) | ((addend & 0x0800) << 15);
9006 bfd_put_16 (input_bfd, value >> 16,
9007 contents + rel->r_offset);
9008 bfd_put_16 (input_bfd, value,
9009 contents + rel->r_offset + 2);
9010 break;
9012 default:
9013 value = (value & ~ howto->dst_mask)
9014 | (addend & howto->dst_mask);
9015 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
9016 break;
9020 else
9021 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9023 else
9025 bfd_boolean warned;
9027 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9028 r_symndx, symtab_hdr, sym_hashes,
9029 h, sec, relocation,
9030 unresolved_reloc, warned);
9032 sym_type = h->type;
9035 if (sec != NULL && elf_discarded_section (sec))
9037 /* For relocs against symbols from removed linkonce sections,
9038 or sections discarded by a linker script, we just want the
9039 section contents zeroed. Avoid any special processing. */
9040 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
9041 rel->r_info = 0;
9042 rel->r_addend = 0;
9043 continue;
9046 if (info->relocatable)
9048 /* This is a relocatable link. We don't have to change
9049 anything, unless the reloc is against a section symbol,
9050 in which case we have to adjust according to where the
9051 section symbol winds up in the output section. */
9052 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9054 if (globals->use_rel)
9055 arm_add_to_rel (input_bfd, contents + rel->r_offset,
9056 howto, (bfd_signed_vma) sec->output_offset);
9057 else
9058 rel->r_addend += sec->output_offset;
9060 continue;
9063 if (h != NULL)
9064 name = h->root.root.string;
9065 else
9067 name = (bfd_elf_string_from_elf_section
9068 (input_bfd, symtab_hdr->sh_link, sym->st_name));
9069 if (name == NULL || *name == '\0')
9070 name = bfd_section_name (input_bfd, sec);
9073 if (r_symndx != STN_UNDEF
9074 && r_type != R_ARM_NONE
9075 && (h == NULL
9076 || h->root.type == bfd_link_hash_defined
9077 || h->root.type == bfd_link_hash_defweak)
9078 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9080 (*_bfd_error_handler)
9081 ((sym_type == STT_TLS
9082 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9083 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
9084 input_bfd,
9085 input_section,
9086 (long) rel->r_offset,
9087 howto->name,
9088 name);
9091 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
9092 input_section, contents, rel,
9093 relocation, info, sec, name,
9094 (h ? ELF_ST_TYPE (h->type) :
9095 ELF_ST_TYPE (sym->st_info)), h,
9096 &unresolved_reloc, &error_message);
9098 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9099 because such sections are not SEC_ALLOC and thus ld.so will
9100 not process them. */
9101 if (unresolved_reloc
9102 && !((input_section->flags & SEC_DEBUGGING) != 0
9103 && h->def_dynamic))
9105 (*_bfd_error_handler)
9106 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9107 input_bfd,
9108 input_section,
9109 (long) rel->r_offset,
9110 howto->name,
9111 h->root.root.string);
9112 return FALSE;
9115 if (r != bfd_reloc_ok)
9117 switch (r)
9119 case bfd_reloc_overflow:
9120 /* If the overflowing reloc was to an undefined symbol,
9121 we have already printed one error message and there
9122 is no point complaining again. */
9123 if ((! h ||
9124 h->root.type != bfd_link_hash_undefined)
9125 && (!((*info->callbacks->reloc_overflow)
9126 (info, (h ? &h->root : NULL), name, howto->name,
9127 (bfd_vma) 0, input_bfd, input_section,
9128 rel->r_offset))))
9129 return FALSE;
9130 break;
9132 case bfd_reloc_undefined:
9133 if (!((*info->callbacks->undefined_symbol)
9134 (info, name, input_bfd, input_section,
9135 rel->r_offset, TRUE)))
9136 return FALSE;
9137 break;
9139 case bfd_reloc_outofrange:
9140 error_message = _("out of range");
9141 goto common_error;
9143 case bfd_reloc_notsupported:
9144 error_message = _("unsupported relocation");
9145 goto common_error;
9147 case bfd_reloc_dangerous:
9148 /* error_message should already be set. */
9149 goto common_error;
9151 default:
9152 error_message = _("unknown error");
9153 /* Fall through. */
9155 common_error:
9156 BFD_ASSERT (error_message != NULL);
9157 if (!((*info->callbacks->reloc_dangerous)
9158 (info, error_message, input_bfd, input_section,
9159 rel->r_offset)))
9160 return FALSE;
9161 break;
9166 return TRUE;
9169 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
9170 adds the edit to the start of the list. (The list must be built in order of
9171 ascending TINDEX: the function's callers are primarily responsible for
9172 maintaining that condition). */
9174 static void
9175 add_unwind_table_edit (arm_unwind_table_edit **head,
9176 arm_unwind_table_edit **tail,
9177 arm_unwind_edit_type type,
9178 asection *linked_section,
9179 unsigned int tindex)
9181 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
9182 xmalloc (sizeof (arm_unwind_table_edit));
9184 new_edit->type = type;
9185 new_edit->linked_section = linked_section;
9186 new_edit->index = tindex;
9188 if (tindex > 0)
9190 new_edit->next = NULL;
9192 if (*tail)
9193 (*tail)->next = new_edit;
9195 (*tail) = new_edit;
9197 if (!*head)
9198 (*head) = new_edit;
9200 else
9202 new_edit->next = *head;
9204 if (!*tail)
9205 *tail = new_edit;
9207 *head = new_edit;
9211 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9213 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9214 static void
9215 adjust_exidx_size(asection *exidx_sec, int adjust)
9217 asection *out_sec;
9219 if (!exidx_sec->rawsize)
9220 exidx_sec->rawsize = exidx_sec->size;
9222 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9223 out_sec = exidx_sec->output_section;
9224 /* Adjust size of output section. */
9225 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9228 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9229 static void
9230 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9232 struct _arm_elf_section_data *exidx_arm_data;
9234 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9235 add_unwind_table_edit (
9236 &exidx_arm_data->u.exidx.unwind_edit_list,
9237 &exidx_arm_data->u.exidx.unwind_edit_tail,
9238 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9240 adjust_exidx_size(exidx_sec, 8);
9243 /* Scan .ARM.exidx tables, and create a list describing edits which should be
9244 made to those tables, such that:
9246 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9247 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9248 codes which have been inlined into the index).
9250 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
9252 The edits are applied when the tables are written
9253 (in elf32_arm_write_section).
9256 bfd_boolean
9257 elf32_arm_fix_exidx_coverage (asection **text_section_order,
9258 unsigned int num_text_sections,
9259 struct bfd_link_info *info,
9260 bfd_boolean merge_exidx_entries)
9262 bfd *inp;
9263 unsigned int last_second_word = 0, i;
9264 asection *last_exidx_sec = NULL;
9265 asection *last_text_sec = NULL;
9266 int last_unwind_type = -1;
9268 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9269 text sections. */
9270 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9272 asection *sec;
9274 for (sec = inp->sections; sec != NULL; sec = sec->next)
9276 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9277 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9279 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
9280 continue;
9282 if (elf_sec->linked_to)
9284 Elf_Internal_Shdr *linked_hdr
9285 = &elf_section_data (elf_sec->linked_to)->this_hdr;
9286 struct _arm_elf_section_data *linked_sec_arm_data
9287 = get_arm_elf_section_data (linked_hdr->bfd_section);
9289 if (linked_sec_arm_data == NULL)
9290 continue;
9292 /* Link this .ARM.exidx section back from the text section it
9293 describes. */
9294 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9299 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9300 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9301 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
9303 for (i = 0; i < num_text_sections; i++)
9305 asection *sec = text_section_order[i];
9306 asection *exidx_sec;
9307 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9308 struct _arm_elf_section_data *exidx_arm_data;
9309 bfd_byte *contents = NULL;
9310 int deleted_exidx_bytes = 0;
9311 bfd_vma j;
9312 arm_unwind_table_edit *unwind_edit_head = NULL;
9313 arm_unwind_table_edit *unwind_edit_tail = NULL;
9314 Elf_Internal_Shdr *hdr;
9315 bfd *ibfd;
9317 if (arm_data == NULL)
9318 continue;
9320 exidx_sec = arm_data->u.text.arm_exidx_sec;
9321 if (exidx_sec == NULL)
9323 /* Section has no unwind data. */
9324 if (last_unwind_type == 0 || !last_exidx_sec)
9325 continue;
9327 /* Ignore zero sized sections. */
9328 if (sec->size == 0)
9329 continue;
9331 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9332 last_unwind_type = 0;
9333 continue;
9336 /* Skip /DISCARD/ sections. */
9337 if (bfd_is_abs_section (exidx_sec->output_section))
9338 continue;
9340 hdr = &elf_section_data (exidx_sec)->this_hdr;
9341 if (hdr->sh_type != SHT_ARM_EXIDX)
9342 continue;
9344 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9345 if (exidx_arm_data == NULL)
9346 continue;
9348 ibfd = exidx_sec->owner;
9350 if (hdr->contents != NULL)
9351 contents = hdr->contents;
9352 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9353 /* An error? */
9354 continue;
9356 for (j = 0; j < hdr->sh_size; j += 8)
9358 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9359 int unwind_type;
9360 int elide = 0;
9362 /* An EXIDX_CANTUNWIND entry. */
9363 if (second_word == 1)
9365 if (last_unwind_type == 0)
9366 elide = 1;
9367 unwind_type = 0;
9369 /* Inlined unwinding data. Merge if equal to previous. */
9370 else if ((second_word & 0x80000000) != 0)
9372 if (merge_exidx_entries
9373 && last_second_word == second_word && last_unwind_type == 1)
9374 elide = 1;
9375 unwind_type = 1;
9376 last_second_word = second_word;
9378 /* Normal table entry. In theory we could merge these too,
9379 but duplicate entries are likely to be much less common. */
9380 else
9381 unwind_type = 2;
9383 if (elide)
9385 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9386 DELETE_EXIDX_ENTRY, NULL, j / 8);
9388 deleted_exidx_bytes += 8;
9391 last_unwind_type = unwind_type;
9394 /* Free contents if we allocated it ourselves. */
9395 if (contents != hdr->contents)
9396 free (contents);
9398 /* Record edits to be applied later (in elf32_arm_write_section). */
9399 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9400 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9402 if (deleted_exidx_bytes > 0)
9403 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9405 last_exidx_sec = exidx_sec;
9406 last_text_sec = sec;
9409 /* Add terminating CANTUNWIND entry. */
9410 if (last_exidx_sec && last_unwind_type != 0)
9411 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9413 return TRUE;
9416 static bfd_boolean
9417 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9418 bfd *ibfd, const char *name)
9420 asection *sec, *osec;
9422 sec = bfd_get_section_by_name (ibfd, name);
9423 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9424 return TRUE;
9426 osec = sec->output_section;
9427 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9428 return TRUE;
9430 if (! bfd_set_section_contents (obfd, osec, sec->contents,
9431 sec->output_offset, sec->size))
9432 return FALSE;
9434 return TRUE;
9437 static bfd_boolean
9438 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9440 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9441 asection *sec, *osec;
9443 if (globals == NULL)
9444 return FALSE;
9446 /* Invoke the regular ELF backend linker to do all the work. */
9447 if (!bfd_elf_final_link (abfd, info))
9448 return FALSE;
9450 /* Process stub sections (eg BE8 encoding, ...). */
9451 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
9452 int i;
9453 for (i=0; i<htab->top_id; i++)
9455 sec = htab->stub_group[i].stub_sec;
9456 /* Only process it once, in its link_sec slot. */
9457 if (sec && i == htab->stub_group[i].link_sec->id)
9459 osec = sec->output_section;
9460 elf32_arm_write_section (abfd, info, sec, sec->contents);
9461 if (! bfd_set_section_contents (abfd, osec, sec->contents,
9462 sec->output_offset, sec->size))
9463 return FALSE;
9467 /* Write out any glue sections now that we have created all the
9468 stubs. */
9469 if (globals->bfd_of_glue_owner != NULL)
9471 if (! elf32_arm_output_glue_section (info, abfd,
9472 globals->bfd_of_glue_owner,
9473 ARM2THUMB_GLUE_SECTION_NAME))
9474 return FALSE;
9476 if (! elf32_arm_output_glue_section (info, abfd,
9477 globals->bfd_of_glue_owner,
9478 THUMB2ARM_GLUE_SECTION_NAME))
9479 return FALSE;
9481 if (! elf32_arm_output_glue_section (info, abfd,
9482 globals->bfd_of_glue_owner,
9483 VFP11_ERRATUM_VENEER_SECTION_NAME))
9484 return FALSE;
9486 if (! elf32_arm_output_glue_section (info, abfd,
9487 globals->bfd_of_glue_owner,
9488 ARM_BX_GLUE_SECTION_NAME))
9489 return FALSE;
9492 return TRUE;
9495 /* Set the right machine number. */
9497 static bfd_boolean
9498 elf32_arm_object_p (bfd *abfd)
9500 unsigned int mach;
9502 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
9504 if (mach != bfd_mach_arm_unknown)
9505 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9507 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9508 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
9510 else
9511 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9513 return TRUE;
9516 /* Function to keep ARM specific flags in the ELF header. */
9518 static bfd_boolean
9519 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
9521 if (elf_flags_init (abfd)
9522 && elf_elfheader (abfd)->e_flags != flags)
9524 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9526 if (flags & EF_ARM_INTERWORK)
9527 (*_bfd_error_handler)
9528 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9529 abfd);
9530 else
9531 _bfd_error_handler
9532 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9533 abfd);
9536 else
9538 elf_elfheader (abfd)->e_flags = flags;
9539 elf_flags_init (abfd) = TRUE;
9542 return TRUE;
9545 /* Copy backend specific data from one object module to another. */
9547 static bfd_boolean
9548 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
9550 flagword in_flags;
9551 flagword out_flags;
9553 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9554 return TRUE;
9556 in_flags = elf_elfheader (ibfd)->e_flags;
9557 out_flags = elf_elfheader (obfd)->e_flags;
9559 if (elf_flags_init (obfd)
9560 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9561 && in_flags != out_flags)
9563 /* Cannot mix APCS26 and APCS32 code. */
9564 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9565 return FALSE;
9567 /* Cannot mix float APCS and non-float APCS code. */
9568 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9569 return FALSE;
9571 /* If the src and dest have different interworking flags
9572 then turn off the interworking bit. */
9573 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9575 if (out_flags & EF_ARM_INTERWORK)
9576 _bfd_error_handler
9577 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9578 obfd, ibfd);
9580 in_flags &= ~EF_ARM_INTERWORK;
9583 /* Likewise for PIC, though don't warn for this case. */
9584 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9585 in_flags &= ~EF_ARM_PIC;
9588 elf_elfheader (obfd)->e_flags = in_flags;
9589 elf_flags_init (obfd) = TRUE;
9591 /* Also copy the EI_OSABI field. */
9592 elf_elfheader (obfd)->e_ident[EI_OSABI] =
9593 elf_elfheader (ibfd)->e_ident[EI_OSABI];
9595 /* Copy object attributes. */
9596 _bfd_elf_copy_obj_attributes (ibfd, obfd);
9598 return TRUE;
9601 /* Values for Tag_ABI_PCS_R9_use. */
9602 enum
9604 AEABI_R9_V6,
9605 AEABI_R9_SB,
9606 AEABI_R9_TLS,
9607 AEABI_R9_unused
9610 /* Values for Tag_ABI_PCS_RW_data. */
9611 enum
9613 AEABI_PCS_RW_data_absolute,
9614 AEABI_PCS_RW_data_PCrel,
9615 AEABI_PCS_RW_data_SBrel,
9616 AEABI_PCS_RW_data_unused
9619 /* Values for Tag_ABI_enum_size. */
9620 enum
9622 AEABI_enum_unused,
9623 AEABI_enum_short,
9624 AEABI_enum_wide,
9625 AEABI_enum_forced_wide
9628 /* Determine whether an object attribute tag takes an integer, a
9629 string or both. */
9631 static int
9632 elf32_arm_obj_attrs_arg_type (int tag)
9634 if (tag == Tag_compatibility)
9635 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
9636 else if (tag == Tag_nodefaults)
9637 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9638 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9639 return ATTR_TYPE_FLAG_STR_VAL;
9640 else if (tag < 32)
9641 return ATTR_TYPE_FLAG_INT_VAL;
9642 else
9643 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
9646 /* The ABI defines that Tag_conformance should be emitted first, and that
9647 Tag_nodefaults should be second (if either is defined). This sets those
9648 two positions, and bumps up the position of all the remaining tags to
9649 compensate. */
9650 static int
9651 elf32_arm_obj_attrs_order (int num)
9653 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
9654 return Tag_conformance;
9655 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
9656 return Tag_nodefaults;
9657 if ((num - 2) < Tag_nodefaults)
9658 return num - 2;
9659 if ((num - 1) < Tag_conformance)
9660 return num - 1;
9661 return num;
9664 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
9665 Returns -1 if no architecture could be read. */
9667 static int
9668 get_secondary_compatible_arch (bfd *abfd)
9670 obj_attribute *attr =
9671 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9673 /* Note: the tag and its argument below are uleb128 values, though
9674 currently-defined values fit in one byte for each. */
9675 if (attr->s
9676 && attr->s[0] == Tag_CPU_arch
9677 && (attr->s[1] & 128) != 128
9678 && attr->s[2] == 0)
9679 return attr->s[1];
9681 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9682 return -1;
9685 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9686 The tag is removed if ARCH is -1. */
9688 static void
9689 set_secondary_compatible_arch (bfd *abfd, int arch)
9691 obj_attribute *attr =
9692 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9694 if (arch == -1)
9696 attr->s = NULL;
9697 return;
9700 /* Note: the tag and its argument below are uleb128 values, though
9701 currently-defined values fit in one byte for each. */
9702 if (!attr->s)
9703 attr->s = (char *) bfd_alloc (abfd, 3);
9704 attr->s[0] = Tag_CPU_arch;
9705 attr->s[1] = arch;
9706 attr->s[2] = '\0';
9709 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9710 into account. */
9712 static int
9713 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9714 int newtag, int secondary_compat)
9716 #define T(X) TAG_CPU_ARCH_##X
9717 int tagl, tagh, result;
9718 const int v6t2[] =
9720 T(V6T2), /* PRE_V4. */
9721 T(V6T2), /* V4. */
9722 T(V6T2), /* V4T. */
9723 T(V6T2), /* V5T. */
9724 T(V6T2), /* V5TE. */
9725 T(V6T2), /* V5TEJ. */
9726 T(V6T2), /* V6. */
9727 T(V7), /* V6KZ. */
9728 T(V6T2) /* V6T2. */
9730 const int v6k[] =
9732 T(V6K), /* PRE_V4. */
9733 T(V6K), /* V4. */
9734 T(V6K), /* V4T. */
9735 T(V6K), /* V5T. */
9736 T(V6K), /* V5TE. */
9737 T(V6K), /* V5TEJ. */
9738 T(V6K), /* V6. */
9739 T(V6KZ), /* V6KZ. */
9740 T(V7), /* V6T2. */
9741 T(V6K) /* V6K. */
9743 const int v7[] =
9745 T(V7), /* PRE_V4. */
9746 T(V7), /* V4. */
9747 T(V7), /* V4T. */
9748 T(V7), /* V5T. */
9749 T(V7), /* V5TE. */
9750 T(V7), /* V5TEJ. */
9751 T(V7), /* V6. */
9752 T(V7), /* V6KZ. */
9753 T(V7), /* V6T2. */
9754 T(V7), /* V6K. */
9755 T(V7) /* V7. */
9757 const int v6_m[] =
9759 -1, /* PRE_V4. */
9760 -1, /* V4. */
9761 T(V6K), /* V4T. */
9762 T(V6K), /* V5T. */
9763 T(V6K), /* V5TE. */
9764 T(V6K), /* V5TEJ. */
9765 T(V6K), /* V6. */
9766 T(V6KZ), /* V6KZ. */
9767 T(V7), /* V6T2. */
9768 T(V6K), /* V6K. */
9769 T(V7), /* V7. */
9770 T(V6_M) /* V6_M. */
9772 const int v6s_m[] =
9774 -1, /* PRE_V4. */
9775 -1, /* V4. */
9776 T(V6K), /* V4T. */
9777 T(V6K), /* V5T. */
9778 T(V6K), /* V5TE. */
9779 T(V6K), /* V5TEJ. */
9780 T(V6K), /* V6. */
9781 T(V6KZ), /* V6KZ. */
9782 T(V7), /* V6T2. */
9783 T(V6K), /* V6K. */
9784 T(V7), /* V7. */
9785 T(V6S_M), /* V6_M. */
9786 T(V6S_M) /* V6S_M. */
9788 const int v7e_m[] =
9790 -1, /* PRE_V4. */
9791 -1, /* V4. */
9792 T(V7E_M), /* V4T. */
9793 T(V7E_M), /* V5T. */
9794 T(V7E_M), /* V5TE. */
9795 T(V7E_M), /* V5TEJ. */
9796 T(V7E_M), /* V6. */
9797 T(V7E_M), /* V6KZ. */
9798 T(V7E_M), /* V6T2. */
9799 T(V7E_M), /* V6K. */
9800 T(V7E_M), /* V7. */
9801 T(V7E_M), /* V6_M. */
9802 T(V7E_M), /* V6S_M. */
9803 T(V7E_M) /* V7E_M. */
9805 const int v4t_plus_v6_m[] =
9807 -1, /* PRE_V4. */
9808 -1, /* V4. */
9809 T(V4T), /* V4T. */
9810 T(V5T), /* V5T. */
9811 T(V5TE), /* V5TE. */
9812 T(V5TEJ), /* V5TEJ. */
9813 T(V6), /* V6. */
9814 T(V6KZ), /* V6KZ. */
9815 T(V6T2), /* V6T2. */
9816 T(V6K), /* V6K. */
9817 T(V7), /* V7. */
9818 T(V6_M), /* V6_M. */
9819 T(V6S_M), /* V6S_M. */
9820 T(V7E_M), /* V7E_M. */
9821 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
9823 const int *comb[] =
9825 v6t2,
9826 v6k,
9828 v6_m,
9829 v6s_m,
9830 v7e_m,
9831 /* Pseudo-architecture. */
9832 v4t_plus_v6_m
9835 /* Check we've not got a higher architecture than we know about. */
9837 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
9839 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
9840 return -1;
9843 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9845 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9846 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9847 oldtag = T(V4T_PLUS_V6_M);
9849 /* And override the new tag if we have a Tag_also_compatible_with on the
9850 input. */
9852 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9853 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9854 newtag = T(V4T_PLUS_V6_M);
9856 tagl = (oldtag < newtag) ? oldtag : newtag;
9857 result = tagh = (oldtag > newtag) ? oldtag : newtag;
9859 /* Architectures before V6KZ add features monotonically. */
9860 if (tagh <= TAG_CPU_ARCH_V6KZ)
9861 return result;
9863 result = comb[tagh - T(V6T2)][tagl];
9865 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9866 as the canonical version. */
9867 if (result == T(V4T_PLUS_V6_M))
9869 result = T(V4T);
9870 *secondary_compat_out = T(V6_M);
9872 else
9873 *secondary_compat_out = -1;
9875 if (result == -1)
9877 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9878 ibfd, oldtag, newtag);
9879 return -1;
9882 return result;
9883 #undef T
9886 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9887 are conflicting attributes. */
9889 static bfd_boolean
9890 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9892 obj_attribute *in_attr;
9893 obj_attribute *out_attr;
9894 obj_attribute_list *in_list;
9895 obj_attribute_list *out_list;
9896 obj_attribute_list **out_listp;
9897 /* Some tags have 0 = don't care, 1 = strong requirement,
9898 2 = weak requirement. */
9899 static const int order_021[3] = {0, 2, 1};
9900 int i;
9901 bfd_boolean result = TRUE;
9903 /* Skip the linker stubs file. This preserves previous behavior
9904 of accepting unknown attributes in the first input file - but
9905 is that a bug? */
9906 if (ibfd->flags & BFD_LINKER_CREATED)
9907 return TRUE;
9909 if (!elf_known_obj_attributes_proc (obfd)[0].i)
9911 /* This is the first object. Copy the attributes. */
9912 _bfd_elf_copy_obj_attributes (ibfd, obfd);
9914 out_attr = elf_known_obj_attributes_proc (obfd);
9916 /* Use the Tag_null value to indicate the attributes have been
9917 initialized. */
9918 out_attr[0].i = 1;
9920 /* We do not output objects with Tag_MPextension_use_legacy - we move
9921 the attribute's value to Tag_MPextension_use. */
9922 if (out_attr[Tag_MPextension_use_legacy].i != 0)
9924 if (out_attr[Tag_MPextension_use].i != 0
9925 && out_attr[Tag_MPextension_use_legacy].i
9926 != out_attr[Tag_MPextension_use].i)
9928 _bfd_error_handler
9929 (_("Error: %B has both the current and legacy "
9930 "Tag_MPextension_use attributes"), ibfd);
9931 result = FALSE;
9934 out_attr[Tag_MPextension_use] =
9935 out_attr[Tag_MPextension_use_legacy];
9936 out_attr[Tag_MPextension_use_legacy].type = 0;
9937 out_attr[Tag_MPextension_use_legacy].i = 0;
9940 return result;
9943 in_attr = elf_known_obj_attributes_proc (ibfd);
9944 out_attr = elf_known_obj_attributes_proc (obfd);
9945 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9946 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9948 /* Ignore mismatches if the object doesn't use floating point. */
9949 if (out_attr[Tag_ABI_FP_number_model].i == 0)
9950 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9951 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9953 _bfd_error_handler
9954 (_("error: %B uses VFP register arguments, %B does not"),
9955 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
9956 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
9957 result = FALSE;
9961 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
9963 /* Merge this attribute with existing attributes. */
9964 switch (i)
9966 case Tag_CPU_raw_name:
9967 case Tag_CPU_name:
9968 /* These are merged after Tag_CPU_arch. */
9969 break;
9971 case Tag_ABI_optimization_goals:
9972 case Tag_ABI_FP_optimization_goals:
9973 /* Use the first value seen. */
9974 break;
9976 case Tag_CPU_arch:
9978 int secondary_compat = -1, secondary_compat_out = -1;
9979 unsigned int saved_out_attr = out_attr[i].i;
9980 static const char *name_table[] = {
9981 /* These aren't real CPU names, but we can't guess
9982 that from the architecture version alone. */
9983 "Pre v4",
9984 "ARM v4",
9985 "ARM v4T",
9986 "ARM v5T",
9987 "ARM v5TE",
9988 "ARM v5TEJ",
9989 "ARM v6",
9990 "ARM v6KZ",
9991 "ARM v6T2",
9992 "ARM v6K",
9993 "ARM v7",
9994 "ARM v6-M",
9995 "ARM v6S-M"
9998 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9999 secondary_compat = get_secondary_compatible_arch (ibfd);
10000 secondary_compat_out = get_secondary_compatible_arch (obfd);
10001 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
10002 &secondary_compat_out,
10003 in_attr[i].i,
10004 secondary_compat);
10005 set_secondary_compatible_arch (obfd, secondary_compat_out);
10007 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
10008 if (out_attr[i].i == saved_out_attr)
10009 ; /* Leave the names alone. */
10010 else if (out_attr[i].i == in_attr[i].i)
10012 /* The output architecture has been changed to match the
10013 input architecture. Use the input names. */
10014 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
10015 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
10016 : NULL;
10017 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
10018 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
10019 : NULL;
10021 else
10023 out_attr[Tag_CPU_name].s = NULL;
10024 out_attr[Tag_CPU_raw_name].s = NULL;
10027 /* If we still don't have a value for Tag_CPU_name,
10028 make one up now. Tag_CPU_raw_name remains blank. */
10029 if (out_attr[Tag_CPU_name].s == NULL
10030 && out_attr[i].i < ARRAY_SIZE (name_table))
10031 out_attr[Tag_CPU_name].s =
10032 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
10034 break;
10036 case Tag_ARM_ISA_use:
10037 case Tag_THUMB_ISA_use:
10038 case Tag_WMMX_arch:
10039 case Tag_Advanced_SIMD_arch:
10040 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
10041 case Tag_ABI_FP_rounding:
10042 case Tag_ABI_FP_exceptions:
10043 case Tag_ABI_FP_user_exceptions:
10044 case Tag_ABI_FP_number_model:
10045 case Tag_FP_HP_extension:
10046 case Tag_CPU_unaligned_access:
10047 case Tag_T2EE_use:
10048 case Tag_MPextension_use:
10049 /* Use the largest value specified. */
10050 if (in_attr[i].i > out_attr[i].i)
10051 out_attr[i].i = in_attr[i].i;
10052 break;
10054 case Tag_ABI_align_preserved:
10055 case Tag_ABI_PCS_RO_data:
10056 /* Use the smallest value specified. */
10057 if (in_attr[i].i < out_attr[i].i)
10058 out_attr[i].i = in_attr[i].i;
10059 break;
10061 case Tag_ABI_align_needed:
10062 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
10063 && (in_attr[Tag_ABI_align_preserved].i == 0
10064 || out_attr[Tag_ABI_align_preserved].i == 0))
10066 /* This error message should be enabled once all non-conformant
10067 binaries in the toolchain have had the attributes set
10068 properly.
10069 _bfd_error_handler
10070 (_("error: %B: 8-byte data alignment conflicts with %B"),
10071 obfd, ibfd);
10072 result = FALSE; */
10074 /* Fall through. */
10075 case Tag_ABI_FP_denormal:
10076 case Tag_ABI_PCS_GOT_use:
10077 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
10078 value if greater than 2 (for future-proofing). */
10079 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
10080 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
10081 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
10082 out_attr[i].i = in_attr[i].i;
10083 break;
10085 case Tag_Virtualization_use:
10086 /* The virtualization tag effectively stores two bits of
10087 information: the intended use of TrustZone (in bit 0), and the
10088 intended use of Virtualization (in bit 1). */
10089 if (out_attr[i].i == 0)
10090 out_attr[i].i = in_attr[i].i;
10091 else if (in_attr[i].i != 0
10092 && in_attr[i].i != out_attr[i].i)
10094 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
10095 out_attr[i].i = 3;
10096 else
10098 _bfd_error_handler
10099 (_("error: %B: unable to merge virtualization attributes "
10100 "with %B"),
10101 obfd, ibfd);
10102 result = FALSE;
10105 break;
10107 case Tag_CPU_arch_profile:
10108 if (out_attr[i].i != in_attr[i].i)
10110 /* 0 will merge with anything.
10111 'A' and 'S' merge to 'A'.
10112 'R' and 'S' merge to 'R'.
10113 'M' and 'A|R|S' is an error. */
10114 if (out_attr[i].i == 0
10115 || (out_attr[i].i == 'S'
10116 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
10117 out_attr[i].i = in_attr[i].i;
10118 else if (in_attr[i].i == 0
10119 || (in_attr[i].i == 'S'
10120 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
10121 ; /* Do nothing. */
10122 else
10124 _bfd_error_handler
10125 (_("error: %B: Conflicting architecture profiles %c/%c"),
10126 ibfd,
10127 in_attr[i].i ? in_attr[i].i : '0',
10128 out_attr[i].i ? out_attr[i].i : '0');
10129 result = FALSE;
10132 break;
10133 case Tag_FP_arch:
10135 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
10136 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
10137 when it's 0. It might mean absence of FP hardware if
10138 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
10140 static const struct
10142 int ver;
10143 int regs;
10144 } vfp_versions[7] =
10146 {0, 0},
10147 {1, 16},
10148 {2, 16},
10149 {3, 32},
10150 {3, 16},
10151 {4, 32},
10152 {4, 16}
10154 int ver;
10155 int regs;
10156 int newval;
10158 /* If the output has no requirement about FP hardware,
10159 follow the requirement of the input. */
10160 if (out_attr[i].i == 0)
10162 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
10163 out_attr[i].i = in_attr[i].i;
10164 out_attr[Tag_ABI_HardFP_use].i
10165 = in_attr[Tag_ABI_HardFP_use].i;
10166 break;
10168 /* If the input has no requirement about FP hardware, do
10169 nothing. */
10170 else if (in_attr[i].i == 0)
10172 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
10173 break;
10176 /* Both the input and the output have nonzero Tag_FP_arch.
10177 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
10179 /* If both the input and the output have zero Tag_ABI_HardFP_use,
10180 do nothing. */
10181 if (in_attr[Tag_ABI_HardFP_use].i == 0
10182 && out_attr[Tag_ABI_HardFP_use].i == 0)
10184 /* If the input and the output have different Tag_ABI_HardFP_use,
10185 the combination of them is 3 (SP & DP). */
10186 else if (in_attr[Tag_ABI_HardFP_use].i
10187 != out_attr[Tag_ABI_HardFP_use].i)
10188 out_attr[Tag_ABI_HardFP_use].i = 3;
10190 /* Now we can handle Tag_FP_arch. */
10192 /* Values greater than 6 aren't defined, so just pick the
10193 biggest */
10194 if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
10196 out_attr[i] = in_attr[i];
10197 break;
10199 /* The output uses the superset of input features
10200 (ISA version) and registers. */
10201 ver = vfp_versions[in_attr[i].i].ver;
10202 if (ver < vfp_versions[out_attr[i].i].ver)
10203 ver = vfp_versions[out_attr[i].i].ver;
10204 regs = vfp_versions[in_attr[i].i].regs;
10205 if (regs < vfp_versions[out_attr[i].i].regs)
10206 regs = vfp_versions[out_attr[i].i].regs;
10207 /* This assumes all possible supersets are also a valid
10208 options. */
10209 for (newval = 6; newval > 0; newval--)
10211 if (regs == vfp_versions[newval].regs
10212 && ver == vfp_versions[newval].ver)
10213 break;
10215 out_attr[i].i = newval;
10217 break;
10218 case Tag_PCS_config:
10219 if (out_attr[i].i == 0)
10220 out_attr[i].i = in_attr[i].i;
10221 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
10223 /* It's sometimes ok to mix different configs, so this is only
10224 a warning. */
10225 _bfd_error_handler
10226 (_("Warning: %B: Conflicting platform configuration"), ibfd);
10228 break;
10229 case Tag_ABI_PCS_R9_use:
10230 if (in_attr[i].i != out_attr[i].i
10231 && out_attr[i].i != AEABI_R9_unused
10232 && in_attr[i].i != AEABI_R9_unused)
10234 _bfd_error_handler
10235 (_("error: %B: Conflicting use of R9"), ibfd);
10236 result = FALSE;
10238 if (out_attr[i].i == AEABI_R9_unused)
10239 out_attr[i].i = in_attr[i].i;
10240 break;
10241 case Tag_ABI_PCS_RW_data:
10242 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
10243 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
10244 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
10246 _bfd_error_handler
10247 (_("error: %B: SB relative addressing conflicts with use of R9"),
10248 ibfd);
10249 result = FALSE;
10251 /* Use the smallest value specified. */
10252 if (in_attr[i].i < out_attr[i].i)
10253 out_attr[i].i = in_attr[i].i;
10254 break;
10255 case Tag_ABI_PCS_wchar_t:
10256 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
10257 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
10259 _bfd_error_handler
10260 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10261 ibfd, in_attr[i].i, out_attr[i].i);
10263 else if (in_attr[i].i && !out_attr[i].i)
10264 out_attr[i].i = in_attr[i].i;
10265 break;
10266 case Tag_ABI_enum_size:
10267 if (in_attr[i].i != AEABI_enum_unused)
10269 if (out_attr[i].i == AEABI_enum_unused
10270 || out_attr[i].i == AEABI_enum_forced_wide)
10272 /* The existing object is compatible with anything.
10273 Use whatever requirements the new object has. */
10274 out_attr[i].i = in_attr[i].i;
10276 else if (in_attr[i].i != AEABI_enum_forced_wide
10277 && out_attr[i].i != in_attr[i].i
10278 && !elf_arm_tdata (obfd)->no_enum_size_warning)
10280 static const char *aeabi_enum_names[] =
10281 { "", "variable-size", "32-bit", "" };
10282 const char *in_name =
10283 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10284 ? aeabi_enum_names[in_attr[i].i]
10285 : "<unknown>";
10286 const char *out_name =
10287 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10288 ? aeabi_enum_names[out_attr[i].i]
10289 : "<unknown>";
10290 _bfd_error_handler
10291 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
10292 ibfd, in_name, out_name);
10295 break;
10296 case Tag_ABI_VFP_args:
10297 /* Aready done. */
10298 break;
10299 case Tag_ABI_WMMX_args:
10300 if (in_attr[i].i != out_attr[i].i)
10302 _bfd_error_handler
10303 (_("error: %B uses iWMMXt register arguments, %B does not"),
10304 ibfd, obfd);
10305 result = FALSE;
10307 break;
10308 case Tag_compatibility:
10309 /* Merged in target-independent code. */
10310 break;
10311 case Tag_ABI_HardFP_use:
10312 /* This is handled along with Tag_FP_arch. */
10313 break;
10314 case Tag_ABI_FP_16bit_format:
10315 if (in_attr[i].i != 0 && out_attr[i].i != 0)
10317 if (in_attr[i].i != out_attr[i].i)
10319 _bfd_error_handler
10320 (_("error: fp16 format mismatch between %B and %B"),
10321 ibfd, obfd);
10322 result = FALSE;
10325 if (in_attr[i].i != 0)
10326 out_attr[i].i = in_attr[i].i;
10327 break;
10329 case Tag_DIV_use:
10330 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
10331 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10332 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10333 CPU. We will merge as follows: If the input attribute's value
10334 is one then the output attribute's value remains unchanged. If
10335 the input attribute's value is zero or two then if the output
10336 attribute's value is one the output value is set to the input
10337 value, otherwise the output value must be the same as the
10338 inputs. */
10339 if (in_attr[i].i != 1 && out_attr[i].i != 1)
10341 if (in_attr[i].i != out_attr[i].i)
10343 _bfd_error_handler
10344 (_("DIV usage mismatch between %B and %B"),
10345 ibfd, obfd);
10346 result = FALSE;
10350 if (in_attr[i].i != 1)
10351 out_attr[i].i = in_attr[i].i;
10353 break;
10355 case Tag_MPextension_use_legacy:
10356 /* We don't output objects with Tag_MPextension_use_legacy - we
10357 move the value to Tag_MPextension_use. */
10358 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
10360 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
10362 _bfd_error_handler
10363 (_("%B has has both the current and legacy "
10364 "Tag_MPextension_use attributes"),
10365 ibfd);
10366 result = FALSE;
10370 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
10371 out_attr[Tag_MPextension_use] = in_attr[i];
10373 break;
10375 case Tag_nodefaults:
10376 /* This tag is set if it exists, but the value is unused (and is
10377 typically zero). We don't actually need to do anything here -
10378 the merge happens automatically when the type flags are merged
10379 below. */
10380 break;
10381 case Tag_also_compatible_with:
10382 /* Already done in Tag_CPU_arch. */
10383 break;
10384 case Tag_conformance:
10385 /* Keep the attribute if it matches. Throw it away otherwise.
10386 No attribute means no claim to conform. */
10387 if (!in_attr[i].s || !out_attr[i].s
10388 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10389 out_attr[i].s = NULL;
10390 break;
10392 default:
10394 bfd *err_bfd = NULL;
10396 /* The "known_obj_attributes" table does contain some undefined
10397 attributes. Ensure that there are unused. */
10398 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
10399 err_bfd = obfd;
10400 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
10401 err_bfd = ibfd;
10403 if (err_bfd != NULL)
10405 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10406 if ((i & 127) < 64)
10408 _bfd_error_handler
10409 (_("%B: Unknown mandatory EABI object attribute %d"),
10410 err_bfd, i);
10411 bfd_set_error (bfd_error_bad_value);
10412 result = FALSE;
10414 else
10416 _bfd_error_handler
10417 (_("Warning: %B: Unknown EABI object attribute %d"),
10418 err_bfd, i);
10422 /* Only pass on attributes that match in both inputs. */
10423 if (in_attr[i].i != out_attr[i].i
10424 || in_attr[i].s != out_attr[i].s
10425 || (in_attr[i].s != NULL && out_attr[i].s != NULL
10426 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
10428 out_attr[i].i = 0;
10429 out_attr[i].s = NULL;
10434 /* If out_attr was copied from in_attr then it won't have a type yet. */
10435 if (in_attr[i].type && !out_attr[i].type)
10436 out_attr[i].type = in_attr[i].type;
10439 /* Merge Tag_compatibility attributes and any common GNU ones. */
10440 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
10441 return FALSE;
10443 /* Check for any attributes not known on ARM. */
10444 in_list = elf_other_obj_attributes_proc (ibfd);
10445 out_listp = &elf_other_obj_attributes_proc (obfd);
10446 out_list = *out_listp;
10448 for (; in_list || out_list; )
10450 bfd *err_bfd = NULL;
10451 int err_tag = 0;
10453 /* The tags for each list are in numerical order. */
10454 /* If the tags are equal, then merge. */
10455 if (out_list && (!in_list || in_list->tag > out_list->tag))
10457 /* This attribute only exists in obfd. We can't merge, and we don't
10458 know what the tag means, so delete it. */
10459 err_bfd = obfd;
10460 err_tag = out_list->tag;
10461 *out_listp = out_list->next;
10462 out_list = *out_listp;
10464 else if (in_list && (!out_list || in_list->tag < out_list->tag))
10466 /* This attribute only exists in ibfd. We can't merge, and we don't
10467 know what the tag means, so ignore it. */
10468 err_bfd = ibfd;
10469 err_tag = in_list->tag;
10470 in_list = in_list->next;
10472 else /* The tags are equal. */
10474 /* As present, all attributes in the list are unknown, and
10475 therefore can't be merged meaningfully. */
10476 err_bfd = obfd;
10477 err_tag = out_list->tag;
10479 /* Only pass on attributes that match in both inputs. */
10480 if (in_list->attr.i != out_list->attr.i
10481 || in_list->attr.s != out_list->attr.s
10482 || (in_list->attr.s && out_list->attr.s
10483 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
10485 /* No match. Delete the attribute. */
10486 *out_listp = out_list->next;
10487 out_list = *out_listp;
10489 else
10491 /* Matched. Keep the attribute and move to the next. */
10492 out_list = out_list->next;
10493 in_list = in_list->next;
10497 if (err_bfd)
10499 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10500 if ((err_tag & 127) < 64)
10502 _bfd_error_handler
10503 (_("%B: Unknown mandatory EABI object attribute %d"),
10504 err_bfd, err_tag);
10505 bfd_set_error (bfd_error_bad_value);
10506 result = FALSE;
10508 else
10510 _bfd_error_handler
10511 (_("Warning: %B: Unknown EABI object attribute %d"),
10512 err_bfd, err_tag);
10516 return result;
10520 /* Return TRUE if the two EABI versions are incompatible. */
10522 static bfd_boolean
10523 elf32_arm_versions_compatible (unsigned iver, unsigned over)
10525 /* v4 and v5 are the same spec before and after it was released,
10526 so allow mixing them. */
10527 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10528 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10529 return TRUE;
10531 return (iver == over);
10534 /* Merge backend specific data from an object file to the output
10535 object file when linking. */
10537 static bfd_boolean
10538 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
10540 /* Display the flags field. */
10542 static bfd_boolean
10543 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
10545 FILE * file = (FILE *) ptr;
10546 unsigned long flags;
10548 BFD_ASSERT (abfd != NULL && ptr != NULL);
10550 /* Print normal ELF private data. */
10551 _bfd_elf_print_private_bfd_data (abfd, ptr);
10553 flags = elf_elfheader (abfd)->e_flags;
10554 /* Ignore init flag - it may not be set, despite the flags field
10555 containing valid data. */
10557 /* xgettext:c-format */
10558 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10560 switch (EF_ARM_EABI_VERSION (flags))
10562 case EF_ARM_EABI_UNKNOWN:
10563 /* The following flag bits are GNU extensions and not part of the
10564 official ARM ELF extended ABI. Hence they are only decoded if
10565 the EABI version is not set. */
10566 if (flags & EF_ARM_INTERWORK)
10567 fprintf (file, _(" [interworking enabled]"));
10569 if (flags & EF_ARM_APCS_26)
10570 fprintf (file, " [APCS-26]");
10571 else
10572 fprintf (file, " [APCS-32]");
10574 if (flags & EF_ARM_VFP_FLOAT)
10575 fprintf (file, _(" [VFP float format]"));
10576 else if (flags & EF_ARM_MAVERICK_FLOAT)
10577 fprintf (file, _(" [Maverick float format]"));
10578 else
10579 fprintf (file, _(" [FPA float format]"));
10581 if (flags & EF_ARM_APCS_FLOAT)
10582 fprintf (file, _(" [floats passed in float registers]"));
10584 if (flags & EF_ARM_PIC)
10585 fprintf (file, _(" [position independent]"));
10587 if (flags & EF_ARM_NEW_ABI)
10588 fprintf (file, _(" [new ABI]"));
10590 if (flags & EF_ARM_OLD_ABI)
10591 fprintf (file, _(" [old ABI]"));
10593 if (flags & EF_ARM_SOFT_FLOAT)
10594 fprintf (file, _(" [software FP]"));
10596 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10597 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
10598 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10599 | EF_ARM_MAVERICK_FLOAT);
10600 break;
10602 case EF_ARM_EABI_VER1:
10603 fprintf (file, _(" [Version1 EABI]"));
10605 if (flags & EF_ARM_SYMSARESORTED)
10606 fprintf (file, _(" [sorted symbol table]"));
10607 else
10608 fprintf (file, _(" [unsorted symbol table]"));
10610 flags &= ~ EF_ARM_SYMSARESORTED;
10611 break;
10613 case EF_ARM_EABI_VER2:
10614 fprintf (file, _(" [Version2 EABI]"));
10616 if (flags & EF_ARM_SYMSARESORTED)
10617 fprintf (file, _(" [sorted symbol table]"));
10618 else
10619 fprintf (file, _(" [unsorted symbol table]"));
10621 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10622 fprintf (file, _(" [dynamic symbols use segment index]"));
10624 if (flags & EF_ARM_MAPSYMSFIRST)
10625 fprintf (file, _(" [mapping symbols precede others]"));
10627 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
10628 | EF_ARM_MAPSYMSFIRST);
10629 break;
10631 case EF_ARM_EABI_VER3:
10632 fprintf (file, _(" [Version3 EABI]"));
10633 break;
10635 case EF_ARM_EABI_VER4:
10636 fprintf (file, _(" [Version4 EABI]"));
10637 goto eabi;
10639 case EF_ARM_EABI_VER5:
10640 fprintf (file, _(" [Version5 EABI]"));
10641 eabi:
10642 if (flags & EF_ARM_BE8)
10643 fprintf (file, _(" [BE8]"));
10645 if (flags & EF_ARM_LE8)
10646 fprintf (file, _(" [LE8]"));
10648 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10649 break;
10651 default:
10652 fprintf (file, _(" <EABI version unrecognised>"));
10653 break;
10656 flags &= ~ EF_ARM_EABIMASK;
10658 if (flags & EF_ARM_RELEXEC)
10659 fprintf (file, _(" [relocatable executable]"));
10661 if (flags & EF_ARM_HASENTRY)
10662 fprintf (file, _(" [has entry point]"));
10664 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10666 if (flags)
10667 fprintf (file, _("<Unrecognised flag bits set>"));
10669 fputc ('\n', file);
10671 return TRUE;
10674 static int
10675 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
10677 switch (ELF_ST_TYPE (elf_sym->st_info))
10679 case STT_ARM_TFUNC:
10680 return ELF_ST_TYPE (elf_sym->st_info);
10682 case STT_ARM_16BIT:
10683 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10684 This allows us to distinguish between data used by Thumb instructions
10685 and non-data (which is probably code) inside Thumb regions of an
10686 executable. */
10687 if (type != STT_OBJECT && type != STT_TLS)
10688 return ELF_ST_TYPE (elf_sym->st_info);
10689 break;
10691 default:
10692 break;
10695 return type;
10698 static asection *
10699 elf32_arm_gc_mark_hook (asection *sec,
10700 struct bfd_link_info *info,
10701 Elf_Internal_Rela *rel,
10702 struct elf_link_hash_entry *h,
10703 Elf_Internal_Sym *sym)
10705 if (h != NULL)
10706 switch (ELF32_R_TYPE (rel->r_info))
10708 case R_ARM_GNU_VTINHERIT:
10709 case R_ARM_GNU_VTENTRY:
10710 return NULL;
10713 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10716 /* Update the got entry reference counts for the section being removed. */
10718 static bfd_boolean
10719 elf32_arm_gc_sweep_hook (bfd * abfd,
10720 struct bfd_link_info * info,
10721 asection * sec,
10722 const Elf_Internal_Rela * relocs)
10724 Elf_Internal_Shdr *symtab_hdr;
10725 struct elf_link_hash_entry **sym_hashes;
10726 bfd_signed_vma *local_got_refcounts;
10727 const Elf_Internal_Rela *rel, *relend;
10728 struct elf32_arm_link_hash_table * globals;
10730 if (info->relocatable)
10731 return TRUE;
10733 globals = elf32_arm_hash_table (info);
10734 if (globals == NULL)
10735 return FALSE;
10737 elf_section_data (sec)->local_dynrel = NULL;
10739 symtab_hdr = & elf_symtab_hdr (abfd);
10740 sym_hashes = elf_sym_hashes (abfd);
10741 local_got_refcounts = elf_local_got_refcounts (abfd);
10743 check_use_blx (globals);
10745 relend = relocs + sec->reloc_count;
10746 for (rel = relocs; rel < relend; rel++)
10748 unsigned long r_symndx;
10749 struct elf_link_hash_entry *h = NULL;
10750 int r_type;
10752 r_symndx = ELF32_R_SYM (rel->r_info);
10753 if (r_symndx >= symtab_hdr->sh_info)
10755 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10756 while (h->root.type == bfd_link_hash_indirect
10757 || h->root.type == bfd_link_hash_warning)
10758 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10761 r_type = ELF32_R_TYPE (rel->r_info);
10762 r_type = arm_real_reloc_type (globals, r_type);
10763 switch (r_type)
10765 case R_ARM_GOT32:
10766 case R_ARM_GOT_PREL:
10767 case R_ARM_TLS_GD32:
10768 case R_ARM_TLS_IE32:
10769 if (h != NULL)
10771 if (h->got.refcount > 0)
10772 h->got.refcount -= 1;
10774 else if (local_got_refcounts != NULL)
10776 if (local_got_refcounts[r_symndx] > 0)
10777 local_got_refcounts[r_symndx] -= 1;
10779 break;
10781 case R_ARM_TLS_LDM32:
10782 globals->tls_ldm_got.refcount -= 1;
10783 break;
10785 case R_ARM_ABS32:
10786 case R_ARM_ABS32_NOI:
10787 case R_ARM_REL32:
10788 case R_ARM_REL32_NOI:
10789 case R_ARM_PC24:
10790 case R_ARM_PLT32:
10791 case R_ARM_CALL:
10792 case R_ARM_JUMP24:
10793 case R_ARM_PREL31:
10794 case R_ARM_THM_CALL:
10795 case R_ARM_THM_JUMP24:
10796 case R_ARM_THM_JUMP19:
10797 case R_ARM_MOVW_ABS_NC:
10798 case R_ARM_MOVT_ABS:
10799 case R_ARM_MOVW_PREL_NC:
10800 case R_ARM_MOVT_PREL:
10801 case R_ARM_THM_MOVW_ABS_NC:
10802 case R_ARM_THM_MOVT_ABS:
10803 case R_ARM_THM_MOVW_PREL_NC:
10804 case R_ARM_THM_MOVT_PREL:
10805 /* Should the interworking branches be here also? */
10807 if (h != NULL)
10809 struct elf32_arm_link_hash_entry *eh;
10810 struct elf32_arm_relocs_copied **pp;
10811 struct elf32_arm_relocs_copied *p;
10813 eh = (struct elf32_arm_link_hash_entry *) h;
10815 if (h->plt.refcount > 0)
10817 h->plt.refcount -= 1;
10818 if (r_type == R_ARM_THM_CALL)
10819 eh->plt_maybe_thumb_refcount--;
10821 if (r_type == R_ARM_THM_JUMP24
10822 || r_type == R_ARM_THM_JUMP19)
10823 eh->plt_thumb_refcount--;
10826 if (r_type == R_ARM_ABS32
10827 || r_type == R_ARM_REL32
10828 || r_type == R_ARM_ABS32_NOI
10829 || r_type == R_ARM_REL32_NOI)
10831 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10832 pp = &p->next)
10833 if (p->section == sec)
10835 p->count -= 1;
10836 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10837 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
10838 p->pc_count -= 1;
10839 if (p->count == 0)
10840 *pp = p->next;
10841 break;
10845 break;
10847 default:
10848 break;
10852 return TRUE;
10855 /* Look through the relocs for a section during the first phase. */
10857 static bfd_boolean
10858 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10859 asection *sec, const Elf_Internal_Rela *relocs)
10861 Elf_Internal_Shdr *symtab_hdr;
10862 struct elf_link_hash_entry **sym_hashes;
10863 const Elf_Internal_Rela *rel;
10864 const Elf_Internal_Rela *rel_end;
10865 bfd *dynobj;
10866 asection *sreloc;
10867 struct elf32_arm_link_hash_table *htab;
10868 bfd_boolean needs_plt;
10869 unsigned long nsyms;
10871 if (info->relocatable)
10872 return TRUE;
10874 BFD_ASSERT (is_arm_elf (abfd));
10876 htab = elf32_arm_hash_table (info);
10877 if (htab == NULL)
10878 return FALSE;
10880 sreloc = NULL;
10882 /* Create dynamic sections for relocatable executables so that we can
10883 copy relocations. */
10884 if (htab->root.is_relocatable_executable
10885 && ! htab->root.dynamic_sections_created)
10887 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10888 return FALSE;
10891 dynobj = elf_hash_table (info)->dynobj;
10892 symtab_hdr = & elf_symtab_hdr (abfd);
10893 sym_hashes = elf_sym_hashes (abfd);
10894 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10896 rel_end = relocs + sec->reloc_count;
10897 for (rel = relocs; rel < rel_end; rel++)
10899 struct elf_link_hash_entry *h;
10900 struct elf32_arm_link_hash_entry *eh;
10901 unsigned long r_symndx;
10902 int r_type;
10904 r_symndx = ELF32_R_SYM (rel->r_info);
10905 r_type = ELF32_R_TYPE (rel->r_info);
10906 r_type = arm_real_reloc_type (htab, r_type);
10908 if (r_symndx >= nsyms
10909 /* PR 9934: It is possible to have relocations that do not
10910 refer to symbols, thus it is also possible to have an
10911 object file containing relocations but no symbol table. */
10912 && (r_symndx > STN_UNDEF || nsyms > 0))
10914 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
10915 r_symndx);
10916 return FALSE;
10919 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
10920 h = NULL;
10921 else
10923 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10924 while (h->root.type == bfd_link_hash_indirect
10925 || h->root.type == bfd_link_hash_warning)
10926 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10929 eh = (struct elf32_arm_link_hash_entry *) h;
10931 switch (r_type)
10933 case R_ARM_GOT32:
10934 case R_ARM_GOT_PREL:
10935 case R_ARM_TLS_GD32:
10936 case R_ARM_TLS_IE32:
10937 /* This symbol requires a global offset table entry. */
10939 int tls_type, old_tls_type;
10941 switch (r_type)
10943 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10944 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10945 default: tls_type = GOT_NORMAL; break;
10948 if (h != NULL)
10950 h->got.refcount++;
10951 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10953 else
10955 bfd_signed_vma *local_got_refcounts;
10957 /* This is a global offset table entry for a local symbol. */
10958 local_got_refcounts = elf_local_got_refcounts (abfd);
10959 if (local_got_refcounts == NULL)
10961 bfd_size_type size;
10963 size = symtab_hdr->sh_info;
10964 size *= (sizeof (bfd_signed_vma) + sizeof (char));
10965 local_got_refcounts = (bfd_signed_vma *)
10966 bfd_zalloc (abfd, size);
10967 if (local_got_refcounts == NULL)
10968 return FALSE;
10969 elf_local_got_refcounts (abfd) = local_got_refcounts;
10970 elf32_arm_local_got_tls_type (abfd)
10971 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10973 local_got_refcounts[r_symndx] += 1;
10974 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10977 /* We will already have issued an error message if there is a
10978 TLS / non-TLS mismatch, based on the symbol type. We don't
10979 support any linker relaxations. So just combine any TLS
10980 types needed. */
10981 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10982 && tls_type != GOT_NORMAL)
10983 tls_type |= old_tls_type;
10985 if (old_tls_type != tls_type)
10987 if (h != NULL)
10988 elf32_arm_hash_entry (h)->tls_type = tls_type;
10989 else
10990 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10993 /* Fall through. */
10995 case R_ARM_TLS_LDM32:
10996 if (r_type == R_ARM_TLS_LDM32)
10997 htab->tls_ldm_got.refcount++;
10998 /* Fall through. */
11000 case R_ARM_GOTOFF32:
11001 case R_ARM_GOTPC:
11002 if (htab->sgot == NULL)
11004 if (htab->root.dynobj == NULL)
11005 htab->root.dynobj = abfd;
11006 if (!create_got_section (htab->root.dynobj, info))
11007 return FALSE;
11009 break;
11011 case R_ARM_ABS12:
11012 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
11013 ldr __GOTT_INDEX__ offsets. */
11014 if (!htab->vxworks_p)
11015 break;
11016 /* Fall through. */
11018 case R_ARM_PC24:
11019 case R_ARM_PLT32:
11020 case R_ARM_CALL:
11021 case R_ARM_JUMP24:
11022 case R_ARM_PREL31:
11023 case R_ARM_THM_CALL:
11024 case R_ARM_THM_JUMP24:
11025 case R_ARM_THM_JUMP19:
11026 needs_plt = 1;
11027 goto normal_reloc;
11029 case R_ARM_MOVW_ABS_NC:
11030 case R_ARM_MOVT_ABS:
11031 case R_ARM_THM_MOVW_ABS_NC:
11032 case R_ARM_THM_MOVT_ABS:
11033 if (info->shared)
11035 (*_bfd_error_handler)
11036 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
11037 abfd, elf32_arm_howto_table_1[r_type].name,
11038 (h) ? h->root.root.string : "a local symbol");
11039 bfd_set_error (bfd_error_bad_value);
11040 return FALSE;
11043 /* Fall through. */
11044 case R_ARM_ABS32:
11045 case R_ARM_ABS32_NOI:
11046 case R_ARM_REL32:
11047 case R_ARM_REL32_NOI:
11048 case R_ARM_MOVW_PREL_NC:
11049 case R_ARM_MOVT_PREL:
11050 case R_ARM_THM_MOVW_PREL_NC:
11051 case R_ARM_THM_MOVT_PREL:
11052 needs_plt = 0;
11053 normal_reloc:
11055 /* Should the interworking branches be listed here? */
11056 if (h != NULL)
11058 /* If this reloc is in a read-only section, we might
11059 need a copy reloc. We can't check reliably at this
11060 stage whether the section is read-only, as input
11061 sections have not yet been mapped to output sections.
11062 Tentatively set the flag for now, and correct in
11063 adjust_dynamic_symbol. */
11064 if (!info->shared)
11065 h->non_got_ref = 1;
11067 /* We may need a .plt entry if the function this reloc
11068 refers to is in a different object. We can't tell for
11069 sure yet, because something later might force the
11070 symbol local. */
11071 if (needs_plt)
11072 h->needs_plt = 1;
11074 /* If we create a PLT entry, this relocation will reference
11075 it, even if it's an ABS32 relocation. */
11076 h->plt.refcount += 1;
11078 /* It's too early to use htab->use_blx here, so we have to
11079 record possible blx references separately from
11080 relocs that definitely need a thumb stub. */
11082 if (r_type == R_ARM_THM_CALL)
11083 eh->plt_maybe_thumb_refcount += 1;
11085 if (r_type == R_ARM_THM_JUMP24
11086 || r_type == R_ARM_THM_JUMP19)
11087 eh->plt_thumb_refcount += 1;
11090 /* If we are creating a shared library or relocatable executable,
11091 and this is a reloc against a global symbol, or a non PC
11092 relative reloc against a local symbol, then we need to copy
11093 the reloc into the shared library. However, if we are linking
11094 with -Bsymbolic, we do not need to copy a reloc against a
11095 global symbol which is defined in an object we are
11096 including in the link (i.e., DEF_REGULAR is set). At
11097 this point we have not seen all the input files, so it is
11098 possible that DEF_REGULAR is not set now but will be set
11099 later (it is never cleared). We account for that
11100 possibility below by storing information in the
11101 relocs_copied field of the hash table entry. */
11102 if ((info->shared || htab->root.is_relocatable_executable)
11103 && (sec->flags & SEC_ALLOC) != 0
11104 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
11105 || (h != NULL && ! h->needs_plt
11106 && (! info->symbolic || ! h->def_regular))))
11108 struct elf32_arm_relocs_copied *p, **head;
11110 /* When creating a shared object, we must copy these
11111 reloc types into the output file. We create a reloc
11112 section in dynobj and make room for this reloc. */
11113 if (sreloc == NULL)
11115 sreloc = _bfd_elf_make_dynamic_reloc_section
11116 (sec, dynobj, 2, abfd, ! htab->use_rel);
11118 if (sreloc == NULL)
11119 return FALSE;
11121 /* BPABI objects never have dynamic relocations mapped. */
11122 if (htab->symbian_p)
11124 flagword flags;
11126 flags = bfd_get_section_flags (dynobj, sreloc);
11127 flags &= ~(SEC_LOAD | SEC_ALLOC);
11128 bfd_set_section_flags (dynobj, sreloc, flags);
11132 /* If this is a global symbol, we count the number of
11133 relocations we need for this symbol. */
11134 if (h != NULL)
11136 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
11138 else
11140 /* Track dynamic relocs needed for local syms too.
11141 We really need local syms available to do this
11142 easily. Oh well. */
11143 asection *s;
11144 void *vpp;
11145 Elf_Internal_Sym *isym;
11147 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
11148 abfd, r_symndx);
11149 if (isym == NULL)
11150 return FALSE;
11152 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
11153 if (s == NULL)
11154 s = sec;
11156 vpp = &elf_section_data (s)->local_dynrel;
11157 head = (struct elf32_arm_relocs_copied **) vpp;
11160 p = *head;
11161 if (p == NULL || p->section != sec)
11163 bfd_size_type amt = sizeof *p;
11165 p = (struct elf32_arm_relocs_copied *)
11166 bfd_alloc (htab->root.dynobj, amt);
11167 if (p == NULL)
11168 return FALSE;
11169 p->next = *head;
11170 *head = p;
11171 p->section = sec;
11172 p->count = 0;
11173 p->pc_count = 0;
11176 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
11177 p->pc_count += 1;
11178 p->count += 1;
11180 break;
11182 /* This relocation describes the C++ object vtable hierarchy.
11183 Reconstruct it for later use during GC. */
11184 case R_ARM_GNU_VTINHERIT:
11185 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
11186 return FALSE;
11187 break;
11189 /* This relocation describes which C++ vtable entries are actually
11190 used. Record for later use during GC. */
11191 case R_ARM_GNU_VTENTRY:
11192 BFD_ASSERT (h != NULL);
11193 if (h != NULL
11194 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
11195 return FALSE;
11196 break;
11200 return TRUE;
11203 /* Unwinding tables are not referenced directly. This pass marks them as
11204 required if the corresponding code section is marked. */
11206 static bfd_boolean
11207 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
11208 elf_gc_mark_hook_fn gc_mark_hook)
11210 bfd *sub;
11211 Elf_Internal_Shdr **elf_shdrp;
11212 bfd_boolean again;
11214 /* Marking EH data may cause additional code sections to be marked,
11215 requiring multiple passes. */
11216 again = TRUE;
11217 while (again)
11219 again = FALSE;
11220 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11222 asection *o;
11224 if (! is_arm_elf (sub))
11225 continue;
11227 elf_shdrp = elf_elfsections (sub);
11228 for (o = sub->sections; o != NULL; o = o->next)
11230 Elf_Internal_Shdr *hdr;
11232 hdr = &elf_section_data (o)->this_hdr;
11233 if (hdr->sh_type == SHT_ARM_EXIDX
11234 && hdr->sh_link
11235 && hdr->sh_link < elf_numsections (sub)
11236 && !o->gc_mark
11237 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
11239 again = TRUE;
11240 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11241 return FALSE;
11247 return TRUE;
11250 /* Treat mapping symbols as special target symbols. */
11252 static bfd_boolean
11253 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
11255 return bfd_is_arm_special_symbol_name (sym->name,
11256 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
11259 /* This is a copy of elf_find_function() from elf.c except that
11260 ARM mapping symbols are ignored when looking for function names
11261 and STT_ARM_TFUNC is considered to a function type. */
11263 static bfd_boolean
11264 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
11265 asection * section,
11266 asymbol ** symbols,
11267 bfd_vma offset,
11268 const char ** filename_ptr,
11269 const char ** functionname_ptr)
11271 const char * filename = NULL;
11272 asymbol * func = NULL;
11273 bfd_vma low_func = 0;
11274 asymbol ** p;
11276 for (p = symbols; *p != NULL; p++)
11278 elf_symbol_type *q;
11280 q = (elf_symbol_type *) *p;
11282 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
11284 default:
11285 break;
11286 case STT_FILE:
11287 filename = bfd_asymbol_name (&q->symbol);
11288 break;
11289 case STT_FUNC:
11290 case STT_ARM_TFUNC:
11291 case STT_NOTYPE:
11292 /* Skip mapping symbols. */
11293 if ((q->symbol.flags & BSF_LOCAL)
11294 && bfd_is_arm_special_symbol_name (q->symbol.name,
11295 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
11296 continue;
11297 /* Fall through. */
11298 if (bfd_get_section (&q->symbol) == section
11299 && q->symbol.value >= low_func
11300 && q->symbol.value <= offset)
11302 func = (asymbol *) q;
11303 low_func = q->symbol.value;
11305 break;
11309 if (func == NULL)
11310 return FALSE;
11312 if (filename_ptr)
11313 *filename_ptr = filename;
11314 if (functionname_ptr)
11315 *functionname_ptr = bfd_asymbol_name (func);
11317 return TRUE;
11321 /* Find the nearest line to a particular section and offset, for error
11322 reporting. This code is a duplicate of the code in elf.c, except
11323 that it uses arm_elf_find_function. */
11325 static bfd_boolean
11326 elf32_arm_find_nearest_line (bfd * abfd,
11327 asection * section,
11328 asymbol ** symbols,
11329 bfd_vma offset,
11330 const char ** filename_ptr,
11331 const char ** functionname_ptr,
11332 unsigned int * line_ptr)
11334 bfd_boolean found = FALSE;
11336 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11338 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11339 filename_ptr, functionname_ptr,
11340 line_ptr, 0,
11341 & elf_tdata (abfd)->dwarf2_find_line_info))
11343 if (!*functionname_ptr)
11344 arm_elf_find_function (abfd, section, symbols, offset,
11345 *filename_ptr ? NULL : filename_ptr,
11346 functionname_ptr);
11348 return TRUE;
11351 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11352 & found, filename_ptr,
11353 functionname_ptr, line_ptr,
11354 & elf_tdata (abfd)->line_info))
11355 return FALSE;
11357 if (found && (*functionname_ptr || *line_ptr))
11358 return TRUE;
11360 if (symbols == NULL)
11361 return FALSE;
11363 if (! arm_elf_find_function (abfd, section, symbols, offset,
11364 filename_ptr, functionname_ptr))
11365 return FALSE;
11367 *line_ptr = 0;
11368 return TRUE;
11371 static bfd_boolean
11372 elf32_arm_find_inliner_info (bfd * abfd,
11373 const char ** filename_ptr,
11374 const char ** functionname_ptr,
11375 unsigned int * line_ptr)
11377 bfd_boolean found;
11378 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11379 functionname_ptr, line_ptr,
11380 & elf_tdata (abfd)->dwarf2_find_line_info);
11381 return found;
11384 /* Adjust a symbol defined by a dynamic object and referenced by a
11385 regular object. The current definition is in some section of the
11386 dynamic object, but we're not including those sections. We have to
11387 change the definition to something the rest of the link can
11388 understand. */
11390 static bfd_boolean
11391 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11392 struct elf_link_hash_entry * h)
11394 bfd * dynobj;
11395 asection * s;
11396 struct elf32_arm_link_hash_entry * eh;
11397 struct elf32_arm_link_hash_table *globals;
11399 globals = elf32_arm_hash_table (info);
11400 if (globals == NULL)
11401 return FALSE;
11403 dynobj = elf_hash_table (info)->dynobj;
11405 /* Make sure we know what is going on here. */
11406 BFD_ASSERT (dynobj != NULL
11407 && (h->needs_plt
11408 || h->u.weakdef != NULL
11409 || (h->def_dynamic
11410 && h->ref_regular
11411 && !h->def_regular)));
11413 eh = (struct elf32_arm_link_hash_entry *) h;
11415 /* If this is a function, put it in the procedure linkage table. We
11416 will fill in the contents of the procedure linkage table later,
11417 when we know the address of the .got section. */
11418 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
11419 || h->needs_plt)
11421 if (h->plt.refcount <= 0
11422 || SYMBOL_CALLS_LOCAL (info, h)
11423 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11424 && h->root.type == bfd_link_hash_undefweak))
11426 /* This case can occur if we saw a PLT32 reloc in an input
11427 file, but the symbol was never referred to by a dynamic
11428 object, or if all references were garbage collected. In
11429 such a case, we don't actually need to build a procedure
11430 linkage table, and we can just do a PC24 reloc instead. */
11431 h->plt.offset = (bfd_vma) -1;
11432 eh->plt_thumb_refcount = 0;
11433 eh->plt_maybe_thumb_refcount = 0;
11434 h->needs_plt = 0;
11437 return TRUE;
11439 else
11441 /* It's possible that we incorrectly decided a .plt reloc was
11442 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11443 in check_relocs. We can't decide accurately between function
11444 and non-function syms in check-relocs; Objects loaded later in
11445 the link may change h->type. So fix it now. */
11446 h->plt.offset = (bfd_vma) -1;
11447 eh->plt_thumb_refcount = 0;
11448 eh->plt_maybe_thumb_refcount = 0;
11451 /* If this is a weak symbol, and there is a real definition, the
11452 processor independent code will have arranged for us to see the
11453 real definition first, and we can just use the same value. */
11454 if (h->u.weakdef != NULL)
11456 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11457 || h->u.weakdef->root.type == bfd_link_hash_defweak);
11458 h->root.u.def.section = h->u.weakdef->root.u.def.section;
11459 h->root.u.def.value = h->u.weakdef->root.u.def.value;
11460 return TRUE;
11463 /* If there are no non-GOT references, we do not need a copy
11464 relocation. */
11465 if (!h->non_got_ref)
11466 return TRUE;
11468 /* This is a reference to a symbol defined by a dynamic object which
11469 is not a function. */
11471 /* If we are creating a shared library, we must presume that the
11472 only references to the symbol are via the global offset table.
11473 For such cases we need not do anything here; the relocations will
11474 be handled correctly by relocate_section. Relocatable executables
11475 can reference data in shared objects directly, so we don't need to
11476 do anything here. */
11477 if (info->shared || globals->root.is_relocatable_executable)
11478 return TRUE;
11480 if (h->size == 0)
11482 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11483 h->root.root.string);
11484 return TRUE;
11487 /* We must allocate the symbol in our .dynbss section, which will
11488 become part of the .bss section of the executable. There will be
11489 an entry for this symbol in the .dynsym section. The dynamic
11490 object will contain position independent code, so all references
11491 from the dynamic object to this symbol will go through the global
11492 offset table. The dynamic linker will use the .dynsym entry to
11493 determine the address it must put in the global offset table, so
11494 both the dynamic object and the regular object will refer to the
11495 same memory location for the variable. */
11496 s = bfd_get_section_by_name (dynobj, ".dynbss");
11497 BFD_ASSERT (s != NULL);
11499 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11500 copy the initial value out of the dynamic object and into the
11501 runtime process image. We need to remember the offset into the
11502 .rel(a).bss section we are going to use. */
11503 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11505 asection *srel;
11507 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
11508 BFD_ASSERT (srel != NULL);
11509 srel->size += RELOC_SIZE (globals);
11510 h->needs_copy = 1;
11513 return _bfd_elf_adjust_dynamic_copy (h, s);
11516 /* Allocate space in .plt, .got and associated reloc sections for
11517 dynamic relocs. */
11519 static bfd_boolean
11520 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
11522 struct bfd_link_info *info;
11523 struct elf32_arm_link_hash_table *htab;
11524 struct elf32_arm_link_hash_entry *eh;
11525 struct elf32_arm_relocs_copied *p;
11526 bfd_signed_vma thumb_refs;
11528 eh = (struct elf32_arm_link_hash_entry *) h;
11530 if (h->root.type == bfd_link_hash_indirect)
11531 return TRUE;
11533 if (h->root.type == bfd_link_hash_warning)
11534 /* When warning symbols are created, they **replace** the "real"
11535 entry in the hash table, thus we never get to see the real
11536 symbol in a hash traversal. So look at it now. */
11537 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11539 info = (struct bfd_link_info *) inf;
11540 htab = elf32_arm_hash_table (info);
11541 if (htab == NULL)
11542 return FALSE;
11544 if (htab->root.dynamic_sections_created
11545 && h->plt.refcount > 0)
11547 /* Make sure this symbol is output as a dynamic symbol.
11548 Undefined weak syms won't yet be marked as dynamic. */
11549 if (h->dynindx == -1
11550 && !h->forced_local)
11552 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11553 return FALSE;
11556 if (info->shared
11557 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
11559 asection *s = htab->splt;
11561 /* If this is the first .plt entry, make room for the special
11562 first entry. */
11563 if (s->size == 0)
11564 s->size += htab->plt_header_size;
11566 h->plt.offset = s->size;
11568 /* If we will insert a Thumb trampoline before this PLT, leave room
11569 for it. */
11570 thumb_refs = eh->plt_thumb_refcount;
11571 if (!htab->use_blx)
11572 thumb_refs += eh->plt_maybe_thumb_refcount;
11574 if (thumb_refs > 0)
11576 h->plt.offset += PLT_THUMB_STUB_SIZE;
11577 s->size += PLT_THUMB_STUB_SIZE;
11580 /* If this symbol is not defined in a regular file, and we are
11581 not generating a shared library, then set the symbol to this
11582 location in the .plt. This is required to make function
11583 pointers compare as equal between the normal executable and
11584 the shared library. */
11585 if (! info->shared
11586 && !h->def_regular)
11588 h->root.u.def.section = s;
11589 h->root.u.def.value = h->plt.offset;
11591 /* Make sure the function is not marked as Thumb, in case
11592 it is the target of an ABS32 relocation, which will
11593 point to the PLT entry. */
11594 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11595 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11598 /* Make room for this entry. */
11599 s->size += htab->plt_entry_size;
11601 if (!htab->symbian_p)
11603 /* We also need to make an entry in the .got.plt section, which
11604 will be placed in the .got section by the linker script. */
11605 eh->plt_got_offset = htab->sgotplt->size;
11606 htab->sgotplt->size += 4;
11609 /* We also need to make an entry in the .rel(a).plt section. */
11610 htab->srelplt->size += RELOC_SIZE (htab);
11612 /* VxWorks executables have a second set of relocations for
11613 each PLT entry. They go in a separate relocation section,
11614 which is processed by the kernel loader. */
11615 if (htab->vxworks_p && !info->shared)
11617 /* There is a relocation for the initial PLT entry:
11618 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11619 if (h->plt.offset == htab->plt_header_size)
11620 htab->srelplt2->size += RELOC_SIZE (htab);
11622 /* There are two extra relocations for each subsequent
11623 PLT entry: an R_ARM_32 relocation for the GOT entry,
11624 and an R_ARM_32 relocation for the PLT entry. */
11625 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11628 else
11630 h->plt.offset = (bfd_vma) -1;
11631 h->needs_plt = 0;
11634 else
11636 h->plt.offset = (bfd_vma) -1;
11637 h->needs_plt = 0;
11640 if (h->got.refcount > 0)
11642 asection *s;
11643 bfd_boolean dyn;
11644 int tls_type = elf32_arm_hash_entry (h)->tls_type;
11645 int indx;
11647 /* Make sure this symbol is output as a dynamic symbol.
11648 Undefined weak syms won't yet be marked as dynamic. */
11649 if (h->dynindx == -1
11650 && !h->forced_local)
11652 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11653 return FALSE;
11656 if (!htab->symbian_p)
11658 s = htab->sgot;
11659 h->got.offset = s->size;
11661 if (tls_type == GOT_UNKNOWN)
11662 abort ();
11664 if (tls_type == GOT_NORMAL)
11665 /* Non-TLS symbols need one GOT slot. */
11666 s->size += 4;
11667 else
11669 if (tls_type & GOT_TLS_GD)
11670 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11671 s->size += 8;
11672 if (tls_type & GOT_TLS_IE)
11673 /* R_ARM_TLS_IE32 needs one GOT slot. */
11674 s->size += 4;
11677 dyn = htab->root.dynamic_sections_created;
11679 indx = 0;
11680 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11681 && (!info->shared
11682 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11683 indx = h->dynindx;
11685 if (tls_type != GOT_NORMAL
11686 && (info->shared || indx != 0)
11687 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11688 || h->root.type != bfd_link_hash_undefweak))
11690 if (tls_type & GOT_TLS_IE)
11691 htab->srelgot->size += RELOC_SIZE (htab);
11693 if (tls_type & GOT_TLS_GD)
11694 htab->srelgot->size += RELOC_SIZE (htab);
11696 if ((tls_type & GOT_TLS_GD) && indx != 0)
11697 htab->srelgot->size += RELOC_SIZE (htab);
11699 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11700 || h->root.type != bfd_link_hash_undefweak)
11701 && (info->shared
11702 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
11703 htab->srelgot->size += RELOC_SIZE (htab);
11706 else
11707 h->got.offset = (bfd_vma) -1;
11709 /* Allocate stubs for exported Thumb functions on v4t. */
11710 if (!htab->use_blx && h->dynindx != -1
11711 && h->def_regular
11712 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11713 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11715 struct elf_link_hash_entry * th;
11716 struct bfd_link_hash_entry * bh;
11717 struct elf_link_hash_entry * myh;
11718 char name[1024];
11719 asection *s;
11720 bh = NULL;
11721 /* Create a new symbol to regist the real location of the function. */
11722 s = h->root.u.def.section;
11723 sprintf (name, "__real_%s", h->root.root.string);
11724 _bfd_generic_link_add_one_symbol (info, s->owner,
11725 name, BSF_GLOBAL, s,
11726 h->root.u.def.value,
11727 NULL, TRUE, FALSE, &bh);
11729 myh = (struct elf_link_hash_entry *) bh;
11730 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11731 myh->forced_local = 1;
11732 eh->export_glue = myh;
11733 th = record_arm_to_thumb_glue (info, h);
11734 /* Point the symbol at the stub. */
11735 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11736 h->root.u.def.section = th->root.u.def.section;
11737 h->root.u.def.value = th->root.u.def.value & ~1;
11740 if (eh->relocs_copied == NULL)
11741 return TRUE;
11743 /* In the shared -Bsymbolic case, discard space allocated for
11744 dynamic pc-relative relocs against symbols which turn out to be
11745 defined in regular objects. For the normal shared case, discard
11746 space for pc-relative relocs that have become local due to symbol
11747 visibility changes. */
11749 if (info->shared || htab->root.is_relocatable_executable)
11751 /* The only relocs that use pc_count are R_ARM_REL32 and
11752 R_ARM_REL32_NOI, which will appear on something like
11753 ".long foo - .". We want calls to protected symbols to resolve
11754 directly to the function rather than going via the plt. If people
11755 want function pointer comparisons to work as expected then they
11756 should avoid writing assembly like ".long foo - .". */
11757 if (SYMBOL_CALLS_LOCAL (info, h))
11759 struct elf32_arm_relocs_copied **pp;
11761 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11763 p->count -= p->pc_count;
11764 p->pc_count = 0;
11765 if (p->count == 0)
11766 *pp = p->next;
11767 else
11768 pp = &p->next;
11772 if (htab->vxworks_p)
11774 struct elf32_arm_relocs_copied **pp;
11776 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11778 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11779 *pp = p->next;
11780 else
11781 pp = &p->next;
11785 /* Also discard relocs on undefined weak syms with non-default
11786 visibility. */
11787 if (eh->relocs_copied != NULL
11788 && h->root.type == bfd_link_hash_undefweak)
11790 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11791 eh->relocs_copied = NULL;
11793 /* Make sure undefined weak symbols are output as a dynamic
11794 symbol in PIEs. */
11795 else if (h->dynindx == -1
11796 && !h->forced_local)
11798 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11799 return FALSE;
11803 else if (htab->root.is_relocatable_executable && h->dynindx == -1
11804 && h->root.type == bfd_link_hash_new)
11806 /* Output absolute symbols so that we can create relocations
11807 against them. For normal symbols we output a relocation
11808 against the section that contains them. */
11809 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11810 return FALSE;
11814 else
11816 /* For the non-shared case, discard space for relocs against
11817 symbols which turn out to need copy relocs or are not
11818 dynamic. */
11820 if (!h->non_got_ref
11821 && ((h->def_dynamic
11822 && !h->def_regular)
11823 || (htab->root.dynamic_sections_created
11824 && (h->root.type == bfd_link_hash_undefweak
11825 || h->root.type == bfd_link_hash_undefined))))
11827 /* Make sure this symbol is output as a dynamic symbol.
11828 Undefined weak syms won't yet be marked as dynamic. */
11829 if (h->dynindx == -1
11830 && !h->forced_local)
11832 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11833 return FALSE;
11836 /* If that succeeded, we know we'll be keeping all the
11837 relocs. */
11838 if (h->dynindx != -1)
11839 goto keep;
11842 eh->relocs_copied = NULL;
11844 keep: ;
11847 /* Finally, allocate space. */
11848 for (p = eh->relocs_copied; p != NULL; p = p->next)
11850 asection *sreloc = elf_section_data (p->section)->sreloc;
11851 sreloc->size += p->count * RELOC_SIZE (htab);
11854 return TRUE;
11857 /* Find any dynamic relocs that apply to read-only sections. */
11859 static bfd_boolean
11860 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
11862 struct elf32_arm_link_hash_entry * eh;
11863 struct elf32_arm_relocs_copied * p;
11865 if (h->root.type == bfd_link_hash_warning)
11866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11868 eh = (struct elf32_arm_link_hash_entry *) h;
11869 for (p = eh->relocs_copied; p != NULL; p = p->next)
11871 asection *s = p->section;
11873 if (s != NULL && (s->flags & SEC_READONLY) != 0)
11875 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11877 info->flags |= DF_TEXTREL;
11879 /* Not an error, just cut short the traversal. */
11880 return FALSE;
11883 return TRUE;
11886 void
11887 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11888 int byteswap_code)
11890 struct elf32_arm_link_hash_table *globals;
11892 globals = elf32_arm_hash_table (info);
11893 if (globals == NULL)
11894 return;
11896 globals->byteswap_code = byteswap_code;
11899 /* Set the sizes of the dynamic sections. */
11901 static bfd_boolean
11902 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11903 struct bfd_link_info * info)
11905 bfd * dynobj;
11906 asection * s;
11907 bfd_boolean plt;
11908 bfd_boolean relocs;
11909 bfd *ibfd;
11910 struct elf32_arm_link_hash_table *htab;
11912 htab = elf32_arm_hash_table (info);
11913 if (htab == NULL)
11914 return FALSE;
11916 dynobj = elf_hash_table (info)->dynobj;
11917 BFD_ASSERT (dynobj != NULL);
11918 check_use_blx (htab);
11920 if (elf_hash_table (info)->dynamic_sections_created)
11922 /* Set the contents of the .interp section to the interpreter. */
11923 if (info->executable)
11925 s = bfd_get_section_by_name (dynobj, ".interp");
11926 BFD_ASSERT (s != NULL);
11927 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
11928 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11932 /* Set up .got offsets for local syms, and space for local dynamic
11933 relocs. */
11934 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11936 bfd_signed_vma *local_got;
11937 bfd_signed_vma *end_local_got;
11938 char *local_tls_type;
11939 bfd_size_type locsymcount;
11940 Elf_Internal_Shdr *symtab_hdr;
11941 asection *srel;
11942 bfd_boolean is_vxworks = htab->vxworks_p;
11944 if (! is_arm_elf (ibfd))
11945 continue;
11947 for (s = ibfd->sections; s != NULL; s = s->next)
11949 struct elf32_arm_relocs_copied *p;
11951 for (p = (struct elf32_arm_relocs_copied *)
11952 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
11954 if (!bfd_is_abs_section (p->section)
11955 && bfd_is_abs_section (p->section->output_section))
11957 /* Input section has been discarded, either because
11958 it is a copy of a linkonce section or due to
11959 linker script /DISCARD/, so we'll be discarding
11960 the relocs too. */
11962 else if (is_vxworks
11963 && strcmp (p->section->output_section->name,
11964 ".tls_vars") == 0)
11966 /* Relocations in vxworks .tls_vars sections are
11967 handled specially by the loader. */
11969 else if (p->count != 0)
11971 srel = elf_section_data (p->section)->sreloc;
11972 srel->size += p->count * RELOC_SIZE (htab);
11973 if ((p->section->output_section->flags & SEC_READONLY) != 0)
11974 info->flags |= DF_TEXTREL;
11979 local_got = elf_local_got_refcounts (ibfd);
11980 if (!local_got)
11981 continue;
11983 symtab_hdr = & elf_symtab_hdr (ibfd);
11984 locsymcount = symtab_hdr->sh_info;
11985 end_local_got = local_got + locsymcount;
11986 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
11987 s = htab->sgot;
11988 srel = htab->srelgot;
11989 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11991 if (*local_got > 0)
11993 *local_got = s->size;
11994 if (*local_tls_type & GOT_TLS_GD)
11995 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11996 s->size += 8;
11997 if (*local_tls_type & GOT_TLS_IE)
11998 s->size += 4;
11999 if (*local_tls_type == GOT_NORMAL)
12000 s->size += 4;
12002 if (info->shared || *local_tls_type == GOT_TLS_GD)
12003 srel->size += RELOC_SIZE (htab);
12005 else
12006 *local_got = (bfd_vma) -1;
12010 if (htab->tls_ldm_got.refcount > 0)
12012 /* Allocate two GOT entries and one dynamic relocation (if necessary)
12013 for R_ARM_TLS_LDM32 relocations. */
12014 htab->tls_ldm_got.offset = htab->sgot->size;
12015 htab->sgot->size += 8;
12016 if (info->shared)
12017 htab->srelgot->size += RELOC_SIZE (htab);
12019 else
12020 htab->tls_ldm_got.offset = -1;
12022 /* Allocate global sym .plt and .got entries, and space for global
12023 sym dynamic relocs. */
12024 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
12026 /* Here we rummage through the found bfds to collect glue information. */
12027 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
12029 if (! is_arm_elf (ibfd))
12030 continue;
12032 /* Initialise mapping tables for code/data. */
12033 bfd_elf32_arm_init_maps (ibfd);
12035 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
12036 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
12037 /* xgettext:c-format */
12038 _bfd_error_handler (_("Errors encountered processing file %s"),
12039 ibfd->filename);
12042 /* Allocate space for the glue sections now that we've sized them. */
12043 bfd_elf32_arm_allocate_interworking_sections (info);
12045 /* The check_relocs and adjust_dynamic_symbol entry points have
12046 determined the sizes of the various dynamic sections. Allocate
12047 memory for them. */
12048 plt = FALSE;
12049 relocs = FALSE;
12050 for (s = dynobj->sections; s != NULL; s = s->next)
12052 const char * name;
12054 if ((s->flags & SEC_LINKER_CREATED) == 0)
12055 continue;
12057 /* It's OK to base decisions on the section name, because none
12058 of the dynobj section names depend upon the input files. */
12059 name = bfd_get_section_name (dynobj, s);
12061 if (strcmp (name, ".plt") == 0)
12063 /* Remember whether there is a PLT. */
12064 plt = s->size != 0;
12066 else if (CONST_STRNEQ (name, ".rel"))
12068 if (s->size != 0)
12070 /* Remember whether there are any reloc sections other
12071 than .rel(a).plt and .rela.plt.unloaded. */
12072 if (s != htab->srelplt && s != htab->srelplt2)
12073 relocs = TRUE;
12075 /* We use the reloc_count field as a counter if we need
12076 to copy relocs into the output file. */
12077 s->reloc_count = 0;
12080 else if (! CONST_STRNEQ (name, ".got")
12081 && strcmp (name, ".dynbss") != 0)
12083 /* It's not one of our sections, so don't allocate space. */
12084 continue;
12087 if (s->size == 0)
12089 /* If we don't need this section, strip it from the
12090 output file. This is mostly to handle .rel(a).bss and
12091 .rel(a).plt. We must create both sections in
12092 create_dynamic_sections, because they must be created
12093 before the linker maps input sections to output
12094 sections. The linker does that before
12095 adjust_dynamic_symbol is called, and it is that
12096 function which decides whether anything needs to go
12097 into these sections. */
12098 s->flags |= SEC_EXCLUDE;
12099 continue;
12102 if ((s->flags & SEC_HAS_CONTENTS) == 0)
12103 continue;
12105 /* Allocate memory for the section contents. */
12106 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
12107 if (s->contents == NULL)
12108 return FALSE;
12111 if (elf_hash_table (info)->dynamic_sections_created)
12113 /* Add some entries to the .dynamic section. We fill in the
12114 values later, in elf32_arm_finish_dynamic_sections, but we
12115 must add the entries now so that we get the correct size for
12116 the .dynamic section. The DT_DEBUG entry is filled in by the
12117 dynamic linker and used by the debugger. */
12118 #define add_dynamic_entry(TAG, VAL) \
12119 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
12121 if (info->executable)
12123 if (!add_dynamic_entry (DT_DEBUG, 0))
12124 return FALSE;
12127 if (plt)
12129 if ( !add_dynamic_entry (DT_PLTGOT, 0)
12130 || !add_dynamic_entry (DT_PLTRELSZ, 0)
12131 || !add_dynamic_entry (DT_PLTREL,
12132 htab->use_rel ? DT_REL : DT_RELA)
12133 || !add_dynamic_entry (DT_JMPREL, 0))
12134 return FALSE;
12137 if (relocs)
12139 if (htab->use_rel)
12141 if (!add_dynamic_entry (DT_REL, 0)
12142 || !add_dynamic_entry (DT_RELSZ, 0)
12143 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
12144 return FALSE;
12146 else
12148 if (!add_dynamic_entry (DT_RELA, 0)
12149 || !add_dynamic_entry (DT_RELASZ, 0)
12150 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
12151 return FALSE;
12155 /* If any dynamic relocs apply to a read-only section,
12156 then we need a DT_TEXTREL entry. */
12157 if ((info->flags & DF_TEXTREL) == 0)
12158 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
12159 info);
12161 if ((info->flags & DF_TEXTREL) != 0)
12163 if (!add_dynamic_entry (DT_TEXTREL, 0))
12164 return FALSE;
12166 if (htab->vxworks_p
12167 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
12168 return FALSE;
12170 #undef add_dynamic_entry
12172 return TRUE;
12175 /* Finish up dynamic symbol handling. We set the contents of various
12176 dynamic sections here. */
12178 static bfd_boolean
12179 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
12180 struct bfd_link_info * info,
12181 struct elf_link_hash_entry * h,
12182 Elf_Internal_Sym * sym)
12184 bfd * dynobj;
12185 struct elf32_arm_link_hash_table *htab;
12186 struct elf32_arm_link_hash_entry *eh;
12188 dynobj = elf_hash_table (info)->dynobj;
12189 htab = elf32_arm_hash_table (info);
12190 if (htab == NULL)
12191 return FALSE;
12193 eh = (struct elf32_arm_link_hash_entry *) h;
12195 if (h->plt.offset != (bfd_vma) -1)
12197 asection * splt;
12198 asection * srel;
12199 bfd_byte *loc;
12200 bfd_vma plt_index;
12201 Elf_Internal_Rela rel;
12203 /* This symbol has an entry in the procedure linkage table. Set
12204 it up. */
12206 BFD_ASSERT (h->dynindx != -1);
12208 splt = bfd_get_section_by_name (dynobj, ".plt");
12209 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
12210 BFD_ASSERT (splt != NULL && srel != NULL);
12212 /* Fill in the entry in the procedure linkage table. */
12213 if (htab->symbian_p)
12215 put_arm_insn (htab, output_bfd,
12216 elf32_arm_symbian_plt_entry[0],
12217 splt->contents + h->plt.offset);
12218 bfd_put_32 (output_bfd,
12219 elf32_arm_symbian_plt_entry[1],
12220 splt->contents + h->plt.offset + 4);
12222 /* Fill in the entry in the .rel.plt section. */
12223 rel.r_offset = (splt->output_section->vma
12224 + splt->output_offset
12225 + h->plt.offset + 4);
12226 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12228 /* Get the index in the procedure linkage table which
12229 corresponds to this symbol. This is the index of this symbol
12230 in all the symbols for which we are making plt entries. The
12231 first entry in the procedure linkage table is reserved. */
12232 plt_index = ((h->plt.offset - htab->plt_header_size)
12233 / htab->plt_entry_size);
12235 else
12237 bfd_vma got_offset, got_address, plt_address;
12238 bfd_vma got_displacement;
12239 asection * sgot;
12240 bfd_byte * ptr;
12242 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12243 BFD_ASSERT (sgot != NULL);
12245 /* Get the offset into the .got.plt table of the entry that
12246 corresponds to this function. */
12247 got_offset = eh->plt_got_offset;
12249 /* Get the index in the procedure linkage table which
12250 corresponds to this symbol. This is the index of this symbol
12251 in all the symbols for which we are making plt entries. The
12252 first three entries in .got.plt are reserved; after that
12253 symbols appear in the same order as in .plt. */
12254 plt_index = (got_offset - 12) / 4;
12256 /* Calculate the address of the GOT entry. */
12257 got_address = (sgot->output_section->vma
12258 + sgot->output_offset
12259 + got_offset);
12261 /* ...and the address of the PLT entry. */
12262 plt_address = (splt->output_section->vma
12263 + splt->output_offset
12264 + h->plt.offset);
12266 ptr = htab->splt->contents + h->plt.offset;
12267 if (htab->vxworks_p && info->shared)
12269 unsigned int i;
12270 bfd_vma val;
12272 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12274 val = elf32_arm_vxworks_shared_plt_entry[i];
12275 if (i == 2)
12276 val |= got_address - sgot->output_section->vma;
12277 if (i == 5)
12278 val |= plt_index * RELOC_SIZE (htab);
12279 if (i == 2 || i == 5)
12280 bfd_put_32 (output_bfd, val, ptr);
12281 else
12282 put_arm_insn (htab, output_bfd, val, ptr);
12285 else if (htab->vxworks_p)
12287 unsigned int i;
12288 bfd_vma val;
12290 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12292 val = elf32_arm_vxworks_exec_plt_entry[i];
12293 if (i == 2)
12294 val |= got_address;
12295 if (i == 4)
12296 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
12297 if (i == 5)
12298 val |= plt_index * RELOC_SIZE (htab);
12299 if (i == 2 || i == 5)
12300 bfd_put_32 (output_bfd, val, ptr);
12301 else
12302 put_arm_insn (htab, output_bfd, val, ptr);
12305 loc = (htab->srelplt2->contents
12306 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12308 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12309 referencing the GOT for this PLT entry. */
12310 rel.r_offset = plt_address + 8;
12311 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12312 rel.r_addend = got_offset;
12313 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12314 loc += RELOC_SIZE (htab);
12316 /* Create the R_ARM_ABS32 relocation referencing the
12317 beginning of the PLT for this GOT entry. */
12318 rel.r_offset = got_address;
12319 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12320 rel.r_addend = 0;
12321 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12323 else
12325 bfd_signed_vma thumb_refs;
12326 /* Calculate the displacement between the PLT slot and the
12327 entry in the GOT. The eight-byte offset accounts for the
12328 value produced by adding to pc in the first instruction
12329 of the PLT stub. */
12330 got_displacement = got_address - (plt_address + 8);
12332 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12334 thumb_refs = eh->plt_thumb_refcount;
12335 if (!htab->use_blx)
12336 thumb_refs += eh->plt_maybe_thumb_refcount;
12338 if (thumb_refs > 0)
12340 put_thumb_insn (htab, output_bfd,
12341 elf32_arm_plt_thumb_stub[0], ptr - 4);
12342 put_thumb_insn (htab, output_bfd,
12343 elf32_arm_plt_thumb_stub[1], ptr - 2);
12346 put_arm_insn (htab, output_bfd,
12347 elf32_arm_plt_entry[0]
12348 | ((got_displacement & 0x0ff00000) >> 20),
12349 ptr + 0);
12350 put_arm_insn (htab, output_bfd,
12351 elf32_arm_plt_entry[1]
12352 | ((got_displacement & 0x000ff000) >> 12),
12353 ptr+ 4);
12354 put_arm_insn (htab, output_bfd,
12355 elf32_arm_plt_entry[2]
12356 | (got_displacement & 0x00000fff),
12357 ptr + 8);
12358 #ifdef FOUR_WORD_PLT
12359 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
12360 #endif
12363 /* Fill in the entry in the global offset table. */
12364 bfd_put_32 (output_bfd,
12365 (splt->output_section->vma
12366 + splt->output_offset),
12367 sgot->contents + got_offset);
12369 /* Fill in the entry in the .rel(a).plt section. */
12370 rel.r_addend = 0;
12371 rel.r_offset = got_address;
12372 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12375 loc = srel->contents + plt_index * RELOC_SIZE (htab);
12376 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12378 if (!h->def_regular)
12380 /* Mark the symbol as undefined, rather than as defined in
12381 the .plt section. Leave the value alone. */
12382 sym->st_shndx = SHN_UNDEF;
12383 /* If the symbol is weak, we do need to clear the value.
12384 Otherwise, the PLT entry would provide a definition for
12385 the symbol even if the symbol wasn't defined anywhere,
12386 and so the symbol would never be NULL. */
12387 if (!h->ref_regular_nonweak)
12388 sym->st_value = 0;
12392 if (h->got.offset != (bfd_vma) -1
12393 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12394 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
12396 asection * sgot;
12397 asection * srel;
12398 Elf_Internal_Rela rel;
12399 bfd_byte *loc;
12400 bfd_vma offset;
12402 /* This symbol has an entry in the global offset table. Set it
12403 up. */
12404 sgot = bfd_get_section_by_name (dynobj, ".got");
12405 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
12406 BFD_ASSERT (sgot != NULL && srel != NULL);
12408 offset = (h->got.offset & ~(bfd_vma) 1);
12409 rel.r_addend = 0;
12410 rel.r_offset = (sgot->output_section->vma
12411 + sgot->output_offset
12412 + offset);
12414 /* If this is a static link, or it is a -Bsymbolic link and the
12415 symbol is defined locally or was forced to be local because
12416 of a version file, we just want to emit a RELATIVE reloc.
12417 The entry in the global offset table will already have been
12418 initialized in the relocate_section function. */
12419 if (info->shared
12420 && SYMBOL_REFERENCES_LOCAL (info, h))
12422 BFD_ASSERT ((h->got.offset & 1) != 0);
12423 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12424 if (!htab->use_rel)
12426 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12427 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12430 else
12432 BFD_ASSERT ((h->got.offset & 1) == 0);
12433 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12434 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12437 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12438 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12441 if (h->needs_copy)
12443 asection * s;
12444 Elf_Internal_Rela rel;
12445 bfd_byte *loc;
12447 /* This symbol needs a copy reloc. Set it up. */
12448 BFD_ASSERT (h->dynindx != -1
12449 && (h->root.type == bfd_link_hash_defined
12450 || h->root.type == bfd_link_hash_defweak));
12452 s = bfd_get_section_by_name (h->root.u.def.section->owner,
12453 RELOC_SECTION (htab, ".bss"));
12454 BFD_ASSERT (s != NULL);
12456 rel.r_addend = 0;
12457 rel.r_offset = (h->root.u.def.value
12458 + h->root.u.def.section->output_section->vma
12459 + h->root.u.def.section->output_offset);
12460 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
12461 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12462 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12465 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12466 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12467 to the ".got" section. */
12468 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
12469 || (!htab->vxworks_p && h == htab->root.hgot))
12470 sym->st_shndx = SHN_ABS;
12472 return TRUE;
12475 /* Finish up the dynamic sections. */
12477 static bfd_boolean
12478 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
12480 bfd * dynobj;
12481 asection * sgot;
12482 asection * sdyn;
12483 struct elf32_arm_link_hash_table *htab;
12485 htab = elf32_arm_hash_table (info);
12486 if (htab == NULL)
12487 return FALSE;
12489 dynobj = elf_hash_table (info)->dynobj;
12491 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12492 BFD_ASSERT (htab->symbian_p || sgot != NULL);
12493 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12495 if (elf_hash_table (info)->dynamic_sections_created)
12497 asection *splt;
12498 Elf32_External_Dyn *dyncon, *dynconend;
12500 splt = bfd_get_section_by_name (dynobj, ".plt");
12501 BFD_ASSERT (splt != NULL && sdyn != NULL);
12503 dyncon = (Elf32_External_Dyn *) sdyn->contents;
12504 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
12506 for (; dyncon < dynconend; dyncon++)
12508 Elf_Internal_Dyn dyn;
12509 const char * name;
12510 asection * s;
12512 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12514 switch (dyn.d_tag)
12516 unsigned int type;
12518 default:
12519 if (htab->vxworks_p
12520 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12521 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12522 break;
12524 case DT_HASH:
12525 name = ".hash";
12526 goto get_vma_if_bpabi;
12527 case DT_STRTAB:
12528 name = ".dynstr";
12529 goto get_vma_if_bpabi;
12530 case DT_SYMTAB:
12531 name = ".dynsym";
12532 goto get_vma_if_bpabi;
12533 case DT_VERSYM:
12534 name = ".gnu.version";
12535 goto get_vma_if_bpabi;
12536 case DT_VERDEF:
12537 name = ".gnu.version_d";
12538 goto get_vma_if_bpabi;
12539 case DT_VERNEED:
12540 name = ".gnu.version_r";
12541 goto get_vma_if_bpabi;
12543 case DT_PLTGOT:
12544 name = ".got";
12545 goto get_vma;
12546 case DT_JMPREL:
12547 name = RELOC_SECTION (htab, ".plt");
12548 get_vma:
12549 s = bfd_get_section_by_name (output_bfd, name);
12550 BFD_ASSERT (s != NULL);
12551 if (!htab->symbian_p)
12552 dyn.d_un.d_ptr = s->vma;
12553 else
12554 /* In the BPABI, tags in the PT_DYNAMIC section point
12555 at the file offset, not the memory address, for the
12556 convenience of the post linker. */
12557 dyn.d_un.d_ptr = s->filepos;
12558 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12559 break;
12561 get_vma_if_bpabi:
12562 if (htab->symbian_p)
12563 goto get_vma;
12564 break;
12566 case DT_PLTRELSZ:
12567 s = bfd_get_section_by_name (output_bfd,
12568 RELOC_SECTION (htab, ".plt"));
12569 BFD_ASSERT (s != NULL);
12570 dyn.d_un.d_val = s->size;
12571 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12572 break;
12574 case DT_RELSZ:
12575 case DT_RELASZ:
12576 if (!htab->symbian_p)
12578 /* My reading of the SVR4 ABI indicates that the
12579 procedure linkage table relocs (DT_JMPREL) should be
12580 included in the overall relocs (DT_REL). This is
12581 what Solaris does. However, UnixWare can not handle
12582 that case. Therefore, we override the DT_RELSZ entry
12583 here to make it not include the JMPREL relocs. Since
12584 the linker script arranges for .rel(a).plt to follow all
12585 other relocation sections, we don't have to worry
12586 about changing the DT_REL entry. */
12587 s = bfd_get_section_by_name (output_bfd,
12588 RELOC_SECTION (htab, ".plt"));
12589 if (s != NULL)
12590 dyn.d_un.d_val -= s->size;
12591 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12592 break;
12594 /* Fall through. */
12596 case DT_REL:
12597 case DT_RELA:
12598 /* In the BPABI, the DT_REL tag must point at the file
12599 offset, not the VMA, of the first relocation
12600 section. So, we use code similar to that in
12601 elflink.c, but do not check for SHF_ALLOC on the
12602 relcoation section, since relocations sections are
12603 never allocated under the BPABI. The comments above
12604 about Unixware notwithstanding, we include all of the
12605 relocations here. */
12606 if (htab->symbian_p)
12608 unsigned int i;
12609 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12610 ? SHT_REL : SHT_RELA);
12611 dyn.d_un.d_val = 0;
12612 for (i = 1; i < elf_numsections (output_bfd); i++)
12614 Elf_Internal_Shdr *hdr
12615 = elf_elfsections (output_bfd)[i];
12616 if (hdr->sh_type == type)
12618 if (dyn.d_tag == DT_RELSZ
12619 || dyn.d_tag == DT_RELASZ)
12620 dyn.d_un.d_val += hdr->sh_size;
12621 else if ((ufile_ptr) hdr->sh_offset
12622 <= dyn.d_un.d_val - 1)
12623 dyn.d_un.d_val = hdr->sh_offset;
12626 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12628 break;
12630 /* Set the bottom bit of DT_INIT/FINI if the
12631 corresponding function is Thumb. */
12632 case DT_INIT:
12633 name = info->init_function;
12634 goto get_sym;
12635 case DT_FINI:
12636 name = info->fini_function;
12637 get_sym:
12638 /* If it wasn't set by elf_bfd_final_link
12639 then there is nothing to adjust. */
12640 if (dyn.d_un.d_val != 0)
12642 struct elf_link_hash_entry * eh;
12644 eh = elf_link_hash_lookup (elf_hash_table (info), name,
12645 FALSE, FALSE, TRUE);
12646 if (eh != NULL
12647 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12649 dyn.d_un.d_val |= 1;
12650 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12653 break;
12657 /* Fill in the first entry in the procedure linkage table. */
12658 if (splt->size > 0 && htab->plt_header_size)
12660 const bfd_vma *plt0_entry;
12661 bfd_vma got_address, plt_address, got_displacement;
12663 /* Calculate the addresses of the GOT and PLT. */
12664 got_address = sgot->output_section->vma + sgot->output_offset;
12665 plt_address = splt->output_section->vma + splt->output_offset;
12667 if (htab->vxworks_p)
12669 /* The VxWorks GOT is relocated by the dynamic linker.
12670 Therefore, we must emit relocations rather than simply
12671 computing the values now. */
12672 Elf_Internal_Rela rel;
12674 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
12675 put_arm_insn (htab, output_bfd, plt0_entry[0],
12676 splt->contents + 0);
12677 put_arm_insn (htab, output_bfd, plt0_entry[1],
12678 splt->contents + 4);
12679 put_arm_insn (htab, output_bfd, plt0_entry[2],
12680 splt->contents + 8);
12681 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12683 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
12684 rel.r_offset = plt_address + 12;
12685 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12686 rel.r_addend = 0;
12687 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12688 htab->srelplt2->contents);
12690 else
12692 got_displacement = got_address - (plt_address + 16);
12694 plt0_entry = elf32_arm_plt0_entry;
12695 put_arm_insn (htab, output_bfd, plt0_entry[0],
12696 splt->contents + 0);
12697 put_arm_insn (htab, output_bfd, plt0_entry[1],
12698 splt->contents + 4);
12699 put_arm_insn (htab, output_bfd, plt0_entry[2],
12700 splt->contents + 8);
12701 put_arm_insn (htab, output_bfd, plt0_entry[3],
12702 splt->contents + 12);
12704 #ifdef FOUR_WORD_PLT
12705 /* The displacement value goes in the otherwise-unused
12706 last word of the second entry. */
12707 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
12708 #else
12709 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
12710 #endif
12714 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12715 really seem like the right value. */
12716 if (splt->output_section->owner == output_bfd)
12717 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
12719 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12721 /* Correct the .rel(a).plt.unloaded relocations. They will have
12722 incorrect symbol indexes. */
12723 int num_plts;
12724 unsigned char *p;
12726 num_plts = ((htab->splt->size - htab->plt_header_size)
12727 / htab->plt_entry_size);
12728 p = htab->srelplt2->contents + RELOC_SIZE (htab);
12730 for (; num_plts; num_plts--)
12732 Elf_Internal_Rela rel;
12734 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12735 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12736 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12737 p += RELOC_SIZE (htab);
12739 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12740 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12741 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12742 p += RELOC_SIZE (htab);
12747 /* Fill in the first three entries in the global offset table. */
12748 if (sgot)
12750 if (sgot->size > 0)
12752 if (sdyn == NULL)
12753 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12754 else
12755 bfd_put_32 (output_bfd,
12756 sdyn->output_section->vma + sdyn->output_offset,
12757 sgot->contents);
12758 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12759 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12762 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12765 return TRUE;
12768 static void
12769 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12771 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
12772 struct elf32_arm_link_hash_table *globals;
12774 i_ehdrp = elf_elfheader (abfd);
12776 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12777 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12778 else
12779 i_ehdrp->e_ident[EI_OSABI] = 0;
12780 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
12782 if (link_info)
12784 globals = elf32_arm_hash_table (link_info);
12785 if (globals != NULL && globals->byteswap_code)
12786 i_ehdrp->e_flags |= EF_ARM_BE8;
12790 static enum elf_reloc_type_class
12791 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
12793 switch ((int) ELF32_R_TYPE (rela->r_info))
12795 case R_ARM_RELATIVE:
12796 return reloc_class_relative;
12797 case R_ARM_JUMP_SLOT:
12798 return reloc_class_plt;
12799 case R_ARM_COPY:
12800 return reloc_class_copy;
12801 default:
12802 return reloc_class_normal;
12806 /* Set the right machine number for an Arm ELF file. */
12808 static bfd_boolean
12809 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
12811 if (hdr->sh_type == SHT_NOTE)
12812 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12814 return TRUE;
12817 static void
12818 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
12820 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
12823 /* Return TRUE if this is an unwinding table entry. */
12825 static bfd_boolean
12826 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12828 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12829 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
12833 /* Set the type and flags for an ARM section. We do this by
12834 the section name, which is a hack, but ought to work. */
12836 static bfd_boolean
12837 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12839 const char * name;
12841 name = bfd_get_section_name (abfd, sec);
12843 if (is_arm_elf_unwind_section_name (abfd, name))
12845 hdr->sh_type = SHT_ARM_EXIDX;
12846 hdr->sh_flags |= SHF_LINK_ORDER;
12848 return TRUE;
12851 /* Handle an ARM specific section when reading an object file. This is
12852 called when bfd_section_from_shdr finds a section with an unknown
12853 type. */
12855 static bfd_boolean
12856 elf32_arm_section_from_shdr (bfd *abfd,
12857 Elf_Internal_Shdr * hdr,
12858 const char *name,
12859 int shindex)
12861 /* There ought to be a place to keep ELF backend specific flags, but
12862 at the moment there isn't one. We just keep track of the
12863 sections by their name, instead. Fortunately, the ABI gives
12864 names for all the ARM specific sections, so we will probably get
12865 away with this. */
12866 switch (hdr->sh_type)
12868 case SHT_ARM_EXIDX:
12869 case SHT_ARM_PREEMPTMAP:
12870 case SHT_ARM_ATTRIBUTES:
12871 break;
12873 default:
12874 return FALSE;
12877 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
12878 return FALSE;
12880 return TRUE;
12883 static _arm_elf_section_data *
12884 get_arm_elf_section_data (asection * sec)
12886 if (sec && sec->owner && is_arm_elf (sec->owner))
12887 return elf32_arm_section_data (sec);
12888 else
12889 return NULL;
12892 typedef struct
12894 void *finfo;
12895 struct bfd_link_info *info;
12896 asection *sec;
12897 int sec_shndx;
12898 int (*func) (void *, const char *, Elf_Internal_Sym *,
12899 asection *, struct elf_link_hash_entry *);
12900 } output_arch_syminfo;
12902 enum map_symbol_type
12904 ARM_MAP_ARM,
12905 ARM_MAP_THUMB,
12906 ARM_MAP_DATA
12910 /* Output a single mapping symbol. */
12912 static bfd_boolean
12913 elf32_arm_output_map_sym (output_arch_syminfo *osi,
12914 enum map_symbol_type type,
12915 bfd_vma offset)
12917 static const char *names[3] = {"$a", "$t", "$d"};
12918 Elf_Internal_Sym sym;
12920 sym.st_value = osi->sec->output_section->vma
12921 + osi->sec->output_offset
12922 + offset;
12923 sym.st_size = 0;
12924 sym.st_other = 0;
12925 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
12926 sym.st_shndx = osi->sec_shndx;
12927 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
12928 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
12932 /* Output mapping symbols for PLT entries associated with H. */
12934 static bfd_boolean
12935 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12937 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12938 struct elf32_arm_link_hash_table *htab;
12939 struct elf32_arm_link_hash_entry *eh;
12940 bfd_vma addr;
12942 if (h->root.type == bfd_link_hash_indirect)
12943 return TRUE;
12945 if (h->root.type == bfd_link_hash_warning)
12946 /* When warning symbols are created, they **replace** the "real"
12947 entry in the hash table, thus we never get to see the real
12948 symbol in a hash traversal. So look at it now. */
12949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12951 if (h->plt.offset == (bfd_vma) -1)
12952 return TRUE;
12954 htab = elf32_arm_hash_table (osi->info);
12955 if (htab == NULL)
12956 return FALSE;
12958 eh = (struct elf32_arm_link_hash_entry *) h;
12959 addr = h->plt.offset;
12960 if (htab->symbian_p)
12962 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12963 return FALSE;
12964 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
12965 return FALSE;
12967 else if (htab->vxworks_p)
12969 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12970 return FALSE;
12971 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
12972 return FALSE;
12973 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
12974 return FALSE;
12975 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
12976 return FALSE;
12978 else
12980 bfd_signed_vma thumb_refs;
12982 thumb_refs = eh->plt_thumb_refcount;
12983 if (!htab->use_blx)
12984 thumb_refs += eh->plt_maybe_thumb_refcount;
12986 if (thumb_refs > 0)
12988 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
12989 return FALSE;
12991 #ifdef FOUR_WORD_PLT
12992 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12993 return FALSE;
12994 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
12995 return FALSE;
12996 #else
12997 /* A three-word PLT with no Thumb thunk contains only Arm code,
12998 so only need to output a mapping symbol for the first PLT entry and
12999 entries with thumb thunks. */
13000 if (thumb_refs > 0 || addr == 20)
13002 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
13003 return FALSE;
13005 #endif
13008 return TRUE;
13011 /* Output a single local symbol for a generated stub. */
13013 static bfd_boolean
13014 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
13015 bfd_vma offset, bfd_vma size)
13017 Elf_Internal_Sym sym;
13019 sym.st_value = osi->sec->output_section->vma
13020 + osi->sec->output_offset
13021 + offset;
13022 sym.st_size = size;
13023 sym.st_other = 0;
13024 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13025 sym.st_shndx = osi->sec_shndx;
13026 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
13029 static bfd_boolean
13030 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
13031 void * in_arg)
13033 struct elf32_arm_stub_hash_entry *stub_entry;
13034 asection *stub_sec;
13035 bfd_vma addr;
13036 char *stub_name;
13037 output_arch_syminfo *osi;
13038 const insn_sequence *template_sequence;
13039 enum stub_insn_type prev_type;
13040 int size;
13041 int i;
13042 enum map_symbol_type sym_type;
13044 /* Massage our args to the form they really have. */
13045 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13046 osi = (output_arch_syminfo *) in_arg;
13048 stub_sec = stub_entry->stub_sec;
13050 /* Ensure this stub is attached to the current section being
13051 processed. */
13052 if (stub_sec != osi->sec)
13053 return TRUE;
13055 addr = (bfd_vma) stub_entry->stub_offset;
13056 stub_name = stub_entry->output_name;
13058 template_sequence = stub_entry->stub_template;
13059 switch (template_sequence[0].type)
13061 case ARM_TYPE:
13062 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
13063 return FALSE;
13064 break;
13065 case THUMB16_TYPE:
13066 case THUMB32_TYPE:
13067 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
13068 stub_entry->stub_size))
13069 return FALSE;
13070 break;
13071 default:
13072 BFD_FAIL ();
13073 return 0;
13076 prev_type = DATA_TYPE;
13077 size = 0;
13078 for (i = 0; i < stub_entry->stub_template_size; i++)
13080 switch (template_sequence[i].type)
13082 case ARM_TYPE:
13083 sym_type = ARM_MAP_ARM;
13084 break;
13086 case THUMB16_TYPE:
13087 case THUMB32_TYPE:
13088 sym_type = ARM_MAP_THUMB;
13089 break;
13091 case DATA_TYPE:
13092 sym_type = ARM_MAP_DATA;
13093 break;
13095 default:
13096 BFD_FAIL ();
13097 return FALSE;
13100 if (template_sequence[i].type != prev_type)
13102 prev_type = template_sequence[i].type;
13103 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
13104 return FALSE;
13107 switch (template_sequence[i].type)
13109 case ARM_TYPE:
13110 case THUMB32_TYPE:
13111 size += 4;
13112 break;
13114 case THUMB16_TYPE:
13115 size += 2;
13116 break;
13118 case DATA_TYPE:
13119 size += 4;
13120 break;
13122 default:
13123 BFD_FAIL ();
13124 return FALSE;
13128 return TRUE;
13131 /* Output mapping symbols for linker generated sections,
13132 and for those data-only sections that do not have a
13133 $d. */
13135 static bfd_boolean
13136 elf32_arm_output_arch_local_syms (bfd *output_bfd,
13137 struct bfd_link_info *info,
13138 void *finfo,
13139 int (*func) (void *, const char *,
13140 Elf_Internal_Sym *,
13141 asection *,
13142 struct elf_link_hash_entry *))
13144 output_arch_syminfo osi;
13145 struct elf32_arm_link_hash_table *htab;
13146 bfd_vma offset;
13147 bfd_size_type size;
13148 bfd *input_bfd;
13150 htab = elf32_arm_hash_table (info);
13151 if (htab == NULL)
13152 return FALSE;
13154 check_use_blx (htab);
13156 osi.finfo = finfo;
13157 osi.info = info;
13158 osi.func = func;
13160 /* Add a $d mapping symbol to data-only sections that
13161 don't have any mapping symbol. This may result in (harmless) redundant
13162 mapping symbols. */
13163 for (input_bfd = info->input_bfds;
13164 input_bfd != NULL;
13165 input_bfd = input_bfd->link_next)
13167 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
13168 for (osi.sec = input_bfd->sections;
13169 osi.sec != NULL;
13170 osi.sec = osi.sec->next)
13172 if (osi.sec->output_section != NULL
13173 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
13174 != 0)
13175 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
13176 == SEC_HAS_CONTENTS
13177 && get_arm_elf_section_data (osi.sec) != NULL
13178 && get_arm_elf_section_data (osi.sec)->mapcount == 0
13179 && osi.sec->size > 0)
13181 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13182 (output_bfd, osi.sec->output_section);
13183 if (osi.sec_shndx != (int)SHN_BAD)
13184 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
13189 /* ARM->Thumb glue. */
13190 if (htab->arm_glue_size > 0)
13192 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13193 ARM2THUMB_GLUE_SECTION_NAME);
13195 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13196 (output_bfd, osi.sec->output_section);
13197 if (info->shared || htab->root.is_relocatable_executable
13198 || htab->pic_veneer)
13199 size = ARM2THUMB_PIC_GLUE_SIZE;
13200 else if (htab->use_blx)
13201 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
13202 else
13203 size = ARM2THUMB_STATIC_GLUE_SIZE;
13205 for (offset = 0; offset < htab->arm_glue_size; offset += size)
13207 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
13208 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
13212 /* Thumb->ARM glue. */
13213 if (htab->thumb_glue_size > 0)
13215 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13216 THUMB2ARM_GLUE_SECTION_NAME);
13218 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13219 (output_bfd, osi.sec->output_section);
13220 size = THUMB2ARM_GLUE_SIZE;
13222 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
13224 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
13225 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
13229 /* ARMv4 BX veneers. */
13230 if (htab->bx_glue_size > 0)
13232 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13233 ARM_BX_GLUE_SECTION_NAME);
13235 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13236 (output_bfd, osi.sec->output_section);
13238 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
13241 /* Long calls stubs. */
13242 if (htab->stub_bfd && htab->stub_bfd->sections)
13244 asection* stub_sec;
13246 for (stub_sec = htab->stub_bfd->sections;
13247 stub_sec != NULL;
13248 stub_sec = stub_sec->next)
13250 /* Ignore non-stub sections. */
13251 if (!strstr (stub_sec->name, STUB_SUFFIX))
13252 continue;
13254 osi.sec = stub_sec;
13256 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13257 (output_bfd, osi.sec->output_section);
13259 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13263 /* Finally, output mapping symbols for the PLT. */
13264 if (!htab->splt || htab->splt->size == 0)
13265 return TRUE;
13267 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
13268 htab->splt->output_section);
13269 osi.sec = htab->splt;
13270 /* Output mapping symbols for the plt header. SymbianOS does not have a
13271 plt header. */
13272 if (htab->vxworks_p)
13274 /* VxWorks shared libraries have no PLT header. */
13275 if (!info->shared)
13277 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13278 return FALSE;
13279 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
13280 return FALSE;
13283 else if (!htab->symbian_p)
13285 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13286 return FALSE;
13287 #ifndef FOUR_WORD_PLT
13288 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
13289 return FALSE;
13290 #endif
13293 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13294 return TRUE;
13297 /* Allocate target specific section data. */
13299 static bfd_boolean
13300 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13302 if (!sec->used_by_bfd)
13304 _arm_elf_section_data *sdata;
13305 bfd_size_type amt = sizeof (*sdata);
13307 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
13308 if (sdata == NULL)
13309 return FALSE;
13310 sec->used_by_bfd = sdata;
13313 return _bfd_elf_new_section_hook (abfd, sec);
13317 /* Used to order a list of mapping symbols by address. */
13319 static int
13320 elf32_arm_compare_mapping (const void * a, const void * b)
13322 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13323 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13325 if (amap->vma > bmap->vma)
13326 return 1;
13327 else if (amap->vma < bmap->vma)
13328 return -1;
13329 else if (amap->type > bmap->type)
13330 /* Ensure results do not depend on the host qsort for objects with
13331 multiple mapping symbols at the same address by sorting on type
13332 after vma. */
13333 return 1;
13334 else if (amap->type < bmap->type)
13335 return -1;
13336 else
13337 return 0;
13340 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13342 static unsigned long
13343 offset_prel31 (unsigned long addr, bfd_vma offset)
13345 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13348 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13349 relocations. */
13351 static void
13352 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13354 unsigned long first_word = bfd_get_32 (output_bfd, from);
13355 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13357 /* High bit of first word is supposed to be zero. */
13358 if ((first_word & 0x80000000ul) == 0)
13359 first_word = offset_prel31 (first_word, offset);
13361 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13362 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13363 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13364 second_word = offset_prel31 (second_word, offset);
13366 bfd_put_32 (output_bfd, first_word, to);
13367 bfd_put_32 (output_bfd, second_word, to + 4);
13370 /* Data for make_branch_to_a8_stub(). */
13372 struct a8_branch_to_stub_data {
13373 asection *writing_section;
13374 bfd_byte *contents;
13378 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
13379 places for a particular section. */
13381 static bfd_boolean
13382 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13383 void *in_arg)
13385 struct elf32_arm_stub_hash_entry *stub_entry;
13386 struct a8_branch_to_stub_data *data;
13387 bfd_byte *contents;
13388 unsigned long branch_insn;
13389 bfd_vma veneered_insn_loc, veneer_entry_loc;
13390 bfd_signed_vma branch_offset;
13391 bfd *abfd;
13392 unsigned int target;
13394 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13395 data = (struct a8_branch_to_stub_data *) in_arg;
13397 if (stub_entry->target_section != data->writing_section
13398 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
13399 return TRUE;
13401 contents = data->contents;
13403 veneered_insn_loc = stub_entry->target_section->output_section->vma
13404 + stub_entry->target_section->output_offset
13405 + stub_entry->target_value;
13407 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13408 + stub_entry->stub_sec->output_offset
13409 + stub_entry->stub_offset;
13411 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13412 veneered_insn_loc &= ~3u;
13414 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13416 abfd = stub_entry->target_section->owner;
13417 target = stub_entry->target_value;
13419 /* We attempt to avoid this condition by setting stubs_always_after_branch
13420 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13421 This check is just to be on the safe side... */
13422 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13424 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13425 "allocated in unsafe location"), abfd);
13426 return FALSE;
13429 switch (stub_entry->stub_type)
13431 case arm_stub_a8_veneer_b:
13432 case arm_stub_a8_veneer_b_cond:
13433 branch_insn = 0xf0009000;
13434 goto jump24;
13436 case arm_stub_a8_veneer_blx:
13437 branch_insn = 0xf000e800;
13438 goto jump24;
13440 case arm_stub_a8_veneer_bl:
13442 unsigned int i1, j1, i2, j2, s;
13444 branch_insn = 0xf000d000;
13446 jump24:
13447 if (branch_offset < -16777216 || branch_offset > 16777214)
13449 /* There's not much we can do apart from complain if this
13450 happens. */
13451 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13452 "of range (input file too large)"), abfd);
13453 return FALSE;
13456 /* i1 = not(j1 eor s), so:
13457 not i1 = j1 eor s
13458 j1 = (not i1) eor s. */
13460 branch_insn |= (branch_offset >> 1) & 0x7ff;
13461 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13462 i2 = (branch_offset >> 22) & 1;
13463 i1 = (branch_offset >> 23) & 1;
13464 s = (branch_offset >> 24) & 1;
13465 j1 = (!i1) ^ s;
13466 j2 = (!i2) ^ s;
13467 branch_insn |= j2 << 11;
13468 branch_insn |= j1 << 13;
13469 branch_insn |= s << 26;
13471 break;
13473 default:
13474 BFD_FAIL ();
13475 return FALSE;
13478 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
13479 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
13481 return TRUE;
13484 /* Do code byteswapping. Return FALSE afterwards so that the section is
13485 written out as normal. */
13487 static bfd_boolean
13488 elf32_arm_write_section (bfd *output_bfd,
13489 struct bfd_link_info *link_info,
13490 asection *sec,
13491 bfd_byte *contents)
13493 unsigned int mapcount, errcount;
13494 _arm_elf_section_data *arm_data;
13495 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
13496 elf32_arm_section_map *map;
13497 elf32_vfp11_erratum_list *errnode;
13498 bfd_vma ptr;
13499 bfd_vma end;
13500 bfd_vma offset = sec->output_section->vma + sec->output_offset;
13501 bfd_byte tmp;
13502 unsigned int i;
13504 if (globals == NULL)
13505 return FALSE;
13507 /* If this section has not been allocated an _arm_elf_section_data
13508 structure then we cannot record anything. */
13509 arm_data = get_arm_elf_section_data (sec);
13510 if (arm_data == NULL)
13511 return FALSE;
13513 mapcount = arm_data->mapcount;
13514 map = arm_data->map;
13515 errcount = arm_data->erratumcount;
13517 if (errcount != 0)
13519 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13521 for (errnode = arm_data->erratumlist; errnode != 0;
13522 errnode = errnode->next)
13524 bfd_vma target = errnode->vma - offset;
13526 switch (errnode->type)
13528 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13530 bfd_vma branch_to_veneer;
13531 /* Original condition code of instruction, plus bit mask for
13532 ARM B instruction. */
13533 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13534 | 0x0a000000;
13536 /* The instruction is before the label. */
13537 target -= 4;
13539 /* Above offset included in -4 below. */
13540 branch_to_veneer = errnode->u.b.veneer->vma
13541 - errnode->vma - 4;
13543 if ((signed) branch_to_veneer < -(1 << 25)
13544 || (signed) branch_to_veneer >= (1 << 25))
13545 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13546 "range"), output_bfd);
13548 insn |= (branch_to_veneer >> 2) & 0xffffff;
13549 contents[endianflip ^ target] = insn & 0xff;
13550 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13551 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13552 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
13554 break;
13556 case VFP11_ERRATUM_ARM_VENEER:
13558 bfd_vma branch_from_veneer;
13559 unsigned int insn;
13561 /* Take size of veneer into account. */
13562 branch_from_veneer = errnode->u.v.branch->vma
13563 - errnode->vma - 12;
13565 if ((signed) branch_from_veneer < -(1 << 25)
13566 || (signed) branch_from_veneer >= (1 << 25))
13567 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13568 "range"), output_bfd);
13570 /* Original instruction. */
13571 insn = errnode->u.v.branch->u.b.vfp_insn;
13572 contents[endianflip ^ target] = insn & 0xff;
13573 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13574 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13575 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
13577 /* Branch back to insn after original insn. */
13578 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
13579 contents[endianflip ^ (target + 4)] = insn & 0xff;
13580 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
13581 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
13582 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
13584 break;
13586 default:
13587 abort ();
13592 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13594 arm_unwind_table_edit *edit_node
13595 = arm_data->u.exidx.unwind_edit_list;
13596 /* Now, sec->size is the size of the section we will write. The original
13597 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13598 markers) was sec->rawsize. (This isn't the case if we perform no
13599 edits, then rawsize will be zero and we should use size). */
13600 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
13601 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13602 unsigned int in_index, out_index;
13603 bfd_vma add_to_offsets = 0;
13605 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13607 if (edit_node)
13609 unsigned int edit_index = edit_node->index;
13611 if (in_index < edit_index && in_index * 8 < input_size)
13613 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13614 contents + in_index * 8, add_to_offsets);
13615 out_index++;
13616 in_index++;
13618 else if (in_index == edit_index
13619 || (in_index * 8 >= input_size
13620 && edit_index == UINT_MAX))
13622 switch (edit_node->type)
13624 case DELETE_EXIDX_ENTRY:
13625 in_index++;
13626 add_to_offsets += 8;
13627 break;
13629 case INSERT_EXIDX_CANTUNWIND_AT_END:
13631 asection *text_sec = edit_node->linked_section;
13632 bfd_vma text_offset = text_sec->output_section->vma
13633 + text_sec->output_offset
13634 + text_sec->size;
13635 bfd_vma exidx_offset = offset + out_index * 8;
13636 unsigned long prel31_offset;
13638 /* Note: this is meant to be equivalent to an
13639 R_ARM_PREL31 relocation. These synthetic
13640 EXIDX_CANTUNWIND markers are not relocated by the
13641 usual BFD method. */
13642 prel31_offset = (text_offset - exidx_offset)
13643 & 0x7ffffffful;
13645 /* First address we can't unwind. */
13646 bfd_put_32 (output_bfd, prel31_offset,
13647 &edited_contents[out_index * 8]);
13649 /* Code for EXIDX_CANTUNWIND. */
13650 bfd_put_32 (output_bfd, 0x1,
13651 &edited_contents[out_index * 8 + 4]);
13653 out_index++;
13654 add_to_offsets -= 8;
13656 break;
13659 edit_node = edit_node->next;
13662 else
13664 /* No more edits, copy remaining entries verbatim. */
13665 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13666 contents + in_index * 8, add_to_offsets);
13667 out_index++;
13668 in_index++;
13672 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13673 bfd_set_section_contents (output_bfd, sec->output_section,
13674 edited_contents,
13675 (file_ptr) sec->output_offset, sec->size);
13677 return TRUE;
13680 /* Fix code to point to Cortex-A8 erratum stubs. */
13681 if (globals->fix_cortex_a8)
13683 struct a8_branch_to_stub_data data;
13685 data.writing_section = sec;
13686 data.contents = contents;
13688 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13689 &data);
13692 if (mapcount == 0)
13693 return FALSE;
13695 if (globals->byteswap_code)
13697 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
13699 ptr = map[0].vma;
13700 for (i = 0; i < mapcount; i++)
13702 if (i == mapcount - 1)
13703 end = sec->size;
13704 else
13705 end = map[i + 1].vma;
13707 switch (map[i].type)
13709 case 'a':
13710 /* Byte swap code words. */
13711 while (ptr + 3 < end)
13713 tmp = contents[ptr];
13714 contents[ptr] = contents[ptr + 3];
13715 contents[ptr + 3] = tmp;
13716 tmp = contents[ptr + 1];
13717 contents[ptr + 1] = contents[ptr + 2];
13718 contents[ptr + 2] = tmp;
13719 ptr += 4;
13721 break;
13723 case 't':
13724 /* Byte swap code halfwords. */
13725 while (ptr + 1 < end)
13727 tmp = contents[ptr];
13728 contents[ptr] = contents[ptr + 1];
13729 contents[ptr + 1] = tmp;
13730 ptr += 2;
13732 break;
13734 case 'd':
13735 /* Leave data alone. */
13736 break;
13738 ptr = end;
13742 free (map);
13743 arm_data->mapcount = -1;
13744 arm_data->mapsize = 0;
13745 arm_data->map = NULL;
13747 return FALSE;
13750 /* Display STT_ARM_TFUNC symbols as functions. */
13752 static void
13753 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13754 asymbol *asym)
13756 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13758 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13759 elfsym->symbol.flags |= BSF_FUNCTION;
13763 /* Mangle thumb function symbols as we read them in. */
13765 static bfd_boolean
13766 elf32_arm_swap_symbol_in (bfd * abfd,
13767 const void *psrc,
13768 const void *pshn,
13769 Elf_Internal_Sym *dst)
13771 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13772 return FALSE;
13774 /* New EABI objects mark thumb function symbols by setting the low bit of
13775 the address. Turn these into STT_ARM_TFUNC. */
13776 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
13777 && (dst->st_value & 1))
13779 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13780 dst->st_value &= ~(bfd_vma) 1;
13782 return TRUE;
13786 /* Mangle thumb function symbols as we write them out. */
13788 static void
13789 elf32_arm_swap_symbol_out (bfd *abfd,
13790 const Elf_Internal_Sym *src,
13791 void *cdst,
13792 void *shndx)
13794 Elf_Internal_Sym newsym;
13796 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13797 of the address set, as per the new EABI. We do this unconditionally
13798 because objcopy does not set the elf header flags until after
13799 it writes out the symbol table. */
13800 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13802 newsym = *src;
13803 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
13804 if (newsym.st_shndx != SHN_UNDEF)
13806 /* Do this only for defined symbols. At link type, the static
13807 linker will simulate the work of dynamic linker of resolving
13808 symbols and will carry over the thumbness of found symbols to
13809 the output symbol table. It's not clear how it happens, but
13810 the thumbness of undefined symbols can well be different at
13811 runtime, and writing '1' for them will be confusing for users
13812 and possibly for dynamic linker itself.
13814 newsym.st_value |= 1;
13817 src = &newsym;
13819 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13822 /* Add the PT_ARM_EXIDX program header. */
13824 static bfd_boolean
13825 elf32_arm_modify_segment_map (bfd *abfd,
13826 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13828 struct elf_segment_map *m;
13829 asection *sec;
13831 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13832 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13834 /* If there is already a PT_ARM_EXIDX header, then we do not
13835 want to add another one. This situation arises when running
13836 "strip"; the input binary already has the header. */
13837 m = elf_tdata (abfd)->segment_map;
13838 while (m && m->p_type != PT_ARM_EXIDX)
13839 m = m->next;
13840 if (!m)
13842 m = (struct elf_segment_map *)
13843 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
13844 if (m == NULL)
13845 return FALSE;
13846 m->p_type = PT_ARM_EXIDX;
13847 m->count = 1;
13848 m->sections[0] = sec;
13850 m->next = elf_tdata (abfd)->segment_map;
13851 elf_tdata (abfd)->segment_map = m;
13855 return TRUE;
13858 /* We may add a PT_ARM_EXIDX program header. */
13860 static int
13861 elf32_arm_additional_program_headers (bfd *abfd,
13862 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13864 asection *sec;
13866 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13867 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13868 return 1;
13869 else
13870 return 0;
13873 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
13875 static bfd_boolean
13876 elf32_arm_is_function_type (unsigned int type)
13878 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
13881 /* We use this to override swap_symbol_in and swap_symbol_out. */
13882 const struct elf_size_info elf32_arm_size_info =
13884 sizeof (Elf32_External_Ehdr),
13885 sizeof (Elf32_External_Phdr),
13886 sizeof (Elf32_External_Shdr),
13887 sizeof (Elf32_External_Rel),
13888 sizeof (Elf32_External_Rela),
13889 sizeof (Elf32_External_Sym),
13890 sizeof (Elf32_External_Dyn),
13891 sizeof (Elf_External_Note),
13894 32, 2,
13895 ELFCLASS32, EV_CURRENT,
13896 bfd_elf32_write_out_phdrs,
13897 bfd_elf32_write_shdrs_and_ehdr,
13898 bfd_elf32_checksum_contents,
13899 bfd_elf32_write_relocs,
13900 elf32_arm_swap_symbol_in,
13901 elf32_arm_swap_symbol_out,
13902 bfd_elf32_slurp_reloc_table,
13903 bfd_elf32_slurp_symbol_table,
13904 bfd_elf32_swap_dyn_in,
13905 bfd_elf32_swap_dyn_out,
13906 bfd_elf32_swap_reloc_in,
13907 bfd_elf32_swap_reloc_out,
13908 bfd_elf32_swap_reloca_in,
13909 bfd_elf32_swap_reloca_out
13912 #define ELF_ARCH bfd_arch_arm
13913 #define ELF_TARGET_ID ARM_ELF_DATA
13914 #define ELF_MACHINE_CODE EM_ARM
13915 #ifdef __QNXTARGET__
13916 #define ELF_MAXPAGESIZE 0x1000
13917 #else
13918 #define ELF_MAXPAGESIZE 0x8000
13919 #endif
13920 #define ELF_MINPAGESIZE 0x1000
13921 #define ELF_COMMONPAGESIZE 0x1000
13923 #define bfd_elf32_mkobject elf32_arm_mkobject
13925 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13926 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
13927 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13928 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13929 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
13930 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
13931 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
13932 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13933 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
13934 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
13935 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
13936 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
13937 #define bfd_elf32_bfd_final_link elf32_arm_final_link
13939 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13940 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
13941 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
13942 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13943 #define elf_backend_check_relocs elf32_arm_check_relocs
13944 #define elf_backend_relocate_section elf32_arm_relocate_section
13945 #define elf_backend_write_section elf32_arm_write_section
13946 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
13947 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
13948 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13949 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13950 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
13951 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
13952 #define elf_backend_post_process_headers elf32_arm_post_process_headers
13953 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
13954 #define elf_backend_object_p elf32_arm_object_p
13955 #define elf_backend_section_flags elf32_arm_section_flags
13956 #define elf_backend_fake_sections elf32_arm_fake_sections
13957 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
13958 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13959 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
13960 #define elf_backend_symbol_processing elf32_arm_symbol_processing
13961 #define elf_backend_size_info elf32_arm_size_info
13962 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
13963 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13964 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13965 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13966 #define elf_backend_is_function_type elf32_arm_is_function_type
13968 #define elf_backend_can_refcount 1
13969 #define elf_backend_can_gc_sections 1
13970 #define elf_backend_plt_readonly 1
13971 #define elf_backend_want_got_plt 1
13972 #define elf_backend_want_plt_sym 0
13973 #define elf_backend_may_use_rel_p 1
13974 #define elf_backend_may_use_rela_p 0
13975 #define elf_backend_default_use_rela_p 0
13977 #define elf_backend_got_header_size 12
13979 #undef elf_backend_obj_attrs_vendor
13980 #define elf_backend_obj_attrs_vendor "aeabi"
13981 #undef elf_backend_obj_attrs_section
13982 #define elf_backend_obj_attrs_section ".ARM.attributes"
13983 #undef elf_backend_obj_attrs_arg_type
13984 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13985 #undef elf_backend_obj_attrs_section_type
13986 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
13987 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
13989 #include "elf32-target.h"
13991 /* VxWorks Targets. */
13993 #undef TARGET_LITTLE_SYM
13994 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
13995 #undef TARGET_LITTLE_NAME
13996 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
13997 #undef TARGET_BIG_SYM
13998 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
13999 #undef TARGET_BIG_NAME
14000 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
14002 /* Like elf32_arm_link_hash_table_create -- but overrides
14003 appropriately for VxWorks. */
14005 static struct bfd_link_hash_table *
14006 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
14008 struct bfd_link_hash_table *ret;
14010 ret = elf32_arm_link_hash_table_create (abfd);
14011 if (ret)
14013 struct elf32_arm_link_hash_table *htab
14014 = (struct elf32_arm_link_hash_table *) ret;
14015 htab->use_rel = 0;
14016 htab->vxworks_p = 1;
14018 return ret;
14021 static void
14022 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
14024 elf32_arm_final_write_processing (abfd, linker);
14025 elf_vxworks_final_write_processing (abfd, linker);
14028 #undef elf32_bed
14029 #define elf32_bed elf32_arm_vxworks_bed
14031 #undef bfd_elf32_bfd_link_hash_table_create
14032 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
14033 #undef elf_backend_add_symbol_hook
14034 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
14035 #undef elf_backend_final_write_processing
14036 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
14037 #undef elf_backend_emit_relocs
14038 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
14040 #undef elf_backend_may_use_rel_p
14041 #define elf_backend_may_use_rel_p 0
14042 #undef elf_backend_may_use_rela_p
14043 #define elf_backend_may_use_rela_p 1
14044 #undef elf_backend_default_use_rela_p
14045 #define elf_backend_default_use_rela_p 1
14046 #undef elf_backend_want_plt_sym
14047 #define elf_backend_want_plt_sym 1
14048 #undef ELF_MAXPAGESIZE
14049 #define ELF_MAXPAGESIZE 0x1000
14051 #include "elf32-target.h"
14054 /* Merge backend specific data from an object file to the output
14055 object file when linking. */
14057 static bfd_boolean
14058 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
14060 flagword out_flags;
14061 flagword in_flags;
14062 bfd_boolean flags_compatible = TRUE;
14063 asection *sec;
14065 /* Check if we have the same endianess. */
14066 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14067 return FALSE;
14069 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
14070 return TRUE;
14072 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
14073 return FALSE;
14075 /* The input BFD must have had its flags initialised. */
14076 /* The following seems bogus to me -- The flags are initialized in
14077 the assembler but I don't think an elf_flags_init field is
14078 written into the object. */
14079 /* BFD_ASSERT (elf_flags_init (ibfd)); */
14081 in_flags = elf_elfheader (ibfd)->e_flags;
14082 out_flags = elf_elfheader (obfd)->e_flags;
14084 /* In theory there is no reason why we couldn't handle this. However
14085 in practice it isn't even close to working and there is no real
14086 reason to want it. */
14087 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
14088 && !(ibfd->flags & DYNAMIC)
14089 && (in_flags & EF_ARM_BE8))
14091 _bfd_error_handler (_("error: %B is already in final BE8 format"),
14092 ibfd);
14093 return FALSE;
14096 if (!elf_flags_init (obfd))
14098 /* If the input is the default architecture and had the default
14099 flags then do not bother setting the flags for the output
14100 architecture, instead allow future merges to do this. If no
14101 future merges ever set these flags then they will retain their
14102 uninitialised values, which surprise surprise, correspond
14103 to the default values. */
14104 if (bfd_get_arch_info (ibfd)->the_default
14105 && elf_elfheader (ibfd)->e_flags == 0)
14106 return TRUE;
14108 elf_flags_init (obfd) = TRUE;
14109 elf_elfheader (obfd)->e_flags = in_flags;
14111 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14112 && bfd_get_arch_info (obfd)->the_default)
14113 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
14115 return TRUE;
14118 /* Determine what should happen if the input ARM architecture
14119 does not match the output ARM architecture. */
14120 if (! bfd_arm_merge_machines (ibfd, obfd))
14121 return FALSE;
14123 /* Identical flags must be compatible. */
14124 if (in_flags == out_flags)
14125 return TRUE;
14127 /* Check to see if the input BFD actually contains any sections. If
14128 not, its flags may not have been initialised either, but it
14129 cannot actually cause any incompatiblity. Do not short-circuit
14130 dynamic objects; their section list may be emptied by
14131 elf_link_add_object_symbols.
14133 Also check to see if there are no code sections in the input.
14134 In this case there is no need to check for code specific flags.
14135 XXX - do we need to worry about floating-point format compatability
14136 in data sections ? */
14137 if (!(ibfd->flags & DYNAMIC))
14139 bfd_boolean null_input_bfd = TRUE;
14140 bfd_boolean only_data_sections = TRUE;
14142 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14144 /* Ignore synthetic glue sections. */
14145 if (strcmp (sec->name, ".glue_7")
14146 && strcmp (sec->name, ".glue_7t"))
14148 if ((bfd_get_section_flags (ibfd, sec)
14149 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14150 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14151 only_data_sections = FALSE;
14153 null_input_bfd = FALSE;
14154 break;
14158 if (null_input_bfd || only_data_sections)
14159 return TRUE;
14162 /* Complain about various flag mismatches. */
14163 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
14164 EF_ARM_EABI_VERSION (out_flags)))
14166 _bfd_error_handler
14167 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
14168 ibfd, obfd,
14169 (in_flags & EF_ARM_EABIMASK) >> 24,
14170 (out_flags & EF_ARM_EABIMASK) >> 24);
14171 return FALSE;
14174 /* Not sure what needs to be checked for EABI versions >= 1. */
14175 /* VxWorks libraries do not use these flags. */
14176 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
14177 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
14178 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
14180 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14182 _bfd_error_handler
14183 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
14184 ibfd, obfd,
14185 in_flags & EF_ARM_APCS_26 ? 26 : 32,
14186 out_flags & EF_ARM_APCS_26 ? 26 : 32);
14187 flags_compatible = FALSE;
14190 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14192 if (in_flags & EF_ARM_APCS_FLOAT)
14193 _bfd_error_handler
14194 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
14195 ibfd, obfd);
14196 else
14197 _bfd_error_handler
14198 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
14199 ibfd, obfd);
14201 flags_compatible = FALSE;
14204 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
14206 if (in_flags & EF_ARM_VFP_FLOAT)
14207 _bfd_error_handler
14208 (_("error: %B uses VFP instructions, whereas %B does not"),
14209 ibfd, obfd);
14210 else
14211 _bfd_error_handler
14212 (_("error: %B uses FPA instructions, whereas %B does not"),
14213 ibfd, obfd);
14215 flags_compatible = FALSE;
14218 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
14220 if (in_flags & EF_ARM_MAVERICK_FLOAT)
14221 _bfd_error_handler
14222 (_("error: %B uses Maverick instructions, whereas %B does not"),
14223 ibfd, obfd);
14224 else
14225 _bfd_error_handler
14226 (_("error: %B does not use Maverick instructions, whereas %B does"),
14227 ibfd, obfd);
14229 flags_compatible = FALSE;
14232 #ifdef EF_ARM_SOFT_FLOAT
14233 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
14235 /* We can allow interworking between code that is VFP format
14236 layout, and uses either soft float or integer regs for
14237 passing floating point arguments and results. We already
14238 know that the APCS_FLOAT flags match; similarly for VFP
14239 flags. */
14240 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
14241 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
14243 if (in_flags & EF_ARM_SOFT_FLOAT)
14244 _bfd_error_handler
14245 (_("error: %B uses software FP, whereas %B uses hardware FP"),
14246 ibfd, obfd);
14247 else
14248 _bfd_error_handler
14249 (_("error: %B uses hardware FP, whereas %B uses software FP"),
14250 ibfd, obfd);
14252 flags_compatible = FALSE;
14255 #endif
14257 /* Interworking mismatch is only a warning. */
14258 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14260 if (in_flags & EF_ARM_INTERWORK)
14262 _bfd_error_handler
14263 (_("Warning: %B supports interworking, whereas %B does not"),
14264 ibfd, obfd);
14266 else
14268 _bfd_error_handler
14269 (_("Warning: %B does not support interworking, whereas %B does"),
14270 ibfd, obfd);
14275 return flags_compatible;
14279 /* Symbian OS Targets. */
14281 #undef TARGET_LITTLE_SYM
14282 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
14283 #undef TARGET_LITTLE_NAME
14284 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
14285 #undef TARGET_BIG_SYM
14286 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
14287 #undef TARGET_BIG_NAME
14288 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
14290 /* Like elf32_arm_link_hash_table_create -- but overrides
14291 appropriately for Symbian OS. */
14293 static struct bfd_link_hash_table *
14294 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14296 struct bfd_link_hash_table *ret;
14298 ret = elf32_arm_link_hash_table_create (abfd);
14299 if (ret)
14301 struct elf32_arm_link_hash_table *htab
14302 = (struct elf32_arm_link_hash_table *)ret;
14303 /* There is no PLT header for Symbian OS. */
14304 htab->plt_header_size = 0;
14305 /* The PLT entries are each one instruction and one word. */
14306 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
14307 htab->symbian_p = 1;
14308 /* Symbian uses armv5t or above, so use_blx is always true. */
14309 htab->use_blx = 1;
14310 htab->root.is_relocatable_executable = 1;
14312 return ret;
14315 static const struct bfd_elf_special_section
14316 elf32_arm_symbian_special_sections[] =
14318 /* In a BPABI executable, the dynamic linking sections do not go in
14319 the loadable read-only segment. The post-linker may wish to
14320 refer to these sections, but they are not part of the final
14321 program image. */
14322 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
14323 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
14324 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
14325 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
14326 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
14327 /* These sections do not need to be writable as the SymbianOS
14328 postlinker will arrange things so that no dynamic relocation is
14329 required. */
14330 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
14331 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
14332 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14333 { NULL, 0, 0, 0, 0 }
14336 static void
14337 elf32_arm_symbian_begin_write_processing (bfd *abfd,
14338 struct bfd_link_info *link_info)
14340 /* BPABI objects are never loaded directly by an OS kernel; they are
14341 processed by a postlinker first, into an OS-specific format. If
14342 the D_PAGED bit is set on the file, BFD will align segments on
14343 page boundaries, so that an OS can directly map the file. With
14344 BPABI objects, that just results in wasted space. In addition,
14345 because we clear the D_PAGED bit, map_sections_to_segments will
14346 recognize that the program headers should not be mapped into any
14347 loadable segment. */
14348 abfd->flags &= ~D_PAGED;
14349 elf32_arm_begin_write_processing (abfd, link_info);
14352 static bfd_boolean
14353 elf32_arm_symbian_modify_segment_map (bfd *abfd,
14354 struct bfd_link_info *info)
14356 struct elf_segment_map *m;
14357 asection *dynsec;
14359 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14360 segment. However, because the .dynamic section is not marked
14361 with SEC_LOAD, the generic ELF code will not create such a
14362 segment. */
14363 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14364 if (dynsec)
14366 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14367 if (m->p_type == PT_DYNAMIC)
14368 break;
14370 if (m == NULL)
14372 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14373 m->next = elf_tdata (abfd)->segment_map;
14374 elf_tdata (abfd)->segment_map = m;
14378 /* Also call the generic arm routine. */
14379 return elf32_arm_modify_segment_map (abfd, info);
14382 /* Return address for Ith PLT stub in section PLT, for relocation REL
14383 or (bfd_vma) -1 if it should not be included. */
14385 static bfd_vma
14386 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14387 const arelent *rel ATTRIBUTE_UNUSED)
14389 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14393 #undef elf32_bed
14394 #define elf32_bed elf32_arm_symbian_bed
14396 /* The dynamic sections are not allocated on SymbianOS; the postlinker
14397 will process them and then discard them. */
14398 #undef ELF_DYNAMIC_SEC_FLAGS
14399 #define ELF_DYNAMIC_SEC_FLAGS \
14400 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14402 #undef elf_backend_add_symbol_hook
14403 #undef elf_backend_emit_relocs
14405 #undef bfd_elf32_bfd_link_hash_table_create
14406 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14407 #undef elf_backend_special_sections
14408 #define elf_backend_special_sections elf32_arm_symbian_special_sections
14409 #undef elf_backend_begin_write_processing
14410 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14411 #undef elf_backend_final_write_processing
14412 #define elf_backend_final_write_processing elf32_arm_final_write_processing
14414 #undef elf_backend_modify_segment_map
14415 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14417 /* There is no .got section for BPABI objects, and hence no header. */
14418 #undef elf_backend_got_header_size
14419 #define elf_backend_got_header_size 0
14421 /* Similarly, there is no .got.plt section. */
14422 #undef elf_backend_want_got_plt
14423 #define elf_backend_want_got_plt 0
14425 #undef elf_backend_plt_sym_val
14426 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14428 #undef elf_backend_may_use_rel_p
14429 #define elf_backend_may_use_rel_p 1
14430 #undef elf_backend_may_use_rela_p
14431 #define elf_backend_may_use_rela_p 0
14432 #undef elf_backend_default_use_rela_p
14433 #define elf_backend_default_use_rela_p 0
14434 #undef elf_backend_want_plt_sym
14435 #define elf_backend_want_plt_sym 0
14436 #undef ELF_MAXPAGESIZE
14437 #define ELF_MAXPAGESIZE 0x8000
14439 #include "elf32-target.h"