1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
65 struct bfd_link_info
*link_info
,
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73 static reloc_howto_type elf32_arm_howto_table_1
[] =
76 HOWTO (R_ARM_NONE
, /* type */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
80 FALSE
, /* pc_relative */
82 complain_overflow_dont
,/* complain_on_overflow */
83 bfd_elf_generic_reloc
, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE
, /* partial_inplace */
88 FALSE
), /* pcrel_offset */
90 HOWTO (R_ARM_PC24
, /* type */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
94 TRUE
, /* pc_relative */
96 complain_overflow_signed
,/* complain_on_overflow */
97 bfd_elf_generic_reloc
, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE
, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE
), /* pcrel_offset */
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32
, /* type */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
109 FALSE
, /* pc_relative */
111 complain_overflow_bitfield
,/* complain_on_overflow */
112 bfd_elf_generic_reloc
, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE
, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE
), /* pcrel_offset */
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32
, /* type */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
124 TRUE
, /* pc_relative */
126 complain_overflow_bitfield
,/* complain_on_overflow */
127 bfd_elf_generic_reloc
, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE
, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE
), /* pcrel_offset */
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0
, /* type */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
139 TRUE
, /* pc_relative */
141 complain_overflow_dont
,/* complain_on_overflow */
142 bfd_elf_generic_reloc
, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE
, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE
), /* pcrel_offset */
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16
, /* type */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
154 FALSE
, /* pc_relative */
156 complain_overflow_bitfield
,/* complain_on_overflow */
157 bfd_elf_generic_reloc
, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE
, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE
), /* pcrel_offset */
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12
, /* type */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
169 FALSE
, /* pc_relative */
171 complain_overflow_bitfield
,/* complain_on_overflow */
172 bfd_elf_generic_reloc
, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE
, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE
), /* pcrel_offset */
179 HOWTO (R_ARM_THM_ABS5
, /* type */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
183 FALSE
, /* pc_relative */
185 complain_overflow_bitfield
,/* complain_on_overflow */
186 bfd_elf_generic_reloc
, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE
, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE
), /* pcrel_offset */
194 HOWTO (R_ARM_ABS8
, /* type */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
198 FALSE
, /* pc_relative */
200 complain_overflow_bitfield
,/* complain_on_overflow */
201 bfd_elf_generic_reloc
, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE
, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE
), /* pcrel_offset */
208 HOWTO (R_ARM_SBREL32
, /* type */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
212 FALSE
, /* pc_relative */
214 complain_overflow_dont
,/* complain_on_overflow */
215 bfd_elf_generic_reloc
, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE
, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE
), /* pcrel_offset */
222 HOWTO (R_ARM_THM_CALL
, /* type */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
226 TRUE
, /* pc_relative */
228 complain_overflow_signed
,/* complain_on_overflow */
229 bfd_elf_generic_reloc
, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE
, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE
), /* pcrel_offset */
236 HOWTO (R_ARM_THM_PC8
, /* type */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
240 TRUE
, /* pc_relative */
242 complain_overflow_signed
,/* complain_on_overflow */
243 bfd_elf_generic_reloc
, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE
, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE
), /* pcrel_offset */
250 HOWTO (R_ARM_BREL_ADJ
, /* type */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
254 FALSE
, /* pc_relative */
256 complain_overflow_signed
,/* complain_on_overflow */
257 bfd_elf_generic_reloc
, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE
, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE
), /* pcrel_offset */
264 HOWTO (R_ARM_TLS_DESC
, /* type */
266 2, /* size (0 = byte, 1 = short, 2 = long) */
268 FALSE
, /* pc_relative */
270 complain_overflow_bitfield
,/* complain_on_overflow */
271 bfd_elf_generic_reloc
, /* special_function */
272 "R_ARM_TLS_DESC", /* name */
273 FALSE
, /* partial_inplace */
274 0xffffffff, /* src_mask */
275 0xffffffff, /* dst_mask */
276 FALSE
), /* pcrel_offset */
278 HOWTO (R_ARM_THM_SWI8
, /* type */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
282 FALSE
, /* pc_relative */
284 complain_overflow_signed
,/* complain_on_overflow */
285 bfd_elf_generic_reloc
, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE
, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE
), /* pcrel_offset */
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25
, /* type */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
297 TRUE
, /* pc_relative */
299 complain_overflow_signed
,/* complain_on_overflow */
300 bfd_elf_generic_reloc
, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE
, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE
), /* pcrel_offset */
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22
, /* type */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
312 TRUE
, /* pc_relative */
314 complain_overflow_signed
,/* complain_on_overflow */
315 bfd_elf_generic_reloc
, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE
, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE
), /* pcrel_offset */
322 /* Dynamic TLS relocations. */
324 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE
, /* pc_relative */
330 complain_overflow_bitfield
,/* complain_on_overflow */
331 bfd_elf_generic_reloc
, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE
, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE
), /* pcrel_offset */
338 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE
, /* pc_relative */
344 complain_overflow_bitfield
,/* complain_on_overflow */
345 bfd_elf_generic_reloc
, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE
, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE
), /* pcrel_offset */
352 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE
, /* pc_relative */
358 complain_overflow_bitfield
,/* complain_on_overflow */
359 bfd_elf_generic_reloc
, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE
, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE
), /* pcrel_offset */
366 /* Relocs used in ARM Linux */
368 HOWTO (R_ARM_COPY
, /* type */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
372 FALSE
, /* pc_relative */
374 complain_overflow_bitfield
,/* complain_on_overflow */
375 bfd_elf_generic_reloc
, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE
, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE
), /* pcrel_offset */
382 HOWTO (R_ARM_GLOB_DAT
, /* type */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
386 FALSE
, /* pc_relative */
388 complain_overflow_bitfield
,/* complain_on_overflow */
389 bfd_elf_generic_reloc
, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE
, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE
), /* pcrel_offset */
396 HOWTO (R_ARM_JUMP_SLOT
, /* type */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
400 FALSE
, /* pc_relative */
402 complain_overflow_bitfield
,/* complain_on_overflow */
403 bfd_elf_generic_reloc
, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE
, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE
), /* pcrel_offset */
410 HOWTO (R_ARM_RELATIVE
, /* type */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
414 FALSE
, /* pc_relative */
416 complain_overflow_bitfield
,/* complain_on_overflow */
417 bfd_elf_generic_reloc
, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE
, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE
), /* pcrel_offset */
424 HOWTO (R_ARM_GOTOFF32
, /* type */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
428 FALSE
, /* pc_relative */
430 complain_overflow_bitfield
,/* complain_on_overflow */
431 bfd_elf_generic_reloc
, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE
, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE
), /* pcrel_offset */
438 HOWTO (R_ARM_GOTPC
, /* type */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
442 TRUE
, /* pc_relative */
444 complain_overflow_bitfield
,/* complain_on_overflow */
445 bfd_elf_generic_reloc
, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE
, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE
), /* pcrel_offset */
452 HOWTO (R_ARM_GOT32
, /* type */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE
, /* pc_relative */
458 complain_overflow_bitfield
,/* complain_on_overflow */
459 bfd_elf_generic_reloc
, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE
, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE
), /* pcrel_offset */
466 HOWTO (R_ARM_PLT32
, /* type */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
470 TRUE
, /* pc_relative */
472 complain_overflow_bitfield
,/* complain_on_overflow */
473 bfd_elf_generic_reloc
, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE
, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE
), /* pcrel_offset */
480 HOWTO (R_ARM_CALL
, /* type */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
484 TRUE
, /* pc_relative */
486 complain_overflow_signed
,/* complain_on_overflow */
487 bfd_elf_generic_reloc
, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE
, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE
), /* pcrel_offset */
494 HOWTO (R_ARM_JUMP24
, /* type */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
498 TRUE
, /* pc_relative */
500 complain_overflow_signed
,/* complain_on_overflow */
501 bfd_elf_generic_reloc
, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE
, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE
), /* pcrel_offset */
508 HOWTO (R_ARM_THM_JUMP24
, /* type */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
512 TRUE
, /* pc_relative */
514 complain_overflow_signed
,/* complain_on_overflow */
515 bfd_elf_generic_reloc
, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE
, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE
), /* pcrel_offset */
522 HOWTO (R_ARM_BASE_ABS
, /* type */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
526 FALSE
, /* pc_relative */
528 complain_overflow_dont
,/* complain_on_overflow */
529 bfd_elf_generic_reloc
, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE
, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE
), /* pcrel_offset */
536 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
540 TRUE
, /* pc_relative */
542 complain_overflow_dont
,/* complain_on_overflow */
543 bfd_elf_generic_reloc
, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE
, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE
), /* pcrel_offset */
550 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
554 TRUE
, /* pc_relative */
556 complain_overflow_dont
,/* complain_on_overflow */
557 bfd_elf_generic_reloc
, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE
, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE
), /* pcrel_offset */
564 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
568 TRUE
, /* pc_relative */
570 complain_overflow_dont
,/* complain_on_overflow */
571 bfd_elf_generic_reloc
, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE
, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE
), /* pcrel_offset */
578 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE
, /* pc_relative */
584 complain_overflow_dont
,/* complain_on_overflow */
585 bfd_elf_generic_reloc
, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE
, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE
), /* pcrel_offset */
592 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
596 FALSE
, /* pc_relative */
598 complain_overflow_dont
,/* complain_on_overflow */
599 bfd_elf_generic_reloc
, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE
, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE
), /* pcrel_offset */
606 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 FALSE
, /* pc_relative */
612 complain_overflow_dont
,/* complain_on_overflow */
613 bfd_elf_generic_reloc
, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE
, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE
), /* pcrel_offset */
620 HOWTO (R_ARM_TARGET1
, /* type */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
624 FALSE
, /* pc_relative */
626 complain_overflow_dont
,/* complain_on_overflow */
627 bfd_elf_generic_reloc
, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE
, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE
), /* pcrel_offset */
634 HOWTO (R_ARM_ROSEGREL32
, /* type */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
638 FALSE
, /* pc_relative */
640 complain_overflow_dont
,/* complain_on_overflow */
641 bfd_elf_generic_reloc
, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE
, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE
), /* pcrel_offset */
648 HOWTO (R_ARM_V4BX
, /* type */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
652 FALSE
, /* pc_relative */
654 complain_overflow_dont
,/* complain_on_overflow */
655 bfd_elf_generic_reloc
, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE
, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE
), /* pcrel_offset */
662 HOWTO (R_ARM_TARGET2
, /* type */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
666 FALSE
, /* pc_relative */
668 complain_overflow_signed
,/* complain_on_overflow */
669 bfd_elf_generic_reloc
, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE
, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE
), /* pcrel_offset */
676 HOWTO (R_ARM_PREL31
, /* type */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
680 TRUE
, /* pc_relative */
682 complain_overflow_signed
,/* complain_on_overflow */
683 bfd_elf_generic_reloc
, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE
, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE
), /* pcrel_offset */
690 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
694 FALSE
, /* pc_relative */
696 complain_overflow_dont
,/* complain_on_overflow */
697 bfd_elf_generic_reloc
, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE
, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE
), /* pcrel_offset */
704 HOWTO (R_ARM_MOVT_ABS
, /* type */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
708 FALSE
, /* pc_relative */
710 complain_overflow_bitfield
,/* complain_on_overflow */
711 bfd_elf_generic_reloc
, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE
, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE
), /* pcrel_offset */
718 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
722 TRUE
, /* pc_relative */
724 complain_overflow_dont
,/* complain_on_overflow */
725 bfd_elf_generic_reloc
, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE
, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE
), /* pcrel_offset */
732 HOWTO (R_ARM_MOVT_PREL
, /* type */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
736 TRUE
, /* pc_relative */
738 complain_overflow_bitfield
,/* complain_on_overflow */
739 bfd_elf_generic_reloc
, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE
, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE
), /* pcrel_offset */
746 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 FALSE
, /* pc_relative */
752 complain_overflow_dont
,/* complain_on_overflow */
753 bfd_elf_generic_reloc
, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE
, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE
), /* pcrel_offset */
760 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
764 FALSE
, /* pc_relative */
766 complain_overflow_bitfield
,/* complain_on_overflow */
767 bfd_elf_generic_reloc
, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE
, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE
), /* pcrel_offset */
774 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
778 TRUE
, /* pc_relative */
780 complain_overflow_dont
,/* complain_on_overflow */
781 bfd_elf_generic_reloc
, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE
, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE
), /* pcrel_offset */
788 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
792 TRUE
, /* pc_relative */
794 complain_overflow_bitfield
,/* complain_on_overflow */
795 bfd_elf_generic_reloc
, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE
, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE
), /* pcrel_offset */
802 HOWTO (R_ARM_THM_JUMP19
, /* type */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
806 TRUE
, /* pc_relative */
808 complain_overflow_signed
,/* complain_on_overflow */
809 bfd_elf_generic_reloc
, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE
, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE
), /* pcrel_offset */
816 HOWTO (R_ARM_THM_JUMP6
, /* type */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
820 TRUE
, /* pc_relative */
822 complain_overflow_unsigned
,/* complain_on_overflow */
823 bfd_elf_generic_reloc
, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE
, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE
), /* pcrel_offset */
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
833 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
837 TRUE
, /* pc_relative */
839 complain_overflow_dont
,/* complain_on_overflow */
840 bfd_elf_generic_reloc
, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE
, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE
), /* pcrel_offset */
847 HOWTO (R_ARM_THM_PC12
, /* type */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
851 TRUE
, /* pc_relative */
853 complain_overflow_dont
,/* complain_on_overflow */
854 bfd_elf_generic_reloc
, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE
, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE
), /* pcrel_offset */
861 HOWTO (R_ARM_ABS32_NOI
, /* type */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
865 FALSE
, /* pc_relative */
867 complain_overflow_dont
,/* complain_on_overflow */
868 bfd_elf_generic_reloc
, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE
, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE
), /* pcrel_offset */
875 HOWTO (R_ARM_REL32_NOI
, /* type */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
879 TRUE
, /* pc_relative */
881 complain_overflow_dont
,/* complain_on_overflow */
882 bfd_elf_generic_reloc
, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE
, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE
), /* pcrel_offset */
889 /* Group relocations. */
891 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
895 TRUE
, /* pc_relative */
897 complain_overflow_dont
,/* complain_on_overflow */
898 bfd_elf_generic_reloc
, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE
, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE
), /* pcrel_offset */
905 HOWTO (R_ARM_ALU_PC_G0
, /* type */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
909 TRUE
, /* pc_relative */
911 complain_overflow_dont
,/* complain_on_overflow */
912 bfd_elf_generic_reloc
, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE
, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE
), /* pcrel_offset */
919 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
923 TRUE
, /* pc_relative */
925 complain_overflow_dont
,/* complain_on_overflow */
926 bfd_elf_generic_reloc
, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE
, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE
), /* pcrel_offset */
933 HOWTO (R_ARM_ALU_PC_G1
, /* type */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
937 TRUE
, /* pc_relative */
939 complain_overflow_dont
,/* complain_on_overflow */
940 bfd_elf_generic_reloc
, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE
, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE
), /* pcrel_offset */
947 HOWTO (R_ARM_ALU_PC_G2
, /* type */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
951 TRUE
, /* pc_relative */
953 complain_overflow_dont
,/* complain_on_overflow */
954 bfd_elf_generic_reloc
, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE
, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE
), /* pcrel_offset */
961 HOWTO (R_ARM_LDR_PC_G1
, /* type */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
965 TRUE
, /* pc_relative */
967 complain_overflow_dont
,/* complain_on_overflow */
968 bfd_elf_generic_reloc
, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE
, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE
), /* pcrel_offset */
975 HOWTO (R_ARM_LDR_PC_G2
, /* type */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
979 TRUE
, /* pc_relative */
981 complain_overflow_dont
,/* complain_on_overflow */
982 bfd_elf_generic_reloc
, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE
, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE
), /* pcrel_offset */
989 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
993 TRUE
, /* pc_relative */
995 complain_overflow_dont
,/* complain_on_overflow */
996 bfd_elf_generic_reloc
, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE
, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE
), /* pcrel_offset */
1003 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1007 TRUE
, /* pc_relative */
1009 complain_overflow_dont
,/* complain_on_overflow */
1010 bfd_elf_generic_reloc
, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE
, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE
), /* pcrel_offset */
1017 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1021 TRUE
, /* pc_relative */
1023 complain_overflow_dont
,/* complain_on_overflow */
1024 bfd_elf_generic_reloc
, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE
, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE
), /* pcrel_offset */
1031 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 TRUE
, /* pc_relative */
1037 complain_overflow_dont
,/* complain_on_overflow */
1038 bfd_elf_generic_reloc
, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE
, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE
), /* pcrel_offset */
1045 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 TRUE
, /* pc_relative */
1051 complain_overflow_dont
,/* complain_on_overflow */
1052 bfd_elf_generic_reloc
, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE
, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE
), /* pcrel_offset */
1059 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 TRUE
, /* pc_relative */
1065 complain_overflow_dont
,/* complain_on_overflow */
1066 bfd_elf_generic_reloc
, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE
, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE
), /* pcrel_offset */
1073 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 TRUE
, /* pc_relative */
1079 complain_overflow_dont
,/* complain_on_overflow */
1080 bfd_elf_generic_reloc
, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE
, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE
), /* pcrel_offset */
1087 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 TRUE
, /* pc_relative */
1093 complain_overflow_dont
,/* complain_on_overflow */
1094 bfd_elf_generic_reloc
, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE
, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE
), /* pcrel_offset */
1101 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 TRUE
, /* pc_relative */
1107 complain_overflow_dont
,/* complain_on_overflow */
1108 bfd_elf_generic_reloc
, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE
, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE
), /* pcrel_offset */
1115 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 TRUE
, /* pc_relative */
1121 complain_overflow_dont
,/* complain_on_overflow */
1122 bfd_elf_generic_reloc
, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE
, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE
), /* pcrel_offset */
1129 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1133 TRUE
, /* pc_relative */
1135 complain_overflow_dont
,/* complain_on_overflow */
1136 bfd_elf_generic_reloc
, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE
, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE
), /* pcrel_offset */
1143 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1147 TRUE
, /* pc_relative */
1149 complain_overflow_dont
,/* complain_on_overflow */
1150 bfd_elf_generic_reloc
, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE
, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE
), /* pcrel_offset */
1157 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1161 TRUE
, /* pc_relative */
1163 complain_overflow_dont
,/* complain_on_overflow */
1164 bfd_elf_generic_reloc
, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE
, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE
), /* pcrel_offset */
1171 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 TRUE
, /* pc_relative */
1177 complain_overflow_dont
,/* complain_on_overflow */
1178 bfd_elf_generic_reloc
, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE
, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE
), /* pcrel_offset */
1185 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1189 TRUE
, /* pc_relative */
1191 complain_overflow_dont
,/* complain_on_overflow */
1192 bfd_elf_generic_reloc
, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE
, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE
), /* pcrel_offset */
1199 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1203 TRUE
, /* pc_relative */
1205 complain_overflow_dont
,/* complain_on_overflow */
1206 bfd_elf_generic_reloc
, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE
, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE
), /* pcrel_offset */
1213 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 TRUE
, /* pc_relative */
1219 complain_overflow_dont
,/* complain_on_overflow */
1220 bfd_elf_generic_reloc
, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE
, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE
), /* pcrel_offset */
1227 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1231 TRUE
, /* pc_relative */
1233 complain_overflow_dont
,/* complain_on_overflow */
1234 bfd_elf_generic_reloc
, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE
, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE
), /* pcrel_offset */
1241 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1245 TRUE
, /* pc_relative */
1247 complain_overflow_dont
,/* complain_on_overflow */
1248 bfd_elf_generic_reloc
, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE
, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE
), /* pcrel_offset */
1255 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1259 TRUE
, /* pc_relative */
1261 complain_overflow_dont
,/* complain_on_overflow */
1262 bfd_elf_generic_reloc
, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE
, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE
), /* pcrel_offset */
1269 /* End of group relocations. */
1271 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1275 FALSE
, /* pc_relative */
1277 complain_overflow_dont
,/* complain_on_overflow */
1278 bfd_elf_generic_reloc
, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE
, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE
), /* pcrel_offset */
1285 HOWTO (R_ARM_MOVT_BREL
, /* type */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1289 FALSE
, /* pc_relative */
1291 complain_overflow_bitfield
,/* complain_on_overflow */
1292 bfd_elf_generic_reloc
, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE
, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE
), /* pcrel_offset */
1299 HOWTO (R_ARM_MOVW_BREL
, /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 FALSE
, /* pc_relative */
1305 complain_overflow_dont
,/* complain_on_overflow */
1306 bfd_elf_generic_reloc
, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE
, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE
), /* pcrel_offset */
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 FALSE
, /* pc_relative */
1319 complain_overflow_dont
,/* complain_on_overflow */
1320 bfd_elf_generic_reloc
, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE
, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE
), /* pcrel_offset */
1327 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 FALSE
, /* pc_relative */
1333 complain_overflow_bitfield
,/* complain_on_overflow */
1334 bfd_elf_generic_reloc
, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE
, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE
), /* pcrel_offset */
1341 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1345 FALSE
, /* pc_relative */
1347 complain_overflow_dont
,/* complain_on_overflow */
1348 bfd_elf_generic_reloc
, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE
, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE
), /* pcrel_offset */
1355 HOWTO (R_ARM_TLS_GOTDESC
, /* type */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 FALSE
, /* pc_relative */
1361 complain_overflow_bitfield
,/* complain_on_overflow */
1362 NULL
, /* special_function */
1363 "R_ARM_TLS_GOTDESC", /* name */
1364 TRUE
, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE
), /* pcrel_offset */
1369 HOWTO (R_ARM_TLS_CALL
, /* type */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 FALSE
, /* pc_relative */
1375 complain_overflow_dont
,/* complain_on_overflow */
1376 bfd_elf_generic_reloc
, /* special_function */
1377 "R_ARM_TLS_CALL", /* name */
1378 FALSE
, /* partial_inplace */
1379 0x00ffffff, /* src_mask */
1380 0x00ffffff, /* dst_mask */
1381 FALSE
), /* pcrel_offset */
1383 HOWTO (R_ARM_TLS_DESCSEQ
, /* type */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 FALSE
, /* pc_relative */
1389 complain_overflow_bitfield
,/* complain_on_overflow */
1390 bfd_elf_generic_reloc
, /* special_function */
1391 "R_ARM_TLS_DESCSEQ", /* name */
1392 FALSE
, /* partial_inplace */
1393 0x00000000, /* src_mask */
1394 0x00000000, /* dst_mask */
1395 FALSE
), /* pcrel_offset */
1397 HOWTO (R_ARM_THM_TLS_CALL
, /* type */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1401 FALSE
, /* pc_relative */
1403 complain_overflow_dont
,/* complain_on_overflow */
1404 bfd_elf_generic_reloc
, /* special_function */
1405 "R_ARM_THM_TLS_CALL", /* name */
1406 FALSE
, /* partial_inplace */
1407 0x07ff07ff, /* src_mask */
1408 0x07ff07ff, /* dst_mask */
1409 FALSE
), /* pcrel_offset */
1411 HOWTO (R_ARM_PLT32_ABS
, /* type */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1415 FALSE
, /* pc_relative */
1417 complain_overflow_dont
,/* complain_on_overflow */
1418 bfd_elf_generic_reloc
, /* special_function */
1419 "R_ARM_PLT32_ABS", /* name */
1420 FALSE
, /* partial_inplace */
1421 0xffffffff, /* src_mask */
1422 0xffffffff, /* dst_mask */
1423 FALSE
), /* pcrel_offset */
1425 HOWTO (R_ARM_GOT_ABS
, /* type */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1429 FALSE
, /* pc_relative */
1431 complain_overflow_dont
,/* complain_on_overflow */
1432 bfd_elf_generic_reloc
, /* special_function */
1433 "R_ARM_GOT_ABS", /* name */
1434 FALSE
, /* partial_inplace */
1435 0xffffffff, /* src_mask */
1436 0xffffffff, /* dst_mask */
1437 FALSE
), /* pcrel_offset */
1439 HOWTO (R_ARM_GOT_PREL
, /* type */
1441 2, /* size (0 = byte, 1 = short, 2 = long) */
1443 TRUE
, /* pc_relative */
1445 complain_overflow_dont
, /* complain_on_overflow */
1446 bfd_elf_generic_reloc
, /* special_function */
1447 "R_ARM_GOT_PREL", /* name */
1448 FALSE
, /* partial_inplace */
1449 0xffffffff, /* src_mask */
1450 0xffffffff, /* dst_mask */
1451 TRUE
), /* pcrel_offset */
1453 HOWTO (R_ARM_GOT_BREL12
, /* type */
1455 2, /* size (0 = byte, 1 = short, 2 = long) */
1457 FALSE
, /* pc_relative */
1459 complain_overflow_bitfield
,/* complain_on_overflow */
1460 bfd_elf_generic_reloc
, /* special_function */
1461 "R_ARM_GOT_BREL12", /* name */
1462 FALSE
, /* partial_inplace */
1463 0x00000fff, /* src_mask */
1464 0x00000fff, /* dst_mask */
1465 FALSE
), /* pcrel_offset */
1467 HOWTO (R_ARM_GOTOFF12
, /* type */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1471 FALSE
, /* pc_relative */
1473 complain_overflow_bitfield
,/* complain_on_overflow */
1474 bfd_elf_generic_reloc
, /* special_function */
1475 "R_ARM_GOTOFF12", /* name */
1476 FALSE
, /* partial_inplace */
1477 0x00000fff, /* src_mask */
1478 0x00000fff, /* dst_mask */
1479 FALSE
), /* pcrel_offset */
1481 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1483 /* GNU extension to record C++ vtable member usage */
1484 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1486 2, /* size (0 = byte, 1 = short, 2 = long) */
1488 FALSE
, /* pc_relative */
1490 complain_overflow_dont
, /* complain_on_overflow */
1491 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1492 "R_ARM_GNU_VTENTRY", /* name */
1493 FALSE
, /* partial_inplace */
1496 FALSE
), /* pcrel_offset */
1498 /* GNU extension to record C++ vtable hierarchy */
1499 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 FALSE
, /* pc_relative */
1505 complain_overflow_dont
, /* complain_on_overflow */
1506 NULL
, /* special_function */
1507 "R_ARM_GNU_VTINHERIT", /* name */
1508 FALSE
, /* partial_inplace */
1511 FALSE
), /* pcrel_offset */
1513 HOWTO (R_ARM_THM_JUMP11
, /* type */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1517 TRUE
, /* pc_relative */
1519 complain_overflow_signed
, /* complain_on_overflow */
1520 bfd_elf_generic_reloc
, /* special_function */
1521 "R_ARM_THM_JUMP11", /* name */
1522 FALSE
, /* partial_inplace */
1523 0x000007ff, /* src_mask */
1524 0x000007ff, /* dst_mask */
1525 TRUE
), /* pcrel_offset */
1527 HOWTO (R_ARM_THM_JUMP8
, /* type */
1529 1, /* size (0 = byte, 1 = short, 2 = long) */
1531 TRUE
, /* pc_relative */
1533 complain_overflow_signed
, /* complain_on_overflow */
1534 bfd_elf_generic_reloc
, /* special_function */
1535 "R_ARM_THM_JUMP8", /* name */
1536 FALSE
, /* partial_inplace */
1537 0x000000ff, /* src_mask */
1538 0x000000ff, /* dst_mask */
1539 TRUE
), /* pcrel_offset */
1541 /* TLS relocations */
1542 HOWTO (R_ARM_TLS_GD32
, /* type */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 FALSE
, /* pc_relative */
1548 complain_overflow_bitfield
,/* complain_on_overflow */
1549 NULL
, /* special_function */
1550 "R_ARM_TLS_GD32", /* name */
1551 TRUE
, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE
), /* pcrel_offset */
1556 HOWTO (R_ARM_TLS_LDM32
, /* type */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 FALSE
, /* pc_relative */
1562 complain_overflow_bitfield
,/* complain_on_overflow */
1563 bfd_elf_generic_reloc
, /* special_function */
1564 "R_ARM_TLS_LDM32", /* name */
1565 TRUE
, /* partial_inplace */
1566 0xffffffff, /* src_mask */
1567 0xffffffff, /* dst_mask */
1568 FALSE
), /* pcrel_offset */
1570 HOWTO (R_ARM_TLS_LDO32
, /* type */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1574 FALSE
, /* pc_relative */
1576 complain_overflow_bitfield
,/* complain_on_overflow */
1577 bfd_elf_generic_reloc
, /* special_function */
1578 "R_ARM_TLS_LDO32", /* name */
1579 TRUE
, /* partial_inplace */
1580 0xffffffff, /* src_mask */
1581 0xffffffff, /* dst_mask */
1582 FALSE
), /* pcrel_offset */
1584 HOWTO (R_ARM_TLS_IE32
, /* type */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1588 FALSE
, /* pc_relative */
1590 complain_overflow_bitfield
,/* complain_on_overflow */
1591 NULL
, /* special_function */
1592 "R_ARM_TLS_IE32", /* name */
1593 TRUE
, /* partial_inplace */
1594 0xffffffff, /* src_mask */
1595 0xffffffff, /* dst_mask */
1596 FALSE
), /* pcrel_offset */
1598 HOWTO (R_ARM_TLS_LE32
, /* type */
1600 2, /* size (0 = byte, 1 = short, 2 = long) */
1602 FALSE
, /* pc_relative */
1604 complain_overflow_bitfield
,/* complain_on_overflow */
1605 bfd_elf_generic_reloc
, /* special_function */
1606 "R_ARM_TLS_LE32", /* name */
1607 TRUE
, /* partial_inplace */
1608 0xffffffff, /* src_mask */
1609 0xffffffff, /* dst_mask */
1610 FALSE
), /* pcrel_offset */
1612 HOWTO (R_ARM_TLS_LDO12
, /* type */
1614 2, /* size (0 = byte, 1 = short, 2 = long) */
1616 FALSE
, /* pc_relative */
1618 complain_overflow_bitfield
,/* complain_on_overflow */
1619 bfd_elf_generic_reloc
, /* special_function */
1620 "R_ARM_TLS_LDO12", /* name */
1621 FALSE
, /* partial_inplace */
1622 0x00000fff, /* src_mask */
1623 0x00000fff, /* dst_mask */
1624 FALSE
), /* pcrel_offset */
1626 HOWTO (R_ARM_TLS_LE12
, /* type */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1630 FALSE
, /* pc_relative */
1632 complain_overflow_bitfield
,/* complain_on_overflow */
1633 bfd_elf_generic_reloc
, /* special_function */
1634 "R_ARM_TLS_LE12", /* name */
1635 FALSE
, /* partial_inplace */
1636 0x00000fff, /* src_mask */
1637 0x00000fff, /* dst_mask */
1638 FALSE
), /* pcrel_offset */
1640 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1642 2, /* size (0 = byte, 1 = short, 2 = long) */
1644 FALSE
, /* pc_relative */
1646 complain_overflow_bitfield
,/* complain_on_overflow */
1647 bfd_elf_generic_reloc
, /* special_function */
1648 "R_ARM_TLS_IE12GP", /* name */
1649 FALSE
, /* partial_inplace */
1650 0x00000fff, /* src_mask */
1651 0x00000fff, /* dst_mask */
1652 FALSE
), /* pcrel_offset */
1672 HOWTO (R_ARM_THM_TLS_DESCSEQ
, /* type */
1674 1, /* size (0 = byte, 1 = short, 2 = long) */
1676 FALSE
, /* pc_relative */
1678 complain_overflow_bitfield
,/* complain_on_overflow */
1679 bfd_elf_generic_reloc
, /* special_function */
1680 "R_ARM_THM_TLS_DESCSEQ",/* name */
1681 FALSE
, /* partial_inplace */
1682 0x00000000, /* src_mask */
1683 0x00000000, /* dst_mask */
1684 FALSE
), /* pcrel_offset */
1687 /* 112-127 private relocations
1688 128 R_ARM_ME_TOO, obsolete
1689 129-255 unallocated in AAELF.
1691 249-255 extended, currently unused, relocations: */
1693 static reloc_howto_type elf32_arm_howto_table_2
[4] =
1695 HOWTO (R_ARM_RREL32
, /* type */
1697 0, /* size (0 = byte, 1 = short, 2 = long) */
1699 FALSE
, /* pc_relative */
1701 complain_overflow_dont
,/* complain_on_overflow */
1702 bfd_elf_generic_reloc
, /* special_function */
1703 "R_ARM_RREL32", /* name */
1704 FALSE
, /* partial_inplace */
1707 FALSE
), /* pcrel_offset */
1709 HOWTO (R_ARM_RABS32
, /* type */
1711 0, /* size (0 = byte, 1 = short, 2 = long) */
1713 FALSE
, /* pc_relative */
1715 complain_overflow_dont
,/* complain_on_overflow */
1716 bfd_elf_generic_reloc
, /* special_function */
1717 "R_ARM_RABS32", /* name */
1718 FALSE
, /* partial_inplace */
1721 FALSE
), /* pcrel_offset */
1723 HOWTO (R_ARM_RPC24
, /* type */
1725 0, /* size (0 = byte, 1 = short, 2 = long) */
1727 FALSE
, /* pc_relative */
1729 complain_overflow_dont
,/* complain_on_overflow */
1730 bfd_elf_generic_reloc
, /* special_function */
1731 "R_ARM_RPC24", /* name */
1732 FALSE
, /* partial_inplace */
1735 FALSE
), /* pcrel_offset */
1737 HOWTO (R_ARM_RBASE
, /* type */
1739 0, /* size (0 = byte, 1 = short, 2 = long) */
1741 FALSE
, /* pc_relative */
1743 complain_overflow_dont
,/* complain_on_overflow */
1744 bfd_elf_generic_reloc
, /* special_function */
1745 "R_ARM_RBASE", /* name */
1746 FALSE
, /* partial_inplace */
1749 FALSE
) /* pcrel_offset */
1752 static reloc_howto_type
*
1753 elf32_arm_howto_from_type (unsigned int r_type
)
1755 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1756 return &elf32_arm_howto_table_1
[r_type
];
1758 if (r_type
>= R_ARM_RREL32
1759 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1760 return &elf32_arm_howto_table_2
[r_type
- R_ARM_RREL32
];
1766 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1767 Elf_Internal_Rela
* elf_reloc
)
1769 unsigned int r_type
;
1771 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1772 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1775 struct elf32_arm_reloc_map
1777 bfd_reloc_code_real_type bfd_reloc_val
;
1778 unsigned char elf_reloc_val
;
1781 /* All entries in this list must also be present in elf32_arm_howto_table. */
1782 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1784 {BFD_RELOC_NONE
, R_ARM_NONE
},
1785 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1786 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1787 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1788 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1789 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1790 {BFD_RELOC_32
, R_ARM_ABS32
},
1791 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1792 {BFD_RELOC_8
, R_ARM_ABS8
},
1793 {BFD_RELOC_16
, R_ARM_ABS16
},
1794 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1795 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1796 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1797 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1798 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1799 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1800 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1801 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1802 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1803 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1804 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1805 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1806 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1807 {BFD_RELOC_ARM_GOT_PREL
, R_ARM_GOT_PREL
},
1808 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1809 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1810 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1811 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1812 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1813 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1814 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1815 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1816 {BFD_RELOC_ARM_TLS_GOTDESC
, R_ARM_TLS_GOTDESC
},
1817 {BFD_RELOC_ARM_TLS_CALL
, R_ARM_TLS_CALL
},
1818 {BFD_RELOC_ARM_THM_TLS_CALL
, R_ARM_THM_TLS_CALL
},
1819 {BFD_RELOC_ARM_TLS_DESCSEQ
, R_ARM_TLS_DESCSEQ
},
1820 {BFD_RELOC_ARM_THM_TLS_DESCSEQ
, R_ARM_THM_TLS_DESCSEQ
},
1821 {BFD_RELOC_ARM_TLS_DESC
, R_ARM_TLS_DESC
},
1822 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1823 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1824 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1825 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1826 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1827 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1828 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1829 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1830 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1831 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1832 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1833 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1834 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1835 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1836 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1837 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1838 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1839 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1840 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1841 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1842 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1843 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1844 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1845 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1846 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1847 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1848 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1849 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1850 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1851 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1852 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1853 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1854 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1855 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1856 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1857 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1858 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1859 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1860 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1861 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1862 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1863 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1864 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1865 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1866 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1867 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1868 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1871 static reloc_howto_type
*
1872 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1873 bfd_reloc_code_real_type code
)
1877 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1878 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1879 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1884 static reloc_howto_type
*
1885 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1890 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1891 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1892 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1893 return &elf32_arm_howto_table_1
[i
];
1895 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1896 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1897 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1898 return &elf32_arm_howto_table_2
[i
];
1903 /* Support for core dump NOTE sections. */
1906 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1911 switch (note
->descsz
)
1916 case 148: /* Linux/ARM 32-bit. */
1918 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1921 elf_tdata (abfd
)->core_lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1930 /* Make a ".reg/999" section. */
1931 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1932 size
, note
->descpos
+ offset
);
1936 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1938 switch (note
->descsz
)
1943 case 124: /* Linux/ARM elf_prpsinfo. */
1944 elf_tdata (abfd
)->core_program
1945 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1946 elf_tdata (abfd
)->core_command
1947 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1950 /* Note that for some reason, a spurious space is tacked
1951 onto the end of the args in some (at least one anyway)
1952 implementations, so strip it off if it exists. */
1954 char *command
= elf_tdata (abfd
)->core_command
;
1955 int n
= strlen (command
);
1957 if (0 < n
&& command
[n
- 1] == ' ')
1958 command
[n
- 1] = '\0';
1964 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1965 #define TARGET_LITTLE_NAME "elf32-littlearm"
1966 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1967 #define TARGET_BIG_NAME "elf32-bigarm"
1969 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1970 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1972 typedef unsigned long int insn32
;
1973 typedef unsigned short int insn16
;
1975 /* In lieu of proper flags, assume all EABIv4 or later objects are
1977 #define INTERWORK_FLAG(abfd) \
1978 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1979 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1980 || ((abfd)->flags & BFD_LINKER_CREATED))
1982 /* The linker script knows the section names for placement.
1983 The entry_names are used to do simple name mangling on the stubs.
1984 Given a function name, and its type, the stub can be found. The
1985 name can be changed. The only requirement is the %s be present. */
1986 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1987 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1989 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1990 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1992 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1993 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1995 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1996 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1998 #define STUB_ENTRY_NAME "__%s_veneer"
2000 /* The name of the dynamic interpreter. This is put in the .interp
2002 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2004 static const unsigned long tls_trampoline
[] =
2006 0xe08e0000, /* add r0, lr, r0 */
2007 0xe5901004, /* ldr r1, [r0,#4] */
2008 0xe12fff11, /* bx r1 */
2011 static const unsigned long dl_tlsdesc_lazy_trampoline
[] =
2013 0xe52d2004, /* push {r2} */
2014 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2015 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2016 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2017 0xe081100f, /* 2: add r1, pc */
2018 0xe12fff12, /* bx r2 */
2019 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2020 + dl_tlsdesc_lazy_resolver(GOT) */
2021 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2024 #ifdef FOUR_WORD_PLT
2026 /* The first entry in a procedure linkage table looks like
2027 this. It is set up so that any shared library function that is
2028 called before the relocation has been set up calls the dynamic
2030 static const bfd_vma elf32_arm_plt0_entry
[] =
2032 0xe52de004, /* str lr, [sp, #-4]! */
2033 0xe59fe010, /* ldr lr, [pc, #16] */
2034 0xe08fe00e, /* add lr, pc, lr */
2035 0xe5bef008, /* ldr pc, [lr, #8]! */
2038 /* Subsequent entries in a procedure linkage table look like
2040 static const bfd_vma elf32_arm_plt_entry
[] =
2042 0xe28fc600, /* add ip, pc, #NN */
2043 0xe28cca00, /* add ip, ip, #NN */
2044 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2045 0x00000000, /* unused */
2050 /* The first entry in a procedure linkage table looks like
2051 this. It is set up so that any shared library function that is
2052 called before the relocation has been set up calls the dynamic
2054 static const bfd_vma elf32_arm_plt0_entry
[] =
2056 0xe52de004, /* str lr, [sp, #-4]! */
2057 0xe59fe004, /* ldr lr, [pc, #4] */
2058 0xe08fe00e, /* add lr, pc, lr */
2059 0xe5bef008, /* ldr pc, [lr, #8]! */
2060 0x00000000, /* &GOT[0] - . */
2063 /* Subsequent entries in a procedure linkage table look like
2065 static const bfd_vma elf32_arm_plt_entry
[] =
2067 0xe28fc600, /* add ip, pc, #0xNN00000 */
2068 0xe28cca00, /* add ip, ip, #0xNN000 */
2069 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2074 /* The format of the first entry in the procedure linkage table
2075 for a VxWorks executable. */
2076 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
2078 0xe52dc008, /* str ip,[sp,#-8]! */
2079 0xe59fc000, /* ldr ip,[pc] */
2080 0xe59cf008, /* ldr pc,[ip,#8] */
2081 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2084 /* The format of subsequent entries in a VxWorks executable. */
2085 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
2087 0xe59fc000, /* ldr ip,[pc] */
2088 0xe59cf000, /* ldr pc,[ip] */
2089 0x00000000, /* .long @got */
2090 0xe59fc000, /* ldr ip,[pc] */
2091 0xea000000, /* b _PLT */
2092 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2095 /* The format of entries in a VxWorks shared library. */
2096 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
2098 0xe59fc000, /* ldr ip,[pc] */
2099 0xe79cf009, /* ldr pc,[ip,r9] */
2100 0x00000000, /* .long @got */
2101 0xe59fc000, /* ldr ip,[pc] */
2102 0xe599f008, /* ldr pc,[r9,#8] */
2103 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2106 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2107 #define PLT_THUMB_STUB_SIZE 4
2108 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2114 /* The entries in a PLT when using a DLL-based target with multiple
2116 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2118 0xe51ff004, /* ldr pc, [pc, #-4] */
2119 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2122 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2123 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2124 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2125 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2126 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2127 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2137 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2138 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2139 is inserted in arm_build_one_stub(). */
2140 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2141 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2142 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2143 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2144 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2145 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2150 enum stub_insn_type type
;
2151 unsigned int r_type
;
2155 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2156 to reach the stub if necessary. */
2157 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2159 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2160 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2163 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2165 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2167 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2168 ARM_INSN(0xe12fff1c), /* bx ip */
2169 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2172 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2173 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2175 THUMB16_INSN(0xb401), /* push {r0} */
2176 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2177 THUMB16_INSN(0x4684), /* mov ip, r0 */
2178 THUMB16_INSN(0xbc01), /* pop {r0} */
2179 THUMB16_INSN(0x4760), /* bx ip */
2180 THUMB16_INSN(0xbf00), /* nop */
2181 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2184 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2186 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2188 THUMB16_INSN(0x4778), /* bx pc */
2189 THUMB16_INSN(0x46c0), /* nop */
2190 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2191 ARM_INSN(0xe12fff1c), /* bx ip */
2192 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2195 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2197 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2199 THUMB16_INSN(0x4778), /* bx pc */
2200 THUMB16_INSN(0x46c0), /* nop */
2201 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2202 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2205 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2206 one, when the destination is close enough. */
2207 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2209 THUMB16_INSN(0x4778), /* bx pc */
2210 THUMB16_INSN(0x46c0), /* nop */
2211 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2214 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2215 blx to reach the stub if necessary. */
2216 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2218 ARM_INSN(0xe59fc000), /* ldr ip, [pc] */
2219 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2220 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2223 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2224 blx to reach the stub if necessary. We can not add into pc;
2225 it is not guaranteed to mode switch (different in ARMv6 and
2227 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2229 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2230 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2231 ARM_INSN(0xe12fff1c), /* bx ip */
2232 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2235 /* V4T ARM -> ARM long branch stub, PIC. */
2236 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2238 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2239 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2240 ARM_INSN(0xe12fff1c), /* bx ip */
2241 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2244 /* V4T Thumb -> ARM long branch stub, PIC. */
2245 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2247 THUMB16_INSN(0x4778), /* bx pc */
2248 THUMB16_INSN(0x46c0), /* nop */
2249 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2250 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2251 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2254 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2256 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2258 THUMB16_INSN(0xb401), /* push {r0} */
2259 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2260 THUMB16_INSN(0x46fc), /* mov ip, pc */
2261 THUMB16_INSN(0x4484), /* add ip, r0 */
2262 THUMB16_INSN(0xbc01), /* pop {r0} */
2263 THUMB16_INSN(0x4760), /* bx ip */
2264 DATA_WORD(0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2267 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2269 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2271 THUMB16_INSN(0x4778), /* bx pc */
2272 THUMB16_INSN(0x46c0), /* nop */
2273 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2274 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2275 ARM_INSN(0xe12fff1c), /* bx ip */
2276 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2279 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2280 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2281 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic
[] =
2283 ARM_INSN(0xe59f1000), /* ldr r1, [pc] */
2284 ARM_INSN(0xe08ff001), /* add pc, pc, r1 */
2285 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2288 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2289 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2290 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic
[] =
2292 THUMB16_INSN(0x4778), /* bx pc */
2293 THUMB16_INSN(0x46c0), /* nop */
2294 ARM_INSN(0xe59f1000), /* ldr r1, [pc, #0] */
2295 ARM_INSN(0xe081f00f), /* add pc, r1, pc */
2296 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2299 /* Cortex-A8 erratum-workaround stubs. */
2301 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2302 can't use a conditional branch to reach this stub). */
2304 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2306 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2307 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2308 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2311 /* Stub used for b.w and bl.w instructions. */
2313 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2315 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2318 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2320 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2323 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2324 instruction (which switches to ARM mode) to point to this stub. Jump to the
2325 real destination using an ARM-mode branch. */
2327 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2329 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2332 /* Section name for stubs is the associated section name plus this
2334 #define STUB_SUFFIX ".stub"
2336 /* One entry per long/short branch stub defined above. */
2338 DEF_STUB(long_branch_any_any) \
2339 DEF_STUB(long_branch_v4t_arm_thumb) \
2340 DEF_STUB(long_branch_thumb_only) \
2341 DEF_STUB(long_branch_v4t_thumb_thumb) \
2342 DEF_STUB(long_branch_v4t_thumb_arm) \
2343 DEF_STUB(short_branch_v4t_thumb_arm) \
2344 DEF_STUB(long_branch_any_arm_pic) \
2345 DEF_STUB(long_branch_any_thumb_pic) \
2346 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2347 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2348 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2349 DEF_STUB(long_branch_thumb_only_pic) \
2350 DEF_STUB(long_branch_any_tls_pic) \
2351 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2352 DEF_STUB(a8_veneer_b_cond) \
2353 DEF_STUB(a8_veneer_b) \
2354 DEF_STUB(a8_veneer_bl) \
2355 DEF_STUB(a8_veneer_blx)
2357 #define DEF_STUB(x) arm_stub_##x,
2358 enum elf32_arm_stub_type
{
2361 /* Note the first a8_veneer type */
2362 arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
2368 const insn_sequence
* template_sequence
;
2372 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2373 static const stub_def stub_definitions
[] = {
2378 struct elf32_arm_stub_hash_entry
2380 /* Base hash table entry structure. */
2381 struct bfd_hash_entry root
;
2383 /* The stub section. */
2386 /* Offset within stub_sec of the beginning of this stub. */
2387 bfd_vma stub_offset
;
2389 /* Given the symbol's value and its section we can determine its final
2390 value when building the stubs (so the stub knows where to jump). */
2391 bfd_vma target_value
;
2392 asection
*target_section
;
2394 /* Offset to apply to relocation referencing target_value. */
2395 bfd_vma target_addend
;
2397 /* The instruction which caused this stub to be generated (only valid for
2398 Cortex-A8 erratum workaround stubs at present). */
2399 unsigned long orig_insn
;
2401 /* The stub type. */
2402 enum elf32_arm_stub_type stub_type
;
2403 /* Its encoding size in bytes. */
2406 const insn_sequence
*stub_template
;
2407 /* The size of the template (number of entries). */
2408 int stub_template_size
;
2410 /* The symbol table entry, if any, that this was derived from. */
2411 struct elf32_arm_link_hash_entry
*h
;
2413 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2414 unsigned char st_type
;
2416 /* Where this stub is being called from, or, in the case of combined
2417 stub sections, the first input section in the group. */
2420 /* The name for the local symbol at the start of this stub. The
2421 stub name in the hash table has to be unique; this does not, so
2422 it can be friendlier. */
2426 /* Used to build a map of a section. This is required for mixed-endian
2429 typedef struct elf32_elf_section_map
2434 elf32_arm_section_map
;
2436 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2440 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2441 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2442 VFP11_ERRATUM_ARM_VENEER
,
2443 VFP11_ERRATUM_THUMB_VENEER
2445 elf32_vfp11_erratum_type
;
2447 typedef struct elf32_vfp11_erratum_list
2449 struct elf32_vfp11_erratum_list
*next
;
2455 struct elf32_vfp11_erratum_list
*veneer
;
2456 unsigned int vfp_insn
;
2460 struct elf32_vfp11_erratum_list
*branch
;
2464 elf32_vfp11_erratum_type type
;
2466 elf32_vfp11_erratum_list
;
2471 INSERT_EXIDX_CANTUNWIND_AT_END
2473 arm_unwind_edit_type
;
2475 /* A (sorted) list of edits to apply to an unwind table. */
2476 typedef struct arm_unwind_table_edit
2478 arm_unwind_edit_type type
;
2479 /* Note: we sometimes want to insert an unwind entry corresponding to a
2480 section different from the one we're currently writing out, so record the
2481 (text) section this edit relates to here. */
2482 asection
*linked_section
;
2484 struct arm_unwind_table_edit
*next
;
2486 arm_unwind_table_edit
;
2488 typedef struct _arm_elf_section_data
2490 /* Information about mapping symbols. */
2491 struct bfd_elf_section_data elf
;
2492 unsigned int mapcount
;
2493 unsigned int mapsize
;
2494 elf32_arm_section_map
*map
;
2495 /* Information about CPU errata. */
2496 unsigned int erratumcount
;
2497 elf32_vfp11_erratum_list
*erratumlist
;
2498 /* Information about unwind tables. */
2501 /* Unwind info attached to a text section. */
2504 asection
*arm_exidx_sec
;
2507 /* Unwind info attached to an .ARM.exidx section. */
2510 arm_unwind_table_edit
*unwind_edit_list
;
2511 arm_unwind_table_edit
*unwind_edit_tail
;
2515 _arm_elf_section_data
;
2517 #define elf32_arm_section_data(sec) \
2518 ((_arm_elf_section_data *) elf_section_data (sec))
2520 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2521 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2522 so may be created multiple times: we use an array of these entries whilst
2523 relaxing which we can refresh easily, then create stubs for each potentially
2524 erratum-triggering instruction once we've settled on a solution. */
2526 struct a8_erratum_fix
{
2531 unsigned long orig_insn
;
2533 enum elf32_arm_stub_type stub_type
;
2537 /* A table of relocs applied to branches which might trigger Cortex-A8
2540 struct a8_erratum_reloc
{
2542 bfd_vma destination
;
2543 struct elf32_arm_link_hash_entry
*hash
;
2544 const char *sym_name
;
2545 unsigned int r_type
;
2546 unsigned char st_type
;
2547 bfd_boolean non_a8_stub
;
2550 /* The size of the thread control block. */
2553 struct elf_arm_obj_tdata
2555 struct elf_obj_tdata root
;
2557 /* tls_type for each local got entry. */
2558 char *local_got_tls_type
;
2560 /* GOTPLT entries for TLS descriptors. */
2561 bfd_vma
*local_tlsdesc_gotent
;
2563 /* Zero to warn when linking objects with incompatible enum sizes. */
2564 int no_enum_size_warning
;
2566 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2567 int no_wchar_size_warning
;
2570 #define elf_arm_tdata(bfd) \
2571 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2573 #define elf32_arm_local_got_tls_type(bfd) \
2574 (elf_arm_tdata (bfd)->local_got_tls_type)
2576 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2577 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2579 #define is_arm_elf(bfd) \
2580 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2581 && elf_tdata (bfd) != NULL \
2582 && elf_object_id (bfd) == ARM_ELF_DATA)
2585 elf32_arm_mkobject (bfd
*abfd
)
2587 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2591 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2593 /* Arm ELF linker hash entry. */
2594 struct elf32_arm_link_hash_entry
2596 struct elf_link_hash_entry root
;
2598 /* Track dynamic relocs copied for this symbol. */
2599 struct elf_dyn_relocs
*dyn_relocs
;
2601 /* We reference count Thumb references to a PLT entry separately,
2602 so that we can emit the Thumb trampoline only if needed. */
2603 bfd_signed_vma plt_thumb_refcount
;
2605 /* Some references from Thumb code may be eliminated by BL->BLX
2606 conversion, so record them separately. */
2607 bfd_signed_vma plt_maybe_thumb_refcount
;
2609 /* Since PLT entries have variable size if the Thumb prologue is
2610 used, we need to record the index into .got.plt instead of
2611 recomputing it from the PLT offset. */
2612 bfd_signed_vma plt_got_offset
;
2614 #define GOT_UNKNOWN 0
2615 #define GOT_NORMAL 1
2616 #define GOT_TLS_GD 2
2617 #define GOT_TLS_IE 4
2618 #define GOT_TLS_GDESC 8
2619 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2620 unsigned char tls_type
;
2622 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2623 starting at the end of the jump table. */
2624 bfd_vma tlsdesc_got
;
2626 /* The symbol marking the real symbol location for exported thumb
2627 symbols with Arm stubs. */
2628 struct elf_link_hash_entry
*export_glue
;
2630 /* A pointer to the most recently used stub hash entry against this
2632 struct elf32_arm_stub_hash_entry
*stub_cache
;
2635 /* Traverse an arm ELF linker hash table. */
2636 #define elf32_arm_link_hash_traverse(table, func, info) \
2637 (elf_link_hash_traverse \
2639 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2642 /* Get the ARM elf linker hash table from a link_info structure. */
2643 #define elf32_arm_hash_table(info) \
2644 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2645 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2647 #define arm_stub_hash_lookup(table, string, create, copy) \
2648 ((struct elf32_arm_stub_hash_entry *) \
2649 bfd_hash_lookup ((table), (string), (create), (copy)))
2651 /* Array to keep track of which stub sections have been created, and
2652 information on stub grouping. */
2655 /* This is the section to which stubs in the group will be
2658 /* The stub section. */
2662 #define elf32_arm_compute_jump_table_size(htab) \
2663 ((htab)->next_tls_desc_index * 4)
2665 /* ARM ELF linker hash table. */
2666 struct elf32_arm_link_hash_table
2668 /* The main hash table. */
2669 struct elf_link_hash_table root
;
2671 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2672 bfd_size_type thumb_glue_size
;
2674 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2675 bfd_size_type arm_glue_size
;
2677 /* The size in bytes of section containing the ARMv4 BX veneers. */
2678 bfd_size_type bx_glue_size
;
2680 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2681 veneer has been populated. */
2682 bfd_vma bx_glue_offset
[15];
2684 /* The size in bytes of the section containing glue for VFP11 erratum
2686 bfd_size_type vfp11_erratum_glue_size
;
2688 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2689 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2690 elf32_arm_write_section(). */
2691 struct a8_erratum_fix
*a8_erratum_fixes
;
2692 unsigned int num_a8_erratum_fixes
;
2694 /* An arbitrary input BFD chosen to hold the glue sections. */
2695 bfd
* bfd_of_glue_owner
;
2697 /* Nonzero to output a BE8 image. */
2700 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2701 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2704 /* The relocation to use for R_ARM_TARGET2 relocations. */
2707 /* 0 = Ignore R_ARM_V4BX.
2708 1 = Convert BX to MOV PC.
2709 2 = Generate v4 interworing stubs. */
2712 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2715 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2718 /* What sort of code sequences we should look for which may trigger the
2719 VFP11 denorm erratum. */
2720 bfd_arm_vfp11_fix vfp11_fix
;
2722 /* Global counter for the number of fixes we have emitted. */
2723 int num_vfp11_fixes
;
2725 /* Nonzero to force PIC branch veneers. */
2728 /* The number of bytes in the initial entry in the PLT. */
2729 bfd_size_type plt_header_size
;
2731 /* The number of bytes in the subsequent PLT etries. */
2732 bfd_size_type plt_entry_size
;
2734 /* True if the target system is VxWorks. */
2737 /* True if the target system is Symbian OS. */
2740 /* True if the target uses REL relocations. */
2743 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2744 bfd_vma next_tls_desc_index
;
2746 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2747 bfd_vma num_tls_desc
;
2749 /* Short-cuts to get to dynamic linker sections. */
2753 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2756 /* The offset into splt of the PLT entry for the TLS descriptor
2757 resolver. Special values are 0, if not necessary (or not found
2758 to be necessary yet), and -1 if needed but not determined
2760 bfd_vma dt_tlsdesc_plt
;
2762 /* The offset into sgot of the GOT entry used by the PLT entry
2764 bfd_vma dt_tlsdesc_got
;
2766 /* Offset in .plt section of tls_arm_trampoline. */
2767 bfd_vma tls_trampoline
;
2769 /* Data for R_ARM_TLS_LDM32 relocations. */
2772 bfd_signed_vma refcount
;
2776 /* Small local sym cache. */
2777 struct sym_cache sym_cache
;
2779 /* For convenience in allocate_dynrelocs. */
2782 /* The amount of space used by the reserved portion of the sgotplt
2783 section, plus whatever space is used by the jump slots. */
2784 bfd_vma sgotplt_jump_table_size
;
2786 /* The stub hash table. */
2787 struct bfd_hash_table stub_hash_table
;
2789 /* Linker stub bfd. */
2792 /* Linker call-backs. */
2793 asection
* (*add_stub_section
) (const char *, asection
*);
2794 void (*layout_sections_again
) (void);
2796 /* Array to keep track of which stub sections have been created, and
2797 information on stub grouping. */
2798 struct map_stub
*stub_group
;
2800 /* Number of elements in stub_group. */
2803 /* Assorted information used by elf32_arm_size_stubs. */
2804 unsigned int bfd_count
;
2806 asection
**input_list
;
2809 /* Create an entry in an ARM ELF linker hash table. */
2811 static struct bfd_hash_entry
*
2812 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2813 struct bfd_hash_table
* table
,
2814 const char * string
)
2816 struct elf32_arm_link_hash_entry
* ret
=
2817 (struct elf32_arm_link_hash_entry
*) entry
;
2819 /* Allocate the structure if it has not already been allocated by a
2822 ret
= (struct elf32_arm_link_hash_entry
*)
2823 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2825 return (struct bfd_hash_entry
*) ret
;
2827 /* Call the allocation method of the superclass. */
2828 ret
= ((struct elf32_arm_link_hash_entry
*)
2829 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2833 ret
->dyn_relocs
= NULL
;
2834 ret
->tls_type
= GOT_UNKNOWN
;
2835 ret
->tlsdesc_got
= (bfd_vma
) -1;
2836 ret
->plt_thumb_refcount
= 0;
2837 ret
->plt_maybe_thumb_refcount
= 0;
2838 ret
->plt_got_offset
= -1;
2839 ret
->export_glue
= NULL
;
2841 ret
->stub_cache
= NULL
;
2844 return (struct bfd_hash_entry
*) ret
;
2847 /* Initialize an entry in the stub hash table. */
2849 static struct bfd_hash_entry
*
2850 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2851 struct bfd_hash_table
*table
,
2854 /* Allocate the structure if it has not already been allocated by a
2858 entry
= (struct bfd_hash_entry
*)
2859 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
2864 /* Call the allocation method of the superclass. */
2865 entry
= bfd_hash_newfunc (entry
, table
, string
);
2868 struct elf32_arm_stub_hash_entry
*eh
;
2870 /* Initialize the local fields. */
2871 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
2872 eh
->stub_sec
= NULL
;
2873 eh
->stub_offset
= 0;
2874 eh
->target_value
= 0;
2875 eh
->target_section
= NULL
;
2876 eh
->target_addend
= 0;
2878 eh
->stub_type
= arm_stub_none
;
2880 eh
->stub_template
= NULL
;
2881 eh
->stub_template_size
= 0;
2884 eh
->output_name
= NULL
;
2890 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2891 shortcuts to them in our hash table. */
2894 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
2896 struct elf32_arm_link_hash_table
*htab
;
2898 htab
= elf32_arm_hash_table (info
);
2902 /* BPABI objects never have a GOT, or associated sections. */
2903 if (htab
->symbian_p
)
2906 if (! _bfd_elf_create_got_section (dynobj
, info
))
2912 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2913 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2917 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
2919 struct elf32_arm_link_hash_table
*htab
;
2921 htab
= elf32_arm_hash_table (info
);
2925 if (!htab
->root
.sgot
&& !create_got_section (dynobj
, info
))
2928 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
2931 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
2933 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
2934 RELOC_SECTION (htab
, ".bss"));
2936 if (htab
->vxworks_p
)
2938 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
2943 htab
->plt_header_size
= 0;
2944 htab
->plt_entry_size
2945 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
2949 htab
->plt_header_size
2950 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
2951 htab
->plt_entry_size
2952 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
2956 if (!htab
->root
.splt
2957 || !htab
->root
.srelplt
2959 || (!info
->shared
&& !htab
->srelbss
))
2965 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2968 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
2969 struct elf_link_hash_entry
*dir
,
2970 struct elf_link_hash_entry
*ind
)
2972 struct elf32_arm_link_hash_entry
*edir
, *eind
;
2974 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
2975 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
2977 if (eind
->dyn_relocs
!= NULL
)
2979 if (edir
->dyn_relocs
!= NULL
)
2981 struct elf_dyn_relocs
**pp
;
2982 struct elf_dyn_relocs
*p
;
2984 /* Add reloc counts against the indirect sym to the direct sym
2985 list. Merge any entries against the same section. */
2986 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
2988 struct elf_dyn_relocs
*q
;
2990 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
2991 if (q
->sec
== p
->sec
)
2993 q
->pc_count
+= p
->pc_count
;
2994 q
->count
+= p
->count
;
3001 *pp
= edir
->dyn_relocs
;
3004 edir
->dyn_relocs
= eind
->dyn_relocs
;
3005 eind
->dyn_relocs
= NULL
;
3008 if (ind
->root
.type
== bfd_link_hash_indirect
)
3010 /* Copy over PLT info. */
3011 edir
->plt_thumb_refcount
+= eind
->plt_thumb_refcount
;
3012 eind
->plt_thumb_refcount
= 0;
3013 edir
->plt_maybe_thumb_refcount
+= eind
->plt_maybe_thumb_refcount
;
3014 eind
->plt_maybe_thumb_refcount
= 0;
3016 if (dir
->got
.refcount
<= 0)
3018 edir
->tls_type
= eind
->tls_type
;
3019 eind
->tls_type
= GOT_UNKNOWN
;
3023 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
3026 /* Create an ARM elf linker hash table. */
3028 static struct bfd_link_hash_table
*
3029 elf32_arm_link_hash_table_create (bfd
*abfd
)
3031 struct elf32_arm_link_hash_table
*ret
;
3032 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
3034 ret
= (struct elf32_arm_link_hash_table
*) bfd_malloc (amt
);
3038 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
3039 elf32_arm_link_hash_newfunc
,
3040 sizeof (struct elf32_arm_link_hash_entry
),
3047 ret
->sdynbss
= NULL
;
3048 ret
->srelbss
= NULL
;
3049 ret
->srelplt2
= NULL
;
3050 ret
->dt_tlsdesc_plt
= 0;
3051 ret
->dt_tlsdesc_got
= 0;
3052 ret
->tls_trampoline
= 0;
3053 ret
->next_tls_desc_index
= 0;
3054 ret
->num_tls_desc
= 0;
3055 ret
->thumb_glue_size
= 0;
3056 ret
->arm_glue_size
= 0;
3057 ret
->bx_glue_size
= 0;
3058 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
3059 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
3060 ret
->vfp11_erratum_glue_size
= 0;
3061 ret
->num_vfp11_fixes
= 0;
3062 ret
->fix_cortex_a8
= 0;
3063 ret
->bfd_of_glue_owner
= NULL
;
3064 ret
->byteswap_code
= 0;
3065 ret
->target1_is_rel
= 0;
3066 ret
->target2_reloc
= R_ARM_NONE
;
3067 #ifdef FOUR_WORD_PLT
3068 ret
->plt_header_size
= 16;
3069 ret
->plt_entry_size
= 16;
3071 ret
->plt_header_size
= 20;
3072 ret
->plt_entry_size
= 12;
3079 ret
->sym_cache
.abfd
= NULL
;
3081 ret
->tls_ldm_got
.refcount
= 0;
3082 ret
->stub_bfd
= NULL
;
3083 ret
->add_stub_section
= NULL
;
3084 ret
->layout_sections_again
= NULL
;
3085 ret
->stub_group
= NULL
;
3089 ret
->input_list
= NULL
;
3091 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
3092 sizeof (struct elf32_arm_stub_hash_entry
)))
3098 return &ret
->root
.root
;
3101 /* Free the derived linker hash table. */
3104 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
3106 struct elf32_arm_link_hash_table
*ret
3107 = (struct elf32_arm_link_hash_table
*) hash
;
3109 bfd_hash_table_free (&ret
->stub_hash_table
);
3110 _bfd_generic_link_hash_table_free (hash
);
3113 /* Determine if we're dealing with a Thumb only architecture. */
3116 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
3118 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3122 if (arch
== TAG_CPU_ARCH_V6_M
|| arch
== TAG_CPU_ARCH_V6S_M
)
3125 if (arch
!= TAG_CPU_ARCH_V7
&& arch
!= TAG_CPU_ARCH_V7E_M
)
3128 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3129 Tag_CPU_arch_profile
);
3131 return profile
== 'M';
3134 /* Determine if we're dealing with a Thumb-2 object. */
3137 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
3139 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3141 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
3144 /* Determine what kind of NOPs are available. */
3147 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
3149 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3151 return arch
== TAG_CPU_ARCH_V6T2
3152 || arch
== TAG_CPU_ARCH_V6K
3153 || arch
== TAG_CPU_ARCH_V7
3154 || arch
== TAG_CPU_ARCH_V7E_M
;
3158 arch_has_thumb2_nop (struct elf32_arm_link_hash_table
*globals
)
3160 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3162 return (arch
== TAG_CPU_ARCH_V6T2
|| arch
== TAG_CPU_ARCH_V7
3163 || arch
== TAG_CPU_ARCH_V7E_M
);
3167 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
3171 case arm_stub_long_branch_thumb_only
:
3172 case arm_stub_long_branch_v4t_thumb_arm
:
3173 case arm_stub_short_branch_v4t_thumb_arm
:
3174 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3175 case arm_stub_long_branch_thumb_only_pic
:
3186 /* Determine the type of stub needed, if any, for a call. */
3188 static enum elf32_arm_stub_type
3189 arm_type_of_stub (struct bfd_link_info
*info
,
3190 asection
*input_sec
,
3191 const Elf_Internal_Rela
*rel
,
3192 int *actual_st_type
,
3193 struct elf32_arm_link_hash_entry
*hash
,
3194 bfd_vma destination
,
3200 bfd_signed_vma branch_offset
;
3201 unsigned int r_type
;
3202 struct elf32_arm_link_hash_table
* globals
;
3205 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3207 int st_type
= *actual_st_type
;
3209 /* We don't know the actual type of destination in case it is of
3210 type STT_SECTION: give up. */
3211 if (st_type
== STT_SECTION
)
3214 globals
= elf32_arm_hash_table (info
);
3215 if (globals
== NULL
)
3218 thumb_only
= using_thumb_only (globals
);
3220 thumb2
= using_thumb2 (globals
);
3222 /* Determine where the call point is. */
3223 location
= (input_sec
->output_offset
3224 + input_sec
->output_section
->vma
3227 r_type
= ELF32_R_TYPE (rel
->r_info
);
3229 /* Keep a simpler condition, for the sake of clarity. */
3230 if (globals
->root
.splt
!= NULL
3232 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
3236 /* Note when dealing with PLT entries: the main PLT stub is in
3237 ARM mode, so if the branch is in Thumb mode, another
3238 Thumb->ARM stub will be inserted later just before the ARM
3239 PLT stub. We don't take this extra distance into account
3240 here, because if a long branch stub is needed, we'll add a
3241 Thumb->Arm one and branch directly to the ARM PLT entry
3242 because it avoids spreading offset corrections in several
3245 destination
= (globals
->root
.splt
->output_section
->vma
3246 + globals
->root
.splt
->output_offset
3247 + hash
->root
.plt
.offset
);
3251 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3253 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
3254 || r_type
== R_ARM_THM_TLS_CALL
)
3256 /* Handle cases where:
3257 - this call goes too far (different Thumb/Thumb2 max
3259 - it's a Thumb->Arm call and blx is not available, or it's a
3260 Thumb->Arm branch (not bl). A stub is needed in this case,
3261 but only if this call is not through a PLT entry. Indeed,
3262 PLT stubs handle mode switching already.
3265 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3266 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3268 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3269 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3270 || ((st_type
!= STT_ARM_TFUNC
)
3271 && (((r_type
== R_ARM_THM_CALL
3272 || r_type
== R_ARM_THM_TLS_CALL
) && !globals
->use_blx
)
3273 || (r_type
== R_ARM_THM_JUMP24
))
3276 if (st_type
== STT_ARM_TFUNC
)
3278 /* Thumb to thumb. */
3281 stub_type
= (info
->shared
| globals
->pic_veneer
)
3283 ? ((globals
->use_blx
3284 && (r_type
==R_ARM_THM_CALL
))
3285 /* V5T and above. Stub starts with ARM code, so
3286 we must be able to switch mode before
3287 reaching it, which is only possible for 'bl'
3288 (ie R_ARM_THM_CALL relocation). */
3289 ? arm_stub_long_branch_any_thumb_pic
3290 /* On V4T, use Thumb code only. */
3291 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3293 /* non-PIC stubs. */
3294 : ((globals
->use_blx
3295 && (r_type
==R_ARM_THM_CALL
))
3296 /* V5T and above. */
3297 ? arm_stub_long_branch_any_any
3299 : arm_stub_long_branch_v4t_thumb_thumb
);
3303 stub_type
= (info
->shared
| globals
->pic_veneer
)
3305 ? arm_stub_long_branch_thumb_only_pic
3307 : arm_stub_long_branch_thumb_only
;
3314 && sym_sec
->owner
!= NULL
3315 && !INTERWORK_FLAG (sym_sec
->owner
))
3317 (*_bfd_error_handler
)
3318 (_("%B(%s): warning: interworking not enabled.\n"
3319 " first occurrence: %B: Thumb call to ARM"),
3320 sym_sec
->owner
, input_bfd
, name
);
3324 (info
->shared
| globals
->pic_veneer
)
3326 ? (r_type
== R_ARM_THM_TLS_CALL
3328 ? (globals
->use_blx
? arm_stub_long_branch_any_tls_pic
3329 : arm_stub_long_branch_v4t_thumb_tls_pic
)
3330 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3331 /* V5T PIC and above. */
3332 ? arm_stub_long_branch_any_arm_pic
3334 : arm_stub_long_branch_v4t_thumb_arm_pic
))
3336 /* non-PIC stubs. */
3337 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3338 /* V5T and above. */
3339 ? arm_stub_long_branch_any_any
3341 : arm_stub_long_branch_v4t_thumb_arm
);
3343 /* Handle v4t short branches. */
3344 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3345 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3346 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3347 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3351 else if (r_type
== R_ARM_CALL
3352 || r_type
== R_ARM_JUMP24
3353 || r_type
== R_ARM_PLT32
3354 || r_type
== R_ARM_TLS_CALL
)
3356 if (st_type
== STT_ARM_TFUNC
)
3361 && sym_sec
->owner
!= NULL
3362 && !INTERWORK_FLAG (sym_sec
->owner
))
3364 (*_bfd_error_handler
)
3365 (_("%B(%s): warning: interworking not enabled.\n"
3366 " first occurrence: %B: ARM call to Thumb"),
3367 sym_sec
->owner
, input_bfd
, name
);
3370 /* We have an extra 2-bytes reach because of
3371 the mode change (bit 24 (H) of BLX encoding). */
3372 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3373 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3374 || (r_type
== R_ARM_CALL
&& !globals
->use_blx
)
3375 || (r_type
== R_ARM_JUMP24
)
3376 || (r_type
== R_ARM_PLT32
))
3378 stub_type
= (info
->shared
| globals
->pic_veneer
)
3380 ? ((globals
->use_blx
)
3381 /* V5T and above. */
3382 ? arm_stub_long_branch_any_thumb_pic
3384 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3386 /* non-PIC stubs. */
3387 : ((globals
->use_blx
)
3388 /* V5T and above. */
3389 ? arm_stub_long_branch_any_any
3391 : arm_stub_long_branch_v4t_arm_thumb
);
3397 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3398 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3401 (info
->shared
| globals
->pic_veneer
)
3403 ? (r_type
== R_ARM_TLS_CALL
3405 ? arm_stub_long_branch_any_tls_pic
3406 : arm_stub_long_branch_any_arm_pic
)
3407 /* non-PIC stubs. */
3408 : arm_stub_long_branch_any_any
;
3413 /* If a stub is needed, record the actual destination type. */
3414 if (stub_type
!= arm_stub_none
)
3415 *actual_st_type
= st_type
;
3420 /* Build a name for an entry in the stub hash table. */
3423 elf32_arm_stub_name (const asection
*input_section
,
3424 const asection
*sym_sec
,
3425 const struct elf32_arm_link_hash_entry
*hash
,
3426 const Elf_Internal_Rela
*rel
,
3427 enum elf32_arm_stub_type stub_type
)
3434 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1 + 2 + 1;
3435 stub_name
= (char *) bfd_malloc (len
);
3436 if (stub_name
!= NULL
)
3437 sprintf (stub_name
, "%08x_%s+%x_%d",
3438 input_section
->id
& 0xffffffff,
3439 hash
->root
.root
.root
.string
,
3440 (int) rel
->r_addend
& 0xffffffff,
3445 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3446 stub_name
= (char *) bfd_malloc (len
);
3447 if (stub_name
!= NULL
)
3448 sprintf (stub_name
, "%08x_%x:%x+%x_%d",
3449 input_section
->id
& 0xffffffff,
3450 sym_sec
->id
& 0xffffffff,
3451 ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
3452 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_THM_TLS_CALL
3453 ? 0 : (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3454 (int) rel
->r_addend
& 0xffffffff,
3461 /* Look up an entry in the stub hash. Stub entries are cached because
3462 creating the stub name takes a bit of time. */
3464 static struct elf32_arm_stub_hash_entry
*
3465 elf32_arm_get_stub_entry (const asection
*input_section
,
3466 const asection
*sym_sec
,
3467 struct elf_link_hash_entry
*hash
,
3468 const Elf_Internal_Rela
*rel
,
3469 struct elf32_arm_link_hash_table
*htab
,
3470 enum elf32_arm_stub_type stub_type
)
3472 struct elf32_arm_stub_hash_entry
*stub_entry
;
3473 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3474 const asection
*id_sec
;
3476 if ((input_section
->flags
& SEC_CODE
) == 0)
3479 /* If this input section is part of a group of sections sharing one
3480 stub section, then use the id of the first section in the group.
3481 Stub names need to include a section id, as there may well be
3482 more than one stub used to reach say, printf, and we need to
3483 distinguish between them. */
3484 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3486 if (h
!= NULL
&& h
->stub_cache
!= NULL
3487 && h
->stub_cache
->h
== h
3488 && h
->stub_cache
->id_sec
== id_sec
3489 && h
->stub_cache
->stub_type
== stub_type
)
3491 stub_entry
= h
->stub_cache
;
3497 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
, stub_type
);
3498 if (stub_name
== NULL
)
3501 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3502 stub_name
, FALSE
, FALSE
);
3504 h
->stub_cache
= stub_entry
;
3512 /* Find or create a stub section. Returns a pointer to the stub section, and
3513 the section to which the stub section will be attached (in *LINK_SEC_P).
3514 LINK_SEC_P may be NULL. */
3517 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3518 struct elf32_arm_link_hash_table
*htab
)
3523 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3524 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3525 if (stub_sec
== NULL
)
3527 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3528 if (stub_sec
== NULL
)
3534 namelen
= strlen (link_sec
->name
);
3535 len
= namelen
+ sizeof (STUB_SUFFIX
);
3536 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
3540 memcpy (s_name
, link_sec
->name
, namelen
);
3541 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3542 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3543 if (stub_sec
== NULL
)
3545 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3547 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3551 *link_sec_p
= link_sec
;
3556 /* Add a new stub entry to the stub hash. Not all fields of the new
3557 stub entry are initialised. */
3559 static struct elf32_arm_stub_hash_entry
*
3560 elf32_arm_add_stub (const char *stub_name
,
3562 struct elf32_arm_link_hash_table
*htab
)
3566 struct elf32_arm_stub_hash_entry
*stub_entry
;
3568 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3569 if (stub_sec
== NULL
)
3572 /* Enter this entry into the linker stub hash table. */
3573 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3575 if (stub_entry
== NULL
)
3577 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3583 stub_entry
->stub_sec
= stub_sec
;
3584 stub_entry
->stub_offset
= 0;
3585 stub_entry
->id_sec
= link_sec
;
3590 /* Store an Arm insn into an output section not processed by
3591 elf32_arm_write_section. */
3594 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3595 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3597 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3598 bfd_putl32 (val
, ptr
);
3600 bfd_putb32 (val
, ptr
);
3603 /* Store a 16-bit Thumb insn into an output section not processed by
3604 elf32_arm_write_section. */
3607 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3608 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3610 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3611 bfd_putl16 (val
, ptr
);
3613 bfd_putb16 (val
, ptr
);
3616 /* If it's possible to change R_TYPE to a more efficient access
3617 model, return the new reloc type. */
3620 elf32_arm_tls_transition (struct bfd_link_info
*info
, int r_type
,
3621 struct elf_link_hash_entry
*h
)
3623 int is_local
= (h
== NULL
);
3625 if (info
->shared
|| (h
&& h
->root
.type
== bfd_link_hash_undefweak
))
3628 /* We do not support relaxations for Old TLS models. */
3631 case R_ARM_TLS_GOTDESC
:
3632 case R_ARM_TLS_CALL
:
3633 case R_ARM_THM_TLS_CALL
:
3634 case R_ARM_TLS_DESCSEQ
:
3635 case R_ARM_THM_TLS_DESCSEQ
:
3636 return is_local
? R_ARM_TLS_LE32
: R_ARM_TLS_IE32
;
3642 static bfd_reloc_status_type elf32_arm_final_link_relocate
3643 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
3644 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
3645 const char *, int, struct elf_link_hash_entry
*, bfd_boolean
*, char **);
3648 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type
)
3652 case arm_stub_a8_veneer_b_cond
:
3653 case arm_stub_a8_veneer_b
:
3654 case arm_stub_a8_veneer_bl
:
3657 case arm_stub_long_branch_any_any
:
3658 case arm_stub_long_branch_v4t_arm_thumb
:
3659 case arm_stub_long_branch_thumb_only
:
3660 case arm_stub_long_branch_v4t_thumb_thumb
:
3661 case arm_stub_long_branch_v4t_thumb_arm
:
3662 case arm_stub_short_branch_v4t_thumb_arm
:
3663 case arm_stub_long_branch_any_arm_pic
:
3664 case arm_stub_long_branch_any_thumb_pic
:
3665 case arm_stub_long_branch_v4t_thumb_thumb_pic
:
3666 case arm_stub_long_branch_v4t_arm_thumb_pic
:
3667 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3668 case arm_stub_long_branch_thumb_only_pic
:
3669 case arm_stub_long_branch_any_tls_pic
:
3670 case arm_stub_long_branch_v4t_thumb_tls_pic
:
3671 case arm_stub_a8_veneer_blx
:
3675 abort (); /* Should be unreachable. */
3680 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3684 struct elf32_arm_stub_hash_entry
*stub_entry
;
3685 struct elf32_arm_link_hash_table
*globals
;
3686 struct bfd_link_info
*info
;
3693 const insn_sequence
*template_sequence
;
3695 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
3696 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
3699 /* Massage our args to the form they really have. */
3700 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3701 info
= (struct bfd_link_info
*) in_arg
;
3703 globals
= elf32_arm_hash_table (info
);
3704 if (globals
== NULL
)
3707 stub_sec
= stub_entry
->stub_sec
;
3709 if ((globals
->fix_cortex_a8
< 0)
3710 != (arm_stub_required_alignment (stub_entry
->stub_type
) == 2))
3711 /* We have to do less-strictly-aligned fixes last. */
3714 /* Make a note of the offset within the stubs for this entry. */
3715 stub_entry
->stub_offset
= stub_sec
->size
;
3716 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3718 stub_bfd
= stub_sec
->owner
;
3720 /* This is the address of the stub destination. */
3721 sym_value
= (stub_entry
->target_value
3722 + stub_entry
->target_section
->output_offset
3723 + stub_entry
->target_section
->output_section
->vma
);
3725 template_sequence
= stub_entry
->stub_template
;
3726 template_size
= stub_entry
->stub_template_size
;
3729 for (i
= 0; i
< template_size
; i
++)
3731 switch (template_sequence
[i
].type
)
3735 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
3736 if (template_sequence
[i
].reloc_addend
!= 0)
3738 /* We've borrowed the reloc_addend field to mean we should
3739 insert a condition code into this (Thumb-1 branch)
3740 instruction. See THUMB16_BCOND_INSN. */
3741 BFD_ASSERT ((data
& 0xff00) == 0xd000);
3742 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
3744 bfd_put_16 (stub_bfd
, data
, loc
+ size
);
3750 bfd_put_16 (stub_bfd
,
3751 (template_sequence
[i
].data
>> 16) & 0xffff,
3753 bfd_put_16 (stub_bfd
, template_sequence
[i
].data
& 0xffff,
3755 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
3757 stub_reloc_idx
[nrelocs
] = i
;
3758 stub_reloc_offset
[nrelocs
++] = size
;
3764 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
,
3766 /* Handle cases where the target is encoded within the
3768 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
3770 stub_reloc_idx
[nrelocs
] = i
;
3771 stub_reloc_offset
[nrelocs
++] = size
;
3777 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
3778 stub_reloc_idx
[nrelocs
] = i
;
3779 stub_reloc_offset
[nrelocs
++] = size
;
3789 stub_sec
->size
+= size
;
3791 /* Stub size has already been computed in arm_size_one_stub. Check
3793 BFD_ASSERT (size
== stub_entry
->stub_size
);
3795 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3796 if (stub_entry
->st_type
== STT_ARM_TFUNC
)
3799 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3801 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
3803 for (i
= 0; i
< nrelocs
; i
++)
3804 if (template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
3805 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
3806 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
3807 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
3809 Elf_Internal_Rela rel
;
3810 bfd_boolean unresolved_reloc
;
3811 char *error_message
;
3813 = (template_sequence
[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
)
3814 ? STT_ARM_TFUNC
: 0;
3815 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
3817 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
3818 rel
.r_info
= ELF32_R_INFO (0,
3819 template_sequence
[stub_reloc_idx
[i
]].r_type
);
3820 rel
.r_addend
= template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
3822 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
3823 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3824 template should refer back to the instruction after the original
3826 points_to
= sym_value
;
3828 /* There may be unintended consequences if this is not true. */
3829 BFD_ASSERT (stub_entry
->h
== NULL
);
3831 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3832 properly. We should probably use this function unconditionally,
3833 rather than only for certain relocations listed in the enclosing
3834 conditional, for the sake of consistency. */
3835 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3836 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
3837 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
3838 points_to
, info
, stub_entry
->target_section
, "", sym_flags
,
3839 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
3844 Elf_Internal_Rela rel
;
3845 bfd_boolean unresolved_reloc
;
3846 char *error_message
;
3847 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
3848 + template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
3850 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
3851 rel
.r_info
= ELF32_R_INFO (0,
3852 template_sequence
[stub_reloc_idx
[i
]].r_type
);
3855 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3856 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
3857 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
3858 points_to
, info
, stub_entry
->target_section
, "", stub_entry
->st_type
,
3859 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
3867 /* Calculate the template, template size and instruction size for a stub.
3868 Return value is the instruction size. */
3871 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
3872 const insn_sequence
**stub_template
,
3873 int *stub_template_size
)
3875 const insn_sequence
*template_sequence
= NULL
;
3876 int template_size
= 0, i
;
3879 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
3881 *stub_template
= template_sequence
;
3883 template_size
= stub_definitions
[stub_type
].template_size
;
3884 if (stub_template_size
)
3885 *stub_template_size
= template_size
;
3888 for (i
= 0; i
< template_size
; i
++)
3890 switch (template_sequence
[i
].type
)
3911 /* As above, but don't actually build the stub. Just bump offset so
3912 we know stub section sizes. */
3915 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3916 void *in_arg ATTRIBUTE_UNUSED
)
3918 struct elf32_arm_stub_hash_entry
*stub_entry
;
3919 const insn_sequence
*template_sequence
;
3920 int template_size
, size
;
3922 /* Massage our args to the form they really have. */
3923 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3925 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
3926 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
3928 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
3931 stub_entry
->stub_size
= size
;
3932 stub_entry
->stub_template
= template_sequence
;
3933 stub_entry
->stub_template_size
= template_size
;
3935 size
= (size
+ 7) & ~7;
3936 stub_entry
->stub_sec
->size
+= size
;
3941 /* External entry points for sizing and building linker stubs. */
3943 /* Set up various things so that we can make a list of input sections
3944 for each output section included in the link. Returns -1 on error,
3945 0 when no stubs will be needed, and 1 on success. */
3948 elf32_arm_setup_section_lists (bfd
*output_bfd
,
3949 struct bfd_link_info
*info
)
3952 unsigned int bfd_count
;
3953 int top_id
, top_index
;
3955 asection
**input_list
, **list
;
3957 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3961 if (! is_elf_hash_table (htab
))
3964 /* Count the number of input BFDs and find the top input section id. */
3965 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3967 input_bfd
= input_bfd
->link_next
)
3970 for (section
= input_bfd
->sections
;
3972 section
= section
->next
)
3974 if (top_id
< section
->id
)
3975 top_id
= section
->id
;
3978 htab
->bfd_count
= bfd_count
;
3980 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3981 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
3982 if (htab
->stub_group
== NULL
)
3984 htab
->top_id
= top_id
;
3986 /* We can't use output_bfd->section_count here to find the top output
3987 section index as some sections may have been removed, and
3988 _bfd_strip_section_from_output doesn't renumber the indices. */
3989 for (section
= output_bfd
->sections
, top_index
= 0;
3991 section
= section
->next
)
3993 if (top_index
< section
->index
)
3994 top_index
= section
->index
;
3997 htab
->top_index
= top_index
;
3998 amt
= sizeof (asection
*) * (top_index
+ 1);
3999 input_list
= (asection
**) bfd_malloc (amt
);
4000 htab
->input_list
= input_list
;
4001 if (input_list
== NULL
)
4004 /* For sections we aren't interested in, mark their entries with a
4005 value we can check later. */
4006 list
= input_list
+ top_index
;
4008 *list
= bfd_abs_section_ptr
;
4009 while (list
-- != input_list
);
4011 for (section
= output_bfd
->sections
;
4013 section
= section
->next
)
4015 if ((section
->flags
& SEC_CODE
) != 0)
4016 input_list
[section
->index
] = NULL
;
4022 /* The linker repeatedly calls this function for each input section,
4023 in the order that input sections are linked into output sections.
4024 Build lists of input sections to determine groupings between which
4025 we may insert linker stubs. */
4028 elf32_arm_next_input_section (struct bfd_link_info
*info
,
4031 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4036 if (isec
->output_section
->index
<= htab
->top_index
)
4038 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
4040 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
4042 /* Steal the link_sec pointer for our list. */
4043 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4044 /* This happens to make the list in reverse order,
4045 which we reverse later. */
4046 PREV_SEC (isec
) = *list
;
4052 /* See whether we can group stub sections together. Grouping stub
4053 sections may result in fewer stubs. More importantly, we need to
4054 put all .init* and .fini* stubs at the end of the .init or
4055 .fini output sections respectively, because glibc splits the
4056 _init and _fini functions into multiple parts. Putting a stub in
4057 the middle of a function is not a good idea. */
4060 group_sections (struct elf32_arm_link_hash_table
*htab
,
4061 bfd_size_type stub_group_size
,
4062 bfd_boolean stubs_always_after_branch
)
4064 asection
**list
= htab
->input_list
;
4068 asection
*tail
= *list
;
4071 if (tail
== bfd_abs_section_ptr
)
4074 /* Reverse the list: we must avoid placing stubs at the
4075 beginning of the section because the beginning of the text
4076 section may be required for an interrupt vector in bare metal
4078 #define NEXT_SEC PREV_SEC
4080 while (tail
!= NULL
)
4082 /* Pop from tail. */
4083 asection
*item
= tail
;
4084 tail
= PREV_SEC (item
);
4087 NEXT_SEC (item
) = head
;
4091 while (head
!= NULL
)
4095 bfd_vma stub_group_start
= head
->output_offset
;
4096 bfd_vma end_of_next
;
4099 while (NEXT_SEC (curr
) != NULL
)
4101 next
= NEXT_SEC (curr
);
4102 end_of_next
= next
->output_offset
+ next
->size
;
4103 if (end_of_next
- stub_group_start
>= stub_group_size
)
4104 /* End of NEXT is too far from start, so stop. */
4106 /* Add NEXT to the group. */
4110 /* OK, the size from the start to the start of CURR is less
4111 than stub_group_size and thus can be handled by one stub
4112 section. (Or the head section is itself larger than
4113 stub_group_size, in which case we may be toast.)
4114 We should really be keeping track of the total size of
4115 stubs added here, as stubs contribute to the final output
4119 next
= NEXT_SEC (head
);
4120 /* Set up this stub group. */
4121 htab
->stub_group
[head
->id
].link_sec
= curr
;
4123 while (head
!= curr
&& (head
= next
) != NULL
);
4125 /* But wait, there's more! Input sections up to stub_group_size
4126 bytes after the stub section can be handled by it too. */
4127 if (!stubs_always_after_branch
)
4129 stub_group_start
= curr
->output_offset
+ curr
->size
;
4131 while (next
!= NULL
)
4133 end_of_next
= next
->output_offset
+ next
->size
;
4134 if (end_of_next
- stub_group_start
>= stub_group_size
)
4135 /* End of NEXT is too far from stubs, so stop. */
4137 /* Add NEXT to the stub group. */
4139 next
= NEXT_SEC (head
);
4140 htab
->stub_group
[head
->id
].link_sec
= curr
;
4146 while (list
++ != htab
->input_list
+ htab
->top_index
);
4148 free (htab
->input_list
);
4153 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4157 a8_reloc_compare (const void *a
, const void *b
)
4159 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
4160 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
4162 if (ra
->from
< rb
->from
)
4164 else if (ra
->from
> rb
->from
)
4170 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
4171 const char *, char **);
4173 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4174 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4175 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4179 cortex_a8_erratum_scan (bfd
*input_bfd
,
4180 struct bfd_link_info
*info
,
4181 struct a8_erratum_fix
**a8_fixes_p
,
4182 unsigned int *num_a8_fixes_p
,
4183 unsigned int *a8_fix_table_size_p
,
4184 struct a8_erratum_reloc
*a8_relocs
,
4185 unsigned int num_a8_relocs
,
4186 unsigned prev_num_a8_fixes
,
4187 bfd_boolean
*stub_changed_p
)
4190 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4191 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
4192 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
4193 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
4198 for (section
= input_bfd
->sections
;
4200 section
= section
->next
)
4202 bfd_byte
*contents
= NULL
;
4203 struct _arm_elf_section_data
*sec_data
;
4207 if (elf_section_type (section
) != SHT_PROGBITS
4208 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
4209 || (section
->flags
& SEC_EXCLUDE
) != 0
4210 || (section
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
4211 || (section
->output_section
== bfd_abs_section_ptr
))
4214 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
4216 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
4217 contents
= elf_section_data (section
)->this_hdr
.contents
;
4218 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
4221 sec_data
= elf32_arm_section_data (section
);
4223 for (span
= 0; span
< sec_data
->mapcount
; span
++)
4225 unsigned int span_start
= sec_data
->map
[span
].vma
;
4226 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
4227 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
4229 char span_type
= sec_data
->map
[span
].type
;
4230 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
4232 if (span_type
!= 't')
4235 /* Span is entirely within a single 4KB region: skip scanning. */
4236 if (((base_vma
+ span_start
) & ~0xfff)
4237 == ((base_vma
+ span_end
) & ~0xfff))
4240 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4242 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4243 * The branch target is in the same 4KB region as the
4244 first half of the branch.
4245 * The instruction before the branch is a 32-bit
4246 length non-branch instruction. */
4247 for (i
= span_start
; i
< span_end
;)
4249 unsigned int insn
= bfd_getl16 (&contents
[i
]);
4250 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
4251 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
4253 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
4258 /* Load the rest of the insn (in manual-friendly order). */
4259 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
4261 /* Encoding T4: B<c>.W. */
4262 is_b
= (insn
& 0xf800d000) == 0xf0009000;
4263 /* Encoding T1: BL<c>.W. */
4264 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
4265 /* Encoding T2: BLX<c>.W. */
4266 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
4267 /* Encoding T3: B<c>.W (not permitted in IT block). */
4268 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
4269 && (insn
& 0x07f00000) != 0x03800000;
4272 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
4274 if (((base_vma
+ i
) & 0xfff) == 0xffe
4278 && ! last_was_branch
)
4280 bfd_signed_vma offset
= 0;
4281 bfd_boolean force_target_arm
= FALSE
;
4282 bfd_boolean force_target_thumb
= FALSE
;
4284 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4285 struct a8_erratum_reloc key
, *found
;
4287 key
.from
= base_vma
+ i
;
4288 found
= (struct a8_erratum_reloc
*)
4289 bsearch (&key
, a8_relocs
, num_a8_relocs
,
4290 sizeof (struct a8_erratum_reloc
),
4295 char *error_message
= NULL
;
4296 struct elf_link_hash_entry
*entry
;
4297 bfd_boolean use_plt
= FALSE
;
4299 /* We don't care about the error returned from this
4300 function, only if there is glue or not. */
4301 entry
= find_thumb_glue (info
, found
->sym_name
,
4305 found
->non_a8_stub
= TRUE
;
4307 /* Keep a simpler condition, for the sake of clarity. */
4308 if (htab
->root
.splt
!= NULL
&& found
->hash
!= NULL
4309 && found
->hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4312 if (found
->r_type
== R_ARM_THM_CALL
)
4314 if (found
->st_type
!= STT_ARM_TFUNC
|| use_plt
)
4315 force_target_arm
= TRUE
;
4317 force_target_thumb
= TRUE
;
4321 /* Check if we have an offending branch instruction. */
4323 if (found
&& found
->non_a8_stub
)
4324 /* We've already made a stub for this instruction, e.g.
4325 it's a long branch or a Thumb->ARM stub. Assume that
4326 stub will suffice to work around the A8 erratum (see
4327 setting of always_after_branch above). */
4331 offset
= (insn
& 0x7ff) << 1;
4332 offset
|= (insn
& 0x3f0000) >> 4;
4333 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4334 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4335 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4336 if (offset
& 0x100000)
4337 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4338 stub_type
= arm_stub_a8_veneer_b_cond
;
4340 else if (is_b
|| is_bl
|| is_blx
)
4342 int s
= (insn
& 0x4000000) != 0;
4343 int j1
= (insn
& 0x2000) != 0;
4344 int j2
= (insn
& 0x800) != 0;
4348 offset
= (insn
& 0x7ff) << 1;
4349 offset
|= (insn
& 0x3ff0000) >> 4;
4353 if (offset
& 0x1000000)
4354 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4357 offset
&= ~ ((bfd_signed_vma
) 3);
4359 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4360 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4363 if (stub_type
!= arm_stub_none
)
4365 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4367 /* The original instruction is a BL, but the target is
4368 an ARM instruction. If we were not making a stub,
4369 the BL would have been converted to a BLX. Use the
4370 BLX stub instead in that case. */
4371 if (htab
->use_blx
&& force_target_arm
4372 && stub_type
== arm_stub_a8_veneer_bl
)
4374 stub_type
= arm_stub_a8_veneer_blx
;
4378 /* Conversely, if the original instruction was
4379 BLX but the target is Thumb mode, use the BL
4381 else if (force_target_thumb
4382 && stub_type
== arm_stub_a8_veneer_blx
)
4384 stub_type
= arm_stub_a8_veneer_bl
;
4390 pc_for_insn
&= ~ ((bfd_vma
) 3);
4392 /* If we found a relocation, use the proper destination,
4393 not the offset in the (unrelocated) instruction.
4394 Note this is always done if we switched the stub type
4398 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4400 target
= pc_for_insn
+ offset
;
4402 /* The BLX stub is ARM-mode code. Adjust the offset to
4403 take the different PC value (+8 instead of +4) into
4405 if (stub_type
== arm_stub_a8_veneer_blx
)
4408 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4410 char *stub_name
= NULL
;
4412 if (num_a8_fixes
== a8_fix_table_size
)
4414 a8_fix_table_size
*= 2;
4415 a8_fixes
= (struct a8_erratum_fix
*)
4416 bfd_realloc (a8_fixes
,
4417 sizeof (struct a8_erratum_fix
)
4418 * a8_fix_table_size
);
4421 if (num_a8_fixes
< prev_num_a8_fixes
)
4423 /* If we're doing a subsequent scan,
4424 check if we've found the same fix as
4425 before, and try and reuse the stub
4427 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
4428 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
4429 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
4433 *stub_changed_p
= TRUE
;
4439 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
4440 if (stub_name
!= NULL
)
4441 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4444 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4445 a8_fixes
[num_a8_fixes
].section
= section
;
4446 a8_fixes
[num_a8_fixes
].offset
= i
;
4447 a8_fixes
[num_a8_fixes
].addend
= offset
;
4448 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4449 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4450 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4451 a8_fixes
[num_a8_fixes
].st_type
=
4452 is_blx
? STT_FUNC
: STT_ARM_TFUNC
;
4459 i
+= insn_32bit
? 4 : 2;
4460 last_was_32bit
= insn_32bit
;
4461 last_was_branch
= is_32bit_branch
;
4465 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4469 *a8_fixes_p
= a8_fixes
;
4470 *num_a8_fixes_p
= num_a8_fixes
;
4471 *a8_fix_table_size_p
= a8_fix_table_size
;
4476 /* Determine and set the size of the stub section for a final link.
4478 The basic idea here is to examine all the relocations looking for
4479 PC-relative calls to a target that is unreachable with a "bl"
4483 elf32_arm_size_stubs (bfd
*output_bfd
,
4485 struct bfd_link_info
*info
,
4486 bfd_signed_vma group_size
,
4487 asection
* (*add_stub_section
) (const char *, asection
*),
4488 void (*layout_sections_again
) (void))
4490 bfd_size_type stub_group_size
;
4491 bfd_boolean stubs_always_after_branch
;
4492 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4493 struct a8_erratum_fix
*a8_fixes
= NULL
;
4494 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
4495 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4496 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4501 if (htab
->fix_cortex_a8
)
4503 a8_fixes
= (struct a8_erratum_fix
*)
4504 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
4505 a8_relocs
= (struct a8_erratum_reloc
*)
4506 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
4509 /* Propagate mach to stub bfd, because it may not have been
4510 finalized when we created stub_bfd. */
4511 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4512 bfd_get_mach (output_bfd
));
4514 /* Stash our params away. */
4515 htab
->stub_bfd
= stub_bfd
;
4516 htab
->add_stub_section
= add_stub_section
;
4517 htab
->layout_sections_again
= layout_sections_again
;
4518 stubs_always_after_branch
= group_size
< 0;
4520 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4521 as the first half of a 32-bit branch straddling two 4K pages. This is a
4522 crude way of enforcing that. */
4523 if (htab
->fix_cortex_a8
)
4524 stubs_always_after_branch
= 1;
4527 stub_group_size
= -group_size
;
4529 stub_group_size
= group_size
;
4531 if (stub_group_size
== 1)
4533 /* Default values. */
4534 /* Thumb branch range is +-4MB has to be used as the default
4535 maximum size (a given section can contain both ARM and Thumb
4536 code, so the worst case has to be taken into account).
4538 This value is 24K less than that, which allows for 2025
4539 12-byte stubs. If we exceed that, then we will fail to link.
4540 The user will have to relink with an explicit group size
4542 stub_group_size
= 4170000;
4545 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4547 /* If we're applying the cortex A8 fix, we need to determine the
4548 program header size now, because we cannot change it later --
4549 that could alter section placements. Notice the A8 erratum fix
4550 ends up requiring the section addresses to remain unchanged
4551 modulo the page size. That's something we cannot represent
4552 inside BFD, and we don't want to force the section alignment to
4553 be the page size. */
4554 if (htab
->fix_cortex_a8
)
4555 (*htab
->layout_sections_again
) ();
4560 unsigned int bfd_indx
;
4562 bfd_boolean stub_changed
= FALSE
;
4563 unsigned prev_num_a8_fixes
= num_a8_fixes
;
4566 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4568 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4570 Elf_Internal_Shdr
*symtab_hdr
;
4572 Elf_Internal_Sym
*local_syms
= NULL
;
4576 /* We'll need the symbol table in a second. */
4577 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4578 if (symtab_hdr
->sh_info
== 0)
4581 /* Walk over each section attached to the input bfd. */
4582 for (section
= input_bfd
->sections
;
4584 section
= section
->next
)
4586 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4588 /* If there aren't any relocs, then there's nothing more
4590 if ((section
->flags
& SEC_RELOC
) == 0
4591 || section
->reloc_count
== 0
4592 || (section
->flags
& SEC_CODE
) == 0)
4595 /* If this section is a link-once section that will be
4596 discarded, then don't create any stubs. */
4597 if (section
->output_section
== NULL
4598 || section
->output_section
->owner
!= output_bfd
)
4601 /* Get the relocs. */
4603 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4604 NULL
, info
->keep_memory
);
4605 if (internal_relocs
== NULL
)
4606 goto error_ret_free_local
;
4608 /* Now examine each relocation. */
4609 irela
= internal_relocs
;
4610 irelaend
= irela
+ section
->reloc_count
;
4611 for (; irela
< irelaend
; irela
++)
4613 unsigned int r_type
, r_indx
;
4614 enum elf32_arm_stub_type stub_type
;
4615 struct elf32_arm_stub_hash_entry
*stub_entry
;
4618 bfd_vma destination
;
4619 struct elf32_arm_link_hash_entry
*hash
;
4620 const char *sym_name
;
4622 const asection
*id_sec
;
4624 bfd_boolean created_stub
= FALSE
;
4626 r_type
= ELF32_R_TYPE (irela
->r_info
);
4627 r_indx
= ELF32_R_SYM (irela
->r_info
);
4629 if (r_type
>= (unsigned int) R_ARM_max
)
4631 bfd_set_error (bfd_error_bad_value
);
4632 error_ret_free_internal
:
4633 if (elf_section_data (section
)->relocs
== NULL
)
4634 free (internal_relocs
);
4635 goto error_ret_free_local
;
4639 if (r_indx
>= symtab_hdr
->sh_info
)
4640 hash
= elf32_arm_hash_entry
4641 (elf_sym_hashes (input_bfd
)
4642 [r_indx
- symtab_hdr
->sh_info
]);
4644 /* Only look for stubs on branch instructions, or
4645 non-relaxed TLSCALL */
4646 if ((r_type
!= (unsigned int) R_ARM_CALL
)
4647 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
4648 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
4649 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
4650 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
4651 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
4652 && (r_type
!= (unsigned int) R_ARM_PLT32
)
4653 && !((r_type
== (unsigned int) R_ARM_TLS_CALL
4654 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
4655 && r_type
== elf32_arm_tls_transition
4656 (info
, r_type
, &hash
->root
)
4657 && ((hash
? hash
->tls_type
4658 : (elf32_arm_local_got_tls_type
4659 (input_bfd
)[r_indx
]))
4660 & GOT_TLS_GDESC
) != 0))
4663 /* Now determine the call target, its name, value,
4670 if (r_type
== (unsigned int) R_ARM_TLS_CALL
4671 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
4673 /* A non-relaxed TLS call. The target is the
4674 plt-resident trampoline and nothing to do
4676 BFD_ASSERT (htab
->tls_trampoline
> 0);
4677 sym_sec
= htab
->root
.splt
;
4678 sym_value
= htab
->tls_trampoline
;
4684 /* It's a local symbol. */
4685 Elf_Internal_Sym
*sym
;
4687 if (local_syms
== NULL
)
4690 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4691 if (local_syms
== NULL
)
4693 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4694 symtab_hdr
->sh_info
, 0,
4696 if (local_syms
== NULL
)
4697 goto error_ret_free_internal
;
4700 sym
= local_syms
+ r_indx
;
4701 if (sym
->st_shndx
== SHN_UNDEF
)
4702 sym_sec
= bfd_und_section_ptr
;
4703 else if (sym
->st_shndx
== SHN_ABS
)
4704 sym_sec
= bfd_abs_section_ptr
;
4705 else if (sym
->st_shndx
== SHN_COMMON
)
4706 sym_sec
= bfd_com_section_ptr
;
4709 bfd_section_from_elf_index (input_bfd
, sym
->st_shndx
);
4712 /* This is an undefined symbol. It can never
4716 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
4717 sym_value
= sym
->st_value
;
4718 destination
= (sym_value
+ irela
->r_addend
4719 + sym_sec
->output_offset
4720 + sym_sec
->output_section
->vma
);
4721 st_type
= ELF_ST_TYPE (sym
->st_info
);
4723 = bfd_elf_string_from_elf_section (input_bfd
,
4724 symtab_hdr
->sh_link
,
4729 /* It's an external symbol. */
4730 while (hash
->root
.root
.type
== bfd_link_hash_indirect
4731 || hash
->root
.root
.type
== bfd_link_hash_warning
)
4732 hash
= ((struct elf32_arm_link_hash_entry
*)
4733 hash
->root
.root
.u
.i
.link
);
4735 if (hash
->root
.root
.type
== bfd_link_hash_defined
4736 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
4738 sym_sec
= hash
->root
.root
.u
.def
.section
;
4739 sym_value
= hash
->root
.root
.u
.def
.value
;
4741 struct elf32_arm_link_hash_table
*globals
=
4742 elf32_arm_hash_table (info
);
4744 /* For a destination in a shared library,
4745 use the PLT stub as target address to
4746 decide whether a branch stub is
4749 && globals
->root
.splt
!= NULL
4751 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4753 sym_sec
= globals
->root
.splt
;
4754 sym_value
= hash
->root
.plt
.offset
;
4755 if (sym_sec
->output_section
!= NULL
)
4756 destination
= (sym_value
4757 + sym_sec
->output_offset
4758 + sym_sec
->output_section
->vma
);
4760 else if (sym_sec
->output_section
!= NULL
)
4761 destination
= (sym_value
+ irela
->r_addend
4762 + sym_sec
->output_offset
4763 + sym_sec
->output_section
->vma
);
4765 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
4766 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
4768 /* For a shared library, use the PLT stub as
4769 target address to decide whether a long
4770 branch stub is needed.
4771 For absolute code, they cannot be handled. */
4772 struct elf32_arm_link_hash_table
*globals
=
4773 elf32_arm_hash_table (info
);
4776 && globals
->root
.splt
!= NULL
4778 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4780 sym_sec
= globals
->root
.splt
;
4781 sym_value
= hash
->root
.plt
.offset
;
4782 if (sym_sec
->output_section
!= NULL
)
4783 destination
= (sym_value
4784 + sym_sec
->output_offset
4785 + sym_sec
->output_section
->vma
);
4792 bfd_set_error (bfd_error_bad_value
);
4793 goto error_ret_free_internal
;
4795 st_type
= ELF_ST_TYPE (hash
->root
.type
);
4796 sym_name
= hash
->root
.root
.root
.string
;
4801 /* Determine what (if any) linker stub is needed. */
4802 stub_type
= arm_type_of_stub (info
, section
, irela
,
4804 destination
, sym_sec
,
4805 input_bfd
, sym_name
);
4806 if (stub_type
== arm_stub_none
)
4809 /* Support for grouping stub sections. */
4810 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
4812 /* Get the name of this stub. */
4813 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
4816 goto error_ret_free_internal
;
4818 /* We've either created a stub for this reloc already,
4819 or we are about to. */
4820 created_stub
= TRUE
;
4822 stub_entry
= arm_stub_hash_lookup
4823 (&htab
->stub_hash_table
, stub_name
,
4825 if (stub_entry
!= NULL
)
4827 /* The proper stub has already been created. */
4829 stub_entry
->target_value
= sym_value
;
4833 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
4835 if (stub_entry
== NULL
)
4838 goto error_ret_free_internal
;
4841 stub_entry
->target_value
= sym_value
;
4842 stub_entry
->target_section
= sym_sec
;
4843 stub_entry
->stub_type
= stub_type
;
4844 stub_entry
->h
= hash
;
4845 stub_entry
->st_type
= st_type
;
4847 if (sym_name
== NULL
)
4848 sym_name
= "unnamed";
4849 stub_entry
->output_name
= (char *)
4850 bfd_alloc (htab
->stub_bfd
,
4851 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
4852 + strlen (sym_name
));
4853 if (stub_entry
->output_name
== NULL
)
4856 goto error_ret_free_internal
;
4859 /* For historical reasons, use the existing names for
4860 ARM-to-Thumb and Thumb-to-ARM stubs. */
4861 if ( ((r_type
== (unsigned int) R_ARM_THM_CALL
)
4862 || (r_type
== (unsigned int) R_ARM_THM_JUMP24
))
4863 && st_type
!= STT_ARM_TFUNC
)
4864 sprintf (stub_entry
->output_name
,
4865 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
4866 else if ( ((r_type
== (unsigned int) R_ARM_CALL
)
4867 || (r_type
== (unsigned int) R_ARM_JUMP24
))
4868 && st_type
== STT_ARM_TFUNC
)
4869 sprintf (stub_entry
->output_name
,
4870 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
4872 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
4875 stub_changed
= TRUE
;
4879 /* Look for relocations which might trigger Cortex-A8
4881 if (htab
->fix_cortex_a8
4882 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
4883 || r_type
== (unsigned int) R_ARM_THM_JUMP19
4884 || r_type
== (unsigned int) R_ARM_THM_CALL
4885 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
4887 bfd_vma from
= section
->output_section
->vma
4888 + section
->output_offset
4891 if ((from
& 0xfff) == 0xffe)
4893 /* Found a candidate. Note we haven't checked the
4894 destination is within 4K here: if we do so (and
4895 don't create an entry in a8_relocs) we can't tell
4896 that a branch should have been relocated when
4898 if (num_a8_relocs
== a8_reloc_table_size
)
4900 a8_reloc_table_size
*= 2;
4901 a8_relocs
= (struct a8_erratum_reloc
*)
4902 bfd_realloc (a8_relocs
,
4903 sizeof (struct a8_erratum_reloc
)
4904 * a8_reloc_table_size
);
4907 a8_relocs
[num_a8_relocs
].from
= from
;
4908 a8_relocs
[num_a8_relocs
].destination
= destination
;
4909 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
4910 a8_relocs
[num_a8_relocs
].st_type
= st_type
;
4911 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
4912 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
4913 a8_relocs
[num_a8_relocs
].hash
= hash
;
4920 /* We're done with the internal relocs, free them. */
4921 if (elf_section_data (section
)->relocs
== NULL
)
4922 free (internal_relocs
);
4925 if (htab
->fix_cortex_a8
)
4927 /* Sort relocs which might apply to Cortex-A8 erratum. */
4928 qsort (a8_relocs
, num_a8_relocs
,
4929 sizeof (struct a8_erratum_reloc
),
4932 /* Scan for branches which might trigger Cortex-A8 erratum. */
4933 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
4934 &num_a8_fixes
, &a8_fix_table_size
,
4935 a8_relocs
, num_a8_relocs
,
4936 prev_num_a8_fixes
, &stub_changed
)
4938 goto error_ret_free_local
;
4942 if (prev_num_a8_fixes
!= num_a8_fixes
)
4943 stub_changed
= TRUE
;
4948 /* OK, we've added some stubs. Find out the new size of the
4950 for (stub_sec
= htab
->stub_bfd
->sections
;
4952 stub_sec
= stub_sec
->next
)
4954 /* Ignore non-stub sections. */
4955 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4961 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
4963 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4964 if (htab
->fix_cortex_a8
)
4965 for (i
= 0; i
< num_a8_fixes
; i
++)
4967 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
4968 a8_fixes
[i
].section
, htab
);
4970 if (stub_sec
== NULL
)
4971 goto error_ret_free_local
;
4974 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
4979 /* Ask the linker to do its stuff. */
4980 (*htab
->layout_sections_again
) ();
4983 /* Add stubs for Cortex-A8 erratum fixes now. */
4984 if (htab
->fix_cortex_a8
)
4986 for (i
= 0; i
< num_a8_fixes
; i
++)
4988 struct elf32_arm_stub_hash_entry
*stub_entry
;
4989 char *stub_name
= a8_fixes
[i
].stub_name
;
4990 asection
*section
= a8_fixes
[i
].section
;
4991 unsigned int section_id
= a8_fixes
[i
].section
->id
;
4992 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
4993 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
4994 const insn_sequence
*template_sequence
;
4995 int template_size
, size
= 0;
4997 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4999 if (stub_entry
== NULL
)
5001 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
5007 stub_entry
->stub_sec
= stub_sec
;
5008 stub_entry
->stub_offset
= 0;
5009 stub_entry
->id_sec
= link_sec
;
5010 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
5011 stub_entry
->target_section
= a8_fixes
[i
].section
;
5012 stub_entry
->target_value
= a8_fixes
[i
].offset
;
5013 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
5014 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
5015 stub_entry
->st_type
= a8_fixes
[i
].st_type
;
5017 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
5021 stub_entry
->stub_size
= size
;
5022 stub_entry
->stub_template
= template_sequence
;
5023 stub_entry
->stub_template_size
= template_size
;
5026 /* Stash the Cortex-A8 erratum fix array for use later in
5027 elf32_arm_write_section(). */
5028 htab
->a8_erratum_fixes
= a8_fixes
;
5029 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
5033 htab
->a8_erratum_fixes
= NULL
;
5034 htab
->num_a8_erratum_fixes
= 0;
5038 error_ret_free_local
:
5042 /* Build all the stubs associated with the current output file. The
5043 stubs are kept in a hash table attached to the main linker hash
5044 table. We also set up the .plt entries for statically linked PIC
5045 functions here. This function is called via arm_elf_finish in the
5049 elf32_arm_build_stubs (struct bfd_link_info
*info
)
5052 struct bfd_hash_table
*table
;
5053 struct elf32_arm_link_hash_table
*htab
;
5055 htab
= elf32_arm_hash_table (info
);
5059 for (stub_sec
= htab
->stub_bfd
->sections
;
5061 stub_sec
= stub_sec
->next
)
5065 /* Ignore non-stub sections. */
5066 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5069 /* Allocate memory to hold the linker stubs. */
5070 size
= stub_sec
->size
;
5071 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
5072 if (stub_sec
->contents
== NULL
&& size
!= 0)
5077 /* Build the stubs as directed by the stub hash table. */
5078 table
= &htab
->stub_hash_table
;
5079 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5080 if (htab
->fix_cortex_a8
)
5082 /* Place the cortex a8 stubs last. */
5083 htab
->fix_cortex_a8
= -1;
5084 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5090 /* Locate the Thumb encoded calling stub for NAME. */
5092 static struct elf_link_hash_entry
*
5093 find_thumb_glue (struct bfd_link_info
*link_info
,
5095 char **error_message
)
5098 struct elf_link_hash_entry
*hash
;
5099 struct elf32_arm_link_hash_table
*hash_table
;
5101 /* We need a pointer to the armelf specific hash table. */
5102 hash_table
= elf32_arm_hash_table (link_info
);
5103 if (hash_table
== NULL
)
5106 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5107 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
5109 BFD_ASSERT (tmp_name
);
5111 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
5113 hash
= elf_link_hash_lookup
5114 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5117 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
5118 tmp_name
, name
) == -1)
5119 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5126 /* Locate the ARM encoded calling stub for NAME. */
5128 static struct elf_link_hash_entry
*
5129 find_arm_glue (struct bfd_link_info
*link_info
,
5131 char **error_message
)
5134 struct elf_link_hash_entry
*myh
;
5135 struct elf32_arm_link_hash_table
*hash_table
;
5137 /* We need a pointer to the elfarm specific hash table. */
5138 hash_table
= elf32_arm_hash_table (link_info
);
5139 if (hash_table
== NULL
)
5142 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5143 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5145 BFD_ASSERT (tmp_name
);
5147 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5149 myh
= elf_link_hash_lookup
5150 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5153 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
5154 tmp_name
, name
) == -1)
5155 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5162 /* ARM->Thumb glue (static images):
5166 ldr r12, __func_addr
5169 .word func @ behave as if you saw a ARM_32 reloc.
5176 .word func @ behave as if you saw a ARM_32 reloc.
5178 (relocatable images)
5181 ldr r12, __func_offset
5187 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5188 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
5189 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
5190 static const insn32 a2t3_func_addr_insn
= 0x00000001;
5192 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5193 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
5194 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
5196 #define ARM2THUMB_PIC_GLUE_SIZE 16
5197 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
5198 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
5199 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
5201 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5205 __func_from_thumb: __func_from_thumb:
5207 nop ldr r6, __func_addr
5217 #define THUMB2ARM_GLUE_SIZE 8
5218 static const insn16 t2a1_bx_pc_insn
= 0x4778;
5219 static const insn16 t2a2_noop_insn
= 0x46c0;
5220 static const insn32 t2a3_b_insn
= 0xea000000;
5222 #define VFP11_ERRATUM_VENEER_SIZE 8
5224 #define ARM_BX_VENEER_SIZE 12
5225 static const insn32 armbx1_tst_insn
= 0xe3100001;
5226 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
5227 static const insn32 armbx3_bx_insn
= 0xe12fff10;
5229 #ifndef ELFARM_NABI_C_INCLUDED
5231 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
5234 bfd_byte
* contents
;
5238 /* Do not include empty glue sections in the output. */
5241 s
= bfd_get_section_by_name (abfd
, name
);
5243 s
->flags
|= SEC_EXCLUDE
;
5248 BFD_ASSERT (abfd
!= NULL
);
5250 s
= bfd_get_section_by_name (abfd
, name
);
5251 BFD_ASSERT (s
!= NULL
);
5253 contents
= (bfd_byte
*) bfd_alloc (abfd
, size
);
5255 BFD_ASSERT (s
->size
== size
);
5256 s
->contents
= contents
;
5260 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
5262 struct elf32_arm_link_hash_table
* globals
;
5264 globals
= elf32_arm_hash_table (info
);
5265 BFD_ASSERT (globals
!= NULL
);
5267 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5268 globals
->arm_glue_size
,
5269 ARM2THUMB_GLUE_SECTION_NAME
);
5271 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5272 globals
->thumb_glue_size
,
5273 THUMB2ARM_GLUE_SECTION_NAME
);
5275 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5276 globals
->vfp11_erratum_glue_size
,
5277 VFP11_ERRATUM_VENEER_SECTION_NAME
);
5279 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5280 globals
->bx_glue_size
,
5281 ARM_BX_GLUE_SECTION_NAME
);
5286 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5287 returns the symbol identifying the stub. */
5289 static struct elf_link_hash_entry
*
5290 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
5291 struct elf_link_hash_entry
* h
)
5293 const char * name
= h
->root
.root
.string
;
5296 struct elf_link_hash_entry
* myh
;
5297 struct bfd_link_hash_entry
* bh
;
5298 struct elf32_arm_link_hash_table
* globals
;
5302 globals
= elf32_arm_hash_table (link_info
);
5303 BFD_ASSERT (globals
!= NULL
);
5304 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5306 s
= bfd_get_section_by_name
5307 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
5309 BFD_ASSERT (s
!= NULL
);
5311 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5312 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5314 BFD_ASSERT (tmp_name
);
5316 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5318 myh
= elf_link_hash_lookup
5319 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5323 /* We've already seen this guy. */
5328 /* The only trick here is using hash_table->arm_glue_size as the value.
5329 Even though the section isn't allocated yet, this is where we will be
5330 putting it. The +1 on the value marks that the stub has not been
5331 output yet - not that it is a Thumb function. */
5333 val
= globals
->arm_glue_size
+ 1;
5334 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5335 tmp_name
, BSF_GLOBAL
, s
, val
,
5336 NULL
, TRUE
, FALSE
, &bh
);
5338 myh
= (struct elf_link_hash_entry
*) bh
;
5339 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5340 myh
->forced_local
= 1;
5344 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
5345 || globals
->pic_veneer
)
5346 size
= ARM2THUMB_PIC_GLUE_SIZE
;
5347 else if (globals
->use_blx
)
5348 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
5350 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
5353 globals
->arm_glue_size
+= size
;
5358 /* Allocate space for ARMv4 BX veneers. */
5361 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
5364 struct elf32_arm_link_hash_table
*globals
;
5366 struct elf_link_hash_entry
*myh
;
5367 struct bfd_link_hash_entry
*bh
;
5370 /* BX PC does not need a veneer. */
5374 globals
= elf32_arm_hash_table (link_info
);
5375 BFD_ASSERT (globals
!= NULL
);
5376 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5378 /* Check if this veneer has already been allocated. */
5379 if (globals
->bx_glue_offset
[reg
])
5382 s
= bfd_get_section_by_name
5383 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
5385 BFD_ASSERT (s
!= NULL
);
5387 /* Add symbol for veneer. */
5389 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
5391 BFD_ASSERT (tmp_name
);
5393 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
5395 myh
= elf_link_hash_lookup
5396 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5398 BFD_ASSERT (myh
== NULL
);
5401 val
= globals
->bx_glue_size
;
5402 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5403 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5404 NULL
, TRUE
, FALSE
, &bh
);
5406 myh
= (struct elf_link_hash_entry
*) bh
;
5407 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5408 myh
->forced_local
= 1;
5410 s
->size
+= ARM_BX_VENEER_SIZE
;
5411 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5412 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5416 /* Add an entry to the code/data map for section SEC. */
5419 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5421 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5422 unsigned int newidx
;
5424 if (sec_data
->map
== NULL
)
5426 sec_data
->map
= (elf32_arm_section_map
*)
5427 bfd_malloc (sizeof (elf32_arm_section_map
));
5428 sec_data
->mapcount
= 0;
5429 sec_data
->mapsize
= 1;
5432 newidx
= sec_data
->mapcount
++;
5434 if (sec_data
->mapcount
> sec_data
->mapsize
)
5436 sec_data
->mapsize
*= 2;
5437 sec_data
->map
= (elf32_arm_section_map
*)
5438 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5439 * sizeof (elf32_arm_section_map
));
5444 sec_data
->map
[newidx
].vma
= vma
;
5445 sec_data
->map
[newidx
].type
= type
;
5450 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5451 veneers are handled for now. */
5454 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5455 elf32_vfp11_erratum_list
*branch
,
5457 asection
*branch_sec
,
5458 unsigned int offset
)
5461 struct elf32_arm_link_hash_table
*hash_table
;
5463 struct elf_link_hash_entry
*myh
;
5464 struct bfd_link_hash_entry
*bh
;
5466 struct _arm_elf_section_data
*sec_data
;
5467 elf32_vfp11_erratum_list
*newerr
;
5469 hash_table
= elf32_arm_hash_table (link_info
);
5470 BFD_ASSERT (hash_table
!= NULL
);
5471 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5473 s
= bfd_get_section_by_name
5474 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5476 sec_data
= elf32_arm_section_data (s
);
5478 BFD_ASSERT (s
!= NULL
);
5480 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
5481 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5483 BFD_ASSERT (tmp_name
);
5485 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5486 hash_table
->num_vfp11_fixes
);
5488 myh
= elf_link_hash_lookup
5489 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5491 BFD_ASSERT (myh
== NULL
);
5494 val
= hash_table
->vfp11_erratum_glue_size
;
5495 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5496 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5497 NULL
, TRUE
, FALSE
, &bh
);
5499 myh
= (struct elf_link_hash_entry
*) bh
;
5500 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5501 myh
->forced_local
= 1;
5503 /* Link veneer back to calling location. */
5504 sec_data
->erratumcount
+= 1;
5505 newerr
= (elf32_vfp11_erratum_list
*)
5506 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5508 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5510 newerr
->u
.v
.branch
= branch
;
5511 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5512 branch
->u
.b
.veneer
= newerr
;
5514 newerr
->next
= sec_data
->erratumlist
;
5515 sec_data
->erratumlist
= newerr
;
5517 /* A symbol for the return from the veneer. */
5518 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5519 hash_table
->num_vfp11_fixes
);
5521 myh
= elf_link_hash_lookup
5522 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5529 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5530 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5532 myh
= (struct elf_link_hash_entry
*) bh
;
5533 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5534 myh
->forced_local
= 1;
5538 /* Generate a mapping symbol for the veneer section, and explicitly add an
5539 entry for that symbol to the code/data map for the section. */
5540 if (hash_table
->vfp11_erratum_glue_size
== 0)
5543 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5544 ever requires this erratum fix. */
5545 _bfd_generic_link_add_one_symbol (link_info
,
5546 hash_table
->bfd_of_glue_owner
, "$a",
5547 BSF_LOCAL
, s
, 0, NULL
,
5550 myh
= (struct elf_link_hash_entry
*) bh
;
5551 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5552 myh
->forced_local
= 1;
5554 /* The elf32_arm_init_maps function only cares about symbols from input
5555 BFDs. We must make a note of this generated mapping symbol
5556 ourselves so that code byteswapping works properly in
5557 elf32_arm_write_section. */
5558 elf32_arm_section_map_add (s
, 'a', 0);
5561 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5562 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5563 hash_table
->num_vfp11_fixes
++;
5565 /* The offset of the veneer. */
5569 #define ARM_GLUE_SECTION_FLAGS \
5570 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5571 | SEC_READONLY | SEC_LINKER_CREATED)
5573 /* Create a fake section for use by the ARM backend of the linker. */
5576 arm_make_glue_section (bfd
* abfd
, const char * name
)
5580 sec
= bfd_get_section_by_name (abfd
, name
);
5585 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5588 || !bfd_set_section_alignment (abfd
, sec
, 2))
5591 /* Set the gc mark to prevent the section from being removed by garbage
5592 collection, despite the fact that no relocs refer to this section. */
5598 /* Add the glue sections to ABFD. This function is called from the
5599 linker scripts in ld/emultempl/{armelf}.em. */
5602 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5603 struct bfd_link_info
*info
)
5605 /* If we are only performing a partial
5606 link do not bother adding the glue. */
5607 if (info
->relocatable
)
5610 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5611 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
5612 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
5613 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
5616 /* Select a BFD to be used to hold the sections used by the glue code.
5617 This function is called from the linker scripts in ld/emultempl/
5621 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
5623 struct elf32_arm_link_hash_table
*globals
;
5625 /* If we are only performing a partial link
5626 do not bother getting a bfd to hold the glue. */
5627 if (info
->relocatable
)
5630 /* Make sure we don't attach the glue sections to a dynamic object. */
5631 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
5633 globals
= elf32_arm_hash_table (info
);
5634 BFD_ASSERT (globals
!= NULL
);
5636 if (globals
->bfd_of_glue_owner
!= NULL
)
5639 /* Save the bfd for later use. */
5640 globals
->bfd_of_glue_owner
= abfd
;
5646 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
5648 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
5650 globals
->use_blx
= 1;
5654 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
5655 struct bfd_link_info
*link_info
)
5657 Elf_Internal_Shdr
*symtab_hdr
;
5658 Elf_Internal_Rela
*internal_relocs
= NULL
;
5659 Elf_Internal_Rela
*irel
, *irelend
;
5660 bfd_byte
*contents
= NULL
;
5663 struct elf32_arm_link_hash_table
*globals
;
5665 /* If we are only performing a partial link do not bother
5666 to construct any glue. */
5667 if (link_info
->relocatable
)
5670 /* Here we have a bfd that is to be included on the link. We have a
5671 hook to do reloc rummaging, before section sizes are nailed down. */
5672 globals
= elf32_arm_hash_table (link_info
);
5673 BFD_ASSERT (globals
!= NULL
);
5675 check_use_blx (globals
);
5677 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
5679 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5684 /* PR 5398: If we have not decided to include any loadable sections in
5685 the output then we will not have a glue owner bfd. This is OK, it
5686 just means that there is nothing else for us to do here. */
5687 if (globals
->bfd_of_glue_owner
== NULL
)
5690 /* Rummage around all the relocs and map the glue vectors. */
5691 sec
= abfd
->sections
;
5696 for (; sec
!= NULL
; sec
= sec
->next
)
5698 if (sec
->reloc_count
== 0)
5701 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
5704 symtab_hdr
= & elf_symtab_hdr (abfd
);
5706 /* Load the relocs. */
5708 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
5710 if (internal_relocs
== NULL
)
5713 irelend
= internal_relocs
+ sec
->reloc_count
;
5714 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
5717 unsigned long r_index
;
5719 struct elf_link_hash_entry
*h
;
5721 r_type
= ELF32_R_TYPE (irel
->r_info
);
5722 r_index
= ELF32_R_SYM (irel
->r_info
);
5724 /* These are the only relocation types we care about. */
5725 if ( r_type
!= R_ARM_PC24
5726 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
5729 /* Get the section contents if we haven't done so already. */
5730 if (contents
== NULL
)
5732 /* Get cached copy if it exists. */
5733 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5734 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5737 /* Go get them off disk. */
5738 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5743 if (r_type
== R_ARM_V4BX
)
5747 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
5748 record_arm_bx_glue (link_info
, reg
);
5752 /* If the relocation is not against a symbol it cannot concern us. */
5755 /* We don't care about local symbols. */
5756 if (r_index
< symtab_hdr
->sh_info
)
5759 /* This is an external symbol. */
5760 r_index
-= symtab_hdr
->sh_info
;
5761 h
= (struct elf_link_hash_entry
*)
5762 elf_sym_hashes (abfd
)[r_index
];
5764 /* If the relocation is against a static symbol it must be within
5765 the current section and so cannot be a cross ARM/Thumb relocation. */
5769 /* If the call will go through a PLT entry then we do not need
5771 if (globals
->root
.splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
5777 /* This one is a call from arm code. We need to look up
5778 the target of the call. If it is a thumb target, we
5780 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
5781 record_arm_to_thumb_glue (link_info
, h
);
5789 if (contents
!= NULL
5790 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5794 if (internal_relocs
!= NULL
5795 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5796 free (internal_relocs
);
5797 internal_relocs
= NULL
;
5803 if (contents
!= NULL
5804 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5806 if (internal_relocs
!= NULL
5807 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5808 free (internal_relocs
);
5815 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5818 bfd_elf32_arm_init_maps (bfd
*abfd
)
5820 Elf_Internal_Sym
*isymbuf
;
5821 Elf_Internal_Shdr
*hdr
;
5822 unsigned int i
, localsyms
;
5824 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5825 if (! is_arm_elf (abfd
))
5828 if ((abfd
->flags
& DYNAMIC
) != 0)
5831 hdr
= & elf_symtab_hdr (abfd
);
5832 localsyms
= hdr
->sh_info
;
5834 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5835 should contain the number of local symbols, which should come before any
5836 global symbols. Mapping symbols are always local. */
5837 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
5840 /* No internal symbols read? Skip this BFD. */
5841 if (isymbuf
== NULL
)
5844 for (i
= 0; i
< localsyms
; i
++)
5846 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
5847 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5851 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
5853 name
= bfd_elf_string_from_elf_section (abfd
,
5854 hdr
->sh_link
, isym
->st_name
);
5856 if (bfd_is_arm_special_symbol_name (name
,
5857 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
5858 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
5864 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5865 say what they wanted. */
5868 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5870 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5871 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5873 if (globals
== NULL
)
5876 if (globals
->fix_cortex_a8
== -1)
5878 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5879 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
5880 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
5881 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
5882 globals
->fix_cortex_a8
= 1;
5884 globals
->fix_cortex_a8
= 0;
5890 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5892 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5893 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5895 if (globals
== NULL
)
5897 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5898 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
5900 switch (globals
->vfp11_fix
)
5902 case BFD_ARM_VFP11_FIX_DEFAULT
:
5903 case BFD_ARM_VFP11_FIX_NONE
:
5904 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5908 /* Give a warning, but do as the user requests anyway. */
5909 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
5910 "workaround is not necessary for target architecture"), obfd
);
5913 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
5914 /* For earlier architectures, we might need the workaround, but do not
5915 enable it by default. If users is running with broken hardware, they
5916 must enable the erratum fix explicitly. */
5917 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5921 enum bfd_arm_vfp11_pipe
5929 /* Return a VFP register number. This is encoded as RX:X for single-precision
5930 registers, or X:RX for double-precision registers, where RX is the group of
5931 four bits in the instruction encoding and X is the single extension bit.
5932 RX and X fields are specified using their lowest (starting) bit. The return
5935 0...31: single-precision registers s0...s31
5936 32...63: double-precision registers d0...d31.
5938 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5939 encounter VFP3 instructions, so we allow the full range for DP registers. */
5942 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
5946 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
5948 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
5951 /* Set bits in *WMASK according to a register number REG as encoded by
5952 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5955 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
5960 *wmask
|= 3 << ((reg
- 32) * 2);
5963 /* Return TRUE if WMASK overwrites anything in REGS. */
5966 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
5970 for (i
= 0; i
< numregs
; i
++)
5972 unsigned int reg
= regs
[i
];
5974 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
5982 if ((wmask
& (3 << (reg
* 2))) != 0)
5989 /* In this function, we're interested in two things: finding input registers
5990 for VFP data-processing instructions, and finding the set of registers which
5991 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5992 hold the written set, so FLDM etc. are easy to deal with (we're only
5993 interested in 32 SP registers or 16 dp registers, due to the VFP version
5994 implemented by the chip in question). DP registers are marked by setting
5995 both SP registers in the write mask). */
5997 static enum bfd_arm_vfp11_pipe
5998 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
6001 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
6002 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
6004 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6007 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6008 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6010 pqrs
= ((insn
& 0x00800000) >> 20)
6011 | ((insn
& 0x00300000) >> 19)
6012 | ((insn
& 0x00000040) >> 6);
6016 case 0: /* fmac[sd]. */
6017 case 1: /* fnmac[sd]. */
6018 case 2: /* fmsc[sd]. */
6019 case 3: /* fnmsc[sd]. */
6021 bfd_arm_vfp11_write_mask (destmask
, fd
);
6023 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6028 case 4: /* fmul[sd]. */
6029 case 5: /* fnmul[sd]. */
6030 case 6: /* fadd[sd]. */
6031 case 7: /* fsub[sd]. */
6035 case 8: /* fdiv[sd]. */
6038 bfd_arm_vfp11_write_mask (destmask
, fd
);
6039 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6044 case 15: /* extended opcode. */
6046 unsigned int extn
= ((insn
>> 15) & 0x1e)
6047 | ((insn
>> 7) & 1);
6051 case 0: /* fcpy[sd]. */
6052 case 1: /* fabs[sd]. */
6053 case 2: /* fneg[sd]. */
6054 case 8: /* fcmp[sd]. */
6055 case 9: /* fcmpe[sd]. */
6056 case 10: /* fcmpz[sd]. */
6057 case 11: /* fcmpez[sd]. */
6058 case 16: /* fuito[sd]. */
6059 case 17: /* fsito[sd]. */
6060 case 24: /* ftoui[sd]. */
6061 case 25: /* ftouiz[sd]. */
6062 case 26: /* ftosi[sd]. */
6063 case 27: /* ftosiz[sd]. */
6064 /* These instructions will not bounce due to underflow. */
6069 case 3: /* fsqrt[sd]. */
6070 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6071 registers to cause the erratum in previous instructions. */
6072 bfd_arm_vfp11_write_mask (destmask
, fd
);
6076 case 15: /* fcvt{ds,sd}. */
6080 bfd_arm_vfp11_write_mask (destmask
, fd
);
6082 /* Only FCVTSD can underflow. */
6083 if ((insn
& 0x100) != 0)
6102 /* Two-register transfer. */
6103 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
6105 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6107 if ((insn
& 0x100000) == 0)
6110 bfd_arm_vfp11_write_mask (destmask
, fm
);
6113 bfd_arm_vfp11_write_mask (destmask
, fm
);
6114 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
6120 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
6122 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6123 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
6127 case 0: /* Two-reg transfer. We should catch these above. */
6130 case 2: /* fldm[sdx]. */
6134 unsigned int i
, offset
= insn
& 0xff;
6139 for (i
= fd
; i
< fd
+ offset
; i
++)
6140 bfd_arm_vfp11_write_mask (destmask
, i
);
6144 case 4: /* fld[sd]. */
6146 bfd_arm_vfp11_write_mask (destmask
, fd
);
6155 /* Single-register transfer. Note L==0. */
6156 else if ((insn
& 0x0f100e10) == 0x0e000a10)
6158 unsigned int opcode
= (insn
>> 21) & 7;
6159 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
6163 case 0: /* fmsr/fmdlr. */
6164 case 1: /* fmdhr. */
6165 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6166 destination register. I don't know if this is exactly right,
6167 but it is the conservative choice. */
6168 bfd_arm_vfp11_write_mask (destmask
, fn
);
6182 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
6185 /* Look for potentially-troublesome code sequences which might trigger the
6186 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6187 (available from ARM) for details of the erratum. A short version is
6188 described in ld.texinfo. */
6191 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
6194 bfd_byte
*contents
= NULL
;
6196 int regs
[3], numregs
= 0;
6197 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6198 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
6200 if (globals
== NULL
)
6203 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6204 The states transition as follows:
6206 0 -> 1 (vector) or 0 -> 2 (scalar)
6207 A VFP FMAC-pipeline instruction has been seen. Fill
6208 regs[0]..regs[numregs-1] with its input operands. Remember this
6209 instruction in 'first_fmac'.
6212 Any instruction, except for a VFP instruction which overwrites
6217 A VFP instruction has been seen which overwrites any of regs[*].
6218 We must make a veneer! Reset state to 0 before examining next
6222 If we fail to match anything in state 2, reset to state 0 and reset
6223 the instruction pointer to the instruction after 'first_fmac'.
6225 If the VFP11 vector mode is in use, there must be at least two unrelated
6226 instructions between anti-dependent VFP11 instructions to properly avoid
6227 triggering the erratum, hence the use of the extra state 1. */
6229 /* If we are only performing a partial link do not bother
6230 to construct any glue. */
6231 if (link_info
->relocatable
)
6234 /* Skip if this bfd does not correspond to an ELF image. */
6235 if (! is_arm_elf (abfd
))
6238 /* We should have chosen a fix type by the time we get here. */
6239 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
6241 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
6244 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6245 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
6248 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6250 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
6251 struct _arm_elf_section_data
*sec_data
;
6253 /* If we don't have executable progbits, we're not interested in this
6254 section. Also skip if section is to be excluded. */
6255 if (elf_section_type (sec
) != SHT_PROGBITS
6256 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
6257 || (sec
->flags
& SEC_EXCLUDE
) != 0
6258 || sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
6259 || sec
->output_section
== bfd_abs_section_ptr
6260 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
6263 sec_data
= elf32_arm_section_data (sec
);
6265 if (sec_data
->mapcount
== 0)
6268 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6269 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6270 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6273 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
6274 elf32_arm_compare_mapping
);
6276 for (span
= 0; span
< sec_data
->mapcount
; span
++)
6278 unsigned int span_start
= sec_data
->map
[span
].vma
;
6279 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
6280 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
6281 char span_type
= sec_data
->map
[span
].type
;
6283 /* FIXME: Only ARM mode is supported at present. We may need to
6284 support Thumb-2 mode also at some point. */
6285 if (span_type
!= 'a')
6288 for (i
= span_start
; i
< span_end
;)
6290 unsigned int next_i
= i
+ 4;
6291 unsigned int insn
= bfd_big_endian (abfd
)
6292 ? (contents
[i
] << 24)
6293 | (contents
[i
+ 1] << 16)
6294 | (contents
[i
+ 2] << 8)
6296 : (contents
[i
+ 3] << 24)
6297 | (contents
[i
+ 2] << 16)
6298 | (contents
[i
+ 1] << 8)
6300 unsigned int writemask
= 0;
6301 enum bfd_arm_vfp11_pipe vpipe
;
6306 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
6308 /* I'm assuming the VFP11 erratum can trigger with denorm
6309 operands on either the FMAC or the DS pipeline. This might
6310 lead to slightly overenthusiastic veneer insertion. */
6311 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
6313 state
= use_vector
? 1 : 2;
6315 veneer_of_insn
= insn
;
6321 int other_regs
[3], other_numregs
;
6322 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6325 if (vpipe
!= VFP11_BAD
6326 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6336 int other_regs
[3], other_numregs
;
6337 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6340 if (vpipe
!= VFP11_BAD
6341 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6347 next_i
= first_fmac
+ 4;
6353 abort (); /* Should be unreachable. */
6358 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
6359 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6361 elf32_arm_section_data (sec
)->erratumcount
+= 1;
6363 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
6368 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
6375 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
6380 newerr
->next
= sec_data
->erratumlist
;
6381 sec_data
->erratumlist
= newerr
;
6390 if (contents
!= NULL
6391 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6399 if (contents
!= NULL
6400 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6406 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6407 after sections have been laid out, using specially-named symbols. */
6410 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
6411 struct bfd_link_info
*link_info
)
6414 struct elf32_arm_link_hash_table
*globals
;
6417 if (link_info
->relocatable
)
6420 /* Skip if this bfd does not correspond to an ELF image. */
6421 if (! is_arm_elf (abfd
))
6424 globals
= elf32_arm_hash_table (link_info
);
6425 if (globals
== NULL
)
6428 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
6429 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6431 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6433 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6434 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6436 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6438 struct elf_link_hash_entry
*myh
;
6441 switch (errnode
->type
)
6443 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6444 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6445 /* Find veneer symbol. */
6446 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6447 errnode
->u
.b
.veneer
->u
.v
.id
);
6449 myh
= elf_link_hash_lookup
6450 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6453 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6454 "`%s'"), abfd
, tmp_name
);
6456 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6457 + myh
->root
.u
.def
.section
->output_offset
6458 + myh
->root
.u
.def
.value
;
6460 errnode
->u
.b
.veneer
->vma
= vma
;
6463 case VFP11_ERRATUM_ARM_VENEER
:
6464 case VFP11_ERRATUM_THUMB_VENEER
:
6465 /* Find return location. */
6466 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6469 myh
= elf_link_hash_lookup
6470 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6473 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6474 "`%s'"), abfd
, tmp_name
);
6476 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6477 + myh
->root
.u
.def
.section
->output_offset
6478 + myh
->root
.u
.def
.value
;
6480 errnode
->u
.v
.branch
->vma
= vma
;
6493 /* Set target relocation values needed during linking. */
6496 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6497 struct bfd_link_info
*link_info
,
6499 char * target2_type
,
6502 bfd_arm_vfp11_fix vfp11_fix
,
6503 int no_enum_warn
, int no_wchar_warn
,
6504 int pic_veneer
, int fix_cortex_a8
)
6506 struct elf32_arm_link_hash_table
*globals
;
6508 globals
= elf32_arm_hash_table (link_info
);
6509 if (globals
== NULL
)
6512 globals
->target1_is_rel
= target1_is_rel
;
6513 if (strcmp (target2_type
, "rel") == 0)
6514 globals
->target2_reloc
= R_ARM_REL32
;
6515 else if (strcmp (target2_type
, "abs") == 0)
6516 globals
->target2_reloc
= R_ARM_ABS32
;
6517 else if (strcmp (target2_type
, "got-rel") == 0)
6518 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6521 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6524 globals
->fix_v4bx
= fix_v4bx
;
6525 globals
->use_blx
|= use_blx
;
6526 globals
->vfp11_fix
= vfp11_fix
;
6527 globals
->pic_veneer
= pic_veneer
;
6528 globals
->fix_cortex_a8
= fix_cortex_a8
;
6530 BFD_ASSERT (is_arm_elf (output_bfd
));
6531 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6532 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6535 /* Replace the target offset of a Thumb bl or b.w instruction. */
6538 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6544 BFD_ASSERT ((offset
& 1) == 0);
6546 upper
= bfd_get_16 (abfd
, insn
);
6547 lower
= bfd_get_16 (abfd
, insn
+ 2);
6548 reloc_sign
= (offset
< 0) ? 1 : 0;
6549 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6550 | ((offset
>> 12) & 0x3ff)
6551 | (reloc_sign
<< 10);
6552 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6553 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6554 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6555 | ((offset
>> 1) & 0x7ff);
6556 bfd_put_16 (abfd
, upper
, insn
);
6557 bfd_put_16 (abfd
, lower
, insn
+ 2);
6560 /* Thumb code calling an ARM function. */
6563 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6567 asection
* input_section
,
6568 bfd_byte
* hit_data
,
6571 bfd_signed_vma addend
,
6573 char **error_message
)
6577 long int ret_offset
;
6578 struct elf_link_hash_entry
* myh
;
6579 struct elf32_arm_link_hash_table
* globals
;
6581 myh
= find_thumb_glue (info
, name
, error_message
);
6585 globals
= elf32_arm_hash_table (info
);
6586 BFD_ASSERT (globals
!= NULL
);
6587 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6589 my_offset
= myh
->root
.u
.def
.value
;
6591 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6592 THUMB2ARM_GLUE_SECTION_NAME
);
6594 BFD_ASSERT (s
!= NULL
);
6595 BFD_ASSERT (s
->contents
!= NULL
);
6596 BFD_ASSERT (s
->output_section
!= NULL
);
6598 if ((my_offset
& 0x01) == 0x01)
6601 && sym_sec
->owner
!= NULL
6602 && !INTERWORK_FLAG (sym_sec
->owner
))
6604 (*_bfd_error_handler
)
6605 (_("%B(%s): warning: interworking not enabled.\n"
6606 " first occurrence: %B: thumb call to arm"),
6607 sym_sec
->owner
, input_bfd
, name
);
6613 myh
->root
.u
.def
.value
= my_offset
;
6615 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
6616 s
->contents
+ my_offset
);
6618 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
6619 s
->contents
+ my_offset
+ 2);
6622 /* Address of destination of the stub. */
6623 ((bfd_signed_vma
) val
)
6625 /* Offset from the start of the current section
6626 to the start of the stubs. */
6628 /* Offset of the start of this stub from the start of the stubs. */
6630 /* Address of the start of the current section. */
6631 + s
->output_section
->vma
)
6632 /* The branch instruction is 4 bytes into the stub. */
6634 /* ARM branches work from the pc of the instruction + 8. */
6637 put_arm_insn (globals
, output_bfd
,
6638 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
6639 s
->contents
+ my_offset
+ 4);
6642 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
6644 /* Now go back and fix up the original BL insn to point to here. */
6646 /* Address of where the stub is located. */
6647 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
6648 /* Address of where the BL is located. */
6649 - (input_section
->output_section
->vma
+ input_section
->output_offset
6651 /* Addend in the relocation. */
6653 /* Biassing for PC-relative addressing. */
6656 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
6661 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6663 static struct elf_link_hash_entry
*
6664 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
6671 char ** error_message
)
6674 long int ret_offset
;
6675 struct elf_link_hash_entry
* myh
;
6676 struct elf32_arm_link_hash_table
* globals
;
6678 myh
= find_arm_glue (info
, name
, error_message
);
6682 globals
= elf32_arm_hash_table (info
);
6683 BFD_ASSERT (globals
!= NULL
);
6684 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6686 my_offset
= myh
->root
.u
.def
.value
;
6688 if ((my_offset
& 0x01) == 0x01)
6691 && sym_sec
->owner
!= NULL
6692 && !INTERWORK_FLAG (sym_sec
->owner
))
6694 (*_bfd_error_handler
)
6695 (_("%B(%s): warning: interworking not enabled.\n"
6696 " first occurrence: %B: arm call to thumb"),
6697 sym_sec
->owner
, input_bfd
, name
);
6701 myh
->root
.u
.def
.value
= my_offset
;
6703 if (info
->shared
|| globals
->root
.is_relocatable_executable
6704 || globals
->pic_veneer
)
6706 /* For relocatable objects we can't use absolute addresses,
6707 so construct the address from a relative offset. */
6708 /* TODO: If the offset is small it's probably worth
6709 constructing the address with adds. */
6710 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
6711 s
->contents
+ my_offset
);
6712 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
6713 s
->contents
+ my_offset
+ 4);
6714 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
6715 s
->contents
+ my_offset
+ 8);
6716 /* Adjust the offset by 4 for the position of the add,
6717 and 8 for the pipeline offset. */
6718 ret_offset
= (val
- (s
->output_offset
6719 + s
->output_section
->vma
6722 bfd_put_32 (output_bfd
, ret_offset
,
6723 s
->contents
+ my_offset
+ 12);
6725 else if (globals
->use_blx
)
6727 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
6728 s
->contents
+ my_offset
);
6730 /* It's a thumb address. Add the low order bit. */
6731 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
6732 s
->contents
+ my_offset
+ 4);
6736 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
6737 s
->contents
+ my_offset
);
6739 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
6740 s
->contents
+ my_offset
+ 4);
6742 /* It's a thumb address. Add the low order bit. */
6743 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
6744 s
->contents
+ my_offset
+ 8);
6750 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
6755 /* Arm code calling a Thumb function. */
6758 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
6762 asection
* input_section
,
6763 bfd_byte
* hit_data
,
6766 bfd_signed_vma addend
,
6768 char **error_message
)
6770 unsigned long int tmp
;
6773 long int ret_offset
;
6774 struct elf_link_hash_entry
* myh
;
6775 struct elf32_arm_link_hash_table
* globals
;
6777 globals
= elf32_arm_hash_table (info
);
6778 BFD_ASSERT (globals
!= NULL
);
6779 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6781 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6782 ARM2THUMB_GLUE_SECTION_NAME
);
6783 BFD_ASSERT (s
!= NULL
);
6784 BFD_ASSERT (s
->contents
!= NULL
);
6785 BFD_ASSERT (s
->output_section
!= NULL
);
6787 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
6788 sym_sec
, val
, s
, error_message
);
6792 my_offset
= myh
->root
.u
.def
.value
;
6793 tmp
= bfd_get_32 (input_bfd
, hit_data
);
6794 tmp
= tmp
& 0xFF000000;
6796 /* Somehow these are both 4 too far, so subtract 8. */
6797 ret_offset
= (s
->output_offset
6799 + s
->output_section
->vma
6800 - (input_section
->output_offset
6801 + input_section
->output_section
->vma
6805 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
6807 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
6812 /* Populate Arm stub for an exported Thumb function. */
6815 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
6817 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
6819 struct elf_link_hash_entry
* myh
;
6820 struct elf32_arm_link_hash_entry
*eh
;
6821 struct elf32_arm_link_hash_table
* globals
;
6824 char *error_message
;
6826 eh
= elf32_arm_hash_entry (h
);
6827 /* Allocate stubs for exported Thumb functions on v4t. */
6828 if (eh
->export_glue
== NULL
)
6831 globals
= elf32_arm_hash_table (info
);
6832 BFD_ASSERT (globals
!= NULL
);
6833 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6835 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6836 ARM2THUMB_GLUE_SECTION_NAME
);
6837 BFD_ASSERT (s
!= NULL
);
6838 BFD_ASSERT (s
->contents
!= NULL
);
6839 BFD_ASSERT (s
->output_section
!= NULL
);
6841 sec
= eh
->export_glue
->root
.u
.def
.section
;
6843 BFD_ASSERT (sec
->output_section
!= NULL
);
6845 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
6846 + sec
->output_section
->vma
;
6848 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
6849 h
->root
.u
.def
.section
->owner
,
6850 globals
->obfd
, sec
, val
, s
,
6856 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6859 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
6864 struct elf32_arm_link_hash_table
*globals
;
6866 globals
= elf32_arm_hash_table (info
);
6867 BFD_ASSERT (globals
!= NULL
);
6868 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6870 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6871 ARM_BX_GLUE_SECTION_NAME
);
6872 BFD_ASSERT (s
!= NULL
);
6873 BFD_ASSERT (s
->contents
!= NULL
);
6874 BFD_ASSERT (s
->output_section
!= NULL
);
6876 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
6878 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
6880 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
6882 p
= s
->contents
+ glue_addr
;
6883 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
6884 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
6885 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
6886 globals
->bx_glue_offset
[reg
] |= 1;
6889 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
6892 /* Generate Arm stubs for exported Thumb symbols. */
6894 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
6895 struct bfd_link_info
*link_info
)
6897 struct elf32_arm_link_hash_table
* globals
;
6899 if (link_info
== NULL
)
6900 /* Ignore this if we are not called by the ELF backend linker. */
6903 globals
= elf32_arm_hash_table (link_info
);
6904 if (globals
== NULL
)
6907 /* If blx is available then exported Thumb symbols are OK and there is
6909 if (globals
->use_blx
)
6912 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
6916 /* Some relocations map to different relocations depending on the
6917 target. Return the real relocation. */
6920 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
6926 if (globals
->target1_is_rel
)
6932 return globals
->target2_reloc
;
6939 /* Return the base VMA address which should be subtracted from real addresses
6940 when resolving @dtpoff relocation.
6941 This is PT_TLS segment p_vaddr. */
6944 dtpoff_base (struct bfd_link_info
*info
)
6946 /* If tls_sec is NULL, we should have signalled an error already. */
6947 if (elf_hash_table (info
)->tls_sec
== NULL
)
6949 return elf_hash_table (info
)->tls_sec
->vma
;
6952 /* Return the relocation value for @tpoff relocation
6953 if STT_TLS virtual address is ADDRESS. */
6956 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
6958 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6961 /* If tls_sec is NULL, we should have signalled an error already. */
6962 if (htab
->tls_sec
== NULL
)
6964 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
6965 return address
- htab
->tls_sec
->vma
+ base
;
6968 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6969 VALUE is the relocation value. */
6971 static bfd_reloc_status_type
6972 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
6975 return bfd_reloc_overflow
;
6977 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
6978 bfd_put_32 (abfd
, value
, data
);
6979 return bfd_reloc_ok
;
6982 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6983 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
6984 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
6986 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6987 is to then call final_link_relocate. Return other values in the
6990 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
6991 the pre-relaxed code. It would be nice if the relocs were updated
6992 to match the optimization. */
6994 static bfd_reloc_status_type
6995 elf32_arm_tls_relax (struct elf32_arm_link_hash_table
*globals
,
6996 bfd
*input_bfd
, asection
*input_sec
, bfd_byte
*contents
,
6997 Elf_Internal_Rela
*rel
, unsigned long is_local
)
7001 switch (ELF32_R_TYPE (rel
->r_info
))
7004 return bfd_reloc_notsupported
;
7006 case R_ARM_TLS_GOTDESC
:
7011 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7013 insn
-= 5; /* THUMB */
7015 insn
-= 8; /* ARM */
7017 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7018 return bfd_reloc_continue
;
7020 case R_ARM_THM_TLS_DESCSEQ
:
7022 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
);
7023 if ((insn
& 0xff78) == 0x4478) /* add rx, pc */
7027 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7029 else if ((insn
& 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7033 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7036 bfd_put_16 (input_bfd
, insn
& 0xf83f, contents
+ rel
->r_offset
);
7038 else if ((insn
& 0xff87) == 0x4780) /* blx rx */
7042 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7045 bfd_put_16 (input_bfd
, 0x4600 | (insn
& 0x78),
7046 contents
+ rel
->r_offset
);
7050 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
7051 /* It's a 32 bit instruction, fetch the rest of it for
7052 error generation. */
7054 | bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
+ 2);
7055 (*_bfd_error_handler
)
7056 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7057 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7058 return bfd_reloc_notsupported
;
7062 case R_ARM_TLS_DESCSEQ
:
7064 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7065 if ((insn
& 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7069 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xffff),
7070 contents
+ rel
->r_offset
);
7072 else if ((insn
& 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7076 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7079 bfd_put_32 (input_bfd
, insn
& 0xfffff000,
7080 contents
+ rel
->r_offset
);
7082 else if ((insn
& 0xfffffff0) == 0xe12fff30) /* blx rx */
7086 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7089 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xf),
7090 contents
+ rel
->r_offset
);
7094 (*_bfd_error_handler
)
7095 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7096 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7097 return bfd_reloc_notsupported
;
7101 case R_ARM_TLS_CALL
:
7102 /* GD->IE relaxation, turn the instruction into 'nop' or
7103 'ldr r0, [pc,r0]' */
7104 insn
= is_local
? 0xe1a00000 : 0xe79f0000;
7105 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7108 case R_ARM_THM_TLS_CALL
:
7109 /* GD->IE relaxation */
7111 /* add r0,pc; ldr r0, [r0] */
7113 else if (arch_has_thumb2_nop (globals
))
7120 bfd_put_16 (input_bfd
, insn
>> 16, contents
+ rel
->r_offset
);
7121 bfd_put_16 (input_bfd
, insn
& 0xffff, contents
+ rel
->r_offset
+ 2);
7124 return bfd_reloc_ok
;
7127 /* For a given value of n, calculate the value of G_n as required to
7128 deal with group relocations. We return it in the form of an
7129 encoded constant-and-rotation, together with the final residual. If n is
7130 specified as less than zero, then final_residual is filled with the
7131 input value and no further action is performed. */
7134 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
7138 bfd_vma encoded_g_n
= 0;
7139 bfd_vma residual
= value
; /* Also known as Y_n. */
7141 for (current_n
= 0; current_n
<= n
; current_n
++)
7145 /* Calculate which part of the value to mask. */
7152 /* Determine the most significant bit in the residual and
7153 align the resulting value to a 2-bit boundary. */
7154 for (msb
= 30; msb
>= 0; msb
-= 2)
7155 if (residual
& (3 << msb
))
7158 /* The desired shift is now (msb - 6), or zero, whichever
7165 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7166 g_n
= residual
& (0xff << shift
);
7167 encoded_g_n
= (g_n
>> shift
)
7168 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
7170 /* Calculate the residual for the next time around. */
7174 *final_residual
= residual
;
7179 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7180 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7183 identify_add_or_sub (bfd_vma insn
)
7185 int opcode
= insn
& 0x1e00000;
7187 if (opcode
== 1 << 23) /* ADD */
7190 if (opcode
== 1 << 22) /* SUB */
7196 /* Perform a relocation as part of a final link. */
7198 static bfd_reloc_status_type
7199 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
7202 asection
* input_section
,
7203 bfd_byte
* contents
,
7204 Elf_Internal_Rela
* rel
,
7206 struct bfd_link_info
* info
,
7208 const char * sym_name
,
7210 struct elf_link_hash_entry
* h
,
7211 bfd_boolean
* unresolved_reloc_p
,
7212 char ** error_message
)
7214 unsigned long r_type
= howto
->type
;
7215 unsigned long r_symndx
;
7216 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
7217 bfd_vma
* local_got_offsets
;
7218 bfd_vma
* local_tlsdesc_gotents
;
7219 asection
* sgot
= NULL
;
7220 asection
* splt
= NULL
;
7221 asection
* sreloc
= NULL
;
7224 bfd_signed_vma signed_addend
;
7225 struct elf32_arm_link_hash_table
* globals
;
7227 globals
= elf32_arm_hash_table (info
);
7228 if (globals
== NULL
)
7229 return bfd_reloc_notsupported
;
7231 BFD_ASSERT (is_arm_elf (input_bfd
));
7233 /* Some relocation types map to different relocations depending on the
7234 target. We pick the right one here. */
7235 r_type
= arm_real_reloc_type (globals
, r_type
);
7237 /* It is possible to have linker relaxations on some TLS access
7238 models. Update our information here. */
7239 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
7241 if (r_type
!= howto
->type
)
7242 howto
= elf32_arm_howto_from_type (r_type
);
7244 /* If the start address has been set, then set the EF_ARM_HASENTRY
7245 flag. Setting this more than once is redundant, but the cost is
7246 not too high, and it keeps the code simple.
7248 The test is done here, rather than somewhere else, because the
7249 start address is only set just before the final link commences.
7251 Note - if the user deliberately sets a start address of 0, the
7252 flag will not be set. */
7253 if (bfd_get_start_address (output_bfd
) != 0)
7254 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
7256 sgot
= globals
->root
.sgot
;
7257 splt
= globals
->root
.splt
;
7258 srelgot
= globals
->root
.srelgot
;
7259 local_got_offsets
= elf_local_got_offsets (input_bfd
);
7260 local_tlsdesc_gotents
= elf32_arm_local_tlsdesc_gotent (input_bfd
);
7262 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7264 if (globals
->use_rel
)
7266 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
7268 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7271 signed_addend
&= ~ howto
->src_mask
;
7272 signed_addend
|= addend
;
7275 signed_addend
= addend
;
7278 addend
= signed_addend
= rel
->r_addend
;
7283 /* We don't need to find a value for this symbol. It's just a
7285 *unresolved_reloc_p
= FALSE
;
7286 return bfd_reloc_ok
;
7289 if (!globals
->vxworks_p
)
7290 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
7294 case R_ARM_ABS32_NOI
:
7296 case R_ARM_REL32_NOI
:
7302 /* Handle relocations which should use the PLT entry. ABS32/REL32
7303 will use the symbol's value, which may point to a PLT entry, but we
7304 don't need to handle that here. If we created a PLT entry, all
7305 branches in this object should go to it, except if the PLT is too
7306 far away, in which case a long branch stub should be inserted. */
7307 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
7308 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
7309 && r_type
!= R_ARM_CALL
7310 && r_type
!= R_ARM_JUMP24
7311 && r_type
!= R_ARM_PLT32
)
7314 && h
->plt
.offset
!= (bfd_vma
) -1)
7316 /* If we've created a .plt section, and assigned a PLT entry to
7317 this function, it should not be known to bind locally. If
7318 it were, we would have cleared the PLT entry. */
7319 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
7321 value
= (splt
->output_section
->vma
7322 + splt
->output_offset
7324 *unresolved_reloc_p
= FALSE
;
7325 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7326 contents
, rel
->r_offset
, value
,
7330 /* When generating a shared object or relocatable executable, these
7331 relocations are copied into the output file to be resolved at
7333 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
7334 && (input_section
->flags
& SEC_ALLOC
)
7335 && !(globals
->vxworks_p
7336 && strcmp (input_section
->output_section
->name
,
7338 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
7339 || !SYMBOL_CALLS_LOCAL (info
, h
))
7340 && (!strstr (input_section
->name
, STUB_SUFFIX
))
7342 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
7343 || h
->root
.type
!= bfd_link_hash_undefweak
)
7344 && r_type
!= R_ARM_PC24
7345 && r_type
!= R_ARM_CALL
7346 && r_type
!= R_ARM_JUMP24
7347 && r_type
!= R_ARM_PREL31
7348 && r_type
!= R_ARM_PLT32
)
7350 Elf_Internal_Rela outrel
;
7352 bfd_boolean skip
, relocate
;
7354 *unresolved_reloc_p
= FALSE
;
7358 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
7359 ! globals
->use_rel
);
7362 return bfd_reloc_notsupported
;
7368 outrel
.r_addend
= addend
;
7370 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
7372 if (outrel
.r_offset
== (bfd_vma
) -1)
7374 else if (outrel
.r_offset
== (bfd_vma
) -2)
7375 skip
= TRUE
, relocate
= TRUE
;
7376 outrel
.r_offset
+= (input_section
->output_section
->vma
7377 + input_section
->output_offset
);
7380 memset (&outrel
, 0, sizeof outrel
);
7385 || !h
->def_regular
))
7386 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
7391 /* This symbol is local, or marked to become local. */
7392 if (sym_flags
== STT_ARM_TFUNC
)
7394 if (globals
->symbian_p
)
7398 /* On Symbian OS, the data segment and text segement
7399 can be relocated independently. Therefore, we
7400 must indicate the segment to which this
7401 relocation is relative. The BPABI allows us to
7402 use any symbol in the right segment; we just use
7403 the section symbol as it is convenient. (We
7404 cannot use the symbol given by "h" directly as it
7405 will not appear in the dynamic symbol table.)
7407 Note that the dynamic linker ignores the section
7408 symbol value, so we don't subtract osec->vma
7409 from the emitted reloc addend. */
7411 osec
= sym_sec
->output_section
;
7413 osec
= input_section
->output_section
;
7414 symbol
= elf_section_data (osec
)->dynindx
;
7417 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
7419 if ((osec
->flags
& SEC_READONLY
) == 0
7420 && htab
->data_index_section
!= NULL
)
7421 osec
= htab
->data_index_section
;
7423 osec
= htab
->text_index_section
;
7424 symbol
= elf_section_data (osec
)->dynindx
;
7426 BFD_ASSERT (symbol
!= 0);
7429 /* On SVR4-ish systems, the dynamic loader cannot
7430 relocate the text and data segments independently,
7431 so the symbol does not matter. */
7433 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
7434 if (globals
->use_rel
)
7437 outrel
.r_addend
+= value
;
7440 loc
= sreloc
->contents
;
7441 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
7442 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7444 /* If this reloc is against an external symbol, we do not want to
7445 fiddle with the addend. Otherwise, we need to include the symbol
7446 value so that it becomes an addend for the dynamic reloc. */
7448 return bfd_reloc_ok
;
7450 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7451 contents
, rel
->r_offset
, value
,
7454 else switch (r_type
)
7457 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
7459 case R_ARM_XPC25
: /* Arm BLX instruction. */
7462 case R_ARM_PC24
: /* Arm B/BL instruction. */
7465 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
7467 if (r_type
== R_ARM_XPC25
)
7469 /* Check for Arm calling Arm function. */
7470 /* FIXME: Should we translate the instruction into a BL
7471 instruction instead ? */
7472 if (sym_flags
!= STT_ARM_TFUNC
)
7473 (*_bfd_error_handler
)
7474 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7476 h
? h
->root
.root
.string
: "(local)");
7478 else if (r_type
== R_ARM_PC24
)
7480 /* Check for Arm calling Thumb function. */
7481 if (sym_flags
== STT_ARM_TFUNC
)
7483 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
7484 output_bfd
, input_section
,
7485 hit_data
, sym_sec
, rel
->r_offset
,
7486 signed_addend
, value
,
7488 return bfd_reloc_ok
;
7490 return bfd_reloc_dangerous
;
7494 /* Check if a stub has to be inserted because the
7495 destination is too far or we are changing mode. */
7496 if ( r_type
== R_ARM_CALL
7497 || r_type
== R_ARM_JUMP24
7498 || r_type
== R_ARM_PLT32
)
7500 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
7501 struct elf32_arm_link_hash_entry
*hash
;
7503 hash
= (struct elf32_arm_link_hash_entry
*) h
;
7504 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
7507 input_bfd
, sym_name
);
7509 if (stub_type
!= arm_stub_none
)
7511 /* The target is out of reach, so redirect the
7512 branch to the local stub for this function. */
7514 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7518 if (stub_entry
!= NULL
)
7519 value
= (stub_entry
->stub_offset
7520 + stub_entry
->stub_sec
->output_offset
7521 + stub_entry
->stub_sec
->output_section
->vma
);
7525 /* If the call goes through a PLT entry, make sure to
7526 check distance to the right destination address. */
7529 && h
->plt
.offset
!= (bfd_vma
) -1)
7531 value
= (splt
->output_section
->vma
7532 + splt
->output_offset
7534 *unresolved_reloc_p
= FALSE
;
7535 /* The PLT entry is in ARM mode, regardless of the
7537 sym_flags
= STT_FUNC
;
7542 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7544 S is the address of the symbol in the relocation.
7545 P is address of the instruction being relocated.
7546 A is the addend (extracted from the instruction) in bytes.
7548 S is held in 'value'.
7549 P is the base address of the section containing the
7550 instruction plus the offset of the reloc into that
7552 (input_section->output_section->vma +
7553 input_section->output_offset +
7555 A is the addend, converted into bytes, ie:
7558 Note: None of these operations have knowledge of the pipeline
7559 size of the processor, thus it is up to the assembler to
7560 encode this information into the addend. */
7561 value
-= (input_section
->output_section
->vma
7562 + input_section
->output_offset
);
7563 value
-= rel
->r_offset
;
7564 if (globals
->use_rel
)
7565 value
+= (signed_addend
<< howto
->size
);
7567 /* RELA addends do not have to be adjusted by howto->size. */
7568 value
+= signed_addend
;
7570 signed_addend
= value
;
7571 signed_addend
>>= howto
->rightshift
;
7573 /* A branch to an undefined weak symbol is turned into a jump to
7574 the next instruction unless a PLT entry will be created.
7575 Do the same for local undefined symbols (but not for STN_UNDEF).
7576 The jump to the next instruction is optimized as a NOP depending
7577 on the architecture. */
7578 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
7579 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7580 : r_symndx
!= STN_UNDEF
&& bfd_is_und_section (sym_sec
))
7582 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
7584 if (arch_has_arm_nop (globals
))
7585 value
|= 0x0320f000;
7587 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
7591 /* Perform a signed range check. */
7592 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
7593 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
7594 return bfd_reloc_overflow
;
7596 addend
= (value
& 2);
7598 value
= (signed_addend
& howto
->dst_mask
)
7599 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7601 if (r_type
== R_ARM_CALL
)
7603 /* Set the H bit in the BLX instruction. */
7604 if (sym_flags
== STT_ARM_TFUNC
)
7609 value
&= ~(bfd_vma
)(1 << 24);
7612 /* Select the correct instruction (BL or BLX). */
7613 /* Only if we are not handling a BL to a stub. In this
7614 case, mode switching is performed by the stub. */
7615 if (sym_flags
== STT_ARM_TFUNC
&& !stub_entry
)
7619 value
&= ~(bfd_vma
)(1 << 28);
7629 if (sym_flags
== STT_ARM_TFUNC
)
7633 case R_ARM_ABS32_NOI
:
7639 if (sym_flags
== STT_ARM_TFUNC
)
7641 value
-= (input_section
->output_section
->vma
7642 + input_section
->output_offset
+ rel
->r_offset
);
7645 case R_ARM_REL32_NOI
:
7647 value
-= (input_section
->output_section
->vma
7648 + input_section
->output_offset
+ rel
->r_offset
);
7652 value
-= (input_section
->output_section
->vma
7653 + input_section
->output_offset
+ rel
->r_offset
);
7654 value
+= signed_addend
;
7655 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
7657 /* Check for overflow. */
7658 if ((value
^ (value
>> 1)) & (1 << 30))
7659 return bfd_reloc_overflow
;
7661 value
&= 0x7fffffff;
7662 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
7663 if (sym_flags
== STT_ARM_TFUNC
)
7668 bfd_put_32 (input_bfd
, value
, hit_data
);
7669 return bfd_reloc_ok
;
7674 /* There is no way to tell whether the user intended to use a signed or
7675 unsigned addend. When checking for overflow we accept either,
7676 as specified by the AAELF. */
7677 if ((long) value
> 0xff || (long) value
< -0x80)
7678 return bfd_reloc_overflow
;
7680 bfd_put_8 (input_bfd
, value
, hit_data
);
7681 return bfd_reloc_ok
;
7686 /* See comment for R_ARM_ABS8. */
7687 if ((long) value
> 0xffff || (long) value
< -0x8000)
7688 return bfd_reloc_overflow
;
7690 bfd_put_16 (input_bfd
, value
, hit_data
);
7691 return bfd_reloc_ok
;
7693 case R_ARM_THM_ABS5
:
7694 /* Support ldr and str instructions for the thumb. */
7695 if (globals
->use_rel
)
7697 /* Need to refetch addend. */
7698 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7699 /* ??? Need to determine shift amount from operand size. */
7700 addend
>>= howto
->rightshift
;
7704 /* ??? Isn't value unsigned? */
7705 if ((long) value
> 0x1f || (long) value
< -0x10)
7706 return bfd_reloc_overflow
;
7708 /* ??? Value needs to be properly shifted into place first. */
7709 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
7710 bfd_put_16 (input_bfd
, value
, hit_data
);
7711 return bfd_reloc_ok
;
7713 case R_ARM_THM_ALU_PREL_11_0
:
7714 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7717 bfd_signed_vma relocation
;
7719 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7720 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7722 if (globals
->use_rel
)
7724 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
7725 | ((insn
& (1 << 26)) >> 15);
7726 if (insn
& 0xf00000)
7727 signed_addend
= -signed_addend
;
7730 relocation
= value
+ signed_addend
;
7731 relocation
-= (input_section
->output_section
->vma
7732 + input_section
->output_offset
7735 value
= abs (relocation
);
7737 if (value
>= 0x1000)
7738 return bfd_reloc_overflow
;
7740 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
7741 | ((value
& 0x700) << 4)
7742 | ((value
& 0x800) << 15);
7746 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7747 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7749 return bfd_reloc_ok
;
7753 /* PR 10073: This reloc is not generated by the GNU toolchain,
7754 but it is supported for compatibility with third party libraries
7755 generated by other compilers, specifically the ARM/IAR. */
7758 bfd_signed_vma relocation
;
7760 insn
= bfd_get_16 (input_bfd
, hit_data
);
7762 if (globals
->use_rel
)
7763 addend
= (insn
& 0x00ff) << 2;
7765 relocation
= value
+ addend
;
7766 relocation
-= (input_section
->output_section
->vma
7767 + input_section
->output_offset
7770 value
= abs (relocation
);
7772 /* We do not check for overflow of this reloc. Although strictly
7773 speaking this is incorrect, it appears to be necessary in order
7774 to work with IAR generated relocs. Since GCC and GAS do not
7775 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7776 a problem for them. */
7779 insn
= (insn
& 0xff00) | (value
>> 2);
7781 bfd_put_16 (input_bfd
, insn
, hit_data
);
7783 return bfd_reloc_ok
;
7786 case R_ARM_THM_PC12
:
7787 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7790 bfd_signed_vma relocation
;
7792 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7793 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7795 if (globals
->use_rel
)
7797 signed_addend
= insn
& 0xfff;
7798 if (!(insn
& (1 << 23)))
7799 signed_addend
= -signed_addend
;
7802 relocation
= value
+ signed_addend
;
7803 relocation
-= (input_section
->output_section
->vma
7804 + input_section
->output_offset
7807 value
= abs (relocation
);
7809 if (value
>= 0x1000)
7810 return bfd_reloc_overflow
;
7812 insn
= (insn
& 0xff7ff000) | value
;
7813 if (relocation
>= 0)
7816 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7817 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7819 return bfd_reloc_ok
;
7822 case R_ARM_THM_XPC22
:
7823 case R_ARM_THM_CALL
:
7824 case R_ARM_THM_JUMP24
:
7825 /* Thumb BL (branch long instruction). */
7829 bfd_boolean overflow
= FALSE
;
7830 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7831 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7832 bfd_signed_vma reloc_signed_max
;
7833 bfd_signed_vma reloc_signed_min
;
7835 bfd_signed_vma signed_check
;
7837 const int thumb2
= using_thumb2 (globals
);
7839 /* A branch to an undefined weak symbol is turned into a jump to
7840 the next instruction unless a PLT entry will be created.
7841 The jump to the next instruction is optimized as a NOP.W for
7842 Thumb-2 enabled architectures. */
7843 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
7844 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7846 if (arch_has_thumb2_nop (globals
))
7848 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
7849 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
7853 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
7854 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
7856 return bfd_reloc_ok
;
7859 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7860 with Thumb-1) involving the J1 and J2 bits. */
7861 if (globals
->use_rel
)
7863 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
7864 bfd_vma upper
= upper_insn
& 0x3ff;
7865 bfd_vma lower
= lower_insn
& 0x7ff;
7866 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
7867 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
7868 bfd_vma i1
= j1
^ s
? 0 : 1;
7869 bfd_vma i2
= j2
^ s
? 0 : 1;
7871 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
7873 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
7875 signed_addend
= addend
;
7878 if (r_type
== R_ARM_THM_XPC22
)
7880 /* Check for Thumb to Thumb call. */
7881 /* FIXME: Should we translate the instruction into a BL
7882 instruction instead ? */
7883 if (sym_flags
== STT_ARM_TFUNC
)
7884 (*_bfd_error_handler
)
7885 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7887 h
? h
->root
.root
.string
: "(local)");
7891 /* If it is not a call to Thumb, assume call to Arm.
7892 If it is a call relative to a section name, then it is not a
7893 function call at all, but rather a long jump. Calls through
7894 the PLT do not require stubs. */
7895 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
7896 && (h
== NULL
|| splt
== NULL
7897 || h
->plt
.offset
== (bfd_vma
) -1))
7899 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7901 /* Convert BL to BLX. */
7902 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7904 else if (( r_type
!= R_ARM_THM_CALL
)
7905 && (r_type
!= R_ARM_THM_JUMP24
))
7907 if (elf32_thumb_to_arm_stub
7908 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
7909 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
7911 return bfd_reloc_ok
;
7913 return bfd_reloc_dangerous
;
7916 else if (sym_flags
== STT_ARM_TFUNC
&& globals
->use_blx
7917 && r_type
== R_ARM_THM_CALL
)
7919 /* Make sure this is a BL. */
7920 lower_insn
|= 0x1800;
7924 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
7925 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
7927 /* Check if a stub has to be inserted because the destination
7929 struct elf32_arm_stub_hash_entry
*stub_entry
;
7930 struct elf32_arm_link_hash_entry
*hash
;
7932 hash
= (struct elf32_arm_link_hash_entry
*) h
;
7934 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
7935 &sym_flags
, hash
, value
, sym_sec
,
7936 input_bfd
, sym_name
);
7938 if (stub_type
!= arm_stub_none
)
7940 /* The target is out of reach or we are changing modes, so
7941 redirect the branch to the local stub for this
7943 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7947 if (stub_entry
!= NULL
)
7948 value
= (stub_entry
->stub_offset
7949 + stub_entry
->stub_sec
->output_offset
7950 + stub_entry
->stub_sec
->output_section
->vma
);
7952 /* If this call becomes a call to Arm, force BLX. */
7953 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
7956 && !arm_stub_is_thumb (stub_entry
->stub_type
))
7957 || (sym_flags
!= STT_ARM_TFUNC
))
7958 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7963 /* Handle calls via the PLT. */
7964 if (stub_type
== arm_stub_none
7967 && h
->plt
.offset
!= (bfd_vma
) -1)
7969 value
= (splt
->output_section
->vma
7970 + splt
->output_offset
7973 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7975 /* If the Thumb BLX instruction is available, convert
7976 the BL to a BLX instruction to call the ARM-mode
7978 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7979 sym_flags
= STT_FUNC
;
7983 /* Target the Thumb stub before the ARM PLT entry. */
7984 value
-= PLT_THUMB_STUB_SIZE
;
7985 sym_flags
= STT_ARM_TFUNC
;
7987 *unresolved_reloc_p
= FALSE
;
7990 relocation
= value
+ signed_addend
;
7992 relocation
-= (input_section
->output_section
->vma
7993 + input_section
->output_offset
7996 check
= relocation
>> howto
->rightshift
;
7998 /* If this is a signed value, the rightshift just dropped
7999 leading 1 bits (assuming twos complement). */
8000 if ((bfd_signed_vma
) relocation
>= 0)
8001 signed_check
= check
;
8003 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
8005 /* Calculate the permissable maximum and minimum values for
8006 this relocation according to whether we're relocating for
8008 bitsize
= howto
->bitsize
;
8011 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
8012 reloc_signed_min
= ~reloc_signed_max
;
8014 /* Assumes two's complement. */
8015 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8018 if ((lower_insn
& 0x5000) == 0x4000)
8019 /* For a BLX instruction, make sure that the relocation is rounded up
8020 to a word boundary. This follows the semantics of the instruction
8021 which specifies that bit 1 of the target address will come from bit
8022 1 of the base address. */
8023 relocation
= (relocation
+ 2) & ~ 3;
8025 /* Put RELOCATION back into the insn. Assumes two's complement.
8026 We use the Thumb-2 encoding, which is safe even if dealing with
8027 a Thumb-1 instruction by virtue of our overflow check above. */
8028 reloc_sign
= (signed_check
< 0) ? 1 : 0;
8029 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
8030 | ((relocation
>> 12) & 0x3ff)
8031 | (reloc_sign
<< 10);
8032 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
8033 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
8034 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
8035 | ((relocation
>> 1) & 0x7ff);
8037 /* Put the relocated value back in the object file: */
8038 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8039 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8041 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8045 case R_ARM_THM_JUMP19
:
8046 /* Thumb32 conditional branch instruction. */
8049 bfd_boolean overflow
= FALSE
;
8050 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8051 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8052 bfd_signed_vma reloc_signed_max
= 0xffffe;
8053 bfd_signed_vma reloc_signed_min
= -0x100000;
8054 bfd_signed_vma signed_check
;
8056 /* Need to refetch the addend, reconstruct the top three bits,
8057 and squish the two 11 bit pieces together. */
8058 if (globals
->use_rel
)
8060 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
8061 bfd_vma upper
= (upper_insn
& 0x003f);
8062 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
8063 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
8064 bfd_vma lower
= (lower_insn
& 0x07ff);
8069 upper
-= 0x0100; /* Sign extend. */
8071 addend
= (upper
<< 12) | (lower
<< 1);
8072 signed_addend
= addend
;
8075 /* Handle calls via the PLT. */
8076 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
8078 value
= (splt
->output_section
->vma
8079 + splt
->output_offset
8081 /* Target the Thumb stub before the ARM PLT entry. */
8082 value
-= PLT_THUMB_STUB_SIZE
;
8083 *unresolved_reloc_p
= FALSE
;
8086 /* ??? Should handle interworking? GCC might someday try to
8087 use this for tail calls. */
8089 relocation
= value
+ signed_addend
;
8090 relocation
-= (input_section
->output_section
->vma
8091 + input_section
->output_offset
8093 signed_check
= (bfd_signed_vma
) relocation
;
8095 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8098 /* Put RELOCATION back into the insn. */
8100 bfd_vma S
= (relocation
& 0x00100000) >> 20;
8101 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
8102 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
8103 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
8104 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
8106 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
8107 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
8110 /* Put the relocated value back in the object file: */
8111 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8112 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8114 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8117 case R_ARM_THM_JUMP11
:
8118 case R_ARM_THM_JUMP8
:
8119 case R_ARM_THM_JUMP6
:
8120 /* Thumb B (branch) instruction). */
8122 bfd_signed_vma relocation
;
8123 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
8124 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
8125 bfd_signed_vma signed_check
;
8127 /* CZB cannot jump backward. */
8128 if (r_type
== R_ARM_THM_JUMP6
)
8129 reloc_signed_min
= 0;
8131 if (globals
->use_rel
)
8133 /* Need to refetch addend. */
8134 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
8135 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8138 signed_addend
&= ~ howto
->src_mask
;
8139 signed_addend
|= addend
;
8142 signed_addend
= addend
;
8143 /* The value in the insn has been right shifted. We need to
8144 undo this, so that we can perform the address calculation
8145 in terms of bytes. */
8146 signed_addend
<<= howto
->rightshift
;
8148 relocation
= value
+ signed_addend
;
8150 relocation
-= (input_section
->output_section
->vma
8151 + input_section
->output_offset
8154 relocation
>>= howto
->rightshift
;
8155 signed_check
= relocation
;
8157 if (r_type
== R_ARM_THM_JUMP6
)
8158 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
8160 relocation
&= howto
->dst_mask
;
8161 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
8163 bfd_put_16 (input_bfd
, relocation
, hit_data
);
8165 /* Assumes two's complement. */
8166 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8167 return bfd_reloc_overflow
;
8169 return bfd_reloc_ok
;
8172 case R_ARM_ALU_PCREL7_0
:
8173 case R_ARM_ALU_PCREL15_8
:
8174 case R_ARM_ALU_PCREL23_15
:
8179 insn
= bfd_get_32 (input_bfd
, hit_data
);
8180 if (globals
->use_rel
)
8182 /* Extract the addend. */
8183 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
8184 signed_addend
= addend
;
8186 relocation
= value
+ signed_addend
;
8188 relocation
-= (input_section
->output_section
->vma
8189 + input_section
->output_offset
8191 insn
= (insn
& ~0xfff)
8192 | ((howto
->bitpos
<< 7) & 0xf00)
8193 | ((relocation
>> howto
->bitpos
) & 0xff);
8194 bfd_put_32 (input_bfd
, value
, hit_data
);
8196 return bfd_reloc_ok
;
8198 case R_ARM_GNU_VTINHERIT
:
8199 case R_ARM_GNU_VTENTRY
:
8200 return bfd_reloc_ok
;
8202 case R_ARM_GOTOFF32
:
8203 /* Relocation is relative to the start of the
8204 global offset table. */
8206 BFD_ASSERT (sgot
!= NULL
);
8208 return bfd_reloc_notsupported
;
8210 /* If we are addressing a Thumb function, we need to adjust the
8211 address by one, so that attempts to call the function pointer will
8212 correctly interpret it as Thumb code. */
8213 if (sym_flags
== STT_ARM_TFUNC
)
8216 /* Note that sgot->output_offset is not involved in this
8217 calculation. We always want the start of .got. If we
8218 define _GLOBAL_OFFSET_TABLE in a different way, as is
8219 permitted by the ABI, we might have to change this
8221 value
-= sgot
->output_section
->vma
;
8222 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8223 contents
, rel
->r_offset
, value
,
8227 /* Use global offset table as symbol value. */
8228 BFD_ASSERT (sgot
!= NULL
);
8231 return bfd_reloc_notsupported
;
8233 *unresolved_reloc_p
= FALSE
;
8234 value
= sgot
->output_section
->vma
;
8235 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8236 contents
, rel
->r_offset
, value
,
8240 case R_ARM_GOT_PREL
:
8241 /* Relocation is to the entry for this symbol in the
8242 global offset table. */
8244 return bfd_reloc_notsupported
;
8251 off
= h
->got
.offset
;
8252 BFD_ASSERT (off
!= (bfd_vma
) -1);
8253 dyn
= globals
->root
.dynamic_sections_created
;
8255 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
8257 && SYMBOL_REFERENCES_LOCAL (info
, h
))
8258 || (ELF_ST_VISIBILITY (h
->other
)
8259 && h
->root
.type
== bfd_link_hash_undefweak
))
8261 /* This is actually a static link, or it is a -Bsymbolic link
8262 and the symbol is defined locally. We must initialize this
8263 entry in the global offset table. Since the offset must
8264 always be a multiple of 4, we use the least significant bit
8265 to record whether we have initialized it already.
8267 When doing a dynamic link, we create a .rel(a).got relocation
8268 entry to initialize the value. This is done in the
8269 finish_dynamic_symbol routine. */
8274 /* If we are addressing a Thumb function, we need to
8275 adjust the address by one, so that attempts to
8276 call the function pointer will correctly
8277 interpret it as Thumb code. */
8278 if (sym_flags
== STT_ARM_TFUNC
)
8281 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
8286 *unresolved_reloc_p
= FALSE
;
8288 value
= sgot
->output_offset
+ off
;
8294 BFD_ASSERT (local_got_offsets
!= NULL
&&
8295 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
8297 off
= local_got_offsets
[r_symndx
];
8299 /* The offset must always be a multiple of 4. We use the
8300 least significant bit to record whether we have already
8301 generated the necessary reloc. */
8306 /* If we are addressing a Thumb function, we need to
8307 adjust the address by one, so that attempts to
8308 call the function pointer will correctly
8309 interpret it as Thumb code. */
8310 if (sym_flags
== STT_ARM_TFUNC
)
8313 if (globals
->use_rel
)
8314 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
8318 Elf_Internal_Rela outrel
;
8321 BFD_ASSERT (srelgot
!= NULL
);
8323 outrel
.r_addend
= addend
+ value
;
8324 outrel
.r_offset
= (sgot
->output_section
->vma
8325 + sgot
->output_offset
8327 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
8328 loc
= srelgot
->contents
;
8329 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
8330 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8333 local_got_offsets
[r_symndx
] |= 1;
8336 value
= sgot
->output_offset
+ off
;
8338 if (r_type
!= R_ARM_GOT32
)
8339 value
+= sgot
->output_section
->vma
;
8341 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8342 contents
, rel
->r_offset
, value
,
8345 case R_ARM_TLS_LDO32
:
8346 value
= value
- dtpoff_base (info
);
8348 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8349 contents
, rel
->r_offset
, value
,
8352 case R_ARM_TLS_LDM32
:
8359 off
= globals
->tls_ldm_got
.offset
;
8365 /* If we don't know the module number, create a relocation
8369 Elf_Internal_Rela outrel
;
8372 if (srelgot
== NULL
)
8375 outrel
.r_addend
= 0;
8376 outrel
.r_offset
= (sgot
->output_section
->vma
8377 + sgot
->output_offset
+ off
);
8378 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
8380 if (globals
->use_rel
)
8381 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8382 sgot
->contents
+ off
);
8384 loc
= srelgot
->contents
;
8385 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
8386 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8389 bfd_put_32 (output_bfd
, 1, sgot
->contents
+ off
);
8391 globals
->tls_ldm_got
.offset
|= 1;
8394 value
= sgot
->output_section
->vma
+ sgot
->output_offset
+ off
8395 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
8397 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8398 contents
, rel
->r_offset
, value
,
8402 case R_ARM_TLS_CALL
:
8403 case R_ARM_THM_TLS_CALL
:
8404 case R_ARM_TLS_GD32
:
8405 case R_ARM_TLS_IE32
:
8406 case R_ARM_TLS_GOTDESC
:
8407 case R_ARM_TLS_DESCSEQ
:
8408 case R_ARM_THM_TLS_DESCSEQ
:
8410 bfd_vma off
, offplt
;
8414 BFD_ASSERT (sgot
!= NULL
);
8419 dyn
= globals
->root
.dynamic_sections_created
;
8420 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
8422 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
8424 *unresolved_reloc_p
= FALSE
;
8427 off
= h
->got
.offset
;
8428 offplt
= elf32_arm_hash_entry (h
)->tlsdesc_got
;
8429 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
8433 BFD_ASSERT (local_got_offsets
!= NULL
);
8434 off
= local_got_offsets
[r_symndx
];
8435 offplt
= local_tlsdesc_gotents
[r_symndx
];
8436 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
8439 /* Linker relaxations happens from one of the
8440 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
8441 if (ELF32_R_TYPE(rel
->r_info
) != r_type
)
8442 tls_type
= GOT_TLS_IE
;
8444 BFD_ASSERT (tls_type
!= GOT_UNKNOWN
);
8450 bfd_boolean need_relocs
= FALSE
;
8451 Elf_Internal_Rela outrel
;
8452 bfd_byte
*loc
= NULL
;
8455 /* The GOT entries have not been initialized yet. Do it
8456 now, and emit any relocations. If both an IE GOT and a
8457 GD GOT are necessary, we emit the GD first. */
8459 if ((info
->shared
|| indx
!= 0)
8461 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8462 || h
->root
.type
!= bfd_link_hash_undefweak
))
8465 BFD_ASSERT (srelgot
!= NULL
);
8468 if (tls_type
& GOT_TLS_GDESC
)
8470 /* We should have relaxed, unless this is an undefined
8472 BFD_ASSERT ((h
&& (h
->root
.type
== bfd_link_hash_undefweak
))
8474 BFD_ASSERT (globals
->sgotplt_jump_table_size
+ offplt
+ 8
8475 <= globals
->root
.sgotplt
->size
);
8477 outrel
.r_addend
= 0;
8478 outrel
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
8479 + globals
->root
.sgotplt
->output_offset
8481 + globals
->sgotplt_jump_table_size
);
8483 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DESC
);
8484 sreloc
= globals
->root
.srelplt
;
8485 loc
= sreloc
->contents
;
8486 loc
+= globals
->next_tls_desc_index
++ * RELOC_SIZE (globals
);
8487 BFD_ASSERT (loc
+ RELOC_SIZE (globals
)
8488 <= sreloc
->contents
+ sreloc
->size
);
8490 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8492 /* For globals, the first word in the relocation gets
8493 the relocation index and the top bit set, or zero,
8494 if we're binding now. For locals, it gets the
8495 symbol's offset in the tls section. */
8496 bfd_put_32 (output_bfd
,
8497 !h
? value
- elf_hash_table (info
)->tls_sec
->vma
8498 : info
->flags
& DF_BIND_NOW
? 0
8499 : 0x80000000 | ELF32_R_SYM (outrel
.r_info
),
8500 globals
->root
.sgotplt
->contents
+ offplt
+
8501 globals
->sgotplt_jump_table_size
);
8503 /* Second word in the relocation is always zero. */
8504 bfd_put_32 (output_bfd
, 0,
8505 globals
->root
.sgotplt
->contents
+ offplt
+
8506 globals
->sgotplt_jump_table_size
+ 4);
8508 if (tls_type
& GOT_TLS_GD
)
8512 outrel
.r_addend
= 0;
8513 outrel
.r_offset
= (sgot
->output_section
->vma
8514 + sgot
->output_offset
8516 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
8518 if (globals
->use_rel
)
8519 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8520 sgot
->contents
+ cur_off
);
8521 loc
= srelgot
->contents
;
8522 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
8524 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8527 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
8528 sgot
->contents
+ cur_off
+ 4);
8531 outrel
.r_addend
= 0;
8532 outrel
.r_info
= ELF32_R_INFO (indx
,
8533 R_ARM_TLS_DTPOFF32
);
8534 outrel
.r_offset
+= 4;
8536 if (globals
->use_rel
)
8537 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8538 sgot
->contents
+ cur_off
+ 4);
8540 loc
= srelgot
->contents
;
8541 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
8543 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8548 /* If we are not emitting relocations for a
8549 general dynamic reference, then we must be in a
8550 static link or an executable link with the
8551 symbol binding locally. Mark it as belonging
8552 to module 1, the executable. */
8553 bfd_put_32 (output_bfd
, 1,
8554 sgot
->contents
+ cur_off
);
8555 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
8556 sgot
->contents
+ cur_off
+ 4);
8562 if (tls_type
& GOT_TLS_IE
)
8567 outrel
.r_addend
= value
- dtpoff_base (info
);
8569 outrel
.r_addend
= 0;
8570 outrel
.r_offset
= (sgot
->output_section
->vma
8571 + sgot
->output_offset
8573 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
8575 if (globals
->use_rel
)
8576 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8577 sgot
->contents
+ cur_off
);
8579 loc
= srelgot
->contents
;
8580 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
8582 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8585 bfd_put_32 (output_bfd
, tpoff (info
, value
),
8586 sgot
->contents
+ cur_off
);
8593 local_got_offsets
[r_symndx
] |= 1;
8596 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
8598 else if (tls_type
& GOT_TLS_GDESC
)
8601 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
8602 || ELF32_R_TYPE(rel
->r_info
) == R_ARM_THM_TLS_CALL
)
8604 bfd_signed_vma offset
;
8605 enum elf32_arm_stub_type stub_type
8606 = arm_type_of_stub (info
, input_section
, rel
, &sym_flags
,
8607 (struct elf32_arm_link_hash_entry
*)h
,
8608 globals
->tls_trampoline
, globals
->root
.splt
,
8609 input_bfd
, sym_name
);
8611 if (stub_type
!= arm_stub_none
)
8613 struct elf32_arm_stub_hash_entry
*stub_entry
8614 = elf32_arm_get_stub_entry
8615 (input_section
, globals
->root
.splt
, 0, rel
,
8616 globals
, stub_type
);
8617 offset
= (stub_entry
->stub_offset
8618 + stub_entry
->stub_sec
->output_offset
8619 + stub_entry
->stub_sec
->output_section
->vma
);
8622 offset
= (globals
->root
.splt
->output_section
->vma
8623 + globals
->root
.splt
->output_offset
8624 + globals
->tls_trampoline
);
8626 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
)
8630 offset
-= (input_section
->output_section
->vma
+
8631 input_section
->output_offset
+ rel
->r_offset
+ 8);
8635 value
= inst
| (globals
->use_blx
? 0xfa000000 : 0xeb000000);
8639 /* Thumb blx encodes the offset in a complicated
8641 unsigned upper_insn
, lower_insn
;
8644 offset
-= (input_section
->output_section
->vma
+
8645 input_section
->output_offset
8646 + rel
->r_offset
+ 4);
8648 /* Round up the offset to a word boundary */
8649 offset
= (offset
+ 2) & ~2;
8651 upper_insn
= (0xf000
8652 | ((offset
>> 12) & 0x3ff)
8654 lower_insn
= (0xc000
8655 | (((!((offset
>> 23) & 1)) ^ neg
) << 13)
8656 | (((!((offset
>> 22) & 1)) ^ neg
) << 11)
8657 | ((offset
>> 1) & 0x7ff));
8658 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8659 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8660 return bfd_reloc_ok
;
8663 /* These relocations needs special care, as besides the fact
8664 they point somewhere in .gotplt, the addend must be
8665 adjusted accordingly depending on the type of instruction
8667 else if ((r_type
== R_ARM_TLS_GOTDESC
) && (tls_type
& GOT_TLS_GDESC
))
8669 unsigned long data
, insn
;
8672 data
= bfd_get_32 (input_bfd
, hit_data
);
8678 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
- data
);
8679 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
8681 | bfd_get_16 (input_bfd
,
8682 contents
+ rel
->r_offset
- data
+ 2);
8683 if ((insn
& 0xf800c000) == 0xf000c000)
8686 else if ((insn
& 0xffffff00) == 0x4400)
8691 (*_bfd_error_handler
)
8692 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
8693 input_bfd
, input_section
,
8694 (unsigned long)rel
->r_offset
, insn
);
8695 return bfd_reloc_notsupported
;
8700 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
- data
);
8705 case 0xfa: /* blx */
8709 case 0xe0: /* add */
8714 (*_bfd_error_handler
)
8715 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
8716 input_bfd
, input_section
,
8717 (unsigned long)rel
->r_offset
, insn
);
8718 return bfd_reloc_notsupported
;
8722 value
+= ((globals
->root
.sgotplt
->output_section
->vma
8723 + globals
->root
.sgotplt
->output_offset
+ off
)
8724 - (input_section
->output_section
->vma
8725 + input_section
->output_offset
8727 + globals
->sgotplt_jump_table_size
);
8730 value
= ((globals
->root
.sgot
->output_section
->vma
8731 + globals
->root
.sgot
->output_offset
+ off
)
8732 - (input_section
->output_section
->vma
8733 + input_section
->output_offset
+ rel
->r_offset
));
8735 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8736 contents
, rel
->r_offset
, value
,
8740 case R_ARM_TLS_LE32
:
8743 (*_bfd_error_handler
)
8744 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8745 input_bfd
, input_section
,
8746 (long) rel
->r_offset
, howto
->name
);
8747 return (bfd_reloc_status_type
) FALSE
;
8750 value
= tpoff (info
, value
);
8752 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8753 contents
, rel
->r_offset
, value
,
8757 if (globals
->fix_v4bx
)
8759 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8761 /* Ensure that we have a BX instruction. */
8762 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
8764 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
8766 /* Branch to veneer. */
8768 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
8769 glue_addr
-= input_section
->output_section
->vma
8770 + input_section
->output_offset
8771 + rel
->r_offset
+ 8;
8772 insn
= (insn
& 0xf0000000) | 0x0a000000
8773 | ((glue_addr
>> 2) & 0x00ffffff);
8777 /* Preserve Rm (lowest four bits) and the condition code
8778 (highest four bits). Other bits encode MOV PC,Rm. */
8779 insn
= (insn
& 0xf000000f) | 0x01a0f000;
8782 bfd_put_32 (input_bfd
, insn
, hit_data
);
8784 return bfd_reloc_ok
;
8786 case R_ARM_MOVW_ABS_NC
:
8787 case R_ARM_MOVT_ABS
:
8788 case R_ARM_MOVW_PREL_NC
:
8789 case R_ARM_MOVT_PREL
:
8790 /* Until we properly support segment-base-relative addressing then
8791 we assume the segment base to be zero, as for the group relocations.
8792 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8793 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8794 case R_ARM_MOVW_BREL_NC
:
8795 case R_ARM_MOVW_BREL
:
8796 case R_ARM_MOVT_BREL
:
8798 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8800 if (globals
->use_rel
)
8802 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
8803 signed_addend
= (addend
^ 0x8000) - 0x8000;
8806 value
+= signed_addend
;
8808 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
8809 value
-= (input_section
->output_section
->vma
8810 + input_section
->output_offset
+ rel
->r_offset
);
8812 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
8813 return bfd_reloc_overflow
;
8815 if (sym_flags
== STT_ARM_TFUNC
)
8818 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
8819 || r_type
== R_ARM_MOVT_BREL
)
8823 insn
|= value
& 0xfff;
8824 insn
|= (value
& 0xf000) << 4;
8825 bfd_put_32 (input_bfd
, insn
, hit_data
);
8827 return bfd_reloc_ok
;
8829 case R_ARM_THM_MOVW_ABS_NC
:
8830 case R_ARM_THM_MOVT_ABS
:
8831 case R_ARM_THM_MOVW_PREL_NC
:
8832 case R_ARM_THM_MOVT_PREL
:
8833 /* Until we properly support segment-base-relative addressing then
8834 we assume the segment base to be zero, as for the above relocations.
8835 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8836 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8837 as R_ARM_THM_MOVT_ABS. */
8838 case R_ARM_THM_MOVW_BREL_NC
:
8839 case R_ARM_THM_MOVW_BREL
:
8840 case R_ARM_THM_MOVT_BREL
:
8844 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
8845 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
8847 if (globals
->use_rel
)
8849 addend
= ((insn
>> 4) & 0xf000)
8850 | ((insn
>> 15) & 0x0800)
8851 | ((insn
>> 4) & 0x0700)
8853 signed_addend
= (addend
^ 0x8000) - 0x8000;
8856 value
+= signed_addend
;
8858 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
8859 value
-= (input_section
->output_section
->vma
8860 + input_section
->output_offset
+ rel
->r_offset
);
8862 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
8863 return bfd_reloc_overflow
;
8865 if (sym_flags
== STT_ARM_TFUNC
)
8868 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
8869 || r_type
== R_ARM_THM_MOVT_BREL
)
8873 insn
|= (value
& 0xf000) << 4;
8874 insn
|= (value
& 0x0800) << 15;
8875 insn
|= (value
& 0x0700) << 4;
8876 insn
|= (value
& 0x00ff);
8878 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8879 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8881 return bfd_reloc_ok
;
8883 case R_ARM_ALU_PC_G0_NC
:
8884 case R_ARM_ALU_PC_G1_NC
:
8885 case R_ARM_ALU_PC_G0
:
8886 case R_ARM_ALU_PC_G1
:
8887 case R_ARM_ALU_PC_G2
:
8888 case R_ARM_ALU_SB_G0_NC
:
8889 case R_ARM_ALU_SB_G1_NC
:
8890 case R_ARM_ALU_SB_G0
:
8891 case R_ARM_ALU_SB_G1
:
8892 case R_ARM_ALU_SB_G2
:
8894 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8895 bfd_vma pc
= input_section
->output_section
->vma
8896 + input_section
->output_offset
+ rel
->r_offset
;
8897 /* sb should be the origin of the *segment* containing the symbol.
8898 It is not clear how to obtain this OS-dependent value, so we
8899 make an arbitrary choice of zero. */
8903 bfd_signed_vma signed_value
;
8906 /* Determine which group of bits to select. */
8909 case R_ARM_ALU_PC_G0_NC
:
8910 case R_ARM_ALU_PC_G0
:
8911 case R_ARM_ALU_SB_G0_NC
:
8912 case R_ARM_ALU_SB_G0
:
8916 case R_ARM_ALU_PC_G1_NC
:
8917 case R_ARM_ALU_PC_G1
:
8918 case R_ARM_ALU_SB_G1_NC
:
8919 case R_ARM_ALU_SB_G1
:
8923 case R_ARM_ALU_PC_G2
:
8924 case R_ARM_ALU_SB_G2
:
8932 /* If REL, extract the addend from the insn. If RELA, it will
8933 have already been fetched for us. */
8934 if (globals
->use_rel
)
8937 bfd_vma constant
= insn
& 0xff;
8938 bfd_vma rotation
= (insn
& 0xf00) >> 8;
8941 signed_addend
= constant
;
8944 /* Compensate for the fact that in the instruction, the
8945 rotation is stored in multiples of 2 bits. */
8948 /* Rotate "constant" right by "rotation" bits. */
8949 signed_addend
= (constant
>> rotation
) |
8950 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
8953 /* Determine if the instruction is an ADD or a SUB.
8954 (For REL, this determines the sign of the addend.) */
8955 negative
= identify_add_or_sub (insn
);
8958 (*_bfd_error_handler
)
8959 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8960 input_bfd
, input_section
,
8961 (long) rel
->r_offset
, howto
->name
);
8962 return bfd_reloc_overflow
;
8965 signed_addend
*= negative
;
8968 /* Compute the value (X) to go in the place. */
8969 if (r_type
== R_ARM_ALU_PC_G0_NC
8970 || r_type
== R_ARM_ALU_PC_G1_NC
8971 || r_type
== R_ARM_ALU_PC_G0
8972 || r_type
== R_ARM_ALU_PC_G1
8973 || r_type
== R_ARM_ALU_PC_G2
)
8975 signed_value
= value
- pc
+ signed_addend
;
8977 /* Section base relative. */
8978 signed_value
= value
- sb
+ signed_addend
;
8980 /* If the target symbol is a Thumb function, then set the
8981 Thumb bit in the address. */
8982 if (sym_flags
== STT_ARM_TFUNC
)
8985 /* Calculate the value of the relevant G_n, in encoded
8986 constant-with-rotation format. */
8987 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
8990 /* Check for overflow if required. */
8991 if ((r_type
== R_ARM_ALU_PC_G0
8992 || r_type
== R_ARM_ALU_PC_G1
8993 || r_type
== R_ARM_ALU_PC_G2
8994 || r_type
== R_ARM_ALU_SB_G0
8995 || r_type
== R_ARM_ALU_SB_G1
8996 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
8998 (*_bfd_error_handler
)
8999 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9000 input_bfd
, input_section
,
9001 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9002 return bfd_reloc_overflow
;
9005 /* Mask out the value and the ADD/SUB part of the opcode; take care
9006 not to destroy the S bit. */
9009 /* Set the opcode according to whether the value to go in the
9010 place is negative. */
9011 if (signed_value
< 0)
9016 /* Encode the offset. */
9019 bfd_put_32 (input_bfd
, insn
, hit_data
);
9021 return bfd_reloc_ok
;
9023 case R_ARM_LDR_PC_G0
:
9024 case R_ARM_LDR_PC_G1
:
9025 case R_ARM_LDR_PC_G2
:
9026 case R_ARM_LDR_SB_G0
:
9027 case R_ARM_LDR_SB_G1
:
9028 case R_ARM_LDR_SB_G2
:
9030 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9031 bfd_vma pc
= input_section
->output_section
->vma
9032 + input_section
->output_offset
+ rel
->r_offset
;
9033 bfd_vma sb
= 0; /* See note above. */
9035 bfd_signed_vma signed_value
;
9038 /* Determine which groups of bits to calculate. */
9041 case R_ARM_LDR_PC_G0
:
9042 case R_ARM_LDR_SB_G0
:
9046 case R_ARM_LDR_PC_G1
:
9047 case R_ARM_LDR_SB_G1
:
9051 case R_ARM_LDR_PC_G2
:
9052 case R_ARM_LDR_SB_G2
:
9060 /* If REL, extract the addend from the insn. If RELA, it will
9061 have already been fetched for us. */
9062 if (globals
->use_rel
)
9064 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9065 signed_addend
= negative
* (insn
& 0xfff);
9068 /* Compute the value (X) to go in the place. */
9069 if (r_type
== R_ARM_LDR_PC_G0
9070 || r_type
== R_ARM_LDR_PC_G1
9071 || r_type
== R_ARM_LDR_PC_G2
)
9073 signed_value
= value
- pc
+ signed_addend
;
9075 /* Section base relative. */
9076 signed_value
= value
- sb
+ signed_addend
;
9078 /* Calculate the value of the relevant G_{n-1} to obtain
9079 the residual at that stage. */
9080 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9082 /* Check for overflow. */
9083 if (residual
>= 0x1000)
9085 (*_bfd_error_handler
)
9086 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9087 input_bfd
, input_section
,
9088 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9089 return bfd_reloc_overflow
;
9092 /* Mask out the value and U bit. */
9095 /* Set the U bit if the value to go in the place is non-negative. */
9096 if (signed_value
>= 0)
9099 /* Encode the offset. */
9102 bfd_put_32 (input_bfd
, insn
, hit_data
);
9104 return bfd_reloc_ok
;
9106 case R_ARM_LDRS_PC_G0
:
9107 case R_ARM_LDRS_PC_G1
:
9108 case R_ARM_LDRS_PC_G2
:
9109 case R_ARM_LDRS_SB_G0
:
9110 case R_ARM_LDRS_SB_G1
:
9111 case R_ARM_LDRS_SB_G2
:
9113 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9114 bfd_vma pc
= input_section
->output_section
->vma
9115 + input_section
->output_offset
+ rel
->r_offset
;
9116 bfd_vma sb
= 0; /* See note above. */
9118 bfd_signed_vma signed_value
;
9121 /* Determine which groups of bits to calculate. */
9124 case R_ARM_LDRS_PC_G0
:
9125 case R_ARM_LDRS_SB_G0
:
9129 case R_ARM_LDRS_PC_G1
:
9130 case R_ARM_LDRS_SB_G1
:
9134 case R_ARM_LDRS_PC_G2
:
9135 case R_ARM_LDRS_SB_G2
:
9143 /* If REL, extract the addend from the insn. If RELA, it will
9144 have already been fetched for us. */
9145 if (globals
->use_rel
)
9147 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9148 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
9151 /* Compute the value (X) to go in the place. */
9152 if (r_type
== R_ARM_LDRS_PC_G0
9153 || r_type
== R_ARM_LDRS_PC_G1
9154 || r_type
== R_ARM_LDRS_PC_G2
)
9156 signed_value
= value
- pc
+ signed_addend
;
9158 /* Section base relative. */
9159 signed_value
= value
- sb
+ signed_addend
;
9161 /* Calculate the value of the relevant G_{n-1} to obtain
9162 the residual at that stage. */
9163 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9165 /* Check for overflow. */
9166 if (residual
>= 0x100)
9168 (*_bfd_error_handler
)
9169 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9170 input_bfd
, input_section
,
9171 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9172 return bfd_reloc_overflow
;
9175 /* Mask out the value and U bit. */
9178 /* Set the U bit if the value to go in the place is non-negative. */
9179 if (signed_value
>= 0)
9182 /* Encode the offset. */
9183 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
9185 bfd_put_32 (input_bfd
, insn
, hit_data
);
9187 return bfd_reloc_ok
;
9189 case R_ARM_LDC_PC_G0
:
9190 case R_ARM_LDC_PC_G1
:
9191 case R_ARM_LDC_PC_G2
:
9192 case R_ARM_LDC_SB_G0
:
9193 case R_ARM_LDC_SB_G1
:
9194 case R_ARM_LDC_SB_G2
:
9196 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9197 bfd_vma pc
= input_section
->output_section
->vma
9198 + input_section
->output_offset
+ rel
->r_offset
;
9199 bfd_vma sb
= 0; /* See note above. */
9201 bfd_signed_vma signed_value
;
9204 /* Determine which groups of bits to calculate. */
9207 case R_ARM_LDC_PC_G0
:
9208 case R_ARM_LDC_SB_G0
:
9212 case R_ARM_LDC_PC_G1
:
9213 case R_ARM_LDC_SB_G1
:
9217 case R_ARM_LDC_PC_G2
:
9218 case R_ARM_LDC_SB_G2
:
9226 /* If REL, extract the addend from the insn. If RELA, it will
9227 have already been fetched for us. */
9228 if (globals
->use_rel
)
9230 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9231 signed_addend
= negative
* ((insn
& 0xff) << 2);
9234 /* Compute the value (X) to go in the place. */
9235 if (r_type
== R_ARM_LDC_PC_G0
9236 || r_type
== R_ARM_LDC_PC_G1
9237 || r_type
== R_ARM_LDC_PC_G2
)
9239 signed_value
= value
- pc
+ signed_addend
;
9241 /* Section base relative. */
9242 signed_value
= value
- sb
+ signed_addend
;
9244 /* Calculate the value of the relevant G_{n-1} to obtain
9245 the residual at that stage. */
9246 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9248 /* Check for overflow. (The absolute value to go in the place must be
9249 divisible by four and, after having been divided by four, must
9250 fit in eight bits.) */
9251 if ((residual
& 0x3) != 0 || residual
>= 0x400)
9253 (*_bfd_error_handler
)
9254 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9255 input_bfd
, input_section
,
9256 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9257 return bfd_reloc_overflow
;
9260 /* Mask out the value and U bit. */
9263 /* Set the U bit if the value to go in the place is non-negative. */
9264 if (signed_value
>= 0)
9267 /* Encode the offset. */
9268 insn
|= residual
>> 2;
9270 bfd_put_32 (input_bfd
, insn
, hit_data
);
9272 return bfd_reloc_ok
;
9275 return bfd_reloc_notsupported
;
9279 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
9281 arm_add_to_rel (bfd
* abfd
,
9283 reloc_howto_type
* howto
,
9284 bfd_signed_vma increment
)
9286 bfd_signed_vma addend
;
9288 if (howto
->type
== R_ARM_THM_CALL
9289 || howto
->type
== R_ARM_THM_JUMP24
)
9291 int upper_insn
, lower_insn
;
9294 upper_insn
= bfd_get_16 (abfd
, address
);
9295 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
9296 upper
= upper_insn
& 0x7ff;
9297 lower
= lower_insn
& 0x7ff;
9299 addend
= (upper
<< 12) | (lower
<< 1);
9300 addend
+= increment
;
9303 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
9304 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
9306 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
9307 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
9313 contents
= bfd_get_32 (abfd
, address
);
9315 /* Get the (signed) value from the instruction. */
9316 addend
= contents
& howto
->src_mask
;
9317 if (addend
& ((howto
->src_mask
+ 1) >> 1))
9319 bfd_signed_vma mask
;
9322 mask
&= ~ howto
->src_mask
;
9326 /* Add in the increment, (which is a byte value). */
9327 switch (howto
->type
)
9330 addend
+= increment
;
9337 addend
<<= howto
->size
;
9338 addend
+= increment
;
9340 /* Should we check for overflow here ? */
9342 /* Drop any undesired bits. */
9343 addend
>>= howto
->rightshift
;
9347 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
9349 bfd_put_32 (abfd
, contents
, address
);
9353 #define IS_ARM_TLS_RELOC(R_TYPE) \
9354 ((R_TYPE) == R_ARM_TLS_GD32 \
9355 || (R_TYPE) == R_ARM_TLS_LDO32 \
9356 || (R_TYPE) == R_ARM_TLS_LDM32 \
9357 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
9358 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
9359 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
9360 || (R_TYPE) == R_ARM_TLS_LE32 \
9361 || (R_TYPE) == R_ARM_TLS_IE32 \
9362 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
9364 /* Specific set of relocations for the gnu tls dialect. */
9365 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
9366 ((R_TYPE) == R_ARM_TLS_GOTDESC \
9367 || (R_TYPE) == R_ARM_TLS_CALL \
9368 || (R_TYPE) == R_ARM_THM_TLS_CALL \
9369 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
9370 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
9372 /* Relocate an ARM ELF section. */
9375 elf32_arm_relocate_section (bfd
* output_bfd
,
9376 struct bfd_link_info
* info
,
9378 asection
* input_section
,
9379 bfd_byte
* contents
,
9380 Elf_Internal_Rela
* relocs
,
9381 Elf_Internal_Sym
* local_syms
,
9382 asection
** local_sections
)
9384 Elf_Internal_Shdr
*symtab_hdr
;
9385 struct elf_link_hash_entry
**sym_hashes
;
9386 Elf_Internal_Rela
*rel
;
9387 Elf_Internal_Rela
*relend
;
9389 struct elf32_arm_link_hash_table
* globals
;
9391 globals
= elf32_arm_hash_table (info
);
9392 if (globals
== NULL
)
9395 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
9396 sym_hashes
= elf_sym_hashes (input_bfd
);
9399 relend
= relocs
+ input_section
->reloc_count
;
9400 for (; rel
< relend
; rel
++)
9403 reloc_howto_type
* howto
;
9404 unsigned long r_symndx
;
9405 Elf_Internal_Sym
* sym
;
9407 struct elf_link_hash_entry
* h
;
9409 bfd_reloc_status_type r
;
9412 bfd_boolean unresolved_reloc
= FALSE
;
9413 char *error_message
= NULL
;
9415 r_symndx
= ELF32_R_SYM (rel
->r_info
);
9416 r_type
= ELF32_R_TYPE (rel
->r_info
);
9417 r_type
= arm_real_reloc_type (globals
, r_type
);
9419 if ( r_type
== R_ARM_GNU_VTENTRY
9420 || r_type
== R_ARM_GNU_VTINHERIT
)
9423 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
9424 howto
= bfd_reloc
.howto
;
9430 if (r_symndx
< symtab_hdr
->sh_info
)
9432 sym
= local_syms
+ r_symndx
;
9433 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
9434 sec
= local_sections
[r_symndx
];
9436 /* An object file might have a reference to a local
9437 undefined symbol. This is a daft object file, but we
9438 should at least do something about it. V4BX & NONE
9439 relocations do not use the symbol and are explicitly
9440 allowed to use the undefined symbol, so allow those.
9441 Likewise for relocations against STN_UNDEF. */
9442 if (r_type
!= R_ARM_V4BX
9443 && r_type
!= R_ARM_NONE
9444 && r_symndx
!= STN_UNDEF
9445 && bfd_is_und_section (sec
)
9446 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
9448 if (!info
->callbacks
->undefined_symbol
9449 (info
, bfd_elf_string_from_elf_section
9450 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
9451 input_bfd
, input_section
,
9452 rel
->r_offset
, TRUE
))
9456 if (globals
->use_rel
)
9458 relocation
= (sec
->output_section
->vma
9459 + sec
->output_offset
9461 if (!info
->relocatable
9462 && (sec
->flags
& SEC_MERGE
)
9463 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
9466 bfd_vma addend
, value
;
9470 case R_ARM_MOVW_ABS_NC
:
9471 case R_ARM_MOVT_ABS
:
9472 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
9473 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
9474 addend
= (addend
^ 0x8000) - 0x8000;
9477 case R_ARM_THM_MOVW_ABS_NC
:
9478 case R_ARM_THM_MOVT_ABS
:
9479 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
9481 value
|= bfd_get_16 (input_bfd
,
9482 contents
+ rel
->r_offset
+ 2);
9483 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
9484 | ((value
& 0x04000000) >> 15);
9485 addend
= (addend
^ 0x8000) - 0x8000;
9489 if (howto
->rightshift
9490 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
9492 (*_bfd_error_handler
)
9493 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
9494 input_bfd
, input_section
,
9495 (long) rel
->r_offset
, howto
->name
);
9499 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
9501 /* Get the (signed) value from the instruction. */
9502 addend
= value
& howto
->src_mask
;
9503 if (addend
& ((howto
->src_mask
+ 1) >> 1))
9505 bfd_signed_vma mask
;
9508 mask
&= ~ howto
->src_mask
;
9516 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
9518 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
9520 /* Cases here must match those in the preceeding
9521 switch statement. */
9524 case R_ARM_MOVW_ABS_NC
:
9525 case R_ARM_MOVT_ABS
:
9526 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
9528 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
9531 case R_ARM_THM_MOVW_ABS_NC
:
9532 case R_ARM_THM_MOVT_ABS
:
9533 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
9534 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
9535 bfd_put_16 (input_bfd
, value
>> 16,
9536 contents
+ rel
->r_offset
);
9537 bfd_put_16 (input_bfd
, value
,
9538 contents
+ rel
->r_offset
+ 2);
9542 value
= (value
& ~ howto
->dst_mask
)
9543 | (addend
& howto
->dst_mask
);
9544 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
9550 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
9556 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
9557 r_symndx
, symtab_hdr
, sym_hashes
,
9559 unresolved_reloc
, warned
);
9564 if (sec
!= NULL
&& elf_discarded_section (sec
))
9565 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
9566 rel
, relend
, howto
, contents
);
9568 if (info
->relocatable
)
9570 /* This is a relocatable link. We don't have to change
9571 anything, unless the reloc is against a section symbol,
9572 in which case we have to adjust according to where the
9573 section symbol winds up in the output section. */
9574 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
9576 if (globals
->use_rel
)
9577 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
9578 howto
, (bfd_signed_vma
) sec
->output_offset
);
9580 rel
->r_addend
+= sec
->output_offset
;
9586 name
= h
->root
.root
.string
;
9589 name
= (bfd_elf_string_from_elf_section
9590 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
9591 if (name
== NULL
|| *name
== '\0')
9592 name
= bfd_section_name (input_bfd
, sec
);
9595 if (r_symndx
!= STN_UNDEF
9596 && r_type
!= R_ARM_NONE
9598 || h
->root
.type
== bfd_link_hash_defined
9599 || h
->root
.type
== bfd_link_hash_defweak
)
9600 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
9602 (*_bfd_error_handler
)
9603 ((sym_type
== STT_TLS
9604 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9605 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
9608 (long) rel
->r_offset
,
9613 /* We call elf32_arm_final_link_relocate unless we're completely
9614 done, i.e., the relaxation produced the final output we want,
9615 and we won't let anybody mess with it. Also, we have to do
9616 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
9617 both in relaxed and non-relaxed cases */
9618 if ((elf32_arm_tls_transition (info
, r_type
, h
) != (unsigned)r_type
)
9619 || (IS_ARM_TLS_GNU_RELOC (r_type
)
9620 && !((h
? elf32_arm_hash_entry (h
)->tls_type
:
9621 elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
])
9624 r
= elf32_arm_tls_relax (globals
, input_bfd
, input_section
,
9625 contents
, rel
, h
== NULL
);
9626 /* This may have been marked unresolved because it came from
9627 a shared library. But we've just dealt with that. */
9628 unresolved_reloc
= 0;
9631 r
= bfd_reloc_continue
;
9633 if (r
== bfd_reloc_continue
)
9634 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
9635 input_section
, contents
, rel
,
9636 relocation
, info
, sec
, name
,
9637 (h
? ELF_ST_TYPE (h
->type
) :
9638 ELF_ST_TYPE (sym
->st_info
)), h
,
9639 &unresolved_reloc
, &error_message
);
9641 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9642 because such sections are not SEC_ALLOC and thus ld.so will
9643 not process them. */
9644 if (unresolved_reloc
9645 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
9648 (*_bfd_error_handler
)
9649 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9652 (long) rel
->r_offset
,
9654 h
->root
.root
.string
);
9658 if (r
!= bfd_reloc_ok
)
9662 case bfd_reloc_overflow
:
9663 /* If the overflowing reloc was to an undefined symbol,
9664 we have already printed one error message and there
9665 is no point complaining again. */
9667 h
->root
.type
!= bfd_link_hash_undefined
)
9668 && (!((*info
->callbacks
->reloc_overflow
)
9669 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
9670 (bfd_vma
) 0, input_bfd
, input_section
,
9675 case bfd_reloc_undefined
:
9676 if (!((*info
->callbacks
->undefined_symbol
)
9677 (info
, name
, input_bfd
, input_section
,
9678 rel
->r_offset
, TRUE
)))
9682 case bfd_reloc_outofrange
:
9683 error_message
= _("out of range");
9686 case bfd_reloc_notsupported
:
9687 error_message
= _("unsupported relocation");
9690 case bfd_reloc_dangerous
:
9691 /* error_message should already be set. */
9695 error_message
= _("unknown error");
9699 BFD_ASSERT (error_message
!= NULL
);
9700 if (!((*info
->callbacks
->reloc_dangerous
)
9701 (info
, error_message
, input_bfd
, input_section
,
9712 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
9713 adds the edit to the start of the list. (The list must be built in order of
9714 ascending TINDEX: the function's callers are primarily responsible for
9715 maintaining that condition). */
9718 add_unwind_table_edit (arm_unwind_table_edit
**head
,
9719 arm_unwind_table_edit
**tail
,
9720 arm_unwind_edit_type type
,
9721 asection
*linked_section
,
9722 unsigned int tindex
)
9724 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
9725 xmalloc (sizeof (arm_unwind_table_edit
));
9727 new_edit
->type
= type
;
9728 new_edit
->linked_section
= linked_section
;
9729 new_edit
->index
= tindex
;
9733 new_edit
->next
= NULL
;
9736 (*tail
)->next
= new_edit
;
9745 new_edit
->next
= *head
;
9754 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
9756 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9758 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
9762 if (!exidx_sec
->rawsize
)
9763 exidx_sec
->rawsize
= exidx_sec
->size
;
9765 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
9766 out_sec
= exidx_sec
->output_section
;
9767 /* Adjust size of output section. */
9768 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
9771 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9773 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
9775 struct _arm_elf_section_data
*exidx_arm_data
;
9777 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9778 add_unwind_table_edit (
9779 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
9780 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
9781 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
9783 adjust_exidx_size(exidx_sec
, 8);
9786 /* Scan .ARM.exidx tables, and create a list describing edits which should be
9787 made to those tables, such that:
9789 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9790 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9791 codes which have been inlined into the index).
9793 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
9795 The edits are applied when the tables are written
9796 (in elf32_arm_write_section).
9800 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
9801 unsigned int num_text_sections
,
9802 struct bfd_link_info
*info
,
9803 bfd_boolean merge_exidx_entries
)
9806 unsigned int last_second_word
= 0, i
;
9807 asection
*last_exidx_sec
= NULL
;
9808 asection
*last_text_sec
= NULL
;
9809 int last_unwind_type
= -1;
9811 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9813 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
9817 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
9819 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
9820 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
9822 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
9825 if (elf_sec
->linked_to
)
9827 Elf_Internal_Shdr
*linked_hdr
9828 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
9829 struct _arm_elf_section_data
*linked_sec_arm_data
9830 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
9832 if (linked_sec_arm_data
== NULL
)
9835 /* Link this .ARM.exidx section back from the text section it
9837 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
9842 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9843 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9844 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
9846 for (i
= 0; i
< num_text_sections
; i
++)
9848 asection
*sec
= text_section_order
[i
];
9849 asection
*exidx_sec
;
9850 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
9851 struct _arm_elf_section_data
*exidx_arm_data
;
9852 bfd_byte
*contents
= NULL
;
9853 int deleted_exidx_bytes
= 0;
9855 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
9856 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
9857 Elf_Internal_Shdr
*hdr
;
9860 if (arm_data
== NULL
)
9863 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
9864 if (exidx_sec
== NULL
)
9866 /* Section has no unwind data. */
9867 if (last_unwind_type
== 0 || !last_exidx_sec
)
9870 /* Ignore zero sized sections. */
9874 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9875 last_unwind_type
= 0;
9879 /* Skip /DISCARD/ sections. */
9880 if (bfd_is_abs_section (exidx_sec
->output_section
))
9883 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
9884 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
9887 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9888 if (exidx_arm_data
== NULL
)
9891 ibfd
= exidx_sec
->owner
;
9893 if (hdr
->contents
!= NULL
)
9894 contents
= hdr
->contents
;
9895 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
9899 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
9901 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
9905 /* An EXIDX_CANTUNWIND entry. */
9906 if (second_word
== 1)
9908 if (last_unwind_type
== 0)
9912 /* Inlined unwinding data. Merge if equal to previous. */
9913 else if ((second_word
& 0x80000000) != 0)
9915 if (merge_exidx_entries
9916 && last_second_word
== second_word
&& last_unwind_type
== 1)
9919 last_second_word
= second_word
;
9921 /* Normal table entry. In theory we could merge these too,
9922 but duplicate entries are likely to be much less common. */
9928 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
9929 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
9931 deleted_exidx_bytes
+= 8;
9934 last_unwind_type
= unwind_type
;
9937 /* Free contents if we allocated it ourselves. */
9938 if (contents
!= hdr
->contents
)
9941 /* Record edits to be applied later (in elf32_arm_write_section). */
9942 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
9943 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
9945 if (deleted_exidx_bytes
> 0)
9946 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
9948 last_exidx_sec
= exidx_sec
;
9949 last_text_sec
= sec
;
9952 /* Add terminating CANTUNWIND entry. */
9953 if (last_exidx_sec
&& last_unwind_type
!= 0)
9954 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9960 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
9961 bfd
*ibfd
, const char *name
)
9963 asection
*sec
, *osec
;
9965 sec
= bfd_get_section_by_name (ibfd
, name
);
9966 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
9969 osec
= sec
->output_section
;
9970 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
9973 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
9974 sec
->output_offset
, sec
->size
))
9981 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9983 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
9984 asection
*sec
, *osec
;
9986 if (globals
== NULL
)
9989 /* Invoke the regular ELF backend linker to do all the work. */
9990 if (!bfd_elf_final_link (abfd
, info
))
9993 /* Process stub sections (eg BE8 encoding, ...). */
9994 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
9996 for (i
=0; i
<htab
->top_id
; i
++)
9998 sec
= htab
->stub_group
[i
].stub_sec
;
9999 /* Only process it once, in its link_sec slot. */
10000 if (sec
&& i
== htab
->stub_group
[i
].link_sec
->id
)
10002 osec
= sec
->output_section
;
10003 elf32_arm_write_section (abfd
, info
, sec
, sec
->contents
);
10004 if (! bfd_set_section_contents (abfd
, osec
, sec
->contents
,
10005 sec
->output_offset
, sec
->size
))
10010 /* Write out any glue sections now that we have created all the
10012 if (globals
->bfd_of_glue_owner
!= NULL
)
10014 if (! elf32_arm_output_glue_section (info
, abfd
,
10015 globals
->bfd_of_glue_owner
,
10016 ARM2THUMB_GLUE_SECTION_NAME
))
10019 if (! elf32_arm_output_glue_section (info
, abfd
,
10020 globals
->bfd_of_glue_owner
,
10021 THUMB2ARM_GLUE_SECTION_NAME
))
10024 if (! elf32_arm_output_glue_section (info
, abfd
,
10025 globals
->bfd_of_glue_owner
,
10026 VFP11_ERRATUM_VENEER_SECTION_NAME
))
10029 if (! elf32_arm_output_glue_section (info
, abfd
,
10030 globals
->bfd_of_glue_owner
,
10031 ARM_BX_GLUE_SECTION_NAME
))
10038 /* Set the right machine number. */
10041 elf32_arm_object_p (bfd
*abfd
)
10045 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
10047 if (mach
!= bfd_mach_arm_unknown
)
10048 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
10050 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
10051 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
10054 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
10059 /* Function to keep ARM specific flags in the ELF header. */
10062 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
10064 if (elf_flags_init (abfd
)
10065 && elf_elfheader (abfd
)->e_flags
!= flags
)
10067 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
10069 if (flags
& EF_ARM_INTERWORK
)
10070 (*_bfd_error_handler
)
10071 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10075 (_("Warning: Clearing the interworking flag of %B due to outside request"),
10081 elf_elfheader (abfd
)->e_flags
= flags
;
10082 elf_flags_init (abfd
) = TRUE
;
10088 /* Copy backend specific data from one object module to another. */
10091 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
10094 flagword out_flags
;
10096 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
10099 in_flags
= elf_elfheader (ibfd
)->e_flags
;
10100 out_flags
= elf_elfheader (obfd
)->e_flags
;
10102 if (elf_flags_init (obfd
)
10103 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
10104 && in_flags
!= out_flags
)
10106 /* Cannot mix APCS26 and APCS32 code. */
10107 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
10110 /* Cannot mix float APCS and non-float APCS code. */
10111 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
10114 /* If the src and dest have different interworking flags
10115 then turn off the interworking bit. */
10116 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
10118 if (out_flags
& EF_ARM_INTERWORK
)
10120 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10123 in_flags
&= ~EF_ARM_INTERWORK
;
10126 /* Likewise for PIC, though don't warn for this case. */
10127 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
10128 in_flags
&= ~EF_ARM_PIC
;
10131 elf_elfheader (obfd
)->e_flags
= in_flags
;
10132 elf_flags_init (obfd
) = TRUE
;
10134 /* Also copy the EI_OSABI field. */
10135 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
10136 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
10138 /* Copy object attributes. */
10139 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
10144 /* Values for Tag_ABI_PCS_R9_use. */
10153 /* Values for Tag_ABI_PCS_RW_data. */
10156 AEABI_PCS_RW_data_absolute
,
10157 AEABI_PCS_RW_data_PCrel
,
10158 AEABI_PCS_RW_data_SBrel
,
10159 AEABI_PCS_RW_data_unused
10162 /* Values for Tag_ABI_enum_size. */
10168 AEABI_enum_forced_wide
10171 /* Determine whether an object attribute tag takes an integer, a
10175 elf32_arm_obj_attrs_arg_type (int tag
)
10177 if (tag
== Tag_compatibility
)
10178 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
10179 else if (tag
== Tag_nodefaults
)
10180 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
10181 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
10182 return ATTR_TYPE_FLAG_STR_VAL
;
10184 return ATTR_TYPE_FLAG_INT_VAL
;
10186 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
10189 /* The ABI defines that Tag_conformance should be emitted first, and that
10190 Tag_nodefaults should be second (if either is defined). This sets those
10191 two positions, and bumps up the position of all the remaining tags to
10194 elf32_arm_obj_attrs_order (int num
)
10196 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
)
10197 return Tag_conformance
;
10198 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
+ 1)
10199 return Tag_nodefaults
;
10200 if ((num
- 2) < Tag_nodefaults
)
10202 if ((num
- 1) < Tag_conformance
)
10207 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10209 elf32_arm_obj_attrs_handle_unknown (bfd
*abfd
, int tag
)
10211 if ((tag
& 127) < 64)
10214 (_("%B: Unknown mandatory EABI object attribute %d"),
10216 bfd_set_error (bfd_error_bad_value
);
10222 (_("Warning: %B: Unknown EABI object attribute %d"),
10228 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
10229 Returns -1 if no architecture could be read. */
10232 get_secondary_compatible_arch (bfd
*abfd
)
10234 obj_attribute
*attr
=
10235 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
10237 /* Note: the tag and its argument below are uleb128 values, though
10238 currently-defined values fit in one byte for each. */
10240 && attr
->s
[0] == Tag_CPU_arch
10241 && (attr
->s
[1] & 128) != 128
10242 && attr
->s
[2] == 0)
10245 /* This tag is "safely ignorable", so don't complain if it looks funny. */
10249 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10250 The tag is removed if ARCH is -1. */
10253 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
10255 obj_attribute
*attr
=
10256 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
10264 /* Note: the tag and its argument below are uleb128 values, though
10265 currently-defined values fit in one byte for each. */
10267 attr
->s
= (char *) bfd_alloc (abfd
, 3);
10268 attr
->s
[0] = Tag_CPU_arch
;
10273 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10277 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
10278 int newtag
, int secondary_compat
)
10280 #define T(X) TAG_CPU_ARCH_##X
10281 int tagl
, tagh
, result
;
10284 T(V6T2
), /* PRE_V4. */
10286 T(V6T2
), /* V4T. */
10287 T(V6T2
), /* V5T. */
10288 T(V6T2
), /* V5TE. */
10289 T(V6T2
), /* V5TEJ. */
10292 T(V6T2
) /* V6T2. */
10296 T(V6K
), /* PRE_V4. */
10300 T(V6K
), /* V5TE. */
10301 T(V6K
), /* V5TEJ. */
10303 T(V6KZ
), /* V6KZ. */
10309 T(V7
), /* PRE_V4. */
10314 T(V7
), /* V5TEJ. */
10327 T(V6K
), /* V5TE. */
10328 T(V6K
), /* V5TEJ. */
10330 T(V6KZ
), /* V6KZ. */
10334 T(V6_M
) /* V6_M. */
10336 const int v6s_m
[] =
10342 T(V6K
), /* V5TE. */
10343 T(V6K
), /* V5TEJ. */
10345 T(V6KZ
), /* V6KZ. */
10349 T(V6S_M
), /* V6_M. */
10350 T(V6S_M
) /* V6S_M. */
10352 const int v7e_m
[] =
10356 T(V7E_M
), /* V4T. */
10357 T(V7E_M
), /* V5T. */
10358 T(V7E_M
), /* V5TE. */
10359 T(V7E_M
), /* V5TEJ. */
10360 T(V7E_M
), /* V6. */
10361 T(V7E_M
), /* V6KZ. */
10362 T(V7E_M
), /* V6T2. */
10363 T(V7E_M
), /* V6K. */
10364 T(V7E_M
), /* V7. */
10365 T(V7E_M
), /* V6_M. */
10366 T(V7E_M
), /* V6S_M. */
10367 T(V7E_M
) /* V7E_M. */
10369 const int v4t_plus_v6_m
[] =
10375 T(V5TE
), /* V5TE. */
10376 T(V5TEJ
), /* V5TEJ. */
10378 T(V6KZ
), /* V6KZ. */
10379 T(V6T2
), /* V6T2. */
10382 T(V6_M
), /* V6_M. */
10383 T(V6S_M
), /* V6S_M. */
10384 T(V7E_M
), /* V7E_M. */
10385 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
10387 const int *comb
[] =
10395 /* Pseudo-architecture. */
10399 /* Check we've not got a higher architecture than we know about. */
10401 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
10403 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
10407 /* Override old tag if we have a Tag_also_compatible_with on the output. */
10409 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
10410 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
10411 oldtag
= T(V4T_PLUS_V6_M
);
10413 /* And override the new tag if we have a Tag_also_compatible_with on the
10416 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
10417 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
10418 newtag
= T(V4T_PLUS_V6_M
);
10420 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
10421 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
10423 /* Architectures before V6KZ add features monotonically. */
10424 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
10427 result
= comb
[tagh
- T(V6T2
)][tagl
];
10429 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10430 as the canonical version. */
10431 if (result
== T(V4T_PLUS_V6_M
))
10434 *secondary_compat_out
= T(V6_M
);
10437 *secondary_compat_out
= -1;
10441 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
10442 ibfd
, oldtag
, newtag
);
10450 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
10451 are conflicting attributes. */
10454 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
10456 obj_attribute
*in_attr
;
10457 obj_attribute
*out_attr
;
10458 /* Some tags have 0 = don't care, 1 = strong requirement,
10459 2 = weak requirement. */
10460 static const int order_021
[3] = {0, 2, 1};
10462 bfd_boolean result
= TRUE
;
10464 /* Skip the linker stubs file. This preserves previous behavior
10465 of accepting unknown attributes in the first input file - but
10467 if (ibfd
->flags
& BFD_LINKER_CREATED
)
10470 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
10472 /* This is the first object. Copy the attributes. */
10473 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
10475 out_attr
= elf_known_obj_attributes_proc (obfd
);
10477 /* Use the Tag_null value to indicate the attributes have been
10481 /* We do not output objects with Tag_MPextension_use_legacy - we move
10482 the attribute's value to Tag_MPextension_use. */
10483 if (out_attr
[Tag_MPextension_use_legacy
].i
!= 0)
10485 if (out_attr
[Tag_MPextension_use
].i
!= 0
10486 && out_attr
[Tag_MPextension_use_legacy
].i
10487 != out_attr
[Tag_MPextension_use
].i
)
10490 (_("Error: %B has both the current and legacy "
10491 "Tag_MPextension_use attributes"), ibfd
);
10495 out_attr
[Tag_MPextension_use
] =
10496 out_attr
[Tag_MPextension_use_legacy
];
10497 out_attr
[Tag_MPextension_use_legacy
].type
= 0;
10498 out_attr
[Tag_MPextension_use_legacy
].i
= 0;
10504 in_attr
= elf_known_obj_attributes_proc (ibfd
);
10505 out_attr
= elf_known_obj_attributes_proc (obfd
);
10506 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
10507 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
10509 /* Ignore mismatches if the object doesn't use floating point. */
10510 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
10511 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
10512 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
10515 (_("error: %B uses VFP register arguments, %B does not"),
10516 in_attr
[Tag_ABI_VFP_args
].i
? ibfd
: obfd
,
10517 in_attr
[Tag_ABI_VFP_args
].i
? obfd
: ibfd
);
10522 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
10524 /* Merge this attribute with existing attributes. */
10527 case Tag_CPU_raw_name
:
10529 /* These are merged after Tag_CPU_arch. */
10532 case Tag_ABI_optimization_goals
:
10533 case Tag_ABI_FP_optimization_goals
:
10534 /* Use the first value seen. */
10539 int secondary_compat
= -1, secondary_compat_out
= -1;
10540 unsigned int saved_out_attr
= out_attr
[i
].i
;
10541 static const char *name_table
[] = {
10542 /* These aren't real CPU names, but we can't guess
10543 that from the architecture version alone. */
10559 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
10560 secondary_compat
= get_secondary_compatible_arch (ibfd
);
10561 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
10562 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
10563 &secondary_compat_out
,
10566 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
10568 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
10569 if (out_attr
[i
].i
== saved_out_attr
)
10570 ; /* Leave the names alone. */
10571 else if (out_attr
[i
].i
== in_attr
[i
].i
)
10573 /* The output architecture has been changed to match the
10574 input architecture. Use the input names. */
10575 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
10576 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
10578 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
10579 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
10584 out_attr
[Tag_CPU_name
].s
= NULL
;
10585 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
10588 /* If we still don't have a value for Tag_CPU_name,
10589 make one up now. Tag_CPU_raw_name remains blank. */
10590 if (out_attr
[Tag_CPU_name
].s
== NULL
10591 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
10592 out_attr
[Tag_CPU_name
].s
=
10593 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
10597 case Tag_ARM_ISA_use
:
10598 case Tag_THUMB_ISA_use
:
10599 case Tag_WMMX_arch
:
10600 case Tag_Advanced_SIMD_arch
:
10601 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
10602 case Tag_ABI_FP_rounding
:
10603 case Tag_ABI_FP_exceptions
:
10604 case Tag_ABI_FP_user_exceptions
:
10605 case Tag_ABI_FP_number_model
:
10606 case Tag_FP_HP_extension
:
10607 case Tag_CPU_unaligned_access
:
10609 case Tag_MPextension_use
:
10610 /* Use the largest value specified. */
10611 if (in_attr
[i
].i
> out_attr
[i
].i
)
10612 out_attr
[i
].i
= in_attr
[i
].i
;
10615 case Tag_ABI_align_preserved
:
10616 case Tag_ABI_PCS_RO_data
:
10617 /* Use the smallest value specified. */
10618 if (in_attr
[i
].i
< out_attr
[i
].i
)
10619 out_attr
[i
].i
= in_attr
[i
].i
;
10622 case Tag_ABI_align_needed
:
10623 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
10624 && (in_attr
[Tag_ABI_align_preserved
].i
== 0
10625 || out_attr
[Tag_ABI_align_preserved
].i
== 0))
10627 /* This error message should be enabled once all non-conformant
10628 binaries in the toolchain have had the attributes set
10631 (_("error: %B: 8-byte data alignment conflicts with %B"),
10635 /* Fall through. */
10636 case Tag_ABI_FP_denormal
:
10637 case Tag_ABI_PCS_GOT_use
:
10638 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
10639 value if greater than 2 (for future-proofing). */
10640 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
10641 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
10642 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
10643 out_attr
[i
].i
= in_attr
[i
].i
;
10646 case Tag_Virtualization_use
:
10647 /* The virtualization tag effectively stores two bits of
10648 information: the intended use of TrustZone (in bit 0), and the
10649 intended use of Virtualization (in bit 1). */
10650 if (out_attr
[i
].i
== 0)
10651 out_attr
[i
].i
= in_attr
[i
].i
;
10652 else if (in_attr
[i
].i
!= 0
10653 && in_attr
[i
].i
!= out_attr
[i
].i
)
10655 if (in_attr
[i
].i
<= 3 && out_attr
[i
].i
<= 3)
10660 (_("error: %B: unable to merge virtualization attributes "
10668 case Tag_CPU_arch_profile
:
10669 if (out_attr
[i
].i
!= in_attr
[i
].i
)
10671 /* 0 will merge with anything.
10672 'A' and 'S' merge to 'A'.
10673 'R' and 'S' merge to 'R'.
10674 'M' and 'A|R|S' is an error. */
10675 if (out_attr
[i
].i
== 0
10676 || (out_attr
[i
].i
== 'S'
10677 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
10678 out_attr
[i
].i
= in_attr
[i
].i
;
10679 else if (in_attr
[i
].i
== 0
10680 || (in_attr
[i
].i
== 'S'
10681 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
10682 ; /* Do nothing. */
10686 (_("error: %B: Conflicting architecture profiles %c/%c"),
10688 in_attr
[i
].i
? in_attr
[i
].i
: '0',
10689 out_attr
[i
].i
? out_attr
[i
].i
: '0');
10696 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
10697 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
10698 when it's 0. It might mean absence of FP hardware if
10699 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
10701 static const struct
10705 } vfp_versions
[7] =
10719 /* If the output has no requirement about FP hardware,
10720 follow the requirement of the input. */
10721 if (out_attr
[i
].i
== 0)
10723 BFD_ASSERT (out_attr
[Tag_ABI_HardFP_use
].i
== 0);
10724 out_attr
[i
].i
= in_attr
[i
].i
;
10725 out_attr
[Tag_ABI_HardFP_use
].i
10726 = in_attr
[Tag_ABI_HardFP_use
].i
;
10729 /* If the input has no requirement about FP hardware, do
10731 else if (in_attr
[i
].i
== 0)
10733 BFD_ASSERT (in_attr
[Tag_ABI_HardFP_use
].i
== 0);
10737 /* Both the input and the output have nonzero Tag_FP_arch.
10738 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
10740 /* If both the input and the output have zero Tag_ABI_HardFP_use,
10742 if (in_attr
[Tag_ABI_HardFP_use
].i
== 0
10743 && out_attr
[Tag_ABI_HardFP_use
].i
== 0)
10745 /* If the input and the output have different Tag_ABI_HardFP_use,
10746 the combination of them is 3 (SP & DP). */
10747 else if (in_attr
[Tag_ABI_HardFP_use
].i
10748 != out_attr
[Tag_ABI_HardFP_use
].i
)
10749 out_attr
[Tag_ABI_HardFP_use
].i
= 3;
10751 /* Now we can handle Tag_FP_arch. */
10753 /* Values greater than 6 aren't defined, so just pick the
10755 if (in_attr
[i
].i
> 6 && in_attr
[i
].i
> out_attr
[i
].i
)
10757 out_attr
[i
] = in_attr
[i
];
10760 /* The output uses the superset of input features
10761 (ISA version) and registers. */
10762 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
10763 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
10764 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
10765 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
10766 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
10767 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
10768 /* This assumes all possible supersets are also a valid
10770 for (newval
= 6; newval
> 0; newval
--)
10772 if (regs
== vfp_versions
[newval
].regs
10773 && ver
== vfp_versions
[newval
].ver
)
10776 out_attr
[i
].i
= newval
;
10779 case Tag_PCS_config
:
10780 if (out_attr
[i
].i
== 0)
10781 out_attr
[i
].i
= in_attr
[i
].i
;
10782 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
10784 /* It's sometimes ok to mix different configs, so this is only
10787 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
10790 case Tag_ABI_PCS_R9_use
:
10791 if (in_attr
[i
].i
!= out_attr
[i
].i
10792 && out_attr
[i
].i
!= AEABI_R9_unused
10793 && in_attr
[i
].i
!= AEABI_R9_unused
)
10796 (_("error: %B: Conflicting use of R9"), ibfd
);
10799 if (out_attr
[i
].i
== AEABI_R9_unused
)
10800 out_attr
[i
].i
= in_attr
[i
].i
;
10802 case Tag_ABI_PCS_RW_data
:
10803 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
10804 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
10805 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
10808 (_("error: %B: SB relative addressing conflicts with use of R9"),
10812 /* Use the smallest value specified. */
10813 if (in_attr
[i
].i
< out_attr
[i
].i
)
10814 out_attr
[i
].i
= in_attr
[i
].i
;
10816 case Tag_ABI_PCS_wchar_t
:
10817 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
10818 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
10821 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10822 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
10824 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
10825 out_attr
[i
].i
= in_attr
[i
].i
;
10827 case Tag_ABI_enum_size
:
10828 if (in_attr
[i
].i
!= AEABI_enum_unused
)
10830 if (out_attr
[i
].i
== AEABI_enum_unused
10831 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
10833 /* The existing object is compatible with anything.
10834 Use whatever requirements the new object has. */
10835 out_attr
[i
].i
= in_attr
[i
].i
;
10837 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
10838 && out_attr
[i
].i
!= in_attr
[i
].i
10839 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
10841 static const char *aeabi_enum_names
[] =
10842 { "", "variable-size", "32-bit", "" };
10843 const char *in_name
=
10844 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
10845 ? aeabi_enum_names
[in_attr
[i
].i
]
10847 const char *out_name
=
10848 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
10849 ? aeabi_enum_names
[out_attr
[i
].i
]
10852 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
10853 ibfd
, in_name
, out_name
);
10857 case Tag_ABI_VFP_args
:
10860 case Tag_ABI_WMMX_args
:
10861 if (in_attr
[i
].i
!= out_attr
[i
].i
)
10864 (_("error: %B uses iWMMXt register arguments, %B does not"),
10869 case Tag_compatibility
:
10870 /* Merged in target-independent code. */
10872 case Tag_ABI_HardFP_use
:
10873 /* This is handled along with Tag_FP_arch. */
10875 case Tag_ABI_FP_16bit_format
:
10876 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
10878 if (in_attr
[i
].i
!= out_attr
[i
].i
)
10881 (_("error: fp16 format mismatch between %B and %B"),
10886 if (in_attr
[i
].i
!= 0)
10887 out_attr
[i
].i
= in_attr
[i
].i
;
10891 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
10892 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10893 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10894 CPU. We will merge as follows: If the input attribute's value
10895 is one then the output attribute's value remains unchanged. If
10896 the input attribute's value is zero or two then if the output
10897 attribute's value is one the output value is set to the input
10898 value, otherwise the output value must be the same as the
10900 if (in_attr
[i
].i
!= 1 && out_attr
[i
].i
!= 1)
10902 if (in_attr
[i
].i
!= out_attr
[i
].i
)
10905 (_("DIV usage mismatch between %B and %B"),
10911 if (in_attr
[i
].i
!= 1)
10912 out_attr
[i
].i
= in_attr
[i
].i
;
10916 case Tag_MPextension_use_legacy
:
10917 /* We don't output objects with Tag_MPextension_use_legacy - we
10918 move the value to Tag_MPextension_use. */
10919 if (in_attr
[i
].i
!= 0 && in_attr
[Tag_MPextension_use
].i
!= 0)
10921 if (in_attr
[Tag_MPextension_use
].i
!= in_attr
[i
].i
)
10924 (_("%B has has both the current and legacy "
10925 "Tag_MPextension_use attributes"),
10931 if (in_attr
[i
].i
> out_attr
[Tag_MPextension_use
].i
)
10932 out_attr
[Tag_MPextension_use
] = in_attr
[i
];
10936 case Tag_nodefaults
:
10937 /* This tag is set if it exists, but the value is unused (and is
10938 typically zero). We don't actually need to do anything here -
10939 the merge happens automatically when the type flags are merged
10942 case Tag_also_compatible_with
:
10943 /* Already done in Tag_CPU_arch. */
10945 case Tag_conformance
:
10946 /* Keep the attribute if it matches. Throw it away otherwise.
10947 No attribute means no claim to conform. */
10948 if (!in_attr
[i
].s
|| !out_attr
[i
].s
10949 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
10950 out_attr
[i
].s
= NULL
;
10955 = result
&& _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
10958 /* If out_attr was copied from in_attr then it won't have a type yet. */
10959 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
10960 out_attr
[i
].type
= in_attr
[i
].type
;
10963 /* Merge Tag_compatibility attributes and any common GNU ones. */
10964 if (!_bfd_elf_merge_object_attributes (ibfd
, obfd
))
10967 /* Check for any attributes not known on ARM. */
10968 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
10974 /* Return TRUE if the two EABI versions are incompatible. */
10977 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
10979 /* v4 and v5 are the same spec before and after it was released,
10980 so allow mixing them. */
10981 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
10982 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
10985 return (iver
== over
);
10988 /* Merge backend specific data from an object file to the output
10989 object file when linking. */
10992 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
);
10994 /* Display the flags field. */
10997 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
10999 FILE * file
= (FILE *) ptr
;
11000 unsigned long flags
;
11002 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
11004 /* Print normal ELF private data. */
11005 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
11007 flags
= elf_elfheader (abfd
)->e_flags
;
11008 /* Ignore init flag - it may not be set, despite the flags field
11009 containing valid data. */
11011 /* xgettext:c-format */
11012 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
11014 switch (EF_ARM_EABI_VERSION (flags
))
11016 case EF_ARM_EABI_UNKNOWN
:
11017 /* The following flag bits are GNU extensions and not part of the
11018 official ARM ELF extended ABI. Hence they are only decoded if
11019 the EABI version is not set. */
11020 if (flags
& EF_ARM_INTERWORK
)
11021 fprintf (file
, _(" [interworking enabled]"));
11023 if (flags
& EF_ARM_APCS_26
)
11024 fprintf (file
, " [APCS-26]");
11026 fprintf (file
, " [APCS-32]");
11028 if (flags
& EF_ARM_VFP_FLOAT
)
11029 fprintf (file
, _(" [VFP float format]"));
11030 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
11031 fprintf (file
, _(" [Maverick float format]"));
11033 fprintf (file
, _(" [FPA float format]"));
11035 if (flags
& EF_ARM_APCS_FLOAT
)
11036 fprintf (file
, _(" [floats passed in float registers]"));
11038 if (flags
& EF_ARM_PIC
)
11039 fprintf (file
, _(" [position independent]"));
11041 if (flags
& EF_ARM_NEW_ABI
)
11042 fprintf (file
, _(" [new ABI]"));
11044 if (flags
& EF_ARM_OLD_ABI
)
11045 fprintf (file
, _(" [old ABI]"));
11047 if (flags
& EF_ARM_SOFT_FLOAT
)
11048 fprintf (file
, _(" [software FP]"));
11050 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
11051 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
11052 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
11053 | EF_ARM_MAVERICK_FLOAT
);
11056 case EF_ARM_EABI_VER1
:
11057 fprintf (file
, _(" [Version1 EABI]"));
11059 if (flags
& EF_ARM_SYMSARESORTED
)
11060 fprintf (file
, _(" [sorted symbol table]"));
11062 fprintf (file
, _(" [unsorted symbol table]"));
11064 flags
&= ~ EF_ARM_SYMSARESORTED
;
11067 case EF_ARM_EABI_VER2
:
11068 fprintf (file
, _(" [Version2 EABI]"));
11070 if (flags
& EF_ARM_SYMSARESORTED
)
11071 fprintf (file
, _(" [sorted symbol table]"));
11073 fprintf (file
, _(" [unsorted symbol table]"));
11075 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
11076 fprintf (file
, _(" [dynamic symbols use segment index]"));
11078 if (flags
& EF_ARM_MAPSYMSFIRST
)
11079 fprintf (file
, _(" [mapping symbols precede others]"));
11081 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
11082 | EF_ARM_MAPSYMSFIRST
);
11085 case EF_ARM_EABI_VER3
:
11086 fprintf (file
, _(" [Version3 EABI]"));
11089 case EF_ARM_EABI_VER4
:
11090 fprintf (file
, _(" [Version4 EABI]"));
11093 case EF_ARM_EABI_VER5
:
11094 fprintf (file
, _(" [Version5 EABI]"));
11096 if (flags
& EF_ARM_BE8
)
11097 fprintf (file
, _(" [BE8]"));
11099 if (flags
& EF_ARM_LE8
)
11100 fprintf (file
, _(" [LE8]"));
11102 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
11106 fprintf (file
, _(" <EABI version unrecognised>"));
11110 flags
&= ~ EF_ARM_EABIMASK
;
11112 if (flags
& EF_ARM_RELEXEC
)
11113 fprintf (file
, _(" [relocatable executable]"));
11115 if (flags
& EF_ARM_HASENTRY
)
11116 fprintf (file
, _(" [has entry point]"));
11118 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
11121 fprintf (file
, _("<Unrecognised flag bits set>"));
11123 fputc ('\n', file
);
11129 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
11131 switch (ELF_ST_TYPE (elf_sym
->st_info
))
11133 case STT_ARM_TFUNC
:
11134 return ELF_ST_TYPE (elf_sym
->st_info
);
11136 case STT_ARM_16BIT
:
11137 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11138 This allows us to distinguish between data used by Thumb instructions
11139 and non-data (which is probably code) inside Thumb regions of an
11141 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
11142 return ELF_ST_TYPE (elf_sym
->st_info
);
11153 elf32_arm_gc_mark_hook (asection
*sec
,
11154 struct bfd_link_info
*info
,
11155 Elf_Internal_Rela
*rel
,
11156 struct elf_link_hash_entry
*h
,
11157 Elf_Internal_Sym
*sym
)
11160 switch (ELF32_R_TYPE (rel
->r_info
))
11162 case R_ARM_GNU_VTINHERIT
:
11163 case R_ARM_GNU_VTENTRY
:
11167 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
11170 /* Update the got entry reference counts for the section being removed. */
11173 elf32_arm_gc_sweep_hook (bfd
* abfd
,
11174 struct bfd_link_info
* info
,
11176 const Elf_Internal_Rela
* relocs
)
11178 Elf_Internal_Shdr
*symtab_hdr
;
11179 struct elf_link_hash_entry
**sym_hashes
;
11180 bfd_signed_vma
*local_got_refcounts
;
11181 const Elf_Internal_Rela
*rel
, *relend
;
11182 struct elf32_arm_link_hash_table
* globals
;
11184 if (info
->relocatable
)
11187 globals
= elf32_arm_hash_table (info
);
11188 if (globals
== NULL
)
11191 elf_section_data (sec
)->local_dynrel
= NULL
;
11193 symtab_hdr
= & elf_symtab_hdr (abfd
);
11194 sym_hashes
= elf_sym_hashes (abfd
);
11195 local_got_refcounts
= elf_local_got_refcounts (abfd
);
11197 check_use_blx (globals
);
11199 relend
= relocs
+ sec
->reloc_count
;
11200 for (rel
= relocs
; rel
< relend
; rel
++)
11202 unsigned long r_symndx
;
11203 struct elf_link_hash_entry
*h
= NULL
;
11206 r_symndx
= ELF32_R_SYM (rel
->r_info
);
11207 if (r_symndx
>= symtab_hdr
->sh_info
)
11209 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
11210 while (h
->root
.type
== bfd_link_hash_indirect
11211 || h
->root
.type
== bfd_link_hash_warning
)
11212 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11215 r_type
= ELF32_R_TYPE (rel
->r_info
);
11216 r_type
= arm_real_reloc_type (globals
, r_type
);
11220 case R_ARM_GOT_PREL
:
11221 case R_ARM_TLS_GD32
:
11222 case R_ARM_TLS_IE32
:
11225 if (h
->got
.refcount
> 0)
11226 h
->got
.refcount
-= 1;
11228 else if (local_got_refcounts
!= NULL
)
11230 if (local_got_refcounts
[r_symndx
] > 0)
11231 local_got_refcounts
[r_symndx
] -= 1;
11235 case R_ARM_TLS_LDM32
:
11236 globals
->tls_ldm_got
.refcount
-= 1;
11240 case R_ARM_ABS32_NOI
:
11242 case R_ARM_REL32_NOI
:
11248 case R_ARM_THM_CALL
:
11249 case R_ARM_THM_JUMP24
:
11250 case R_ARM_THM_JUMP19
:
11251 case R_ARM_MOVW_ABS_NC
:
11252 case R_ARM_MOVT_ABS
:
11253 case R_ARM_MOVW_PREL_NC
:
11254 case R_ARM_MOVT_PREL
:
11255 case R_ARM_THM_MOVW_ABS_NC
:
11256 case R_ARM_THM_MOVT_ABS
:
11257 case R_ARM_THM_MOVW_PREL_NC
:
11258 case R_ARM_THM_MOVT_PREL
:
11259 /* Should the interworking branches be here also? */
11263 struct elf32_arm_link_hash_entry
*eh
;
11264 struct elf_dyn_relocs
**pp
;
11265 struct elf_dyn_relocs
*p
;
11267 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11269 if (h
->plt
.refcount
> 0)
11271 h
->plt
.refcount
-= 1;
11272 if (r_type
== R_ARM_THM_CALL
)
11273 eh
->plt_maybe_thumb_refcount
--;
11275 if (r_type
== R_ARM_THM_JUMP24
11276 || r_type
== R_ARM_THM_JUMP19
)
11277 eh
->plt_thumb_refcount
--;
11280 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
11283 /* Everything must go for SEC. */
11298 /* Look through the relocs for a section during the first phase. */
11301 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
11302 asection
*sec
, const Elf_Internal_Rela
*relocs
)
11304 Elf_Internal_Shdr
*symtab_hdr
;
11305 struct elf_link_hash_entry
**sym_hashes
;
11306 const Elf_Internal_Rela
*rel
;
11307 const Elf_Internal_Rela
*rel_end
;
11310 struct elf32_arm_link_hash_table
*htab
;
11311 bfd_boolean needs_plt
;
11312 unsigned long nsyms
;
11314 if (info
->relocatable
)
11317 BFD_ASSERT (is_arm_elf (abfd
));
11319 htab
= elf32_arm_hash_table (info
);
11325 /* Create dynamic sections for relocatable executables so that we can
11326 copy relocations. */
11327 if (htab
->root
.is_relocatable_executable
11328 && ! htab
->root
.dynamic_sections_created
)
11330 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
11334 dynobj
= elf_hash_table (info
)->dynobj
;
11335 symtab_hdr
= & elf_symtab_hdr (abfd
);
11336 sym_hashes
= elf_sym_hashes (abfd
);
11337 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
11339 rel_end
= relocs
+ sec
->reloc_count
;
11340 for (rel
= relocs
; rel
< rel_end
; rel
++)
11342 struct elf_link_hash_entry
*h
;
11343 struct elf32_arm_link_hash_entry
*eh
;
11344 unsigned long r_symndx
;
11347 r_symndx
= ELF32_R_SYM (rel
->r_info
);
11348 r_type
= ELF32_R_TYPE (rel
->r_info
);
11349 r_type
= arm_real_reloc_type (htab
, r_type
);
11351 if (r_symndx
>= nsyms
11352 /* PR 9934: It is possible to have relocations that do not
11353 refer to symbols, thus it is also possible to have an
11354 object file containing relocations but no symbol table. */
11355 && (r_symndx
> STN_UNDEF
|| nsyms
> 0))
11357 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
11362 if (nsyms
== 0 || r_symndx
< symtab_hdr
->sh_info
)
11366 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
11367 while (h
->root
.type
== bfd_link_hash_indirect
11368 || h
->root
.type
== bfd_link_hash_warning
)
11369 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11372 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11374 /* Could be done earlier, if h were already available. */
11375 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
11379 case R_ARM_GOT_PREL
:
11380 case R_ARM_TLS_GD32
:
11381 case R_ARM_TLS_IE32
:
11382 case R_ARM_TLS_GOTDESC
:
11383 case R_ARM_TLS_DESCSEQ
:
11384 case R_ARM_THM_TLS_DESCSEQ
:
11385 case R_ARM_TLS_CALL
:
11386 case R_ARM_THM_TLS_CALL
:
11387 /* This symbol requires a global offset table entry. */
11389 int tls_type
, old_tls_type
;
11393 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
11395 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
11397 case R_ARM_TLS_GOTDESC
:
11398 case R_ARM_TLS_CALL
: case R_ARM_THM_TLS_CALL
:
11399 case R_ARM_TLS_DESCSEQ
: case R_ARM_THM_TLS_DESCSEQ
:
11400 tls_type
= GOT_TLS_GDESC
; break;
11402 default: tls_type
= GOT_NORMAL
; break;
11408 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
11412 bfd_signed_vma
*local_got_refcounts
;
11414 /* This is a global offset table entry for a local symbol. */
11415 local_got_refcounts
= elf_local_got_refcounts (abfd
);
11416 if (local_got_refcounts
== NULL
)
11418 bfd_size_type size
;
11420 size
= symtab_hdr
->sh_info
;
11421 size
*= (sizeof (bfd_signed_vma
)
11422 + sizeof (bfd_vma
) + sizeof (char));
11423 local_got_refcounts
= (bfd_signed_vma
*)
11424 bfd_zalloc (abfd
, size
);
11425 if (local_got_refcounts
== NULL
)
11427 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
11428 elf32_arm_local_tlsdesc_gotent (abfd
)
11429 = (bfd_vma
*) (local_got_refcounts
11430 + symtab_hdr
->sh_info
);
11431 elf32_arm_local_got_tls_type (abfd
)
11432 = (char *) (elf32_arm_local_tlsdesc_gotent (abfd
)
11433 + symtab_hdr
->sh_info
);
11435 local_got_refcounts
[r_symndx
] += 1;
11436 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
11439 /* If a variable is accessed with both tls methods, two
11440 slots may be created. */
11441 if (GOT_TLS_GD_ANY_P (old_tls_type
)
11442 && GOT_TLS_GD_ANY_P (tls_type
))
11443 tls_type
|= old_tls_type
;
11445 /* We will already have issued an error message if there
11446 is a TLS/non-TLS mismatch, based on the symbol
11447 type. So just combine any TLS types needed. */
11448 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
11449 && tls_type
!= GOT_NORMAL
)
11450 tls_type
|= old_tls_type
;
11452 /* If the symbol is accessed in both IE and GDESC
11453 method, we're able to relax. Turn off the GDESC flag,
11454 without messing up with any other kind of tls types
11455 that may be involved */
11456 if ((tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GDESC
))
11457 tls_type
&= ~GOT_TLS_GDESC
;
11459 if (old_tls_type
!= tls_type
)
11462 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
11464 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
11467 /* Fall through. */
11469 case R_ARM_TLS_LDM32
:
11470 if (r_type
== R_ARM_TLS_LDM32
)
11471 htab
->tls_ldm_got
.refcount
++;
11472 /* Fall through. */
11474 case R_ARM_GOTOFF32
:
11476 if (htab
->root
.sgot
== NULL
)
11478 if (htab
->root
.dynobj
== NULL
)
11479 htab
->root
.dynobj
= abfd
;
11480 if (!create_got_section (htab
->root
.dynobj
, info
))
11486 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
11487 ldr __GOTT_INDEX__ offsets. */
11488 if (!htab
->vxworks_p
)
11490 /* Fall through. */
11497 case R_ARM_THM_CALL
:
11498 case R_ARM_THM_JUMP24
:
11499 case R_ARM_THM_JUMP19
:
11503 case R_ARM_MOVW_ABS_NC
:
11504 case R_ARM_MOVT_ABS
:
11505 case R_ARM_THM_MOVW_ABS_NC
:
11506 case R_ARM_THM_MOVT_ABS
:
11509 (*_bfd_error_handler
)
11510 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
11511 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
11512 (h
) ? h
->root
.root
.string
: "a local symbol");
11513 bfd_set_error (bfd_error_bad_value
);
11517 /* Fall through. */
11519 case R_ARM_ABS32_NOI
:
11521 case R_ARM_REL32_NOI
:
11522 case R_ARM_MOVW_PREL_NC
:
11523 case R_ARM_MOVT_PREL
:
11524 case R_ARM_THM_MOVW_PREL_NC
:
11525 case R_ARM_THM_MOVT_PREL
:
11529 /* Should the interworking branches be listed here? */
11532 /* If this reloc is in a read-only section, we might
11533 need a copy reloc. We can't check reliably at this
11534 stage whether the section is read-only, as input
11535 sections have not yet been mapped to output sections.
11536 Tentatively set the flag for now, and correct in
11537 adjust_dynamic_symbol. */
11539 h
->non_got_ref
= 1;
11541 /* We may need a .plt entry if the function this reloc
11542 refers to is in a different object. We can't tell for
11543 sure yet, because something later might force the
11548 /* If we create a PLT entry, this relocation will reference
11549 it, even if it's an ABS32 relocation. */
11550 h
->plt
.refcount
+= 1;
11552 /* It's too early to use htab->use_blx here, so we have to
11553 record possible blx references separately from
11554 relocs that definitely need a thumb stub. */
11556 if (r_type
== R_ARM_THM_CALL
)
11557 eh
->plt_maybe_thumb_refcount
+= 1;
11559 if (r_type
== R_ARM_THM_JUMP24
11560 || r_type
== R_ARM_THM_JUMP19
)
11561 eh
->plt_thumb_refcount
+= 1;
11564 /* If we are creating a shared library or relocatable executable,
11565 and this is a reloc against a global symbol, or a non PC
11566 relative reloc against a local symbol, then we need to copy
11567 the reloc into the shared library. However, if we are linking
11568 with -Bsymbolic, we do not need to copy a reloc against a
11569 global symbol which is defined in an object we are
11570 including in the link (i.e., DEF_REGULAR is set). At
11571 this point we have not seen all the input files, so it is
11572 possible that DEF_REGULAR is not set now but will be set
11573 later (it is never cleared). We account for that
11574 possibility below by storing information in the
11575 dyn_relocs field of the hash table entry. */
11576 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
11577 && (sec
->flags
& SEC_ALLOC
) != 0
11578 && ((r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
)
11579 || (h
!= NULL
&& ! needs_plt
11580 && (! info
->symbolic
|| ! h
->def_regular
))))
11582 struct elf_dyn_relocs
*p
, **head
;
11584 /* When creating a shared object, we must copy these
11585 reloc types into the output file. We create a reloc
11586 section in dynobj and make room for this reloc. */
11587 if (sreloc
== NULL
)
11589 sreloc
= _bfd_elf_make_dynamic_reloc_section
11590 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
11592 if (sreloc
== NULL
)
11595 /* BPABI objects never have dynamic relocations mapped. */
11596 if (htab
->symbian_p
)
11600 flags
= bfd_get_section_flags (dynobj
, sreloc
);
11601 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
11602 bfd_set_section_flags (dynobj
, sreloc
, flags
);
11606 /* If this is a global symbol, we count the number of
11607 relocations we need for this symbol. */
11610 head
= &((struct elf32_arm_link_hash_entry
*) h
)->dyn_relocs
;
11614 /* Track dynamic relocs needed for local syms too.
11615 We really need local syms available to do this
11616 easily. Oh well. */
11619 Elf_Internal_Sym
*isym
;
11621 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
11626 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
11630 vpp
= &elf_section_data (s
)->local_dynrel
;
11631 head
= (struct elf_dyn_relocs
**) vpp
;
11635 if (p
== NULL
|| p
->sec
!= sec
)
11637 bfd_size_type amt
= sizeof *p
;
11639 p
= (struct elf_dyn_relocs
*)
11640 bfd_alloc (htab
->root
.dynobj
, amt
);
11650 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
11656 /* This relocation describes the C++ object vtable hierarchy.
11657 Reconstruct it for later use during GC. */
11658 case R_ARM_GNU_VTINHERIT
:
11659 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
11663 /* This relocation describes which C++ vtable entries are actually
11664 used. Record for later use during GC. */
11665 case R_ARM_GNU_VTENTRY
:
11666 BFD_ASSERT (h
!= NULL
);
11668 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
11677 /* Unwinding tables are not referenced directly. This pass marks them as
11678 required if the corresponding code section is marked. */
11681 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
11682 elf_gc_mark_hook_fn gc_mark_hook
)
11685 Elf_Internal_Shdr
**elf_shdrp
;
11688 /* Marking EH data may cause additional code sections to be marked,
11689 requiring multiple passes. */
11694 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11698 if (! is_arm_elf (sub
))
11701 elf_shdrp
= elf_elfsections (sub
);
11702 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11704 Elf_Internal_Shdr
*hdr
;
11706 hdr
= &elf_section_data (o
)->this_hdr
;
11707 if (hdr
->sh_type
== SHT_ARM_EXIDX
11709 && hdr
->sh_link
< elf_numsections (sub
)
11711 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
11714 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11724 /* Treat mapping symbols as special target symbols. */
11727 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
11729 return bfd_is_arm_special_symbol_name (sym
->name
,
11730 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
11733 /* This is a copy of elf_find_function() from elf.c except that
11734 ARM mapping symbols are ignored when looking for function names
11735 and STT_ARM_TFUNC is considered to a function type. */
11738 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
11739 asection
* section
,
11740 asymbol
** symbols
,
11742 const char ** filename_ptr
,
11743 const char ** functionname_ptr
)
11745 const char * filename
= NULL
;
11746 asymbol
* func
= NULL
;
11747 bfd_vma low_func
= 0;
11750 for (p
= symbols
; *p
!= NULL
; p
++)
11752 elf_symbol_type
*q
;
11754 q
= (elf_symbol_type
*) *p
;
11756 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
11761 filename
= bfd_asymbol_name (&q
->symbol
);
11764 case STT_ARM_TFUNC
:
11766 /* Skip mapping symbols. */
11767 if ((q
->symbol
.flags
& BSF_LOCAL
)
11768 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
11769 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
11771 /* Fall through. */
11772 if (bfd_get_section (&q
->symbol
) == section
11773 && q
->symbol
.value
>= low_func
11774 && q
->symbol
.value
<= offset
)
11776 func
= (asymbol
*) q
;
11777 low_func
= q
->symbol
.value
;
11787 *filename_ptr
= filename
;
11788 if (functionname_ptr
)
11789 *functionname_ptr
= bfd_asymbol_name (func
);
11795 /* Find the nearest line to a particular section and offset, for error
11796 reporting. This code is a duplicate of the code in elf.c, except
11797 that it uses arm_elf_find_function. */
11800 elf32_arm_find_nearest_line (bfd
* abfd
,
11801 asection
* section
,
11802 asymbol
** symbols
,
11804 const char ** filename_ptr
,
11805 const char ** functionname_ptr
,
11806 unsigned int * line_ptr
)
11808 bfd_boolean found
= FALSE
;
11810 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11812 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11813 filename_ptr
, functionname_ptr
,
11815 & elf_tdata (abfd
)->dwarf2_find_line_info
))
11817 if (!*functionname_ptr
)
11818 arm_elf_find_function (abfd
, section
, symbols
, offset
,
11819 *filename_ptr
? NULL
: filename_ptr
,
11825 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
11826 & found
, filename_ptr
,
11827 functionname_ptr
, line_ptr
,
11828 & elf_tdata (abfd
)->line_info
))
11831 if (found
&& (*functionname_ptr
|| *line_ptr
))
11834 if (symbols
== NULL
)
11837 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
11838 filename_ptr
, functionname_ptr
))
11846 elf32_arm_find_inliner_info (bfd
* abfd
,
11847 const char ** filename_ptr
,
11848 const char ** functionname_ptr
,
11849 unsigned int * line_ptr
)
11852 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11853 functionname_ptr
, line_ptr
,
11854 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11858 /* Adjust a symbol defined by a dynamic object and referenced by a
11859 regular object. The current definition is in some section of the
11860 dynamic object, but we're not including those sections. We have to
11861 change the definition to something the rest of the link can
11865 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
11866 struct elf_link_hash_entry
* h
)
11870 struct elf32_arm_link_hash_entry
* eh
;
11871 struct elf32_arm_link_hash_table
*globals
;
11873 globals
= elf32_arm_hash_table (info
);
11874 if (globals
== NULL
)
11877 dynobj
= elf_hash_table (info
)->dynobj
;
11879 /* Make sure we know what is going on here. */
11880 BFD_ASSERT (dynobj
!= NULL
11882 || h
->u
.weakdef
!= NULL
11885 && !h
->def_regular
)));
11887 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11889 /* If this is a function, put it in the procedure linkage table. We
11890 will fill in the contents of the procedure linkage table later,
11891 when we know the address of the .got section. */
11892 if (h
->type
== STT_FUNC
|| h
->type
== STT_ARM_TFUNC
11895 if (h
->plt
.refcount
<= 0
11896 || SYMBOL_CALLS_LOCAL (info
, h
)
11897 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
11898 && h
->root
.type
== bfd_link_hash_undefweak
))
11900 /* This case can occur if we saw a PLT32 reloc in an input
11901 file, but the symbol was never referred to by a dynamic
11902 object, or if all references were garbage collected. In
11903 such a case, we don't actually need to build a procedure
11904 linkage table, and we can just do a PC24 reloc instead. */
11905 h
->plt
.offset
= (bfd_vma
) -1;
11906 eh
->plt_thumb_refcount
= 0;
11907 eh
->plt_maybe_thumb_refcount
= 0;
11915 /* It's possible that we incorrectly decided a .plt reloc was
11916 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11917 in check_relocs. We can't decide accurately between function
11918 and non-function syms in check-relocs; Objects loaded later in
11919 the link may change h->type. So fix it now. */
11920 h
->plt
.offset
= (bfd_vma
) -1;
11921 eh
->plt_thumb_refcount
= 0;
11922 eh
->plt_maybe_thumb_refcount
= 0;
11925 /* If this is a weak symbol, and there is a real definition, the
11926 processor independent code will have arranged for us to see the
11927 real definition first, and we can just use the same value. */
11928 if (h
->u
.weakdef
!= NULL
)
11930 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
11931 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
11932 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
11933 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
11937 /* If there are no non-GOT references, we do not need a copy
11939 if (!h
->non_got_ref
)
11942 /* This is a reference to a symbol defined by a dynamic object which
11943 is not a function. */
11945 /* If we are creating a shared library, we must presume that the
11946 only references to the symbol are via the global offset table.
11947 For such cases we need not do anything here; the relocations will
11948 be handled correctly by relocate_section. Relocatable executables
11949 can reference data in shared objects directly, so we don't need to
11950 do anything here. */
11951 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
11956 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
11957 h
->root
.root
.string
);
11961 /* We must allocate the symbol in our .dynbss section, which will
11962 become part of the .bss section of the executable. There will be
11963 an entry for this symbol in the .dynsym section. The dynamic
11964 object will contain position independent code, so all references
11965 from the dynamic object to this symbol will go through the global
11966 offset table. The dynamic linker will use the .dynsym entry to
11967 determine the address it must put in the global offset table, so
11968 both the dynamic object and the regular object will refer to the
11969 same memory location for the variable. */
11970 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
11971 BFD_ASSERT (s
!= NULL
);
11973 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11974 copy the initial value out of the dynamic object and into the
11975 runtime process image. We need to remember the offset into the
11976 .rel(a).bss section we are going to use. */
11977 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
11981 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
11982 BFD_ASSERT (srel
!= NULL
);
11983 srel
->size
+= RELOC_SIZE (globals
);
11987 return _bfd_elf_adjust_dynamic_copy (h
, s
);
11990 /* Allocate space in .plt, .got and associated reloc sections for
11994 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
11996 struct bfd_link_info
*info
;
11997 struct elf32_arm_link_hash_table
*htab
;
11998 struct elf32_arm_link_hash_entry
*eh
;
11999 struct elf_dyn_relocs
*p
;
12000 bfd_signed_vma thumb_refs
;
12002 if (h
->root
.type
== bfd_link_hash_indirect
)
12005 if (h
->root
.type
== bfd_link_hash_warning
)
12006 /* When warning symbols are created, they **replace** the "real"
12007 entry in the hash table, thus we never get to see the real
12008 symbol in a hash traversal. So look at it now. */
12009 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12011 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12013 info
= (struct bfd_link_info
*) inf
;
12014 htab
= elf32_arm_hash_table (info
);
12018 if (htab
->root
.dynamic_sections_created
12019 && h
->plt
.refcount
> 0)
12021 /* Make sure this symbol is output as a dynamic symbol.
12022 Undefined weak syms won't yet be marked as dynamic. */
12023 if (h
->dynindx
== -1
12024 && !h
->forced_local
)
12026 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12031 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
12033 asection
*s
= htab
->root
.splt
;
12035 /* If this is the first .plt entry, make room for the special
12038 s
->size
+= htab
->plt_header_size
;
12040 h
->plt
.offset
= s
->size
;
12042 /* If we will insert a Thumb trampoline before this PLT, leave room
12044 thumb_refs
= eh
->plt_thumb_refcount
;
12045 if (!htab
->use_blx
)
12046 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12048 if (thumb_refs
> 0)
12050 h
->plt
.offset
+= PLT_THUMB_STUB_SIZE
;
12051 s
->size
+= PLT_THUMB_STUB_SIZE
;
12054 /* If this symbol is not defined in a regular file, and we are
12055 not generating a shared library, then set the symbol to this
12056 location in the .plt. This is required to make function
12057 pointers compare as equal between the normal executable and
12058 the shared library. */
12060 && !h
->def_regular
)
12062 h
->root
.u
.def
.section
= s
;
12063 h
->root
.u
.def
.value
= h
->plt
.offset
;
12065 /* Make sure the function is not marked as Thumb, in case
12066 it is the target of an ABS32 relocation, which will
12067 point to the PLT entry. */
12068 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
12069 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
12072 /* Make room for this entry. */
12073 s
->size
+= htab
->plt_entry_size
;
12075 if (!htab
->symbian_p
)
12077 /* We also need to make an entry in the .got.plt section, which
12078 will be placed in the .got section by the linker script. */
12079 eh
->plt_got_offset
= (htab
->root
.sgotplt
->size
12080 - 8 * htab
->num_tls_desc
);
12081 htab
->root
.sgotplt
->size
+= 4;
12084 /* We also need to make an entry in the .rel(a).plt section. */
12085 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
12086 htab
->next_tls_desc_index
++;
12088 /* VxWorks executables have a second set of relocations for
12089 each PLT entry. They go in a separate relocation section,
12090 which is processed by the kernel loader. */
12091 if (htab
->vxworks_p
&& !info
->shared
)
12093 /* There is a relocation for the initial PLT entry:
12094 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
12095 if (h
->plt
.offset
== htab
->plt_header_size
)
12096 htab
->srelplt2
->size
+= RELOC_SIZE (htab
);
12098 /* There are two extra relocations for each subsequent
12099 PLT entry: an R_ARM_32 relocation for the GOT entry,
12100 and an R_ARM_32 relocation for the PLT entry. */
12101 htab
->srelplt2
->size
+= RELOC_SIZE (htab
) * 2;
12106 h
->plt
.offset
= (bfd_vma
) -1;
12112 h
->plt
.offset
= (bfd_vma
) -1;
12116 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12117 eh
->tlsdesc_got
= (bfd_vma
) -1;
12119 if (h
->got
.refcount
> 0)
12123 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
12126 /* Make sure this symbol is output as a dynamic symbol.
12127 Undefined weak syms won't yet be marked as dynamic. */
12128 if (h
->dynindx
== -1
12129 && !h
->forced_local
)
12131 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12135 if (!htab
->symbian_p
)
12137 s
= htab
->root
.sgot
;
12138 h
->got
.offset
= s
->size
;
12140 if (tls_type
== GOT_UNKNOWN
)
12143 if (tls_type
== GOT_NORMAL
)
12144 /* Non-TLS symbols need one GOT slot. */
12148 if (tls_type
& GOT_TLS_GDESC
)
12150 /* R_ARM_TLS_DESC needs 2 GOT slots. */
12152 = (htab
->root
.sgotplt
->size
12153 - elf32_arm_compute_jump_table_size (htab
));
12154 htab
->root
.sgotplt
->size
+= 8;
12155 h
->got
.offset
= (bfd_vma
) -2;
12156 /* plt_got_offset needs to know there's a TLS_DESC
12157 reloc in the middle of .got.plt. */
12158 htab
->num_tls_desc
++;
12161 if (tls_type
& GOT_TLS_GD
)
12163 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
12164 the symbol is both GD and GDESC, got.offset may
12165 have been overwritten. */
12166 h
->got
.offset
= s
->size
;
12170 if (tls_type
& GOT_TLS_IE
)
12171 /* R_ARM_TLS_IE32 needs one GOT slot. */
12175 dyn
= htab
->root
.dynamic_sections_created
;
12178 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
12180 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
12183 if (tls_type
!= GOT_NORMAL
12184 && (info
->shared
|| indx
!= 0)
12185 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
12186 || h
->root
.type
!= bfd_link_hash_undefweak
))
12188 if (tls_type
& GOT_TLS_IE
)
12189 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
12191 if (tls_type
& GOT_TLS_GD
)
12192 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
12194 if (tls_type
& GOT_TLS_GDESC
)
12196 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
12197 /* GDESC needs a trampoline to jump to. */
12198 htab
->tls_trampoline
= -1;
12201 /* Only GD needs it. GDESC just emits one relocation per
12203 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
12204 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
12206 else if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
12207 || h
->root
.type
!= bfd_link_hash_undefweak
)
12209 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
12210 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
12214 h
->got
.offset
= (bfd_vma
) -1;
12216 /* Allocate stubs for exported Thumb functions on v4t. */
12217 if (!htab
->use_blx
&& h
->dynindx
!= -1
12219 && ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
12220 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
12222 struct elf_link_hash_entry
* th
;
12223 struct bfd_link_hash_entry
* bh
;
12224 struct elf_link_hash_entry
* myh
;
12228 /* Create a new symbol to regist the real location of the function. */
12229 s
= h
->root
.u
.def
.section
;
12230 sprintf (name
, "__real_%s", h
->root
.root
.string
);
12231 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
12232 name
, BSF_GLOBAL
, s
,
12233 h
->root
.u
.def
.value
,
12234 NULL
, TRUE
, FALSE
, &bh
);
12236 myh
= (struct elf_link_hash_entry
*) bh
;
12237 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
12238 myh
->forced_local
= 1;
12239 eh
->export_glue
= myh
;
12240 th
= record_arm_to_thumb_glue (info
, h
);
12241 /* Point the symbol at the stub. */
12242 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
12243 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
12244 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
12247 if (eh
->dyn_relocs
== NULL
)
12250 /* In the shared -Bsymbolic case, discard space allocated for
12251 dynamic pc-relative relocs against symbols which turn out to be
12252 defined in regular objects. For the normal shared case, discard
12253 space for pc-relative relocs that have become local due to symbol
12254 visibility changes. */
12256 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
12258 /* The only relocs that use pc_count are R_ARM_REL32 and
12259 R_ARM_REL32_NOI, which will appear on something like
12260 ".long foo - .". We want calls to protected symbols to resolve
12261 directly to the function rather than going via the plt. If people
12262 want function pointer comparisons to work as expected then they
12263 should avoid writing assembly like ".long foo - .". */
12264 if (SYMBOL_CALLS_LOCAL (info
, h
))
12266 struct elf_dyn_relocs
**pp
;
12268 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
12270 p
->count
-= p
->pc_count
;
12279 if (htab
->vxworks_p
)
12281 struct elf_dyn_relocs
**pp
;
12283 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
12285 if (strcmp (p
->sec
->output_section
->name
, ".tls_vars") == 0)
12292 /* Also discard relocs on undefined weak syms with non-default
12294 if (eh
->dyn_relocs
!= NULL
12295 && h
->root
.type
== bfd_link_hash_undefweak
)
12297 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
12298 eh
->dyn_relocs
= NULL
;
12300 /* Make sure undefined weak symbols are output as a dynamic
12302 else if (h
->dynindx
== -1
12303 && !h
->forced_local
)
12305 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12310 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
12311 && h
->root
.type
== bfd_link_hash_new
)
12313 /* Output absolute symbols so that we can create relocations
12314 against them. For normal symbols we output a relocation
12315 against the section that contains them. */
12316 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12323 /* For the non-shared case, discard space for relocs against
12324 symbols which turn out to need copy relocs or are not
12327 if (!h
->non_got_ref
12328 && ((h
->def_dynamic
12329 && !h
->def_regular
)
12330 || (htab
->root
.dynamic_sections_created
12331 && (h
->root
.type
== bfd_link_hash_undefweak
12332 || h
->root
.type
== bfd_link_hash_undefined
))))
12334 /* Make sure this symbol is output as a dynamic symbol.
12335 Undefined weak syms won't yet be marked as dynamic. */
12336 if (h
->dynindx
== -1
12337 && !h
->forced_local
)
12339 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12343 /* If that succeeded, we know we'll be keeping all the
12345 if (h
->dynindx
!= -1)
12349 eh
->dyn_relocs
= NULL
;
12354 /* Finally, allocate space. */
12355 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
12357 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
12358 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
12364 /* Find any dynamic relocs that apply to read-only sections. */
12367 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
12369 struct elf32_arm_link_hash_entry
* eh
;
12370 struct elf_dyn_relocs
* p
;
12372 if (h
->root
.type
== bfd_link_hash_warning
)
12373 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12375 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12376 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
12378 asection
*s
= p
->sec
;
12380 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
12382 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
12384 info
->flags
|= DF_TEXTREL
;
12386 /* Not an error, just cut short the traversal. */
12394 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
12397 struct elf32_arm_link_hash_table
*globals
;
12399 globals
= elf32_arm_hash_table (info
);
12400 if (globals
== NULL
)
12403 globals
->byteswap_code
= byteswap_code
;
12406 /* Set the sizes of the dynamic sections. */
12409 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
12410 struct bfd_link_info
* info
)
12415 bfd_boolean relocs
;
12417 struct elf32_arm_link_hash_table
*htab
;
12419 htab
= elf32_arm_hash_table (info
);
12423 dynobj
= elf_hash_table (info
)->dynobj
;
12424 BFD_ASSERT (dynobj
!= NULL
);
12425 check_use_blx (htab
);
12427 if (elf_hash_table (info
)->dynamic_sections_created
)
12429 /* Set the contents of the .interp section to the interpreter. */
12430 if (info
->executable
)
12432 s
= bfd_get_section_by_name (dynobj
, ".interp");
12433 BFD_ASSERT (s
!= NULL
);
12434 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
12435 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
12439 /* Set up .got offsets for local syms, and space for local dynamic
12441 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
12443 bfd_signed_vma
*local_got
;
12444 bfd_signed_vma
*end_local_got
;
12445 char *local_tls_type
;
12446 bfd_vma
*local_tlsdesc_gotent
;
12447 bfd_size_type locsymcount
;
12448 Elf_Internal_Shdr
*symtab_hdr
;
12450 bfd_boolean is_vxworks
= htab
->vxworks_p
;
12452 if (! is_arm_elf (ibfd
))
12455 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
12457 struct elf_dyn_relocs
*p
;
12459 for (p
= (struct elf_dyn_relocs
*)
12460 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
12462 if (!bfd_is_abs_section (p
->sec
)
12463 && bfd_is_abs_section (p
->sec
->output_section
))
12465 /* Input section has been discarded, either because
12466 it is a copy of a linkonce section or due to
12467 linker script /DISCARD/, so we'll be discarding
12470 else if (is_vxworks
12471 && strcmp (p
->sec
->output_section
->name
,
12474 /* Relocations in vxworks .tls_vars sections are
12475 handled specially by the loader. */
12477 else if (p
->count
!= 0)
12479 srel
= elf_section_data (p
->sec
)->sreloc
;
12480 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
12481 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
12482 info
->flags
|= DF_TEXTREL
;
12487 local_got
= elf_local_got_refcounts (ibfd
);
12491 symtab_hdr
= & elf_symtab_hdr (ibfd
);
12492 locsymcount
= symtab_hdr
->sh_info
;
12493 end_local_got
= local_got
+ locsymcount
;
12494 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
12495 local_tlsdesc_gotent
= elf32_arm_local_tlsdesc_gotent (ibfd
);
12496 s
= htab
->root
.sgot
;
12497 srel
= htab
->root
.srelgot
;
12498 for (; local_got
< end_local_got
;
12499 ++local_got
, ++local_tls_type
, ++local_tlsdesc_gotent
)
12501 *local_tlsdesc_gotent
= (bfd_vma
) -1;
12502 if (*local_got
> 0)
12504 *local_got
= s
->size
;
12505 if (*local_tls_type
& GOT_TLS_GD
)
12506 /* TLS_GD relocs need an 8-byte structure in the GOT. */
12508 if (*local_tls_type
& GOT_TLS_GDESC
)
12510 *local_tlsdesc_gotent
= htab
->root
.sgotplt
->size
12511 - elf32_arm_compute_jump_table_size (htab
);
12512 htab
->root
.sgotplt
->size
+= 8;
12513 *local_got
= (bfd_vma
) -2;
12514 /* plt_got_offset needs to know there's a TLS_DESC
12515 reloc in the middle of .got.plt. */
12516 htab
->num_tls_desc
++;
12518 if (*local_tls_type
& GOT_TLS_IE
)
12521 if (*local_tls_type
& GOT_NORMAL
)
12523 /* If the symbol is both GD and GDESC, *local_got
12524 may have been overwritten. */
12525 *local_got
= s
->size
;
12529 if ((info
->shared
&& !(*local_tls_type
& GOT_TLS_GDESC
))
12530 || *local_tls_type
& GOT_TLS_GD
)
12531 srel
->size
+= RELOC_SIZE (htab
);
12533 if (info
->shared
&& *local_tls_type
& GOT_TLS_GDESC
)
12535 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
12536 htab
->tls_trampoline
= -1;
12540 *local_got
= (bfd_vma
) -1;
12544 if (htab
->tls_ldm_got
.refcount
> 0)
12546 /* Allocate two GOT entries and one dynamic relocation (if necessary)
12547 for R_ARM_TLS_LDM32 relocations. */
12548 htab
->tls_ldm_got
.offset
= htab
->root
.sgot
->size
;
12549 htab
->root
.sgot
->size
+= 8;
12551 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
12554 htab
->tls_ldm_got
.offset
= -1;
12556 /* Allocate global sym .plt and .got entries, and space for global
12557 sym dynamic relocs. */
12558 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
12560 /* Here we rummage through the found bfds to collect glue information. */
12561 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
12563 if (! is_arm_elf (ibfd
))
12566 /* Initialise mapping tables for code/data. */
12567 bfd_elf32_arm_init_maps (ibfd
);
12569 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
12570 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
12571 /* xgettext:c-format */
12572 _bfd_error_handler (_("Errors encountered processing file %s"),
12576 /* Allocate space for the glue sections now that we've sized them. */
12577 bfd_elf32_arm_allocate_interworking_sections (info
);
12579 /* For every jump slot reserved in the sgotplt, reloc_count is
12580 incremented. However, when we reserve space for TLS descriptors,
12581 it's not incremented, so in order to compute the space reserved
12582 for them, it suffices to multiply the reloc count by the jump
12584 if (htab
->root
.srelplt
)
12585 htab
->sgotplt_jump_table_size
= elf32_arm_compute_jump_table_size(htab
);
12587 if (htab
->tls_trampoline
)
12589 if (htab
->root
.splt
->size
== 0)
12590 htab
->root
.splt
->size
+= htab
->plt_header_size
;
12592 htab
->tls_trampoline
= htab
->root
.splt
->size
;
12593 htab
->root
.splt
->size
+= htab
->plt_entry_size
;
12595 /* If we're not using lazy TLS relocations, don't generate the
12596 PLT and GOT entries they require. */
12597 if (!(info
->flags
& DF_BIND_NOW
))
12599 htab
->dt_tlsdesc_got
= htab
->root
.sgot
->size
;
12600 htab
->root
.sgot
->size
+= 4;
12602 htab
->dt_tlsdesc_plt
= htab
->root
.splt
->size
;
12603 htab
->root
.splt
->size
+= 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline
);
12607 /* The check_relocs and adjust_dynamic_symbol entry points have
12608 determined the sizes of the various dynamic sections. Allocate
12609 memory for them. */
12612 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
12616 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
12619 /* It's OK to base decisions on the section name, because none
12620 of the dynobj section names depend upon the input files. */
12621 name
= bfd_get_section_name (dynobj
, s
);
12623 if (strcmp (name
, ".plt") == 0)
12625 /* Remember whether there is a PLT. */
12626 plt
= s
->size
!= 0;
12628 else if (CONST_STRNEQ (name
, ".rel"))
12632 /* Remember whether there are any reloc sections other
12633 than .rel(a).plt and .rela.plt.unloaded. */
12634 if (s
!= htab
->root
.srelplt
&& s
!= htab
->srelplt2
)
12637 /* We use the reloc_count field as a counter if we need
12638 to copy relocs into the output file. */
12639 s
->reloc_count
= 0;
12642 else if (! CONST_STRNEQ (name
, ".got")
12643 && strcmp (name
, ".dynbss") != 0)
12645 /* It's not one of our sections, so don't allocate space. */
12651 /* If we don't need this section, strip it from the
12652 output file. This is mostly to handle .rel(a).bss and
12653 .rel(a).plt. We must create both sections in
12654 create_dynamic_sections, because they must be created
12655 before the linker maps input sections to output
12656 sections. The linker does that before
12657 adjust_dynamic_symbol is called, and it is that
12658 function which decides whether anything needs to go
12659 into these sections. */
12660 s
->flags
|= SEC_EXCLUDE
;
12664 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
12667 /* Allocate memory for the section contents. */
12668 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
12669 if (s
->contents
== NULL
)
12673 if (elf_hash_table (info
)->dynamic_sections_created
)
12675 /* Add some entries to the .dynamic section. We fill in the
12676 values later, in elf32_arm_finish_dynamic_sections, but we
12677 must add the entries now so that we get the correct size for
12678 the .dynamic section. The DT_DEBUG entry is filled in by the
12679 dynamic linker and used by the debugger. */
12680 #define add_dynamic_entry(TAG, VAL) \
12681 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
12683 if (info
->executable
)
12685 if (!add_dynamic_entry (DT_DEBUG
, 0))
12691 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
12692 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
12693 || !add_dynamic_entry (DT_PLTREL
,
12694 htab
->use_rel
? DT_REL
: DT_RELA
)
12695 || !add_dynamic_entry (DT_JMPREL
, 0))
12698 if (htab
->dt_tlsdesc_plt
&&
12699 (!add_dynamic_entry (DT_TLSDESC_PLT
,0)
12700 || !add_dynamic_entry (DT_TLSDESC_GOT
,0)))
12708 if (!add_dynamic_entry (DT_REL
, 0)
12709 || !add_dynamic_entry (DT_RELSZ
, 0)
12710 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
12715 if (!add_dynamic_entry (DT_RELA
, 0)
12716 || !add_dynamic_entry (DT_RELASZ
, 0)
12717 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
12722 /* If any dynamic relocs apply to a read-only section,
12723 then we need a DT_TEXTREL entry. */
12724 if ((info
->flags
& DF_TEXTREL
) == 0)
12725 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
12728 if ((info
->flags
& DF_TEXTREL
) != 0)
12730 if (!add_dynamic_entry (DT_TEXTREL
, 0))
12733 if (htab
->vxworks_p
12734 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
12737 #undef add_dynamic_entry
12742 /* Size sections even though they're not dynamic. We use it to setup
12743 _TLS_MODULE_BASE_, if needed. */
12746 elf32_arm_always_size_sections (bfd
*output_bfd
,
12747 struct bfd_link_info
*info
)
12751 if (info
->relocatable
)
12754 tls_sec
= elf_hash_table (info
)->tls_sec
;
12758 struct elf_link_hash_entry
*tlsbase
;
12760 tlsbase
= elf_link_hash_lookup
12761 (elf_hash_table (info
), "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
12765 struct bfd_link_hash_entry
*bh
= NULL
;
12766 const struct elf_backend_data
*bed
12767 = get_elf_backend_data (output_bfd
);
12769 if (!(_bfd_generic_link_add_one_symbol
12770 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
12771 tls_sec
, 0, NULL
, FALSE
,
12772 bed
->collect
, &bh
)))
12775 tlsbase
->type
= STT_TLS
;
12776 tlsbase
= (struct elf_link_hash_entry
*)bh
;
12777 tlsbase
->def_regular
= 1;
12778 tlsbase
->other
= STV_HIDDEN
;
12779 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
12785 /* Finish up dynamic symbol handling. We set the contents of various
12786 dynamic sections here. */
12789 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
12790 struct bfd_link_info
* info
,
12791 struct elf_link_hash_entry
* h
,
12792 Elf_Internal_Sym
* sym
)
12794 struct elf32_arm_link_hash_table
*htab
;
12795 struct elf32_arm_link_hash_entry
*eh
;
12797 htab
= elf32_arm_hash_table (info
);
12801 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12803 if (h
->plt
.offset
!= (bfd_vma
) -1)
12809 Elf_Internal_Rela rel
;
12811 /* This symbol has an entry in the procedure linkage table. Set
12814 BFD_ASSERT (h
->dynindx
!= -1);
12816 splt
= htab
->root
.splt
;
12817 srel
= htab
->root
.srelplt
;
12818 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
12820 /* Fill in the entry in the procedure linkage table. */
12821 if (htab
->symbian_p
)
12823 put_arm_insn (htab
, output_bfd
,
12824 elf32_arm_symbian_plt_entry
[0],
12825 splt
->contents
+ h
->plt
.offset
);
12826 bfd_put_32 (output_bfd
,
12827 elf32_arm_symbian_plt_entry
[1],
12828 splt
->contents
+ h
->plt
.offset
+ 4);
12830 /* Fill in the entry in the .rel.plt section. */
12831 rel
.r_offset
= (splt
->output_section
->vma
12832 + splt
->output_offset
12833 + h
->plt
.offset
+ 4);
12834 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
12836 /* Get the index in the procedure linkage table which
12837 corresponds to this symbol. This is the index of this symbol
12838 in all the symbols for which we are making plt entries. The
12839 first entry in the procedure linkage table is reserved. */
12840 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
12841 / htab
->plt_entry_size
);
12845 bfd_vma got_offset
, got_address
, plt_address
;
12846 bfd_vma got_displacement
;
12850 sgot
= htab
->root
.sgotplt
;
12851 BFD_ASSERT (sgot
!= NULL
);
12853 /* Get the offset into the .got.plt table of the entry that
12854 corresponds to this function. */
12855 got_offset
= eh
->plt_got_offset
;
12857 /* Get the index in the procedure linkage table which
12858 corresponds to this symbol. This is the index of this symbol
12859 in all the symbols for which we are making plt entries. The
12860 first three entries in .got.plt are reserved; after that
12861 symbols appear in the same order as in .plt. */
12862 plt_index
= (got_offset
- 12) / 4;
12864 /* Calculate the address of the GOT entry. */
12865 got_address
= (sgot
->output_section
->vma
12866 + sgot
->output_offset
12869 /* ...and the address of the PLT entry. */
12870 plt_address
= (splt
->output_section
->vma
12871 + splt
->output_offset
12874 ptr
= splt
->contents
+ h
->plt
.offset
;
12875 if (htab
->vxworks_p
&& info
->shared
)
12880 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
12882 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
12884 val
|= got_address
- sgot
->output_section
->vma
;
12886 val
|= plt_index
* RELOC_SIZE (htab
);
12887 if (i
== 2 || i
== 5)
12888 bfd_put_32 (output_bfd
, val
, ptr
);
12890 put_arm_insn (htab
, output_bfd
, val
, ptr
);
12893 else if (htab
->vxworks_p
)
12898 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
12900 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
12902 val
|= got_address
;
12904 val
|= 0xffffff & -((h
->plt
.offset
+ i
* 4 + 8) >> 2);
12906 val
|= plt_index
* RELOC_SIZE (htab
);
12907 if (i
== 2 || i
== 5)
12908 bfd_put_32 (output_bfd
, val
, ptr
);
12910 put_arm_insn (htab
, output_bfd
, val
, ptr
);
12913 loc
= (htab
->srelplt2
->contents
12914 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
12916 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12917 referencing the GOT for this PLT entry. */
12918 rel
.r_offset
= plt_address
+ 8;
12919 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12920 rel
.r_addend
= got_offset
;
12921 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12922 loc
+= RELOC_SIZE (htab
);
12924 /* Create the R_ARM_ABS32 relocation referencing the
12925 beginning of the PLT for this GOT entry. */
12926 rel
.r_offset
= got_address
;
12927 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12929 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12933 bfd_signed_vma thumb_refs
;
12934 /* Calculate the displacement between the PLT slot and the
12935 entry in the GOT. The eight-byte offset accounts for the
12936 value produced by adding to pc in the first instruction
12937 of the PLT stub. */
12938 got_displacement
= got_address
- (plt_address
+ 8);
12940 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
12942 thumb_refs
= eh
->plt_thumb_refcount
;
12943 if (!htab
->use_blx
)
12944 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12946 if (thumb_refs
> 0)
12948 put_thumb_insn (htab
, output_bfd
,
12949 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
12950 put_thumb_insn (htab
, output_bfd
,
12951 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
12954 put_arm_insn (htab
, output_bfd
,
12955 elf32_arm_plt_entry
[0]
12956 | ((got_displacement
& 0x0ff00000) >> 20),
12958 put_arm_insn (htab
, output_bfd
,
12959 elf32_arm_plt_entry
[1]
12960 | ((got_displacement
& 0x000ff000) >> 12),
12962 put_arm_insn (htab
, output_bfd
,
12963 elf32_arm_plt_entry
[2]
12964 | (got_displacement
& 0x00000fff),
12966 #ifdef FOUR_WORD_PLT
12967 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
12971 /* Fill in the entry in the global offset table. */
12972 bfd_put_32 (output_bfd
,
12973 (splt
->output_section
->vma
12974 + splt
->output_offset
),
12975 sgot
->contents
+ got_offset
);
12977 /* Fill in the entry in the .rel(a).plt section. */
12979 rel
.r_offset
= got_address
;
12980 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
12983 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
12984 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12986 if (!h
->def_regular
)
12988 /* Mark the symbol as undefined, rather than as defined in
12989 the .plt section. Leave the value alone. */
12990 sym
->st_shndx
= SHN_UNDEF
;
12991 /* If the symbol is weak, we do need to clear the value.
12992 Otherwise, the PLT entry would provide a definition for
12993 the symbol even if the symbol wasn't defined anywhere,
12994 and so the symbol would never be NULL. */
12995 if (!h
->ref_regular_nonweak
)
13000 if (h
->got
.offset
!= (bfd_vma
) -1
13001 && (! GOT_TLS_GD_ANY_P (elf32_arm_hash_entry (h
)->tls_type
))
13002 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_IE
) == 0)
13006 Elf_Internal_Rela rel
;
13010 /* This symbol has an entry in the global offset table. Set it
13012 sgot
= htab
->root
.sgot
;
13013 srel
= htab
->root
.srelgot
;
13014 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
13016 offset
= (h
->got
.offset
& ~(bfd_vma
) 1);
13018 rel
.r_offset
= (sgot
->output_section
->vma
13019 + sgot
->output_offset
13022 /* If this is a static link, or it is a -Bsymbolic link and the
13023 symbol is defined locally or was forced to be local because
13024 of a version file, we just want to emit a RELATIVE reloc.
13025 The entry in the global offset table will already have been
13026 initialized in the relocate_section function. */
13028 && SYMBOL_REFERENCES_LOCAL (info
, h
))
13030 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
13031 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
13032 if (!htab
->use_rel
)
13034 rel
.r_addend
= bfd_get_32 (output_bfd
, sgot
->contents
+ offset
);
13035 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
13040 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
13041 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
13042 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
13045 loc
= srel
->contents
+ srel
->reloc_count
++ * RELOC_SIZE (htab
);
13046 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
13052 Elf_Internal_Rela rel
;
13055 /* This symbol needs a copy reloc. Set it up. */
13056 BFD_ASSERT (h
->dynindx
!= -1
13057 && (h
->root
.type
== bfd_link_hash_defined
13058 || h
->root
.type
== bfd_link_hash_defweak
));
13061 BFD_ASSERT (s
!= NULL
);
13064 rel
.r_offset
= (h
->root
.u
.def
.value
13065 + h
->root
.u
.def
.section
->output_section
->vma
13066 + h
->root
.u
.def
.section
->output_offset
);
13067 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
13068 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
13069 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
13072 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13073 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13074 to the ".got" section. */
13075 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
13076 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
13077 sym
->st_shndx
= SHN_ABS
;
13083 arm_put_trampoline (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
13085 const unsigned long *template, unsigned count
)
13089 for (ix
= 0; ix
!= count
; ix
++)
13091 unsigned long insn
= template[ix
];
13093 /* Emit mov pc,rx if bx is not permitted. */
13094 if (htab
->fix_v4bx
== 1 && (insn
& 0x0ffffff0) == 0x012fff10)
13095 insn
= (insn
& 0xf000000f) | 0x01a0f000;
13096 put_arm_insn (htab
, output_bfd
, insn
, (char *)contents
+ ix
*4);
13100 /* Finish up the dynamic sections. */
13103 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
13108 struct elf32_arm_link_hash_table
*htab
;
13110 htab
= elf32_arm_hash_table (info
);
13114 dynobj
= elf_hash_table (info
)->dynobj
;
13116 sgot
= htab
->root
.sgotplt
;
13117 BFD_ASSERT (htab
->symbian_p
|| sgot
!= NULL
);
13118 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
13120 if (elf_hash_table (info
)->dynamic_sections_created
)
13123 Elf32_External_Dyn
*dyncon
, *dynconend
;
13125 splt
= htab
->root
.splt
;
13126 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
13128 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
13129 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
13131 for (; dyncon
< dynconend
; dyncon
++)
13133 Elf_Internal_Dyn dyn
;
13137 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
13144 if (htab
->vxworks_p
13145 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
13146 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13151 goto get_vma_if_bpabi
;
13154 goto get_vma_if_bpabi
;
13157 goto get_vma_if_bpabi
;
13159 name
= ".gnu.version";
13160 goto get_vma_if_bpabi
;
13162 name
= ".gnu.version_d";
13163 goto get_vma_if_bpabi
;
13165 name
= ".gnu.version_r";
13166 goto get_vma_if_bpabi
;
13172 name
= RELOC_SECTION (htab
, ".plt");
13174 s
= bfd_get_section_by_name (output_bfd
, name
);
13175 BFD_ASSERT (s
!= NULL
);
13176 if (!htab
->symbian_p
)
13177 dyn
.d_un
.d_ptr
= s
->vma
;
13179 /* In the BPABI, tags in the PT_DYNAMIC section point
13180 at the file offset, not the memory address, for the
13181 convenience of the post linker. */
13182 dyn
.d_un
.d_ptr
= s
->filepos
;
13183 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13187 if (htab
->symbian_p
)
13192 s
= htab
->root
.srelplt
;
13193 BFD_ASSERT (s
!= NULL
);
13194 dyn
.d_un
.d_val
= s
->size
;
13195 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13200 if (!htab
->symbian_p
)
13202 /* My reading of the SVR4 ABI indicates that the
13203 procedure linkage table relocs (DT_JMPREL) should be
13204 included in the overall relocs (DT_REL). This is
13205 what Solaris does. However, UnixWare can not handle
13206 that case. Therefore, we override the DT_RELSZ entry
13207 here to make it not include the JMPREL relocs. Since
13208 the linker script arranges for .rel(a).plt to follow all
13209 other relocation sections, we don't have to worry
13210 about changing the DT_REL entry. */
13211 s
= htab
->root
.srelplt
;
13213 dyn
.d_un
.d_val
-= s
->size
;
13214 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13217 /* Fall through. */
13221 /* In the BPABI, the DT_REL tag must point at the file
13222 offset, not the VMA, of the first relocation
13223 section. So, we use code similar to that in
13224 elflink.c, but do not check for SHF_ALLOC on the
13225 relcoation section, since relocations sections are
13226 never allocated under the BPABI. The comments above
13227 about Unixware notwithstanding, we include all of the
13228 relocations here. */
13229 if (htab
->symbian_p
)
13232 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
13233 ? SHT_REL
: SHT_RELA
);
13234 dyn
.d_un
.d_val
= 0;
13235 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
13237 Elf_Internal_Shdr
*hdr
13238 = elf_elfsections (output_bfd
)[i
];
13239 if (hdr
->sh_type
== type
)
13241 if (dyn
.d_tag
== DT_RELSZ
13242 || dyn
.d_tag
== DT_RELASZ
)
13243 dyn
.d_un
.d_val
+= hdr
->sh_size
;
13244 else if ((ufile_ptr
) hdr
->sh_offset
13245 <= dyn
.d_un
.d_val
- 1)
13246 dyn
.d_un
.d_val
= hdr
->sh_offset
;
13249 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13253 case DT_TLSDESC_PLT
:
13254 s
= htab
->root
.splt
;
13255 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
13256 + htab
->dt_tlsdesc_plt
);
13257 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13260 case DT_TLSDESC_GOT
:
13261 s
= htab
->root
.sgot
;
13262 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
13263 + htab
->dt_tlsdesc_got
);
13264 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13267 /* Set the bottom bit of DT_INIT/FINI if the
13268 corresponding function is Thumb. */
13270 name
= info
->init_function
;
13273 name
= info
->fini_function
;
13275 /* If it wasn't set by elf_bfd_final_link
13276 then there is nothing to adjust. */
13277 if (dyn
.d_un
.d_val
!= 0)
13279 struct elf_link_hash_entry
* eh
;
13281 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
13282 FALSE
, FALSE
, TRUE
);
13284 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
13286 dyn
.d_un
.d_val
|= 1;
13287 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13294 /* Fill in the first entry in the procedure linkage table. */
13295 if (splt
->size
> 0 && htab
->plt_header_size
)
13297 const bfd_vma
*plt0_entry
;
13298 bfd_vma got_address
, plt_address
, got_displacement
;
13300 /* Calculate the addresses of the GOT and PLT. */
13301 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
13302 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
13304 if (htab
->vxworks_p
)
13306 /* The VxWorks GOT is relocated by the dynamic linker.
13307 Therefore, we must emit relocations rather than simply
13308 computing the values now. */
13309 Elf_Internal_Rela rel
;
13311 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
13312 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
13313 splt
->contents
+ 0);
13314 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
13315 splt
->contents
+ 4);
13316 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
13317 splt
->contents
+ 8);
13318 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
13320 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
13321 rel
.r_offset
= plt_address
+ 12;
13322 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
13324 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
13325 htab
->srelplt2
->contents
);
13329 got_displacement
= got_address
- (plt_address
+ 16);
13331 plt0_entry
= elf32_arm_plt0_entry
;
13332 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
13333 splt
->contents
+ 0);
13334 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
13335 splt
->contents
+ 4);
13336 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
13337 splt
->contents
+ 8);
13338 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
13339 splt
->contents
+ 12);
13341 #ifdef FOUR_WORD_PLT
13342 /* The displacement value goes in the otherwise-unused
13343 last word of the second entry. */
13344 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
13346 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
13351 /* UnixWare sets the entsize of .plt to 4, although that doesn't
13352 really seem like the right value. */
13353 if (splt
->output_section
->owner
== output_bfd
)
13354 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
13356 if (htab
->dt_tlsdesc_plt
)
13358 bfd_vma got_address
13359 = sgot
->output_section
->vma
+ sgot
->output_offset
;
13360 bfd_vma gotplt_address
= (htab
->root
.sgot
->output_section
->vma
13361 + htab
->root
.sgot
->output_offset
);
13362 bfd_vma plt_address
13363 = splt
->output_section
->vma
+ splt
->output_offset
;
13365 arm_put_trampoline (htab
, output_bfd
,
13366 splt
->contents
+ htab
->dt_tlsdesc_plt
,
13367 dl_tlsdesc_lazy_trampoline
, 6);
13369 bfd_put_32 (output_bfd
,
13370 gotplt_address
+ htab
->dt_tlsdesc_got
13371 - (plt_address
+ htab
->dt_tlsdesc_plt
)
13372 - dl_tlsdesc_lazy_trampoline
[6],
13373 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24);
13374 bfd_put_32 (output_bfd
,
13375 got_address
- (plt_address
+ htab
->dt_tlsdesc_plt
)
13376 - dl_tlsdesc_lazy_trampoline
[7],
13377 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24 + 4);
13380 if (htab
->tls_trampoline
)
13382 arm_put_trampoline (htab
, output_bfd
,
13383 splt
->contents
+ htab
->tls_trampoline
,
13384 tls_trampoline
, 3);
13385 #ifdef FOUR_WORD_PLT
13386 bfd_put_32 (output_bfd
, 0x00000000,
13387 splt
->contents
+ htab
->tls_trampoline
+ 12);
13391 if (htab
->vxworks_p
&& !info
->shared
&& htab
->root
.splt
->size
> 0)
13393 /* Correct the .rel(a).plt.unloaded relocations. They will have
13394 incorrect symbol indexes. */
13398 num_plts
= ((htab
->root
.splt
->size
- htab
->plt_header_size
)
13399 / htab
->plt_entry_size
);
13400 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
13402 for (; num_plts
; num_plts
--)
13404 Elf_Internal_Rela rel
;
13406 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
13407 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
13408 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
13409 p
+= RELOC_SIZE (htab
);
13411 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
13412 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
13413 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
13414 p
+= RELOC_SIZE (htab
);
13419 /* Fill in the first three entries in the global offset table. */
13422 if (sgot
->size
> 0)
13425 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
13427 bfd_put_32 (output_bfd
,
13428 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
13430 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
13431 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
13434 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
13441 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
13443 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
13444 struct elf32_arm_link_hash_table
*globals
;
13446 i_ehdrp
= elf_elfheader (abfd
);
13448 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
13449 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
13451 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
13452 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
13456 globals
= elf32_arm_hash_table (link_info
);
13457 if (globals
!= NULL
&& globals
->byteswap_code
)
13458 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
13462 static enum elf_reloc_type_class
13463 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
13465 switch ((int) ELF32_R_TYPE (rela
->r_info
))
13467 case R_ARM_RELATIVE
:
13468 return reloc_class_relative
;
13469 case R_ARM_JUMP_SLOT
:
13470 return reloc_class_plt
;
13472 return reloc_class_copy
;
13474 return reloc_class_normal
;
13478 /* Set the right machine number for an Arm ELF file. */
13481 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
13483 if (hdr
->sh_type
== SHT_NOTE
)
13484 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
13490 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
13492 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
13495 /* Return TRUE if this is an unwinding table entry. */
13498 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
13500 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
13501 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
13505 /* Set the type and flags for an ARM section. We do this by
13506 the section name, which is a hack, but ought to work. */
13509 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
13513 name
= bfd_get_section_name (abfd
, sec
);
13515 if (is_arm_elf_unwind_section_name (abfd
, name
))
13517 hdr
->sh_type
= SHT_ARM_EXIDX
;
13518 hdr
->sh_flags
|= SHF_LINK_ORDER
;
13523 /* Handle an ARM specific section when reading an object file. This is
13524 called when bfd_section_from_shdr finds a section with an unknown
13528 elf32_arm_section_from_shdr (bfd
*abfd
,
13529 Elf_Internal_Shdr
* hdr
,
13533 /* There ought to be a place to keep ELF backend specific flags, but
13534 at the moment there isn't one. We just keep track of the
13535 sections by their name, instead. Fortunately, the ABI gives
13536 names for all the ARM specific sections, so we will probably get
13538 switch (hdr
->sh_type
)
13540 case SHT_ARM_EXIDX
:
13541 case SHT_ARM_PREEMPTMAP
:
13542 case SHT_ARM_ATTRIBUTES
:
13549 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
13555 static _arm_elf_section_data
*
13556 get_arm_elf_section_data (asection
* sec
)
13558 if (sec
&& sec
->owner
&& is_arm_elf (sec
->owner
))
13559 return elf32_arm_section_data (sec
);
13567 struct bfd_link_info
*info
;
13570 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
13571 asection
*, struct elf_link_hash_entry
*);
13572 } output_arch_syminfo
;
13574 enum map_symbol_type
13582 /* Output a single mapping symbol. */
13585 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
13586 enum map_symbol_type type
,
13589 static const char *names
[3] = {"$a", "$t", "$d"};
13590 Elf_Internal_Sym sym
;
13592 sym
.st_value
= osi
->sec
->output_section
->vma
13593 + osi
->sec
->output_offset
13597 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
13598 sym
.st_shndx
= osi
->sec_shndx
;
13599 elf32_arm_section_map_add (osi
->sec
, names
[type
][1], offset
);
13600 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
13604 /* Output mapping symbols for PLT entries associated with H. */
13607 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
13609 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
13610 struct elf32_arm_link_hash_table
*htab
;
13611 struct elf32_arm_link_hash_entry
*eh
;
13614 if (h
->root
.type
== bfd_link_hash_indirect
)
13617 if (h
->root
.type
== bfd_link_hash_warning
)
13618 /* When warning symbols are created, they **replace** the "real"
13619 entry in the hash table, thus we never get to see the real
13620 symbol in a hash traversal. So look at it now. */
13621 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
13623 if (h
->plt
.offset
== (bfd_vma
) -1)
13626 htab
= elf32_arm_hash_table (osi
->info
);
13630 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13631 addr
= h
->plt
.offset
;
13632 if (htab
->symbian_p
)
13634 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
13636 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
13639 else if (htab
->vxworks_p
)
13641 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
13643 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
13645 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
13647 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
13652 bfd_signed_vma thumb_refs
;
13654 thumb_refs
= eh
->plt_thumb_refcount
;
13655 if (!htab
->use_blx
)
13656 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
13658 if (thumb_refs
> 0)
13660 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
13663 #ifdef FOUR_WORD_PLT
13664 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
13666 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
13669 /* A three-word PLT with no Thumb thunk contains only Arm code,
13670 so only need to output a mapping symbol for the first PLT entry and
13671 entries with thumb thunks. */
13672 if (thumb_refs
> 0 || addr
== 20)
13674 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
13683 /* Output a single local symbol for a generated stub. */
13686 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
13687 bfd_vma offset
, bfd_vma size
)
13689 Elf_Internal_Sym sym
;
13691 sym
.st_value
= osi
->sec
->output_section
->vma
13692 + osi
->sec
->output_offset
13694 sym
.st_size
= size
;
13696 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
13697 sym
.st_shndx
= osi
->sec_shndx
;
13698 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
13702 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
13705 struct elf32_arm_stub_hash_entry
*stub_entry
;
13706 asection
*stub_sec
;
13709 output_arch_syminfo
*osi
;
13710 const insn_sequence
*template_sequence
;
13711 enum stub_insn_type prev_type
;
13714 enum map_symbol_type sym_type
;
13716 /* Massage our args to the form they really have. */
13717 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
13718 osi
= (output_arch_syminfo
*) in_arg
;
13720 stub_sec
= stub_entry
->stub_sec
;
13722 /* Ensure this stub is attached to the current section being
13724 if (stub_sec
!= osi
->sec
)
13727 addr
= (bfd_vma
) stub_entry
->stub_offset
;
13728 stub_name
= stub_entry
->output_name
;
13730 template_sequence
= stub_entry
->stub_template
;
13731 switch (template_sequence
[0].type
)
13734 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
13739 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
13740 stub_entry
->stub_size
))
13748 prev_type
= DATA_TYPE
;
13750 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
13752 switch (template_sequence
[i
].type
)
13755 sym_type
= ARM_MAP_ARM
;
13760 sym_type
= ARM_MAP_THUMB
;
13764 sym_type
= ARM_MAP_DATA
;
13772 if (template_sequence
[i
].type
!= prev_type
)
13774 prev_type
= template_sequence
[i
].type
;
13775 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
13779 switch (template_sequence
[i
].type
)
13803 /* Output mapping symbols for linker generated sections,
13804 and for those data-only sections that do not have a
13808 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
13809 struct bfd_link_info
*info
,
13811 int (*func
) (void *, const char *,
13812 Elf_Internal_Sym
*,
13814 struct elf_link_hash_entry
*))
13816 output_arch_syminfo osi
;
13817 struct elf32_arm_link_hash_table
*htab
;
13819 bfd_size_type size
;
13822 htab
= elf32_arm_hash_table (info
);
13826 check_use_blx (htab
);
13832 /* Add a $d mapping symbol to data-only sections that
13833 don't have any mapping symbol. This may result in (harmless) redundant
13834 mapping symbols. */
13835 for (input_bfd
= info
->input_bfds
;
13837 input_bfd
= input_bfd
->link_next
)
13839 if ((input_bfd
->flags
& (BFD_LINKER_CREATED
| HAS_SYMS
)) == HAS_SYMS
)
13840 for (osi
.sec
= input_bfd
->sections
;
13842 osi
.sec
= osi
.sec
->next
)
13844 if (osi
.sec
->output_section
!= NULL
13845 && ((osi
.sec
->output_section
->flags
& (SEC_ALLOC
| SEC_CODE
))
13847 && (osi
.sec
->flags
& (SEC_HAS_CONTENTS
| SEC_LINKER_CREATED
))
13848 == SEC_HAS_CONTENTS
13849 && get_arm_elf_section_data (osi
.sec
) != NULL
13850 && get_arm_elf_section_data (osi
.sec
)->mapcount
== 0
13851 && osi
.sec
->size
> 0)
13853 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13854 (output_bfd
, osi
.sec
->output_section
);
13855 if (osi
.sec_shndx
!= (int)SHN_BAD
)
13856 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 0);
13861 /* ARM->Thumb glue. */
13862 if (htab
->arm_glue_size
> 0)
13864 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13865 ARM2THUMB_GLUE_SECTION_NAME
);
13867 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13868 (output_bfd
, osi
.sec
->output_section
);
13869 if (info
->shared
|| htab
->root
.is_relocatable_executable
13870 || htab
->pic_veneer
)
13871 size
= ARM2THUMB_PIC_GLUE_SIZE
;
13872 else if (htab
->use_blx
)
13873 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
13875 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
13877 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
13879 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
13880 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
13884 /* Thumb->ARM glue. */
13885 if (htab
->thumb_glue_size
> 0)
13887 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13888 THUMB2ARM_GLUE_SECTION_NAME
);
13890 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13891 (output_bfd
, osi
.sec
->output_section
);
13892 size
= THUMB2ARM_GLUE_SIZE
;
13894 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
13896 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
13897 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
13901 /* ARMv4 BX veneers. */
13902 if (htab
->bx_glue_size
> 0)
13904 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13905 ARM_BX_GLUE_SECTION_NAME
);
13907 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13908 (output_bfd
, osi
.sec
->output_section
);
13910 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
13913 /* Long calls stubs. */
13914 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
13916 asection
* stub_sec
;
13918 for (stub_sec
= htab
->stub_bfd
->sections
;
13920 stub_sec
= stub_sec
->next
)
13922 /* Ignore non-stub sections. */
13923 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
13926 osi
.sec
= stub_sec
;
13928 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13929 (output_bfd
, osi
.sec
->output_section
);
13931 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
13935 /* Finally, output mapping symbols for the PLT. */
13936 if (!htab
->root
.splt
|| htab
->root
.splt
->size
== 0)
13939 osi
.sec
= htab
->root
.splt
;
13940 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
13941 osi
.sec
->output_section
);
13942 /* Output mapping symbols for the plt header. SymbianOS does not have a
13944 if (htab
->vxworks_p
)
13946 /* VxWorks shared libraries have no PLT header. */
13949 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13951 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
13955 else if (!htab
->symbian_p
)
13957 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13959 #ifndef FOUR_WORD_PLT
13960 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
13965 if (htab
->dt_tlsdesc_plt
!= 0)
13967 /* Mapping symbols for the lazy tls trampoline. */
13968 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->dt_tlsdesc_plt
))
13971 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
13972 htab
->dt_tlsdesc_plt
+ 24))
13975 if (htab
->tls_trampoline
!= 0)
13977 /* Mapping symbols for the tls trampoline. */
13978 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->tls_trampoline
))
13980 #ifdef FOUR_WORD_PLT
13981 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
13982 htab
->tls_trampoline
+ 12))
13987 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, (void *) &osi
);
13991 /* Allocate target specific section data. */
13994 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
13996 if (!sec
->used_by_bfd
)
13998 _arm_elf_section_data
*sdata
;
13999 bfd_size_type amt
= sizeof (*sdata
);
14001 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
14004 sec
->used_by_bfd
= sdata
;
14007 return _bfd_elf_new_section_hook (abfd
, sec
);
14011 /* Used to order a list of mapping symbols by address. */
14014 elf32_arm_compare_mapping (const void * a
, const void * b
)
14016 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
14017 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
14019 if (amap
->vma
> bmap
->vma
)
14021 else if (amap
->vma
< bmap
->vma
)
14023 else if (amap
->type
> bmap
->type
)
14024 /* Ensure results do not depend on the host qsort for objects with
14025 multiple mapping symbols at the same address by sorting on type
14028 else if (amap
->type
< bmap
->type
)
14034 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
14036 static unsigned long
14037 offset_prel31 (unsigned long addr
, bfd_vma offset
)
14039 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
14042 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14046 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
14048 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
14049 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
14051 /* High bit of first word is supposed to be zero. */
14052 if ((first_word
& 0x80000000ul
) == 0)
14053 first_word
= offset_prel31 (first_word
, offset
);
14055 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14056 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
14057 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
14058 second_word
= offset_prel31 (second_word
, offset
);
14060 bfd_put_32 (output_bfd
, first_word
, to
);
14061 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
14064 /* Data for make_branch_to_a8_stub(). */
14066 struct a8_branch_to_stub_data
{
14067 asection
*writing_section
;
14068 bfd_byte
*contents
;
14072 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
14073 places for a particular section. */
14076 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
14079 struct elf32_arm_stub_hash_entry
*stub_entry
;
14080 struct a8_branch_to_stub_data
*data
;
14081 bfd_byte
*contents
;
14082 unsigned long branch_insn
;
14083 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
14084 bfd_signed_vma branch_offset
;
14086 unsigned int target
;
14088 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
14089 data
= (struct a8_branch_to_stub_data
*) in_arg
;
14091 if (stub_entry
->target_section
!= data
->writing_section
14092 || stub_entry
->stub_type
< arm_stub_a8_veneer_lwm
)
14095 contents
= data
->contents
;
14097 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
14098 + stub_entry
->target_section
->output_offset
14099 + stub_entry
->target_value
;
14101 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
14102 + stub_entry
->stub_sec
->output_offset
14103 + stub_entry
->stub_offset
;
14105 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
14106 veneered_insn_loc
&= ~3u;
14108 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
14110 abfd
= stub_entry
->target_section
->owner
;
14111 target
= stub_entry
->target_value
;
14113 /* We attempt to avoid this condition by setting stubs_always_after_branch
14114 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14115 This check is just to be on the safe side... */
14116 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
14118 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
14119 "allocated in unsafe location"), abfd
);
14123 switch (stub_entry
->stub_type
)
14125 case arm_stub_a8_veneer_b
:
14126 case arm_stub_a8_veneer_b_cond
:
14127 branch_insn
= 0xf0009000;
14130 case arm_stub_a8_veneer_blx
:
14131 branch_insn
= 0xf000e800;
14134 case arm_stub_a8_veneer_bl
:
14136 unsigned int i1
, j1
, i2
, j2
, s
;
14138 branch_insn
= 0xf000d000;
14141 if (branch_offset
< -16777216 || branch_offset
> 16777214)
14143 /* There's not much we can do apart from complain if this
14145 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
14146 "of range (input file too large)"), abfd
);
14150 /* i1 = not(j1 eor s), so:
14152 j1 = (not i1) eor s. */
14154 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
14155 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
14156 i2
= (branch_offset
>> 22) & 1;
14157 i1
= (branch_offset
>> 23) & 1;
14158 s
= (branch_offset
>> 24) & 1;
14161 branch_insn
|= j2
<< 11;
14162 branch_insn
|= j1
<< 13;
14163 branch_insn
|= s
<< 26;
14172 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[target
]);
14173 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[target
+ 2]);
14178 /* Do code byteswapping. Return FALSE afterwards so that the section is
14179 written out as normal. */
14182 elf32_arm_write_section (bfd
*output_bfd
,
14183 struct bfd_link_info
*link_info
,
14185 bfd_byte
*contents
)
14187 unsigned int mapcount
, errcount
;
14188 _arm_elf_section_data
*arm_data
;
14189 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
14190 elf32_arm_section_map
*map
;
14191 elf32_vfp11_erratum_list
*errnode
;
14194 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
14198 if (globals
== NULL
)
14201 /* If this section has not been allocated an _arm_elf_section_data
14202 structure then we cannot record anything. */
14203 arm_data
= get_arm_elf_section_data (sec
);
14204 if (arm_data
== NULL
)
14207 mapcount
= arm_data
->mapcount
;
14208 map
= arm_data
->map
;
14209 errcount
= arm_data
->erratumcount
;
14213 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
14215 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
14216 errnode
= errnode
->next
)
14218 bfd_vma target
= errnode
->vma
- offset
;
14220 switch (errnode
->type
)
14222 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
14224 bfd_vma branch_to_veneer
;
14225 /* Original condition code of instruction, plus bit mask for
14226 ARM B instruction. */
14227 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
14230 /* The instruction is before the label. */
14233 /* Above offset included in -4 below. */
14234 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
14235 - errnode
->vma
- 4;
14237 if ((signed) branch_to_veneer
< -(1 << 25)
14238 || (signed) branch_to_veneer
>= (1 << 25))
14239 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
14240 "range"), output_bfd
);
14242 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
14243 contents
[endianflip
^ target
] = insn
& 0xff;
14244 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
14245 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
14246 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
14250 case VFP11_ERRATUM_ARM_VENEER
:
14252 bfd_vma branch_from_veneer
;
14255 /* Take size of veneer into account. */
14256 branch_from_veneer
= errnode
->u
.v
.branch
->vma
14257 - errnode
->vma
- 12;
14259 if ((signed) branch_from_veneer
< -(1 << 25)
14260 || (signed) branch_from_veneer
>= (1 << 25))
14261 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
14262 "range"), output_bfd
);
14264 /* Original instruction. */
14265 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
14266 contents
[endianflip
^ target
] = insn
& 0xff;
14267 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
14268 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
14269 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
14271 /* Branch back to insn after original insn. */
14272 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
14273 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
14274 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
14275 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
14276 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
14286 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
14288 arm_unwind_table_edit
*edit_node
14289 = arm_data
->u
.exidx
.unwind_edit_list
;
14290 /* Now, sec->size is the size of the section we will write. The original
14291 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
14292 markers) was sec->rawsize. (This isn't the case if we perform no
14293 edits, then rawsize will be zero and we should use size). */
14294 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
14295 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
14296 unsigned int in_index
, out_index
;
14297 bfd_vma add_to_offsets
= 0;
14299 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
14303 unsigned int edit_index
= edit_node
->index
;
14305 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
14307 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
14308 contents
+ in_index
* 8, add_to_offsets
);
14312 else if (in_index
== edit_index
14313 || (in_index
* 8 >= input_size
14314 && edit_index
== UINT_MAX
))
14316 switch (edit_node
->type
)
14318 case DELETE_EXIDX_ENTRY
:
14320 add_to_offsets
+= 8;
14323 case INSERT_EXIDX_CANTUNWIND_AT_END
:
14325 asection
*text_sec
= edit_node
->linked_section
;
14326 bfd_vma text_offset
= text_sec
->output_section
->vma
14327 + text_sec
->output_offset
14329 bfd_vma exidx_offset
= offset
+ out_index
* 8;
14330 unsigned long prel31_offset
;
14332 /* Note: this is meant to be equivalent to an
14333 R_ARM_PREL31 relocation. These synthetic
14334 EXIDX_CANTUNWIND markers are not relocated by the
14335 usual BFD method. */
14336 prel31_offset
= (text_offset
- exidx_offset
)
14339 /* First address we can't unwind. */
14340 bfd_put_32 (output_bfd
, prel31_offset
,
14341 &edited_contents
[out_index
* 8]);
14343 /* Code for EXIDX_CANTUNWIND. */
14344 bfd_put_32 (output_bfd
, 0x1,
14345 &edited_contents
[out_index
* 8 + 4]);
14348 add_to_offsets
-= 8;
14353 edit_node
= edit_node
->next
;
14358 /* No more edits, copy remaining entries verbatim. */
14359 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
14360 contents
+ in_index
* 8, add_to_offsets
);
14366 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
14367 bfd_set_section_contents (output_bfd
, sec
->output_section
,
14369 (file_ptr
) sec
->output_offset
, sec
->size
);
14374 /* Fix code to point to Cortex-A8 erratum stubs. */
14375 if (globals
->fix_cortex_a8
)
14377 struct a8_branch_to_stub_data data
;
14379 data
.writing_section
= sec
;
14380 data
.contents
= contents
;
14382 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
14389 if (globals
->byteswap_code
)
14391 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
14394 for (i
= 0; i
< mapcount
; i
++)
14396 if (i
== mapcount
- 1)
14399 end
= map
[i
+ 1].vma
;
14401 switch (map
[i
].type
)
14404 /* Byte swap code words. */
14405 while (ptr
+ 3 < end
)
14407 tmp
= contents
[ptr
];
14408 contents
[ptr
] = contents
[ptr
+ 3];
14409 contents
[ptr
+ 3] = tmp
;
14410 tmp
= contents
[ptr
+ 1];
14411 contents
[ptr
+ 1] = contents
[ptr
+ 2];
14412 contents
[ptr
+ 2] = tmp
;
14418 /* Byte swap code halfwords. */
14419 while (ptr
+ 1 < end
)
14421 tmp
= contents
[ptr
];
14422 contents
[ptr
] = contents
[ptr
+ 1];
14423 contents
[ptr
+ 1] = tmp
;
14429 /* Leave data alone. */
14437 arm_data
->mapcount
= -1;
14438 arm_data
->mapsize
= 0;
14439 arm_data
->map
= NULL
;
14444 /* Display STT_ARM_TFUNC symbols as functions. */
14447 elf32_arm_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
14450 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
14452 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_ARM_TFUNC
)
14453 elfsym
->symbol
.flags
|= BSF_FUNCTION
;
14457 /* Mangle thumb function symbols as we read them in. */
14460 elf32_arm_swap_symbol_in (bfd
* abfd
,
14463 Elf_Internal_Sym
*dst
)
14465 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
14468 /* New EABI objects mark thumb function symbols by setting the low bit of
14469 the address. Turn these into STT_ARM_TFUNC. */
14470 if ((ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
)
14471 && (dst
->st_value
& 1))
14473 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_ARM_TFUNC
);
14474 dst
->st_value
&= ~(bfd_vma
) 1;
14480 /* Mangle thumb function symbols as we write them out. */
14483 elf32_arm_swap_symbol_out (bfd
*abfd
,
14484 const Elf_Internal_Sym
*src
,
14488 Elf_Internal_Sym newsym
;
14490 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
14491 of the address set, as per the new EABI. We do this unconditionally
14492 because objcopy does not set the elf header flags until after
14493 it writes out the symbol table. */
14494 if (ELF_ST_TYPE (src
->st_info
) == STT_ARM_TFUNC
)
14497 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
14498 if (newsym
.st_shndx
!= SHN_UNDEF
)
14500 /* Do this only for defined symbols. At link type, the static
14501 linker will simulate the work of dynamic linker of resolving
14502 symbols and will carry over the thumbness of found symbols to
14503 the output symbol table. It's not clear how it happens, but
14504 the thumbness of undefined symbols can well be different at
14505 runtime, and writing '1' for them will be confusing for users
14506 and possibly for dynamic linker itself.
14508 newsym
.st_value
|= 1;
14513 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
14516 /* Add the PT_ARM_EXIDX program header. */
14519 elf32_arm_modify_segment_map (bfd
*abfd
,
14520 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
14522 struct elf_segment_map
*m
;
14525 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
14526 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
14528 /* If there is already a PT_ARM_EXIDX header, then we do not
14529 want to add another one. This situation arises when running
14530 "strip"; the input binary already has the header. */
14531 m
= elf_tdata (abfd
)->segment_map
;
14532 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
14536 m
= (struct elf_segment_map
*)
14537 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
14540 m
->p_type
= PT_ARM_EXIDX
;
14542 m
->sections
[0] = sec
;
14544 m
->next
= elf_tdata (abfd
)->segment_map
;
14545 elf_tdata (abfd
)->segment_map
= m
;
14552 /* We may add a PT_ARM_EXIDX program header. */
14555 elf32_arm_additional_program_headers (bfd
*abfd
,
14556 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
14560 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
14561 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
14567 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
14570 elf32_arm_is_function_type (unsigned int type
)
14572 return (type
== STT_FUNC
) || (type
== STT_ARM_TFUNC
);
14575 /* We use this to override swap_symbol_in and swap_symbol_out. */
14576 const struct elf_size_info elf32_arm_size_info
=
14578 sizeof (Elf32_External_Ehdr
),
14579 sizeof (Elf32_External_Phdr
),
14580 sizeof (Elf32_External_Shdr
),
14581 sizeof (Elf32_External_Rel
),
14582 sizeof (Elf32_External_Rela
),
14583 sizeof (Elf32_External_Sym
),
14584 sizeof (Elf32_External_Dyn
),
14585 sizeof (Elf_External_Note
),
14589 ELFCLASS32
, EV_CURRENT
,
14590 bfd_elf32_write_out_phdrs
,
14591 bfd_elf32_write_shdrs_and_ehdr
,
14592 bfd_elf32_checksum_contents
,
14593 bfd_elf32_write_relocs
,
14594 elf32_arm_swap_symbol_in
,
14595 elf32_arm_swap_symbol_out
,
14596 bfd_elf32_slurp_reloc_table
,
14597 bfd_elf32_slurp_symbol_table
,
14598 bfd_elf32_swap_dyn_in
,
14599 bfd_elf32_swap_dyn_out
,
14600 bfd_elf32_swap_reloc_in
,
14601 bfd_elf32_swap_reloc_out
,
14602 bfd_elf32_swap_reloca_in
,
14603 bfd_elf32_swap_reloca_out
14606 #define ELF_ARCH bfd_arch_arm
14607 #define ELF_TARGET_ID ARM_ELF_DATA
14608 #define ELF_MACHINE_CODE EM_ARM
14609 #ifdef __QNXTARGET__
14610 #define ELF_MAXPAGESIZE 0x1000
14612 #define ELF_MAXPAGESIZE 0x8000
14614 #define ELF_MINPAGESIZE 0x1000
14615 #define ELF_COMMONPAGESIZE 0x1000
14617 #define bfd_elf32_mkobject elf32_arm_mkobject
14619 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
14620 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
14621 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
14622 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
14623 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
14624 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
14625 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
14626 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
14627 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
14628 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
14629 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
14630 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
14631 #define bfd_elf32_bfd_final_link elf32_arm_final_link
14633 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
14634 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
14635 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
14636 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
14637 #define elf_backend_check_relocs elf32_arm_check_relocs
14638 #define elf_backend_relocate_section elf32_arm_relocate_section
14639 #define elf_backend_write_section elf32_arm_write_section
14640 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
14641 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
14642 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
14643 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
14644 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
14645 #define elf_backend_always_size_sections elf32_arm_always_size_sections
14646 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
14647 #define elf_backend_post_process_headers elf32_arm_post_process_headers
14648 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
14649 #define elf_backend_object_p elf32_arm_object_p
14650 #define elf_backend_section_flags elf32_arm_section_flags
14651 #define elf_backend_fake_sections elf32_arm_fake_sections
14652 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
14653 #define elf_backend_final_write_processing elf32_arm_final_write_processing
14654 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
14655 #define elf_backend_symbol_processing elf32_arm_symbol_processing
14656 #define elf_backend_size_info elf32_arm_size_info
14657 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
14658 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
14659 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
14660 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
14661 #define elf_backend_is_function_type elf32_arm_is_function_type
14663 #define elf_backend_can_refcount 1
14664 #define elf_backend_can_gc_sections 1
14665 #define elf_backend_plt_readonly 1
14666 #define elf_backend_want_got_plt 1
14667 #define elf_backend_want_plt_sym 0
14668 #define elf_backend_may_use_rel_p 1
14669 #define elf_backend_may_use_rela_p 0
14670 #define elf_backend_default_use_rela_p 0
14672 #define elf_backend_got_header_size 12
14674 #undef elf_backend_obj_attrs_vendor
14675 #define elf_backend_obj_attrs_vendor "aeabi"
14676 #undef elf_backend_obj_attrs_section
14677 #define elf_backend_obj_attrs_section ".ARM.attributes"
14678 #undef elf_backend_obj_attrs_arg_type
14679 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
14680 #undef elf_backend_obj_attrs_section_type
14681 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
14682 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
14683 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
14685 #include "elf32-target.h"
14687 /* VxWorks Targets. */
14689 #undef TARGET_LITTLE_SYM
14690 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
14691 #undef TARGET_LITTLE_NAME
14692 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
14693 #undef TARGET_BIG_SYM
14694 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
14695 #undef TARGET_BIG_NAME
14696 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
14698 /* Like elf32_arm_link_hash_table_create -- but overrides
14699 appropriately for VxWorks. */
14701 static struct bfd_link_hash_table
*
14702 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
14704 struct bfd_link_hash_table
*ret
;
14706 ret
= elf32_arm_link_hash_table_create (abfd
);
14709 struct elf32_arm_link_hash_table
*htab
14710 = (struct elf32_arm_link_hash_table
*) ret
;
14712 htab
->vxworks_p
= 1;
14718 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
14720 elf32_arm_final_write_processing (abfd
, linker
);
14721 elf_vxworks_final_write_processing (abfd
, linker
);
14725 #define elf32_bed elf32_arm_vxworks_bed
14727 #undef bfd_elf32_bfd_link_hash_table_create
14728 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
14729 #undef elf_backend_add_symbol_hook
14730 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
14731 #undef elf_backend_final_write_processing
14732 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
14733 #undef elf_backend_emit_relocs
14734 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
14736 #undef elf_backend_may_use_rel_p
14737 #define elf_backend_may_use_rel_p 0
14738 #undef elf_backend_may_use_rela_p
14739 #define elf_backend_may_use_rela_p 1
14740 #undef elf_backend_default_use_rela_p
14741 #define elf_backend_default_use_rela_p 1
14742 #undef elf_backend_want_plt_sym
14743 #define elf_backend_want_plt_sym 1
14744 #undef ELF_MAXPAGESIZE
14745 #define ELF_MAXPAGESIZE 0x1000
14747 #include "elf32-target.h"
14750 /* Merge backend specific data from an object file to the output
14751 object file when linking. */
14754 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
14756 flagword out_flags
;
14758 bfd_boolean flags_compatible
= TRUE
;
14761 /* Check if we have the same endianess. */
14762 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
14765 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
14768 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
14771 /* The input BFD must have had its flags initialised. */
14772 /* The following seems bogus to me -- The flags are initialized in
14773 the assembler but I don't think an elf_flags_init field is
14774 written into the object. */
14775 /* BFD_ASSERT (elf_flags_init (ibfd)); */
14777 in_flags
= elf_elfheader (ibfd
)->e_flags
;
14778 out_flags
= elf_elfheader (obfd
)->e_flags
;
14780 /* In theory there is no reason why we couldn't handle this. However
14781 in practice it isn't even close to working and there is no real
14782 reason to want it. */
14783 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
14784 && !(ibfd
->flags
& DYNAMIC
)
14785 && (in_flags
& EF_ARM_BE8
))
14787 _bfd_error_handler (_("error: %B is already in final BE8 format"),
14792 if (!elf_flags_init (obfd
))
14794 /* If the input is the default architecture and had the default
14795 flags then do not bother setting the flags for the output
14796 architecture, instead allow future merges to do this. If no
14797 future merges ever set these flags then they will retain their
14798 uninitialised values, which surprise surprise, correspond
14799 to the default values. */
14800 if (bfd_get_arch_info (ibfd
)->the_default
14801 && elf_elfheader (ibfd
)->e_flags
== 0)
14804 elf_flags_init (obfd
) = TRUE
;
14805 elf_elfheader (obfd
)->e_flags
= in_flags
;
14807 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
14808 && bfd_get_arch_info (obfd
)->the_default
)
14809 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
14814 /* Determine what should happen if the input ARM architecture
14815 does not match the output ARM architecture. */
14816 if (! bfd_arm_merge_machines (ibfd
, obfd
))
14819 /* Identical flags must be compatible. */
14820 if (in_flags
== out_flags
)
14823 /* Check to see if the input BFD actually contains any sections. If
14824 not, its flags may not have been initialised either, but it
14825 cannot actually cause any incompatiblity. Do not short-circuit
14826 dynamic objects; their section list may be emptied by
14827 elf_link_add_object_symbols.
14829 Also check to see if there are no code sections in the input.
14830 In this case there is no need to check for code specific flags.
14831 XXX - do we need to worry about floating-point format compatability
14832 in data sections ? */
14833 if (!(ibfd
->flags
& DYNAMIC
))
14835 bfd_boolean null_input_bfd
= TRUE
;
14836 bfd_boolean only_data_sections
= TRUE
;
14838 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
14840 /* Ignore synthetic glue sections. */
14841 if (strcmp (sec
->name
, ".glue_7")
14842 && strcmp (sec
->name
, ".glue_7t"))
14844 if ((bfd_get_section_flags (ibfd
, sec
)
14845 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
14846 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
14847 only_data_sections
= FALSE
;
14849 null_input_bfd
= FALSE
;
14854 if (null_input_bfd
|| only_data_sections
)
14858 /* Complain about various flag mismatches. */
14859 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
14860 EF_ARM_EABI_VERSION (out_flags
)))
14863 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
14865 (in_flags
& EF_ARM_EABIMASK
) >> 24,
14866 (out_flags
& EF_ARM_EABIMASK
) >> 24);
14870 /* Not sure what needs to be checked for EABI versions >= 1. */
14871 /* VxWorks libraries do not use these flags. */
14872 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
14873 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
14874 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
14876 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
14879 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
14881 in_flags
& EF_ARM_APCS_26
? 26 : 32,
14882 out_flags
& EF_ARM_APCS_26
? 26 : 32);
14883 flags_compatible
= FALSE
;
14886 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
14888 if (in_flags
& EF_ARM_APCS_FLOAT
)
14890 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
14894 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
14897 flags_compatible
= FALSE
;
14900 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
14902 if (in_flags
& EF_ARM_VFP_FLOAT
)
14904 (_("error: %B uses VFP instructions, whereas %B does not"),
14908 (_("error: %B uses FPA instructions, whereas %B does not"),
14911 flags_compatible
= FALSE
;
14914 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
14916 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
14918 (_("error: %B uses Maverick instructions, whereas %B does not"),
14922 (_("error: %B does not use Maverick instructions, whereas %B does"),
14925 flags_compatible
= FALSE
;
14928 #ifdef EF_ARM_SOFT_FLOAT
14929 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
14931 /* We can allow interworking between code that is VFP format
14932 layout, and uses either soft float or integer regs for
14933 passing floating point arguments and results. We already
14934 know that the APCS_FLOAT flags match; similarly for VFP
14936 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
14937 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
14939 if (in_flags
& EF_ARM_SOFT_FLOAT
)
14941 (_("error: %B uses software FP, whereas %B uses hardware FP"),
14945 (_("error: %B uses hardware FP, whereas %B uses software FP"),
14948 flags_compatible
= FALSE
;
14953 /* Interworking mismatch is only a warning. */
14954 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
14956 if (in_flags
& EF_ARM_INTERWORK
)
14959 (_("Warning: %B supports interworking, whereas %B does not"),
14965 (_("Warning: %B does not support interworking, whereas %B does"),
14971 return flags_compatible
;
14975 /* Symbian OS Targets. */
14977 #undef TARGET_LITTLE_SYM
14978 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
14979 #undef TARGET_LITTLE_NAME
14980 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
14981 #undef TARGET_BIG_SYM
14982 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
14983 #undef TARGET_BIG_NAME
14984 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
14986 /* Like elf32_arm_link_hash_table_create -- but overrides
14987 appropriately for Symbian OS. */
14989 static struct bfd_link_hash_table
*
14990 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
14992 struct bfd_link_hash_table
*ret
;
14994 ret
= elf32_arm_link_hash_table_create (abfd
);
14997 struct elf32_arm_link_hash_table
*htab
14998 = (struct elf32_arm_link_hash_table
*)ret
;
14999 /* There is no PLT header for Symbian OS. */
15000 htab
->plt_header_size
= 0;
15001 /* The PLT entries are each one instruction and one word. */
15002 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
15003 htab
->symbian_p
= 1;
15004 /* Symbian uses armv5t or above, so use_blx is always true. */
15006 htab
->root
.is_relocatable_executable
= 1;
15011 static const struct bfd_elf_special_section
15012 elf32_arm_symbian_special_sections
[] =
15014 /* In a BPABI executable, the dynamic linking sections do not go in
15015 the loadable read-only segment. The post-linker may wish to
15016 refer to these sections, but they are not part of the final
15018 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
15019 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
15020 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
15021 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
15022 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
15023 /* These sections do not need to be writable as the SymbianOS
15024 postlinker will arrange things so that no dynamic relocation is
15026 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
15027 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
15028 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
15029 { NULL
, 0, 0, 0, 0 }
15033 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
15034 struct bfd_link_info
*link_info
)
15036 /* BPABI objects are never loaded directly by an OS kernel; they are
15037 processed by a postlinker first, into an OS-specific format. If
15038 the D_PAGED bit is set on the file, BFD will align segments on
15039 page boundaries, so that an OS can directly map the file. With
15040 BPABI objects, that just results in wasted space. In addition,
15041 because we clear the D_PAGED bit, map_sections_to_segments will
15042 recognize that the program headers should not be mapped into any
15043 loadable segment. */
15044 abfd
->flags
&= ~D_PAGED
;
15045 elf32_arm_begin_write_processing (abfd
, link_info
);
15049 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
15050 struct bfd_link_info
*info
)
15052 struct elf_segment_map
*m
;
15055 /* BPABI shared libraries and executables should have a PT_DYNAMIC
15056 segment. However, because the .dynamic section is not marked
15057 with SEC_LOAD, the generic ELF code will not create such a
15059 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
15062 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
15063 if (m
->p_type
== PT_DYNAMIC
)
15068 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
15069 m
->next
= elf_tdata (abfd
)->segment_map
;
15070 elf_tdata (abfd
)->segment_map
= m
;
15074 /* Also call the generic arm routine. */
15075 return elf32_arm_modify_segment_map (abfd
, info
);
15078 /* Return address for Ith PLT stub in section PLT, for relocation REL
15079 or (bfd_vma) -1 if it should not be included. */
15082 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
15083 const arelent
*rel ATTRIBUTE_UNUSED
)
15085 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
15090 #define elf32_bed elf32_arm_symbian_bed
15092 /* The dynamic sections are not allocated on SymbianOS; the postlinker
15093 will process them and then discard them. */
15094 #undef ELF_DYNAMIC_SEC_FLAGS
15095 #define ELF_DYNAMIC_SEC_FLAGS \
15096 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15098 #undef elf_backend_add_symbol_hook
15099 #undef elf_backend_emit_relocs
15101 #undef bfd_elf32_bfd_link_hash_table_create
15102 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
15103 #undef elf_backend_special_sections
15104 #define elf_backend_special_sections elf32_arm_symbian_special_sections
15105 #undef elf_backend_begin_write_processing
15106 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
15107 #undef elf_backend_final_write_processing
15108 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15110 #undef elf_backend_modify_segment_map
15111 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15113 /* There is no .got section for BPABI objects, and hence no header. */
15114 #undef elf_backend_got_header_size
15115 #define elf_backend_got_header_size 0
15117 /* Similarly, there is no .got.plt section. */
15118 #undef elf_backend_want_got_plt
15119 #define elf_backend_want_got_plt 0
15121 #undef elf_backend_plt_sym_val
15122 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
15124 #undef elf_backend_may_use_rel_p
15125 #define elf_backend_may_use_rel_p 1
15126 #undef elf_backend_may_use_rela_p
15127 #define elf_backend_may_use_rela_p 0
15128 #undef elf_backend_default_use_rela_p
15129 #define elf_backend_default_use_rela_p 0
15130 #undef elf_backend_want_plt_sym
15131 #define elf_backend_want_plt_sym 0
15132 #undef ELF_MAXPAGESIZE
15133 #define ELF_MAXPAGESIZE 0x8000
15135 #include "elf32-target.h"