1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
65 struct bfd_link_info
*link_info
,
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73 static reloc_howto_type elf32_arm_howto_table_1
[] =
76 HOWTO (R_ARM_NONE
, /* type */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
80 FALSE
, /* pc_relative */
82 complain_overflow_dont
,/* complain_on_overflow */
83 bfd_elf_generic_reloc
, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE
, /* partial_inplace */
88 FALSE
), /* pcrel_offset */
90 HOWTO (R_ARM_PC24
, /* type */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
94 TRUE
, /* pc_relative */
96 complain_overflow_signed
,/* complain_on_overflow */
97 bfd_elf_generic_reloc
, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE
, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE
), /* pcrel_offset */
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32
, /* type */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
109 FALSE
, /* pc_relative */
111 complain_overflow_bitfield
,/* complain_on_overflow */
112 bfd_elf_generic_reloc
, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE
, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE
), /* pcrel_offset */
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32
, /* type */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
124 TRUE
, /* pc_relative */
126 complain_overflow_bitfield
,/* complain_on_overflow */
127 bfd_elf_generic_reloc
, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE
, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE
), /* pcrel_offset */
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0
, /* type */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
139 TRUE
, /* pc_relative */
141 complain_overflow_dont
,/* complain_on_overflow */
142 bfd_elf_generic_reloc
, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE
, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE
), /* pcrel_offset */
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16
, /* type */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
154 FALSE
, /* pc_relative */
156 complain_overflow_bitfield
,/* complain_on_overflow */
157 bfd_elf_generic_reloc
, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE
, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE
), /* pcrel_offset */
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12
, /* type */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
169 FALSE
, /* pc_relative */
171 complain_overflow_bitfield
,/* complain_on_overflow */
172 bfd_elf_generic_reloc
, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE
, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE
), /* pcrel_offset */
179 HOWTO (R_ARM_THM_ABS5
, /* type */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
183 FALSE
, /* pc_relative */
185 complain_overflow_bitfield
,/* complain_on_overflow */
186 bfd_elf_generic_reloc
, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE
, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE
), /* pcrel_offset */
194 HOWTO (R_ARM_ABS8
, /* type */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
198 FALSE
, /* pc_relative */
200 complain_overflow_bitfield
,/* complain_on_overflow */
201 bfd_elf_generic_reloc
, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE
, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE
), /* pcrel_offset */
208 HOWTO (R_ARM_SBREL32
, /* type */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
212 FALSE
, /* pc_relative */
214 complain_overflow_dont
,/* complain_on_overflow */
215 bfd_elf_generic_reloc
, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE
, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE
), /* pcrel_offset */
222 HOWTO (R_ARM_THM_CALL
, /* type */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
226 TRUE
, /* pc_relative */
228 complain_overflow_signed
,/* complain_on_overflow */
229 bfd_elf_generic_reloc
, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE
, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE
), /* pcrel_offset */
236 HOWTO (R_ARM_THM_PC8
, /* type */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
240 TRUE
, /* pc_relative */
242 complain_overflow_signed
,/* complain_on_overflow */
243 bfd_elf_generic_reloc
, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE
, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE
), /* pcrel_offset */
250 HOWTO (R_ARM_BREL_ADJ
, /* type */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
254 FALSE
, /* pc_relative */
256 complain_overflow_signed
,/* complain_on_overflow */
257 bfd_elf_generic_reloc
, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE
, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE
), /* pcrel_offset */
264 HOWTO (R_ARM_SWI24
, /* type */
266 0, /* size (0 = byte, 1 = short, 2 = long) */
268 FALSE
, /* pc_relative */
270 complain_overflow_signed
,/* complain_on_overflow */
271 bfd_elf_generic_reloc
, /* special_function */
272 "R_ARM_SWI24", /* name */
273 FALSE
, /* partial_inplace */
274 0x00000000, /* src_mask */
275 0x00000000, /* dst_mask */
276 FALSE
), /* pcrel_offset */
278 HOWTO (R_ARM_THM_SWI8
, /* type */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
282 FALSE
, /* pc_relative */
284 complain_overflow_signed
,/* complain_on_overflow */
285 bfd_elf_generic_reloc
, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE
, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE
), /* pcrel_offset */
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25
, /* type */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
297 TRUE
, /* pc_relative */
299 complain_overflow_signed
,/* complain_on_overflow */
300 bfd_elf_generic_reloc
, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE
, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE
), /* pcrel_offset */
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22
, /* type */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
312 TRUE
, /* pc_relative */
314 complain_overflow_signed
,/* complain_on_overflow */
315 bfd_elf_generic_reloc
, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE
, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE
), /* pcrel_offset */
322 /* Dynamic TLS relocations. */
324 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE
, /* pc_relative */
330 complain_overflow_bitfield
,/* complain_on_overflow */
331 bfd_elf_generic_reloc
, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE
, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE
), /* pcrel_offset */
338 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE
, /* pc_relative */
344 complain_overflow_bitfield
,/* complain_on_overflow */
345 bfd_elf_generic_reloc
, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE
, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE
), /* pcrel_offset */
352 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE
, /* pc_relative */
358 complain_overflow_bitfield
,/* complain_on_overflow */
359 bfd_elf_generic_reloc
, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE
, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE
), /* pcrel_offset */
366 /* Relocs used in ARM Linux */
368 HOWTO (R_ARM_COPY
, /* type */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
372 FALSE
, /* pc_relative */
374 complain_overflow_bitfield
,/* complain_on_overflow */
375 bfd_elf_generic_reloc
, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE
, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE
), /* pcrel_offset */
382 HOWTO (R_ARM_GLOB_DAT
, /* type */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
386 FALSE
, /* pc_relative */
388 complain_overflow_bitfield
,/* complain_on_overflow */
389 bfd_elf_generic_reloc
, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE
, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE
), /* pcrel_offset */
396 HOWTO (R_ARM_JUMP_SLOT
, /* type */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
400 FALSE
, /* pc_relative */
402 complain_overflow_bitfield
,/* complain_on_overflow */
403 bfd_elf_generic_reloc
, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE
, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE
), /* pcrel_offset */
410 HOWTO (R_ARM_RELATIVE
, /* type */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
414 FALSE
, /* pc_relative */
416 complain_overflow_bitfield
,/* complain_on_overflow */
417 bfd_elf_generic_reloc
, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE
, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE
), /* pcrel_offset */
424 HOWTO (R_ARM_GOTOFF32
, /* type */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
428 FALSE
, /* pc_relative */
430 complain_overflow_bitfield
,/* complain_on_overflow */
431 bfd_elf_generic_reloc
, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE
, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE
), /* pcrel_offset */
438 HOWTO (R_ARM_GOTPC
, /* type */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
442 TRUE
, /* pc_relative */
444 complain_overflow_bitfield
,/* complain_on_overflow */
445 bfd_elf_generic_reloc
, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE
, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE
), /* pcrel_offset */
452 HOWTO (R_ARM_GOT32
, /* type */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE
, /* pc_relative */
458 complain_overflow_bitfield
,/* complain_on_overflow */
459 bfd_elf_generic_reloc
, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE
, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE
), /* pcrel_offset */
466 HOWTO (R_ARM_PLT32
, /* type */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
470 TRUE
, /* pc_relative */
472 complain_overflow_bitfield
,/* complain_on_overflow */
473 bfd_elf_generic_reloc
, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE
, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE
), /* pcrel_offset */
480 HOWTO (R_ARM_CALL
, /* type */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
484 TRUE
, /* pc_relative */
486 complain_overflow_signed
,/* complain_on_overflow */
487 bfd_elf_generic_reloc
, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE
, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE
), /* pcrel_offset */
494 HOWTO (R_ARM_JUMP24
, /* type */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
498 TRUE
, /* pc_relative */
500 complain_overflow_signed
,/* complain_on_overflow */
501 bfd_elf_generic_reloc
, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE
, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE
), /* pcrel_offset */
508 HOWTO (R_ARM_THM_JUMP24
, /* type */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
512 TRUE
, /* pc_relative */
514 complain_overflow_signed
,/* complain_on_overflow */
515 bfd_elf_generic_reloc
, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE
, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE
), /* pcrel_offset */
522 HOWTO (R_ARM_BASE_ABS
, /* type */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
526 FALSE
, /* pc_relative */
528 complain_overflow_dont
,/* complain_on_overflow */
529 bfd_elf_generic_reloc
, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE
, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE
), /* pcrel_offset */
536 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
540 TRUE
, /* pc_relative */
542 complain_overflow_dont
,/* complain_on_overflow */
543 bfd_elf_generic_reloc
, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE
, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE
), /* pcrel_offset */
550 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
554 TRUE
, /* pc_relative */
556 complain_overflow_dont
,/* complain_on_overflow */
557 bfd_elf_generic_reloc
, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE
, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE
), /* pcrel_offset */
564 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
568 TRUE
, /* pc_relative */
570 complain_overflow_dont
,/* complain_on_overflow */
571 bfd_elf_generic_reloc
, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE
, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE
), /* pcrel_offset */
578 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE
, /* pc_relative */
584 complain_overflow_dont
,/* complain_on_overflow */
585 bfd_elf_generic_reloc
, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE
, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE
), /* pcrel_offset */
592 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
596 FALSE
, /* pc_relative */
598 complain_overflow_dont
,/* complain_on_overflow */
599 bfd_elf_generic_reloc
, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE
, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE
), /* pcrel_offset */
606 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 FALSE
, /* pc_relative */
612 complain_overflow_dont
,/* complain_on_overflow */
613 bfd_elf_generic_reloc
, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE
, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE
), /* pcrel_offset */
620 HOWTO (R_ARM_TARGET1
, /* type */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
624 FALSE
, /* pc_relative */
626 complain_overflow_dont
,/* complain_on_overflow */
627 bfd_elf_generic_reloc
, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE
, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE
), /* pcrel_offset */
634 HOWTO (R_ARM_ROSEGREL32
, /* type */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
638 FALSE
, /* pc_relative */
640 complain_overflow_dont
,/* complain_on_overflow */
641 bfd_elf_generic_reloc
, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE
, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE
), /* pcrel_offset */
648 HOWTO (R_ARM_V4BX
, /* type */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
652 FALSE
, /* pc_relative */
654 complain_overflow_dont
,/* complain_on_overflow */
655 bfd_elf_generic_reloc
, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE
, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE
), /* pcrel_offset */
662 HOWTO (R_ARM_TARGET2
, /* type */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
666 FALSE
, /* pc_relative */
668 complain_overflow_signed
,/* complain_on_overflow */
669 bfd_elf_generic_reloc
, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE
, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE
), /* pcrel_offset */
676 HOWTO (R_ARM_PREL31
, /* type */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
680 TRUE
, /* pc_relative */
682 complain_overflow_signed
,/* complain_on_overflow */
683 bfd_elf_generic_reloc
, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE
, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE
), /* pcrel_offset */
690 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
694 FALSE
, /* pc_relative */
696 complain_overflow_dont
,/* complain_on_overflow */
697 bfd_elf_generic_reloc
, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE
, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE
), /* pcrel_offset */
704 HOWTO (R_ARM_MOVT_ABS
, /* type */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
708 FALSE
, /* pc_relative */
710 complain_overflow_bitfield
,/* complain_on_overflow */
711 bfd_elf_generic_reloc
, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE
, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE
), /* pcrel_offset */
718 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
722 TRUE
, /* pc_relative */
724 complain_overflow_dont
,/* complain_on_overflow */
725 bfd_elf_generic_reloc
, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE
, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE
), /* pcrel_offset */
732 HOWTO (R_ARM_MOVT_PREL
, /* type */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
736 TRUE
, /* pc_relative */
738 complain_overflow_bitfield
,/* complain_on_overflow */
739 bfd_elf_generic_reloc
, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE
, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE
), /* pcrel_offset */
746 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 FALSE
, /* pc_relative */
752 complain_overflow_dont
,/* complain_on_overflow */
753 bfd_elf_generic_reloc
, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE
, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE
), /* pcrel_offset */
760 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
764 FALSE
, /* pc_relative */
766 complain_overflow_bitfield
,/* complain_on_overflow */
767 bfd_elf_generic_reloc
, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE
, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE
), /* pcrel_offset */
774 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
778 TRUE
, /* pc_relative */
780 complain_overflow_dont
,/* complain_on_overflow */
781 bfd_elf_generic_reloc
, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE
, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE
), /* pcrel_offset */
788 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
792 TRUE
, /* pc_relative */
794 complain_overflow_bitfield
,/* complain_on_overflow */
795 bfd_elf_generic_reloc
, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE
, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE
), /* pcrel_offset */
802 HOWTO (R_ARM_THM_JUMP19
, /* type */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
806 TRUE
, /* pc_relative */
808 complain_overflow_signed
,/* complain_on_overflow */
809 bfd_elf_generic_reloc
, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE
, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE
), /* pcrel_offset */
816 HOWTO (R_ARM_THM_JUMP6
, /* type */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
820 TRUE
, /* pc_relative */
822 complain_overflow_unsigned
,/* complain_on_overflow */
823 bfd_elf_generic_reloc
, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE
, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE
), /* pcrel_offset */
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
833 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
837 TRUE
, /* pc_relative */
839 complain_overflow_dont
,/* complain_on_overflow */
840 bfd_elf_generic_reloc
, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE
, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE
), /* pcrel_offset */
847 HOWTO (R_ARM_THM_PC12
, /* type */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
851 TRUE
, /* pc_relative */
853 complain_overflow_dont
,/* complain_on_overflow */
854 bfd_elf_generic_reloc
, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE
, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE
), /* pcrel_offset */
861 HOWTO (R_ARM_ABS32_NOI
, /* type */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
865 FALSE
, /* pc_relative */
867 complain_overflow_dont
,/* complain_on_overflow */
868 bfd_elf_generic_reloc
, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE
, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE
), /* pcrel_offset */
875 HOWTO (R_ARM_REL32_NOI
, /* type */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
879 TRUE
, /* pc_relative */
881 complain_overflow_dont
,/* complain_on_overflow */
882 bfd_elf_generic_reloc
, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE
, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE
), /* pcrel_offset */
889 /* Group relocations. */
891 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
895 TRUE
, /* pc_relative */
897 complain_overflow_dont
,/* complain_on_overflow */
898 bfd_elf_generic_reloc
, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE
, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE
), /* pcrel_offset */
905 HOWTO (R_ARM_ALU_PC_G0
, /* type */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
909 TRUE
, /* pc_relative */
911 complain_overflow_dont
,/* complain_on_overflow */
912 bfd_elf_generic_reloc
, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE
, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE
), /* pcrel_offset */
919 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
923 TRUE
, /* pc_relative */
925 complain_overflow_dont
,/* complain_on_overflow */
926 bfd_elf_generic_reloc
, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE
, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE
), /* pcrel_offset */
933 HOWTO (R_ARM_ALU_PC_G1
, /* type */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
937 TRUE
, /* pc_relative */
939 complain_overflow_dont
,/* complain_on_overflow */
940 bfd_elf_generic_reloc
, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE
, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE
), /* pcrel_offset */
947 HOWTO (R_ARM_ALU_PC_G2
, /* type */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
951 TRUE
, /* pc_relative */
953 complain_overflow_dont
,/* complain_on_overflow */
954 bfd_elf_generic_reloc
, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE
, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE
), /* pcrel_offset */
961 HOWTO (R_ARM_LDR_PC_G1
, /* type */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
965 TRUE
, /* pc_relative */
967 complain_overflow_dont
,/* complain_on_overflow */
968 bfd_elf_generic_reloc
, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE
, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE
), /* pcrel_offset */
975 HOWTO (R_ARM_LDR_PC_G2
, /* type */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
979 TRUE
, /* pc_relative */
981 complain_overflow_dont
,/* complain_on_overflow */
982 bfd_elf_generic_reloc
, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE
, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE
), /* pcrel_offset */
989 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
993 TRUE
, /* pc_relative */
995 complain_overflow_dont
,/* complain_on_overflow */
996 bfd_elf_generic_reloc
, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE
, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE
), /* pcrel_offset */
1003 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1007 TRUE
, /* pc_relative */
1009 complain_overflow_dont
,/* complain_on_overflow */
1010 bfd_elf_generic_reloc
, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE
, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE
), /* pcrel_offset */
1017 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1021 TRUE
, /* pc_relative */
1023 complain_overflow_dont
,/* complain_on_overflow */
1024 bfd_elf_generic_reloc
, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE
, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE
), /* pcrel_offset */
1031 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 TRUE
, /* pc_relative */
1037 complain_overflow_dont
,/* complain_on_overflow */
1038 bfd_elf_generic_reloc
, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE
, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE
), /* pcrel_offset */
1045 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 TRUE
, /* pc_relative */
1051 complain_overflow_dont
,/* complain_on_overflow */
1052 bfd_elf_generic_reloc
, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE
, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE
), /* pcrel_offset */
1059 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 TRUE
, /* pc_relative */
1065 complain_overflow_dont
,/* complain_on_overflow */
1066 bfd_elf_generic_reloc
, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE
, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE
), /* pcrel_offset */
1073 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 TRUE
, /* pc_relative */
1079 complain_overflow_dont
,/* complain_on_overflow */
1080 bfd_elf_generic_reloc
, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE
, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE
), /* pcrel_offset */
1087 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 TRUE
, /* pc_relative */
1093 complain_overflow_dont
,/* complain_on_overflow */
1094 bfd_elf_generic_reloc
, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE
, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE
), /* pcrel_offset */
1101 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 TRUE
, /* pc_relative */
1107 complain_overflow_dont
,/* complain_on_overflow */
1108 bfd_elf_generic_reloc
, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE
, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE
), /* pcrel_offset */
1115 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 TRUE
, /* pc_relative */
1121 complain_overflow_dont
,/* complain_on_overflow */
1122 bfd_elf_generic_reloc
, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE
, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE
), /* pcrel_offset */
1129 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1133 TRUE
, /* pc_relative */
1135 complain_overflow_dont
,/* complain_on_overflow */
1136 bfd_elf_generic_reloc
, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE
, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE
), /* pcrel_offset */
1143 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1147 TRUE
, /* pc_relative */
1149 complain_overflow_dont
,/* complain_on_overflow */
1150 bfd_elf_generic_reloc
, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE
, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE
), /* pcrel_offset */
1157 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1161 TRUE
, /* pc_relative */
1163 complain_overflow_dont
,/* complain_on_overflow */
1164 bfd_elf_generic_reloc
, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE
, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE
), /* pcrel_offset */
1171 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 TRUE
, /* pc_relative */
1177 complain_overflow_dont
,/* complain_on_overflow */
1178 bfd_elf_generic_reloc
, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE
, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE
), /* pcrel_offset */
1185 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1189 TRUE
, /* pc_relative */
1191 complain_overflow_dont
,/* complain_on_overflow */
1192 bfd_elf_generic_reloc
, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE
, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE
), /* pcrel_offset */
1199 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1203 TRUE
, /* pc_relative */
1205 complain_overflow_dont
,/* complain_on_overflow */
1206 bfd_elf_generic_reloc
, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE
, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE
), /* pcrel_offset */
1213 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 TRUE
, /* pc_relative */
1219 complain_overflow_dont
,/* complain_on_overflow */
1220 bfd_elf_generic_reloc
, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE
, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE
), /* pcrel_offset */
1227 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1231 TRUE
, /* pc_relative */
1233 complain_overflow_dont
,/* complain_on_overflow */
1234 bfd_elf_generic_reloc
, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE
, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE
), /* pcrel_offset */
1241 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1245 TRUE
, /* pc_relative */
1247 complain_overflow_dont
,/* complain_on_overflow */
1248 bfd_elf_generic_reloc
, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE
, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE
), /* pcrel_offset */
1255 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1259 TRUE
, /* pc_relative */
1261 complain_overflow_dont
,/* complain_on_overflow */
1262 bfd_elf_generic_reloc
, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE
, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE
), /* pcrel_offset */
1269 /* End of group relocations. */
1271 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1275 FALSE
, /* pc_relative */
1277 complain_overflow_dont
,/* complain_on_overflow */
1278 bfd_elf_generic_reloc
, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE
, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE
), /* pcrel_offset */
1285 HOWTO (R_ARM_MOVT_BREL
, /* type */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1289 FALSE
, /* pc_relative */
1291 complain_overflow_bitfield
,/* complain_on_overflow */
1292 bfd_elf_generic_reloc
, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE
, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE
), /* pcrel_offset */
1299 HOWTO (R_ARM_MOVW_BREL
, /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 FALSE
, /* pc_relative */
1305 complain_overflow_dont
,/* complain_on_overflow */
1306 bfd_elf_generic_reloc
, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE
, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE
), /* pcrel_offset */
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 FALSE
, /* pc_relative */
1319 complain_overflow_dont
,/* complain_on_overflow */
1320 bfd_elf_generic_reloc
, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE
, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE
), /* pcrel_offset */
1327 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 FALSE
, /* pc_relative */
1333 complain_overflow_bitfield
,/* complain_on_overflow */
1334 bfd_elf_generic_reloc
, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE
, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE
), /* pcrel_offset */
1341 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1345 FALSE
, /* pc_relative */
1347 complain_overflow_dont
,/* complain_on_overflow */
1348 bfd_elf_generic_reloc
, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE
, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE
), /* pcrel_offset */
1355 EMPTY_HOWTO (90), /* Unallocated. */
1360 HOWTO (R_ARM_PLT32_ABS
, /* type */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1364 FALSE
, /* pc_relative */
1366 complain_overflow_dont
,/* complain_on_overflow */
1367 bfd_elf_generic_reloc
, /* special_function */
1368 "R_ARM_PLT32_ABS", /* name */
1369 FALSE
, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE
), /* pcrel_offset */
1374 HOWTO (R_ARM_GOT_ABS
, /* type */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1378 FALSE
, /* pc_relative */
1380 complain_overflow_dont
,/* complain_on_overflow */
1381 bfd_elf_generic_reloc
, /* special_function */
1382 "R_ARM_GOT_ABS", /* name */
1383 FALSE
, /* partial_inplace */
1384 0xffffffff, /* src_mask */
1385 0xffffffff, /* dst_mask */
1386 FALSE
), /* pcrel_offset */
1388 HOWTO (R_ARM_GOT_PREL
, /* type */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1392 TRUE
, /* pc_relative */
1394 complain_overflow_dont
, /* complain_on_overflow */
1395 bfd_elf_generic_reloc
, /* special_function */
1396 "R_ARM_GOT_PREL", /* name */
1397 FALSE
, /* partial_inplace */
1398 0xffffffff, /* src_mask */
1399 0xffffffff, /* dst_mask */
1400 TRUE
), /* pcrel_offset */
1402 HOWTO (R_ARM_GOT_BREL12
, /* type */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1406 FALSE
, /* pc_relative */
1408 complain_overflow_bitfield
,/* complain_on_overflow */
1409 bfd_elf_generic_reloc
, /* special_function */
1410 "R_ARM_GOT_BREL12", /* name */
1411 FALSE
, /* partial_inplace */
1412 0x00000fff, /* src_mask */
1413 0x00000fff, /* dst_mask */
1414 FALSE
), /* pcrel_offset */
1416 HOWTO (R_ARM_GOTOFF12
, /* type */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1420 FALSE
, /* pc_relative */
1422 complain_overflow_bitfield
,/* complain_on_overflow */
1423 bfd_elf_generic_reloc
, /* special_function */
1424 "R_ARM_GOTOFF12", /* name */
1425 FALSE
, /* partial_inplace */
1426 0x00000fff, /* src_mask */
1427 0x00000fff, /* dst_mask */
1428 FALSE
), /* pcrel_offset */
1430 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1432 /* GNU extension to record C++ vtable member usage */
1433 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1435 2, /* size (0 = byte, 1 = short, 2 = long) */
1437 FALSE
, /* pc_relative */
1439 complain_overflow_dont
, /* complain_on_overflow */
1440 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1441 "R_ARM_GNU_VTENTRY", /* name */
1442 FALSE
, /* partial_inplace */
1445 FALSE
), /* pcrel_offset */
1447 /* GNU extension to record C++ vtable hierarchy */
1448 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1450 2, /* size (0 = byte, 1 = short, 2 = long) */
1452 FALSE
, /* pc_relative */
1454 complain_overflow_dont
, /* complain_on_overflow */
1455 NULL
, /* special_function */
1456 "R_ARM_GNU_VTINHERIT", /* name */
1457 FALSE
, /* partial_inplace */
1460 FALSE
), /* pcrel_offset */
1462 HOWTO (R_ARM_THM_JUMP11
, /* type */
1464 1, /* size (0 = byte, 1 = short, 2 = long) */
1466 TRUE
, /* pc_relative */
1468 complain_overflow_signed
, /* complain_on_overflow */
1469 bfd_elf_generic_reloc
, /* special_function */
1470 "R_ARM_THM_JUMP11", /* name */
1471 FALSE
, /* partial_inplace */
1472 0x000007ff, /* src_mask */
1473 0x000007ff, /* dst_mask */
1474 TRUE
), /* pcrel_offset */
1476 HOWTO (R_ARM_THM_JUMP8
, /* type */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1480 TRUE
, /* pc_relative */
1482 complain_overflow_signed
, /* complain_on_overflow */
1483 bfd_elf_generic_reloc
, /* special_function */
1484 "R_ARM_THM_JUMP8", /* name */
1485 FALSE
, /* partial_inplace */
1486 0x000000ff, /* src_mask */
1487 0x000000ff, /* dst_mask */
1488 TRUE
), /* pcrel_offset */
1490 /* TLS relocations */
1491 HOWTO (R_ARM_TLS_GD32
, /* type */
1493 2, /* size (0 = byte, 1 = short, 2 = long) */
1495 FALSE
, /* pc_relative */
1497 complain_overflow_bitfield
,/* complain_on_overflow */
1498 NULL
, /* special_function */
1499 "R_ARM_TLS_GD32", /* name */
1500 TRUE
, /* partial_inplace */
1501 0xffffffff, /* src_mask */
1502 0xffffffff, /* dst_mask */
1503 FALSE
), /* pcrel_offset */
1505 HOWTO (R_ARM_TLS_LDM32
, /* type */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1509 FALSE
, /* pc_relative */
1511 complain_overflow_bitfield
,/* complain_on_overflow */
1512 bfd_elf_generic_reloc
, /* special_function */
1513 "R_ARM_TLS_LDM32", /* name */
1514 TRUE
, /* partial_inplace */
1515 0xffffffff, /* src_mask */
1516 0xffffffff, /* dst_mask */
1517 FALSE
), /* pcrel_offset */
1519 HOWTO (R_ARM_TLS_LDO32
, /* type */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1523 FALSE
, /* pc_relative */
1525 complain_overflow_bitfield
,/* complain_on_overflow */
1526 bfd_elf_generic_reloc
, /* special_function */
1527 "R_ARM_TLS_LDO32", /* name */
1528 TRUE
, /* partial_inplace */
1529 0xffffffff, /* src_mask */
1530 0xffffffff, /* dst_mask */
1531 FALSE
), /* pcrel_offset */
1533 HOWTO (R_ARM_TLS_IE32
, /* type */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 FALSE
, /* pc_relative */
1539 complain_overflow_bitfield
,/* complain_on_overflow */
1540 NULL
, /* special_function */
1541 "R_ARM_TLS_IE32", /* name */
1542 TRUE
, /* partial_inplace */
1543 0xffffffff, /* src_mask */
1544 0xffffffff, /* dst_mask */
1545 FALSE
), /* pcrel_offset */
1547 HOWTO (R_ARM_TLS_LE32
, /* type */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 FALSE
, /* pc_relative */
1553 complain_overflow_bitfield
,/* complain_on_overflow */
1554 bfd_elf_generic_reloc
, /* special_function */
1555 "R_ARM_TLS_LE32", /* name */
1556 TRUE
, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE
), /* pcrel_offset */
1561 HOWTO (R_ARM_TLS_LDO12
, /* type */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 FALSE
, /* pc_relative */
1567 complain_overflow_bitfield
,/* complain_on_overflow */
1568 bfd_elf_generic_reloc
, /* special_function */
1569 "R_ARM_TLS_LDO12", /* name */
1570 FALSE
, /* partial_inplace */
1571 0x00000fff, /* src_mask */
1572 0x00000fff, /* dst_mask */
1573 FALSE
), /* pcrel_offset */
1575 HOWTO (R_ARM_TLS_LE12
, /* type */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1579 FALSE
, /* pc_relative */
1581 complain_overflow_bitfield
,/* complain_on_overflow */
1582 bfd_elf_generic_reloc
, /* special_function */
1583 "R_ARM_TLS_LE12", /* name */
1584 FALSE
, /* partial_inplace */
1585 0x00000fff, /* src_mask */
1586 0x00000fff, /* dst_mask */
1587 FALSE
), /* pcrel_offset */
1589 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 FALSE
, /* pc_relative */
1595 complain_overflow_bitfield
,/* complain_on_overflow */
1596 bfd_elf_generic_reloc
, /* special_function */
1597 "R_ARM_TLS_IE12GP", /* name */
1598 FALSE
, /* partial_inplace */
1599 0x00000fff, /* src_mask */
1600 0x00000fff, /* dst_mask */
1601 FALSE
), /* pcrel_offset */
1604 /* 112-127 private relocations
1605 128 R_ARM_ME_TOO, obsolete
1606 129-255 unallocated in AAELF.
1608 249-255 extended, currently unused, relocations: */
1610 static reloc_howto_type elf32_arm_howto_table_2
[4] =
1612 HOWTO (R_ARM_RREL32
, /* type */
1614 0, /* size (0 = byte, 1 = short, 2 = long) */
1616 FALSE
, /* pc_relative */
1618 complain_overflow_dont
,/* complain_on_overflow */
1619 bfd_elf_generic_reloc
, /* special_function */
1620 "R_ARM_RREL32", /* name */
1621 FALSE
, /* partial_inplace */
1624 FALSE
), /* pcrel_offset */
1626 HOWTO (R_ARM_RABS32
, /* type */
1628 0, /* size (0 = byte, 1 = short, 2 = long) */
1630 FALSE
, /* pc_relative */
1632 complain_overflow_dont
,/* complain_on_overflow */
1633 bfd_elf_generic_reloc
, /* special_function */
1634 "R_ARM_RABS32", /* name */
1635 FALSE
, /* partial_inplace */
1638 FALSE
), /* pcrel_offset */
1640 HOWTO (R_ARM_RPC24
, /* type */
1642 0, /* size (0 = byte, 1 = short, 2 = long) */
1644 FALSE
, /* pc_relative */
1646 complain_overflow_dont
,/* complain_on_overflow */
1647 bfd_elf_generic_reloc
, /* special_function */
1648 "R_ARM_RPC24", /* name */
1649 FALSE
, /* partial_inplace */
1652 FALSE
), /* pcrel_offset */
1654 HOWTO (R_ARM_RBASE
, /* type */
1656 0, /* size (0 = byte, 1 = short, 2 = long) */
1658 FALSE
, /* pc_relative */
1660 complain_overflow_dont
,/* complain_on_overflow */
1661 bfd_elf_generic_reloc
, /* special_function */
1662 "R_ARM_RBASE", /* name */
1663 FALSE
, /* partial_inplace */
1666 FALSE
) /* pcrel_offset */
1669 static reloc_howto_type
*
1670 elf32_arm_howto_from_type (unsigned int r_type
)
1672 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1673 return &elf32_arm_howto_table_1
[r_type
];
1675 if (r_type
>= R_ARM_RREL32
1676 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1677 return &elf32_arm_howto_table_2
[r_type
- R_ARM_RREL32
];
1683 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1684 Elf_Internal_Rela
* elf_reloc
)
1686 unsigned int r_type
;
1688 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1689 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1692 struct elf32_arm_reloc_map
1694 bfd_reloc_code_real_type bfd_reloc_val
;
1695 unsigned char elf_reloc_val
;
1698 /* All entries in this list must also be present in elf32_arm_howto_table. */
1699 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1701 {BFD_RELOC_NONE
, R_ARM_NONE
},
1702 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1703 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1704 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1705 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1706 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1707 {BFD_RELOC_32
, R_ARM_ABS32
},
1708 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1709 {BFD_RELOC_8
, R_ARM_ABS8
},
1710 {BFD_RELOC_16
, R_ARM_ABS16
},
1711 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1712 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1719 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1720 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1721 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1722 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1723 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1724 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1725 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1726 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1727 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1728 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1729 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1730 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1731 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1732 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1733 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1734 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1735 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1736 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1737 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1738 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1739 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1740 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1741 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1742 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1743 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1744 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1745 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1746 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1747 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1748 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1749 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1750 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1751 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1752 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1753 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1754 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1755 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1756 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1757 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1758 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1759 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1760 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1761 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1762 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1763 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1764 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1765 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1766 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1767 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1768 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1769 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1770 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1771 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1772 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1773 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1774 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1775 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1776 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1777 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1778 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1781 static reloc_howto_type
*
1782 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1783 bfd_reloc_code_real_type code
)
1787 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1788 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1789 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1794 static reloc_howto_type
*
1795 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1800 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1801 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1802 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1803 return &elf32_arm_howto_table_1
[i
];
1805 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1806 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1807 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1808 return &elf32_arm_howto_table_2
[i
];
1813 /* Support for core dump NOTE sections. */
1816 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1821 switch (note
->descsz
)
1826 case 148: /* Linux/ARM 32-bit. */
1828 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1831 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1840 /* Make a ".reg/999" section. */
1841 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1842 size
, note
->descpos
+ offset
);
1846 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1848 switch (note
->descsz
)
1853 case 124: /* Linux/ARM elf_prpsinfo. */
1854 elf_tdata (abfd
)->core_program
1855 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1856 elf_tdata (abfd
)->core_command
1857 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1860 /* Note that for some reason, a spurious space is tacked
1861 onto the end of the args in some (at least one anyway)
1862 implementations, so strip it off if it exists. */
1864 char *command
= elf_tdata (abfd
)->core_command
;
1865 int n
= strlen (command
);
1867 if (0 < n
&& command
[n
- 1] == ' ')
1868 command
[n
- 1] = '\0';
1874 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1875 #define TARGET_LITTLE_NAME "elf32-littlearm"
1876 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1877 #define TARGET_BIG_NAME "elf32-bigarm"
1879 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1880 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1882 typedef unsigned long int insn32
;
1883 typedef unsigned short int insn16
;
1885 /* In lieu of proper flags, assume all EABIv4 or later objects are
1887 #define INTERWORK_FLAG(abfd) \
1888 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1889 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1890 || ((abfd)->flags & BFD_LINKER_CREATED))
1892 /* The linker script knows the section names for placement.
1893 The entry_names are used to do simple name mangling on the stubs.
1894 Given a function name, and its type, the stub can be found. The
1895 name can be changed. The only requirement is the %s be present. */
1896 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1897 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1899 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1900 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1902 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1903 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1905 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1906 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1908 #define STUB_ENTRY_NAME "__%s_veneer"
1910 /* The name of the dynamic interpreter. This is put in the .interp
1912 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1914 #ifdef FOUR_WORD_PLT
1916 /* The first entry in a procedure linkage table looks like
1917 this. It is set up so that any shared library function that is
1918 called before the relocation has been set up calls the dynamic
1920 static const bfd_vma elf32_arm_plt0_entry
[] =
1922 0xe52de004, /* str lr, [sp, #-4]! */
1923 0xe59fe010, /* ldr lr, [pc, #16] */
1924 0xe08fe00e, /* add lr, pc, lr */
1925 0xe5bef008, /* ldr pc, [lr, #8]! */
1928 /* Subsequent entries in a procedure linkage table look like
1930 static const bfd_vma elf32_arm_plt_entry
[] =
1932 0xe28fc600, /* add ip, pc, #NN */
1933 0xe28cca00, /* add ip, ip, #NN */
1934 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1935 0x00000000, /* unused */
1940 /* The first entry in a procedure linkage table looks like
1941 this. It is set up so that any shared library function that is
1942 called before the relocation has been set up calls the dynamic
1944 static const bfd_vma elf32_arm_plt0_entry
[] =
1946 0xe52de004, /* str lr, [sp, #-4]! */
1947 0xe59fe004, /* ldr lr, [pc, #4] */
1948 0xe08fe00e, /* add lr, pc, lr */
1949 0xe5bef008, /* ldr pc, [lr, #8]! */
1950 0x00000000, /* &GOT[0] - . */
1953 /* Subsequent entries in a procedure linkage table look like
1955 static const bfd_vma elf32_arm_plt_entry
[] =
1957 0xe28fc600, /* add ip, pc, #0xNN00000 */
1958 0xe28cca00, /* add ip, ip, #0xNN000 */
1959 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1964 /* The format of the first entry in the procedure linkage table
1965 for a VxWorks executable. */
1966 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
1968 0xe52dc008, /* str ip,[sp,#-8]! */
1969 0xe59fc000, /* ldr ip,[pc] */
1970 0xe59cf008, /* ldr pc,[ip,#8] */
1971 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1974 /* The format of subsequent entries in a VxWorks executable. */
1975 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
1977 0xe59fc000, /* ldr ip,[pc] */
1978 0xe59cf000, /* ldr pc,[ip] */
1979 0x00000000, /* .long @got */
1980 0xe59fc000, /* ldr ip,[pc] */
1981 0xea000000, /* b _PLT */
1982 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1985 /* The format of entries in a VxWorks shared library. */
1986 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
1988 0xe59fc000, /* ldr ip,[pc] */
1989 0xe79cf009, /* ldr pc,[ip,r9] */
1990 0x00000000, /* .long @got */
1991 0xe59fc000, /* ldr ip,[pc] */
1992 0xe599f008, /* ldr pc,[r9,#8] */
1993 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1996 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1997 #define PLT_THUMB_STUB_SIZE 4
1998 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2004 /* The entries in a PLT when using a DLL-based target with multiple
2006 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2008 0xe51ff004, /* ldr pc, [pc, #-4] */
2009 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2012 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2013 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2014 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2015 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2016 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2017 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2027 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2028 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2029 is inserted in arm_build_one_stub(). */
2030 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2031 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2032 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2033 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2034 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2035 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2040 enum stub_insn_type type
;
2041 unsigned int r_type
;
2045 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2046 to reach the stub if necessary. */
2047 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2049 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2050 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2053 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2055 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2057 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2058 ARM_INSN(0xe12fff1c), /* bx ip */
2059 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2062 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2063 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2065 THUMB16_INSN(0xb401), /* push {r0} */
2066 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2067 THUMB16_INSN(0x4684), /* mov ip, r0 */
2068 THUMB16_INSN(0xbc01), /* pop {r0} */
2069 THUMB16_INSN(0x4760), /* bx ip */
2070 THUMB16_INSN(0xbf00), /* nop */
2071 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2074 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2076 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2078 THUMB16_INSN(0x4778), /* bx pc */
2079 THUMB16_INSN(0x46c0), /* nop */
2080 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2081 ARM_INSN(0xe12fff1c), /* bx ip */
2082 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2085 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2087 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2089 THUMB16_INSN(0x4778), /* bx pc */
2090 THUMB16_INSN(0x46c0), /* nop */
2091 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2092 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2095 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2096 one, when the destination is close enough. */
2097 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2099 THUMB16_INSN(0x4778), /* bx pc */
2100 THUMB16_INSN(0x46c0), /* nop */
2101 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2104 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2105 blx to reach the stub if necessary. */
2106 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2108 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2109 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2110 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2113 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2114 blx to reach the stub if necessary. We can not add into pc;
2115 it is not guaranteed to mode switch (different in ARMv6 and
2117 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2119 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2120 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2121 ARM_INSN(0xe12fff1c), /* bx ip */
2122 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2125 /* V4T ARM -> ARM long branch stub, PIC. */
2126 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2128 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2129 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2130 ARM_INSN(0xe12fff1c), /* bx ip */
2131 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2134 /* V4T Thumb -> ARM long branch stub, PIC. */
2135 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2137 THUMB16_INSN(0x4778), /* bx pc */
2138 THUMB16_INSN(0x46c0), /* nop */
2139 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2140 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2141 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2144 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2146 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2148 THUMB16_INSN(0xb401), /* push {r0} */
2149 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2150 THUMB16_INSN(0x46fc), /* mov ip, pc */
2151 THUMB16_INSN(0x4484), /* add ip, r0 */
2152 THUMB16_INSN(0xbc01), /* pop {r0} */
2153 THUMB16_INSN(0x4760), /* bx ip */
2154 DATA_WORD(0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2157 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2159 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2161 THUMB16_INSN(0x4778), /* bx pc */
2162 THUMB16_INSN(0x46c0), /* nop */
2163 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2164 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2165 ARM_INSN(0xe12fff1c), /* bx ip */
2166 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2169 /* Cortex-A8 erratum-workaround stubs. */
2171 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2172 can't use a conditional branch to reach this stub). */
2174 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2176 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2177 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2178 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2181 /* Stub used for b.w and bl.w instructions. */
2183 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2185 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2188 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2190 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2193 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2194 instruction (which switches to ARM mode) to point to this stub. Jump to the
2195 real destination using an ARM-mode branch. */
2197 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2199 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2202 /* Section name for stubs is the associated section name plus this
2204 #define STUB_SUFFIX ".stub"
2206 /* One entry per long/short branch stub defined above. */
2208 DEF_STUB(long_branch_any_any) \
2209 DEF_STUB(long_branch_v4t_arm_thumb) \
2210 DEF_STUB(long_branch_thumb_only) \
2211 DEF_STUB(long_branch_v4t_thumb_thumb) \
2212 DEF_STUB(long_branch_v4t_thumb_arm) \
2213 DEF_STUB(short_branch_v4t_thumb_arm) \
2214 DEF_STUB(long_branch_any_arm_pic) \
2215 DEF_STUB(long_branch_any_thumb_pic) \
2216 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2217 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2219 DEF_STUB(long_branch_thumb_only_pic) \
2220 DEF_STUB(a8_veneer_b_cond) \
2221 DEF_STUB(a8_veneer_b) \
2222 DEF_STUB(a8_veneer_bl) \
2223 DEF_STUB(a8_veneer_blx)
2225 #define DEF_STUB(x) arm_stub_##x,
2226 enum elf32_arm_stub_type
{
2229 /* Note the first a8_veneer type */
2230 arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
2236 const insn_sequence
* template_sequence
;
2240 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2241 static const stub_def stub_definitions
[] = {
2246 struct elf32_arm_stub_hash_entry
2248 /* Base hash table entry structure. */
2249 struct bfd_hash_entry root
;
2251 /* The stub section. */
2254 /* Offset within stub_sec of the beginning of this stub. */
2255 bfd_vma stub_offset
;
2257 /* Given the symbol's value and its section we can determine its final
2258 value when building the stubs (so the stub knows where to jump). */
2259 bfd_vma target_value
;
2260 asection
*target_section
;
2262 /* Offset to apply to relocation referencing target_value. */
2263 bfd_vma target_addend
;
2265 /* The instruction which caused this stub to be generated (only valid for
2266 Cortex-A8 erratum workaround stubs at present). */
2267 unsigned long orig_insn
;
2269 /* The stub type. */
2270 enum elf32_arm_stub_type stub_type
;
2271 /* Its encoding size in bytes. */
2274 const insn_sequence
*stub_template
;
2275 /* The size of the template (number of entries). */
2276 int stub_template_size
;
2278 /* The symbol table entry, if any, that this was derived from. */
2279 struct elf32_arm_link_hash_entry
*h
;
2281 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2282 unsigned char st_type
;
2284 /* Where this stub is being called from, or, in the case of combined
2285 stub sections, the first input section in the group. */
2288 /* The name for the local symbol at the start of this stub. The
2289 stub name in the hash table has to be unique; this does not, so
2290 it can be friendlier. */
2294 /* Used to build a map of a section. This is required for mixed-endian
2297 typedef struct elf32_elf_section_map
2302 elf32_arm_section_map
;
2304 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2308 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2309 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2310 VFP11_ERRATUM_ARM_VENEER
,
2311 VFP11_ERRATUM_THUMB_VENEER
2313 elf32_vfp11_erratum_type
;
2315 typedef struct elf32_vfp11_erratum_list
2317 struct elf32_vfp11_erratum_list
*next
;
2323 struct elf32_vfp11_erratum_list
*veneer
;
2324 unsigned int vfp_insn
;
2328 struct elf32_vfp11_erratum_list
*branch
;
2332 elf32_vfp11_erratum_type type
;
2334 elf32_vfp11_erratum_list
;
2339 INSERT_EXIDX_CANTUNWIND_AT_END
2341 arm_unwind_edit_type
;
2343 /* A (sorted) list of edits to apply to an unwind table. */
2344 typedef struct arm_unwind_table_edit
2346 arm_unwind_edit_type type
;
2347 /* Note: we sometimes want to insert an unwind entry corresponding to a
2348 section different from the one we're currently writing out, so record the
2349 (text) section this edit relates to here. */
2350 asection
*linked_section
;
2352 struct arm_unwind_table_edit
*next
;
2354 arm_unwind_table_edit
;
2356 typedef struct _arm_elf_section_data
2358 /* Information about mapping symbols. */
2359 struct bfd_elf_section_data elf
;
2360 unsigned int mapcount
;
2361 unsigned int mapsize
;
2362 elf32_arm_section_map
*map
;
2363 /* Information about CPU errata. */
2364 unsigned int erratumcount
;
2365 elf32_vfp11_erratum_list
*erratumlist
;
2366 /* Information about unwind tables. */
2369 /* Unwind info attached to a text section. */
2372 asection
*arm_exidx_sec
;
2375 /* Unwind info attached to an .ARM.exidx section. */
2378 arm_unwind_table_edit
*unwind_edit_list
;
2379 arm_unwind_table_edit
*unwind_edit_tail
;
2383 _arm_elf_section_data
;
2385 #define elf32_arm_section_data(sec) \
2386 ((_arm_elf_section_data *) elf_section_data (sec))
2388 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2389 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2390 so may be created multiple times: we use an array of these entries whilst
2391 relaxing which we can refresh easily, then create stubs for each potentially
2392 erratum-triggering instruction once we've settled on a solution. */
2394 struct a8_erratum_fix
{
2399 unsigned long orig_insn
;
2401 enum elf32_arm_stub_type stub_type
;
2404 /* A table of relocs applied to branches which might trigger Cortex-A8
2407 struct a8_erratum_reloc
{
2409 bfd_vma destination
;
2410 unsigned int r_type
;
2411 unsigned char st_type
;
2412 const char *sym_name
;
2413 bfd_boolean non_a8_stub
;
2416 /* The size of the thread control block. */
2419 struct elf_arm_obj_tdata
2421 struct elf_obj_tdata root
;
2423 /* tls_type for each local got entry. */
2424 char *local_got_tls_type
;
2426 /* Zero to warn when linking objects with incompatible enum sizes. */
2427 int no_enum_size_warning
;
2429 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2430 int no_wchar_size_warning
;
2433 #define elf_arm_tdata(bfd) \
2434 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2436 #define elf32_arm_local_got_tls_type(bfd) \
2437 (elf_arm_tdata (bfd)->local_got_tls_type)
2439 #define is_arm_elf(bfd) \
2440 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2441 && elf_tdata (bfd) != NULL \
2442 && elf_object_id (bfd) == ARM_ELF_TDATA)
2445 elf32_arm_mkobject (bfd
*abfd
)
2447 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2451 /* The ARM linker needs to keep track of the number of relocs that it
2452 decides to copy in check_relocs for each symbol. This is so that
2453 it can discard PC relative relocs if it doesn't need them when
2454 linking with -Bsymbolic. We store the information in a field
2455 extending the regular ELF linker hash table. */
2457 /* This structure keeps track of the number of relocs we have copied
2458 for a given symbol. */
2459 struct elf32_arm_relocs_copied
2462 struct elf32_arm_relocs_copied
* next
;
2463 /* A section in dynobj. */
2465 /* Number of relocs copied in this section. */
2466 bfd_size_type count
;
2467 /* Number of PC-relative relocs copied in this section. */
2468 bfd_size_type pc_count
;
2471 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2473 /* Arm ELF linker hash entry. */
2474 struct elf32_arm_link_hash_entry
2476 struct elf_link_hash_entry root
;
2478 /* Number of PC relative relocs copied for this symbol. */
2479 struct elf32_arm_relocs_copied
* relocs_copied
;
2481 /* We reference count Thumb references to a PLT entry separately,
2482 so that we can emit the Thumb trampoline only if needed. */
2483 bfd_signed_vma plt_thumb_refcount
;
2485 /* Some references from Thumb code may be eliminated by BL->BLX
2486 conversion, so record them separately. */
2487 bfd_signed_vma plt_maybe_thumb_refcount
;
2489 /* Since PLT entries have variable size if the Thumb prologue is
2490 used, we need to record the index into .got.plt instead of
2491 recomputing it from the PLT offset. */
2492 bfd_signed_vma plt_got_offset
;
2494 #define GOT_UNKNOWN 0
2495 #define GOT_NORMAL 1
2496 #define GOT_TLS_GD 2
2497 #define GOT_TLS_IE 4
2498 unsigned char tls_type
;
2500 /* The symbol marking the real symbol location for exported thumb
2501 symbols with Arm stubs. */
2502 struct elf_link_hash_entry
*export_glue
;
2504 /* A pointer to the most recently used stub hash entry against this
2506 struct elf32_arm_stub_hash_entry
*stub_cache
;
2509 /* Traverse an arm ELF linker hash table. */
2510 #define elf32_arm_link_hash_traverse(table, func, info) \
2511 (elf_link_hash_traverse \
2513 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2516 /* Get the ARM elf linker hash table from a link_info structure. */
2517 #define elf32_arm_hash_table(info) \
2518 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2520 #define arm_stub_hash_lookup(table, string, create, copy) \
2521 ((struct elf32_arm_stub_hash_entry *) \
2522 bfd_hash_lookup ((table), (string), (create), (copy)))
2524 /* Array to keep track of which stub sections have been created, and
2525 information on stub grouping. */
2528 /* This is the section to which stubs in the group will be
2531 /* The stub section. */
2535 /* ARM ELF linker hash table. */
2536 struct elf32_arm_link_hash_table
2538 /* The main hash table. */
2539 struct elf_link_hash_table root
;
2541 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2542 bfd_size_type thumb_glue_size
;
2544 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2545 bfd_size_type arm_glue_size
;
2547 /* The size in bytes of section containing the ARMv4 BX veneers. */
2548 bfd_size_type bx_glue_size
;
2550 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2551 veneer has been populated. */
2552 bfd_vma bx_glue_offset
[15];
2554 /* The size in bytes of the section containing glue for VFP11 erratum
2556 bfd_size_type vfp11_erratum_glue_size
;
2558 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2559 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2560 elf32_arm_write_section(). */
2561 struct a8_erratum_fix
*a8_erratum_fixes
;
2562 unsigned int num_a8_erratum_fixes
;
2564 /* An arbitrary input BFD chosen to hold the glue sections. */
2565 bfd
* bfd_of_glue_owner
;
2567 /* Nonzero to output a BE8 image. */
2570 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2571 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2574 /* The relocation to use for R_ARM_TARGET2 relocations. */
2577 /* 0 = Ignore R_ARM_V4BX.
2578 1 = Convert BX to MOV PC.
2579 2 = Generate v4 interworing stubs. */
2582 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2585 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2588 /* What sort of code sequences we should look for which may trigger the
2589 VFP11 denorm erratum. */
2590 bfd_arm_vfp11_fix vfp11_fix
;
2592 /* Global counter for the number of fixes we have emitted. */
2593 int num_vfp11_fixes
;
2595 /* Nonzero to force PIC branch veneers. */
2598 /* The number of bytes in the initial entry in the PLT. */
2599 bfd_size_type plt_header_size
;
2601 /* The number of bytes in the subsequent PLT etries. */
2602 bfd_size_type plt_entry_size
;
2604 /* True if the target system is VxWorks. */
2607 /* True if the target system is Symbian OS. */
2610 /* True if the target uses REL relocations. */
2613 /* Short-cuts to get to dynamic linker sections. */
2622 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2625 /* Data for R_ARM_TLS_LDM32 relocations. */
2628 bfd_signed_vma refcount
;
2632 /* Small local sym cache. */
2633 struct sym_cache sym_cache
;
2635 /* For convenience in allocate_dynrelocs. */
2638 /* The stub hash table. */
2639 struct bfd_hash_table stub_hash_table
;
2641 /* Linker stub bfd. */
2644 /* Linker call-backs. */
2645 asection
* (*add_stub_section
) (const char *, asection
*);
2646 void (*layout_sections_again
) (void);
2648 /* Array to keep track of which stub sections have been created, and
2649 information on stub grouping. */
2650 struct map_stub
*stub_group
;
2652 /* Assorted information used by elf32_arm_size_stubs. */
2653 unsigned int bfd_count
;
2655 asection
**input_list
;
2658 /* Create an entry in an ARM ELF linker hash table. */
2660 static struct bfd_hash_entry
*
2661 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2662 struct bfd_hash_table
* table
,
2663 const char * string
)
2665 struct elf32_arm_link_hash_entry
* ret
=
2666 (struct elf32_arm_link_hash_entry
*) entry
;
2668 /* Allocate the structure if it has not already been allocated by a
2671 ret
= (struct elf32_arm_link_hash_entry
*)
2672 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2674 return (struct bfd_hash_entry
*) ret
;
2676 /* Call the allocation method of the superclass. */
2677 ret
= ((struct elf32_arm_link_hash_entry
*)
2678 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2682 ret
->relocs_copied
= NULL
;
2683 ret
->tls_type
= GOT_UNKNOWN
;
2684 ret
->plt_thumb_refcount
= 0;
2685 ret
->plt_maybe_thumb_refcount
= 0;
2686 ret
->plt_got_offset
= -1;
2687 ret
->export_glue
= NULL
;
2689 ret
->stub_cache
= NULL
;
2692 return (struct bfd_hash_entry
*) ret
;
2695 /* Initialize an entry in the stub hash table. */
2697 static struct bfd_hash_entry
*
2698 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2699 struct bfd_hash_table
*table
,
2702 /* Allocate the structure if it has not already been allocated by a
2706 entry
= (struct bfd_hash_entry
*)
2707 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
2712 /* Call the allocation method of the superclass. */
2713 entry
= bfd_hash_newfunc (entry
, table
, string
);
2716 struct elf32_arm_stub_hash_entry
*eh
;
2718 /* Initialize the local fields. */
2719 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
2720 eh
->stub_sec
= NULL
;
2721 eh
->stub_offset
= 0;
2722 eh
->target_value
= 0;
2723 eh
->target_section
= NULL
;
2724 eh
->target_addend
= 0;
2726 eh
->stub_type
= arm_stub_none
;
2728 eh
->stub_template
= NULL
;
2729 eh
->stub_template_size
= 0;
2732 eh
->output_name
= NULL
;
2738 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2739 shortcuts to them in our hash table. */
2742 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
2744 struct elf32_arm_link_hash_table
*htab
;
2746 htab
= elf32_arm_hash_table (info
);
2747 /* BPABI objects never have a GOT, or associated sections. */
2748 if (htab
->symbian_p
)
2751 if (! _bfd_elf_create_got_section (dynobj
, info
))
2754 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
2755 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
2756 if (!htab
->sgot
|| !htab
->sgotplt
)
2759 htab
->srelgot
= bfd_get_section_by_name (dynobj
,
2760 RELOC_SECTION (htab
, ".got"));
2761 if (htab
->srelgot
== NULL
)
2766 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2767 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2771 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
2773 struct elf32_arm_link_hash_table
*htab
;
2775 htab
= elf32_arm_hash_table (info
);
2776 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
2779 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
2782 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
2783 htab
->srelplt
= bfd_get_section_by_name (dynobj
,
2784 RELOC_SECTION (htab
, ".plt"));
2785 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
2787 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
2788 RELOC_SECTION (htab
, ".bss"));
2790 if (htab
->vxworks_p
)
2792 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
2797 htab
->plt_header_size
= 0;
2798 htab
->plt_entry_size
2799 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
2803 htab
->plt_header_size
2804 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
2805 htab
->plt_entry_size
2806 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
2813 || (!info
->shared
&& !htab
->srelbss
))
2819 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2822 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
2823 struct elf_link_hash_entry
*dir
,
2824 struct elf_link_hash_entry
*ind
)
2826 struct elf32_arm_link_hash_entry
*edir
, *eind
;
2828 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
2829 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
2831 if (eind
->relocs_copied
!= NULL
)
2833 if (edir
->relocs_copied
!= NULL
)
2835 struct elf32_arm_relocs_copied
**pp
;
2836 struct elf32_arm_relocs_copied
*p
;
2838 /* Add reloc counts against the indirect sym to the direct sym
2839 list. Merge any entries against the same section. */
2840 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
; )
2842 struct elf32_arm_relocs_copied
*q
;
2844 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
2845 if (q
->section
== p
->section
)
2847 q
->pc_count
+= p
->pc_count
;
2848 q
->count
+= p
->count
;
2855 *pp
= edir
->relocs_copied
;
2858 edir
->relocs_copied
= eind
->relocs_copied
;
2859 eind
->relocs_copied
= NULL
;
2862 if (ind
->root
.type
== bfd_link_hash_indirect
)
2864 /* Copy over PLT info. */
2865 edir
->plt_thumb_refcount
+= eind
->plt_thumb_refcount
;
2866 eind
->plt_thumb_refcount
= 0;
2867 edir
->plt_maybe_thumb_refcount
+= eind
->plt_maybe_thumb_refcount
;
2868 eind
->plt_maybe_thumb_refcount
= 0;
2870 if (dir
->got
.refcount
<= 0)
2872 edir
->tls_type
= eind
->tls_type
;
2873 eind
->tls_type
= GOT_UNKNOWN
;
2877 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2880 /* Create an ARM elf linker hash table. */
2882 static struct bfd_link_hash_table
*
2883 elf32_arm_link_hash_table_create (bfd
*abfd
)
2885 struct elf32_arm_link_hash_table
*ret
;
2886 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
2888 ret
= (struct elf32_arm_link_hash_table
*) bfd_malloc (amt
);
2892 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
2893 elf32_arm_link_hash_newfunc
,
2894 sizeof (struct elf32_arm_link_hash_entry
)))
2901 ret
->sgotplt
= NULL
;
2902 ret
->srelgot
= NULL
;
2904 ret
->srelplt
= NULL
;
2905 ret
->sdynbss
= NULL
;
2906 ret
->srelbss
= NULL
;
2907 ret
->srelplt2
= NULL
;
2908 ret
->thumb_glue_size
= 0;
2909 ret
->arm_glue_size
= 0;
2910 ret
->bx_glue_size
= 0;
2911 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
2912 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
2913 ret
->vfp11_erratum_glue_size
= 0;
2914 ret
->num_vfp11_fixes
= 0;
2915 ret
->fix_cortex_a8
= 0;
2916 ret
->bfd_of_glue_owner
= NULL
;
2917 ret
->byteswap_code
= 0;
2918 ret
->target1_is_rel
= 0;
2919 ret
->target2_reloc
= R_ARM_NONE
;
2920 #ifdef FOUR_WORD_PLT
2921 ret
->plt_header_size
= 16;
2922 ret
->plt_entry_size
= 16;
2924 ret
->plt_header_size
= 20;
2925 ret
->plt_entry_size
= 12;
2932 ret
->sym_cache
.abfd
= NULL
;
2934 ret
->tls_ldm_got
.refcount
= 0;
2935 ret
->stub_bfd
= NULL
;
2936 ret
->add_stub_section
= NULL
;
2937 ret
->layout_sections_again
= NULL
;
2938 ret
->stub_group
= NULL
;
2941 ret
->input_list
= NULL
;
2943 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2944 sizeof (struct elf32_arm_stub_hash_entry
)))
2950 return &ret
->root
.root
;
2953 /* Free the derived linker hash table. */
2956 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
2958 struct elf32_arm_link_hash_table
*ret
2959 = (struct elf32_arm_link_hash_table
*) hash
;
2961 bfd_hash_table_free (&ret
->stub_hash_table
);
2962 _bfd_generic_link_hash_table_free (hash
);
2965 /* Determine if we're dealing with a Thumb only architecture. */
2968 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
2970 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2974 if (arch
!= TAG_CPU_ARCH_V7
&& arch
!= TAG_CPU_ARCH_V7E_M
)
2977 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2978 Tag_CPU_arch_profile
);
2980 return profile
== 'M';
2983 /* Determine if we're dealing with a Thumb-2 object. */
2986 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
2988 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2990 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
2993 /* Determine what kind of NOPs are available. */
2996 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
2998 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3000 return arch
== TAG_CPU_ARCH_V6T2
3001 || arch
== TAG_CPU_ARCH_V6K
3002 || arch
== TAG_CPU_ARCH_V7
3003 || arch
== TAG_CPU_ARCH_V7E_M
;
3007 arch_has_thumb2_nop (struct elf32_arm_link_hash_table
*globals
)
3009 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3011 return (arch
== TAG_CPU_ARCH_V6T2
|| arch
== TAG_CPU_ARCH_V7
3012 || arch
== TAG_CPU_ARCH_V7E_M
);
3016 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
3020 case arm_stub_long_branch_thumb_only
:
3021 case arm_stub_long_branch_v4t_thumb_arm
:
3022 case arm_stub_short_branch_v4t_thumb_arm
:
3023 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3024 case arm_stub_long_branch_thumb_only_pic
:
3035 /* Determine the type of stub needed, if any, for a call. */
3037 static enum elf32_arm_stub_type
3038 arm_type_of_stub (struct bfd_link_info
*info
,
3039 asection
*input_sec
,
3040 const Elf_Internal_Rela
*rel
,
3041 unsigned char st_type
,
3042 struct elf32_arm_link_hash_entry
*hash
,
3043 bfd_vma destination
,
3049 bfd_signed_vma branch_offset
;
3050 unsigned int r_type
;
3051 struct elf32_arm_link_hash_table
* globals
;
3054 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3057 /* We don't know the actual type of destination in case it is of
3058 type STT_SECTION: give up. */
3059 if (st_type
== STT_SECTION
)
3062 globals
= elf32_arm_hash_table (info
);
3064 thumb_only
= using_thumb_only (globals
);
3066 thumb2
= using_thumb2 (globals
);
3068 /* Determine where the call point is. */
3069 location
= (input_sec
->output_offset
3070 + input_sec
->output_section
->vma
3073 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3075 r_type
= ELF32_R_TYPE (rel
->r_info
);
3077 /* Keep a simpler condition, for the sake of clarity. */
3078 if (globals
->splt
!= NULL
&& hash
!= NULL
&& hash
->root
.plt
.offset
!= (bfd_vma
) -1)
3081 /* Note when dealing with PLT entries: the main PLT stub is in
3082 ARM mode, so if the branch is in Thumb mode, another
3083 Thumb->ARM stub will be inserted later just before the ARM
3084 PLT stub. We don't take this extra distance into account
3085 here, because if a long branch stub is needed, we'll add a
3086 Thumb->Arm one and branch directly to the ARM PLT entry
3087 because it avoids spreading offset corrections in several
3091 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
3093 /* Handle cases where:
3094 - this call goes too far (different Thumb/Thumb2 max
3096 - it's a Thumb->Arm call and blx is not available, or it's a
3097 Thumb->Arm branch (not bl). A stub is needed in this case,
3098 but only if this call is not through a PLT entry. Indeed,
3099 PLT stubs handle mode switching already.
3102 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3103 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3105 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3106 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3107 || ((st_type
!= STT_ARM_TFUNC
)
3108 && (((r_type
== R_ARM_THM_CALL
) && !globals
->use_blx
)
3109 || (r_type
== R_ARM_THM_JUMP24
))
3112 if (st_type
== STT_ARM_TFUNC
)
3114 /* Thumb to thumb. */
3117 stub_type
= (info
->shared
| globals
->pic_veneer
)
3119 ? ((globals
->use_blx
3120 && (r_type
==R_ARM_THM_CALL
))
3121 /* V5T and above. Stub starts with ARM code, so
3122 we must be able to switch mode before
3123 reaching it, which is only possible for 'bl'
3124 (ie R_ARM_THM_CALL relocation). */
3125 ? arm_stub_long_branch_any_thumb_pic
3126 /* On V4T, use Thumb code only. */
3127 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3129 /* non-PIC stubs. */
3130 : ((globals
->use_blx
3131 && (r_type
==R_ARM_THM_CALL
))
3132 /* V5T and above. */
3133 ? arm_stub_long_branch_any_any
3135 : arm_stub_long_branch_v4t_thumb_thumb
);
3139 stub_type
= (info
->shared
| globals
->pic_veneer
)
3141 ? arm_stub_long_branch_thumb_only_pic
3143 : arm_stub_long_branch_thumb_only
;
3150 && sym_sec
->owner
!= NULL
3151 && !INTERWORK_FLAG (sym_sec
->owner
))
3153 (*_bfd_error_handler
)
3154 (_("%B(%s): warning: interworking not enabled.\n"
3155 " first occurrence: %B: Thumb call to ARM"),
3156 sym_sec
->owner
, input_bfd
, name
);
3159 stub_type
= (info
->shared
| globals
->pic_veneer
)
3161 ? ((globals
->use_blx
3162 && (r_type
==R_ARM_THM_CALL
))
3163 /* V5T and above. */
3164 ? arm_stub_long_branch_any_arm_pic
3166 : arm_stub_long_branch_v4t_thumb_arm_pic
)
3168 /* non-PIC stubs. */
3169 : ((globals
->use_blx
3170 && (r_type
==R_ARM_THM_CALL
))
3171 /* V5T and above. */
3172 ? arm_stub_long_branch_any_any
3174 : arm_stub_long_branch_v4t_thumb_arm
);
3176 /* Handle v4t short branches. */
3177 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3178 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3179 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3180 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3184 else if (r_type
== R_ARM_CALL
|| r_type
== R_ARM_JUMP24
|| r_type
== R_ARM_PLT32
)
3186 if (st_type
== STT_ARM_TFUNC
)
3191 && sym_sec
->owner
!= NULL
3192 && !INTERWORK_FLAG (sym_sec
->owner
))
3194 (*_bfd_error_handler
)
3195 (_("%B(%s): warning: interworking not enabled.\n"
3196 " first occurrence: %B: ARM call to Thumb"),
3197 sym_sec
->owner
, input_bfd
, name
);
3200 /* We have an extra 2-bytes reach because of
3201 the mode change (bit 24 (H) of BLX encoding). */
3202 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3203 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3204 || ((r_type
== R_ARM_CALL
) && !globals
->use_blx
)
3205 || (r_type
== R_ARM_JUMP24
)
3206 || (r_type
== R_ARM_PLT32
))
3208 stub_type
= (info
->shared
| globals
->pic_veneer
)
3210 ? ((globals
->use_blx
)
3211 /* V5T and above. */
3212 ? arm_stub_long_branch_any_thumb_pic
3214 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3216 /* non-PIC stubs. */
3217 : ((globals
->use_blx
)
3218 /* V5T and above. */
3219 ? arm_stub_long_branch_any_any
3221 : arm_stub_long_branch_v4t_arm_thumb
);
3227 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3228 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3230 stub_type
= (info
->shared
| globals
->pic_veneer
)
3232 ? arm_stub_long_branch_any_arm_pic
3233 /* non-PIC stubs. */
3234 : arm_stub_long_branch_any_any
;
3242 /* Build a name for an entry in the stub hash table. */
3245 elf32_arm_stub_name (const asection
*input_section
,
3246 const asection
*sym_sec
,
3247 const struct elf32_arm_link_hash_entry
*hash
,
3248 const Elf_Internal_Rela
*rel
)
3255 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1;
3256 stub_name
= (char *) bfd_malloc (len
);
3257 if (stub_name
!= NULL
)
3258 sprintf (stub_name
, "%08x_%s+%x",
3259 input_section
->id
& 0xffffffff,
3260 hash
->root
.root
.root
.string
,
3261 (int) rel
->r_addend
& 0xffffffff);
3265 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3266 stub_name
= (char *) bfd_malloc (len
);
3267 if (stub_name
!= NULL
)
3268 sprintf (stub_name
, "%08x_%x:%x+%x",
3269 input_section
->id
& 0xffffffff,
3270 sym_sec
->id
& 0xffffffff,
3271 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3272 (int) rel
->r_addend
& 0xffffffff);
3278 /* Look up an entry in the stub hash. Stub entries are cached because
3279 creating the stub name takes a bit of time. */
3281 static struct elf32_arm_stub_hash_entry
*
3282 elf32_arm_get_stub_entry (const asection
*input_section
,
3283 const asection
*sym_sec
,
3284 struct elf_link_hash_entry
*hash
,
3285 const Elf_Internal_Rela
*rel
,
3286 struct elf32_arm_link_hash_table
*htab
)
3288 struct elf32_arm_stub_hash_entry
*stub_entry
;
3289 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3290 const asection
*id_sec
;
3292 if ((input_section
->flags
& SEC_CODE
) == 0)
3295 /* If this input section is part of a group of sections sharing one
3296 stub section, then use the id of the first section in the group.
3297 Stub names need to include a section id, as there may well be
3298 more than one stub used to reach say, printf, and we need to
3299 distinguish between them. */
3300 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3302 if (h
!= NULL
&& h
->stub_cache
!= NULL
3303 && h
->stub_cache
->h
== h
3304 && h
->stub_cache
->id_sec
== id_sec
)
3306 stub_entry
= h
->stub_cache
;
3312 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
);
3313 if (stub_name
== NULL
)
3316 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3317 stub_name
, FALSE
, FALSE
);
3319 h
->stub_cache
= stub_entry
;
3327 /* Find or create a stub section. Returns a pointer to the stub section, and
3328 the section to which the stub section will be attached (in *LINK_SEC_P).
3329 LINK_SEC_P may be NULL. */
3332 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3333 struct elf32_arm_link_hash_table
*htab
)
3338 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3339 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3340 if (stub_sec
== NULL
)
3342 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3343 if (stub_sec
== NULL
)
3349 namelen
= strlen (link_sec
->name
);
3350 len
= namelen
+ sizeof (STUB_SUFFIX
);
3351 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
3355 memcpy (s_name
, link_sec
->name
, namelen
);
3356 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3357 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3358 if (stub_sec
== NULL
)
3360 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3362 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3366 *link_sec_p
= link_sec
;
3371 /* Add a new stub entry to the stub hash. Not all fields of the new
3372 stub entry are initialised. */
3374 static struct elf32_arm_stub_hash_entry
*
3375 elf32_arm_add_stub (const char *stub_name
,
3377 struct elf32_arm_link_hash_table
*htab
)
3381 struct elf32_arm_stub_hash_entry
*stub_entry
;
3383 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3384 if (stub_sec
== NULL
)
3387 /* Enter this entry into the linker stub hash table. */
3388 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3390 if (stub_entry
== NULL
)
3392 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3398 stub_entry
->stub_sec
= stub_sec
;
3399 stub_entry
->stub_offset
= 0;
3400 stub_entry
->id_sec
= link_sec
;
3405 /* Store an Arm insn into an output section not processed by
3406 elf32_arm_write_section. */
3409 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3410 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3412 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3413 bfd_putl32 (val
, ptr
);
3415 bfd_putb32 (val
, ptr
);
3418 /* Store a 16-bit Thumb insn into an output section not processed by
3419 elf32_arm_write_section. */
3422 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3423 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3425 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3426 bfd_putl16 (val
, ptr
);
3428 bfd_putb16 (val
, ptr
);
3431 static bfd_reloc_status_type elf32_arm_final_link_relocate
3432 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
3433 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
3434 const char *, int, struct elf_link_hash_entry
*, bfd_boolean
*, char **);
3437 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3441 struct elf32_arm_stub_hash_entry
*stub_entry
;
3442 struct bfd_link_info
*info
;
3443 struct elf32_arm_link_hash_table
*htab
;
3451 const insn_sequence
*template_sequence
;
3453 struct elf32_arm_link_hash_table
* globals
;
3454 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
3455 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
3458 /* Massage our args to the form they really have. */
3459 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3460 info
= (struct bfd_link_info
*) in_arg
;
3462 globals
= elf32_arm_hash_table (info
);
3464 htab
= elf32_arm_hash_table (info
);
3465 stub_sec
= stub_entry
->stub_sec
;
3467 if ((htab
->fix_cortex_a8
< 0)
3468 != (stub_entry
->stub_type
>= arm_stub_a8_veneer_lwm
))
3469 /* We have to do the a8 fixes last, as they are less aligned than
3470 the other veneers. */
3473 /* Make a note of the offset within the stubs for this entry. */
3474 stub_entry
->stub_offset
= stub_sec
->size
;
3475 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3477 stub_bfd
= stub_sec
->owner
;
3479 /* This is the address of the start of the stub. */
3480 stub_addr
= stub_sec
->output_section
->vma
+ stub_sec
->output_offset
3481 + stub_entry
->stub_offset
;
3483 /* This is the address of the stub destination. */
3484 sym_value
= (stub_entry
->target_value
3485 + stub_entry
->target_section
->output_offset
3486 + stub_entry
->target_section
->output_section
->vma
);
3488 template_sequence
= stub_entry
->stub_template
;
3489 template_size
= stub_entry
->stub_template_size
;
3492 for (i
= 0; i
< template_size
; i
++)
3494 switch (template_sequence
[i
].type
)
3498 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
3499 if (template_sequence
[i
].reloc_addend
!= 0)
3501 /* We've borrowed the reloc_addend field to mean we should
3502 insert a condition code into this (Thumb-1 branch)
3503 instruction. See THUMB16_BCOND_INSN. */
3504 BFD_ASSERT ((data
& 0xff00) == 0xd000);
3505 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
3507 put_thumb_insn (globals
, stub_bfd
, data
, loc
+ size
);
3513 put_thumb_insn (globals
, stub_bfd
,
3514 (template_sequence
[i
].data
>> 16) & 0xffff,
3516 put_thumb_insn (globals
, stub_bfd
, template_sequence
[i
].data
& 0xffff,
3518 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
3520 stub_reloc_idx
[nrelocs
] = i
;
3521 stub_reloc_offset
[nrelocs
++] = size
;
3527 put_arm_insn (globals
, stub_bfd
, template_sequence
[i
].data
,
3529 /* Handle cases where the target is encoded within the
3531 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
3533 stub_reloc_idx
[nrelocs
] = i
;
3534 stub_reloc_offset
[nrelocs
++] = size
;
3540 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
3541 stub_reloc_idx
[nrelocs
] = i
;
3542 stub_reloc_offset
[nrelocs
++] = size
;
3552 stub_sec
->size
+= size
;
3554 /* Stub size has already been computed in arm_size_one_stub. Check
3556 BFD_ASSERT (size
== stub_entry
->stub_size
);
3558 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3559 if (stub_entry
->st_type
== STT_ARM_TFUNC
)
3562 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3564 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
3566 for (i
= 0; i
< nrelocs
; i
++)
3567 if (template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
3568 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
3569 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
3570 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
3572 Elf_Internal_Rela rel
;
3573 bfd_boolean unresolved_reloc
;
3574 char *error_message
;
3576 = (template_sequence
[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
)
3577 ? STT_ARM_TFUNC
: 0;
3578 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
3580 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
3581 rel
.r_info
= ELF32_R_INFO (0,
3582 template_sequence
[stub_reloc_idx
[i
]].r_type
);
3583 rel
.r_addend
= template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
3585 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
3586 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3587 template should refer back to the instruction after the original
3589 points_to
= sym_value
;
3591 /* There may be unintended consequences if this is not true. */
3592 BFD_ASSERT (stub_entry
->h
== NULL
);
3594 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3595 properly. We should probably use this function unconditionally,
3596 rather than only for certain relocations listed in the enclosing
3597 conditional, for the sake of consistency. */
3598 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3599 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
3600 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
3601 points_to
, info
, stub_entry
->target_section
, "", sym_flags
,
3602 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
3607 _bfd_final_link_relocate (elf32_arm_howto_from_type
3608 (template_sequence
[stub_reloc_idx
[i
]].r_type
), stub_bfd
, stub_sec
,
3609 stub_sec
->contents
, stub_entry
->stub_offset
+ stub_reloc_offset
[i
],
3610 sym_value
+ stub_entry
->target_addend
,
3611 template_sequence
[stub_reloc_idx
[i
]].reloc_addend
);
3618 /* Calculate the template, template size and instruction size for a stub.
3619 Return value is the instruction size. */
3622 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
3623 const insn_sequence
**stub_template
,
3624 int *stub_template_size
)
3626 const insn_sequence
*template_sequence
= NULL
;
3627 int template_size
= 0, i
;
3630 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
3631 template_size
= stub_definitions
[stub_type
].template_size
;
3634 for (i
= 0; i
< template_size
; i
++)
3636 switch (template_sequence
[i
].type
)
3655 *stub_template
= template_sequence
;
3657 if (stub_template_size
)
3658 *stub_template_size
= template_size
;
3663 /* As above, but don't actually build the stub. Just bump offset so
3664 we know stub section sizes. */
3667 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3670 struct elf32_arm_stub_hash_entry
*stub_entry
;
3671 struct elf32_arm_link_hash_table
*htab
;
3672 const insn_sequence
*template_sequence
;
3673 int template_size
, size
;
3675 /* Massage our args to the form they really have. */
3676 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3677 htab
= (struct elf32_arm_link_hash_table
*) in_arg
;
3679 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
3680 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
3682 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
3685 stub_entry
->stub_size
= size
;
3686 stub_entry
->stub_template
= template_sequence
;
3687 stub_entry
->stub_template_size
= template_size
;
3689 size
= (size
+ 7) & ~7;
3690 stub_entry
->stub_sec
->size
+= size
;
3695 /* External entry points for sizing and building linker stubs. */
3697 /* Set up various things so that we can make a list of input sections
3698 for each output section included in the link. Returns -1 on error,
3699 0 when no stubs will be needed, and 1 on success. */
3702 elf32_arm_setup_section_lists (bfd
*output_bfd
,
3703 struct bfd_link_info
*info
)
3706 unsigned int bfd_count
;
3707 int top_id
, top_index
;
3709 asection
**input_list
, **list
;
3711 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3713 if (! is_elf_hash_table (htab
))
3716 /* Count the number of input BFDs and find the top input section id. */
3717 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3719 input_bfd
= input_bfd
->link_next
)
3722 for (section
= input_bfd
->sections
;
3724 section
= section
->next
)
3726 if (top_id
< section
->id
)
3727 top_id
= section
->id
;
3730 htab
->bfd_count
= bfd_count
;
3732 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3733 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
3734 if (htab
->stub_group
== NULL
)
3737 /* We can't use output_bfd->section_count here to find the top output
3738 section index as some sections may have been removed, and
3739 _bfd_strip_section_from_output doesn't renumber the indices. */
3740 for (section
= output_bfd
->sections
, top_index
= 0;
3742 section
= section
->next
)
3744 if (top_index
< section
->index
)
3745 top_index
= section
->index
;
3748 htab
->top_index
= top_index
;
3749 amt
= sizeof (asection
*) * (top_index
+ 1);
3750 input_list
= (asection
**) bfd_malloc (amt
);
3751 htab
->input_list
= input_list
;
3752 if (input_list
== NULL
)
3755 /* For sections we aren't interested in, mark their entries with a
3756 value we can check later. */
3757 list
= input_list
+ top_index
;
3759 *list
= bfd_abs_section_ptr
;
3760 while (list
-- != input_list
);
3762 for (section
= output_bfd
->sections
;
3764 section
= section
->next
)
3766 if ((section
->flags
& SEC_CODE
) != 0)
3767 input_list
[section
->index
] = NULL
;
3773 /* The linker repeatedly calls this function for each input section,
3774 in the order that input sections are linked into output sections.
3775 Build lists of input sections to determine groupings between which
3776 we may insert linker stubs. */
3779 elf32_arm_next_input_section (struct bfd_link_info
*info
,
3782 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3784 if (isec
->output_section
->index
<= htab
->top_index
)
3786 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3788 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
3790 /* Steal the link_sec pointer for our list. */
3791 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3792 /* This happens to make the list in reverse order,
3793 which we reverse later. */
3794 PREV_SEC (isec
) = *list
;
3800 /* See whether we can group stub sections together. Grouping stub
3801 sections may result in fewer stubs. More importantly, we need to
3802 put all .init* and .fini* stubs at the end of the .init or
3803 .fini output sections respectively, because glibc splits the
3804 _init and _fini functions into multiple parts. Putting a stub in
3805 the middle of a function is not a good idea. */
3808 group_sections (struct elf32_arm_link_hash_table
*htab
,
3809 bfd_size_type stub_group_size
,
3810 bfd_boolean stubs_always_after_branch
)
3812 asection
**list
= htab
->input_list
;
3816 asection
*tail
= *list
;
3819 if (tail
== bfd_abs_section_ptr
)
3822 /* Reverse the list: we must avoid placing stubs at the
3823 beginning of the section because the beginning of the text
3824 section may be required for an interrupt vector in bare metal
3826 #define NEXT_SEC PREV_SEC
3828 while (tail
!= NULL
)
3830 /* Pop from tail. */
3831 asection
*item
= tail
;
3832 tail
= PREV_SEC (item
);
3835 NEXT_SEC (item
) = head
;
3839 while (head
!= NULL
)
3843 bfd_vma stub_group_start
= head
->output_offset
;
3844 bfd_vma end_of_next
;
3847 while (NEXT_SEC (curr
) != NULL
)
3849 next
= NEXT_SEC (curr
);
3850 end_of_next
= next
->output_offset
+ next
->size
;
3851 if (end_of_next
- stub_group_start
>= stub_group_size
)
3852 /* End of NEXT is too far from start, so stop. */
3854 /* Add NEXT to the group. */
3858 /* OK, the size from the start to the start of CURR is less
3859 than stub_group_size and thus can be handled by one stub
3860 section. (Or the head section is itself larger than
3861 stub_group_size, in which case we may be toast.)
3862 We should really be keeping track of the total size of
3863 stubs added here, as stubs contribute to the final output
3867 next
= NEXT_SEC (head
);
3868 /* Set up this stub group. */
3869 htab
->stub_group
[head
->id
].link_sec
= curr
;
3871 while (head
!= curr
&& (head
= next
) != NULL
);
3873 /* But wait, there's more! Input sections up to stub_group_size
3874 bytes after the stub section can be handled by it too. */
3875 if (!stubs_always_after_branch
)
3877 stub_group_start
= curr
->output_offset
+ curr
->size
;
3879 while (next
!= NULL
)
3881 end_of_next
= next
->output_offset
+ next
->size
;
3882 if (end_of_next
- stub_group_start
>= stub_group_size
)
3883 /* End of NEXT is too far from stubs, so stop. */
3885 /* Add NEXT to the stub group. */
3887 next
= NEXT_SEC (head
);
3888 htab
->stub_group
[head
->id
].link_sec
= curr
;
3894 while (list
++ != htab
->input_list
+ htab
->top_index
);
3896 free (htab
->input_list
);
3901 /* Comparison function for sorting/searching relocations relating to Cortex-A8
3905 a8_reloc_compare (const void *a
, const void *b
)
3907 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
3908 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
3910 if (ra
->from
< rb
->from
)
3912 else if (ra
->from
> rb
->from
)
3918 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
3919 const char *, char **);
3921 /* Helper function to scan code for sequences which might trigger the Cortex-A8
3922 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
3923 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
3927 cortex_a8_erratum_scan (bfd
*input_bfd
,
3928 struct bfd_link_info
*info
,
3929 struct a8_erratum_fix
**a8_fixes_p
,
3930 unsigned int *num_a8_fixes_p
,
3931 unsigned int *a8_fix_table_size_p
,
3932 struct a8_erratum_reloc
*a8_relocs
,
3933 unsigned int num_a8_relocs
,
3934 unsigned prev_num_a8_fixes
,
3935 bfd_boolean
*stub_changed_p
)
3938 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3939 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
3940 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
3941 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
3943 for (section
= input_bfd
->sections
;
3945 section
= section
->next
)
3947 bfd_byte
*contents
= NULL
;
3948 struct _arm_elf_section_data
*sec_data
;
3952 if (elf_section_type (section
) != SHT_PROGBITS
3953 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
3954 || (section
->flags
& SEC_EXCLUDE
) != 0
3955 || (section
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3956 || (section
->output_section
== bfd_abs_section_ptr
))
3959 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
3961 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
3962 contents
= elf_section_data (section
)->this_hdr
.contents
;
3963 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
3966 sec_data
= elf32_arm_section_data (section
);
3968 for (span
= 0; span
< sec_data
->mapcount
; span
++)
3970 unsigned int span_start
= sec_data
->map
[span
].vma
;
3971 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
3972 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
3974 char span_type
= sec_data
->map
[span
].type
;
3975 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
3977 if (span_type
!= 't')
3980 /* Span is entirely within a single 4KB region: skip scanning. */
3981 if (((base_vma
+ span_start
) & ~0xfff)
3982 == ((base_vma
+ span_end
) & ~0xfff))
3985 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
3987 * The opcode is BLX.W, BL.W, B.W, Bcc.W
3988 * The branch target is in the same 4KB region as the
3989 first half of the branch.
3990 * The instruction before the branch is a 32-bit
3991 length non-branch instruction. */
3992 for (i
= span_start
; i
< span_end
;)
3994 unsigned int insn
= bfd_getl16 (&contents
[i
]);
3995 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
3996 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
3998 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
4003 /* Load the rest of the insn (in manual-friendly order). */
4004 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
4006 /* Encoding T4: B<c>.W. */
4007 is_b
= (insn
& 0xf800d000) == 0xf0009000;
4008 /* Encoding T1: BL<c>.W. */
4009 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
4010 /* Encoding T2: BLX<c>.W. */
4011 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
4012 /* Encoding T3: B<c>.W (not permitted in IT block). */
4013 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
4014 && (insn
& 0x07f00000) != 0x03800000;
4017 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
4019 if (((base_vma
+ i
) & 0xfff) == 0xffe
4023 && ! last_was_branch
)
4025 bfd_signed_vma offset
;
4026 bfd_boolean force_target_arm
= FALSE
;
4027 bfd_boolean force_target_thumb
= FALSE
;
4029 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4030 struct a8_erratum_reloc key
, *found
;
4032 key
.from
= base_vma
+ i
;
4033 found
= (struct a8_erratum_reloc
*)
4034 bsearch (&key
, a8_relocs
, num_a8_relocs
,
4035 sizeof (struct a8_erratum_reloc
),
4040 char *error_message
= NULL
;
4041 struct elf_link_hash_entry
*entry
;
4043 /* We don't care about the error returned from this
4044 function, only if there is glue or not. */
4045 entry
= find_thumb_glue (info
, found
->sym_name
,
4049 found
->non_a8_stub
= TRUE
;
4051 if (found
->r_type
== R_ARM_THM_CALL
4052 && found
->st_type
!= STT_ARM_TFUNC
)
4053 force_target_arm
= TRUE
;
4054 else if (found
->r_type
== R_ARM_THM_CALL
4055 && found
->st_type
== STT_ARM_TFUNC
)
4056 force_target_thumb
= TRUE
;
4059 /* Check if we have an offending branch instruction. */
4061 if (found
&& found
->non_a8_stub
)
4062 /* We've already made a stub for this instruction, e.g.
4063 it's a long branch or a Thumb->ARM stub. Assume that
4064 stub will suffice to work around the A8 erratum (see
4065 setting of always_after_branch above). */
4069 offset
= (insn
& 0x7ff) << 1;
4070 offset
|= (insn
& 0x3f0000) >> 4;
4071 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4072 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4073 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4074 if (offset
& 0x100000)
4075 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4076 stub_type
= arm_stub_a8_veneer_b_cond
;
4078 else if (is_b
|| is_bl
|| is_blx
)
4080 int s
= (insn
& 0x4000000) != 0;
4081 int j1
= (insn
& 0x2000) != 0;
4082 int j2
= (insn
& 0x800) != 0;
4086 offset
= (insn
& 0x7ff) << 1;
4087 offset
|= (insn
& 0x3ff0000) >> 4;
4091 if (offset
& 0x1000000)
4092 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4095 offset
&= ~ ((bfd_signed_vma
) 3);
4097 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4098 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4101 if (stub_type
!= arm_stub_none
)
4103 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4105 /* The original instruction is a BL, but the target is
4106 an ARM instruction. If we were not making a stub,
4107 the BL would have been converted to a BLX. Use the
4108 BLX stub instead in that case. */
4109 if (htab
->use_blx
&& force_target_arm
4110 && stub_type
== arm_stub_a8_veneer_bl
)
4112 stub_type
= arm_stub_a8_veneer_blx
;
4116 /* Conversely, if the original instruction was
4117 BLX but the target is Thumb mode, use the BL
4119 else if (force_target_thumb
4120 && stub_type
== arm_stub_a8_veneer_blx
)
4122 stub_type
= arm_stub_a8_veneer_bl
;
4128 pc_for_insn
&= ~ ((bfd_vma
) 3);
4130 /* If we found a relocation, use the proper destination,
4131 not the offset in the (unrelocated) instruction.
4132 Note this is always done if we switched the stub type
4136 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4138 target
= pc_for_insn
+ offset
;
4140 /* The BLX stub is ARM-mode code. Adjust the offset to
4141 take the different PC value (+8 instead of +4) into
4143 if (stub_type
== arm_stub_a8_veneer_blx
)
4146 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4148 char *stub_name
= NULL
;
4150 if (num_a8_fixes
== a8_fix_table_size
)
4152 a8_fix_table_size
*= 2;
4153 a8_fixes
= (struct a8_erratum_fix
*)
4154 bfd_realloc (a8_fixes
,
4155 sizeof (struct a8_erratum_fix
)
4156 * a8_fix_table_size
);
4159 if (num_a8_fixes
< prev_num_a8_fixes
)
4161 /* If we're doing a subsequent scan,
4162 check if we've found the same fix as
4163 before, and try and reuse the stub
4165 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
4166 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
4167 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
4171 *stub_changed_p
= TRUE
;
4177 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
4178 if (stub_name
!= NULL
)
4179 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4182 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4183 a8_fixes
[num_a8_fixes
].section
= section
;
4184 a8_fixes
[num_a8_fixes
].offset
= i
;
4185 a8_fixes
[num_a8_fixes
].addend
= offset
;
4186 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4187 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4188 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4195 i
+= insn_32bit
? 4 : 2;
4196 last_was_32bit
= insn_32bit
;
4197 last_was_branch
= is_32bit_branch
;
4201 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4205 *a8_fixes_p
= a8_fixes
;
4206 *num_a8_fixes_p
= num_a8_fixes
;
4207 *a8_fix_table_size_p
= a8_fix_table_size
;
4212 /* Determine and set the size of the stub section for a final link.
4214 The basic idea here is to examine all the relocations looking for
4215 PC-relative calls to a target that is unreachable with a "bl"
4219 elf32_arm_size_stubs (bfd
*output_bfd
,
4221 struct bfd_link_info
*info
,
4222 bfd_signed_vma group_size
,
4223 asection
* (*add_stub_section
) (const char *, asection
*),
4224 void (*layout_sections_again
) (void))
4226 bfd_size_type stub_group_size
;
4227 bfd_boolean stubs_always_after_branch
;
4228 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4229 struct a8_erratum_fix
*a8_fixes
= NULL
;
4230 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
4231 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4232 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4234 if (htab
->fix_cortex_a8
)
4236 a8_fixes
= (struct a8_erratum_fix
*)
4237 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
4238 a8_relocs
= (struct a8_erratum_reloc
*)
4239 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
4242 /* Propagate mach to stub bfd, because it may not have been
4243 finalized when we created stub_bfd. */
4244 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4245 bfd_get_mach (output_bfd
));
4247 /* Stash our params away. */
4248 htab
->stub_bfd
= stub_bfd
;
4249 htab
->add_stub_section
= add_stub_section
;
4250 htab
->layout_sections_again
= layout_sections_again
;
4251 stubs_always_after_branch
= group_size
< 0;
4253 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4254 as the first half of a 32-bit branch straddling two 4K pages. This is a
4255 crude way of enforcing that. */
4256 if (htab
->fix_cortex_a8
)
4257 stubs_always_after_branch
= 1;
4260 stub_group_size
= -group_size
;
4262 stub_group_size
= group_size
;
4264 if (stub_group_size
== 1)
4266 /* Default values. */
4267 /* Thumb branch range is +-4MB has to be used as the default
4268 maximum size (a given section can contain both ARM and Thumb
4269 code, so the worst case has to be taken into account).
4271 This value is 24K less than that, which allows for 2025
4272 12-byte stubs. If we exceed that, then we will fail to link.
4273 The user will have to relink with an explicit group size
4275 stub_group_size
= 4170000;
4278 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4280 /* If we're applying the cortex A8 fix, we need to determine the
4281 program header size now, because we cannot change it later --
4282 that could alter section placements. Notice the A8 erratum fix
4283 ends up requiring the section addresses to remain unchanged
4284 modulo the page size. That's something we cannot represent
4285 inside BFD, and we don't want to force the section alignment to
4286 be the page size. */
4287 if (htab
->fix_cortex_a8
)
4288 (*htab
->layout_sections_again
) ();
4293 unsigned int bfd_indx
;
4295 bfd_boolean stub_changed
= FALSE
;
4296 unsigned prev_num_a8_fixes
= num_a8_fixes
;
4299 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4301 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4303 Elf_Internal_Shdr
*symtab_hdr
;
4305 Elf_Internal_Sym
*local_syms
= NULL
;
4309 /* We'll need the symbol table in a second. */
4310 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4311 if (symtab_hdr
->sh_info
== 0)
4314 /* Walk over each section attached to the input bfd. */
4315 for (section
= input_bfd
->sections
;
4317 section
= section
->next
)
4319 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4321 /* If there aren't any relocs, then there's nothing more
4323 if ((section
->flags
& SEC_RELOC
) == 0
4324 || section
->reloc_count
== 0
4325 || (section
->flags
& SEC_CODE
) == 0)
4328 /* If this section is a link-once section that will be
4329 discarded, then don't create any stubs. */
4330 if (section
->output_section
== NULL
4331 || section
->output_section
->owner
!= output_bfd
)
4334 /* Get the relocs. */
4336 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4337 NULL
, info
->keep_memory
);
4338 if (internal_relocs
== NULL
)
4339 goto error_ret_free_local
;
4341 /* Now examine each relocation. */
4342 irela
= internal_relocs
;
4343 irelaend
= irela
+ section
->reloc_count
;
4344 for (; irela
< irelaend
; irela
++)
4346 unsigned int r_type
, r_indx
;
4347 enum elf32_arm_stub_type stub_type
;
4348 struct elf32_arm_stub_hash_entry
*stub_entry
;
4351 bfd_vma destination
;
4352 struct elf32_arm_link_hash_entry
*hash
;
4353 const char *sym_name
;
4355 const asection
*id_sec
;
4356 unsigned char st_type
;
4357 bfd_boolean created_stub
= FALSE
;
4359 r_type
= ELF32_R_TYPE (irela
->r_info
);
4360 r_indx
= ELF32_R_SYM (irela
->r_info
);
4362 if (r_type
>= (unsigned int) R_ARM_max
)
4364 bfd_set_error (bfd_error_bad_value
);
4365 error_ret_free_internal
:
4366 if (elf_section_data (section
)->relocs
== NULL
)
4367 free (internal_relocs
);
4368 goto error_ret_free_local
;
4371 /* Only look for stubs on branch instructions. */
4372 if ((r_type
!= (unsigned int) R_ARM_CALL
)
4373 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
4374 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
4375 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
4376 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
4377 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
4378 && (r_type
!= (unsigned int) R_ARM_PLT32
))
4381 /* Now determine the call target, its name, value,
4388 if (r_indx
< symtab_hdr
->sh_info
)
4390 /* It's a local symbol. */
4391 Elf_Internal_Sym
*sym
;
4392 Elf_Internal_Shdr
*hdr
;
4394 if (local_syms
== NULL
)
4397 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4398 if (local_syms
== NULL
)
4400 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4401 symtab_hdr
->sh_info
, 0,
4403 if (local_syms
== NULL
)
4404 goto error_ret_free_internal
;
4407 sym
= local_syms
+ r_indx
;
4408 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
4409 sym_sec
= hdr
->bfd_section
;
4411 /* This is an undefined symbol. It can never
4415 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
4416 sym_value
= sym
->st_value
;
4417 destination
= (sym_value
+ irela
->r_addend
4418 + sym_sec
->output_offset
4419 + sym_sec
->output_section
->vma
);
4420 st_type
= ELF_ST_TYPE (sym
->st_info
);
4422 = bfd_elf_string_from_elf_section (input_bfd
,
4423 symtab_hdr
->sh_link
,
4428 /* It's an external symbol. */
4431 e_indx
= r_indx
- symtab_hdr
->sh_info
;
4432 hash
= ((struct elf32_arm_link_hash_entry
*)
4433 elf_sym_hashes (input_bfd
)[e_indx
]);
4435 while (hash
->root
.root
.type
== bfd_link_hash_indirect
4436 || hash
->root
.root
.type
== bfd_link_hash_warning
)
4437 hash
= ((struct elf32_arm_link_hash_entry
*)
4438 hash
->root
.root
.u
.i
.link
);
4440 if (hash
->root
.root
.type
== bfd_link_hash_defined
4441 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
4443 sym_sec
= hash
->root
.root
.u
.def
.section
;
4444 sym_value
= hash
->root
.root
.u
.def
.value
;
4446 struct elf32_arm_link_hash_table
*globals
=
4447 elf32_arm_hash_table (info
);
4449 /* For a destination in a shared library,
4450 use the PLT stub as target address to
4451 decide whether a branch stub is
4453 if (globals
->splt
!= NULL
&& hash
!= NULL
4454 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4456 sym_sec
= globals
->splt
;
4457 sym_value
= hash
->root
.plt
.offset
;
4458 if (sym_sec
->output_section
!= NULL
)
4459 destination
= (sym_value
4460 + sym_sec
->output_offset
4461 + sym_sec
->output_section
->vma
);
4463 else if (sym_sec
->output_section
!= NULL
)
4464 destination
= (sym_value
+ irela
->r_addend
4465 + sym_sec
->output_offset
4466 + sym_sec
->output_section
->vma
);
4468 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
4469 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
4471 /* For a shared library, use the PLT stub as
4472 target address to decide whether a long
4473 branch stub is needed.
4474 For absolute code, they cannot be handled. */
4475 struct elf32_arm_link_hash_table
*globals
=
4476 elf32_arm_hash_table (info
);
4478 if (globals
->splt
!= NULL
&& hash
!= NULL
4479 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4481 sym_sec
= globals
->splt
;
4482 sym_value
= hash
->root
.plt
.offset
;
4483 if (sym_sec
->output_section
!= NULL
)
4484 destination
= (sym_value
4485 + sym_sec
->output_offset
4486 + sym_sec
->output_section
->vma
);
4493 bfd_set_error (bfd_error_bad_value
);
4494 goto error_ret_free_internal
;
4496 st_type
= ELF_ST_TYPE (hash
->root
.type
);
4497 sym_name
= hash
->root
.root
.root
.string
;
4502 /* Determine what (if any) linker stub is needed. */
4503 stub_type
= arm_type_of_stub (info
, section
, irela
,
4505 destination
, sym_sec
,
4506 input_bfd
, sym_name
);
4507 if (stub_type
== arm_stub_none
)
4510 /* Support for grouping stub sections. */
4511 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
4513 /* Get the name of this stub. */
4514 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
4517 goto error_ret_free_internal
;
4519 /* We've either created a stub for this reloc already,
4520 or we are about to. */
4521 created_stub
= TRUE
;
4523 stub_entry
= arm_stub_hash_lookup
4524 (&htab
->stub_hash_table
, stub_name
,
4526 if (stub_entry
!= NULL
)
4528 /* The proper stub has already been created. */
4530 stub_entry
->target_value
= sym_value
;
4534 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
4536 if (stub_entry
== NULL
)
4539 goto error_ret_free_internal
;
4542 stub_entry
->target_value
= sym_value
;
4543 stub_entry
->target_section
= sym_sec
;
4544 stub_entry
->stub_type
= stub_type
;
4545 stub_entry
->h
= hash
;
4546 stub_entry
->st_type
= st_type
;
4548 if (sym_name
== NULL
)
4549 sym_name
= "unnamed";
4550 stub_entry
->output_name
= (char *)
4551 bfd_alloc (htab
->stub_bfd
,
4552 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
4553 + strlen (sym_name
));
4554 if (stub_entry
->output_name
== NULL
)
4557 goto error_ret_free_internal
;
4560 /* For historical reasons, use the existing names for
4561 ARM-to-Thumb and Thumb-to-ARM stubs. */
4562 if ( ((r_type
== (unsigned int) R_ARM_THM_CALL
)
4563 || (r_type
== (unsigned int) R_ARM_THM_JUMP24
))
4564 && st_type
!= STT_ARM_TFUNC
)
4565 sprintf (stub_entry
->output_name
,
4566 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
4567 else if ( ((r_type
== (unsigned int) R_ARM_CALL
)
4568 || (r_type
== (unsigned int) R_ARM_JUMP24
))
4569 && st_type
== STT_ARM_TFUNC
)
4570 sprintf (stub_entry
->output_name
,
4571 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
4573 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
4576 stub_changed
= TRUE
;
4580 /* Look for relocations which might trigger Cortex-A8
4582 if (htab
->fix_cortex_a8
4583 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
4584 || r_type
== (unsigned int) R_ARM_THM_JUMP19
4585 || r_type
== (unsigned int) R_ARM_THM_CALL
4586 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
4588 bfd_vma from
= section
->output_section
->vma
4589 + section
->output_offset
4592 if ((from
& 0xfff) == 0xffe)
4594 /* Found a candidate. Note we haven't checked the
4595 destination is within 4K here: if we do so (and
4596 don't create an entry in a8_relocs) we can't tell
4597 that a branch should have been relocated when
4599 if (num_a8_relocs
== a8_reloc_table_size
)
4601 a8_reloc_table_size
*= 2;
4602 a8_relocs
= (struct a8_erratum_reloc
*)
4603 bfd_realloc (a8_relocs
,
4604 sizeof (struct a8_erratum_reloc
)
4605 * a8_reloc_table_size
);
4608 a8_relocs
[num_a8_relocs
].from
= from
;
4609 a8_relocs
[num_a8_relocs
].destination
= destination
;
4610 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
4611 a8_relocs
[num_a8_relocs
].st_type
= st_type
;
4612 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
4613 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
4620 /* We're done with the internal relocs, free them. */
4621 if (elf_section_data (section
)->relocs
== NULL
)
4622 free (internal_relocs
);
4625 if (htab
->fix_cortex_a8
)
4627 /* Sort relocs which might apply to Cortex-A8 erratum. */
4628 qsort (a8_relocs
, num_a8_relocs
,
4629 sizeof (struct a8_erratum_reloc
),
4632 /* Scan for branches which might trigger Cortex-A8 erratum. */
4633 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
4634 &num_a8_fixes
, &a8_fix_table_size
,
4635 a8_relocs
, num_a8_relocs
,
4636 prev_num_a8_fixes
, &stub_changed
)
4638 goto error_ret_free_local
;
4642 if (prev_num_a8_fixes
!= num_a8_fixes
)
4643 stub_changed
= TRUE
;
4648 /* OK, we've added some stubs. Find out the new size of the
4650 for (stub_sec
= htab
->stub_bfd
->sections
;
4652 stub_sec
= stub_sec
->next
)
4654 /* Ignore non-stub sections. */
4655 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4661 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
4663 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4664 if (htab
->fix_cortex_a8
)
4665 for (i
= 0; i
< num_a8_fixes
; i
++)
4667 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
4668 a8_fixes
[i
].section
, htab
);
4670 if (stub_sec
== NULL
)
4671 goto error_ret_free_local
;
4674 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
4679 /* Ask the linker to do its stuff. */
4680 (*htab
->layout_sections_again
) ();
4683 /* Add stubs for Cortex-A8 erratum fixes now. */
4684 if (htab
->fix_cortex_a8
)
4686 for (i
= 0; i
< num_a8_fixes
; i
++)
4688 struct elf32_arm_stub_hash_entry
*stub_entry
;
4689 char *stub_name
= a8_fixes
[i
].stub_name
;
4690 asection
*section
= a8_fixes
[i
].section
;
4691 unsigned int section_id
= a8_fixes
[i
].section
->id
;
4692 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
4693 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
4694 const insn_sequence
*template_sequence
;
4695 int template_size
, size
= 0;
4697 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4699 if (stub_entry
== NULL
)
4701 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
4707 stub_entry
->stub_sec
= stub_sec
;
4708 stub_entry
->stub_offset
= 0;
4709 stub_entry
->id_sec
= link_sec
;
4710 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
4711 stub_entry
->target_section
= a8_fixes
[i
].section
;
4712 stub_entry
->target_value
= a8_fixes
[i
].offset
;
4713 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
4714 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
4715 stub_entry
->st_type
= STT_ARM_TFUNC
;
4717 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
4721 stub_entry
->stub_size
= size
;
4722 stub_entry
->stub_template
= template_sequence
;
4723 stub_entry
->stub_template_size
= template_size
;
4726 /* Stash the Cortex-A8 erratum fix array for use later in
4727 elf32_arm_write_section(). */
4728 htab
->a8_erratum_fixes
= a8_fixes
;
4729 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
4733 htab
->a8_erratum_fixes
= NULL
;
4734 htab
->num_a8_erratum_fixes
= 0;
4738 error_ret_free_local
:
4742 /* Build all the stubs associated with the current output file. The
4743 stubs are kept in a hash table attached to the main linker hash
4744 table. We also set up the .plt entries for statically linked PIC
4745 functions here. This function is called via arm_elf_finish in the
4749 elf32_arm_build_stubs (struct bfd_link_info
*info
)
4752 struct bfd_hash_table
*table
;
4753 struct elf32_arm_link_hash_table
*htab
;
4755 htab
= elf32_arm_hash_table (info
);
4757 for (stub_sec
= htab
->stub_bfd
->sections
;
4759 stub_sec
= stub_sec
->next
)
4763 /* Ignore non-stub sections. */
4764 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4767 /* Allocate memory to hold the linker stubs. */
4768 size
= stub_sec
->size
;
4769 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
4770 if (stub_sec
->contents
== NULL
&& size
!= 0)
4775 /* Build the stubs as directed by the stub hash table. */
4776 table
= &htab
->stub_hash_table
;
4777 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
4778 if (htab
->fix_cortex_a8
)
4780 /* Place the cortex a8 stubs last. */
4781 htab
->fix_cortex_a8
= -1;
4782 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
4788 /* Locate the Thumb encoded calling stub for NAME. */
4790 static struct elf_link_hash_entry
*
4791 find_thumb_glue (struct bfd_link_info
*link_info
,
4793 char **error_message
)
4796 struct elf_link_hash_entry
*hash
;
4797 struct elf32_arm_link_hash_table
*hash_table
;
4799 /* We need a pointer to the armelf specific hash table. */
4800 hash_table
= elf32_arm_hash_table (link_info
);
4802 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
4803 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
4805 BFD_ASSERT (tmp_name
);
4807 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
4809 hash
= elf_link_hash_lookup
4810 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4813 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
4814 tmp_name
, name
) == -1)
4815 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4822 /* Locate the ARM encoded calling stub for NAME. */
4824 static struct elf_link_hash_entry
*
4825 find_arm_glue (struct bfd_link_info
*link_info
,
4827 char **error_message
)
4830 struct elf_link_hash_entry
*myh
;
4831 struct elf32_arm_link_hash_table
*hash_table
;
4833 /* We need a pointer to the elfarm specific hash table. */
4834 hash_table
= elf32_arm_hash_table (link_info
);
4836 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
4837 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4839 BFD_ASSERT (tmp_name
);
4841 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4843 myh
= elf_link_hash_lookup
4844 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4847 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
4848 tmp_name
, name
) == -1)
4849 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4856 /* ARM->Thumb glue (static images):
4860 ldr r12, __func_addr
4863 .word func @ behave as if you saw a ARM_32 reloc.
4870 .word func @ behave as if you saw a ARM_32 reloc.
4872 (relocatable images)
4875 ldr r12, __func_offset
4881 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4882 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
4883 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
4884 static const insn32 a2t3_func_addr_insn
= 0x00000001;
4886 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4887 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
4888 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
4890 #define ARM2THUMB_PIC_GLUE_SIZE 16
4891 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
4892 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
4893 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
4895 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4899 __func_from_thumb: __func_from_thumb:
4901 nop ldr r6, __func_addr
4911 #define THUMB2ARM_GLUE_SIZE 8
4912 static const insn16 t2a1_bx_pc_insn
= 0x4778;
4913 static const insn16 t2a2_noop_insn
= 0x46c0;
4914 static const insn32 t2a3_b_insn
= 0xea000000;
4916 #define VFP11_ERRATUM_VENEER_SIZE 8
4918 #define ARM_BX_VENEER_SIZE 12
4919 static const insn32 armbx1_tst_insn
= 0xe3100001;
4920 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
4921 static const insn32 armbx3_bx_insn
= 0xe12fff10;
4923 #ifndef ELFARM_NABI_C_INCLUDED
4925 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
4928 bfd_byte
* contents
;
4932 /* Do not include empty glue sections in the output. */
4935 s
= bfd_get_section_by_name (abfd
, name
);
4937 s
->flags
|= SEC_EXCLUDE
;
4942 BFD_ASSERT (abfd
!= NULL
);
4944 s
= bfd_get_section_by_name (abfd
, name
);
4945 BFD_ASSERT (s
!= NULL
);
4947 contents
= (bfd_byte
*) bfd_alloc (abfd
, size
);
4949 BFD_ASSERT (s
->size
== size
);
4950 s
->contents
= contents
;
4954 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
4956 struct elf32_arm_link_hash_table
* globals
;
4958 globals
= elf32_arm_hash_table (info
);
4959 BFD_ASSERT (globals
!= NULL
);
4961 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4962 globals
->arm_glue_size
,
4963 ARM2THUMB_GLUE_SECTION_NAME
);
4965 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4966 globals
->thumb_glue_size
,
4967 THUMB2ARM_GLUE_SECTION_NAME
);
4969 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4970 globals
->vfp11_erratum_glue_size
,
4971 VFP11_ERRATUM_VENEER_SECTION_NAME
);
4973 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4974 globals
->bx_glue_size
,
4975 ARM_BX_GLUE_SECTION_NAME
);
4980 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4981 returns the symbol identifying the stub. */
4983 static struct elf_link_hash_entry
*
4984 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
4985 struct elf_link_hash_entry
* h
)
4987 const char * name
= h
->root
.root
.string
;
4990 struct elf_link_hash_entry
* myh
;
4991 struct bfd_link_hash_entry
* bh
;
4992 struct elf32_arm_link_hash_table
* globals
;
4996 globals
= elf32_arm_hash_table (link_info
);
4998 BFD_ASSERT (globals
!= NULL
);
4999 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5001 s
= bfd_get_section_by_name
5002 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
5004 BFD_ASSERT (s
!= NULL
);
5006 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5007 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5009 BFD_ASSERT (tmp_name
);
5011 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5013 myh
= elf_link_hash_lookup
5014 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5018 /* We've already seen this guy. */
5023 /* The only trick here is using hash_table->arm_glue_size as the value.
5024 Even though the section isn't allocated yet, this is where we will be
5025 putting it. The +1 on the value marks that the stub has not been
5026 output yet - not that it is a Thumb function. */
5028 val
= globals
->arm_glue_size
+ 1;
5029 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5030 tmp_name
, BSF_GLOBAL
, s
, val
,
5031 NULL
, TRUE
, FALSE
, &bh
);
5033 myh
= (struct elf_link_hash_entry
*) bh
;
5034 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5035 myh
->forced_local
= 1;
5039 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
5040 || globals
->pic_veneer
)
5041 size
= ARM2THUMB_PIC_GLUE_SIZE
;
5042 else if (globals
->use_blx
)
5043 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
5045 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
5048 globals
->arm_glue_size
+= size
;
5053 /* Allocate space for ARMv4 BX veneers. */
5056 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
5059 struct elf32_arm_link_hash_table
*globals
;
5061 struct elf_link_hash_entry
*myh
;
5062 struct bfd_link_hash_entry
*bh
;
5065 /* BX PC does not need a veneer. */
5069 globals
= elf32_arm_hash_table (link_info
);
5071 BFD_ASSERT (globals
!= NULL
);
5072 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5074 /* Check if this veneer has already been allocated. */
5075 if (globals
->bx_glue_offset
[reg
])
5078 s
= bfd_get_section_by_name
5079 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
5081 BFD_ASSERT (s
!= NULL
);
5083 /* Add symbol for veneer. */
5085 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
5087 BFD_ASSERT (tmp_name
);
5089 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
5091 myh
= elf_link_hash_lookup
5092 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5094 BFD_ASSERT (myh
== NULL
);
5097 val
= globals
->bx_glue_size
;
5098 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5099 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5100 NULL
, TRUE
, FALSE
, &bh
);
5102 myh
= (struct elf_link_hash_entry
*) bh
;
5103 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5104 myh
->forced_local
= 1;
5106 s
->size
+= ARM_BX_VENEER_SIZE
;
5107 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5108 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5112 /* Add an entry to the code/data map for section SEC. */
5115 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5117 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5118 unsigned int newidx
;
5120 if (sec_data
->map
== NULL
)
5122 sec_data
->map
= (elf32_arm_section_map
*)
5123 bfd_malloc (sizeof (elf32_arm_section_map
));
5124 sec_data
->mapcount
= 0;
5125 sec_data
->mapsize
= 1;
5128 newidx
= sec_data
->mapcount
++;
5130 if (sec_data
->mapcount
> sec_data
->mapsize
)
5132 sec_data
->mapsize
*= 2;
5133 sec_data
->map
= (elf32_arm_section_map
*)
5134 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5135 * sizeof (elf32_arm_section_map
));
5140 sec_data
->map
[newidx
].vma
= vma
;
5141 sec_data
->map
[newidx
].type
= type
;
5146 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5147 veneers are handled for now. */
5150 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5151 elf32_vfp11_erratum_list
*branch
,
5153 asection
*branch_sec
,
5154 unsigned int offset
)
5157 struct elf32_arm_link_hash_table
*hash_table
;
5159 struct elf_link_hash_entry
*myh
;
5160 struct bfd_link_hash_entry
*bh
;
5162 struct _arm_elf_section_data
*sec_data
;
5164 elf32_vfp11_erratum_list
*newerr
;
5166 hash_table
= elf32_arm_hash_table (link_info
);
5168 BFD_ASSERT (hash_table
!= NULL
);
5169 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5171 s
= bfd_get_section_by_name
5172 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5174 sec_data
= elf32_arm_section_data (s
);
5176 BFD_ASSERT (s
!= NULL
);
5178 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
5179 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5181 BFD_ASSERT (tmp_name
);
5183 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5184 hash_table
->num_vfp11_fixes
);
5186 myh
= elf_link_hash_lookup
5187 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5189 BFD_ASSERT (myh
== NULL
);
5192 val
= hash_table
->vfp11_erratum_glue_size
;
5193 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5194 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5195 NULL
, TRUE
, FALSE
, &bh
);
5197 myh
= (struct elf_link_hash_entry
*) bh
;
5198 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5199 myh
->forced_local
= 1;
5201 /* Link veneer back to calling location. */
5202 errcount
= ++(sec_data
->erratumcount
);
5203 newerr
= (elf32_vfp11_erratum_list
*)
5204 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5206 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5208 newerr
->u
.v
.branch
= branch
;
5209 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5210 branch
->u
.b
.veneer
= newerr
;
5212 newerr
->next
= sec_data
->erratumlist
;
5213 sec_data
->erratumlist
= newerr
;
5215 /* A symbol for the return from the veneer. */
5216 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5217 hash_table
->num_vfp11_fixes
);
5219 myh
= elf_link_hash_lookup
5220 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5227 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5228 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5230 myh
= (struct elf_link_hash_entry
*) bh
;
5231 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5232 myh
->forced_local
= 1;
5236 /* Generate a mapping symbol for the veneer section, and explicitly add an
5237 entry for that symbol to the code/data map for the section. */
5238 if (hash_table
->vfp11_erratum_glue_size
== 0)
5241 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5242 ever requires this erratum fix. */
5243 _bfd_generic_link_add_one_symbol (link_info
,
5244 hash_table
->bfd_of_glue_owner
, "$a",
5245 BSF_LOCAL
, s
, 0, NULL
,
5248 myh
= (struct elf_link_hash_entry
*) bh
;
5249 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5250 myh
->forced_local
= 1;
5252 /* The elf32_arm_init_maps function only cares about symbols from input
5253 BFDs. We must make a note of this generated mapping symbol
5254 ourselves so that code byteswapping works properly in
5255 elf32_arm_write_section. */
5256 elf32_arm_section_map_add (s
, 'a', 0);
5259 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5260 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5261 hash_table
->num_vfp11_fixes
++;
5263 /* The offset of the veneer. */
5267 #define ARM_GLUE_SECTION_FLAGS \
5268 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5269 | SEC_READONLY | SEC_LINKER_CREATED)
5271 /* Create a fake section for use by the ARM backend of the linker. */
5274 arm_make_glue_section (bfd
* abfd
, const char * name
)
5278 sec
= bfd_get_section_by_name (abfd
, name
);
5283 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5286 || !bfd_set_section_alignment (abfd
, sec
, 2))
5289 /* Set the gc mark to prevent the section from being removed by garbage
5290 collection, despite the fact that no relocs refer to this section. */
5296 /* Add the glue sections to ABFD. This function is called from the
5297 linker scripts in ld/emultempl/{armelf}.em. */
5300 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5301 struct bfd_link_info
*info
)
5303 /* If we are only performing a partial
5304 link do not bother adding the glue. */
5305 if (info
->relocatable
)
5308 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5309 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
5310 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
5311 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
5314 /* Select a BFD to be used to hold the sections used by the glue code.
5315 This function is called from the linker scripts in ld/emultempl/
5319 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
5321 struct elf32_arm_link_hash_table
*globals
;
5323 /* If we are only performing a partial link
5324 do not bother getting a bfd to hold the glue. */
5325 if (info
->relocatable
)
5328 /* Make sure we don't attach the glue sections to a dynamic object. */
5329 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
5331 globals
= elf32_arm_hash_table (info
);
5333 BFD_ASSERT (globals
!= NULL
);
5335 if (globals
->bfd_of_glue_owner
!= NULL
)
5338 /* Save the bfd for later use. */
5339 globals
->bfd_of_glue_owner
= abfd
;
5345 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
5347 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
5349 globals
->use_blx
= 1;
5353 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
5354 struct bfd_link_info
*link_info
)
5356 Elf_Internal_Shdr
*symtab_hdr
;
5357 Elf_Internal_Rela
*internal_relocs
= NULL
;
5358 Elf_Internal_Rela
*irel
, *irelend
;
5359 bfd_byte
*contents
= NULL
;
5362 struct elf32_arm_link_hash_table
*globals
;
5364 /* If we are only performing a partial link do not bother
5365 to construct any glue. */
5366 if (link_info
->relocatable
)
5369 /* Here we have a bfd that is to be included on the link. We have a
5370 hook to do reloc rummaging, before section sizes are nailed down. */
5371 globals
= elf32_arm_hash_table (link_info
);
5373 BFD_ASSERT (globals
!= NULL
);
5375 check_use_blx (globals
);
5377 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
5379 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5384 /* PR 5398: If we have not decided to include any loadable sections in
5385 the output then we will not have a glue owner bfd. This is OK, it
5386 just means that there is nothing else for us to do here. */
5387 if (globals
->bfd_of_glue_owner
== NULL
)
5390 /* Rummage around all the relocs and map the glue vectors. */
5391 sec
= abfd
->sections
;
5396 for (; sec
!= NULL
; sec
= sec
->next
)
5398 if (sec
->reloc_count
== 0)
5401 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
5404 symtab_hdr
= & elf_symtab_hdr (abfd
);
5406 /* Load the relocs. */
5408 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
5410 if (internal_relocs
== NULL
)
5413 irelend
= internal_relocs
+ sec
->reloc_count
;
5414 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
5417 unsigned long r_index
;
5419 struct elf_link_hash_entry
*h
;
5421 r_type
= ELF32_R_TYPE (irel
->r_info
);
5422 r_index
= ELF32_R_SYM (irel
->r_info
);
5424 /* These are the only relocation types we care about. */
5425 if ( r_type
!= R_ARM_PC24
5426 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
5429 /* Get the section contents if we haven't done so already. */
5430 if (contents
== NULL
)
5432 /* Get cached copy if it exists. */
5433 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5434 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5437 /* Go get them off disk. */
5438 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5443 if (r_type
== R_ARM_V4BX
)
5447 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
5448 record_arm_bx_glue (link_info
, reg
);
5452 /* If the relocation is not against a symbol it cannot concern us. */
5455 /* We don't care about local symbols. */
5456 if (r_index
< symtab_hdr
->sh_info
)
5459 /* This is an external symbol. */
5460 r_index
-= symtab_hdr
->sh_info
;
5461 h
= (struct elf_link_hash_entry
*)
5462 elf_sym_hashes (abfd
)[r_index
];
5464 /* If the relocation is against a static symbol it must be within
5465 the current section and so cannot be a cross ARM/Thumb relocation. */
5469 /* If the call will go through a PLT entry then we do not need
5471 if (globals
->splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
5477 /* This one is a call from arm code. We need to look up
5478 the target of the call. If it is a thumb target, we
5480 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
5481 record_arm_to_thumb_glue (link_info
, h
);
5489 if (contents
!= NULL
5490 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5494 if (internal_relocs
!= NULL
5495 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5496 free (internal_relocs
);
5497 internal_relocs
= NULL
;
5503 if (contents
!= NULL
5504 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5506 if (internal_relocs
!= NULL
5507 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5508 free (internal_relocs
);
5515 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5518 bfd_elf32_arm_init_maps (bfd
*abfd
)
5520 Elf_Internal_Sym
*isymbuf
;
5521 Elf_Internal_Shdr
*hdr
;
5522 unsigned int i
, localsyms
;
5524 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5525 if (! is_arm_elf (abfd
))
5528 if ((abfd
->flags
& DYNAMIC
) != 0)
5531 hdr
= & elf_symtab_hdr (abfd
);
5532 localsyms
= hdr
->sh_info
;
5534 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5535 should contain the number of local symbols, which should come before any
5536 global symbols. Mapping symbols are always local. */
5537 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
5540 /* No internal symbols read? Skip this BFD. */
5541 if (isymbuf
== NULL
)
5544 for (i
= 0; i
< localsyms
; i
++)
5546 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
5547 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5551 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
5553 name
= bfd_elf_string_from_elf_section (abfd
,
5554 hdr
->sh_link
, isym
->st_name
);
5556 if (bfd_is_arm_special_symbol_name (name
,
5557 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
5558 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
5564 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5565 say what they wanted. */
5568 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5570 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5571 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5573 if (globals
->fix_cortex_a8
== -1)
5575 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5576 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
5577 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
5578 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
5579 globals
->fix_cortex_a8
= 1;
5581 globals
->fix_cortex_a8
= 0;
5587 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5589 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5590 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5592 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5593 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
5595 switch (globals
->vfp11_fix
)
5597 case BFD_ARM_VFP11_FIX_DEFAULT
:
5598 case BFD_ARM_VFP11_FIX_NONE
:
5599 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5603 /* Give a warning, but do as the user requests anyway. */
5604 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
5605 "workaround is not necessary for target architecture"), obfd
);
5608 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
5609 /* For earlier architectures, we might need the workaround, but do not
5610 enable it by default. If users is running with broken hardware, they
5611 must enable the erratum fix explicitly. */
5612 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5616 enum bfd_arm_vfp11_pipe
5624 /* Return a VFP register number. This is encoded as RX:X for single-precision
5625 registers, or X:RX for double-precision registers, where RX is the group of
5626 four bits in the instruction encoding and X is the single extension bit.
5627 RX and X fields are specified using their lowest (starting) bit. The return
5630 0...31: single-precision registers s0...s31
5631 32...63: double-precision registers d0...d31.
5633 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5634 encounter VFP3 instructions, so we allow the full range for DP registers. */
5637 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
5641 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
5643 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
5646 /* Set bits in *WMASK according to a register number REG as encoded by
5647 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5650 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
5655 *wmask
|= 3 << ((reg
- 32) * 2);
5658 /* Return TRUE if WMASK overwrites anything in REGS. */
5661 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
5665 for (i
= 0; i
< numregs
; i
++)
5667 unsigned int reg
= regs
[i
];
5669 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
5677 if ((wmask
& (3 << (reg
* 2))) != 0)
5684 /* In this function, we're interested in two things: finding input registers
5685 for VFP data-processing instructions, and finding the set of registers which
5686 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5687 hold the written set, so FLDM etc. are easy to deal with (we're only
5688 interested in 32 SP registers or 16 dp registers, due to the VFP version
5689 implemented by the chip in question). DP registers are marked by setting
5690 both SP registers in the write mask). */
5692 static enum bfd_arm_vfp11_pipe
5693 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
5696 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
5697 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
5699 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5702 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5703 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5705 pqrs
= ((insn
& 0x00800000) >> 20)
5706 | ((insn
& 0x00300000) >> 19)
5707 | ((insn
& 0x00000040) >> 6);
5711 case 0: /* fmac[sd]. */
5712 case 1: /* fnmac[sd]. */
5713 case 2: /* fmsc[sd]. */
5714 case 3: /* fnmsc[sd]. */
5716 bfd_arm_vfp11_write_mask (destmask
, fd
);
5718 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5723 case 4: /* fmul[sd]. */
5724 case 5: /* fnmul[sd]. */
5725 case 6: /* fadd[sd]. */
5726 case 7: /* fsub[sd]. */
5730 case 8: /* fdiv[sd]. */
5733 bfd_arm_vfp11_write_mask (destmask
, fd
);
5734 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5739 case 15: /* extended opcode. */
5741 unsigned int extn
= ((insn
>> 15) & 0x1e)
5742 | ((insn
>> 7) & 1);
5746 case 0: /* fcpy[sd]. */
5747 case 1: /* fabs[sd]. */
5748 case 2: /* fneg[sd]. */
5749 case 8: /* fcmp[sd]. */
5750 case 9: /* fcmpe[sd]. */
5751 case 10: /* fcmpz[sd]. */
5752 case 11: /* fcmpez[sd]. */
5753 case 16: /* fuito[sd]. */
5754 case 17: /* fsito[sd]. */
5755 case 24: /* ftoui[sd]. */
5756 case 25: /* ftouiz[sd]. */
5757 case 26: /* ftosi[sd]. */
5758 case 27: /* ftosiz[sd]. */
5759 /* These instructions will not bounce due to underflow. */
5764 case 3: /* fsqrt[sd]. */
5765 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5766 registers to cause the erratum in previous instructions. */
5767 bfd_arm_vfp11_write_mask (destmask
, fd
);
5771 case 15: /* fcvt{ds,sd}. */
5775 bfd_arm_vfp11_write_mask (destmask
, fd
);
5777 /* Only FCVTSD can underflow. */
5778 if ((insn
& 0x100) != 0)
5797 /* Two-register transfer. */
5798 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
5800 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5802 if ((insn
& 0x100000) == 0)
5805 bfd_arm_vfp11_write_mask (destmask
, fm
);
5808 bfd_arm_vfp11_write_mask (destmask
, fm
);
5809 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
5815 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
5817 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5818 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
5822 case 0: /* Two-reg transfer. We should catch these above. */
5825 case 2: /* fldm[sdx]. */
5829 unsigned int i
, offset
= insn
& 0xff;
5834 for (i
= fd
; i
< fd
+ offset
; i
++)
5835 bfd_arm_vfp11_write_mask (destmask
, i
);
5839 case 4: /* fld[sd]. */
5841 bfd_arm_vfp11_write_mask (destmask
, fd
);
5850 /* Single-register transfer. Note L==0. */
5851 else if ((insn
& 0x0f100e10) == 0x0e000a10)
5853 unsigned int opcode
= (insn
>> 21) & 7;
5854 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
5858 case 0: /* fmsr/fmdlr. */
5859 case 1: /* fmdhr. */
5860 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5861 destination register. I don't know if this is exactly right,
5862 but it is the conservative choice. */
5863 bfd_arm_vfp11_write_mask (destmask
, fn
);
5877 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
5880 /* Look for potentially-troublesome code sequences which might trigger the
5881 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5882 (available from ARM) for details of the erratum. A short version is
5883 described in ld.texinfo. */
5886 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
5889 bfd_byte
*contents
= NULL
;
5891 int regs
[3], numregs
= 0;
5892 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5893 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
5895 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5896 The states transition as follows:
5898 0 -> 1 (vector) or 0 -> 2 (scalar)
5899 A VFP FMAC-pipeline instruction has been seen. Fill
5900 regs[0]..regs[numregs-1] with its input operands. Remember this
5901 instruction in 'first_fmac'.
5904 Any instruction, except for a VFP instruction which overwrites
5909 A VFP instruction has been seen which overwrites any of regs[*].
5910 We must make a veneer! Reset state to 0 before examining next
5914 If we fail to match anything in state 2, reset to state 0 and reset
5915 the instruction pointer to the instruction after 'first_fmac'.
5917 If the VFP11 vector mode is in use, there must be at least two unrelated
5918 instructions between anti-dependent VFP11 instructions to properly avoid
5919 triggering the erratum, hence the use of the extra state 1. */
5921 /* If we are only performing a partial link do not bother
5922 to construct any glue. */
5923 if (link_info
->relocatable
)
5926 /* Skip if this bfd does not correspond to an ELF image. */
5927 if (! is_arm_elf (abfd
))
5930 /* We should have chosen a fix type by the time we get here. */
5931 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
5933 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
5936 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5937 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
5940 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5942 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
5943 struct _arm_elf_section_data
*sec_data
;
5945 /* If we don't have executable progbits, we're not interested in this
5946 section. Also skip if section is to be excluded. */
5947 if (elf_section_type (sec
) != SHT_PROGBITS
5948 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
5949 || (sec
->flags
& SEC_EXCLUDE
) != 0
5950 || sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
5951 || sec
->output_section
== bfd_abs_section_ptr
5952 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
5955 sec_data
= elf32_arm_section_data (sec
);
5957 if (sec_data
->mapcount
== 0)
5960 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5961 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5962 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5965 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
5966 elf32_arm_compare_mapping
);
5968 for (span
= 0; span
< sec_data
->mapcount
; span
++)
5970 unsigned int span_start
= sec_data
->map
[span
].vma
;
5971 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
5972 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
5973 char span_type
= sec_data
->map
[span
].type
;
5975 /* FIXME: Only ARM mode is supported at present. We may need to
5976 support Thumb-2 mode also at some point. */
5977 if (span_type
!= 'a')
5980 for (i
= span_start
; i
< span_end
;)
5982 unsigned int next_i
= i
+ 4;
5983 unsigned int insn
= bfd_big_endian (abfd
)
5984 ? (contents
[i
] << 24)
5985 | (contents
[i
+ 1] << 16)
5986 | (contents
[i
+ 2] << 8)
5988 : (contents
[i
+ 3] << 24)
5989 | (contents
[i
+ 2] << 16)
5990 | (contents
[i
+ 1] << 8)
5992 unsigned int writemask
= 0;
5993 enum bfd_arm_vfp11_pipe vpipe
;
5998 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
6000 /* I'm assuming the VFP11 erratum can trigger with denorm
6001 operands on either the FMAC or the DS pipeline. This might
6002 lead to slightly overenthusiastic veneer insertion. */
6003 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
6005 state
= use_vector
? 1 : 2;
6007 veneer_of_insn
= insn
;
6013 int other_regs
[3], other_numregs
;
6014 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6017 if (vpipe
!= VFP11_BAD
6018 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6028 int other_regs
[3], other_numregs
;
6029 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6032 if (vpipe
!= VFP11_BAD
6033 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6039 next_i
= first_fmac
+ 4;
6045 abort (); /* Should be unreachable. */
6050 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
6051 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6054 errcount
= ++(elf32_arm_section_data (sec
)->erratumcount
);
6056 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
6061 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
6068 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
6073 newerr
->next
= sec_data
->erratumlist
;
6074 sec_data
->erratumlist
= newerr
;
6083 if (contents
!= NULL
6084 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6092 if (contents
!= NULL
6093 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6099 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6100 after sections have been laid out, using specially-named symbols. */
6103 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
6104 struct bfd_link_info
*link_info
)
6107 struct elf32_arm_link_hash_table
*globals
;
6110 if (link_info
->relocatable
)
6113 /* Skip if this bfd does not correspond to an ELF image. */
6114 if (! is_arm_elf (abfd
))
6117 globals
= elf32_arm_hash_table (link_info
);
6119 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
6120 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6122 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6124 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6125 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6127 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6129 struct elf_link_hash_entry
*myh
;
6132 switch (errnode
->type
)
6134 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6135 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6136 /* Find veneer symbol. */
6137 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6138 errnode
->u
.b
.veneer
->u
.v
.id
);
6140 myh
= elf_link_hash_lookup
6141 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6144 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6145 "`%s'"), abfd
, tmp_name
);
6147 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6148 + myh
->root
.u
.def
.section
->output_offset
6149 + myh
->root
.u
.def
.value
;
6151 errnode
->u
.b
.veneer
->vma
= vma
;
6154 case VFP11_ERRATUM_ARM_VENEER
:
6155 case VFP11_ERRATUM_THUMB_VENEER
:
6156 /* Find return location. */
6157 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6160 myh
= elf_link_hash_lookup
6161 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6164 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6165 "`%s'"), abfd
, tmp_name
);
6167 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6168 + myh
->root
.u
.def
.section
->output_offset
6169 + myh
->root
.u
.def
.value
;
6171 errnode
->u
.v
.branch
->vma
= vma
;
6184 /* Set target relocation values needed during linking. */
6187 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6188 struct bfd_link_info
*link_info
,
6190 char * target2_type
,
6193 bfd_arm_vfp11_fix vfp11_fix
,
6194 int no_enum_warn
, int no_wchar_warn
,
6195 int pic_veneer
, int fix_cortex_a8
)
6197 struct elf32_arm_link_hash_table
*globals
;
6199 globals
= elf32_arm_hash_table (link_info
);
6201 globals
->target1_is_rel
= target1_is_rel
;
6202 if (strcmp (target2_type
, "rel") == 0)
6203 globals
->target2_reloc
= R_ARM_REL32
;
6204 else if (strcmp (target2_type
, "abs") == 0)
6205 globals
->target2_reloc
= R_ARM_ABS32
;
6206 else if (strcmp (target2_type
, "got-rel") == 0)
6207 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6210 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6213 globals
->fix_v4bx
= fix_v4bx
;
6214 globals
->use_blx
|= use_blx
;
6215 globals
->vfp11_fix
= vfp11_fix
;
6216 globals
->pic_veneer
= pic_veneer
;
6217 globals
->fix_cortex_a8
= fix_cortex_a8
;
6219 BFD_ASSERT (is_arm_elf (output_bfd
));
6220 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6221 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6224 /* Replace the target offset of a Thumb bl or b.w instruction. */
6227 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6233 BFD_ASSERT ((offset
& 1) == 0);
6235 upper
= bfd_get_16 (abfd
, insn
);
6236 lower
= bfd_get_16 (abfd
, insn
+ 2);
6237 reloc_sign
= (offset
< 0) ? 1 : 0;
6238 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6239 | ((offset
>> 12) & 0x3ff)
6240 | (reloc_sign
<< 10);
6241 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6242 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6243 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6244 | ((offset
>> 1) & 0x7ff);
6245 bfd_put_16 (abfd
, upper
, insn
);
6246 bfd_put_16 (abfd
, lower
, insn
+ 2);
6249 /* Thumb code calling an ARM function. */
6252 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6256 asection
* input_section
,
6257 bfd_byte
* hit_data
,
6260 bfd_signed_vma addend
,
6262 char **error_message
)
6266 long int ret_offset
;
6267 struct elf_link_hash_entry
* myh
;
6268 struct elf32_arm_link_hash_table
* globals
;
6270 myh
= find_thumb_glue (info
, name
, error_message
);
6274 globals
= elf32_arm_hash_table (info
);
6276 BFD_ASSERT (globals
!= NULL
);
6277 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6279 my_offset
= myh
->root
.u
.def
.value
;
6281 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6282 THUMB2ARM_GLUE_SECTION_NAME
);
6284 BFD_ASSERT (s
!= NULL
);
6285 BFD_ASSERT (s
->contents
!= NULL
);
6286 BFD_ASSERT (s
->output_section
!= NULL
);
6288 if ((my_offset
& 0x01) == 0x01)
6291 && sym_sec
->owner
!= NULL
6292 && !INTERWORK_FLAG (sym_sec
->owner
))
6294 (*_bfd_error_handler
)
6295 (_("%B(%s): warning: interworking not enabled.\n"
6296 " first occurrence: %B: thumb call to arm"),
6297 sym_sec
->owner
, input_bfd
, name
);
6303 myh
->root
.u
.def
.value
= my_offset
;
6305 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
6306 s
->contents
+ my_offset
);
6308 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
6309 s
->contents
+ my_offset
+ 2);
6312 /* Address of destination of the stub. */
6313 ((bfd_signed_vma
) val
)
6315 /* Offset from the start of the current section
6316 to the start of the stubs. */
6318 /* Offset of the start of this stub from the start of the stubs. */
6320 /* Address of the start of the current section. */
6321 + s
->output_section
->vma
)
6322 /* The branch instruction is 4 bytes into the stub. */
6324 /* ARM branches work from the pc of the instruction + 8. */
6327 put_arm_insn (globals
, output_bfd
,
6328 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
6329 s
->contents
+ my_offset
+ 4);
6332 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
6334 /* Now go back and fix up the original BL insn to point to here. */
6336 /* Address of where the stub is located. */
6337 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
6338 /* Address of where the BL is located. */
6339 - (input_section
->output_section
->vma
+ input_section
->output_offset
6341 /* Addend in the relocation. */
6343 /* Biassing for PC-relative addressing. */
6346 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
6351 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6353 static struct elf_link_hash_entry
*
6354 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
6361 char ** error_message
)
6364 long int ret_offset
;
6365 struct elf_link_hash_entry
* myh
;
6366 struct elf32_arm_link_hash_table
* globals
;
6368 myh
= find_arm_glue (info
, name
, error_message
);
6372 globals
= elf32_arm_hash_table (info
);
6374 BFD_ASSERT (globals
!= NULL
);
6375 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6377 my_offset
= myh
->root
.u
.def
.value
;
6379 if ((my_offset
& 0x01) == 0x01)
6382 && sym_sec
->owner
!= NULL
6383 && !INTERWORK_FLAG (sym_sec
->owner
))
6385 (*_bfd_error_handler
)
6386 (_("%B(%s): warning: interworking not enabled.\n"
6387 " first occurrence: %B: arm call to thumb"),
6388 sym_sec
->owner
, input_bfd
, name
);
6392 myh
->root
.u
.def
.value
= my_offset
;
6394 if (info
->shared
|| globals
->root
.is_relocatable_executable
6395 || globals
->pic_veneer
)
6397 /* For relocatable objects we can't use absolute addresses,
6398 so construct the address from a relative offset. */
6399 /* TODO: If the offset is small it's probably worth
6400 constructing the address with adds. */
6401 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
6402 s
->contents
+ my_offset
);
6403 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
6404 s
->contents
+ my_offset
+ 4);
6405 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
6406 s
->contents
+ my_offset
+ 8);
6407 /* Adjust the offset by 4 for the position of the add,
6408 and 8 for the pipeline offset. */
6409 ret_offset
= (val
- (s
->output_offset
6410 + s
->output_section
->vma
6413 bfd_put_32 (output_bfd
, ret_offset
,
6414 s
->contents
+ my_offset
+ 12);
6416 else if (globals
->use_blx
)
6418 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
6419 s
->contents
+ my_offset
);
6421 /* It's a thumb address. Add the low order bit. */
6422 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
6423 s
->contents
+ my_offset
+ 4);
6427 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
6428 s
->contents
+ my_offset
);
6430 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
6431 s
->contents
+ my_offset
+ 4);
6433 /* It's a thumb address. Add the low order bit. */
6434 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
6435 s
->contents
+ my_offset
+ 8);
6441 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
6446 /* Arm code calling a Thumb function. */
6449 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
6453 asection
* input_section
,
6454 bfd_byte
* hit_data
,
6457 bfd_signed_vma addend
,
6459 char **error_message
)
6461 unsigned long int tmp
;
6464 long int ret_offset
;
6465 struct elf_link_hash_entry
* myh
;
6466 struct elf32_arm_link_hash_table
* globals
;
6468 globals
= elf32_arm_hash_table (info
);
6470 BFD_ASSERT (globals
!= NULL
);
6471 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6473 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6474 ARM2THUMB_GLUE_SECTION_NAME
);
6475 BFD_ASSERT (s
!= NULL
);
6476 BFD_ASSERT (s
->contents
!= NULL
);
6477 BFD_ASSERT (s
->output_section
!= NULL
);
6479 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
6480 sym_sec
, val
, s
, error_message
);
6484 my_offset
= myh
->root
.u
.def
.value
;
6485 tmp
= bfd_get_32 (input_bfd
, hit_data
);
6486 tmp
= tmp
& 0xFF000000;
6488 /* Somehow these are both 4 too far, so subtract 8. */
6489 ret_offset
= (s
->output_offset
6491 + s
->output_section
->vma
6492 - (input_section
->output_offset
6493 + input_section
->output_section
->vma
6497 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
6499 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
6504 /* Populate Arm stub for an exported Thumb function. */
6507 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
6509 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
6511 struct elf_link_hash_entry
* myh
;
6512 struct elf32_arm_link_hash_entry
*eh
;
6513 struct elf32_arm_link_hash_table
* globals
;
6516 char *error_message
;
6518 eh
= elf32_arm_hash_entry (h
);
6519 /* Allocate stubs for exported Thumb functions on v4t. */
6520 if (eh
->export_glue
== NULL
)
6523 globals
= elf32_arm_hash_table (info
);
6525 BFD_ASSERT (globals
!= NULL
);
6526 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6528 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6529 ARM2THUMB_GLUE_SECTION_NAME
);
6530 BFD_ASSERT (s
!= NULL
);
6531 BFD_ASSERT (s
->contents
!= NULL
);
6532 BFD_ASSERT (s
->output_section
!= NULL
);
6534 sec
= eh
->export_glue
->root
.u
.def
.section
;
6536 BFD_ASSERT (sec
->output_section
!= NULL
);
6538 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
6539 + sec
->output_section
->vma
;
6541 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
6542 h
->root
.u
.def
.section
->owner
,
6543 globals
->obfd
, sec
, val
, s
,
6549 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6552 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
6557 struct elf32_arm_link_hash_table
*globals
;
6559 globals
= elf32_arm_hash_table (info
);
6561 BFD_ASSERT (globals
!= NULL
);
6562 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6564 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6565 ARM_BX_GLUE_SECTION_NAME
);
6566 BFD_ASSERT (s
!= NULL
);
6567 BFD_ASSERT (s
->contents
!= NULL
);
6568 BFD_ASSERT (s
->output_section
!= NULL
);
6570 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
6572 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
6574 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
6576 p
= s
->contents
+ glue_addr
;
6577 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
6578 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
6579 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
6580 globals
->bx_glue_offset
[reg
] |= 1;
6583 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
6586 /* Generate Arm stubs for exported Thumb symbols. */
6588 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
6589 struct bfd_link_info
*link_info
)
6591 struct elf32_arm_link_hash_table
* globals
;
6593 if (link_info
== NULL
)
6594 /* Ignore this if we are not called by the ELF backend linker. */
6597 globals
= elf32_arm_hash_table (link_info
);
6598 /* If blx is available then exported Thumb symbols are OK and there is
6600 if (globals
->use_blx
)
6603 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
6607 /* Some relocations map to different relocations depending on the
6608 target. Return the real relocation. */
6611 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
6617 if (globals
->target1_is_rel
)
6623 return globals
->target2_reloc
;
6630 /* Return the base VMA address which should be subtracted from real addresses
6631 when resolving @dtpoff relocation.
6632 This is PT_TLS segment p_vaddr. */
6635 dtpoff_base (struct bfd_link_info
*info
)
6637 /* If tls_sec is NULL, we should have signalled an error already. */
6638 if (elf_hash_table (info
)->tls_sec
== NULL
)
6640 return elf_hash_table (info
)->tls_sec
->vma
;
6643 /* Return the relocation value for @tpoff relocation
6644 if STT_TLS virtual address is ADDRESS. */
6647 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
6649 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6652 /* If tls_sec is NULL, we should have signalled an error already. */
6653 if (htab
->tls_sec
== NULL
)
6655 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
6656 return address
- htab
->tls_sec
->vma
+ base
;
6659 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6660 VALUE is the relocation value. */
6662 static bfd_reloc_status_type
6663 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
6666 return bfd_reloc_overflow
;
6668 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
6669 bfd_put_32 (abfd
, value
, data
);
6670 return bfd_reloc_ok
;
6673 /* For a given value of n, calculate the value of G_n as required to
6674 deal with group relocations. We return it in the form of an
6675 encoded constant-and-rotation, together with the final residual. If n is
6676 specified as less than zero, then final_residual is filled with the
6677 input value and no further action is performed. */
6680 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
6684 bfd_vma encoded_g_n
= 0;
6685 bfd_vma residual
= value
; /* Also known as Y_n. */
6687 for (current_n
= 0; current_n
<= n
; current_n
++)
6691 /* Calculate which part of the value to mask. */
6698 /* Determine the most significant bit in the residual and
6699 align the resulting value to a 2-bit boundary. */
6700 for (msb
= 30; msb
>= 0; msb
-= 2)
6701 if (residual
& (3 << msb
))
6704 /* The desired shift is now (msb - 6), or zero, whichever
6711 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6712 g_n
= residual
& (0xff << shift
);
6713 encoded_g_n
= (g_n
>> shift
)
6714 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
6716 /* Calculate the residual for the next time around. */
6720 *final_residual
= residual
;
6725 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6726 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6729 identify_add_or_sub (bfd_vma insn
)
6731 int opcode
= insn
& 0x1e00000;
6733 if (opcode
== 1 << 23) /* ADD */
6736 if (opcode
== 1 << 22) /* SUB */
6742 /* Perform a relocation as part of a final link. */
6744 static bfd_reloc_status_type
6745 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
6748 asection
* input_section
,
6749 bfd_byte
* contents
,
6750 Elf_Internal_Rela
* rel
,
6752 struct bfd_link_info
* info
,
6754 const char * sym_name
,
6756 struct elf_link_hash_entry
* h
,
6757 bfd_boolean
* unresolved_reloc_p
,
6758 char ** error_message
)
6760 unsigned long r_type
= howto
->type
;
6761 unsigned long r_symndx
;
6762 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
6763 bfd
* dynobj
= NULL
;
6764 Elf_Internal_Shdr
* symtab_hdr
;
6765 struct elf_link_hash_entry
** sym_hashes
;
6766 bfd_vma
* local_got_offsets
;
6767 asection
* sgot
= NULL
;
6768 asection
* splt
= NULL
;
6769 asection
* sreloc
= NULL
;
6771 bfd_signed_vma signed_addend
;
6772 struct elf32_arm_link_hash_table
* globals
;
6774 globals
= elf32_arm_hash_table (info
);
6776 BFD_ASSERT (is_arm_elf (input_bfd
));
6778 /* Some relocation types map to different relocations depending on the
6779 target. We pick the right one here. */
6780 r_type
= arm_real_reloc_type (globals
, r_type
);
6781 if (r_type
!= howto
->type
)
6782 howto
= elf32_arm_howto_from_type (r_type
);
6784 /* If the start address has been set, then set the EF_ARM_HASENTRY
6785 flag. Setting this more than once is redundant, but the cost is
6786 not too high, and it keeps the code simple.
6788 The test is done here, rather than somewhere else, because the
6789 start address is only set just before the final link commences.
6791 Note - if the user deliberately sets a start address of 0, the
6792 flag will not be set. */
6793 if (bfd_get_start_address (output_bfd
) != 0)
6794 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
6796 dynobj
= elf_hash_table (info
)->dynobj
;
6799 sgot
= bfd_get_section_by_name (dynobj
, ".got");
6800 splt
= bfd_get_section_by_name (dynobj
, ".plt");
6802 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
6803 sym_hashes
= elf_sym_hashes (input_bfd
);
6804 local_got_offsets
= elf_local_got_offsets (input_bfd
);
6805 r_symndx
= ELF32_R_SYM (rel
->r_info
);
6807 if (globals
->use_rel
)
6809 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
6811 if (addend
& ((howto
->src_mask
+ 1) >> 1))
6814 signed_addend
&= ~ howto
->src_mask
;
6815 signed_addend
|= addend
;
6818 signed_addend
= addend
;
6821 addend
= signed_addend
= rel
->r_addend
;
6826 /* We don't need to find a value for this symbol. It's just a
6828 *unresolved_reloc_p
= FALSE
;
6829 return bfd_reloc_ok
;
6832 if (!globals
->vxworks_p
)
6833 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6837 case R_ARM_ABS32_NOI
:
6839 case R_ARM_REL32_NOI
:
6845 /* Handle relocations which should use the PLT entry. ABS32/REL32
6846 will use the symbol's value, which may point to a PLT entry, but we
6847 don't need to handle that here. If we created a PLT entry, all
6848 branches in this object should go to it, except if the PLT is too
6849 far away, in which case a long branch stub should be inserted. */
6850 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
6851 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
6852 && r_type
!= R_ARM_CALL
6853 && r_type
!= R_ARM_JUMP24
6854 && r_type
!= R_ARM_PLT32
)
6857 && h
->plt
.offset
!= (bfd_vma
) -1)
6859 /* If we've created a .plt section, and assigned a PLT entry to
6860 this function, it should not be known to bind locally. If
6861 it were, we would have cleared the PLT entry. */
6862 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
6864 value
= (splt
->output_section
->vma
6865 + splt
->output_offset
6867 *unresolved_reloc_p
= FALSE
;
6868 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6869 contents
, rel
->r_offset
, value
,
6873 /* When generating a shared object or relocatable executable, these
6874 relocations are copied into the output file to be resolved at
6876 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
6877 && (input_section
->flags
& SEC_ALLOC
)
6878 && !(elf32_arm_hash_table (info
)->vxworks_p
6879 && strcmp (input_section
->output_section
->name
,
6881 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
6882 || !SYMBOL_CALLS_LOCAL (info
, h
))
6884 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6885 || h
->root
.type
!= bfd_link_hash_undefweak
)
6886 && r_type
!= R_ARM_PC24
6887 && r_type
!= R_ARM_CALL
6888 && r_type
!= R_ARM_JUMP24
6889 && r_type
!= R_ARM_PREL31
6890 && r_type
!= R_ARM_PLT32
)
6892 Elf_Internal_Rela outrel
;
6894 bfd_boolean skip
, relocate
;
6896 *unresolved_reloc_p
= FALSE
;
6900 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
6901 ! globals
->use_rel
);
6904 return bfd_reloc_notsupported
;
6910 outrel
.r_addend
= addend
;
6912 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
6914 if (outrel
.r_offset
== (bfd_vma
) -1)
6916 else if (outrel
.r_offset
== (bfd_vma
) -2)
6917 skip
= TRUE
, relocate
= TRUE
;
6918 outrel
.r_offset
+= (input_section
->output_section
->vma
6919 + input_section
->output_offset
);
6922 memset (&outrel
, 0, sizeof outrel
);
6927 || !h
->def_regular
))
6928 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
6933 /* This symbol is local, or marked to become local. */
6934 if (sym_flags
== STT_ARM_TFUNC
)
6936 if (globals
->symbian_p
)
6940 /* On Symbian OS, the data segment and text segement
6941 can be relocated independently. Therefore, we
6942 must indicate the segment to which this
6943 relocation is relative. The BPABI allows us to
6944 use any symbol in the right segment; we just use
6945 the section symbol as it is convenient. (We
6946 cannot use the symbol given by "h" directly as it
6947 will not appear in the dynamic symbol table.)
6949 Note that the dynamic linker ignores the section
6950 symbol value, so we don't subtract osec->vma
6951 from the emitted reloc addend. */
6953 osec
= sym_sec
->output_section
;
6955 osec
= input_section
->output_section
;
6956 symbol
= elf_section_data (osec
)->dynindx
;
6959 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6961 if ((osec
->flags
& SEC_READONLY
) == 0
6962 && htab
->data_index_section
!= NULL
)
6963 osec
= htab
->data_index_section
;
6965 osec
= htab
->text_index_section
;
6966 symbol
= elf_section_data (osec
)->dynindx
;
6968 BFD_ASSERT (symbol
!= 0);
6971 /* On SVR4-ish systems, the dynamic loader cannot
6972 relocate the text and data segments independently,
6973 so the symbol does not matter. */
6975 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
6976 if (globals
->use_rel
)
6979 outrel
.r_addend
+= value
;
6982 loc
= sreloc
->contents
;
6983 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
6984 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6986 /* If this reloc is against an external symbol, we do not want to
6987 fiddle with the addend. Otherwise, we need to include the symbol
6988 value so that it becomes an addend for the dynamic reloc. */
6990 return bfd_reloc_ok
;
6992 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6993 contents
, rel
->r_offset
, value
,
6996 else switch (r_type
)
6999 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
7001 case R_ARM_XPC25
: /* Arm BLX instruction. */
7004 case R_ARM_PC24
: /* Arm B/BL instruction. */
7007 bfd_signed_vma branch_offset
;
7008 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
7010 if (r_type
== R_ARM_XPC25
)
7012 /* Check for Arm calling Arm function. */
7013 /* FIXME: Should we translate the instruction into a BL
7014 instruction instead ? */
7015 if (sym_flags
!= STT_ARM_TFUNC
)
7016 (*_bfd_error_handler
)
7017 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7019 h
? h
->root
.root
.string
: "(local)");
7021 else if (r_type
== R_ARM_PC24
)
7023 /* Check for Arm calling Thumb function. */
7024 if (sym_flags
== STT_ARM_TFUNC
)
7026 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
7027 output_bfd
, input_section
,
7028 hit_data
, sym_sec
, rel
->r_offset
,
7029 signed_addend
, value
,
7031 return bfd_reloc_ok
;
7033 return bfd_reloc_dangerous
;
7037 /* Check if a stub has to be inserted because the
7038 destination is too far or we are changing mode. */
7039 if ( r_type
== R_ARM_CALL
7040 || r_type
== R_ARM_JUMP24
7041 || r_type
== R_ARM_PLT32
)
7045 /* If the call goes through a PLT entry, make sure to
7046 check distance to the right destination address. */
7047 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7049 value
= (splt
->output_section
->vma
7050 + splt
->output_offset
7052 *unresolved_reloc_p
= FALSE
;
7053 /* The PLT entry is in ARM mode, regardless of the
7055 sym_flags
= STT_FUNC
;
7058 from
= (input_section
->output_section
->vma
7059 + input_section
->output_offset
7061 branch_offset
= (bfd_signed_vma
)(value
- from
);
7063 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
7064 || branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
7065 || ((sym_flags
== STT_ARM_TFUNC
)
7066 && (((r_type
== R_ARM_CALL
) && !globals
->use_blx
)
7067 || (r_type
== R_ARM_JUMP24
)
7068 || (r_type
== R_ARM_PLT32
) ))
7071 /* The target is out of reach, so redirect the
7072 branch to the local stub for this function. */
7074 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7077 if (stub_entry
!= NULL
)
7078 value
= (stub_entry
->stub_offset
7079 + stub_entry
->stub_sec
->output_offset
7080 + stub_entry
->stub_sec
->output_section
->vma
);
7084 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7086 S is the address of the symbol in the relocation.
7087 P is address of the instruction being relocated.
7088 A is the addend (extracted from the instruction) in bytes.
7090 S is held in 'value'.
7091 P is the base address of the section containing the
7092 instruction plus the offset of the reloc into that
7094 (input_section->output_section->vma +
7095 input_section->output_offset +
7097 A is the addend, converted into bytes, ie:
7100 Note: None of these operations have knowledge of the pipeline
7101 size of the processor, thus it is up to the assembler to
7102 encode this information into the addend. */
7103 value
-= (input_section
->output_section
->vma
7104 + input_section
->output_offset
);
7105 value
-= rel
->r_offset
;
7106 if (globals
->use_rel
)
7107 value
+= (signed_addend
<< howto
->size
);
7109 /* RELA addends do not have to be adjusted by howto->size. */
7110 value
+= signed_addend
;
7112 signed_addend
= value
;
7113 signed_addend
>>= howto
->rightshift
;
7115 /* A branch to an undefined weak symbol is turned into a jump to
7116 the next instruction unless a PLT entry will be created.
7117 Do the same for local undefined symbols.
7118 The jump to the next instruction is optimized as a NOP depending
7119 on the architecture. */
7120 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
7121 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7122 : bfd_is_und_section (sym_sec
))
7124 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
7126 if (arch_has_arm_nop (globals
))
7127 value
|= 0x0320f000;
7129 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
7133 /* Perform a signed range check. */
7134 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
7135 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
7136 return bfd_reloc_overflow
;
7138 addend
= (value
& 2);
7140 value
= (signed_addend
& howto
->dst_mask
)
7141 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7143 if (r_type
== R_ARM_CALL
)
7145 /* Set the H bit in the BLX instruction. */
7146 if (sym_flags
== STT_ARM_TFUNC
)
7151 value
&= ~(bfd_vma
)(1 << 24);
7154 /* Select the correct instruction (BL or BLX). */
7155 /* Only if we are not handling a BL to a stub. In this
7156 case, mode switching is performed by the stub. */
7157 if (sym_flags
== STT_ARM_TFUNC
&& !stub_entry
)
7161 value
&= ~(bfd_vma
)(1 << 28);
7171 if (sym_flags
== STT_ARM_TFUNC
)
7175 case R_ARM_ABS32_NOI
:
7181 if (sym_flags
== STT_ARM_TFUNC
)
7183 value
-= (input_section
->output_section
->vma
7184 + input_section
->output_offset
+ rel
->r_offset
);
7187 case R_ARM_REL32_NOI
:
7189 value
-= (input_section
->output_section
->vma
7190 + input_section
->output_offset
+ rel
->r_offset
);
7194 value
-= (input_section
->output_section
->vma
7195 + input_section
->output_offset
+ rel
->r_offset
);
7196 value
+= signed_addend
;
7197 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
7199 /* Check for overflow. */
7200 if ((value
^ (value
>> 1)) & (1 << 30))
7201 return bfd_reloc_overflow
;
7203 value
&= 0x7fffffff;
7204 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
7205 if (sym_flags
== STT_ARM_TFUNC
)
7210 bfd_put_32 (input_bfd
, value
, hit_data
);
7211 return bfd_reloc_ok
;
7216 /* There is no way to tell whether the user intended to use a signed or
7217 unsigned addend. When checking for overflow we accept either,
7218 as specified by the AAELF. */
7219 if ((long) value
> 0xff || (long) value
< -0x80)
7220 return bfd_reloc_overflow
;
7222 bfd_put_8 (input_bfd
, value
, hit_data
);
7223 return bfd_reloc_ok
;
7228 /* See comment for R_ARM_ABS8. */
7229 if ((long) value
> 0xffff || (long) value
< -0x8000)
7230 return bfd_reloc_overflow
;
7232 bfd_put_16 (input_bfd
, value
, hit_data
);
7233 return bfd_reloc_ok
;
7235 case R_ARM_THM_ABS5
:
7236 /* Support ldr and str instructions for the thumb. */
7237 if (globals
->use_rel
)
7239 /* Need to refetch addend. */
7240 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7241 /* ??? Need to determine shift amount from operand size. */
7242 addend
>>= howto
->rightshift
;
7246 /* ??? Isn't value unsigned? */
7247 if ((long) value
> 0x1f || (long) value
< -0x10)
7248 return bfd_reloc_overflow
;
7250 /* ??? Value needs to be properly shifted into place first. */
7251 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
7252 bfd_put_16 (input_bfd
, value
, hit_data
);
7253 return bfd_reloc_ok
;
7255 case R_ARM_THM_ALU_PREL_11_0
:
7256 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7259 bfd_signed_vma relocation
;
7261 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7262 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7264 if (globals
->use_rel
)
7266 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
7267 | ((insn
& (1 << 26)) >> 15);
7268 if (insn
& 0xf00000)
7269 signed_addend
= -signed_addend
;
7272 relocation
= value
+ signed_addend
;
7273 relocation
-= (input_section
->output_section
->vma
7274 + input_section
->output_offset
7277 value
= abs (relocation
);
7279 if (value
>= 0x1000)
7280 return bfd_reloc_overflow
;
7282 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
7283 | ((value
& 0x700) << 4)
7284 | ((value
& 0x800) << 15);
7288 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7289 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7291 return bfd_reloc_ok
;
7295 /* PR 10073: This reloc is not generated by the GNU toolchain,
7296 but it is supported for compatibility with third party libraries
7297 generated by other compilers, specifically the ARM/IAR. */
7300 bfd_signed_vma relocation
;
7302 insn
= bfd_get_16 (input_bfd
, hit_data
);
7304 if (globals
->use_rel
)
7305 addend
= (insn
& 0x00ff) << 2;
7307 relocation
= value
+ addend
;
7308 relocation
-= (input_section
->output_section
->vma
7309 + input_section
->output_offset
7312 value
= abs (relocation
);
7314 /* We do not check for overflow of this reloc. Although strictly
7315 speaking this is incorrect, it appears to be necessary in order
7316 to work with IAR generated relocs. Since GCC and GAS do not
7317 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7318 a problem for them. */
7321 insn
= (insn
& 0xff00) | (value
>> 2);
7323 bfd_put_16 (input_bfd
, insn
, hit_data
);
7325 return bfd_reloc_ok
;
7328 case R_ARM_THM_PC12
:
7329 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7332 bfd_signed_vma relocation
;
7334 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7335 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7337 if (globals
->use_rel
)
7339 signed_addend
= insn
& 0xfff;
7340 if (!(insn
& (1 << 23)))
7341 signed_addend
= -signed_addend
;
7344 relocation
= value
+ signed_addend
;
7345 relocation
-= (input_section
->output_section
->vma
7346 + input_section
->output_offset
7349 value
= abs (relocation
);
7351 if (value
>= 0x1000)
7352 return bfd_reloc_overflow
;
7354 insn
= (insn
& 0xff7ff000) | value
;
7355 if (relocation
>= 0)
7358 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7359 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7361 return bfd_reloc_ok
;
7364 case R_ARM_THM_XPC22
:
7365 case R_ARM_THM_CALL
:
7366 case R_ARM_THM_JUMP24
:
7367 /* Thumb BL (branch long instruction). */
7371 bfd_boolean overflow
= FALSE
;
7372 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7373 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7374 bfd_signed_vma reloc_signed_max
;
7375 bfd_signed_vma reloc_signed_min
;
7377 bfd_signed_vma signed_check
;
7379 const int thumb2
= using_thumb2 (globals
);
7381 /* A branch to an undefined weak symbol is turned into a jump to
7382 the next instruction unless a PLT entry will be created.
7383 The jump to the next instruction is optimized as a NOP.W for
7384 Thumb-2 enabled architectures. */
7385 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
7386 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7388 if (arch_has_thumb2_nop (globals
))
7390 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
7391 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
7395 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
7396 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
7398 return bfd_reloc_ok
;
7401 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7402 with Thumb-1) involving the J1 and J2 bits. */
7403 if (globals
->use_rel
)
7405 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
7406 bfd_vma upper
= upper_insn
& 0x3ff;
7407 bfd_vma lower
= lower_insn
& 0x7ff;
7408 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
7409 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
7410 bfd_vma i1
= j1
^ s
? 0 : 1;
7411 bfd_vma i2
= j2
^ s
? 0 : 1;
7413 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
7415 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
7417 signed_addend
= addend
;
7420 if (r_type
== R_ARM_THM_XPC22
)
7422 /* Check for Thumb to Thumb call. */
7423 /* FIXME: Should we translate the instruction into a BL
7424 instruction instead ? */
7425 if (sym_flags
== STT_ARM_TFUNC
)
7426 (*_bfd_error_handler
)
7427 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7429 h
? h
->root
.root
.string
: "(local)");
7433 /* If it is not a call to Thumb, assume call to Arm.
7434 If it is a call relative to a section name, then it is not a
7435 function call at all, but rather a long jump. Calls through
7436 the PLT do not require stubs. */
7437 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
7438 && (h
== NULL
|| splt
== NULL
7439 || h
->plt
.offset
== (bfd_vma
) -1))
7441 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7443 /* Convert BL to BLX. */
7444 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7446 else if (( r_type
!= R_ARM_THM_CALL
)
7447 && (r_type
!= R_ARM_THM_JUMP24
))
7449 if (elf32_thumb_to_arm_stub
7450 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
7451 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
7453 return bfd_reloc_ok
;
7455 return bfd_reloc_dangerous
;
7458 else if (sym_flags
== STT_ARM_TFUNC
&& globals
->use_blx
7459 && r_type
== R_ARM_THM_CALL
)
7461 /* Make sure this is a BL. */
7462 lower_insn
|= 0x1800;
7466 /* Handle calls via the PLT. */
7467 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7469 value
= (splt
->output_section
->vma
7470 + splt
->output_offset
7472 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7474 /* If the Thumb BLX instruction is available, convert the
7475 BL to a BLX instruction to call the ARM-mode PLT entry. */
7476 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7477 sym_flags
= STT_FUNC
;
7481 /* Target the Thumb stub before the ARM PLT entry. */
7482 value
-= PLT_THUMB_STUB_SIZE
;
7483 sym_flags
= STT_ARM_TFUNC
;
7485 *unresolved_reloc_p
= FALSE
;
7488 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
7490 /* Check if a stub has to be inserted because the destination
7493 bfd_signed_vma branch_offset
;
7494 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
7496 from
= (input_section
->output_section
->vma
7497 + input_section
->output_offset
7499 branch_offset
= (bfd_signed_vma
)(value
- from
);
7502 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
7503 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
7506 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
7507 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
7508 || ((sym_flags
!= STT_ARM_TFUNC
)
7509 && (((r_type
== R_ARM_THM_CALL
) && !globals
->use_blx
)
7510 || r_type
== R_ARM_THM_JUMP24
)))
7512 /* The target is out of reach or we are changing modes, so
7513 redirect the branch to the local stub for this
7515 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7518 if (stub_entry
!= NULL
)
7519 value
= (stub_entry
->stub_offset
7520 + stub_entry
->stub_sec
->output_offset
7521 + stub_entry
->stub_sec
->output_section
->vma
);
7523 /* If this call becomes a call to Arm, force BLX. */
7524 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
7527 && !arm_stub_is_thumb (stub_entry
->stub_type
))
7528 || (sym_flags
!= STT_ARM_TFUNC
))
7529 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7534 relocation
= value
+ signed_addend
;
7536 relocation
-= (input_section
->output_section
->vma
7537 + input_section
->output_offset
7540 check
= relocation
>> howto
->rightshift
;
7542 /* If this is a signed value, the rightshift just dropped
7543 leading 1 bits (assuming twos complement). */
7544 if ((bfd_signed_vma
) relocation
>= 0)
7545 signed_check
= check
;
7547 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
7549 /* Calculate the permissable maximum and minimum values for
7550 this relocation according to whether we're relocating for
7552 bitsize
= howto
->bitsize
;
7555 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
7556 reloc_signed_min
= ~reloc_signed_max
;
7558 /* Assumes two's complement. */
7559 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7562 if ((lower_insn
& 0x5000) == 0x4000)
7563 /* For a BLX instruction, make sure that the relocation is rounded up
7564 to a word boundary. This follows the semantics of the instruction
7565 which specifies that bit 1 of the target address will come from bit
7566 1 of the base address. */
7567 relocation
= (relocation
+ 2) & ~ 3;
7569 /* Put RELOCATION back into the insn. Assumes two's complement.
7570 We use the Thumb-2 encoding, which is safe even if dealing with
7571 a Thumb-1 instruction by virtue of our overflow check above. */
7572 reloc_sign
= (signed_check
< 0) ? 1 : 0;
7573 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
7574 | ((relocation
>> 12) & 0x3ff)
7575 | (reloc_sign
<< 10);
7576 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
7577 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
7578 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
7579 | ((relocation
>> 1) & 0x7ff);
7581 /* Put the relocated value back in the object file: */
7582 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7583 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7585 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7589 case R_ARM_THM_JUMP19
:
7590 /* Thumb32 conditional branch instruction. */
7593 bfd_boolean overflow
= FALSE
;
7594 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7595 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7596 bfd_signed_vma reloc_signed_max
= 0xffffe;
7597 bfd_signed_vma reloc_signed_min
= -0x100000;
7598 bfd_signed_vma signed_check
;
7600 /* Need to refetch the addend, reconstruct the top three bits,
7601 and squish the two 11 bit pieces together. */
7602 if (globals
->use_rel
)
7604 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
7605 bfd_vma upper
= (upper_insn
& 0x003f);
7606 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
7607 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
7608 bfd_vma lower
= (lower_insn
& 0x07ff);
7613 upper
-= 0x0100; /* Sign extend. */
7615 addend
= (upper
<< 12) | (lower
<< 1);
7616 signed_addend
= addend
;
7619 /* Handle calls via the PLT. */
7620 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7622 value
= (splt
->output_section
->vma
7623 + splt
->output_offset
7625 /* Target the Thumb stub before the ARM PLT entry. */
7626 value
-= PLT_THUMB_STUB_SIZE
;
7627 *unresolved_reloc_p
= FALSE
;
7630 /* ??? Should handle interworking? GCC might someday try to
7631 use this for tail calls. */
7633 relocation
= value
+ signed_addend
;
7634 relocation
-= (input_section
->output_section
->vma
7635 + input_section
->output_offset
7637 signed_check
= (bfd_signed_vma
) relocation
;
7639 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7642 /* Put RELOCATION back into the insn. */
7644 bfd_vma S
= (relocation
& 0x00100000) >> 20;
7645 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
7646 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
7647 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
7648 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
7650 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
7651 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
7654 /* Put the relocated value back in the object file: */
7655 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7656 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7658 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7661 case R_ARM_THM_JUMP11
:
7662 case R_ARM_THM_JUMP8
:
7663 case R_ARM_THM_JUMP6
:
7664 /* Thumb B (branch) instruction). */
7666 bfd_signed_vma relocation
;
7667 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
7668 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
7669 bfd_signed_vma signed_check
;
7671 /* CZB cannot jump backward. */
7672 if (r_type
== R_ARM_THM_JUMP6
)
7673 reloc_signed_min
= 0;
7675 if (globals
->use_rel
)
7677 /* Need to refetch addend. */
7678 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7679 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7682 signed_addend
&= ~ howto
->src_mask
;
7683 signed_addend
|= addend
;
7686 signed_addend
= addend
;
7687 /* The value in the insn has been right shifted. We need to
7688 undo this, so that we can perform the address calculation
7689 in terms of bytes. */
7690 signed_addend
<<= howto
->rightshift
;
7692 relocation
= value
+ signed_addend
;
7694 relocation
-= (input_section
->output_section
->vma
7695 + input_section
->output_offset
7698 relocation
>>= howto
->rightshift
;
7699 signed_check
= relocation
;
7701 if (r_type
== R_ARM_THM_JUMP6
)
7702 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
7704 relocation
&= howto
->dst_mask
;
7705 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7707 bfd_put_16 (input_bfd
, relocation
, hit_data
);
7709 /* Assumes two's complement. */
7710 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7711 return bfd_reloc_overflow
;
7713 return bfd_reloc_ok
;
7716 case R_ARM_ALU_PCREL7_0
:
7717 case R_ARM_ALU_PCREL15_8
:
7718 case R_ARM_ALU_PCREL23_15
:
7723 insn
= bfd_get_32 (input_bfd
, hit_data
);
7724 if (globals
->use_rel
)
7726 /* Extract the addend. */
7727 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
7728 signed_addend
= addend
;
7730 relocation
= value
+ signed_addend
;
7732 relocation
-= (input_section
->output_section
->vma
7733 + input_section
->output_offset
7735 insn
= (insn
& ~0xfff)
7736 | ((howto
->bitpos
<< 7) & 0xf00)
7737 | ((relocation
>> howto
->bitpos
) & 0xff);
7738 bfd_put_32 (input_bfd
, value
, hit_data
);
7740 return bfd_reloc_ok
;
7742 case R_ARM_GNU_VTINHERIT
:
7743 case R_ARM_GNU_VTENTRY
:
7744 return bfd_reloc_ok
;
7746 case R_ARM_GOTOFF32
:
7747 /* Relocation is relative to the start of the
7748 global offset table. */
7750 BFD_ASSERT (sgot
!= NULL
);
7752 return bfd_reloc_notsupported
;
7754 /* If we are addressing a Thumb function, we need to adjust the
7755 address by one, so that attempts to call the function pointer will
7756 correctly interpret it as Thumb code. */
7757 if (sym_flags
== STT_ARM_TFUNC
)
7760 /* Note that sgot->output_offset is not involved in this
7761 calculation. We always want the start of .got. If we
7762 define _GLOBAL_OFFSET_TABLE in a different way, as is
7763 permitted by the ABI, we might have to change this
7765 value
-= sgot
->output_section
->vma
;
7766 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7767 contents
, rel
->r_offset
, value
,
7771 /* Use global offset table as symbol value. */
7772 BFD_ASSERT (sgot
!= NULL
);
7775 return bfd_reloc_notsupported
;
7777 *unresolved_reloc_p
= FALSE
;
7778 value
= sgot
->output_section
->vma
;
7779 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7780 contents
, rel
->r_offset
, value
,
7784 case R_ARM_GOT_PREL
:
7785 /* Relocation is to the entry for this symbol in the
7786 global offset table. */
7788 return bfd_reloc_notsupported
;
7795 off
= h
->got
.offset
;
7796 BFD_ASSERT (off
!= (bfd_vma
) -1);
7797 dyn
= globals
->root
.dynamic_sections_created
;
7799 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
7801 && SYMBOL_REFERENCES_LOCAL (info
, h
))
7802 || (ELF_ST_VISIBILITY (h
->other
)
7803 && h
->root
.type
== bfd_link_hash_undefweak
))
7805 /* This is actually a static link, or it is a -Bsymbolic link
7806 and the symbol is defined locally. We must initialize this
7807 entry in the global offset table. Since the offset must
7808 always be a multiple of 4, we use the least significant bit
7809 to record whether we have initialized it already.
7811 When doing a dynamic link, we create a .rel(a).got relocation
7812 entry to initialize the value. This is done in the
7813 finish_dynamic_symbol routine. */
7818 /* If we are addressing a Thumb function, we need to
7819 adjust the address by one, so that attempts to
7820 call the function pointer will correctly
7821 interpret it as Thumb code. */
7822 if (sym_flags
== STT_ARM_TFUNC
)
7825 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7830 *unresolved_reloc_p
= FALSE
;
7832 value
= sgot
->output_offset
+ off
;
7838 BFD_ASSERT (local_got_offsets
!= NULL
&&
7839 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
7841 off
= local_got_offsets
[r_symndx
];
7843 /* The offset must always be a multiple of 4. We use the
7844 least significant bit to record whether we have already
7845 generated the necessary reloc. */
7850 /* If we are addressing a Thumb function, we need to
7851 adjust the address by one, so that attempts to
7852 call the function pointer will correctly
7853 interpret it as Thumb code. */
7854 if (sym_flags
== STT_ARM_TFUNC
)
7857 if (globals
->use_rel
)
7858 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7863 Elf_Internal_Rela outrel
;
7866 srelgot
= (bfd_get_section_by_name
7867 (dynobj
, RELOC_SECTION (globals
, ".got")));
7868 BFD_ASSERT (srelgot
!= NULL
);
7870 outrel
.r_addend
= addend
+ value
;
7871 outrel
.r_offset
= (sgot
->output_section
->vma
7872 + sgot
->output_offset
7874 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
7875 loc
= srelgot
->contents
;
7876 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
7877 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7880 local_got_offsets
[r_symndx
] |= 1;
7883 value
= sgot
->output_offset
+ off
;
7885 if (r_type
!= R_ARM_GOT32
)
7886 value
+= sgot
->output_section
->vma
;
7888 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7889 contents
, rel
->r_offset
, value
,
7892 case R_ARM_TLS_LDO32
:
7893 value
= value
- dtpoff_base (info
);
7895 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7896 contents
, rel
->r_offset
, value
,
7899 case R_ARM_TLS_LDM32
:
7903 if (globals
->sgot
== NULL
)
7906 off
= globals
->tls_ldm_got
.offset
;
7912 /* If we don't know the module number, create a relocation
7916 Elf_Internal_Rela outrel
;
7919 if (globals
->srelgot
== NULL
)
7922 outrel
.r_addend
= 0;
7923 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7924 + globals
->sgot
->output_offset
+ off
);
7925 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
7927 if (globals
->use_rel
)
7928 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7929 globals
->sgot
->contents
+ off
);
7931 loc
= globals
->srelgot
->contents
;
7932 loc
+= globals
->srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
7933 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7936 bfd_put_32 (output_bfd
, 1, globals
->sgot
->contents
+ off
);
7938 globals
->tls_ldm_got
.offset
|= 1;
7941 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
7942 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
7944 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7945 contents
, rel
->r_offset
, value
,
7949 case R_ARM_TLS_GD32
:
7950 case R_ARM_TLS_IE32
:
7956 if (globals
->sgot
== NULL
)
7963 dyn
= globals
->root
.dynamic_sections_created
;
7964 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
7966 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
7968 *unresolved_reloc_p
= FALSE
;
7971 off
= h
->got
.offset
;
7972 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
7976 if (local_got_offsets
== NULL
)
7978 off
= local_got_offsets
[r_symndx
];
7979 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
7982 if (tls_type
== GOT_UNKNOWN
)
7989 bfd_boolean need_relocs
= FALSE
;
7990 Elf_Internal_Rela outrel
;
7991 bfd_byte
*loc
= NULL
;
7994 /* The GOT entries have not been initialized yet. Do it
7995 now, and emit any relocations. If both an IE GOT and a
7996 GD GOT are necessary, we emit the GD first. */
7998 if ((info
->shared
|| indx
!= 0)
8000 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8001 || h
->root
.type
!= bfd_link_hash_undefweak
))
8004 if (globals
->srelgot
== NULL
)
8006 loc
= globals
->srelgot
->contents
;
8007 loc
+= globals
->srelgot
->reloc_count
* RELOC_SIZE (globals
);
8010 if (tls_type
& GOT_TLS_GD
)
8014 outrel
.r_addend
= 0;
8015 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
8016 + globals
->sgot
->output_offset
8018 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
8020 if (globals
->use_rel
)
8021 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8022 globals
->sgot
->contents
+ cur_off
);
8024 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8025 globals
->srelgot
->reloc_count
++;
8026 loc
+= RELOC_SIZE (globals
);
8029 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
8030 globals
->sgot
->contents
+ cur_off
+ 4);
8033 outrel
.r_addend
= 0;
8034 outrel
.r_info
= ELF32_R_INFO (indx
,
8035 R_ARM_TLS_DTPOFF32
);
8036 outrel
.r_offset
+= 4;
8038 if (globals
->use_rel
)
8039 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8040 globals
->sgot
->contents
+ cur_off
+ 4);
8043 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8044 globals
->srelgot
->reloc_count
++;
8045 loc
+= RELOC_SIZE (globals
);
8050 /* If we are not emitting relocations for a
8051 general dynamic reference, then we must be in a
8052 static link or an executable link with the
8053 symbol binding locally. Mark it as belonging
8054 to module 1, the executable. */
8055 bfd_put_32 (output_bfd
, 1,
8056 globals
->sgot
->contents
+ cur_off
);
8057 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
8058 globals
->sgot
->contents
+ cur_off
+ 4);
8064 if (tls_type
& GOT_TLS_IE
)
8069 outrel
.r_addend
= value
- dtpoff_base (info
);
8071 outrel
.r_addend
= 0;
8072 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
8073 + globals
->sgot
->output_offset
8075 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
8077 if (globals
->use_rel
)
8078 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8079 globals
->sgot
->contents
+ cur_off
);
8081 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8082 globals
->srelgot
->reloc_count
++;
8083 loc
+= RELOC_SIZE (globals
);
8086 bfd_put_32 (output_bfd
, tpoff (info
, value
),
8087 globals
->sgot
->contents
+ cur_off
);
8094 local_got_offsets
[r_symndx
] |= 1;
8097 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
8099 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
8100 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
8102 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8103 contents
, rel
->r_offset
, value
,
8107 case R_ARM_TLS_LE32
:
8110 (*_bfd_error_handler
)
8111 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8112 input_bfd
, input_section
,
8113 (long) rel
->r_offset
, howto
->name
);
8114 return (bfd_reloc_status_type
) FALSE
;
8117 value
= tpoff (info
, value
);
8119 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8120 contents
, rel
->r_offset
, value
,
8124 if (globals
->fix_v4bx
)
8126 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8128 /* Ensure that we have a BX instruction. */
8129 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
8131 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
8133 /* Branch to veneer. */
8135 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
8136 glue_addr
-= input_section
->output_section
->vma
8137 + input_section
->output_offset
8138 + rel
->r_offset
+ 8;
8139 insn
= (insn
& 0xf0000000) | 0x0a000000
8140 | ((glue_addr
>> 2) & 0x00ffffff);
8144 /* Preserve Rm (lowest four bits) and the condition code
8145 (highest four bits). Other bits encode MOV PC,Rm. */
8146 insn
= (insn
& 0xf000000f) | 0x01a0f000;
8149 bfd_put_32 (input_bfd
, insn
, hit_data
);
8151 return bfd_reloc_ok
;
8153 case R_ARM_MOVW_ABS_NC
:
8154 case R_ARM_MOVT_ABS
:
8155 case R_ARM_MOVW_PREL_NC
:
8156 case R_ARM_MOVT_PREL
:
8157 /* Until we properly support segment-base-relative addressing then
8158 we assume the segment base to be zero, as for the group relocations.
8159 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8160 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8161 case R_ARM_MOVW_BREL_NC
:
8162 case R_ARM_MOVW_BREL
:
8163 case R_ARM_MOVT_BREL
:
8165 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8167 if (globals
->use_rel
)
8169 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
8170 signed_addend
= (addend
^ 0x8000) - 0x8000;
8173 value
+= signed_addend
;
8175 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
8176 value
-= (input_section
->output_section
->vma
8177 + input_section
->output_offset
+ rel
->r_offset
);
8179 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
8180 return bfd_reloc_overflow
;
8182 if (sym_flags
== STT_ARM_TFUNC
)
8185 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
8186 || r_type
== R_ARM_MOVT_BREL
)
8190 insn
|= value
& 0xfff;
8191 insn
|= (value
& 0xf000) << 4;
8192 bfd_put_32 (input_bfd
, insn
, hit_data
);
8194 return bfd_reloc_ok
;
8196 case R_ARM_THM_MOVW_ABS_NC
:
8197 case R_ARM_THM_MOVT_ABS
:
8198 case R_ARM_THM_MOVW_PREL_NC
:
8199 case R_ARM_THM_MOVT_PREL
:
8200 /* Until we properly support segment-base-relative addressing then
8201 we assume the segment base to be zero, as for the above relocations.
8202 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8203 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8204 as R_ARM_THM_MOVT_ABS. */
8205 case R_ARM_THM_MOVW_BREL_NC
:
8206 case R_ARM_THM_MOVW_BREL
:
8207 case R_ARM_THM_MOVT_BREL
:
8211 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
8212 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
8214 if (globals
->use_rel
)
8216 addend
= ((insn
>> 4) & 0xf000)
8217 | ((insn
>> 15) & 0x0800)
8218 | ((insn
>> 4) & 0x0700)
8220 signed_addend
= (addend
^ 0x8000) - 0x8000;
8223 value
+= signed_addend
;
8225 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
8226 value
-= (input_section
->output_section
->vma
8227 + input_section
->output_offset
+ rel
->r_offset
);
8229 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
8230 return bfd_reloc_overflow
;
8232 if (sym_flags
== STT_ARM_TFUNC
)
8235 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
8236 || r_type
== R_ARM_THM_MOVT_BREL
)
8240 insn
|= (value
& 0xf000) << 4;
8241 insn
|= (value
& 0x0800) << 15;
8242 insn
|= (value
& 0x0700) << 4;
8243 insn
|= (value
& 0x00ff);
8245 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8246 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8248 return bfd_reloc_ok
;
8250 case R_ARM_ALU_PC_G0_NC
:
8251 case R_ARM_ALU_PC_G1_NC
:
8252 case R_ARM_ALU_PC_G0
:
8253 case R_ARM_ALU_PC_G1
:
8254 case R_ARM_ALU_PC_G2
:
8255 case R_ARM_ALU_SB_G0_NC
:
8256 case R_ARM_ALU_SB_G1_NC
:
8257 case R_ARM_ALU_SB_G0
:
8258 case R_ARM_ALU_SB_G1
:
8259 case R_ARM_ALU_SB_G2
:
8261 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8262 bfd_vma pc
= input_section
->output_section
->vma
8263 + input_section
->output_offset
+ rel
->r_offset
;
8264 /* sb should be the origin of the *segment* containing the symbol.
8265 It is not clear how to obtain this OS-dependent value, so we
8266 make an arbitrary choice of zero. */
8270 bfd_signed_vma signed_value
;
8273 /* Determine which group of bits to select. */
8276 case R_ARM_ALU_PC_G0_NC
:
8277 case R_ARM_ALU_PC_G0
:
8278 case R_ARM_ALU_SB_G0_NC
:
8279 case R_ARM_ALU_SB_G0
:
8283 case R_ARM_ALU_PC_G1_NC
:
8284 case R_ARM_ALU_PC_G1
:
8285 case R_ARM_ALU_SB_G1_NC
:
8286 case R_ARM_ALU_SB_G1
:
8290 case R_ARM_ALU_PC_G2
:
8291 case R_ARM_ALU_SB_G2
:
8299 /* If REL, extract the addend from the insn. If RELA, it will
8300 have already been fetched for us. */
8301 if (globals
->use_rel
)
8304 bfd_vma constant
= insn
& 0xff;
8305 bfd_vma rotation
= (insn
& 0xf00) >> 8;
8308 signed_addend
= constant
;
8311 /* Compensate for the fact that in the instruction, the
8312 rotation is stored in multiples of 2 bits. */
8315 /* Rotate "constant" right by "rotation" bits. */
8316 signed_addend
= (constant
>> rotation
) |
8317 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
8320 /* Determine if the instruction is an ADD or a SUB.
8321 (For REL, this determines the sign of the addend.) */
8322 negative
= identify_add_or_sub (insn
);
8325 (*_bfd_error_handler
)
8326 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8327 input_bfd
, input_section
,
8328 (long) rel
->r_offset
, howto
->name
);
8329 return bfd_reloc_overflow
;
8332 signed_addend
*= negative
;
8335 /* Compute the value (X) to go in the place. */
8336 if (r_type
== R_ARM_ALU_PC_G0_NC
8337 || r_type
== R_ARM_ALU_PC_G1_NC
8338 || r_type
== R_ARM_ALU_PC_G0
8339 || r_type
== R_ARM_ALU_PC_G1
8340 || r_type
== R_ARM_ALU_PC_G2
)
8342 signed_value
= value
- pc
+ signed_addend
;
8344 /* Section base relative. */
8345 signed_value
= value
- sb
+ signed_addend
;
8347 /* If the target symbol is a Thumb function, then set the
8348 Thumb bit in the address. */
8349 if (sym_flags
== STT_ARM_TFUNC
)
8352 /* Calculate the value of the relevant G_n, in encoded
8353 constant-with-rotation format. */
8354 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
8357 /* Check for overflow if required. */
8358 if ((r_type
== R_ARM_ALU_PC_G0
8359 || r_type
== R_ARM_ALU_PC_G1
8360 || r_type
== R_ARM_ALU_PC_G2
8361 || r_type
== R_ARM_ALU_SB_G0
8362 || r_type
== R_ARM_ALU_SB_G1
8363 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
8365 (*_bfd_error_handler
)
8366 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8367 input_bfd
, input_section
,
8368 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8369 return bfd_reloc_overflow
;
8372 /* Mask out the value and the ADD/SUB part of the opcode; take care
8373 not to destroy the S bit. */
8376 /* Set the opcode according to whether the value to go in the
8377 place is negative. */
8378 if (signed_value
< 0)
8383 /* Encode the offset. */
8386 bfd_put_32 (input_bfd
, insn
, hit_data
);
8388 return bfd_reloc_ok
;
8390 case R_ARM_LDR_PC_G0
:
8391 case R_ARM_LDR_PC_G1
:
8392 case R_ARM_LDR_PC_G2
:
8393 case R_ARM_LDR_SB_G0
:
8394 case R_ARM_LDR_SB_G1
:
8395 case R_ARM_LDR_SB_G2
:
8397 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8398 bfd_vma pc
= input_section
->output_section
->vma
8399 + input_section
->output_offset
+ rel
->r_offset
;
8400 bfd_vma sb
= 0; /* See note above. */
8402 bfd_signed_vma signed_value
;
8405 /* Determine which groups of bits to calculate. */
8408 case R_ARM_LDR_PC_G0
:
8409 case R_ARM_LDR_SB_G0
:
8413 case R_ARM_LDR_PC_G1
:
8414 case R_ARM_LDR_SB_G1
:
8418 case R_ARM_LDR_PC_G2
:
8419 case R_ARM_LDR_SB_G2
:
8427 /* If REL, extract the addend from the insn. If RELA, it will
8428 have already been fetched for us. */
8429 if (globals
->use_rel
)
8431 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8432 signed_addend
= negative
* (insn
& 0xfff);
8435 /* Compute the value (X) to go in the place. */
8436 if (r_type
== R_ARM_LDR_PC_G0
8437 || r_type
== R_ARM_LDR_PC_G1
8438 || r_type
== R_ARM_LDR_PC_G2
)
8440 signed_value
= value
- pc
+ signed_addend
;
8442 /* Section base relative. */
8443 signed_value
= value
- sb
+ signed_addend
;
8445 /* Calculate the value of the relevant G_{n-1} to obtain
8446 the residual at that stage. */
8447 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8449 /* Check for overflow. */
8450 if (residual
>= 0x1000)
8452 (*_bfd_error_handler
)
8453 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8454 input_bfd
, input_section
,
8455 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8456 return bfd_reloc_overflow
;
8459 /* Mask out the value and U bit. */
8462 /* Set the U bit if the value to go in the place is non-negative. */
8463 if (signed_value
>= 0)
8466 /* Encode the offset. */
8469 bfd_put_32 (input_bfd
, insn
, hit_data
);
8471 return bfd_reloc_ok
;
8473 case R_ARM_LDRS_PC_G0
:
8474 case R_ARM_LDRS_PC_G1
:
8475 case R_ARM_LDRS_PC_G2
:
8476 case R_ARM_LDRS_SB_G0
:
8477 case R_ARM_LDRS_SB_G1
:
8478 case R_ARM_LDRS_SB_G2
:
8480 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8481 bfd_vma pc
= input_section
->output_section
->vma
8482 + input_section
->output_offset
+ rel
->r_offset
;
8483 bfd_vma sb
= 0; /* See note above. */
8485 bfd_signed_vma signed_value
;
8488 /* Determine which groups of bits to calculate. */
8491 case R_ARM_LDRS_PC_G0
:
8492 case R_ARM_LDRS_SB_G0
:
8496 case R_ARM_LDRS_PC_G1
:
8497 case R_ARM_LDRS_SB_G1
:
8501 case R_ARM_LDRS_PC_G2
:
8502 case R_ARM_LDRS_SB_G2
:
8510 /* If REL, extract the addend from the insn. If RELA, it will
8511 have already been fetched for us. */
8512 if (globals
->use_rel
)
8514 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8515 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
8518 /* Compute the value (X) to go in the place. */
8519 if (r_type
== R_ARM_LDRS_PC_G0
8520 || r_type
== R_ARM_LDRS_PC_G1
8521 || r_type
== R_ARM_LDRS_PC_G2
)
8523 signed_value
= value
- pc
+ signed_addend
;
8525 /* Section base relative. */
8526 signed_value
= value
- sb
+ signed_addend
;
8528 /* Calculate the value of the relevant G_{n-1} to obtain
8529 the residual at that stage. */
8530 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8532 /* Check for overflow. */
8533 if (residual
>= 0x100)
8535 (*_bfd_error_handler
)
8536 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8537 input_bfd
, input_section
,
8538 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8539 return bfd_reloc_overflow
;
8542 /* Mask out the value and U bit. */
8545 /* Set the U bit if the value to go in the place is non-negative. */
8546 if (signed_value
>= 0)
8549 /* Encode the offset. */
8550 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
8552 bfd_put_32 (input_bfd
, insn
, hit_data
);
8554 return bfd_reloc_ok
;
8556 case R_ARM_LDC_PC_G0
:
8557 case R_ARM_LDC_PC_G1
:
8558 case R_ARM_LDC_PC_G2
:
8559 case R_ARM_LDC_SB_G0
:
8560 case R_ARM_LDC_SB_G1
:
8561 case R_ARM_LDC_SB_G2
:
8563 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8564 bfd_vma pc
= input_section
->output_section
->vma
8565 + input_section
->output_offset
+ rel
->r_offset
;
8566 bfd_vma sb
= 0; /* See note above. */
8568 bfd_signed_vma signed_value
;
8571 /* Determine which groups of bits to calculate. */
8574 case R_ARM_LDC_PC_G0
:
8575 case R_ARM_LDC_SB_G0
:
8579 case R_ARM_LDC_PC_G1
:
8580 case R_ARM_LDC_SB_G1
:
8584 case R_ARM_LDC_PC_G2
:
8585 case R_ARM_LDC_SB_G2
:
8593 /* If REL, extract the addend from the insn. If RELA, it will
8594 have already been fetched for us. */
8595 if (globals
->use_rel
)
8597 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8598 signed_addend
= negative
* ((insn
& 0xff) << 2);
8601 /* Compute the value (X) to go in the place. */
8602 if (r_type
== R_ARM_LDC_PC_G0
8603 || r_type
== R_ARM_LDC_PC_G1
8604 || r_type
== R_ARM_LDC_PC_G2
)
8606 signed_value
= value
- pc
+ signed_addend
;
8608 /* Section base relative. */
8609 signed_value
= value
- sb
+ signed_addend
;
8611 /* Calculate the value of the relevant G_{n-1} to obtain
8612 the residual at that stage. */
8613 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8615 /* Check for overflow. (The absolute value to go in the place must be
8616 divisible by four and, after having been divided by four, must
8617 fit in eight bits.) */
8618 if ((residual
& 0x3) != 0 || residual
>= 0x400)
8620 (*_bfd_error_handler
)
8621 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8622 input_bfd
, input_section
,
8623 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8624 return bfd_reloc_overflow
;
8627 /* Mask out the value and U bit. */
8630 /* Set the U bit if the value to go in the place is non-negative. */
8631 if (signed_value
>= 0)
8634 /* Encode the offset. */
8635 insn
|= residual
>> 2;
8637 bfd_put_32 (input_bfd
, insn
, hit_data
);
8639 return bfd_reloc_ok
;
8642 return bfd_reloc_notsupported
;
8646 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8648 arm_add_to_rel (bfd
* abfd
,
8650 reloc_howto_type
* howto
,
8651 bfd_signed_vma increment
)
8653 bfd_signed_vma addend
;
8655 if (howto
->type
== R_ARM_THM_CALL
8656 || howto
->type
== R_ARM_THM_JUMP24
)
8658 int upper_insn
, lower_insn
;
8661 upper_insn
= bfd_get_16 (abfd
, address
);
8662 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
8663 upper
= upper_insn
& 0x7ff;
8664 lower
= lower_insn
& 0x7ff;
8666 addend
= (upper
<< 12) | (lower
<< 1);
8667 addend
+= increment
;
8670 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
8671 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
8673 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
8674 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
8680 contents
= bfd_get_32 (abfd
, address
);
8682 /* Get the (signed) value from the instruction. */
8683 addend
= contents
& howto
->src_mask
;
8684 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8686 bfd_signed_vma mask
;
8689 mask
&= ~ howto
->src_mask
;
8693 /* Add in the increment, (which is a byte value). */
8694 switch (howto
->type
)
8697 addend
+= increment
;
8704 addend
<<= howto
->size
;
8705 addend
+= increment
;
8707 /* Should we check for overflow here ? */
8709 /* Drop any undesired bits. */
8710 addend
>>= howto
->rightshift
;
8714 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
8716 bfd_put_32 (abfd
, contents
, address
);
8720 #define IS_ARM_TLS_RELOC(R_TYPE) \
8721 ((R_TYPE) == R_ARM_TLS_GD32 \
8722 || (R_TYPE) == R_ARM_TLS_LDO32 \
8723 || (R_TYPE) == R_ARM_TLS_LDM32 \
8724 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8725 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8726 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8727 || (R_TYPE) == R_ARM_TLS_LE32 \
8728 || (R_TYPE) == R_ARM_TLS_IE32)
8730 /* Relocate an ARM ELF section. */
8733 elf32_arm_relocate_section (bfd
* output_bfd
,
8734 struct bfd_link_info
* info
,
8736 asection
* input_section
,
8737 bfd_byte
* contents
,
8738 Elf_Internal_Rela
* relocs
,
8739 Elf_Internal_Sym
* local_syms
,
8740 asection
** local_sections
)
8742 Elf_Internal_Shdr
*symtab_hdr
;
8743 struct elf_link_hash_entry
**sym_hashes
;
8744 Elf_Internal_Rela
*rel
;
8745 Elf_Internal_Rela
*relend
;
8747 struct elf32_arm_link_hash_table
* globals
;
8749 globals
= elf32_arm_hash_table (info
);
8751 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
8752 sym_hashes
= elf_sym_hashes (input_bfd
);
8755 relend
= relocs
+ input_section
->reloc_count
;
8756 for (; rel
< relend
; rel
++)
8759 reloc_howto_type
* howto
;
8760 unsigned long r_symndx
;
8761 Elf_Internal_Sym
* sym
;
8763 struct elf_link_hash_entry
* h
;
8765 bfd_reloc_status_type r
;
8768 bfd_boolean unresolved_reloc
= FALSE
;
8769 char *error_message
= NULL
;
8771 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8772 r_type
= ELF32_R_TYPE (rel
->r_info
);
8773 r_type
= arm_real_reloc_type (globals
, r_type
);
8775 if ( r_type
== R_ARM_GNU_VTENTRY
8776 || r_type
== R_ARM_GNU_VTINHERIT
)
8779 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
8780 howto
= bfd_reloc
.howto
;
8786 if (r_symndx
< symtab_hdr
->sh_info
)
8788 sym
= local_syms
+ r_symndx
;
8789 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
8790 sec
= local_sections
[r_symndx
];
8792 /* An object file might have a reference to a local
8793 undefined symbol. This is a daft object file, but we
8794 should at least do something about it. V4BX & NONE
8795 relocations do not use the symbol and are explicitly
8796 allowed to use the undefined symbol, so allow those. */
8797 if (r_type
!= R_ARM_V4BX
8798 && r_type
!= R_ARM_NONE
8799 && bfd_is_und_section (sec
)
8800 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
8802 if (!info
->callbacks
->undefined_symbol
8803 (info
, bfd_elf_string_from_elf_section
8804 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
8805 input_bfd
, input_section
,
8806 rel
->r_offset
, TRUE
))
8810 if (globals
->use_rel
)
8812 relocation
= (sec
->output_section
->vma
8813 + sec
->output_offset
8815 if (!info
->relocatable
8816 && (sec
->flags
& SEC_MERGE
)
8817 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8820 bfd_vma addend
, value
;
8824 case R_ARM_MOVW_ABS_NC
:
8825 case R_ARM_MOVT_ABS
:
8826 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8827 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
8828 addend
= (addend
^ 0x8000) - 0x8000;
8831 case R_ARM_THM_MOVW_ABS_NC
:
8832 case R_ARM_THM_MOVT_ABS
:
8833 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
8835 value
|= bfd_get_16 (input_bfd
,
8836 contents
+ rel
->r_offset
+ 2);
8837 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
8838 | ((value
& 0x04000000) >> 15);
8839 addend
= (addend
^ 0x8000) - 0x8000;
8843 if (howto
->rightshift
8844 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
8846 (*_bfd_error_handler
)
8847 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8848 input_bfd
, input_section
,
8849 (long) rel
->r_offset
, howto
->name
);
8853 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8855 /* Get the (signed) value from the instruction. */
8856 addend
= value
& howto
->src_mask
;
8857 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8859 bfd_signed_vma mask
;
8862 mask
&= ~ howto
->src_mask
;
8870 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
8872 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
8874 /* Cases here must match those in the preceeding
8875 switch statement. */
8878 case R_ARM_MOVW_ABS_NC
:
8879 case R_ARM_MOVT_ABS
:
8880 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
8882 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8885 case R_ARM_THM_MOVW_ABS_NC
:
8886 case R_ARM_THM_MOVT_ABS
:
8887 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
8888 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
8889 bfd_put_16 (input_bfd
, value
>> 16,
8890 contents
+ rel
->r_offset
);
8891 bfd_put_16 (input_bfd
, value
,
8892 contents
+ rel
->r_offset
+ 2);
8896 value
= (value
& ~ howto
->dst_mask
)
8897 | (addend
& howto
->dst_mask
);
8898 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8904 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8910 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
8911 r_symndx
, symtab_hdr
, sym_hashes
,
8913 unresolved_reloc
, warned
);
8918 if (sec
!= NULL
&& elf_discarded_section (sec
))
8920 /* For relocs against symbols from removed linkonce sections,
8921 or sections discarded by a linker script, we just want the
8922 section contents zeroed. Avoid any special processing. */
8923 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
8929 if (info
->relocatable
)
8931 /* This is a relocatable link. We don't have to change
8932 anything, unless the reloc is against a section symbol,
8933 in which case we have to adjust according to where the
8934 section symbol winds up in the output section. */
8935 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8937 if (globals
->use_rel
)
8938 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
8939 howto
, (bfd_signed_vma
) sec
->output_offset
);
8941 rel
->r_addend
+= sec
->output_offset
;
8947 name
= h
->root
.root
.string
;
8950 name
= (bfd_elf_string_from_elf_section
8951 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
8952 if (name
== NULL
|| *name
== '\0')
8953 name
= bfd_section_name (input_bfd
, sec
);
8957 && r_type
!= R_ARM_NONE
8959 || h
->root
.type
== bfd_link_hash_defined
8960 || h
->root
.type
== bfd_link_hash_defweak
)
8961 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
8963 (*_bfd_error_handler
)
8964 ((sym_type
== STT_TLS
8965 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8966 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8969 (long) rel
->r_offset
,
8974 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
8975 input_section
, contents
, rel
,
8976 relocation
, info
, sec
, name
,
8977 (h
? ELF_ST_TYPE (h
->type
) :
8978 ELF_ST_TYPE (sym
->st_info
)), h
,
8979 &unresolved_reloc
, &error_message
);
8981 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8982 because such sections are not SEC_ALLOC and thus ld.so will
8983 not process them. */
8984 if (unresolved_reloc
8985 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
8988 (*_bfd_error_handler
)
8989 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8992 (long) rel
->r_offset
,
8994 h
->root
.root
.string
);
8998 if (r
!= bfd_reloc_ok
)
9002 case bfd_reloc_overflow
:
9003 /* If the overflowing reloc was to an undefined symbol,
9004 we have already printed one error message and there
9005 is no point complaining again. */
9007 h
->root
.type
!= bfd_link_hash_undefined
)
9008 && (!((*info
->callbacks
->reloc_overflow
)
9009 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
9010 (bfd_vma
) 0, input_bfd
, input_section
,
9015 case bfd_reloc_undefined
:
9016 if (!((*info
->callbacks
->undefined_symbol
)
9017 (info
, name
, input_bfd
, input_section
,
9018 rel
->r_offset
, TRUE
)))
9022 case bfd_reloc_outofrange
:
9023 error_message
= _("out of range");
9026 case bfd_reloc_notsupported
:
9027 error_message
= _("unsupported relocation");
9030 case bfd_reloc_dangerous
:
9031 /* error_message should already be set. */
9035 error_message
= _("unknown error");
9039 BFD_ASSERT (error_message
!= NULL
);
9040 if (!((*info
->callbacks
->reloc_dangerous
)
9041 (info
, error_message
, input_bfd
, input_section
,
9052 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
9053 adds the edit to the start of the list. (The list must be built in order of
9054 ascending TINDEX: the function's callers are primarily responsible for
9055 maintaining that condition). */
9058 add_unwind_table_edit (arm_unwind_table_edit
**head
,
9059 arm_unwind_table_edit
**tail
,
9060 arm_unwind_edit_type type
,
9061 asection
*linked_section
,
9062 unsigned int tindex
)
9064 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
9065 xmalloc (sizeof (arm_unwind_table_edit
));
9067 new_edit
->type
= type
;
9068 new_edit
->linked_section
= linked_section
;
9069 new_edit
->index
= tindex
;
9073 new_edit
->next
= NULL
;
9076 (*tail
)->next
= new_edit
;
9085 new_edit
->next
= *head
;
9094 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
9096 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9098 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
9102 if (!exidx_sec
->rawsize
)
9103 exidx_sec
->rawsize
= exidx_sec
->size
;
9105 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
9106 out_sec
= exidx_sec
->output_section
;
9107 /* Adjust size of output section. */
9108 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
9111 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9113 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
9115 struct _arm_elf_section_data
*exidx_arm_data
;
9117 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9118 add_unwind_table_edit (
9119 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
9120 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
9121 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
9123 adjust_exidx_size(exidx_sec
, 8);
9126 /* Scan .ARM.exidx tables, and create a list describing edits which should be
9127 made to those tables, such that:
9129 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9130 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9131 codes which have been inlined into the index).
9133 The edits are applied when the tables are written
9134 (in elf32_arm_write_section).
9138 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
9139 unsigned int num_text_sections
,
9140 struct bfd_link_info
*info
)
9143 unsigned int last_second_word
= 0, i
;
9144 asection
*last_exidx_sec
= NULL
;
9145 asection
*last_text_sec
= NULL
;
9146 int last_unwind_type
= -1;
9148 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9150 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
9154 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
9156 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
9157 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
9159 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
9162 if (elf_sec
->linked_to
)
9164 Elf_Internal_Shdr
*linked_hdr
9165 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
9166 struct _arm_elf_section_data
*linked_sec_arm_data
9167 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
9169 if (linked_sec_arm_data
== NULL
)
9172 /* Link this .ARM.exidx section back from the text section it
9174 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
9179 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9180 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9181 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
9183 for (i
= 0; i
< num_text_sections
; i
++)
9185 asection
*sec
= text_section_order
[i
];
9186 asection
*exidx_sec
;
9187 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
9188 struct _arm_elf_section_data
*exidx_arm_data
;
9189 bfd_byte
*contents
= NULL
;
9190 int deleted_exidx_bytes
= 0;
9192 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
9193 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
9194 Elf_Internal_Shdr
*hdr
;
9197 if (arm_data
== NULL
)
9200 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
9201 if (exidx_sec
== NULL
)
9203 /* Section has no unwind data. */
9204 if (last_unwind_type
== 0 || !last_exidx_sec
)
9207 /* Ignore zero sized sections. */
9211 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9212 last_unwind_type
= 0;
9216 /* Skip /DISCARD/ sections. */
9217 if (bfd_is_abs_section (exidx_sec
->output_section
))
9220 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
9221 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
9224 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9225 if (exidx_arm_data
== NULL
)
9228 ibfd
= exidx_sec
->owner
;
9230 if (hdr
->contents
!= NULL
)
9231 contents
= hdr
->contents
;
9232 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
9236 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
9238 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
9242 /* An EXIDX_CANTUNWIND entry. */
9243 if (second_word
== 1)
9245 if (last_unwind_type
== 0)
9249 /* Inlined unwinding data. Merge if equal to previous. */
9250 else if ((second_word
& 0x80000000) != 0)
9252 if (last_second_word
== second_word
&& last_unwind_type
== 1)
9255 last_second_word
= second_word
;
9257 /* Normal table entry. In theory we could merge these too,
9258 but duplicate entries are likely to be much less common. */
9264 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
9265 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
9267 deleted_exidx_bytes
+= 8;
9270 last_unwind_type
= unwind_type
;
9273 /* Free contents if we allocated it ourselves. */
9274 if (contents
!= hdr
->contents
)
9277 /* Record edits to be applied later (in elf32_arm_write_section). */
9278 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
9279 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
9281 if (deleted_exidx_bytes
> 0)
9282 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
9284 last_exidx_sec
= exidx_sec
;
9285 last_text_sec
= sec
;
9288 /* Add terminating CANTUNWIND entry. */
9289 if (last_exidx_sec
&& last_unwind_type
!= 0)
9290 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9296 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
9297 bfd
*ibfd
, const char *name
)
9299 asection
*sec
, *osec
;
9301 sec
= bfd_get_section_by_name (ibfd
, name
);
9302 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
9305 osec
= sec
->output_section
;
9306 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
9309 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
9310 sec
->output_offset
, sec
->size
))
9317 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9319 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
9321 /* Invoke the regular ELF backend linker to do all the work. */
9322 if (!bfd_elf_final_link (abfd
, info
))
9325 /* Write out any glue sections now that we have created all the
9327 if (globals
->bfd_of_glue_owner
!= NULL
)
9329 if (! elf32_arm_output_glue_section (info
, abfd
,
9330 globals
->bfd_of_glue_owner
,
9331 ARM2THUMB_GLUE_SECTION_NAME
))
9334 if (! elf32_arm_output_glue_section (info
, abfd
,
9335 globals
->bfd_of_glue_owner
,
9336 THUMB2ARM_GLUE_SECTION_NAME
))
9339 if (! elf32_arm_output_glue_section (info
, abfd
,
9340 globals
->bfd_of_glue_owner
,
9341 VFP11_ERRATUM_VENEER_SECTION_NAME
))
9344 if (! elf32_arm_output_glue_section (info
, abfd
,
9345 globals
->bfd_of_glue_owner
,
9346 ARM_BX_GLUE_SECTION_NAME
))
9353 /* Set the right machine number. */
9356 elf32_arm_object_p (bfd
*abfd
)
9360 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
9362 if (mach
!= bfd_mach_arm_unknown
)
9363 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9365 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
9366 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
9369 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9374 /* Function to keep ARM specific flags in the ELF header. */
9377 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
9379 if (elf_flags_init (abfd
)
9380 && elf_elfheader (abfd
)->e_flags
!= flags
)
9382 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
9384 if (flags
& EF_ARM_INTERWORK
)
9385 (*_bfd_error_handler
)
9386 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9390 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9396 elf_elfheader (abfd
)->e_flags
= flags
;
9397 elf_flags_init (abfd
) = TRUE
;
9403 /* Copy backend specific data from one object module to another. */
9406 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
9411 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
9414 in_flags
= elf_elfheader (ibfd
)->e_flags
;
9415 out_flags
= elf_elfheader (obfd
)->e_flags
;
9417 if (elf_flags_init (obfd
)
9418 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
9419 && in_flags
!= out_flags
)
9421 /* Cannot mix APCS26 and APCS32 code. */
9422 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
9425 /* Cannot mix float APCS and non-float APCS code. */
9426 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
9429 /* If the src and dest have different interworking flags
9430 then turn off the interworking bit. */
9431 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
9433 if (out_flags
& EF_ARM_INTERWORK
)
9435 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9438 in_flags
&= ~EF_ARM_INTERWORK
;
9441 /* Likewise for PIC, though don't warn for this case. */
9442 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
9443 in_flags
&= ~EF_ARM_PIC
;
9446 elf_elfheader (obfd
)->e_flags
= in_flags
;
9447 elf_flags_init (obfd
) = TRUE
;
9449 /* Also copy the EI_OSABI field. */
9450 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
9451 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
9453 /* Copy object attributes. */
9454 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9459 /* Values for Tag_ABI_PCS_R9_use. */
9468 /* Values for Tag_ABI_PCS_RW_data. */
9471 AEABI_PCS_RW_data_absolute
,
9472 AEABI_PCS_RW_data_PCrel
,
9473 AEABI_PCS_RW_data_SBrel
,
9474 AEABI_PCS_RW_data_unused
9477 /* Values for Tag_ABI_enum_size. */
9483 AEABI_enum_forced_wide
9486 /* Determine whether an object attribute tag takes an integer, a
9490 elf32_arm_obj_attrs_arg_type (int tag
)
9492 if (tag
== Tag_compatibility
)
9493 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
9494 else if (tag
== Tag_nodefaults
)
9495 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
9496 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
9497 return ATTR_TYPE_FLAG_STR_VAL
;
9499 return ATTR_TYPE_FLAG_INT_VAL
;
9501 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
9504 /* The ABI defines that Tag_conformance should be emitted first, and that
9505 Tag_nodefaults should be second (if either is defined). This sets those
9506 two positions, and bumps up the position of all the remaining tags to
9509 elf32_arm_obj_attrs_order (int num
)
9512 return Tag_conformance
;
9514 return Tag_nodefaults
;
9515 if ((num
- 2) < Tag_nodefaults
)
9517 if ((num
- 1) < Tag_conformance
)
9522 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
9523 Returns -1 if no architecture could be read. */
9526 get_secondary_compatible_arch (bfd
*abfd
)
9528 obj_attribute
*attr
=
9529 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9531 /* Note: the tag and its argument below are uleb128 values, though
9532 currently-defined values fit in one byte for each. */
9534 && attr
->s
[0] == Tag_CPU_arch
9535 && (attr
->s
[1] & 128) != 128
9539 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9543 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9544 The tag is removed if ARCH is -1. */
9547 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
9549 obj_attribute
*attr
=
9550 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9558 /* Note: the tag and its argument below are uleb128 values, though
9559 currently-defined values fit in one byte for each. */
9561 attr
->s
= (char *) bfd_alloc (abfd
, 3);
9562 attr
->s
[0] = Tag_CPU_arch
;
9567 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9571 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
9572 int newtag
, int secondary_compat
)
9574 #define T(X) TAG_CPU_ARCH_##X
9575 int tagl
, tagh
, result
;
9578 T(V6T2
), /* PRE_V4. */
9582 T(V6T2
), /* V5TE. */
9583 T(V6T2
), /* V5TEJ. */
9590 T(V6K
), /* PRE_V4. */
9595 T(V6K
), /* V5TEJ. */
9597 T(V6KZ
), /* V6KZ. */
9603 T(V7
), /* PRE_V4. */
9622 T(V6K
), /* V5TEJ. */
9624 T(V6KZ
), /* V6KZ. */
9637 T(V6K
), /* V5TEJ. */
9639 T(V6KZ
), /* V6KZ. */
9643 T(V6S_M
), /* V6_M. */
9644 T(V6S_M
) /* V6S_M. */
9650 T(V7E_M
), /* V4T. */
9651 T(V7E_M
), /* V5T. */
9652 T(V7E_M
), /* V5TE. */
9653 T(V7E_M
), /* V5TEJ. */
9655 T(V7E_M
), /* V6KZ. */
9656 T(V7E_M
), /* V6T2. */
9657 T(V7E_M
), /* V6K. */
9659 T(V7E_M
), /* V6_M. */
9660 T(V7E_M
), /* V6S_M. */
9661 T(V7E_M
) /* V7E_M. */
9663 const int v4t_plus_v6_m
[] =
9669 T(V5TE
), /* V5TE. */
9670 T(V5TEJ
), /* V5TEJ. */
9672 T(V6KZ
), /* V6KZ. */
9673 T(V6T2
), /* V6T2. */
9676 T(V6_M
), /* V6_M. */
9677 T(V6S_M
), /* V6S_M. */
9678 T(V7E_M
), /* V7E_M. */
9679 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
9689 /* Pseudo-architecture. */
9693 /* Check we've not got a higher architecture than we know about. */
9695 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
9697 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
9701 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9703 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
9704 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
9705 oldtag
= T(V4T_PLUS_V6_M
);
9707 /* And override the new tag if we have a Tag_also_compatible_with on the
9710 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
9711 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
9712 newtag
= T(V4T_PLUS_V6_M
);
9714 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
9715 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
9717 /* Architectures before V6KZ add features monotonically. */
9718 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
9721 result
= comb
[tagh
- T(V6T2
)][tagl
];
9723 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9724 as the canonical version. */
9725 if (result
== T(V4T_PLUS_V6_M
))
9728 *secondary_compat_out
= T(V6_M
);
9731 *secondary_compat_out
= -1;
9735 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9736 ibfd
, oldtag
, newtag
);
9744 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9745 are conflicting attributes. */
9748 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
9750 obj_attribute
*in_attr
;
9751 obj_attribute
*out_attr
;
9752 obj_attribute_list
*in_list
;
9753 obj_attribute_list
*out_list
;
9754 obj_attribute_list
**out_listp
;
9755 /* Some tags have 0 = don't care, 1 = strong requirement,
9756 2 = weak requirement. */
9757 static const int order_021
[3] = {0, 2, 1};
9759 bfd_boolean result
= TRUE
;
9761 /* Skip the linker stubs file. This preserves previous behavior
9762 of accepting unknown attributes in the first input file - but
9764 if (ibfd
->flags
& BFD_LINKER_CREATED
)
9767 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
9769 /* This is the first object. Copy the attributes. */
9770 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9772 /* Use the Tag_null value to indicate the attributes have been
9774 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
9779 in_attr
= elf_known_obj_attributes_proc (ibfd
);
9780 out_attr
= elf_known_obj_attributes_proc (obfd
);
9781 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9782 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
9784 /* Ignore mismatches if the object doesn't use floating point. */
9785 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
9786 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
9787 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
9790 (_("error: %B uses VFP register arguments, %B does not"),
9796 for (i
= 4; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
9798 /* Merge this attribute with existing attributes. */
9801 case Tag_CPU_raw_name
:
9803 /* These are merged after Tag_CPU_arch. */
9806 case Tag_ABI_optimization_goals
:
9807 case Tag_ABI_FP_optimization_goals
:
9808 /* Use the first value seen. */
9813 int secondary_compat
= -1, secondary_compat_out
= -1;
9814 unsigned int saved_out_attr
= out_attr
[i
].i
;
9815 static const char *name_table
[] = {
9816 /* These aren't real CPU names, but we can't guess
9817 that from the architecture version alone. */
9833 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9834 secondary_compat
= get_secondary_compatible_arch (ibfd
);
9835 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
9836 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
9837 &secondary_compat_out
,
9840 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
9842 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9843 if (out_attr
[i
].i
== saved_out_attr
)
9844 ; /* Leave the names alone. */
9845 else if (out_attr
[i
].i
== in_attr
[i
].i
)
9847 /* The output architecture has been changed to match the
9848 input architecture. Use the input names. */
9849 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
9850 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
9852 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
9853 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
9858 out_attr
[Tag_CPU_name
].s
= NULL
;
9859 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
9862 /* If we still don't have a value for Tag_CPU_name,
9863 make one up now. Tag_CPU_raw_name remains blank. */
9864 if (out_attr
[Tag_CPU_name
].s
== NULL
9865 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
9866 out_attr
[Tag_CPU_name
].s
=
9867 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
9871 case Tag_ARM_ISA_use
:
9872 case Tag_THUMB_ISA_use
:
9874 case Tag_Advanced_SIMD_arch
:
9875 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
9876 case Tag_ABI_FP_rounding
:
9877 case Tag_ABI_FP_exceptions
:
9878 case Tag_ABI_FP_user_exceptions
:
9879 case Tag_ABI_FP_number_model
:
9880 case Tag_VFP_HP_extension
:
9881 case Tag_CPU_unaligned_access
:
9883 case Tag_Virtualization_use
:
9884 case Tag_MPextension_use
:
9885 /* Use the largest value specified. */
9886 if (in_attr
[i
].i
> out_attr
[i
].i
)
9887 out_attr
[i
].i
= in_attr
[i
].i
;
9890 case Tag_ABI_align8_preserved
:
9891 case Tag_ABI_PCS_RO_data
:
9892 /* Use the smallest value specified. */
9893 if (in_attr
[i
].i
< out_attr
[i
].i
)
9894 out_attr
[i
].i
= in_attr
[i
].i
;
9897 case Tag_ABI_align8_needed
:
9898 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
9899 && (in_attr
[Tag_ABI_align8_preserved
].i
== 0
9900 || out_attr
[Tag_ABI_align8_preserved
].i
== 0))
9902 /* This error message should be enabled once all non-conformant
9903 binaries in the toolchain have had the attributes set
9906 (_("error: %B: 8-byte data alignment conflicts with %B"),
9911 case Tag_ABI_FP_denormal
:
9912 case Tag_ABI_PCS_GOT_use
:
9913 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9914 value if greater than 2 (for future-proofing). */
9915 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
9916 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
9917 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
9918 out_attr
[i
].i
= in_attr
[i
].i
;
9922 case Tag_CPU_arch_profile
:
9923 if (out_attr
[i
].i
!= in_attr
[i
].i
)
9925 /* 0 will merge with anything.
9926 'A' and 'S' merge to 'A'.
9927 'R' and 'S' merge to 'R'.
9928 'M' and 'A|R|S' is an error. */
9929 if (out_attr
[i
].i
== 0
9930 || (out_attr
[i
].i
== 'S'
9931 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
9932 out_attr
[i
].i
= in_attr
[i
].i
;
9933 else if (in_attr
[i
].i
== 0
9934 || (in_attr
[i
].i
== 'S'
9935 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
9940 (_("error: %B: Conflicting architecture profiles %c/%c"),
9942 in_attr
[i
].i
? in_attr
[i
].i
: '0',
9943 out_attr
[i
].i
? out_attr
[i
].i
: '0');
9968 /* Values greater than 6 aren't defined, so just pick the
9970 if (in_attr
[i
].i
> 6 && in_attr
[i
].i
> out_attr
[i
].i
)
9972 out_attr
[i
] = in_attr
[i
];
9975 /* The output uses the superset of input features
9976 (ISA version) and registers. */
9977 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
9978 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
9979 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
9980 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
9981 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
9982 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
9983 /* This assumes all possible supersets are also a valid
9985 for (newval
= 6; newval
> 0; newval
--)
9987 if (regs
== vfp_versions
[newval
].regs
9988 && ver
== vfp_versions
[newval
].ver
)
9991 out_attr
[i
].i
= newval
;
9994 case Tag_PCS_config
:
9995 if (out_attr
[i
].i
== 0)
9996 out_attr
[i
].i
= in_attr
[i
].i
;
9997 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
9999 /* It's sometimes ok to mix different configs, so this is only
10002 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
10005 case Tag_ABI_PCS_R9_use
:
10006 if (in_attr
[i
].i
!= out_attr
[i
].i
10007 && out_attr
[i
].i
!= AEABI_R9_unused
10008 && in_attr
[i
].i
!= AEABI_R9_unused
)
10011 (_("error: %B: Conflicting use of R9"), ibfd
);
10014 if (out_attr
[i
].i
== AEABI_R9_unused
)
10015 out_attr
[i
].i
= in_attr
[i
].i
;
10017 case Tag_ABI_PCS_RW_data
:
10018 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
10019 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
10020 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
10023 (_("error: %B: SB relative addressing conflicts with use of R9"),
10027 /* Use the smallest value specified. */
10028 if (in_attr
[i
].i
< out_attr
[i
].i
)
10029 out_attr
[i
].i
= in_attr
[i
].i
;
10031 case Tag_ABI_PCS_wchar_t
:
10032 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
10033 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
10036 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10037 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
10039 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
10040 out_attr
[i
].i
= in_attr
[i
].i
;
10042 case Tag_ABI_enum_size
:
10043 if (in_attr
[i
].i
!= AEABI_enum_unused
)
10045 if (out_attr
[i
].i
== AEABI_enum_unused
10046 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
10048 /* The existing object is compatible with anything.
10049 Use whatever requirements the new object has. */
10050 out_attr
[i
].i
= in_attr
[i
].i
;
10052 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
10053 && out_attr
[i
].i
!= in_attr
[i
].i
10054 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
10056 static const char *aeabi_enum_names
[] =
10057 { "", "variable-size", "32-bit", "" };
10058 const char *in_name
=
10059 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
10060 ? aeabi_enum_names
[in_attr
[i
].i
]
10062 const char *out_name
=
10063 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
10064 ? aeabi_enum_names
[out_attr
[i
].i
]
10067 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
10068 ibfd
, in_name
, out_name
);
10072 case Tag_ABI_VFP_args
:
10075 case Tag_ABI_WMMX_args
:
10076 if (in_attr
[i
].i
!= out_attr
[i
].i
)
10079 (_("error: %B uses iWMMXt register arguments, %B does not"),
10084 case Tag_compatibility
:
10085 /* Merged in target-independent code. */
10087 case Tag_ABI_HardFP_use
:
10088 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
10089 if ((in_attr
[i
].i
== 1 && out_attr
[i
].i
== 2)
10090 || (in_attr
[i
].i
== 2 && out_attr
[i
].i
== 1))
10092 else if (in_attr
[i
].i
> out_attr
[i
].i
)
10093 out_attr
[i
].i
= in_attr
[i
].i
;
10095 case Tag_ABI_FP_16bit_format
:
10096 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
10098 if (in_attr
[i
].i
!= out_attr
[i
].i
)
10101 (_("error: fp16 format mismatch between %B and %B"),
10106 if (in_attr
[i
].i
!= 0)
10107 out_attr
[i
].i
= in_attr
[i
].i
;
10110 case Tag_nodefaults
:
10111 /* This tag is set if it exists, but the value is unused (and is
10112 typically zero). We don't actually need to do anything here -
10113 the merge happens automatically when the type flags are merged
10116 case Tag_also_compatible_with
:
10117 /* Already done in Tag_CPU_arch. */
10119 case Tag_conformance
:
10120 /* Keep the attribute if it matches. Throw it away otherwise.
10121 No attribute means no claim to conform. */
10122 if (!in_attr
[i
].s
|| !out_attr
[i
].s
10123 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
10124 out_attr
[i
].s
= NULL
;
10129 bfd
*err_bfd
= NULL
;
10131 /* The "known_obj_attributes" table does contain some undefined
10132 attributes. Ensure that there are unused. */
10133 if (out_attr
[i
].i
!= 0 || out_attr
[i
].s
!= NULL
)
10135 else if (in_attr
[i
].i
!= 0 || in_attr
[i
].s
!= NULL
)
10138 if (err_bfd
!= NULL
)
10140 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10141 if ((i
& 127) < 64)
10144 (_("%B: Unknown mandatory EABI object attribute %d"),
10146 bfd_set_error (bfd_error_bad_value
);
10152 (_("Warning: %B: Unknown EABI object attribute %d"),
10157 /* Only pass on attributes that match in both inputs. */
10158 if (in_attr
[i
].i
!= out_attr
[i
].i
10159 || in_attr
[i
].s
!= out_attr
[i
].s
10160 || (in_attr
[i
].s
!= NULL
&& out_attr
[i
].s
!= NULL
10161 && strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0))
10164 out_attr
[i
].s
= NULL
;
10169 /* If out_attr was copied from in_attr then it won't have a type yet. */
10170 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
10171 out_attr
[i
].type
= in_attr
[i
].type
;
10174 /* Merge Tag_compatibility attributes and any common GNU ones. */
10175 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
10177 /* Check for any attributes not known on ARM. */
10178 in_list
= elf_other_obj_attributes_proc (ibfd
);
10179 out_listp
= &elf_other_obj_attributes_proc (obfd
);
10180 out_list
= *out_listp
;
10182 for (; in_list
|| out_list
; )
10184 bfd
*err_bfd
= NULL
;
10187 /* The tags for each list are in numerical order. */
10188 /* If the tags are equal, then merge. */
10189 if (out_list
&& (!in_list
|| in_list
->tag
> out_list
->tag
))
10191 /* This attribute only exists in obfd. We can't merge, and we don't
10192 know what the tag means, so delete it. */
10194 err_tag
= out_list
->tag
;
10195 *out_listp
= out_list
->next
;
10196 out_list
= *out_listp
;
10198 else if (in_list
&& (!out_list
|| in_list
->tag
< out_list
->tag
))
10200 /* This attribute only exists in ibfd. We can't merge, and we don't
10201 know what the tag means, so ignore it. */
10203 err_tag
= in_list
->tag
;
10204 in_list
= in_list
->next
;
10206 else /* The tags are equal. */
10208 /* As present, all attributes in the list are unknown, and
10209 therefore can't be merged meaningfully. */
10211 err_tag
= out_list
->tag
;
10213 /* Only pass on attributes that match in both inputs. */
10214 if (in_list
->attr
.i
!= out_list
->attr
.i
10215 || in_list
->attr
.s
!= out_list
->attr
.s
10216 || (in_list
->attr
.s
&& out_list
->attr
.s
10217 && strcmp (in_list
->attr
.s
, out_list
->attr
.s
) != 0))
10219 /* No match. Delete the attribute. */
10220 *out_listp
= out_list
->next
;
10221 out_list
= *out_listp
;
10225 /* Matched. Keep the attribute and move to the next. */
10226 out_list
= out_list
->next
;
10227 in_list
= in_list
->next
;
10233 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10234 if ((err_tag
& 127) < 64)
10237 (_("%B: Unknown mandatory EABI object attribute %d"),
10239 bfd_set_error (bfd_error_bad_value
);
10245 (_("Warning: %B: Unknown EABI object attribute %d"),
10254 /* Return TRUE if the two EABI versions are incompatible. */
10257 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
10259 /* v4 and v5 are the same spec before and after it was released,
10260 so allow mixing them. */
10261 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
10262 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
10265 return (iver
== over
);
10268 /* Merge backend specific data from an object file to the output
10269 object file when linking. */
10272 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
);
10274 /* Display the flags field. */
10277 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
10279 FILE * file
= (FILE *) ptr
;
10280 unsigned long flags
;
10282 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
10284 /* Print normal ELF private data. */
10285 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
10287 flags
= elf_elfheader (abfd
)->e_flags
;
10288 /* Ignore init flag - it may not be set, despite the flags field
10289 containing valid data. */
10291 /* xgettext:c-format */
10292 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
10294 switch (EF_ARM_EABI_VERSION (flags
))
10296 case EF_ARM_EABI_UNKNOWN
:
10297 /* The following flag bits are GNU extensions and not part of the
10298 official ARM ELF extended ABI. Hence they are only decoded if
10299 the EABI version is not set. */
10300 if (flags
& EF_ARM_INTERWORK
)
10301 fprintf (file
, _(" [interworking enabled]"));
10303 if (flags
& EF_ARM_APCS_26
)
10304 fprintf (file
, " [APCS-26]");
10306 fprintf (file
, " [APCS-32]");
10308 if (flags
& EF_ARM_VFP_FLOAT
)
10309 fprintf (file
, _(" [VFP float format]"));
10310 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
10311 fprintf (file
, _(" [Maverick float format]"));
10313 fprintf (file
, _(" [FPA float format]"));
10315 if (flags
& EF_ARM_APCS_FLOAT
)
10316 fprintf (file
, _(" [floats passed in float registers]"));
10318 if (flags
& EF_ARM_PIC
)
10319 fprintf (file
, _(" [position independent]"));
10321 if (flags
& EF_ARM_NEW_ABI
)
10322 fprintf (file
, _(" [new ABI]"));
10324 if (flags
& EF_ARM_OLD_ABI
)
10325 fprintf (file
, _(" [old ABI]"));
10327 if (flags
& EF_ARM_SOFT_FLOAT
)
10328 fprintf (file
, _(" [software FP]"));
10330 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
10331 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
10332 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
10333 | EF_ARM_MAVERICK_FLOAT
);
10336 case EF_ARM_EABI_VER1
:
10337 fprintf (file
, _(" [Version1 EABI]"));
10339 if (flags
& EF_ARM_SYMSARESORTED
)
10340 fprintf (file
, _(" [sorted symbol table]"));
10342 fprintf (file
, _(" [unsorted symbol table]"));
10344 flags
&= ~ EF_ARM_SYMSARESORTED
;
10347 case EF_ARM_EABI_VER2
:
10348 fprintf (file
, _(" [Version2 EABI]"));
10350 if (flags
& EF_ARM_SYMSARESORTED
)
10351 fprintf (file
, _(" [sorted symbol table]"));
10353 fprintf (file
, _(" [unsorted symbol table]"));
10355 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
10356 fprintf (file
, _(" [dynamic symbols use segment index]"));
10358 if (flags
& EF_ARM_MAPSYMSFIRST
)
10359 fprintf (file
, _(" [mapping symbols precede others]"));
10361 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
10362 | EF_ARM_MAPSYMSFIRST
);
10365 case EF_ARM_EABI_VER3
:
10366 fprintf (file
, _(" [Version3 EABI]"));
10369 case EF_ARM_EABI_VER4
:
10370 fprintf (file
, _(" [Version4 EABI]"));
10373 case EF_ARM_EABI_VER5
:
10374 fprintf (file
, _(" [Version5 EABI]"));
10376 if (flags
& EF_ARM_BE8
)
10377 fprintf (file
, _(" [BE8]"));
10379 if (flags
& EF_ARM_LE8
)
10380 fprintf (file
, _(" [LE8]"));
10382 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
10386 fprintf (file
, _(" <EABI version unrecognised>"));
10390 flags
&= ~ EF_ARM_EABIMASK
;
10392 if (flags
& EF_ARM_RELEXEC
)
10393 fprintf (file
, _(" [relocatable executable]"));
10395 if (flags
& EF_ARM_HASENTRY
)
10396 fprintf (file
, _(" [has entry point]"));
10398 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
10401 fprintf (file
, _("<Unrecognised flag bits set>"));
10403 fputc ('\n', file
);
10409 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
10411 switch (ELF_ST_TYPE (elf_sym
->st_info
))
10413 case STT_ARM_TFUNC
:
10414 return ELF_ST_TYPE (elf_sym
->st_info
);
10416 case STT_ARM_16BIT
:
10417 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10418 This allows us to distinguish between data used by Thumb instructions
10419 and non-data (which is probably code) inside Thumb regions of an
10421 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
10422 return ELF_ST_TYPE (elf_sym
->st_info
);
10433 elf32_arm_gc_mark_hook (asection
*sec
,
10434 struct bfd_link_info
*info
,
10435 Elf_Internal_Rela
*rel
,
10436 struct elf_link_hash_entry
*h
,
10437 Elf_Internal_Sym
*sym
)
10440 switch (ELF32_R_TYPE (rel
->r_info
))
10442 case R_ARM_GNU_VTINHERIT
:
10443 case R_ARM_GNU_VTENTRY
:
10447 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10450 /* Update the got entry reference counts for the section being removed. */
10453 elf32_arm_gc_sweep_hook (bfd
* abfd
,
10454 struct bfd_link_info
* info
,
10456 const Elf_Internal_Rela
* relocs
)
10458 Elf_Internal_Shdr
*symtab_hdr
;
10459 struct elf_link_hash_entry
**sym_hashes
;
10460 bfd_signed_vma
*local_got_refcounts
;
10461 const Elf_Internal_Rela
*rel
, *relend
;
10462 struct elf32_arm_link_hash_table
* globals
;
10464 if (info
->relocatable
)
10467 globals
= elf32_arm_hash_table (info
);
10469 elf_section_data (sec
)->local_dynrel
= NULL
;
10471 symtab_hdr
= & elf_symtab_hdr (abfd
);
10472 sym_hashes
= elf_sym_hashes (abfd
);
10473 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10475 check_use_blx (globals
);
10477 relend
= relocs
+ sec
->reloc_count
;
10478 for (rel
= relocs
; rel
< relend
; rel
++)
10480 unsigned long r_symndx
;
10481 struct elf_link_hash_entry
*h
= NULL
;
10484 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10485 if (r_symndx
>= symtab_hdr
->sh_info
)
10487 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10488 while (h
->root
.type
== bfd_link_hash_indirect
10489 || h
->root
.type
== bfd_link_hash_warning
)
10490 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10493 r_type
= ELF32_R_TYPE (rel
->r_info
);
10494 r_type
= arm_real_reloc_type (globals
, r_type
);
10498 case R_ARM_GOT_PREL
:
10499 case R_ARM_TLS_GD32
:
10500 case R_ARM_TLS_IE32
:
10503 if (h
->got
.refcount
> 0)
10504 h
->got
.refcount
-= 1;
10506 else if (local_got_refcounts
!= NULL
)
10508 if (local_got_refcounts
[r_symndx
] > 0)
10509 local_got_refcounts
[r_symndx
] -= 1;
10513 case R_ARM_TLS_LDM32
:
10514 elf32_arm_hash_table (info
)->tls_ldm_got
.refcount
-= 1;
10518 case R_ARM_ABS32_NOI
:
10520 case R_ARM_REL32_NOI
:
10526 case R_ARM_THM_CALL
:
10527 case R_ARM_THM_JUMP24
:
10528 case R_ARM_THM_JUMP19
:
10529 case R_ARM_MOVW_ABS_NC
:
10530 case R_ARM_MOVT_ABS
:
10531 case R_ARM_MOVW_PREL_NC
:
10532 case R_ARM_MOVT_PREL
:
10533 case R_ARM_THM_MOVW_ABS_NC
:
10534 case R_ARM_THM_MOVT_ABS
:
10535 case R_ARM_THM_MOVW_PREL_NC
:
10536 case R_ARM_THM_MOVT_PREL
:
10537 /* Should the interworking branches be here also? */
10541 struct elf32_arm_link_hash_entry
*eh
;
10542 struct elf32_arm_relocs_copied
**pp
;
10543 struct elf32_arm_relocs_copied
*p
;
10545 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10547 if (h
->plt
.refcount
> 0)
10549 h
->plt
.refcount
-= 1;
10550 if (r_type
== R_ARM_THM_CALL
)
10551 eh
->plt_maybe_thumb_refcount
--;
10553 if (r_type
== R_ARM_THM_JUMP24
10554 || r_type
== R_ARM_THM_JUMP19
)
10555 eh
->plt_thumb_refcount
--;
10558 if (r_type
== R_ARM_ABS32
10559 || r_type
== R_ARM_REL32
10560 || r_type
== R_ARM_ABS32_NOI
10561 || r_type
== R_ARM_REL32_NOI
)
10563 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
;
10565 if (p
->section
== sec
)
10568 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32
10569 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32_NOI
)
10587 /* Look through the relocs for a section during the first phase. */
10590 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
10591 asection
*sec
, const Elf_Internal_Rela
*relocs
)
10593 Elf_Internal_Shdr
*symtab_hdr
;
10594 struct elf_link_hash_entry
**sym_hashes
;
10595 const Elf_Internal_Rela
*rel
;
10596 const Elf_Internal_Rela
*rel_end
;
10599 bfd_vma
*local_got_offsets
;
10600 struct elf32_arm_link_hash_table
*htab
;
10601 bfd_boolean needs_plt
;
10602 unsigned long nsyms
;
10604 if (info
->relocatable
)
10607 BFD_ASSERT (is_arm_elf (abfd
));
10609 htab
= elf32_arm_hash_table (info
);
10612 /* Create dynamic sections for relocatable executables so that we can
10613 copy relocations. */
10614 if (htab
->root
.is_relocatable_executable
10615 && ! htab
->root
.dynamic_sections_created
)
10617 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
10621 dynobj
= elf_hash_table (info
)->dynobj
;
10622 local_got_offsets
= elf_local_got_offsets (abfd
);
10624 symtab_hdr
= & elf_symtab_hdr (abfd
);
10625 sym_hashes
= elf_sym_hashes (abfd
);
10626 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
10628 rel_end
= relocs
+ sec
->reloc_count
;
10629 for (rel
= relocs
; rel
< rel_end
; rel
++)
10631 struct elf_link_hash_entry
*h
;
10632 struct elf32_arm_link_hash_entry
*eh
;
10633 unsigned long r_symndx
;
10636 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10637 r_type
= ELF32_R_TYPE (rel
->r_info
);
10638 r_type
= arm_real_reloc_type (htab
, r_type
);
10640 if (r_symndx
>= nsyms
10641 /* PR 9934: It is possible to have relocations that do not
10642 refer to symbols, thus it is also possible to have an
10643 object file containing relocations but no symbol table. */
10644 && (r_symndx
> 0 || nsyms
> 0))
10646 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
10651 if (nsyms
== 0 || r_symndx
< symtab_hdr
->sh_info
)
10655 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10656 while (h
->root
.type
== bfd_link_hash_indirect
10657 || h
->root
.type
== bfd_link_hash_warning
)
10658 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10661 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10666 case R_ARM_GOT_PREL
:
10667 case R_ARM_TLS_GD32
:
10668 case R_ARM_TLS_IE32
:
10669 /* This symbol requires a global offset table entry. */
10671 int tls_type
, old_tls_type
;
10675 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
10676 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
10677 default: tls_type
= GOT_NORMAL
; break;
10683 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
10687 bfd_signed_vma
*local_got_refcounts
;
10689 /* This is a global offset table entry for a local symbol. */
10690 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10691 if (local_got_refcounts
== NULL
)
10693 bfd_size_type size
;
10695 size
= symtab_hdr
->sh_info
;
10696 size
*= (sizeof (bfd_signed_vma
) + sizeof (char));
10697 local_got_refcounts
= (bfd_signed_vma
*)
10698 bfd_zalloc (abfd
, size
);
10699 if (local_got_refcounts
== NULL
)
10701 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
10702 elf32_arm_local_got_tls_type (abfd
)
10703 = (char *) (local_got_refcounts
+ symtab_hdr
->sh_info
);
10705 local_got_refcounts
[r_symndx
] += 1;
10706 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
10709 /* We will already have issued an error message if there is a
10710 TLS / non-TLS mismatch, based on the symbol type. We don't
10711 support any linker relaxations. So just combine any TLS
10713 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
10714 && tls_type
!= GOT_NORMAL
)
10715 tls_type
|= old_tls_type
;
10717 if (old_tls_type
!= tls_type
)
10720 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
10722 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
10725 /* Fall through. */
10727 case R_ARM_TLS_LDM32
:
10728 if (r_type
== R_ARM_TLS_LDM32
)
10729 htab
->tls_ldm_got
.refcount
++;
10730 /* Fall through. */
10732 case R_ARM_GOTOFF32
:
10734 if (htab
->sgot
== NULL
)
10736 if (htab
->root
.dynobj
== NULL
)
10737 htab
->root
.dynobj
= abfd
;
10738 if (!create_got_section (htab
->root
.dynobj
, info
))
10744 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10745 ldr __GOTT_INDEX__ offsets. */
10746 if (!htab
->vxworks_p
)
10748 /* Fall through. */
10755 case R_ARM_THM_CALL
:
10756 case R_ARM_THM_JUMP24
:
10757 case R_ARM_THM_JUMP19
:
10761 case R_ARM_MOVW_ABS_NC
:
10762 case R_ARM_MOVT_ABS
:
10763 case R_ARM_THM_MOVW_ABS_NC
:
10764 case R_ARM_THM_MOVT_ABS
:
10767 (*_bfd_error_handler
)
10768 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10769 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
10770 (h
) ? h
->root
.root
.string
: "a local symbol");
10771 bfd_set_error (bfd_error_bad_value
);
10775 /* Fall through. */
10777 case R_ARM_ABS32_NOI
:
10779 case R_ARM_REL32_NOI
:
10780 case R_ARM_MOVW_PREL_NC
:
10781 case R_ARM_MOVT_PREL
:
10782 case R_ARM_THM_MOVW_PREL_NC
:
10783 case R_ARM_THM_MOVT_PREL
:
10787 /* Should the interworking branches be listed here? */
10790 /* If this reloc is in a read-only section, we might
10791 need a copy reloc. We can't check reliably at this
10792 stage whether the section is read-only, as input
10793 sections have not yet been mapped to output sections.
10794 Tentatively set the flag for now, and correct in
10795 adjust_dynamic_symbol. */
10797 h
->non_got_ref
= 1;
10799 /* We may need a .plt entry if the function this reloc
10800 refers to is in a different object. We can't tell for
10801 sure yet, because something later might force the
10806 /* If we create a PLT entry, this relocation will reference
10807 it, even if it's an ABS32 relocation. */
10808 h
->plt
.refcount
+= 1;
10810 /* It's too early to use htab->use_blx here, so we have to
10811 record possible blx references separately from
10812 relocs that definitely need a thumb stub. */
10814 if (r_type
== R_ARM_THM_CALL
)
10815 eh
->plt_maybe_thumb_refcount
+= 1;
10817 if (r_type
== R_ARM_THM_JUMP24
10818 || r_type
== R_ARM_THM_JUMP19
)
10819 eh
->plt_thumb_refcount
+= 1;
10822 /* If we are creating a shared library or relocatable executable,
10823 and this is a reloc against a global symbol, or a non PC
10824 relative reloc against a local symbol, then we need to copy
10825 the reloc into the shared library. However, if we are linking
10826 with -Bsymbolic, we do not need to copy a reloc against a
10827 global symbol which is defined in an object we are
10828 including in the link (i.e., DEF_REGULAR is set). At
10829 this point we have not seen all the input files, so it is
10830 possible that DEF_REGULAR is not set now but will be set
10831 later (it is never cleared). We account for that
10832 possibility below by storing information in the
10833 relocs_copied field of the hash table entry. */
10834 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
10835 && (sec
->flags
& SEC_ALLOC
) != 0
10836 && ((r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
)
10837 || (h
!= NULL
&& ! h
->needs_plt
10838 && (! info
->symbolic
|| ! h
->def_regular
))))
10840 struct elf32_arm_relocs_copied
*p
, **head
;
10842 /* When creating a shared object, we must copy these
10843 reloc types into the output file. We create a reloc
10844 section in dynobj and make room for this reloc. */
10845 if (sreloc
== NULL
)
10847 sreloc
= _bfd_elf_make_dynamic_reloc_section
10848 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
10850 if (sreloc
== NULL
)
10853 /* BPABI objects never have dynamic relocations mapped. */
10854 if (htab
->symbian_p
)
10858 flags
= bfd_get_section_flags (dynobj
, sreloc
);
10859 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
10860 bfd_set_section_flags (dynobj
, sreloc
, flags
);
10864 /* If this is a global symbol, we count the number of
10865 relocations we need for this symbol. */
10868 head
= &((struct elf32_arm_link_hash_entry
*) h
)->relocs_copied
;
10872 /* Track dynamic relocs needed for local syms too.
10873 We really need local syms available to do this
10874 easily. Oh well. */
10877 Elf_Internal_Sym
*isym
;
10879 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
10884 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
10888 vpp
= &elf_section_data (s
)->local_dynrel
;
10889 head
= (struct elf32_arm_relocs_copied
**) vpp
;
10893 if (p
== NULL
|| p
->section
!= sec
)
10895 bfd_size_type amt
= sizeof *p
;
10897 p
= (struct elf32_arm_relocs_copied
*)
10898 bfd_alloc (htab
->root
.dynobj
, amt
);
10908 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
10914 /* This relocation describes the C++ object vtable hierarchy.
10915 Reconstruct it for later use during GC. */
10916 case R_ARM_GNU_VTINHERIT
:
10917 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
10921 /* This relocation describes which C++ vtable entries are actually
10922 used. Record for later use during GC. */
10923 case R_ARM_GNU_VTENTRY
:
10924 BFD_ASSERT (h
!= NULL
);
10926 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
10935 /* Unwinding tables are not referenced directly. This pass marks them as
10936 required if the corresponding code section is marked. */
10939 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
10940 elf_gc_mark_hook_fn gc_mark_hook
)
10943 Elf_Internal_Shdr
**elf_shdrp
;
10946 /* Marking EH data may cause additional code sections to be marked,
10947 requiring multiple passes. */
10952 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10956 if (! is_arm_elf (sub
))
10959 elf_shdrp
= elf_elfsections (sub
);
10960 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
10962 Elf_Internal_Shdr
*hdr
;
10964 hdr
= &elf_section_data (o
)->this_hdr
;
10965 if (hdr
->sh_type
== SHT_ARM_EXIDX
10967 && hdr
->sh_link
< elf_numsections (sub
)
10969 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
10972 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
10982 /* Treat mapping symbols as special target symbols. */
10985 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
10987 return bfd_is_arm_special_symbol_name (sym
->name
,
10988 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
10991 /* This is a copy of elf_find_function() from elf.c except that
10992 ARM mapping symbols are ignored when looking for function names
10993 and STT_ARM_TFUNC is considered to a function type. */
10996 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
10997 asection
* section
,
10998 asymbol
** symbols
,
11000 const char ** filename_ptr
,
11001 const char ** functionname_ptr
)
11003 const char * filename
= NULL
;
11004 asymbol
* func
= NULL
;
11005 bfd_vma low_func
= 0;
11008 for (p
= symbols
; *p
!= NULL
; p
++)
11010 elf_symbol_type
*q
;
11012 q
= (elf_symbol_type
*) *p
;
11014 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
11019 filename
= bfd_asymbol_name (&q
->symbol
);
11022 case STT_ARM_TFUNC
:
11024 /* Skip mapping symbols. */
11025 if ((q
->symbol
.flags
& BSF_LOCAL
)
11026 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
11027 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
11029 /* Fall through. */
11030 if (bfd_get_section (&q
->symbol
) == section
11031 && q
->symbol
.value
>= low_func
11032 && q
->symbol
.value
<= offset
)
11034 func
= (asymbol
*) q
;
11035 low_func
= q
->symbol
.value
;
11045 *filename_ptr
= filename
;
11046 if (functionname_ptr
)
11047 *functionname_ptr
= bfd_asymbol_name (func
);
11053 /* Find the nearest line to a particular section and offset, for error
11054 reporting. This code is a duplicate of the code in elf.c, except
11055 that it uses arm_elf_find_function. */
11058 elf32_arm_find_nearest_line (bfd
* abfd
,
11059 asection
* section
,
11060 asymbol
** symbols
,
11062 const char ** filename_ptr
,
11063 const char ** functionname_ptr
,
11064 unsigned int * line_ptr
)
11066 bfd_boolean found
= FALSE
;
11068 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11070 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11071 filename_ptr
, functionname_ptr
,
11073 & elf_tdata (abfd
)->dwarf2_find_line_info
))
11075 if (!*functionname_ptr
)
11076 arm_elf_find_function (abfd
, section
, symbols
, offset
,
11077 *filename_ptr
? NULL
: filename_ptr
,
11083 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
11084 & found
, filename_ptr
,
11085 functionname_ptr
, line_ptr
,
11086 & elf_tdata (abfd
)->line_info
))
11089 if (found
&& (*functionname_ptr
|| *line_ptr
))
11092 if (symbols
== NULL
)
11095 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
11096 filename_ptr
, functionname_ptr
))
11104 elf32_arm_find_inliner_info (bfd
* abfd
,
11105 const char ** filename_ptr
,
11106 const char ** functionname_ptr
,
11107 unsigned int * line_ptr
)
11110 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11111 functionname_ptr
, line_ptr
,
11112 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11116 /* Adjust a symbol defined by a dynamic object and referenced by a
11117 regular object. The current definition is in some section of the
11118 dynamic object, but we're not including those sections. We have to
11119 change the definition to something the rest of the link can
11123 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
11124 struct elf_link_hash_entry
* h
)
11128 struct elf32_arm_link_hash_entry
* eh
;
11129 struct elf32_arm_link_hash_table
*globals
;
11131 globals
= elf32_arm_hash_table (info
);
11132 dynobj
= elf_hash_table (info
)->dynobj
;
11134 /* Make sure we know what is going on here. */
11135 BFD_ASSERT (dynobj
!= NULL
11137 || h
->u
.weakdef
!= NULL
11140 && !h
->def_regular
)));
11142 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11144 /* If this is a function, put it in the procedure linkage table. We
11145 will fill in the contents of the procedure linkage table later,
11146 when we know the address of the .got section. */
11147 if (h
->type
== STT_FUNC
|| h
->type
== STT_ARM_TFUNC
11150 if (h
->plt
.refcount
<= 0
11151 || SYMBOL_CALLS_LOCAL (info
, h
)
11152 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
11153 && h
->root
.type
== bfd_link_hash_undefweak
))
11155 /* This case can occur if we saw a PLT32 reloc in an input
11156 file, but the symbol was never referred to by a dynamic
11157 object, or if all references were garbage collected. In
11158 such a case, we don't actually need to build a procedure
11159 linkage table, and we can just do a PC24 reloc instead. */
11160 h
->plt
.offset
= (bfd_vma
) -1;
11161 eh
->plt_thumb_refcount
= 0;
11162 eh
->plt_maybe_thumb_refcount
= 0;
11170 /* It's possible that we incorrectly decided a .plt reloc was
11171 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11172 in check_relocs. We can't decide accurately between function
11173 and non-function syms in check-relocs; Objects loaded later in
11174 the link may change h->type. So fix it now. */
11175 h
->plt
.offset
= (bfd_vma
) -1;
11176 eh
->plt_thumb_refcount
= 0;
11177 eh
->plt_maybe_thumb_refcount
= 0;
11180 /* If this is a weak symbol, and there is a real definition, the
11181 processor independent code will have arranged for us to see the
11182 real definition first, and we can just use the same value. */
11183 if (h
->u
.weakdef
!= NULL
)
11185 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
11186 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
11187 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
11188 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
11192 /* If there are no non-GOT references, we do not need a copy
11194 if (!h
->non_got_ref
)
11197 /* This is a reference to a symbol defined by a dynamic object which
11198 is not a function. */
11200 /* If we are creating a shared library, we must presume that the
11201 only references to the symbol are via the global offset table.
11202 For such cases we need not do anything here; the relocations will
11203 be handled correctly by relocate_section. Relocatable executables
11204 can reference data in shared objects directly, so we don't need to
11205 do anything here. */
11206 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
11211 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
11212 h
->root
.root
.string
);
11216 /* We must allocate the symbol in our .dynbss section, which will
11217 become part of the .bss section of the executable. There will be
11218 an entry for this symbol in the .dynsym section. The dynamic
11219 object will contain position independent code, so all references
11220 from the dynamic object to this symbol will go through the global
11221 offset table. The dynamic linker will use the .dynsym entry to
11222 determine the address it must put in the global offset table, so
11223 both the dynamic object and the regular object will refer to the
11224 same memory location for the variable. */
11225 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
11226 BFD_ASSERT (s
!= NULL
);
11228 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11229 copy the initial value out of the dynamic object and into the
11230 runtime process image. We need to remember the offset into the
11231 .rel(a).bss section we are going to use. */
11232 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
11236 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
11237 BFD_ASSERT (srel
!= NULL
);
11238 srel
->size
+= RELOC_SIZE (globals
);
11242 return _bfd_elf_adjust_dynamic_copy (h
, s
);
11245 /* Allocate space in .plt, .got and associated reloc sections for
11249 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
11251 struct bfd_link_info
*info
;
11252 struct elf32_arm_link_hash_table
*htab
;
11253 struct elf32_arm_link_hash_entry
*eh
;
11254 struct elf32_arm_relocs_copied
*p
;
11255 bfd_signed_vma thumb_refs
;
11257 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11259 if (h
->root
.type
== bfd_link_hash_indirect
)
11262 if (h
->root
.type
== bfd_link_hash_warning
)
11263 /* When warning symbols are created, they **replace** the "real"
11264 entry in the hash table, thus we never get to see the real
11265 symbol in a hash traversal. So look at it now. */
11266 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11268 info
= (struct bfd_link_info
*) inf
;
11269 htab
= elf32_arm_hash_table (info
);
11271 if (htab
->root
.dynamic_sections_created
11272 && h
->plt
.refcount
> 0)
11274 /* Make sure this symbol is output as a dynamic symbol.
11275 Undefined weak syms won't yet be marked as dynamic. */
11276 if (h
->dynindx
== -1
11277 && !h
->forced_local
)
11279 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11284 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
11286 asection
*s
= htab
->splt
;
11288 /* If this is the first .plt entry, make room for the special
11291 s
->size
+= htab
->plt_header_size
;
11293 h
->plt
.offset
= s
->size
;
11295 /* If we will insert a Thumb trampoline before this PLT, leave room
11297 thumb_refs
= eh
->plt_thumb_refcount
;
11298 if (!htab
->use_blx
)
11299 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
11301 if (thumb_refs
> 0)
11303 h
->plt
.offset
+= PLT_THUMB_STUB_SIZE
;
11304 s
->size
+= PLT_THUMB_STUB_SIZE
;
11307 /* If this symbol is not defined in a regular file, and we are
11308 not generating a shared library, then set the symbol to this
11309 location in the .plt. This is required to make function
11310 pointers compare as equal between the normal executable and
11311 the shared library. */
11313 && !h
->def_regular
)
11315 h
->root
.u
.def
.section
= s
;
11316 h
->root
.u
.def
.value
= h
->plt
.offset
;
11318 /* Make sure the function is not marked as Thumb, in case
11319 it is the target of an ABS32 relocation, which will
11320 point to the PLT entry. */
11321 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
11322 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11325 /* Make room for this entry. */
11326 s
->size
+= htab
->plt_entry_size
;
11328 if (!htab
->symbian_p
)
11330 /* We also need to make an entry in the .got.plt section, which
11331 will be placed in the .got section by the linker script. */
11332 eh
->plt_got_offset
= htab
->sgotplt
->size
;
11333 htab
->sgotplt
->size
+= 4;
11336 /* We also need to make an entry in the .rel(a).plt section. */
11337 htab
->srelplt
->size
+= RELOC_SIZE (htab
);
11339 /* VxWorks executables have a second set of relocations for
11340 each PLT entry. They go in a separate relocation section,
11341 which is processed by the kernel loader. */
11342 if (htab
->vxworks_p
&& !info
->shared
)
11344 /* There is a relocation for the initial PLT entry:
11345 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11346 if (h
->plt
.offset
== htab
->plt_header_size
)
11347 htab
->srelplt2
->size
+= RELOC_SIZE (htab
);
11349 /* There are two extra relocations for each subsequent
11350 PLT entry: an R_ARM_32 relocation for the GOT entry,
11351 and an R_ARM_32 relocation for the PLT entry. */
11352 htab
->srelplt2
->size
+= RELOC_SIZE (htab
) * 2;
11357 h
->plt
.offset
= (bfd_vma
) -1;
11363 h
->plt
.offset
= (bfd_vma
) -1;
11367 if (h
->got
.refcount
> 0)
11371 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
11374 /* Make sure this symbol is output as a dynamic symbol.
11375 Undefined weak syms won't yet be marked as dynamic. */
11376 if (h
->dynindx
== -1
11377 && !h
->forced_local
)
11379 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11383 if (!htab
->symbian_p
)
11386 h
->got
.offset
= s
->size
;
11388 if (tls_type
== GOT_UNKNOWN
)
11391 if (tls_type
== GOT_NORMAL
)
11392 /* Non-TLS symbols need one GOT slot. */
11396 if (tls_type
& GOT_TLS_GD
)
11397 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11399 if (tls_type
& GOT_TLS_IE
)
11400 /* R_ARM_TLS_IE32 needs one GOT slot. */
11404 dyn
= htab
->root
.dynamic_sections_created
;
11407 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
11409 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
11412 if (tls_type
!= GOT_NORMAL
11413 && (info
->shared
|| indx
!= 0)
11414 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11415 || h
->root
.type
!= bfd_link_hash_undefweak
))
11417 if (tls_type
& GOT_TLS_IE
)
11418 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11420 if (tls_type
& GOT_TLS_GD
)
11421 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11423 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
11424 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11426 else if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11427 || h
->root
.type
!= bfd_link_hash_undefweak
)
11429 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
11430 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11434 h
->got
.offset
= (bfd_vma
) -1;
11436 /* Allocate stubs for exported Thumb functions on v4t. */
11437 if (!htab
->use_blx
&& h
->dynindx
!= -1
11439 && ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
11440 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
11442 struct elf_link_hash_entry
* th
;
11443 struct bfd_link_hash_entry
* bh
;
11444 struct elf_link_hash_entry
* myh
;
11448 /* Create a new symbol to regist the real location of the function. */
11449 s
= h
->root
.u
.def
.section
;
11450 sprintf (name
, "__real_%s", h
->root
.root
.string
);
11451 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
11452 name
, BSF_GLOBAL
, s
,
11453 h
->root
.u
.def
.value
,
11454 NULL
, TRUE
, FALSE
, &bh
);
11456 myh
= (struct elf_link_hash_entry
*) bh
;
11457 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
11458 myh
->forced_local
= 1;
11459 eh
->export_glue
= myh
;
11460 th
= record_arm_to_thumb_glue (info
, h
);
11461 /* Point the symbol at the stub. */
11462 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11463 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
11464 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
11467 if (eh
->relocs_copied
== NULL
)
11470 /* In the shared -Bsymbolic case, discard space allocated for
11471 dynamic pc-relative relocs against symbols which turn out to be
11472 defined in regular objects. For the normal shared case, discard
11473 space for pc-relative relocs that have become local due to symbol
11474 visibility changes. */
11476 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
11478 /* The only relocs that use pc_count are R_ARM_REL32 and
11479 R_ARM_REL32_NOI, which will appear on something like
11480 ".long foo - .". We want calls to protected symbols to resolve
11481 directly to the function rather than going via the plt. If people
11482 want function pointer comparisons to work as expected then they
11483 should avoid writing assembly like ".long foo - .". */
11484 if (SYMBOL_CALLS_LOCAL (info
, h
))
11486 struct elf32_arm_relocs_copied
**pp
;
11488 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11490 p
->count
-= p
->pc_count
;
11499 if (elf32_arm_hash_table (info
)->vxworks_p
)
11501 struct elf32_arm_relocs_copied
**pp
;
11503 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11505 if (strcmp (p
->section
->output_section
->name
, ".tls_vars") == 0)
11512 /* Also discard relocs on undefined weak syms with non-default
11514 if (eh
->relocs_copied
!= NULL
11515 && h
->root
.type
== bfd_link_hash_undefweak
)
11517 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
11518 eh
->relocs_copied
= NULL
;
11520 /* Make sure undefined weak symbols are output as a dynamic
11522 else if (h
->dynindx
== -1
11523 && !h
->forced_local
)
11525 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11530 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
11531 && h
->root
.type
== bfd_link_hash_new
)
11533 /* Output absolute symbols so that we can create relocations
11534 against them. For normal symbols we output a relocation
11535 against the section that contains them. */
11536 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11543 /* For the non-shared case, discard space for relocs against
11544 symbols which turn out to need copy relocs or are not
11547 if (!h
->non_got_ref
11548 && ((h
->def_dynamic
11549 && !h
->def_regular
)
11550 || (htab
->root
.dynamic_sections_created
11551 && (h
->root
.type
== bfd_link_hash_undefweak
11552 || h
->root
.type
== bfd_link_hash_undefined
))))
11554 /* Make sure this symbol is output as a dynamic symbol.
11555 Undefined weak syms won't yet be marked as dynamic. */
11556 if (h
->dynindx
== -1
11557 && !h
->forced_local
)
11559 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11563 /* If that succeeded, we know we'll be keeping all the
11565 if (h
->dynindx
!= -1)
11569 eh
->relocs_copied
= NULL
;
11574 /* Finally, allocate space. */
11575 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11577 asection
*sreloc
= elf_section_data (p
->section
)->sreloc
;
11578 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
11584 /* Find any dynamic relocs that apply to read-only sections. */
11587 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
11589 struct elf32_arm_link_hash_entry
* eh
;
11590 struct elf32_arm_relocs_copied
* p
;
11592 if (h
->root
.type
== bfd_link_hash_warning
)
11593 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11595 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11596 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11598 asection
*s
= p
->section
;
11600 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
11602 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11604 info
->flags
|= DF_TEXTREL
;
11606 /* Not an error, just cut short the traversal. */
11614 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
11617 struct elf32_arm_link_hash_table
*globals
;
11619 globals
= elf32_arm_hash_table (info
);
11620 globals
->byteswap_code
= byteswap_code
;
11623 /* Set the sizes of the dynamic sections. */
11626 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
11627 struct bfd_link_info
* info
)
11632 bfd_boolean relocs
;
11634 struct elf32_arm_link_hash_table
*htab
;
11636 htab
= elf32_arm_hash_table (info
);
11637 dynobj
= elf_hash_table (info
)->dynobj
;
11638 BFD_ASSERT (dynobj
!= NULL
);
11639 check_use_blx (htab
);
11641 if (elf_hash_table (info
)->dynamic_sections_created
)
11643 /* Set the contents of the .interp section to the interpreter. */
11644 if (info
->executable
)
11646 s
= bfd_get_section_by_name (dynobj
, ".interp");
11647 BFD_ASSERT (s
!= NULL
);
11648 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
11649 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
11653 /* Set up .got offsets for local syms, and space for local dynamic
11655 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11657 bfd_signed_vma
*local_got
;
11658 bfd_signed_vma
*end_local_got
;
11659 char *local_tls_type
;
11660 bfd_size_type locsymcount
;
11661 Elf_Internal_Shdr
*symtab_hdr
;
11663 bfd_boolean is_vxworks
= elf32_arm_hash_table (info
)->vxworks_p
;
11665 if (! is_arm_elf (ibfd
))
11668 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
11670 struct elf32_arm_relocs_copied
*p
;
11672 for (p
= (struct elf32_arm_relocs_copied
*)
11673 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
11675 if (!bfd_is_abs_section (p
->section
)
11676 && bfd_is_abs_section (p
->section
->output_section
))
11678 /* Input section has been discarded, either because
11679 it is a copy of a linkonce section or due to
11680 linker script /DISCARD/, so we'll be discarding
11683 else if (is_vxworks
11684 && strcmp (p
->section
->output_section
->name
,
11687 /* Relocations in vxworks .tls_vars sections are
11688 handled specially by the loader. */
11690 else if (p
->count
!= 0)
11692 srel
= elf_section_data (p
->section
)->sreloc
;
11693 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
11694 if ((p
->section
->output_section
->flags
& SEC_READONLY
) != 0)
11695 info
->flags
|= DF_TEXTREL
;
11700 local_got
= elf_local_got_refcounts (ibfd
);
11704 symtab_hdr
= & elf_symtab_hdr (ibfd
);
11705 locsymcount
= symtab_hdr
->sh_info
;
11706 end_local_got
= local_got
+ locsymcount
;
11707 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
11709 srel
= htab
->srelgot
;
11710 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
11712 if (*local_got
> 0)
11714 *local_got
= s
->size
;
11715 if (*local_tls_type
& GOT_TLS_GD
)
11716 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11718 if (*local_tls_type
& GOT_TLS_IE
)
11720 if (*local_tls_type
== GOT_NORMAL
)
11723 if (info
->shared
|| *local_tls_type
== GOT_TLS_GD
)
11724 srel
->size
+= RELOC_SIZE (htab
);
11727 *local_got
= (bfd_vma
) -1;
11731 if (htab
->tls_ldm_got
.refcount
> 0)
11733 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11734 for R_ARM_TLS_LDM32 relocations. */
11735 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
11736 htab
->sgot
->size
+= 8;
11738 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11741 htab
->tls_ldm_got
.offset
= -1;
11743 /* Allocate global sym .plt and .got entries, and space for global
11744 sym dynamic relocs. */
11745 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
11747 /* Here we rummage through the found bfds to collect glue information. */
11748 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11750 if (! is_arm_elf (ibfd
))
11753 /* Initialise mapping tables for code/data. */
11754 bfd_elf32_arm_init_maps (ibfd
);
11756 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
11757 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
11758 /* xgettext:c-format */
11759 _bfd_error_handler (_("Errors encountered processing file %s"),
11763 /* Allocate space for the glue sections now that we've sized them. */
11764 bfd_elf32_arm_allocate_interworking_sections (info
);
11766 /* The check_relocs and adjust_dynamic_symbol entry points have
11767 determined the sizes of the various dynamic sections. Allocate
11768 memory for them. */
11771 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
11775 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
11778 /* It's OK to base decisions on the section name, because none
11779 of the dynobj section names depend upon the input files. */
11780 name
= bfd_get_section_name (dynobj
, s
);
11782 if (strcmp (name
, ".plt") == 0)
11784 /* Remember whether there is a PLT. */
11785 plt
= s
->size
!= 0;
11787 else if (CONST_STRNEQ (name
, ".rel"))
11791 /* Remember whether there are any reloc sections other
11792 than .rel(a).plt and .rela.plt.unloaded. */
11793 if (s
!= htab
->srelplt
&& s
!= htab
->srelplt2
)
11796 /* We use the reloc_count field as a counter if we need
11797 to copy relocs into the output file. */
11798 s
->reloc_count
= 0;
11801 else if (! CONST_STRNEQ (name
, ".got")
11802 && strcmp (name
, ".dynbss") != 0)
11804 /* It's not one of our sections, so don't allocate space. */
11810 /* If we don't need this section, strip it from the
11811 output file. This is mostly to handle .rel(a).bss and
11812 .rel(a).plt. We must create both sections in
11813 create_dynamic_sections, because they must be created
11814 before the linker maps input sections to output
11815 sections. The linker does that before
11816 adjust_dynamic_symbol is called, and it is that
11817 function which decides whether anything needs to go
11818 into these sections. */
11819 s
->flags
|= SEC_EXCLUDE
;
11823 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
11826 /* Allocate memory for the section contents. */
11827 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
11828 if (s
->contents
== NULL
)
11832 if (elf_hash_table (info
)->dynamic_sections_created
)
11834 /* Add some entries to the .dynamic section. We fill in the
11835 values later, in elf32_arm_finish_dynamic_sections, but we
11836 must add the entries now so that we get the correct size for
11837 the .dynamic section. The DT_DEBUG entry is filled in by the
11838 dynamic linker and used by the debugger. */
11839 #define add_dynamic_entry(TAG, VAL) \
11840 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
11842 if (info
->executable
)
11844 if (!add_dynamic_entry (DT_DEBUG
, 0))
11850 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
11851 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
11852 || !add_dynamic_entry (DT_PLTREL
,
11853 htab
->use_rel
? DT_REL
: DT_RELA
)
11854 || !add_dynamic_entry (DT_JMPREL
, 0))
11862 if (!add_dynamic_entry (DT_REL
, 0)
11863 || !add_dynamic_entry (DT_RELSZ
, 0)
11864 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
11869 if (!add_dynamic_entry (DT_RELA
, 0)
11870 || !add_dynamic_entry (DT_RELASZ
, 0)
11871 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
11876 /* If any dynamic relocs apply to a read-only section,
11877 then we need a DT_TEXTREL entry. */
11878 if ((info
->flags
& DF_TEXTREL
) == 0)
11879 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
11882 if ((info
->flags
& DF_TEXTREL
) != 0)
11884 if (!add_dynamic_entry (DT_TEXTREL
, 0))
11887 if (htab
->vxworks_p
11888 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
11891 #undef add_dynamic_entry
11896 /* Finish up dynamic symbol handling. We set the contents of various
11897 dynamic sections here. */
11900 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
11901 struct bfd_link_info
* info
,
11902 struct elf_link_hash_entry
* h
,
11903 Elf_Internal_Sym
* sym
)
11906 struct elf32_arm_link_hash_table
*htab
;
11907 struct elf32_arm_link_hash_entry
*eh
;
11909 dynobj
= elf_hash_table (info
)->dynobj
;
11910 htab
= elf32_arm_hash_table (info
);
11911 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11913 if (h
->plt
.offset
!= (bfd_vma
) -1)
11919 Elf_Internal_Rela rel
;
11921 /* This symbol has an entry in the procedure linkage table. Set
11924 BFD_ASSERT (h
->dynindx
!= -1);
11926 splt
= bfd_get_section_by_name (dynobj
, ".plt");
11927 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".plt"));
11928 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
11930 /* Fill in the entry in the procedure linkage table. */
11931 if (htab
->symbian_p
)
11933 put_arm_insn (htab
, output_bfd
,
11934 elf32_arm_symbian_plt_entry
[0],
11935 splt
->contents
+ h
->plt
.offset
);
11936 bfd_put_32 (output_bfd
,
11937 elf32_arm_symbian_plt_entry
[1],
11938 splt
->contents
+ h
->plt
.offset
+ 4);
11940 /* Fill in the entry in the .rel.plt section. */
11941 rel
.r_offset
= (splt
->output_section
->vma
11942 + splt
->output_offset
11943 + h
->plt
.offset
+ 4);
11944 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
11946 /* Get the index in the procedure linkage table which
11947 corresponds to this symbol. This is the index of this symbol
11948 in all the symbols for which we are making plt entries. The
11949 first entry in the procedure linkage table is reserved. */
11950 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
11951 / htab
->plt_entry_size
);
11955 bfd_vma got_offset
, got_address
, plt_address
;
11956 bfd_vma got_displacement
;
11960 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
11961 BFD_ASSERT (sgot
!= NULL
);
11963 /* Get the offset into the .got.plt table of the entry that
11964 corresponds to this function. */
11965 got_offset
= eh
->plt_got_offset
;
11967 /* Get the index in the procedure linkage table which
11968 corresponds to this symbol. This is the index of this symbol
11969 in all the symbols for which we are making plt entries. The
11970 first three entries in .got.plt are reserved; after that
11971 symbols appear in the same order as in .plt. */
11972 plt_index
= (got_offset
- 12) / 4;
11974 /* Calculate the address of the GOT entry. */
11975 got_address
= (sgot
->output_section
->vma
11976 + sgot
->output_offset
11979 /* ...and the address of the PLT entry. */
11980 plt_address
= (splt
->output_section
->vma
11981 + splt
->output_offset
11984 ptr
= htab
->splt
->contents
+ h
->plt
.offset
;
11985 if (htab
->vxworks_p
&& info
->shared
)
11990 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
11992 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
11994 val
|= got_address
- sgot
->output_section
->vma
;
11996 val
|= plt_index
* RELOC_SIZE (htab
);
11997 if (i
== 2 || i
== 5)
11998 bfd_put_32 (output_bfd
, val
, ptr
);
12000 put_arm_insn (htab
, output_bfd
, val
, ptr
);
12003 else if (htab
->vxworks_p
)
12008 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
12010 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
12012 val
|= got_address
;
12014 val
|= 0xffffff & -((h
->plt
.offset
+ i
* 4 + 8) >> 2);
12016 val
|= plt_index
* RELOC_SIZE (htab
);
12017 if (i
== 2 || i
== 5)
12018 bfd_put_32 (output_bfd
, val
, ptr
);
12020 put_arm_insn (htab
, output_bfd
, val
, ptr
);
12023 loc
= (htab
->srelplt2
->contents
12024 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
12026 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12027 referencing the GOT for this PLT entry. */
12028 rel
.r_offset
= plt_address
+ 8;
12029 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12030 rel
.r_addend
= got_offset
;
12031 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12032 loc
+= RELOC_SIZE (htab
);
12034 /* Create the R_ARM_ABS32 relocation referencing the
12035 beginning of the PLT for this GOT entry. */
12036 rel
.r_offset
= got_address
;
12037 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12039 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12043 bfd_signed_vma thumb_refs
;
12044 /* Calculate the displacement between the PLT slot and the
12045 entry in the GOT. The eight-byte offset accounts for the
12046 value produced by adding to pc in the first instruction
12047 of the PLT stub. */
12048 got_displacement
= got_address
- (plt_address
+ 8);
12050 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
12052 thumb_refs
= eh
->plt_thumb_refcount
;
12053 if (!htab
->use_blx
)
12054 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12056 if (thumb_refs
> 0)
12058 put_thumb_insn (htab
, output_bfd
,
12059 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
12060 put_thumb_insn (htab
, output_bfd
,
12061 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
12064 put_arm_insn (htab
, output_bfd
,
12065 elf32_arm_plt_entry
[0]
12066 | ((got_displacement
& 0x0ff00000) >> 20),
12068 put_arm_insn (htab
, output_bfd
,
12069 elf32_arm_plt_entry
[1]
12070 | ((got_displacement
& 0x000ff000) >> 12),
12072 put_arm_insn (htab
, output_bfd
,
12073 elf32_arm_plt_entry
[2]
12074 | (got_displacement
& 0x00000fff),
12076 #ifdef FOUR_WORD_PLT
12077 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
12081 /* Fill in the entry in the global offset table. */
12082 bfd_put_32 (output_bfd
,
12083 (splt
->output_section
->vma
12084 + splt
->output_offset
),
12085 sgot
->contents
+ got_offset
);
12087 /* Fill in the entry in the .rel(a).plt section. */
12089 rel
.r_offset
= got_address
;
12090 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
12093 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
12094 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12096 if (!h
->def_regular
)
12098 /* Mark the symbol as undefined, rather than as defined in
12099 the .plt section. Leave the value alone. */
12100 sym
->st_shndx
= SHN_UNDEF
;
12101 /* If the symbol is weak, we do need to clear the value.
12102 Otherwise, the PLT entry would provide a definition for
12103 the symbol even if the symbol wasn't defined anywhere,
12104 and so the symbol would never be NULL. */
12105 if (!h
->ref_regular_nonweak
)
12110 if (h
->got
.offset
!= (bfd_vma
) -1
12111 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_GD
) == 0
12112 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_IE
) == 0)
12116 Elf_Internal_Rela rel
;
12120 /* This symbol has an entry in the global offset table. Set it
12122 sgot
= bfd_get_section_by_name (dynobj
, ".got");
12123 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".got"));
12124 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
12126 offset
= (h
->got
.offset
& ~(bfd_vma
) 1);
12128 rel
.r_offset
= (sgot
->output_section
->vma
12129 + sgot
->output_offset
12132 /* If this is a static link, or it is a -Bsymbolic link and the
12133 symbol is defined locally or was forced to be local because
12134 of a version file, we just want to emit a RELATIVE reloc.
12135 The entry in the global offset table will already have been
12136 initialized in the relocate_section function. */
12138 && SYMBOL_REFERENCES_LOCAL (info
, h
))
12140 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
12141 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12142 if (!htab
->use_rel
)
12144 rel
.r_addend
= bfd_get_32 (output_bfd
, sgot
->contents
+ offset
);
12145 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12150 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
12151 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12152 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
12155 loc
= srel
->contents
+ srel
->reloc_count
++ * RELOC_SIZE (htab
);
12156 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12162 Elf_Internal_Rela rel
;
12165 /* This symbol needs a copy reloc. Set it up. */
12166 BFD_ASSERT (h
->dynindx
!= -1
12167 && (h
->root
.type
== bfd_link_hash_defined
12168 || h
->root
.type
== bfd_link_hash_defweak
));
12170 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
12171 RELOC_SECTION (htab
, ".bss"));
12172 BFD_ASSERT (s
!= NULL
);
12175 rel
.r_offset
= (h
->root
.u
.def
.value
12176 + h
->root
.u
.def
.section
->output_section
->vma
12177 + h
->root
.u
.def
.section
->output_offset
);
12178 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
12179 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
12180 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12183 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12184 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12185 to the ".got" section. */
12186 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
12187 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
12188 sym
->st_shndx
= SHN_ABS
;
12193 /* Finish up the dynamic sections. */
12196 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
12202 dynobj
= elf_hash_table (info
)->dynobj
;
12204 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
12205 BFD_ASSERT (elf32_arm_hash_table (info
)->symbian_p
|| sgot
!= NULL
);
12206 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
12208 if (elf_hash_table (info
)->dynamic_sections_created
)
12211 Elf32_External_Dyn
*dyncon
, *dynconend
;
12212 struct elf32_arm_link_hash_table
*htab
;
12214 htab
= elf32_arm_hash_table (info
);
12215 splt
= bfd_get_section_by_name (dynobj
, ".plt");
12216 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
12218 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
12219 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
12221 for (; dyncon
< dynconend
; dyncon
++)
12223 Elf_Internal_Dyn dyn
;
12227 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
12234 if (htab
->vxworks_p
12235 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
12236 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12241 goto get_vma_if_bpabi
;
12244 goto get_vma_if_bpabi
;
12247 goto get_vma_if_bpabi
;
12249 name
= ".gnu.version";
12250 goto get_vma_if_bpabi
;
12252 name
= ".gnu.version_d";
12253 goto get_vma_if_bpabi
;
12255 name
= ".gnu.version_r";
12256 goto get_vma_if_bpabi
;
12262 name
= RELOC_SECTION (htab
, ".plt");
12264 s
= bfd_get_section_by_name (output_bfd
, name
);
12265 BFD_ASSERT (s
!= NULL
);
12266 if (!htab
->symbian_p
)
12267 dyn
.d_un
.d_ptr
= s
->vma
;
12269 /* In the BPABI, tags in the PT_DYNAMIC section point
12270 at the file offset, not the memory address, for the
12271 convenience of the post linker. */
12272 dyn
.d_un
.d_ptr
= s
->filepos
;
12273 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12277 if (htab
->symbian_p
)
12282 s
= bfd_get_section_by_name (output_bfd
,
12283 RELOC_SECTION (htab
, ".plt"));
12284 BFD_ASSERT (s
!= NULL
);
12285 dyn
.d_un
.d_val
= s
->size
;
12286 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12291 if (!htab
->symbian_p
)
12293 /* My reading of the SVR4 ABI indicates that the
12294 procedure linkage table relocs (DT_JMPREL) should be
12295 included in the overall relocs (DT_REL). This is
12296 what Solaris does. However, UnixWare can not handle
12297 that case. Therefore, we override the DT_RELSZ entry
12298 here to make it not include the JMPREL relocs. Since
12299 the linker script arranges for .rel(a).plt to follow all
12300 other relocation sections, we don't have to worry
12301 about changing the DT_REL entry. */
12302 s
= bfd_get_section_by_name (output_bfd
,
12303 RELOC_SECTION (htab
, ".plt"));
12305 dyn
.d_un
.d_val
-= s
->size
;
12306 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12309 /* Fall through. */
12313 /* In the BPABI, the DT_REL tag must point at the file
12314 offset, not the VMA, of the first relocation
12315 section. So, we use code similar to that in
12316 elflink.c, but do not check for SHF_ALLOC on the
12317 relcoation section, since relocations sections are
12318 never allocated under the BPABI. The comments above
12319 about Unixware notwithstanding, we include all of the
12320 relocations here. */
12321 if (htab
->symbian_p
)
12324 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
12325 ? SHT_REL
: SHT_RELA
);
12326 dyn
.d_un
.d_val
= 0;
12327 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
12329 Elf_Internal_Shdr
*hdr
12330 = elf_elfsections (output_bfd
)[i
];
12331 if (hdr
->sh_type
== type
)
12333 if (dyn
.d_tag
== DT_RELSZ
12334 || dyn
.d_tag
== DT_RELASZ
)
12335 dyn
.d_un
.d_val
+= hdr
->sh_size
;
12336 else if ((ufile_ptr
) hdr
->sh_offset
12337 <= dyn
.d_un
.d_val
- 1)
12338 dyn
.d_un
.d_val
= hdr
->sh_offset
;
12341 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12345 /* Set the bottom bit of DT_INIT/FINI if the
12346 corresponding function is Thumb. */
12348 name
= info
->init_function
;
12351 name
= info
->fini_function
;
12353 /* If it wasn't set by elf_bfd_final_link
12354 then there is nothing to adjust. */
12355 if (dyn
.d_un
.d_val
!= 0)
12357 struct elf_link_hash_entry
* eh
;
12359 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
12360 FALSE
, FALSE
, TRUE
);
12362 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
12364 dyn
.d_un
.d_val
|= 1;
12365 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12372 /* Fill in the first entry in the procedure linkage table. */
12373 if (splt
->size
> 0 && elf32_arm_hash_table (info
)->plt_header_size
)
12375 const bfd_vma
*plt0_entry
;
12376 bfd_vma got_address
, plt_address
, got_displacement
;
12378 /* Calculate the addresses of the GOT and PLT. */
12379 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
12380 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
12382 if (htab
->vxworks_p
)
12384 /* The VxWorks GOT is relocated by the dynamic linker.
12385 Therefore, we must emit relocations rather than simply
12386 computing the values now. */
12387 Elf_Internal_Rela rel
;
12389 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
12390 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12391 splt
->contents
+ 0);
12392 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12393 splt
->contents
+ 4);
12394 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12395 splt
->contents
+ 8);
12396 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
12398 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
12399 rel
.r_offset
= plt_address
+ 12;
12400 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12402 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
12403 htab
->srelplt2
->contents
);
12407 got_displacement
= got_address
- (plt_address
+ 16);
12409 plt0_entry
= elf32_arm_plt0_entry
;
12410 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12411 splt
->contents
+ 0);
12412 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12413 splt
->contents
+ 4);
12414 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12415 splt
->contents
+ 8);
12416 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
12417 splt
->contents
+ 12);
12419 #ifdef FOUR_WORD_PLT
12420 /* The displacement value goes in the otherwise-unused
12421 last word of the second entry. */
12422 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
12424 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
12429 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12430 really seem like the right value. */
12431 if (splt
->output_section
->owner
== output_bfd
)
12432 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
12434 if (htab
->vxworks_p
&& !info
->shared
&& htab
->splt
->size
> 0)
12436 /* Correct the .rel(a).plt.unloaded relocations. They will have
12437 incorrect symbol indexes. */
12441 num_plts
= ((htab
->splt
->size
- htab
->plt_header_size
)
12442 / htab
->plt_entry_size
);
12443 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
12445 for (; num_plts
; num_plts
--)
12447 Elf_Internal_Rela rel
;
12449 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12450 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12451 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12452 p
+= RELOC_SIZE (htab
);
12454 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12455 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12456 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12457 p
+= RELOC_SIZE (htab
);
12462 /* Fill in the first three entries in the global offset table. */
12465 if (sgot
->size
> 0)
12468 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
12470 bfd_put_32 (output_bfd
,
12471 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
12473 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
12474 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
12477 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
12484 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
12486 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
12487 struct elf32_arm_link_hash_table
*globals
;
12489 i_ehdrp
= elf_elfheader (abfd
);
12491 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
12492 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
12494 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
12495 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
12499 globals
= elf32_arm_hash_table (link_info
);
12500 if (globals
->byteswap_code
)
12501 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
12505 static enum elf_reloc_type_class
12506 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
12508 switch ((int) ELF32_R_TYPE (rela
->r_info
))
12510 case R_ARM_RELATIVE
:
12511 return reloc_class_relative
;
12512 case R_ARM_JUMP_SLOT
:
12513 return reloc_class_plt
;
12515 return reloc_class_copy
;
12517 return reloc_class_normal
;
12521 /* Set the right machine number for an Arm ELF file. */
12524 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
12526 if (hdr
->sh_type
== SHT_NOTE
)
12527 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
12533 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
12535 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
12538 /* Return TRUE if this is an unwinding table entry. */
12541 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
12543 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
12544 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
12548 /* Set the type and flags for an ARM section. We do this by
12549 the section name, which is a hack, but ought to work. */
12552 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
12556 name
= bfd_get_section_name (abfd
, sec
);
12558 if (is_arm_elf_unwind_section_name (abfd
, name
))
12560 hdr
->sh_type
= SHT_ARM_EXIDX
;
12561 hdr
->sh_flags
|= SHF_LINK_ORDER
;
12566 /* Handle an ARM specific section when reading an object file. This is
12567 called when bfd_section_from_shdr finds a section with an unknown
12571 elf32_arm_section_from_shdr (bfd
*abfd
,
12572 Elf_Internal_Shdr
* hdr
,
12576 /* There ought to be a place to keep ELF backend specific flags, but
12577 at the moment there isn't one. We just keep track of the
12578 sections by their name, instead. Fortunately, the ABI gives
12579 names for all the ARM specific sections, so we will probably get
12581 switch (hdr
->sh_type
)
12583 case SHT_ARM_EXIDX
:
12584 case SHT_ARM_PREEMPTMAP
:
12585 case SHT_ARM_ATTRIBUTES
:
12592 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
12598 /* A structure used to record a list of sections, independently
12599 of the next and prev fields in the asection structure. */
12600 typedef struct section_list
12603 struct section_list
* next
;
12604 struct section_list
* prev
;
12608 /* Unfortunately we need to keep a list of sections for which
12609 an _arm_elf_section_data structure has been allocated. This
12610 is because it is possible for functions like elf32_arm_write_section
12611 to be called on a section which has had an elf_data_structure
12612 allocated for it (and so the used_by_bfd field is valid) but
12613 for which the ARM extended version of this structure - the
12614 _arm_elf_section_data structure - has not been allocated. */
12615 static section_list
* sections_with_arm_elf_section_data
= NULL
;
12618 record_section_with_arm_elf_section_data (asection
* sec
)
12620 struct section_list
* entry
;
12622 entry
= (struct section_list
*) bfd_malloc (sizeof (* entry
));
12626 entry
->next
= sections_with_arm_elf_section_data
;
12627 entry
->prev
= NULL
;
12628 if (entry
->next
!= NULL
)
12629 entry
->next
->prev
= entry
;
12630 sections_with_arm_elf_section_data
= entry
;
12633 static struct section_list
*
12634 find_arm_elf_section_entry (asection
* sec
)
12636 struct section_list
* entry
;
12637 static struct section_list
* last_entry
= NULL
;
12639 /* This is a short cut for the typical case where the sections are added
12640 to the sections_with_arm_elf_section_data list in forward order and
12641 then looked up here in backwards order. This makes a real difference
12642 to the ld-srec/sec64k.exp linker test. */
12643 entry
= sections_with_arm_elf_section_data
;
12644 if (last_entry
!= NULL
)
12646 if (last_entry
->sec
== sec
)
12647 entry
= last_entry
;
12648 else if (last_entry
->next
!= NULL
12649 && last_entry
->next
->sec
== sec
)
12650 entry
= last_entry
->next
;
12653 for (; entry
; entry
= entry
->next
)
12654 if (entry
->sec
== sec
)
12658 /* Record the entry prior to this one - it is the entry we are most
12659 likely to want to locate next time. Also this way if we have been
12660 called from unrecord_section_with_arm_elf_section_data() we will not
12661 be caching a pointer that is about to be freed. */
12662 last_entry
= entry
->prev
;
12667 static _arm_elf_section_data
*
12668 get_arm_elf_section_data (asection
* sec
)
12670 struct section_list
* entry
;
12672 entry
= find_arm_elf_section_entry (sec
);
12675 return elf32_arm_section_data (entry
->sec
);
12681 unrecord_section_with_arm_elf_section_data (asection
* sec
)
12683 struct section_list
* entry
;
12685 entry
= find_arm_elf_section_entry (sec
);
12689 if (entry
->prev
!= NULL
)
12690 entry
->prev
->next
= entry
->next
;
12691 if (entry
->next
!= NULL
)
12692 entry
->next
->prev
= entry
->prev
;
12693 if (entry
== sections_with_arm_elf_section_data
)
12694 sections_with_arm_elf_section_data
= entry
->next
;
12703 struct bfd_link_info
*info
;
12706 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
12707 asection
*, struct elf_link_hash_entry
*);
12708 } output_arch_syminfo
;
12710 enum map_symbol_type
12718 /* Output a single mapping symbol. */
12721 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
12722 enum map_symbol_type type
,
12725 static const char *names
[3] = {"$a", "$t", "$d"};
12726 struct elf32_arm_link_hash_table
*htab
;
12727 Elf_Internal_Sym sym
;
12729 htab
= elf32_arm_hash_table (osi
->info
);
12730 sym
.st_value
= osi
->sec
->output_section
->vma
12731 + osi
->sec
->output_offset
12735 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
12736 sym
.st_shndx
= osi
->sec_shndx
;
12737 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
12741 /* Output mapping symbols for PLT entries associated with H. */
12744 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
12746 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
12747 struct elf32_arm_link_hash_table
*htab
;
12748 struct elf32_arm_link_hash_entry
*eh
;
12751 htab
= elf32_arm_hash_table (osi
->info
);
12753 if (h
->root
.type
== bfd_link_hash_indirect
)
12756 if (h
->root
.type
== bfd_link_hash_warning
)
12757 /* When warning symbols are created, they **replace** the "real"
12758 entry in the hash table, thus we never get to see the real
12759 symbol in a hash traversal. So look at it now. */
12760 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12762 if (h
->plt
.offset
== (bfd_vma
) -1)
12765 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12766 addr
= h
->plt
.offset
;
12767 if (htab
->symbian_p
)
12769 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12771 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
12774 else if (htab
->vxworks_p
)
12776 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12778 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
12780 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
12782 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
12787 bfd_signed_vma thumb_refs
;
12789 thumb_refs
= eh
->plt_thumb_refcount
;
12790 if (!htab
->use_blx
)
12791 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12793 if (thumb_refs
> 0)
12795 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
12798 #ifdef FOUR_WORD_PLT
12799 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12801 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
12804 /* A three-word PLT with no Thumb thunk contains only Arm code,
12805 so only need to output a mapping symbol for the first PLT entry and
12806 entries with thumb thunks. */
12807 if (thumb_refs
> 0 || addr
== 20)
12809 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12818 /* Output a single local symbol for a generated stub. */
12821 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
12822 bfd_vma offset
, bfd_vma size
)
12824 struct elf32_arm_link_hash_table
*htab
;
12825 Elf_Internal_Sym sym
;
12827 htab
= elf32_arm_hash_table (osi
->info
);
12828 sym
.st_value
= osi
->sec
->output_section
->vma
12829 + osi
->sec
->output_offset
12831 sym
.st_size
= size
;
12833 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
12834 sym
.st_shndx
= osi
->sec_shndx
;
12835 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
12839 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
12842 struct elf32_arm_stub_hash_entry
*stub_entry
;
12843 struct bfd_link_info
*info
;
12844 struct elf32_arm_link_hash_table
*htab
;
12845 asection
*stub_sec
;
12848 output_arch_syminfo
*osi
;
12849 const insn_sequence
*template_sequence
;
12850 enum stub_insn_type prev_type
;
12853 enum map_symbol_type sym_type
;
12855 /* Massage our args to the form they really have. */
12856 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
12857 osi
= (output_arch_syminfo
*) in_arg
;
12861 htab
= elf32_arm_hash_table (info
);
12862 stub_sec
= stub_entry
->stub_sec
;
12864 /* Ensure this stub is attached to the current section being
12866 if (stub_sec
!= osi
->sec
)
12869 addr
= (bfd_vma
) stub_entry
->stub_offset
;
12870 stub_name
= stub_entry
->output_name
;
12872 template_sequence
= stub_entry
->stub_template
;
12873 switch (template_sequence
[0].type
)
12876 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
12881 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
12882 stub_entry
->stub_size
))
12890 prev_type
= DATA_TYPE
;
12892 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
12894 switch (template_sequence
[i
].type
)
12897 sym_type
= ARM_MAP_ARM
;
12902 sym_type
= ARM_MAP_THUMB
;
12906 sym_type
= ARM_MAP_DATA
;
12914 if (template_sequence
[i
].type
!= prev_type
)
12916 prev_type
= template_sequence
[i
].type
;
12917 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
12921 switch (template_sequence
[i
].type
)
12945 /* Output mapping symbols for linker generated sections. */
12948 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
12949 struct bfd_link_info
*info
,
12951 int (*func
) (void *, const char *,
12952 Elf_Internal_Sym
*,
12954 struct elf_link_hash_entry
*))
12956 output_arch_syminfo osi
;
12957 struct elf32_arm_link_hash_table
*htab
;
12959 bfd_size_type size
;
12961 htab
= elf32_arm_hash_table (info
);
12962 check_use_blx (htab
);
12968 /* ARM->Thumb glue. */
12969 if (htab
->arm_glue_size
> 0)
12971 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
12972 ARM2THUMB_GLUE_SECTION_NAME
);
12974 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
12975 (output_bfd
, osi
.sec
->output_section
);
12976 if (info
->shared
|| htab
->root
.is_relocatable_executable
12977 || htab
->pic_veneer
)
12978 size
= ARM2THUMB_PIC_GLUE_SIZE
;
12979 else if (htab
->use_blx
)
12980 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
12982 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
12984 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
12986 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
12987 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
12991 /* Thumb->ARM glue. */
12992 if (htab
->thumb_glue_size
> 0)
12994 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
12995 THUMB2ARM_GLUE_SECTION_NAME
);
12997 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
12998 (output_bfd
, osi
.sec
->output_section
);
12999 size
= THUMB2ARM_GLUE_SIZE
;
13001 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
13003 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
13004 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
13008 /* ARMv4 BX veneers. */
13009 if (htab
->bx_glue_size
> 0)
13011 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13012 ARM_BX_GLUE_SECTION_NAME
);
13014 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13015 (output_bfd
, osi
.sec
->output_section
);
13017 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
13020 /* Long calls stubs. */
13021 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
13023 asection
* stub_sec
;
13025 for (stub_sec
= htab
->stub_bfd
->sections
;
13027 stub_sec
= stub_sec
->next
)
13029 /* Ignore non-stub sections. */
13030 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
13033 osi
.sec
= stub_sec
;
13035 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13036 (output_bfd
, osi
.sec
->output_section
);
13038 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
13042 /* Finally, output mapping symbols for the PLT. */
13043 if (!htab
->splt
|| htab
->splt
->size
== 0)
13046 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
13047 htab
->splt
->output_section
);
13048 osi
.sec
= htab
->splt
;
13049 /* Output mapping symbols for the plt header. SymbianOS does not have a
13051 if (htab
->vxworks_p
)
13053 /* VxWorks shared libraries have no PLT header. */
13056 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13058 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
13062 else if (!htab
->symbian_p
)
13064 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13066 #ifndef FOUR_WORD_PLT
13067 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
13072 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, (void *) &osi
);
13076 /* Allocate target specific section data. */
13079 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
13081 if (!sec
->used_by_bfd
)
13083 _arm_elf_section_data
*sdata
;
13084 bfd_size_type amt
= sizeof (*sdata
);
13086 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
13089 sec
->used_by_bfd
= sdata
;
13092 record_section_with_arm_elf_section_data (sec
);
13094 return _bfd_elf_new_section_hook (abfd
, sec
);
13098 /* Used to order a list of mapping symbols by address. */
13101 elf32_arm_compare_mapping (const void * a
, const void * b
)
13103 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
13104 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
13106 if (amap
->vma
> bmap
->vma
)
13108 else if (amap
->vma
< bmap
->vma
)
13110 else if (amap
->type
> bmap
->type
)
13111 /* Ensure results do not depend on the host qsort for objects with
13112 multiple mapping symbols at the same address by sorting on type
13115 else if (amap
->type
< bmap
->type
)
13121 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13123 static unsigned long
13124 offset_prel31 (unsigned long addr
, bfd_vma offset
)
13126 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
13129 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13133 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
13135 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
13136 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
13138 /* High bit of first word is supposed to be zero. */
13139 if ((first_word
& 0x80000000ul
) == 0)
13140 first_word
= offset_prel31 (first_word
, offset
);
13142 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13143 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13144 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
13145 second_word
= offset_prel31 (second_word
, offset
);
13147 bfd_put_32 (output_bfd
, first_word
, to
);
13148 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
13151 /* Data for make_branch_to_a8_stub(). */
13153 struct a8_branch_to_stub_data
{
13154 asection
*writing_section
;
13155 bfd_byte
*contents
;
13159 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
13160 places for a particular section. */
13163 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
13166 struct elf32_arm_stub_hash_entry
*stub_entry
;
13167 struct a8_branch_to_stub_data
*data
;
13168 bfd_byte
*contents
;
13169 unsigned long branch_insn
;
13170 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
13171 bfd_signed_vma branch_offset
;
13173 unsigned int target
;
13175 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
13176 data
= (struct a8_branch_to_stub_data
*) in_arg
;
13178 if (stub_entry
->target_section
!= data
->writing_section
13179 || stub_entry
->stub_type
< arm_stub_a8_veneer_b_cond
)
13182 contents
= data
->contents
;
13184 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
13185 + stub_entry
->target_section
->output_offset
13186 + stub_entry
->target_value
;
13188 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
13189 + stub_entry
->stub_sec
->output_offset
13190 + stub_entry
->stub_offset
;
13192 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
13193 veneered_insn_loc
&= ~3u;
13195 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
13197 abfd
= stub_entry
->target_section
->owner
;
13198 target
= stub_entry
->target_value
;
13200 /* We attempt to avoid this condition by setting stubs_always_after_branch
13201 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13202 This check is just to be on the safe side... */
13203 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
13205 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
13206 "allocated in unsafe location"), abfd
);
13210 switch (stub_entry
->stub_type
)
13212 case arm_stub_a8_veneer_b
:
13213 case arm_stub_a8_veneer_b_cond
:
13214 branch_insn
= 0xf0009000;
13217 case arm_stub_a8_veneer_blx
:
13218 branch_insn
= 0xf000e800;
13221 case arm_stub_a8_veneer_bl
:
13223 unsigned int i1
, j1
, i2
, j2
, s
;
13225 branch_insn
= 0xf000d000;
13228 if (branch_offset
< -16777216 || branch_offset
> 16777214)
13230 /* There's not much we can do apart from complain if this
13232 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
13233 "of range (input file too large)"), abfd
);
13237 /* i1 = not(j1 eor s), so:
13239 j1 = (not i1) eor s. */
13241 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
13242 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
13243 i2
= (branch_offset
>> 22) & 1;
13244 i1
= (branch_offset
>> 23) & 1;
13245 s
= (branch_offset
>> 24) & 1;
13248 branch_insn
|= j2
<< 11;
13249 branch_insn
|= j1
<< 13;
13250 branch_insn
|= s
<< 26;
13259 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[target
]);
13260 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[target
+ 2]);
13265 /* Do code byteswapping. Return FALSE afterwards so that the section is
13266 written out as normal. */
13269 elf32_arm_write_section (bfd
*output_bfd
,
13270 struct bfd_link_info
*link_info
,
13272 bfd_byte
*contents
)
13274 unsigned int mapcount
, errcount
;
13275 _arm_elf_section_data
*arm_data
;
13276 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
13277 elf32_arm_section_map
*map
;
13278 elf32_vfp11_erratum_list
*errnode
;
13281 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
13285 /* If this section has not been allocated an _arm_elf_section_data
13286 structure then we cannot record anything. */
13287 arm_data
= get_arm_elf_section_data (sec
);
13288 if (arm_data
== NULL
)
13291 mapcount
= arm_data
->mapcount
;
13292 map
= arm_data
->map
;
13293 errcount
= arm_data
->erratumcount
;
13297 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
13299 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
13300 errnode
= errnode
->next
)
13302 bfd_vma target
= errnode
->vma
- offset
;
13304 switch (errnode
->type
)
13306 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
13308 bfd_vma branch_to_veneer
;
13309 /* Original condition code of instruction, plus bit mask for
13310 ARM B instruction. */
13311 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
13314 /* The instruction is before the label. */
13317 /* Above offset included in -4 below. */
13318 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
13319 - errnode
->vma
- 4;
13321 if ((signed) branch_to_veneer
< -(1 << 25)
13322 || (signed) branch_to_veneer
>= (1 << 25))
13323 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13324 "range"), output_bfd
);
13326 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
13327 contents
[endianflip
^ target
] = insn
& 0xff;
13328 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
13329 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
13330 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
13334 case VFP11_ERRATUM_ARM_VENEER
:
13336 bfd_vma branch_from_veneer
;
13339 /* Take size of veneer into account. */
13340 branch_from_veneer
= errnode
->u
.v
.branch
->vma
13341 - errnode
->vma
- 12;
13343 if ((signed) branch_from_veneer
< -(1 << 25)
13344 || (signed) branch_from_veneer
>= (1 << 25))
13345 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13346 "range"), output_bfd
);
13348 /* Original instruction. */
13349 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
13350 contents
[endianflip
^ target
] = insn
& 0xff;
13351 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
13352 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
13353 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
13355 /* Branch back to insn after original insn. */
13356 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
13357 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
13358 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
13359 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
13360 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
13370 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
13372 arm_unwind_table_edit
*edit_node
13373 = arm_data
->u
.exidx
.unwind_edit_list
;
13374 /* Now, sec->size is the size of the section we will write. The original
13375 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13376 markers) was sec->rawsize. (This isn't the case if we perform no
13377 edits, then rawsize will be zero and we should use size). */
13378 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
13379 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
13380 unsigned int in_index
, out_index
;
13381 bfd_vma add_to_offsets
= 0;
13383 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
13387 unsigned int edit_index
= edit_node
->index
;
13389 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
13391 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13392 contents
+ in_index
* 8, add_to_offsets
);
13396 else if (in_index
== edit_index
13397 || (in_index
* 8 >= input_size
13398 && edit_index
== UINT_MAX
))
13400 switch (edit_node
->type
)
13402 case DELETE_EXIDX_ENTRY
:
13404 add_to_offsets
+= 8;
13407 case INSERT_EXIDX_CANTUNWIND_AT_END
:
13409 asection
*text_sec
= edit_node
->linked_section
;
13410 bfd_vma text_offset
= text_sec
->output_section
->vma
13411 + text_sec
->output_offset
13413 bfd_vma exidx_offset
= offset
+ out_index
* 8;
13414 unsigned long prel31_offset
;
13416 /* Note: this is meant to be equivalent to an
13417 R_ARM_PREL31 relocation. These synthetic
13418 EXIDX_CANTUNWIND markers are not relocated by the
13419 usual BFD method. */
13420 prel31_offset
= (text_offset
- exidx_offset
)
13423 /* First address we can't unwind. */
13424 bfd_put_32 (output_bfd
, prel31_offset
,
13425 &edited_contents
[out_index
* 8]);
13427 /* Code for EXIDX_CANTUNWIND. */
13428 bfd_put_32 (output_bfd
, 0x1,
13429 &edited_contents
[out_index
* 8 + 4]);
13432 add_to_offsets
-= 8;
13437 edit_node
= edit_node
->next
;
13442 /* No more edits, copy remaining entries verbatim. */
13443 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13444 contents
+ in_index
* 8, add_to_offsets
);
13450 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
13451 bfd_set_section_contents (output_bfd
, sec
->output_section
,
13453 (file_ptr
) sec
->output_offset
, sec
->size
);
13458 /* Fix code to point to Cortex-A8 erratum stubs. */
13459 if (globals
->fix_cortex_a8
)
13461 struct a8_branch_to_stub_data data
;
13463 data
.writing_section
= sec
;
13464 data
.contents
= contents
;
13466 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
13473 if (globals
->byteswap_code
)
13475 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
13478 for (i
= 0; i
< mapcount
; i
++)
13480 if (i
== mapcount
- 1)
13483 end
= map
[i
+ 1].vma
;
13485 switch (map
[i
].type
)
13488 /* Byte swap code words. */
13489 while (ptr
+ 3 < end
)
13491 tmp
= contents
[ptr
];
13492 contents
[ptr
] = contents
[ptr
+ 3];
13493 contents
[ptr
+ 3] = tmp
;
13494 tmp
= contents
[ptr
+ 1];
13495 contents
[ptr
+ 1] = contents
[ptr
+ 2];
13496 contents
[ptr
+ 2] = tmp
;
13502 /* Byte swap code halfwords. */
13503 while (ptr
+ 1 < end
)
13505 tmp
= contents
[ptr
];
13506 contents
[ptr
] = contents
[ptr
+ 1];
13507 contents
[ptr
+ 1] = tmp
;
13513 /* Leave data alone. */
13521 arm_data
->mapcount
= 0;
13522 arm_data
->mapsize
= 0;
13523 arm_data
->map
= NULL
;
13524 unrecord_section_with_arm_elf_section_data (sec
);
13530 unrecord_section_via_map_over_sections (bfd
* abfd ATTRIBUTE_UNUSED
,
13532 void * ignore ATTRIBUTE_UNUSED
)
13534 unrecord_section_with_arm_elf_section_data (sec
);
13538 elf32_arm_close_and_cleanup (bfd
* abfd
)
13540 if (abfd
->sections
)
13541 bfd_map_over_sections (abfd
,
13542 unrecord_section_via_map_over_sections
,
13545 return _bfd_elf_close_and_cleanup (abfd
);
13549 elf32_arm_bfd_free_cached_info (bfd
* abfd
)
13551 if (abfd
->sections
)
13552 bfd_map_over_sections (abfd
,
13553 unrecord_section_via_map_over_sections
,
13556 return _bfd_free_cached_info (abfd
);
13559 /* Display STT_ARM_TFUNC symbols as functions. */
13562 elf32_arm_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
13565 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
13567 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_ARM_TFUNC
)
13568 elfsym
->symbol
.flags
|= BSF_FUNCTION
;
13572 /* Mangle thumb function symbols as we read them in. */
13575 elf32_arm_swap_symbol_in (bfd
* abfd
,
13578 Elf_Internal_Sym
*dst
)
13580 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
13583 /* New EABI objects mark thumb function symbols by setting the low bit of
13584 the address. Turn these into STT_ARM_TFUNC. */
13585 if ((ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
)
13586 && (dst
->st_value
& 1))
13588 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_ARM_TFUNC
);
13589 dst
->st_value
&= ~(bfd_vma
) 1;
13595 /* Mangle thumb function symbols as we write them out. */
13598 elf32_arm_swap_symbol_out (bfd
*abfd
,
13599 const Elf_Internal_Sym
*src
,
13603 Elf_Internal_Sym newsym
;
13605 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13606 of the address set, as per the new EABI. We do this unconditionally
13607 because objcopy does not set the elf header flags until after
13608 it writes out the symbol table. */
13609 if (ELF_ST_TYPE (src
->st_info
) == STT_ARM_TFUNC
)
13612 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
13613 if (newsym
.st_shndx
!= SHN_UNDEF
)
13615 /* Do this only for defined symbols. At link type, the static
13616 linker will simulate the work of dynamic linker of resolving
13617 symbols and will carry over the thumbness of found symbols to
13618 the output symbol table. It's not clear how it happens, but
13619 the thumbness of undefined symbols can well be different at
13620 runtime, and writing '1' for them will be confusing for users
13621 and possibly for dynamic linker itself.
13623 newsym
.st_value
|= 1;
13628 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
13631 /* Add the PT_ARM_EXIDX program header. */
13634 elf32_arm_modify_segment_map (bfd
*abfd
,
13635 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13637 struct elf_segment_map
*m
;
13640 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13641 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13643 /* If there is already a PT_ARM_EXIDX header, then we do not
13644 want to add another one. This situation arises when running
13645 "strip"; the input binary already has the header. */
13646 m
= elf_tdata (abfd
)->segment_map
;
13647 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
13651 m
= (struct elf_segment_map
*)
13652 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
13655 m
->p_type
= PT_ARM_EXIDX
;
13657 m
->sections
[0] = sec
;
13659 m
->next
= elf_tdata (abfd
)->segment_map
;
13660 elf_tdata (abfd
)->segment_map
= m
;
13667 /* We may add a PT_ARM_EXIDX program header. */
13670 elf32_arm_additional_program_headers (bfd
*abfd
,
13671 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13675 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13676 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13682 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
13685 elf32_arm_is_function_type (unsigned int type
)
13687 return (type
== STT_FUNC
) || (type
== STT_ARM_TFUNC
);
13690 /* We use this to override swap_symbol_in and swap_symbol_out. */
13691 const struct elf_size_info elf32_arm_size_info
=
13693 sizeof (Elf32_External_Ehdr
),
13694 sizeof (Elf32_External_Phdr
),
13695 sizeof (Elf32_External_Shdr
),
13696 sizeof (Elf32_External_Rel
),
13697 sizeof (Elf32_External_Rela
),
13698 sizeof (Elf32_External_Sym
),
13699 sizeof (Elf32_External_Dyn
),
13700 sizeof (Elf_External_Note
),
13704 ELFCLASS32
, EV_CURRENT
,
13705 bfd_elf32_write_out_phdrs
,
13706 bfd_elf32_write_shdrs_and_ehdr
,
13707 bfd_elf32_checksum_contents
,
13708 bfd_elf32_write_relocs
,
13709 elf32_arm_swap_symbol_in
,
13710 elf32_arm_swap_symbol_out
,
13711 bfd_elf32_slurp_reloc_table
,
13712 bfd_elf32_slurp_symbol_table
,
13713 bfd_elf32_swap_dyn_in
,
13714 bfd_elf32_swap_dyn_out
,
13715 bfd_elf32_swap_reloc_in
,
13716 bfd_elf32_swap_reloc_out
,
13717 bfd_elf32_swap_reloca_in
,
13718 bfd_elf32_swap_reloca_out
13721 #define ELF_ARCH bfd_arch_arm
13722 #define ELF_MACHINE_CODE EM_ARM
13723 #ifdef __QNXTARGET__
13724 #define ELF_MAXPAGESIZE 0x1000
13726 #define ELF_MAXPAGESIZE 0x8000
13728 #define ELF_MINPAGESIZE 0x1000
13729 #define ELF_COMMONPAGESIZE 0x1000
13731 #define bfd_elf32_mkobject elf32_arm_mkobject
13733 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13734 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
13735 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13736 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13737 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
13738 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
13739 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
13740 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13741 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
13742 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
13743 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
13744 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
13745 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
13746 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
13747 #define bfd_elf32_bfd_final_link elf32_arm_final_link
13749 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13750 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
13751 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
13752 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13753 #define elf_backend_check_relocs elf32_arm_check_relocs
13754 #define elf_backend_relocate_section elf32_arm_relocate_section
13755 #define elf_backend_write_section elf32_arm_write_section
13756 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
13757 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
13758 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13759 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13760 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
13761 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
13762 #define elf_backend_post_process_headers elf32_arm_post_process_headers
13763 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
13764 #define elf_backend_object_p elf32_arm_object_p
13765 #define elf_backend_section_flags elf32_arm_section_flags
13766 #define elf_backend_fake_sections elf32_arm_fake_sections
13767 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
13768 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13769 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
13770 #define elf_backend_symbol_processing elf32_arm_symbol_processing
13771 #define elf_backend_size_info elf32_arm_size_info
13772 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
13773 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13774 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13775 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13776 #define elf_backend_is_function_type elf32_arm_is_function_type
13778 #define elf_backend_can_refcount 1
13779 #define elf_backend_can_gc_sections 1
13780 #define elf_backend_plt_readonly 1
13781 #define elf_backend_want_got_plt 1
13782 #define elf_backend_want_plt_sym 0
13783 #define elf_backend_may_use_rel_p 1
13784 #define elf_backend_may_use_rela_p 0
13785 #define elf_backend_default_use_rela_p 0
13787 #define elf_backend_got_header_size 12
13789 #undef elf_backend_obj_attrs_vendor
13790 #define elf_backend_obj_attrs_vendor "aeabi"
13791 #undef elf_backend_obj_attrs_section
13792 #define elf_backend_obj_attrs_section ".ARM.attributes"
13793 #undef elf_backend_obj_attrs_arg_type
13794 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13795 #undef elf_backend_obj_attrs_section_type
13796 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
13797 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
13799 #include "elf32-target.h"
13801 /* VxWorks Targets. */
13803 #undef TARGET_LITTLE_SYM
13804 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
13805 #undef TARGET_LITTLE_NAME
13806 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
13807 #undef TARGET_BIG_SYM
13808 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
13809 #undef TARGET_BIG_NAME
13810 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13812 /* Like elf32_arm_link_hash_table_create -- but overrides
13813 appropriately for VxWorks. */
13815 static struct bfd_link_hash_table
*
13816 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
13818 struct bfd_link_hash_table
*ret
;
13820 ret
= elf32_arm_link_hash_table_create (abfd
);
13823 struct elf32_arm_link_hash_table
*htab
13824 = (struct elf32_arm_link_hash_table
*) ret
;
13826 htab
->vxworks_p
= 1;
13832 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
13834 elf32_arm_final_write_processing (abfd
, linker
);
13835 elf_vxworks_final_write_processing (abfd
, linker
);
13839 #define elf32_bed elf32_arm_vxworks_bed
13841 #undef bfd_elf32_bfd_link_hash_table_create
13842 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13843 #undef elf_backend_add_symbol_hook
13844 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13845 #undef elf_backend_final_write_processing
13846 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13847 #undef elf_backend_emit_relocs
13848 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
13850 #undef elf_backend_may_use_rel_p
13851 #define elf_backend_may_use_rel_p 0
13852 #undef elf_backend_may_use_rela_p
13853 #define elf_backend_may_use_rela_p 1
13854 #undef elf_backend_default_use_rela_p
13855 #define elf_backend_default_use_rela_p 1
13856 #undef elf_backend_want_plt_sym
13857 #define elf_backend_want_plt_sym 1
13858 #undef ELF_MAXPAGESIZE
13859 #define ELF_MAXPAGESIZE 0x1000
13861 #include "elf32-target.h"
13864 /* Merge backend specific data from an object file to the output
13865 object file when linking. */
13868 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
13870 flagword out_flags
;
13872 bfd_boolean flags_compatible
= TRUE
;
13875 /* Check if we have the same endianess. */
13876 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
13879 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
13882 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
13885 /* The input BFD must have had its flags initialised. */
13886 /* The following seems bogus to me -- The flags are initialized in
13887 the assembler but I don't think an elf_flags_init field is
13888 written into the object. */
13889 /* BFD_ASSERT (elf_flags_init (ibfd)); */
13891 in_flags
= elf_elfheader (ibfd
)->e_flags
;
13892 out_flags
= elf_elfheader (obfd
)->e_flags
;
13894 /* In theory there is no reason why we couldn't handle this. However
13895 in practice it isn't even close to working and there is no real
13896 reason to want it. */
13897 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
13898 && !(ibfd
->flags
& DYNAMIC
)
13899 && (in_flags
& EF_ARM_BE8
))
13901 _bfd_error_handler (_("error: %B is already in final BE8 format"),
13906 if (!elf_flags_init (obfd
))
13908 /* If the input is the default architecture and had the default
13909 flags then do not bother setting the flags for the output
13910 architecture, instead allow future merges to do this. If no
13911 future merges ever set these flags then they will retain their
13912 uninitialised values, which surprise surprise, correspond
13913 to the default values. */
13914 if (bfd_get_arch_info (ibfd
)->the_default
13915 && elf_elfheader (ibfd
)->e_flags
== 0)
13918 elf_flags_init (obfd
) = TRUE
;
13919 elf_elfheader (obfd
)->e_flags
= in_flags
;
13921 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
13922 && bfd_get_arch_info (obfd
)->the_default
)
13923 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
13928 /* Determine what should happen if the input ARM architecture
13929 does not match the output ARM architecture. */
13930 if (! bfd_arm_merge_machines (ibfd
, obfd
))
13933 /* Identical flags must be compatible. */
13934 if (in_flags
== out_flags
)
13937 /* Check to see if the input BFD actually contains any sections. If
13938 not, its flags may not have been initialised either, but it
13939 cannot actually cause any incompatiblity. Do not short-circuit
13940 dynamic objects; their section list may be emptied by
13941 elf_link_add_object_symbols.
13943 Also check to see if there are no code sections in the input.
13944 In this case there is no need to check for code specific flags.
13945 XXX - do we need to worry about floating-point format compatability
13946 in data sections ? */
13947 if (!(ibfd
->flags
& DYNAMIC
))
13949 bfd_boolean null_input_bfd
= TRUE
;
13950 bfd_boolean only_data_sections
= TRUE
;
13952 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
13954 /* Ignore synthetic glue sections. */
13955 if (strcmp (sec
->name
, ".glue_7")
13956 && strcmp (sec
->name
, ".glue_7t"))
13958 if ((bfd_get_section_flags (ibfd
, sec
)
13959 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
13960 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
13961 only_data_sections
= FALSE
;
13963 null_input_bfd
= FALSE
;
13968 if (null_input_bfd
|| only_data_sections
)
13972 /* Complain about various flag mismatches. */
13973 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
13974 EF_ARM_EABI_VERSION (out_flags
)))
13977 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
13979 (in_flags
& EF_ARM_EABIMASK
) >> 24,
13980 (out_flags
& EF_ARM_EABIMASK
) >> 24);
13984 /* Not sure what needs to be checked for EABI versions >= 1. */
13985 /* VxWorks libraries do not use these flags. */
13986 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
13987 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
13988 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
13990 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
13993 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
13995 in_flags
& EF_ARM_APCS_26
? 26 : 32,
13996 out_flags
& EF_ARM_APCS_26
? 26 : 32);
13997 flags_compatible
= FALSE
;
14000 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
14002 if (in_flags
& EF_ARM_APCS_FLOAT
)
14004 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
14008 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
14011 flags_compatible
= FALSE
;
14014 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
14016 if (in_flags
& EF_ARM_VFP_FLOAT
)
14018 (_("error: %B uses VFP instructions, whereas %B does not"),
14022 (_("error: %B uses FPA instructions, whereas %B does not"),
14025 flags_compatible
= FALSE
;
14028 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
14030 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
14032 (_("error: %B uses Maverick instructions, whereas %B does not"),
14036 (_("error: %B does not use Maverick instructions, whereas %B does"),
14039 flags_compatible
= FALSE
;
14042 #ifdef EF_ARM_SOFT_FLOAT
14043 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
14045 /* We can allow interworking between code that is VFP format
14046 layout, and uses either soft float or integer regs for
14047 passing floating point arguments and results. We already
14048 know that the APCS_FLOAT flags match; similarly for VFP
14050 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
14051 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
14053 if (in_flags
& EF_ARM_SOFT_FLOAT
)
14055 (_("error: %B uses software FP, whereas %B uses hardware FP"),
14059 (_("error: %B uses hardware FP, whereas %B uses software FP"),
14062 flags_compatible
= FALSE
;
14067 /* Interworking mismatch is only a warning. */
14068 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
14070 if (in_flags
& EF_ARM_INTERWORK
)
14073 (_("Warning: %B supports interworking, whereas %B does not"),
14079 (_("Warning: %B does not support interworking, whereas %B does"),
14085 return flags_compatible
;
14089 /* Symbian OS Targets. */
14091 #undef TARGET_LITTLE_SYM
14092 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
14093 #undef TARGET_LITTLE_NAME
14094 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
14095 #undef TARGET_BIG_SYM
14096 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
14097 #undef TARGET_BIG_NAME
14098 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
14100 /* Like elf32_arm_link_hash_table_create -- but overrides
14101 appropriately for Symbian OS. */
14103 static struct bfd_link_hash_table
*
14104 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
14106 struct bfd_link_hash_table
*ret
;
14108 ret
= elf32_arm_link_hash_table_create (abfd
);
14111 struct elf32_arm_link_hash_table
*htab
14112 = (struct elf32_arm_link_hash_table
*)ret
;
14113 /* There is no PLT header for Symbian OS. */
14114 htab
->plt_header_size
= 0;
14115 /* The PLT entries are each one instruction and one word. */
14116 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
14117 htab
->symbian_p
= 1;
14118 /* Symbian uses armv5t or above, so use_blx is always true. */
14120 htab
->root
.is_relocatable_executable
= 1;
14125 static const struct bfd_elf_special_section
14126 elf32_arm_symbian_special_sections
[] =
14128 /* In a BPABI executable, the dynamic linking sections do not go in
14129 the loadable read-only segment. The post-linker may wish to
14130 refer to these sections, but they are not part of the final
14132 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
14133 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
14134 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
14135 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
14136 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
14137 /* These sections do not need to be writable as the SymbianOS
14138 postlinker will arrange things so that no dynamic relocation is
14140 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
14141 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
14142 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
14143 { NULL
, 0, 0, 0, 0 }
14147 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
14148 struct bfd_link_info
*link_info
)
14150 /* BPABI objects are never loaded directly by an OS kernel; they are
14151 processed by a postlinker first, into an OS-specific format. If
14152 the D_PAGED bit is set on the file, BFD will align segments on
14153 page boundaries, so that an OS can directly map the file. With
14154 BPABI objects, that just results in wasted space. In addition,
14155 because we clear the D_PAGED bit, map_sections_to_segments will
14156 recognize that the program headers should not be mapped into any
14157 loadable segment. */
14158 abfd
->flags
&= ~D_PAGED
;
14159 elf32_arm_begin_write_processing (abfd
, link_info
);
14163 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
14164 struct bfd_link_info
*info
)
14166 struct elf_segment_map
*m
;
14169 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14170 segment. However, because the .dynamic section is not marked
14171 with SEC_LOAD, the generic ELF code will not create such a
14173 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
14176 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
14177 if (m
->p_type
== PT_DYNAMIC
)
14182 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
14183 m
->next
= elf_tdata (abfd
)->segment_map
;
14184 elf_tdata (abfd
)->segment_map
= m
;
14188 /* Also call the generic arm routine. */
14189 return elf32_arm_modify_segment_map (abfd
, info
);
14192 /* Return address for Ith PLT stub in section PLT, for relocation REL
14193 or (bfd_vma) -1 if it should not be included. */
14196 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
14197 const arelent
*rel ATTRIBUTE_UNUSED
)
14199 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
14204 #define elf32_bed elf32_arm_symbian_bed
14206 /* The dynamic sections are not allocated on SymbianOS; the postlinker
14207 will process them and then discard them. */
14208 #undef ELF_DYNAMIC_SEC_FLAGS
14209 #define ELF_DYNAMIC_SEC_FLAGS \
14210 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14212 #undef elf_backend_add_symbol_hook
14213 #undef elf_backend_emit_relocs
14215 #undef bfd_elf32_bfd_link_hash_table_create
14216 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14217 #undef elf_backend_special_sections
14218 #define elf_backend_special_sections elf32_arm_symbian_special_sections
14219 #undef elf_backend_begin_write_processing
14220 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14221 #undef elf_backend_final_write_processing
14222 #define elf_backend_final_write_processing elf32_arm_final_write_processing
14224 #undef elf_backend_modify_segment_map
14225 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14227 /* There is no .got section for BPABI objects, and hence no header. */
14228 #undef elf_backend_got_header_size
14229 #define elf_backend_got_header_size 0
14231 /* Similarly, there is no .got.plt section. */
14232 #undef elf_backend_want_got_plt
14233 #define elf_backend_want_got_plt 0
14235 #undef elf_backend_plt_sym_val
14236 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14238 #undef elf_backend_may_use_rel_p
14239 #define elf_backend_may_use_rel_p 1
14240 #undef elf_backend_may_use_rela_p
14241 #define elf_backend_may_use_rela_p 0
14242 #undef elf_backend_default_use_rela_p
14243 #define elf_backend_default_use_rela_p 0
14244 #undef elf_backend_want_plt_sym
14245 #define elf_backend_want_plt_sym 0
14246 #undef ELF_MAXPAGESIZE
14247 #define ELF_MAXPAGESIZE 0x8000
14249 #include "elf32-target.h"