1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
65 struct bfd_link_info
*link_info
,
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73 static reloc_howto_type elf32_arm_howto_table_1
[] =
76 HOWTO (R_ARM_NONE
, /* type */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
80 FALSE
, /* pc_relative */
82 complain_overflow_dont
,/* complain_on_overflow */
83 bfd_elf_generic_reloc
, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE
, /* partial_inplace */
88 FALSE
), /* pcrel_offset */
90 HOWTO (R_ARM_PC24
, /* type */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
94 TRUE
, /* pc_relative */
96 complain_overflow_signed
,/* complain_on_overflow */
97 bfd_elf_generic_reloc
, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE
, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE
), /* pcrel_offset */
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32
, /* type */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
109 FALSE
, /* pc_relative */
111 complain_overflow_bitfield
,/* complain_on_overflow */
112 bfd_elf_generic_reloc
, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE
, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE
), /* pcrel_offset */
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32
, /* type */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
124 TRUE
, /* pc_relative */
126 complain_overflow_bitfield
,/* complain_on_overflow */
127 bfd_elf_generic_reloc
, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE
, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE
), /* pcrel_offset */
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0
, /* type */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
139 TRUE
, /* pc_relative */
141 complain_overflow_dont
,/* complain_on_overflow */
142 bfd_elf_generic_reloc
, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE
, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE
), /* pcrel_offset */
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16
, /* type */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
154 FALSE
, /* pc_relative */
156 complain_overflow_bitfield
,/* complain_on_overflow */
157 bfd_elf_generic_reloc
, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE
, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE
), /* pcrel_offset */
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12
, /* type */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
169 FALSE
, /* pc_relative */
171 complain_overflow_bitfield
,/* complain_on_overflow */
172 bfd_elf_generic_reloc
, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE
, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE
), /* pcrel_offset */
179 HOWTO (R_ARM_THM_ABS5
, /* type */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
183 FALSE
, /* pc_relative */
185 complain_overflow_bitfield
,/* complain_on_overflow */
186 bfd_elf_generic_reloc
, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE
, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE
), /* pcrel_offset */
194 HOWTO (R_ARM_ABS8
, /* type */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
198 FALSE
, /* pc_relative */
200 complain_overflow_bitfield
,/* complain_on_overflow */
201 bfd_elf_generic_reloc
, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE
, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE
), /* pcrel_offset */
208 HOWTO (R_ARM_SBREL32
, /* type */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
212 FALSE
, /* pc_relative */
214 complain_overflow_dont
,/* complain_on_overflow */
215 bfd_elf_generic_reloc
, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE
, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE
), /* pcrel_offset */
222 HOWTO (R_ARM_THM_CALL
, /* type */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
226 TRUE
, /* pc_relative */
228 complain_overflow_signed
,/* complain_on_overflow */
229 bfd_elf_generic_reloc
, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE
, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE
), /* pcrel_offset */
236 HOWTO (R_ARM_THM_PC8
, /* type */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
240 TRUE
, /* pc_relative */
242 complain_overflow_signed
,/* complain_on_overflow */
243 bfd_elf_generic_reloc
, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE
, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE
), /* pcrel_offset */
250 HOWTO (R_ARM_BREL_ADJ
, /* type */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
254 FALSE
, /* pc_relative */
256 complain_overflow_signed
,/* complain_on_overflow */
257 bfd_elf_generic_reloc
, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE
, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE
), /* pcrel_offset */
264 HOWTO (R_ARM_SWI24
, /* type */
266 0, /* size (0 = byte, 1 = short, 2 = long) */
268 FALSE
, /* pc_relative */
270 complain_overflow_signed
,/* complain_on_overflow */
271 bfd_elf_generic_reloc
, /* special_function */
272 "R_ARM_SWI24", /* name */
273 FALSE
, /* partial_inplace */
274 0x00000000, /* src_mask */
275 0x00000000, /* dst_mask */
276 FALSE
), /* pcrel_offset */
278 HOWTO (R_ARM_THM_SWI8
, /* type */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
282 FALSE
, /* pc_relative */
284 complain_overflow_signed
,/* complain_on_overflow */
285 bfd_elf_generic_reloc
, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE
, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE
), /* pcrel_offset */
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25
, /* type */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
297 TRUE
, /* pc_relative */
299 complain_overflow_signed
,/* complain_on_overflow */
300 bfd_elf_generic_reloc
, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE
, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE
), /* pcrel_offset */
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22
, /* type */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
312 TRUE
, /* pc_relative */
314 complain_overflow_signed
,/* complain_on_overflow */
315 bfd_elf_generic_reloc
, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE
, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE
), /* pcrel_offset */
322 /* Dynamic TLS relocations. */
324 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE
, /* pc_relative */
330 complain_overflow_bitfield
,/* complain_on_overflow */
331 bfd_elf_generic_reloc
, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE
, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE
), /* pcrel_offset */
338 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE
, /* pc_relative */
344 complain_overflow_bitfield
,/* complain_on_overflow */
345 bfd_elf_generic_reloc
, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE
, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE
), /* pcrel_offset */
352 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE
, /* pc_relative */
358 complain_overflow_bitfield
,/* complain_on_overflow */
359 bfd_elf_generic_reloc
, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE
, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE
), /* pcrel_offset */
366 /* Relocs used in ARM Linux */
368 HOWTO (R_ARM_COPY
, /* type */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
372 FALSE
, /* pc_relative */
374 complain_overflow_bitfield
,/* complain_on_overflow */
375 bfd_elf_generic_reloc
, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE
, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE
), /* pcrel_offset */
382 HOWTO (R_ARM_GLOB_DAT
, /* type */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
386 FALSE
, /* pc_relative */
388 complain_overflow_bitfield
,/* complain_on_overflow */
389 bfd_elf_generic_reloc
, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE
, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE
), /* pcrel_offset */
396 HOWTO (R_ARM_JUMP_SLOT
, /* type */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
400 FALSE
, /* pc_relative */
402 complain_overflow_bitfield
,/* complain_on_overflow */
403 bfd_elf_generic_reloc
, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE
, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE
), /* pcrel_offset */
410 HOWTO (R_ARM_RELATIVE
, /* type */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
414 FALSE
, /* pc_relative */
416 complain_overflow_bitfield
,/* complain_on_overflow */
417 bfd_elf_generic_reloc
, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE
, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE
), /* pcrel_offset */
424 HOWTO (R_ARM_GOTOFF32
, /* type */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
428 FALSE
, /* pc_relative */
430 complain_overflow_bitfield
,/* complain_on_overflow */
431 bfd_elf_generic_reloc
, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE
, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE
), /* pcrel_offset */
438 HOWTO (R_ARM_GOTPC
, /* type */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
442 TRUE
, /* pc_relative */
444 complain_overflow_bitfield
,/* complain_on_overflow */
445 bfd_elf_generic_reloc
, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE
, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE
), /* pcrel_offset */
452 HOWTO (R_ARM_GOT32
, /* type */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE
, /* pc_relative */
458 complain_overflow_bitfield
,/* complain_on_overflow */
459 bfd_elf_generic_reloc
, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE
, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE
), /* pcrel_offset */
466 HOWTO (R_ARM_PLT32
, /* type */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
470 TRUE
, /* pc_relative */
472 complain_overflow_bitfield
,/* complain_on_overflow */
473 bfd_elf_generic_reloc
, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE
, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE
), /* pcrel_offset */
480 HOWTO (R_ARM_CALL
, /* type */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
484 TRUE
, /* pc_relative */
486 complain_overflow_signed
,/* complain_on_overflow */
487 bfd_elf_generic_reloc
, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE
, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE
), /* pcrel_offset */
494 HOWTO (R_ARM_JUMP24
, /* type */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
498 TRUE
, /* pc_relative */
500 complain_overflow_signed
,/* complain_on_overflow */
501 bfd_elf_generic_reloc
, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE
, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE
), /* pcrel_offset */
508 HOWTO (R_ARM_THM_JUMP24
, /* type */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
512 TRUE
, /* pc_relative */
514 complain_overflow_signed
,/* complain_on_overflow */
515 bfd_elf_generic_reloc
, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE
, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE
), /* pcrel_offset */
522 HOWTO (R_ARM_BASE_ABS
, /* type */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
526 FALSE
, /* pc_relative */
528 complain_overflow_dont
,/* complain_on_overflow */
529 bfd_elf_generic_reloc
, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE
, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE
), /* pcrel_offset */
536 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
540 TRUE
, /* pc_relative */
542 complain_overflow_dont
,/* complain_on_overflow */
543 bfd_elf_generic_reloc
, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE
, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE
), /* pcrel_offset */
550 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
554 TRUE
, /* pc_relative */
556 complain_overflow_dont
,/* complain_on_overflow */
557 bfd_elf_generic_reloc
, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE
, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE
), /* pcrel_offset */
564 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
568 TRUE
, /* pc_relative */
570 complain_overflow_dont
,/* complain_on_overflow */
571 bfd_elf_generic_reloc
, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE
, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE
), /* pcrel_offset */
578 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE
, /* pc_relative */
584 complain_overflow_dont
,/* complain_on_overflow */
585 bfd_elf_generic_reloc
, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE
, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE
), /* pcrel_offset */
592 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
596 FALSE
, /* pc_relative */
598 complain_overflow_dont
,/* complain_on_overflow */
599 bfd_elf_generic_reloc
, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE
, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE
), /* pcrel_offset */
606 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 FALSE
, /* pc_relative */
612 complain_overflow_dont
,/* complain_on_overflow */
613 bfd_elf_generic_reloc
, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE
, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE
), /* pcrel_offset */
620 HOWTO (R_ARM_TARGET1
, /* type */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
624 FALSE
, /* pc_relative */
626 complain_overflow_dont
,/* complain_on_overflow */
627 bfd_elf_generic_reloc
, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE
, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE
), /* pcrel_offset */
634 HOWTO (R_ARM_ROSEGREL32
, /* type */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
638 FALSE
, /* pc_relative */
640 complain_overflow_dont
,/* complain_on_overflow */
641 bfd_elf_generic_reloc
, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE
, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE
), /* pcrel_offset */
648 HOWTO (R_ARM_V4BX
, /* type */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
652 FALSE
, /* pc_relative */
654 complain_overflow_dont
,/* complain_on_overflow */
655 bfd_elf_generic_reloc
, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE
, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE
), /* pcrel_offset */
662 HOWTO (R_ARM_TARGET2
, /* type */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
666 FALSE
, /* pc_relative */
668 complain_overflow_signed
,/* complain_on_overflow */
669 bfd_elf_generic_reloc
, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE
, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE
), /* pcrel_offset */
676 HOWTO (R_ARM_PREL31
, /* type */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
680 TRUE
, /* pc_relative */
682 complain_overflow_signed
,/* complain_on_overflow */
683 bfd_elf_generic_reloc
, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE
, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE
), /* pcrel_offset */
690 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
694 FALSE
, /* pc_relative */
696 complain_overflow_dont
,/* complain_on_overflow */
697 bfd_elf_generic_reloc
, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE
, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE
), /* pcrel_offset */
704 HOWTO (R_ARM_MOVT_ABS
, /* type */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
708 FALSE
, /* pc_relative */
710 complain_overflow_bitfield
,/* complain_on_overflow */
711 bfd_elf_generic_reloc
, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE
, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE
), /* pcrel_offset */
718 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
722 TRUE
, /* pc_relative */
724 complain_overflow_dont
,/* complain_on_overflow */
725 bfd_elf_generic_reloc
, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE
, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE
), /* pcrel_offset */
732 HOWTO (R_ARM_MOVT_PREL
, /* type */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
736 TRUE
, /* pc_relative */
738 complain_overflow_bitfield
,/* complain_on_overflow */
739 bfd_elf_generic_reloc
, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE
, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE
), /* pcrel_offset */
746 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 FALSE
, /* pc_relative */
752 complain_overflow_dont
,/* complain_on_overflow */
753 bfd_elf_generic_reloc
, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE
, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE
), /* pcrel_offset */
760 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
764 FALSE
, /* pc_relative */
766 complain_overflow_bitfield
,/* complain_on_overflow */
767 bfd_elf_generic_reloc
, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE
, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE
), /* pcrel_offset */
774 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
778 TRUE
, /* pc_relative */
780 complain_overflow_dont
,/* complain_on_overflow */
781 bfd_elf_generic_reloc
, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE
, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE
), /* pcrel_offset */
788 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
792 TRUE
, /* pc_relative */
794 complain_overflow_bitfield
,/* complain_on_overflow */
795 bfd_elf_generic_reloc
, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE
, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE
), /* pcrel_offset */
802 HOWTO (R_ARM_THM_JUMP19
, /* type */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
806 TRUE
, /* pc_relative */
808 complain_overflow_signed
,/* complain_on_overflow */
809 bfd_elf_generic_reloc
, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE
, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE
), /* pcrel_offset */
816 HOWTO (R_ARM_THM_JUMP6
, /* type */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
820 TRUE
, /* pc_relative */
822 complain_overflow_unsigned
,/* complain_on_overflow */
823 bfd_elf_generic_reloc
, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE
, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE
), /* pcrel_offset */
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
833 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
837 TRUE
, /* pc_relative */
839 complain_overflow_dont
,/* complain_on_overflow */
840 bfd_elf_generic_reloc
, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE
, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE
), /* pcrel_offset */
847 HOWTO (R_ARM_THM_PC12
, /* type */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
851 TRUE
, /* pc_relative */
853 complain_overflow_dont
,/* complain_on_overflow */
854 bfd_elf_generic_reloc
, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE
, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE
), /* pcrel_offset */
861 HOWTO (R_ARM_ABS32_NOI
, /* type */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
865 FALSE
, /* pc_relative */
867 complain_overflow_dont
,/* complain_on_overflow */
868 bfd_elf_generic_reloc
, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE
, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE
), /* pcrel_offset */
875 HOWTO (R_ARM_REL32_NOI
, /* type */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
879 TRUE
, /* pc_relative */
881 complain_overflow_dont
,/* complain_on_overflow */
882 bfd_elf_generic_reloc
, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE
, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE
), /* pcrel_offset */
889 /* Group relocations. */
891 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
895 TRUE
, /* pc_relative */
897 complain_overflow_dont
,/* complain_on_overflow */
898 bfd_elf_generic_reloc
, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE
, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE
), /* pcrel_offset */
905 HOWTO (R_ARM_ALU_PC_G0
, /* type */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
909 TRUE
, /* pc_relative */
911 complain_overflow_dont
,/* complain_on_overflow */
912 bfd_elf_generic_reloc
, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE
, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE
), /* pcrel_offset */
919 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
923 TRUE
, /* pc_relative */
925 complain_overflow_dont
,/* complain_on_overflow */
926 bfd_elf_generic_reloc
, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE
, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE
), /* pcrel_offset */
933 HOWTO (R_ARM_ALU_PC_G1
, /* type */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
937 TRUE
, /* pc_relative */
939 complain_overflow_dont
,/* complain_on_overflow */
940 bfd_elf_generic_reloc
, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE
, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE
), /* pcrel_offset */
947 HOWTO (R_ARM_ALU_PC_G2
, /* type */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
951 TRUE
, /* pc_relative */
953 complain_overflow_dont
,/* complain_on_overflow */
954 bfd_elf_generic_reloc
, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE
, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE
), /* pcrel_offset */
961 HOWTO (R_ARM_LDR_PC_G1
, /* type */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
965 TRUE
, /* pc_relative */
967 complain_overflow_dont
,/* complain_on_overflow */
968 bfd_elf_generic_reloc
, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE
, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE
), /* pcrel_offset */
975 HOWTO (R_ARM_LDR_PC_G2
, /* type */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
979 TRUE
, /* pc_relative */
981 complain_overflow_dont
,/* complain_on_overflow */
982 bfd_elf_generic_reloc
, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE
, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE
), /* pcrel_offset */
989 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
993 TRUE
, /* pc_relative */
995 complain_overflow_dont
,/* complain_on_overflow */
996 bfd_elf_generic_reloc
, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE
, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE
), /* pcrel_offset */
1003 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1007 TRUE
, /* pc_relative */
1009 complain_overflow_dont
,/* complain_on_overflow */
1010 bfd_elf_generic_reloc
, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE
, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE
), /* pcrel_offset */
1017 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1021 TRUE
, /* pc_relative */
1023 complain_overflow_dont
,/* complain_on_overflow */
1024 bfd_elf_generic_reloc
, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE
, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE
), /* pcrel_offset */
1031 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 TRUE
, /* pc_relative */
1037 complain_overflow_dont
,/* complain_on_overflow */
1038 bfd_elf_generic_reloc
, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE
, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE
), /* pcrel_offset */
1045 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 TRUE
, /* pc_relative */
1051 complain_overflow_dont
,/* complain_on_overflow */
1052 bfd_elf_generic_reloc
, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE
, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE
), /* pcrel_offset */
1059 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 TRUE
, /* pc_relative */
1065 complain_overflow_dont
,/* complain_on_overflow */
1066 bfd_elf_generic_reloc
, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE
, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE
), /* pcrel_offset */
1073 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 TRUE
, /* pc_relative */
1079 complain_overflow_dont
,/* complain_on_overflow */
1080 bfd_elf_generic_reloc
, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE
, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE
), /* pcrel_offset */
1087 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 TRUE
, /* pc_relative */
1093 complain_overflow_dont
,/* complain_on_overflow */
1094 bfd_elf_generic_reloc
, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE
, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE
), /* pcrel_offset */
1101 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 TRUE
, /* pc_relative */
1107 complain_overflow_dont
,/* complain_on_overflow */
1108 bfd_elf_generic_reloc
, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE
, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE
), /* pcrel_offset */
1115 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 TRUE
, /* pc_relative */
1121 complain_overflow_dont
,/* complain_on_overflow */
1122 bfd_elf_generic_reloc
, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE
, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE
), /* pcrel_offset */
1129 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1133 TRUE
, /* pc_relative */
1135 complain_overflow_dont
,/* complain_on_overflow */
1136 bfd_elf_generic_reloc
, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE
, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE
), /* pcrel_offset */
1143 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1147 TRUE
, /* pc_relative */
1149 complain_overflow_dont
,/* complain_on_overflow */
1150 bfd_elf_generic_reloc
, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE
, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE
), /* pcrel_offset */
1157 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1161 TRUE
, /* pc_relative */
1163 complain_overflow_dont
,/* complain_on_overflow */
1164 bfd_elf_generic_reloc
, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE
, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE
), /* pcrel_offset */
1171 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 TRUE
, /* pc_relative */
1177 complain_overflow_dont
,/* complain_on_overflow */
1178 bfd_elf_generic_reloc
, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE
, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE
), /* pcrel_offset */
1185 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1189 TRUE
, /* pc_relative */
1191 complain_overflow_dont
,/* complain_on_overflow */
1192 bfd_elf_generic_reloc
, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE
, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE
), /* pcrel_offset */
1199 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1203 TRUE
, /* pc_relative */
1205 complain_overflow_dont
,/* complain_on_overflow */
1206 bfd_elf_generic_reloc
, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE
, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE
), /* pcrel_offset */
1213 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 TRUE
, /* pc_relative */
1219 complain_overflow_dont
,/* complain_on_overflow */
1220 bfd_elf_generic_reloc
, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE
, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE
), /* pcrel_offset */
1227 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1231 TRUE
, /* pc_relative */
1233 complain_overflow_dont
,/* complain_on_overflow */
1234 bfd_elf_generic_reloc
, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE
, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE
), /* pcrel_offset */
1241 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1245 TRUE
, /* pc_relative */
1247 complain_overflow_dont
,/* complain_on_overflow */
1248 bfd_elf_generic_reloc
, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE
, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE
), /* pcrel_offset */
1255 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1259 TRUE
, /* pc_relative */
1261 complain_overflow_dont
,/* complain_on_overflow */
1262 bfd_elf_generic_reloc
, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE
, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE
), /* pcrel_offset */
1269 /* End of group relocations. */
1271 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1275 FALSE
, /* pc_relative */
1277 complain_overflow_dont
,/* complain_on_overflow */
1278 bfd_elf_generic_reloc
, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE
, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE
), /* pcrel_offset */
1285 HOWTO (R_ARM_MOVT_BREL
, /* type */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1289 FALSE
, /* pc_relative */
1291 complain_overflow_bitfield
,/* complain_on_overflow */
1292 bfd_elf_generic_reloc
, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE
, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE
), /* pcrel_offset */
1299 HOWTO (R_ARM_MOVW_BREL
, /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 FALSE
, /* pc_relative */
1305 complain_overflow_dont
,/* complain_on_overflow */
1306 bfd_elf_generic_reloc
, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE
, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE
), /* pcrel_offset */
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 FALSE
, /* pc_relative */
1319 complain_overflow_dont
,/* complain_on_overflow */
1320 bfd_elf_generic_reloc
, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE
, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE
), /* pcrel_offset */
1327 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 FALSE
, /* pc_relative */
1333 complain_overflow_bitfield
,/* complain_on_overflow */
1334 bfd_elf_generic_reloc
, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE
, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE
), /* pcrel_offset */
1341 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1345 FALSE
, /* pc_relative */
1347 complain_overflow_dont
,/* complain_on_overflow */
1348 bfd_elf_generic_reloc
, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE
, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE
), /* pcrel_offset */
1355 EMPTY_HOWTO (90), /* Unallocated. */
1360 HOWTO (R_ARM_PLT32_ABS
, /* type */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1364 FALSE
, /* pc_relative */
1366 complain_overflow_dont
,/* complain_on_overflow */
1367 bfd_elf_generic_reloc
, /* special_function */
1368 "R_ARM_PLT32_ABS", /* name */
1369 FALSE
, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE
), /* pcrel_offset */
1374 HOWTO (R_ARM_GOT_ABS
, /* type */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1378 FALSE
, /* pc_relative */
1380 complain_overflow_dont
,/* complain_on_overflow */
1381 bfd_elf_generic_reloc
, /* special_function */
1382 "R_ARM_GOT_ABS", /* name */
1383 FALSE
, /* partial_inplace */
1384 0xffffffff, /* src_mask */
1385 0xffffffff, /* dst_mask */
1386 FALSE
), /* pcrel_offset */
1388 HOWTO (R_ARM_GOT_PREL
, /* type */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1392 TRUE
, /* pc_relative */
1394 complain_overflow_dont
, /* complain_on_overflow */
1395 bfd_elf_generic_reloc
, /* special_function */
1396 "R_ARM_GOT_PREL", /* name */
1397 FALSE
, /* partial_inplace */
1398 0xffffffff, /* src_mask */
1399 0xffffffff, /* dst_mask */
1400 TRUE
), /* pcrel_offset */
1402 HOWTO (R_ARM_GOT_BREL12
, /* type */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1406 FALSE
, /* pc_relative */
1408 complain_overflow_bitfield
,/* complain_on_overflow */
1409 bfd_elf_generic_reloc
, /* special_function */
1410 "R_ARM_GOT_BREL12", /* name */
1411 FALSE
, /* partial_inplace */
1412 0x00000fff, /* src_mask */
1413 0x00000fff, /* dst_mask */
1414 FALSE
), /* pcrel_offset */
1416 HOWTO (R_ARM_GOTOFF12
, /* type */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1420 FALSE
, /* pc_relative */
1422 complain_overflow_bitfield
,/* complain_on_overflow */
1423 bfd_elf_generic_reloc
, /* special_function */
1424 "R_ARM_GOTOFF12", /* name */
1425 FALSE
, /* partial_inplace */
1426 0x00000fff, /* src_mask */
1427 0x00000fff, /* dst_mask */
1428 FALSE
), /* pcrel_offset */
1430 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1432 /* GNU extension to record C++ vtable member usage */
1433 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1435 2, /* size (0 = byte, 1 = short, 2 = long) */
1437 FALSE
, /* pc_relative */
1439 complain_overflow_dont
, /* complain_on_overflow */
1440 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1441 "R_ARM_GNU_VTENTRY", /* name */
1442 FALSE
, /* partial_inplace */
1445 FALSE
), /* pcrel_offset */
1447 /* GNU extension to record C++ vtable hierarchy */
1448 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1450 2, /* size (0 = byte, 1 = short, 2 = long) */
1452 FALSE
, /* pc_relative */
1454 complain_overflow_dont
, /* complain_on_overflow */
1455 NULL
, /* special_function */
1456 "R_ARM_GNU_VTINHERIT", /* name */
1457 FALSE
, /* partial_inplace */
1460 FALSE
), /* pcrel_offset */
1462 HOWTO (R_ARM_THM_JUMP11
, /* type */
1464 1, /* size (0 = byte, 1 = short, 2 = long) */
1466 TRUE
, /* pc_relative */
1468 complain_overflow_signed
, /* complain_on_overflow */
1469 bfd_elf_generic_reloc
, /* special_function */
1470 "R_ARM_THM_JUMP11", /* name */
1471 FALSE
, /* partial_inplace */
1472 0x000007ff, /* src_mask */
1473 0x000007ff, /* dst_mask */
1474 TRUE
), /* pcrel_offset */
1476 HOWTO (R_ARM_THM_JUMP8
, /* type */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1480 TRUE
, /* pc_relative */
1482 complain_overflow_signed
, /* complain_on_overflow */
1483 bfd_elf_generic_reloc
, /* special_function */
1484 "R_ARM_THM_JUMP8", /* name */
1485 FALSE
, /* partial_inplace */
1486 0x000000ff, /* src_mask */
1487 0x000000ff, /* dst_mask */
1488 TRUE
), /* pcrel_offset */
1490 /* TLS relocations */
1491 HOWTO (R_ARM_TLS_GD32
, /* type */
1493 2, /* size (0 = byte, 1 = short, 2 = long) */
1495 FALSE
, /* pc_relative */
1497 complain_overflow_bitfield
,/* complain_on_overflow */
1498 NULL
, /* special_function */
1499 "R_ARM_TLS_GD32", /* name */
1500 TRUE
, /* partial_inplace */
1501 0xffffffff, /* src_mask */
1502 0xffffffff, /* dst_mask */
1503 FALSE
), /* pcrel_offset */
1505 HOWTO (R_ARM_TLS_LDM32
, /* type */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1509 FALSE
, /* pc_relative */
1511 complain_overflow_bitfield
,/* complain_on_overflow */
1512 bfd_elf_generic_reloc
, /* special_function */
1513 "R_ARM_TLS_LDM32", /* name */
1514 TRUE
, /* partial_inplace */
1515 0xffffffff, /* src_mask */
1516 0xffffffff, /* dst_mask */
1517 FALSE
), /* pcrel_offset */
1519 HOWTO (R_ARM_TLS_LDO32
, /* type */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1523 FALSE
, /* pc_relative */
1525 complain_overflow_bitfield
,/* complain_on_overflow */
1526 bfd_elf_generic_reloc
, /* special_function */
1527 "R_ARM_TLS_LDO32", /* name */
1528 TRUE
, /* partial_inplace */
1529 0xffffffff, /* src_mask */
1530 0xffffffff, /* dst_mask */
1531 FALSE
), /* pcrel_offset */
1533 HOWTO (R_ARM_TLS_IE32
, /* type */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 FALSE
, /* pc_relative */
1539 complain_overflow_bitfield
,/* complain_on_overflow */
1540 NULL
, /* special_function */
1541 "R_ARM_TLS_IE32", /* name */
1542 TRUE
, /* partial_inplace */
1543 0xffffffff, /* src_mask */
1544 0xffffffff, /* dst_mask */
1545 FALSE
), /* pcrel_offset */
1547 HOWTO (R_ARM_TLS_LE32
, /* type */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 FALSE
, /* pc_relative */
1553 complain_overflow_bitfield
,/* complain_on_overflow */
1554 bfd_elf_generic_reloc
, /* special_function */
1555 "R_ARM_TLS_LE32", /* name */
1556 TRUE
, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE
), /* pcrel_offset */
1561 HOWTO (R_ARM_TLS_LDO12
, /* type */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 FALSE
, /* pc_relative */
1567 complain_overflow_bitfield
,/* complain_on_overflow */
1568 bfd_elf_generic_reloc
, /* special_function */
1569 "R_ARM_TLS_LDO12", /* name */
1570 FALSE
, /* partial_inplace */
1571 0x00000fff, /* src_mask */
1572 0x00000fff, /* dst_mask */
1573 FALSE
), /* pcrel_offset */
1575 HOWTO (R_ARM_TLS_LE12
, /* type */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1579 FALSE
, /* pc_relative */
1581 complain_overflow_bitfield
,/* complain_on_overflow */
1582 bfd_elf_generic_reloc
, /* special_function */
1583 "R_ARM_TLS_LE12", /* name */
1584 FALSE
, /* partial_inplace */
1585 0x00000fff, /* src_mask */
1586 0x00000fff, /* dst_mask */
1587 FALSE
), /* pcrel_offset */
1589 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 FALSE
, /* pc_relative */
1595 complain_overflow_bitfield
,/* complain_on_overflow */
1596 bfd_elf_generic_reloc
, /* special_function */
1597 "R_ARM_TLS_IE12GP", /* name */
1598 FALSE
, /* partial_inplace */
1599 0x00000fff, /* src_mask */
1600 0x00000fff, /* dst_mask */
1601 FALSE
), /* pcrel_offset */
1604 /* 112-127 private relocations
1605 128 R_ARM_ME_TOO, obsolete
1606 129-255 unallocated in AAELF.
1608 249-255 extended, currently unused, relocations: */
1610 static reloc_howto_type elf32_arm_howto_table_2
[4] =
1612 HOWTO (R_ARM_RREL32
, /* type */
1614 0, /* size (0 = byte, 1 = short, 2 = long) */
1616 FALSE
, /* pc_relative */
1618 complain_overflow_dont
,/* complain_on_overflow */
1619 bfd_elf_generic_reloc
, /* special_function */
1620 "R_ARM_RREL32", /* name */
1621 FALSE
, /* partial_inplace */
1624 FALSE
), /* pcrel_offset */
1626 HOWTO (R_ARM_RABS32
, /* type */
1628 0, /* size (0 = byte, 1 = short, 2 = long) */
1630 FALSE
, /* pc_relative */
1632 complain_overflow_dont
,/* complain_on_overflow */
1633 bfd_elf_generic_reloc
, /* special_function */
1634 "R_ARM_RABS32", /* name */
1635 FALSE
, /* partial_inplace */
1638 FALSE
), /* pcrel_offset */
1640 HOWTO (R_ARM_RPC24
, /* type */
1642 0, /* size (0 = byte, 1 = short, 2 = long) */
1644 FALSE
, /* pc_relative */
1646 complain_overflow_dont
,/* complain_on_overflow */
1647 bfd_elf_generic_reloc
, /* special_function */
1648 "R_ARM_RPC24", /* name */
1649 FALSE
, /* partial_inplace */
1652 FALSE
), /* pcrel_offset */
1654 HOWTO (R_ARM_RBASE
, /* type */
1656 0, /* size (0 = byte, 1 = short, 2 = long) */
1658 FALSE
, /* pc_relative */
1660 complain_overflow_dont
,/* complain_on_overflow */
1661 bfd_elf_generic_reloc
, /* special_function */
1662 "R_ARM_RBASE", /* name */
1663 FALSE
, /* partial_inplace */
1666 FALSE
) /* pcrel_offset */
1669 static reloc_howto_type
*
1670 elf32_arm_howto_from_type (unsigned int r_type
)
1672 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1673 return &elf32_arm_howto_table_1
[r_type
];
1675 if (r_type
>= R_ARM_RREL32
1676 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1677 return &elf32_arm_howto_table_2
[r_type
- R_ARM_RREL32
];
1683 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1684 Elf_Internal_Rela
* elf_reloc
)
1686 unsigned int r_type
;
1688 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1689 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1692 struct elf32_arm_reloc_map
1694 bfd_reloc_code_real_type bfd_reloc_val
;
1695 unsigned char elf_reloc_val
;
1698 /* All entries in this list must also be present in elf32_arm_howto_table. */
1699 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1701 {BFD_RELOC_NONE
, R_ARM_NONE
},
1702 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1703 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1704 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1705 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1706 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1707 {BFD_RELOC_32
, R_ARM_ABS32
},
1708 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1709 {BFD_RELOC_8
, R_ARM_ABS8
},
1710 {BFD_RELOC_16
, R_ARM_ABS16
},
1711 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1712 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1719 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1720 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1721 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1722 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1723 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1724 {BFD_RELOC_ARM_GOT_PREL
, R_ARM_GOT_PREL
},
1725 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1726 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1727 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1728 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1729 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1730 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1731 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1732 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1733 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1734 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1735 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1736 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1737 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1738 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1739 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1740 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1741 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1742 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1743 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1744 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1745 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1746 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1747 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1748 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1749 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1750 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1751 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1752 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1753 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1754 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1755 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1756 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1757 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1758 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1759 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1760 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1761 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1762 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1763 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1764 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1765 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1766 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1767 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1768 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1769 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1770 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1771 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1772 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1773 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1774 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1775 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1776 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1777 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1778 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1779 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1782 static reloc_howto_type
*
1783 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1784 bfd_reloc_code_real_type code
)
1788 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1789 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1790 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1795 static reloc_howto_type
*
1796 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1801 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1802 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1803 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1804 return &elf32_arm_howto_table_1
[i
];
1806 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1807 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1808 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1809 return &elf32_arm_howto_table_2
[i
];
1814 /* Support for core dump NOTE sections. */
1817 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1822 switch (note
->descsz
)
1827 case 148: /* Linux/ARM 32-bit. */
1829 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1832 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1841 /* Make a ".reg/999" section. */
1842 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1843 size
, note
->descpos
+ offset
);
1847 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1849 switch (note
->descsz
)
1854 case 124: /* Linux/ARM elf_prpsinfo. */
1855 elf_tdata (abfd
)->core_program
1856 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1857 elf_tdata (abfd
)->core_command
1858 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1861 /* Note that for some reason, a spurious space is tacked
1862 onto the end of the args in some (at least one anyway)
1863 implementations, so strip it off if it exists. */
1865 char *command
= elf_tdata (abfd
)->core_command
;
1866 int n
= strlen (command
);
1868 if (0 < n
&& command
[n
- 1] == ' ')
1869 command
[n
- 1] = '\0';
1875 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1876 #define TARGET_LITTLE_NAME "elf32-littlearm"
1877 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1878 #define TARGET_BIG_NAME "elf32-bigarm"
1880 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1881 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1883 typedef unsigned long int insn32
;
1884 typedef unsigned short int insn16
;
1886 /* In lieu of proper flags, assume all EABIv4 or later objects are
1888 #define INTERWORK_FLAG(abfd) \
1889 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1890 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1891 || ((abfd)->flags & BFD_LINKER_CREATED))
1893 /* The linker script knows the section names for placement.
1894 The entry_names are used to do simple name mangling on the stubs.
1895 Given a function name, and its type, the stub can be found. The
1896 name can be changed. The only requirement is the %s be present. */
1897 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1898 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1900 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1901 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1903 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1904 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1906 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1907 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1909 #define STUB_ENTRY_NAME "__%s_veneer"
1911 /* The name of the dynamic interpreter. This is put in the .interp
1913 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1915 #ifdef FOUR_WORD_PLT
1917 /* The first entry in a procedure linkage table looks like
1918 this. It is set up so that any shared library function that is
1919 called before the relocation has been set up calls the dynamic
1921 static const bfd_vma elf32_arm_plt0_entry
[] =
1923 0xe52de004, /* str lr, [sp, #-4]! */
1924 0xe59fe010, /* ldr lr, [pc, #16] */
1925 0xe08fe00e, /* add lr, pc, lr */
1926 0xe5bef008, /* ldr pc, [lr, #8]! */
1929 /* Subsequent entries in a procedure linkage table look like
1931 static const bfd_vma elf32_arm_plt_entry
[] =
1933 0xe28fc600, /* add ip, pc, #NN */
1934 0xe28cca00, /* add ip, ip, #NN */
1935 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1936 0x00000000, /* unused */
1941 /* The first entry in a procedure linkage table looks like
1942 this. It is set up so that any shared library function that is
1943 called before the relocation has been set up calls the dynamic
1945 static const bfd_vma elf32_arm_plt0_entry
[] =
1947 0xe52de004, /* str lr, [sp, #-4]! */
1948 0xe59fe004, /* ldr lr, [pc, #4] */
1949 0xe08fe00e, /* add lr, pc, lr */
1950 0xe5bef008, /* ldr pc, [lr, #8]! */
1951 0x00000000, /* &GOT[0] - . */
1954 /* Subsequent entries in a procedure linkage table look like
1956 static const bfd_vma elf32_arm_plt_entry
[] =
1958 0xe28fc600, /* add ip, pc, #0xNN00000 */
1959 0xe28cca00, /* add ip, ip, #0xNN000 */
1960 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1965 /* The format of the first entry in the procedure linkage table
1966 for a VxWorks executable. */
1967 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
1969 0xe52dc008, /* str ip,[sp,#-8]! */
1970 0xe59fc000, /* ldr ip,[pc] */
1971 0xe59cf008, /* ldr pc,[ip,#8] */
1972 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1975 /* The format of subsequent entries in a VxWorks executable. */
1976 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
1978 0xe59fc000, /* ldr ip,[pc] */
1979 0xe59cf000, /* ldr pc,[ip] */
1980 0x00000000, /* .long @got */
1981 0xe59fc000, /* ldr ip,[pc] */
1982 0xea000000, /* b _PLT */
1983 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1986 /* The format of entries in a VxWorks shared library. */
1987 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
1989 0xe59fc000, /* ldr ip,[pc] */
1990 0xe79cf009, /* ldr pc,[ip,r9] */
1991 0x00000000, /* .long @got */
1992 0xe59fc000, /* ldr ip,[pc] */
1993 0xe599f008, /* ldr pc,[r9,#8] */
1994 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1997 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1998 #define PLT_THUMB_STUB_SIZE 4
1999 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2005 /* The entries in a PLT when using a DLL-based target with multiple
2007 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2009 0xe51ff004, /* ldr pc, [pc, #-4] */
2010 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2013 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2014 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2015 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2016 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2017 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2018 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2028 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2029 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2030 is inserted in arm_build_one_stub(). */
2031 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2032 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2033 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2034 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2035 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2036 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2041 enum stub_insn_type type
;
2042 unsigned int r_type
;
2046 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2047 to reach the stub if necessary. */
2048 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2050 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2051 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2054 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2056 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2058 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2059 ARM_INSN(0xe12fff1c), /* bx ip */
2060 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2063 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2064 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2066 THUMB16_INSN(0xb401), /* push {r0} */
2067 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2068 THUMB16_INSN(0x4684), /* mov ip, r0 */
2069 THUMB16_INSN(0xbc01), /* pop {r0} */
2070 THUMB16_INSN(0x4760), /* bx ip */
2071 THUMB16_INSN(0xbf00), /* nop */
2072 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2075 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2077 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2079 THUMB16_INSN(0x4778), /* bx pc */
2080 THUMB16_INSN(0x46c0), /* nop */
2081 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2082 ARM_INSN(0xe12fff1c), /* bx ip */
2083 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2086 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2088 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2090 THUMB16_INSN(0x4778), /* bx pc */
2091 THUMB16_INSN(0x46c0), /* nop */
2092 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2093 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2096 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2097 one, when the destination is close enough. */
2098 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2100 THUMB16_INSN(0x4778), /* bx pc */
2101 THUMB16_INSN(0x46c0), /* nop */
2102 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2105 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2106 blx to reach the stub if necessary. */
2107 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2109 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2110 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2111 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2114 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2115 blx to reach the stub if necessary. We can not add into pc;
2116 it is not guaranteed to mode switch (different in ARMv6 and
2118 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2120 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2121 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2122 ARM_INSN(0xe12fff1c), /* bx ip */
2123 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2126 /* V4T ARM -> ARM long branch stub, PIC. */
2127 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2129 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2130 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2131 ARM_INSN(0xe12fff1c), /* bx ip */
2132 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2135 /* V4T Thumb -> ARM long branch stub, PIC. */
2136 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2138 THUMB16_INSN(0x4778), /* bx pc */
2139 THUMB16_INSN(0x46c0), /* nop */
2140 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2141 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2142 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2145 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2147 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2149 THUMB16_INSN(0xb401), /* push {r0} */
2150 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2151 THUMB16_INSN(0x46fc), /* mov ip, pc */
2152 THUMB16_INSN(0x4484), /* add ip, r0 */
2153 THUMB16_INSN(0xbc01), /* pop {r0} */
2154 THUMB16_INSN(0x4760), /* bx ip */
2155 DATA_WORD(0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2158 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2160 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2162 THUMB16_INSN(0x4778), /* bx pc */
2163 THUMB16_INSN(0x46c0), /* nop */
2164 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2165 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2166 ARM_INSN(0xe12fff1c), /* bx ip */
2167 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2170 /* Cortex-A8 erratum-workaround stubs. */
2172 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2173 can't use a conditional branch to reach this stub). */
2175 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2177 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2178 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2179 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2182 /* Stub used for b.w and bl.w instructions. */
2184 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2186 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2189 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2191 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2194 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2195 instruction (which switches to ARM mode) to point to this stub. Jump to the
2196 real destination using an ARM-mode branch. */
2198 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2200 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2203 /* Section name for stubs is the associated section name plus this
2205 #define STUB_SUFFIX ".stub"
2207 /* One entry per long/short branch stub defined above. */
2209 DEF_STUB(long_branch_any_any) \
2210 DEF_STUB(long_branch_v4t_arm_thumb) \
2211 DEF_STUB(long_branch_thumb_only) \
2212 DEF_STUB(long_branch_v4t_thumb_thumb) \
2213 DEF_STUB(long_branch_v4t_thumb_arm) \
2214 DEF_STUB(short_branch_v4t_thumb_arm) \
2215 DEF_STUB(long_branch_any_arm_pic) \
2216 DEF_STUB(long_branch_any_thumb_pic) \
2217 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2219 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2220 DEF_STUB(long_branch_thumb_only_pic) \
2221 DEF_STUB(a8_veneer_b_cond) \
2222 DEF_STUB(a8_veneer_b) \
2223 DEF_STUB(a8_veneer_bl) \
2224 DEF_STUB(a8_veneer_blx)
2226 #define DEF_STUB(x) arm_stub_##x,
2227 enum elf32_arm_stub_type
{
2230 /* Note the first a8_veneer type */
2231 arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
2237 const insn_sequence
* template_sequence
;
2241 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2242 static const stub_def stub_definitions
[] = {
2247 struct elf32_arm_stub_hash_entry
2249 /* Base hash table entry structure. */
2250 struct bfd_hash_entry root
;
2252 /* The stub section. */
2255 /* Offset within stub_sec of the beginning of this stub. */
2256 bfd_vma stub_offset
;
2258 /* Given the symbol's value and its section we can determine its final
2259 value when building the stubs (so the stub knows where to jump). */
2260 bfd_vma target_value
;
2261 asection
*target_section
;
2263 /* Offset to apply to relocation referencing target_value. */
2264 bfd_vma target_addend
;
2266 /* The instruction which caused this stub to be generated (only valid for
2267 Cortex-A8 erratum workaround stubs at present). */
2268 unsigned long orig_insn
;
2270 /* The stub type. */
2271 enum elf32_arm_stub_type stub_type
;
2272 /* Its encoding size in bytes. */
2275 const insn_sequence
*stub_template
;
2276 /* The size of the template (number of entries). */
2277 int stub_template_size
;
2279 /* The symbol table entry, if any, that this was derived from. */
2280 struct elf32_arm_link_hash_entry
*h
;
2282 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2283 unsigned char st_type
;
2285 /* Where this stub is being called from, or, in the case of combined
2286 stub sections, the first input section in the group. */
2289 /* The name for the local symbol at the start of this stub. The
2290 stub name in the hash table has to be unique; this does not, so
2291 it can be friendlier. */
2295 /* Used to build a map of a section. This is required for mixed-endian
2298 typedef struct elf32_elf_section_map
2303 elf32_arm_section_map
;
2305 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2309 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2310 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2311 VFP11_ERRATUM_ARM_VENEER
,
2312 VFP11_ERRATUM_THUMB_VENEER
2314 elf32_vfp11_erratum_type
;
2316 typedef struct elf32_vfp11_erratum_list
2318 struct elf32_vfp11_erratum_list
*next
;
2324 struct elf32_vfp11_erratum_list
*veneer
;
2325 unsigned int vfp_insn
;
2329 struct elf32_vfp11_erratum_list
*branch
;
2333 elf32_vfp11_erratum_type type
;
2335 elf32_vfp11_erratum_list
;
2340 INSERT_EXIDX_CANTUNWIND_AT_END
2342 arm_unwind_edit_type
;
2344 /* A (sorted) list of edits to apply to an unwind table. */
2345 typedef struct arm_unwind_table_edit
2347 arm_unwind_edit_type type
;
2348 /* Note: we sometimes want to insert an unwind entry corresponding to a
2349 section different from the one we're currently writing out, so record the
2350 (text) section this edit relates to here. */
2351 asection
*linked_section
;
2353 struct arm_unwind_table_edit
*next
;
2355 arm_unwind_table_edit
;
2357 typedef struct _arm_elf_section_data
2359 /* Information about mapping symbols. */
2360 struct bfd_elf_section_data elf
;
2361 unsigned int mapcount
;
2362 unsigned int mapsize
;
2363 elf32_arm_section_map
*map
;
2364 /* Information about CPU errata. */
2365 unsigned int erratumcount
;
2366 elf32_vfp11_erratum_list
*erratumlist
;
2367 /* Information about unwind tables. */
2370 /* Unwind info attached to a text section. */
2373 asection
*arm_exidx_sec
;
2376 /* Unwind info attached to an .ARM.exidx section. */
2379 arm_unwind_table_edit
*unwind_edit_list
;
2380 arm_unwind_table_edit
*unwind_edit_tail
;
2384 _arm_elf_section_data
;
2386 #define elf32_arm_section_data(sec) \
2387 ((_arm_elf_section_data *) elf_section_data (sec))
2389 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2390 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2391 so may be created multiple times: we use an array of these entries whilst
2392 relaxing which we can refresh easily, then create stubs for each potentially
2393 erratum-triggering instruction once we've settled on a solution. */
2395 struct a8_erratum_fix
{
2400 unsigned long orig_insn
;
2402 enum elf32_arm_stub_type stub_type
;
2406 /* A table of relocs applied to branches which might trigger Cortex-A8
2409 struct a8_erratum_reloc
{
2411 bfd_vma destination
;
2412 struct elf32_arm_link_hash_entry
*hash
;
2413 const char *sym_name
;
2414 unsigned int r_type
;
2415 unsigned char st_type
;
2416 bfd_boolean non_a8_stub
;
2419 /* The size of the thread control block. */
2422 struct elf_arm_obj_tdata
2424 struct elf_obj_tdata root
;
2426 /* tls_type for each local got entry. */
2427 char *local_got_tls_type
;
2429 /* Zero to warn when linking objects with incompatible enum sizes. */
2430 int no_enum_size_warning
;
2432 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2433 int no_wchar_size_warning
;
2436 #define elf_arm_tdata(bfd) \
2437 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2439 #define elf32_arm_local_got_tls_type(bfd) \
2440 (elf_arm_tdata (bfd)->local_got_tls_type)
2442 #define is_arm_elf(bfd) \
2443 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2444 && elf_tdata (bfd) != NULL \
2445 && elf_object_id (bfd) == ARM_ELF_DATA)
2448 elf32_arm_mkobject (bfd
*abfd
)
2450 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2454 /* The ARM linker needs to keep track of the number of relocs that it
2455 decides to copy in check_relocs for each symbol. This is so that
2456 it can discard PC relative relocs if it doesn't need them when
2457 linking with -Bsymbolic. We store the information in a field
2458 extending the regular ELF linker hash table. */
2460 /* This structure keeps track of the number of relocs we have copied
2461 for a given symbol. */
2462 struct elf32_arm_relocs_copied
2465 struct elf32_arm_relocs_copied
* next
;
2466 /* A section in dynobj. */
2468 /* Number of relocs copied in this section. */
2469 bfd_size_type count
;
2470 /* Number of PC-relative relocs copied in this section. */
2471 bfd_size_type pc_count
;
2474 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2476 /* Arm ELF linker hash entry. */
2477 struct elf32_arm_link_hash_entry
2479 struct elf_link_hash_entry root
;
2481 /* Number of PC relative relocs copied for this symbol. */
2482 struct elf32_arm_relocs_copied
* relocs_copied
;
2484 /* We reference count Thumb references to a PLT entry separately,
2485 so that we can emit the Thumb trampoline only if needed. */
2486 bfd_signed_vma plt_thumb_refcount
;
2488 /* Some references from Thumb code may be eliminated by BL->BLX
2489 conversion, so record them separately. */
2490 bfd_signed_vma plt_maybe_thumb_refcount
;
2492 /* Since PLT entries have variable size if the Thumb prologue is
2493 used, we need to record the index into .got.plt instead of
2494 recomputing it from the PLT offset. */
2495 bfd_signed_vma plt_got_offset
;
2497 #define GOT_UNKNOWN 0
2498 #define GOT_NORMAL 1
2499 #define GOT_TLS_GD 2
2500 #define GOT_TLS_IE 4
2501 unsigned char tls_type
;
2503 /* The symbol marking the real symbol location for exported thumb
2504 symbols with Arm stubs. */
2505 struct elf_link_hash_entry
*export_glue
;
2507 /* A pointer to the most recently used stub hash entry against this
2509 struct elf32_arm_stub_hash_entry
*stub_cache
;
2512 /* Traverse an arm ELF linker hash table. */
2513 #define elf32_arm_link_hash_traverse(table, func, info) \
2514 (elf_link_hash_traverse \
2516 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2519 /* Get the ARM elf linker hash table from a link_info structure. */
2520 #define elf32_arm_hash_table(info) \
2521 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2522 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2524 #define arm_stub_hash_lookup(table, string, create, copy) \
2525 ((struct elf32_arm_stub_hash_entry *) \
2526 bfd_hash_lookup ((table), (string), (create), (copy)))
2528 /* Array to keep track of which stub sections have been created, and
2529 information on stub grouping. */
2532 /* This is the section to which stubs in the group will be
2535 /* The stub section. */
2539 /* ARM ELF linker hash table. */
2540 struct elf32_arm_link_hash_table
2542 /* The main hash table. */
2543 struct elf_link_hash_table root
;
2545 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2546 bfd_size_type thumb_glue_size
;
2548 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2549 bfd_size_type arm_glue_size
;
2551 /* The size in bytes of section containing the ARMv4 BX veneers. */
2552 bfd_size_type bx_glue_size
;
2554 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2555 veneer has been populated. */
2556 bfd_vma bx_glue_offset
[15];
2558 /* The size in bytes of the section containing glue for VFP11 erratum
2560 bfd_size_type vfp11_erratum_glue_size
;
2562 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2563 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2564 elf32_arm_write_section(). */
2565 struct a8_erratum_fix
*a8_erratum_fixes
;
2566 unsigned int num_a8_erratum_fixes
;
2568 /* An arbitrary input BFD chosen to hold the glue sections. */
2569 bfd
* bfd_of_glue_owner
;
2571 /* Nonzero to output a BE8 image. */
2574 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2575 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2578 /* The relocation to use for R_ARM_TARGET2 relocations. */
2581 /* 0 = Ignore R_ARM_V4BX.
2582 1 = Convert BX to MOV PC.
2583 2 = Generate v4 interworing stubs. */
2586 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2589 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2592 /* What sort of code sequences we should look for which may trigger the
2593 VFP11 denorm erratum. */
2594 bfd_arm_vfp11_fix vfp11_fix
;
2596 /* Global counter for the number of fixes we have emitted. */
2597 int num_vfp11_fixes
;
2599 /* Nonzero to force PIC branch veneers. */
2602 /* The number of bytes in the initial entry in the PLT. */
2603 bfd_size_type plt_header_size
;
2605 /* The number of bytes in the subsequent PLT etries. */
2606 bfd_size_type plt_entry_size
;
2608 /* True if the target system is VxWorks. */
2611 /* True if the target system is Symbian OS. */
2614 /* True if the target uses REL relocations. */
2617 /* Short-cuts to get to dynamic linker sections. */
2626 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2629 /* Data for R_ARM_TLS_LDM32 relocations. */
2632 bfd_signed_vma refcount
;
2636 /* Small local sym cache. */
2637 struct sym_cache sym_cache
;
2639 /* For convenience in allocate_dynrelocs. */
2642 /* The stub hash table. */
2643 struct bfd_hash_table stub_hash_table
;
2645 /* Linker stub bfd. */
2648 /* Linker call-backs. */
2649 asection
* (*add_stub_section
) (const char *, asection
*);
2650 void (*layout_sections_again
) (void);
2652 /* Array to keep track of which stub sections have been created, and
2653 information on stub grouping. */
2654 struct map_stub
*stub_group
;
2656 /* Number of elements in stub_group. */
2659 /* Assorted information used by elf32_arm_size_stubs. */
2660 unsigned int bfd_count
;
2662 asection
**input_list
;
2665 /* Create an entry in an ARM ELF linker hash table. */
2667 static struct bfd_hash_entry
*
2668 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2669 struct bfd_hash_table
* table
,
2670 const char * string
)
2672 struct elf32_arm_link_hash_entry
* ret
=
2673 (struct elf32_arm_link_hash_entry
*) entry
;
2675 /* Allocate the structure if it has not already been allocated by a
2678 ret
= (struct elf32_arm_link_hash_entry
*)
2679 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2681 return (struct bfd_hash_entry
*) ret
;
2683 /* Call the allocation method of the superclass. */
2684 ret
= ((struct elf32_arm_link_hash_entry
*)
2685 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2689 ret
->relocs_copied
= NULL
;
2690 ret
->tls_type
= GOT_UNKNOWN
;
2691 ret
->plt_thumb_refcount
= 0;
2692 ret
->plt_maybe_thumb_refcount
= 0;
2693 ret
->plt_got_offset
= -1;
2694 ret
->export_glue
= NULL
;
2696 ret
->stub_cache
= NULL
;
2699 return (struct bfd_hash_entry
*) ret
;
2702 /* Initialize an entry in the stub hash table. */
2704 static struct bfd_hash_entry
*
2705 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2706 struct bfd_hash_table
*table
,
2709 /* Allocate the structure if it has not already been allocated by a
2713 entry
= (struct bfd_hash_entry
*)
2714 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
2719 /* Call the allocation method of the superclass. */
2720 entry
= bfd_hash_newfunc (entry
, table
, string
);
2723 struct elf32_arm_stub_hash_entry
*eh
;
2725 /* Initialize the local fields. */
2726 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
2727 eh
->stub_sec
= NULL
;
2728 eh
->stub_offset
= 0;
2729 eh
->target_value
= 0;
2730 eh
->target_section
= NULL
;
2731 eh
->target_addend
= 0;
2733 eh
->stub_type
= arm_stub_none
;
2735 eh
->stub_template
= NULL
;
2736 eh
->stub_template_size
= 0;
2739 eh
->output_name
= NULL
;
2745 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2746 shortcuts to them in our hash table. */
2749 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
2751 struct elf32_arm_link_hash_table
*htab
;
2753 htab
= elf32_arm_hash_table (info
);
2757 /* BPABI objects never have a GOT, or associated sections. */
2758 if (htab
->symbian_p
)
2761 if (! _bfd_elf_create_got_section (dynobj
, info
))
2764 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
2765 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
2766 if (!htab
->sgot
|| !htab
->sgotplt
)
2769 htab
->srelgot
= bfd_get_section_by_name (dynobj
,
2770 RELOC_SECTION (htab
, ".got"));
2771 if (htab
->srelgot
== NULL
)
2776 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2777 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2781 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
2783 struct elf32_arm_link_hash_table
*htab
;
2785 htab
= elf32_arm_hash_table (info
);
2789 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
2792 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
2795 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
2796 htab
->srelplt
= bfd_get_section_by_name (dynobj
,
2797 RELOC_SECTION (htab
, ".plt"));
2798 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
2800 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
2801 RELOC_SECTION (htab
, ".bss"));
2803 if (htab
->vxworks_p
)
2805 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
2810 htab
->plt_header_size
= 0;
2811 htab
->plt_entry_size
2812 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
2816 htab
->plt_header_size
2817 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
2818 htab
->plt_entry_size
2819 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
2826 || (!info
->shared
&& !htab
->srelbss
))
2832 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2835 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
2836 struct elf_link_hash_entry
*dir
,
2837 struct elf_link_hash_entry
*ind
)
2839 struct elf32_arm_link_hash_entry
*edir
, *eind
;
2841 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
2842 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
2844 if (eind
->relocs_copied
!= NULL
)
2846 if (edir
->relocs_copied
!= NULL
)
2848 struct elf32_arm_relocs_copied
**pp
;
2849 struct elf32_arm_relocs_copied
*p
;
2851 /* Add reloc counts against the indirect sym to the direct sym
2852 list. Merge any entries against the same section. */
2853 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
; )
2855 struct elf32_arm_relocs_copied
*q
;
2857 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
2858 if (q
->section
== p
->section
)
2860 q
->pc_count
+= p
->pc_count
;
2861 q
->count
+= p
->count
;
2868 *pp
= edir
->relocs_copied
;
2871 edir
->relocs_copied
= eind
->relocs_copied
;
2872 eind
->relocs_copied
= NULL
;
2875 if (ind
->root
.type
== bfd_link_hash_indirect
)
2877 /* Copy over PLT info. */
2878 edir
->plt_thumb_refcount
+= eind
->plt_thumb_refcount
;
2879 eind
->plt_thumb_refcount
= 0;
2880 edir
->plt_maybe_thumb_refcount
+= eind
->plt_maybe_thumb_refcount
;
2881 eind
->plt_maybe_thumb_refcount
= 0;
2883 if (dir
->got
.refcount
<= 0)
2885 edir
->tls_type
= eind
->tls_type
;
2886 eind
->tls_type
= GOT_UNKNOWN
;
2890 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2893 /* Create an ARM elf linker hash table. */
2895 static struct bfd_link_hash_table
*
2896 elf32_arm_link_hash_table_create (bfd
*abfd
)
2898 struct elf32_arm_link_hash_table
*ret
;
2899 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
2901 ret
= (struct elf32_arm_link_hash_table
*) bfd_malloc (amt
);
2905 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
2906 elf32_arm_link_hash_newfunc
,
2907 sizeof (struct elf32_arm_link_hash_entry
),
2915 ret
->sgotplt
= NULL
;
2916 ret
->srelgot
= NULL
;
2918 ret
->srelplt
= NULL
;
2919 ret
->sdynbss
= NULL
;
2920 ret
->srelbss
= NULL
;
2921 ret
->srelplt2
= NULL
;
2922 ret
->thumb_glue_size
= 0;
2923 ret
->arm_glue_size
= 0;
2924 ret
->bx_glue_size
= 0;
2925 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
2926 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
2927 ret
->vfp11_erratum_glue_size
= 0;
2928 ret
->num_vfp11_fixes
= 0;
2929 ret
->fix_cortex_a8
= 0;
2930 ret
->bfd_of_glue_owner
= NULL
;
2931 ret
->byteswap_code
= 0;
2932 ret
->target1_is_rel
= 0;
2933 ret
->target2_reloc
= R_ARM_NONE
;
2934 #ifdef FOUR_WORD_PLT
2935 ret
->plt_header_size
= 16;
2936 ret
->plt_entry_size
= 16;
2938 ret
->plt_header_size
= 20;
2939 ret
->plt_entry_size
= 12;
2946 ret
->sym_cache
.abfd
= NULL
;
2948 ret
->tls_ldm_got
.refcount
= 0;
2949 ret
->stub_bfd
= NULL
;
2950 ret
->add_stub_section
= NULL
;
2951 ret
->layout_sections_again
= NULL
;
2952 ret
->stub_group
= NULL
;
2956 ret
->input_list
= NULL
;
2958 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2959 sizeof (struct elf32_arm_stub_hash_entry
)))
2965 return &ret
->root
.root
;
2968 /* Free the derived linker hash table. */
2971 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
2973 struct elf32_arm_link_hash_table
*ret
2974 = (struct elf32_arm_link_hash_table
*) hash
;
2976 bfd_hash_table_free (&ret
->stub_hash_table
);
2977 _bfd_generic_link_hash_table_free (hash
);
2980 /* Determine if we're dealing with a Thumb only architecture. */
2983 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
2985 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2989 if (arch
== TAG_CPU_ARCH_V6_M
|| arch
== TAG_CPU_ARCH_V6S_M
)
2992 if (arch
!= TAG_CPU_ARCH_V7
&& arch
!= TAG_CPU_ARCH_V7E_M
)
2995 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2996 Tag_CPU_arch_profile
);
2998 return profile
== 'M';
3001 /* Determine if we're dealing with a Thumb-2 object. */
3004 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
3006 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3008 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
3011 /* Determine what kind of NOPs are available. */
3014 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
3016 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3018 return arch
== TAG_CPU_ARCH_V6T2
3019 || arch
== TAG_CPU_ARCH_V6K
3020 || arch
== TAG_CPU_ARCH_V7
3021 || arch
== TAG_CPU_ARCH_V7E_M
;
3025 arch_has_thumb2_nop (struct elf32_arm_link_hash_table
*globals
)
3027 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3029 return (arch
== TAG_CPU_ARCH_V6T2
|| arch
== TAG_CPU_ARCH_V7
3030 || arch
== TAG_CPU_ARCH_V7E_M
);
3034 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
3038 case arm_stub_long_branch_thumb_only
:
3039 case arm_stub_long_branch_v4t_thumb_arm
:
3040 case arm_stub_short_branch_v4t_thumb_arm
:
3041 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3042 case arm_stub_long_branch_thumb_only_pic
:
3053 /* Determine the type of stub needed, if any, for a call. */
3055 static enum elf32_arm_stub_type
3056 arm_type_of_stub (struct bfd_link_info
*info
,
3057 asection
*input_sec
,
3058 const Elf_Internal_Rela
*rel
,
3059 int *actual_st_type
,
3060 struct elf32_arm_link_hash_entry
*hash
,
3061 bfd_vma destination
,
3067 bfd_signed_vma branch_offset
;
3068 unsigned int r_type
;
3069 struct elf32_arm_link_hash_table
* globals
;
3072 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3074 int st_type
= *actual_st_type
;
3076 /* We don't know the actual type of destination in case it is of
3077 type STT_SECTION: give up. */
3078 if (st_type
== STT_SECTION
)
3081 globals
= elf32_arm_hash_table (info
);
3082 if (globals
== NULL
)
3085 thumb_only
= using_thumb_only (globals
);
3087 thumb2
= using_thumb2 (globals
);
3089 /* Determine where the call point is. */
3090 location
= (input_sec
->output_offset
3091 + input_sec
->output_section
->vma
3094 r_type
= ELF32_R_TYPE (rel
->r_info
);
3096 /* Keep a simpler condition, for the sake of clarity. */
3097 if (globals
->splt
!= NULL
3099 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
3103 /* Note when dealing with PLT entries: the main PLT stub is in
3104 ARM mode, so if the branch is in Thumb mode, another
3105 Thumb->ARM stub will be inserted later just before the ARM
3106 PLT stub. We don't take this extra distance into account
3107 here, because if a long branch stub is needed, we'll add a
3108 Thumb->Arm one and branch directly to the ARM PLT entry
3109 because it avoids spreading offset corrections in several
3112 destination
= (globals
->splt
->output_section
->vma
3113 + globals
->splt
->output_offset
3114 + hash
->root
.plt
.offset
);
3118 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3120 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
3122 /* Handle cases where:
3123 - this call goes too far (different Thumb/Thumb2 max
3125 - it's a Thumb->Arm call and blx is not available, or it's a
3126 Thumb->Arm branch (not bl). A stub is needed in this case,
3127 but only if this call is not through a PLT entry. Indeed,
3128 PLT stubs handle mode switching already.
3131 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3132 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3134 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3135 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3136 || ((st_type
!= STT_ARM_TFUNC
)
3137 && (((r_type
== R_ARM_THM_CALL
) && !globals
->use_blx
)
3138 || (r_type
== R_ARM_THM_JUMP24
))
3141 if (st_type
== STT_ARM_TFUNC
)
3143 /* Thumb to thumb. */
3146 stub_type
= (info
->shared
| globals
->pic_veneer
)
3148 ? ((globals
->use_blx
3149 && (r_type
==R_ARM_THM_CALL
))
3150 /* V5T and above. Stub starts with ARM code, so
3151 we must be able to switch mode before
3152 reaching it, which is only possible for 'bl'
3153 (ie R_ARM_THM_CALL relocation). */
3154 ? arm_stub_long_branch_any_thumb_pic
3155 /* On V4T, use Thumb code only. */
3156 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3158 /* non-PIC stubs. */
3159 : ((globals
->use_blx
3160 && (r_type
==R_ARM_THM_CALL
))
3161 /* V5T and above. */
3162 ? arm_stub_long_branch_any_any
3164 : arm_stub_long_branch_v4t_thumb_thumb
);
3168 stub_type
= (info
->shared
| globals
->pic_veneer
)
3170 ? arm_stub_long_branch_thumb_only_pic
3172 : arm_stub_long_branch_thumb_only
;
3179 && sym_sec
->owner
!= NULL
3180 && !INTERWORK_FLAG (sym_sec
->owner
))
3182 (*_bfd_error_handler
)
3183 (_("%B(%s): warning: interworking not enabled.\n"
3184 " first occurrence: %B: Thumb call to ARM"),
3185 sym_sec
->owner
, input_bfd
, name
);
3188 stub_type
= (info
->shared
| globals
->pic_veneer
)
3190 ? ((globals
->use_blx
3191 && (r_type
==R_ARM_THM_CALL
))
3192 /* V5T and above. */
3193 ? arm_stub_long_branch_any_arm_pic
3195 : arm_stub_long_branch_v4t_thumb_arm_pic
)
3197 /* non-PIC stubs. */
3198 : ((globals
->use_blx
3199 && (r_type
==R_ARM_THM_CALL
))
3200 /* V5T and above. */
3201 ? arm_stub_long_branch_any_any
3203 : arm_stub_long_branch_v4t_thumb_arm
);
3205 /* Handle v4t short branches. */
3206 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3207 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3208 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3209 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3213 else if (r_type
== R_ARM_CALL
3214 || r_type
== R_ARM_JUMP24
3215 || r_type
== R_ARM_PLT32
)
3217 if (st_type
== STT_ARM_TFUNC
)
3222 && sym_sec
->owner
!= NULL
3223 && !INTERWORK_FLAG (sym_sec
->owner
))
3225 (*_bfd_error_handler
)
3226 (_("%B(%s): warning: interworking not enabled.\n"
3227 " first occurrence: %B: ARM call to Thumb"),
3228 sym_sec
->owner
, input_bfd
, name
);
3231 /* We have an extra 2-bytes reach because of
3232 the mode change (bit 24 (H) of BLX encoding). */
3233 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3234 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3235 || ((r_type
== R_ARM_CALL
) && !globals
->use_blx
)
3236 || (r_type
== R_ARM_JUMP24
)
3237 || (r_type
== R_ARM_PLT32
))
3239 stub_type
= (info
->shared
| globals
->pic_veneer
)
3241 ? ((globals
->use_blx
)
3242 /* V5T and above. */
3243 ? arm_stub_long_branch_any_thumb_pic
3245 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3247 /* non-PIC stubs. */
3248 : ((globals
->use_blx
)
3249 /* V5T and above. */
3250 ? arm_stub_long_branch_any_any
3252 : arm_stub_long_branch_v4t_arm_thumb
);
3258 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3259 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3261 stub_type
= (info
->shared
| globals
->pic_veneer
)
3263 ? arm_stub_long_branch_any_arm_pic
3264 /* non-PIC stubs. */
3265 : arm_stub_long_branch_any_any
;
3270 /* If a stub is needed, record the actual destination type. */
3271 if (stub_type
!= arm_stub_none
)
3273 *actual_st_type
= st_type
;
3279 /* Build a name for an entry in the stub hash table. */
3282 elf32_arm_stub_name (const asection
*input_section
,
3283 const asection
*sym_sec
,
3284 const struct elf32_arm_link_hash_entry
*hash
,
3285 const Elf_Internal_Rela
*rel
,
3286 enum elf32_arm_stub_type stub_type
)
3293 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1 + 2 + 1;
3294 stub_name
= (char *) bfd_malloc (len
);
3295 if (stub_name
!= NULL
)
3296 sprintf (stub_name
, "%08x_%s+%x_%d",
3297 input_section
->id
& 0xffffffff,
3298 hash
->root
.root
.root
.string
,
3299 (int) rel
->r_addend
& 0xffffffff,
3304 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3305 stub_name
= (char *) bfd_malloc (len
);
3306 if (stub_name
!= NULL
)
3307 sprintf (stub_name
, "%08x_%x:%x+%x_%d",
3308 input_section
->id
& 0xffffffff,
3309 sym_sec
->id
& 0xffffffff,
3310 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3311 (int) rel
->r_addend
& 0xffffffff,
3318 /* Look up an entry in the stub hash. Stub entries are cached because
3319 creating the stub name takes a bit of time. */
3321 static struct elf32_arm_stub_hash_entry
*
3322 elf32_arm_get_stub_entry (const asection
*input_section
,
3323 const asection
*sym_sec
,
3324 struct elf_link_hash_entry
*hash
,
3325 const Elf_Internal_Rela
*rel
,
3326 struct elf32_arm_link_hash_table
*htab
,
3327 enum elf32_arm_stub_type stub_type
)
3329 struct elf32_arm_stub_hash_entry
*stub_entry
;
3330 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3331 const asection
*id_sec
;
3333 if ((input_section
->flags
& SEC_CODE
) == 0)
3336 /* If this input section is part of a group of sections sharing one
3337 stub section, then use the id of the first section in the group.
3338 Stub names need to include a section id, as there may well be
3339 more than one stub used to reach say, printf, and we need to
3340 distinguish between them. */
3341 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3343 if (h
!= NULL
&& h
->stub_cache
!= NULL
3344 && h
->stub_cache
->h
== h
3345 && h
->stub_cache
->id_sec
== id_sec
3346 && h
->stub_cache
->stub_type
== stub_type
)
3348 stub_entry
= h
->stub_cache
;
3354 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
, stub_type
);
3355 if (stub_name
== NULL
)
3358 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3359 stub_name
, FALSE
, FALSE
);
3361 h
->stub_cache
= stub_entry
;
3369 /* Find or create a stub section. Returns a pointer to the stub section, and
3370 the section to which the stub section will be attached (in *LINK_SEC_P).
3371 LINK_SEC_P may be NULL. */
3374 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3375 struct elf32_arm_link_hash_table
*htab
)
3380 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3381 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3382 if (stub_sec
== NULL
)
3384 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3385 if (stub_sec
== NULL
)
3391 namelen
= strlen (link_sec
->name
);
3392 len
= namelen
+ sizeof (STUB_SUFFIX
);
3393 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
3397 memcpy (s_name
, link_sec
->name
, namelen
);
3398 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3399 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3400 if (stub_sec
== NULL
)
3402 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3404 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3408 *link_sec_p
= link_sec
;
3413 /* Add a new stub entry to the stub hash. Not all fields of the new
3414 stub entry are initialised. */
3416 static struct elf32_arm_stub_hash_entry
*
3417 elf32_arm_add_stub (const char *stub_name
,
3419 struct elf32_arm_link_hash_table
*htab
)
3423 struct elf32_arm_stub_hash_entry
*stub_entry
;
3425 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3426 if (stub_sec
== NULL
)
3429 /* Enter this entry into the linker stub hash table. */
3430 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3432 if (stub_entry
== NULL
)
3434 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3440 stub_entry
->stub_sec
= stub_sec
;
3441 stub_entry
->stub_offset
= 0;
3442 stub_entry
->id_sec
= link_sec
;
3447 /* Store an Arm insn into an output section not processed by
3448 elf32_arm_write_section. */
3451 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3452 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3454 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3455 bfd_putl32 (val
, ptr
);
3457 bfd_putb32 (val
, ptr
);
3460 /* Store a 16-bit Thumb insn into an output section not processed by
3461 elf32_arm_write_section. */
3464 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3465 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3467 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3468 bfd_putl16 (val
, ptr
);
3470 bfd_putb16 (val
, ptr
);
3473 static bfd_reloc_status_type elf32_arm_final_link_relocate
3474 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
3475 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
3476 const char *, int, struct elf_link_hash_entry
*, bfd_boolean
*, char **);
3479 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3483 struct elf32_arm_stub_hash_entry
*stub_entry
;
3484 struct elf32_arm_link_hash_table
*globals
;
3485 struct bfd_link_info
*info
;
3492 const insn_sequence
*template_sequence
;
3494 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
3495 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
3498 /* Massage our args to the form they really have. */
3499 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3500 info
= (struct bfd_link_info
*) in_arg
;
3502 globals
= elf32_arm_hash_table (info
);
3503 if (globals
== NULL
)
3506 stub_sec
= stub_entry
->stub_sec
;
3508 if ((globals
->fix_cortex_a8
< 0)
3509 != (stub_entry
->stub_type
>= arm_stub_a8_veneer_lwm
))
3510 /* We have to do the a8 fixes last, as they are less aligned than
3511 the other veneers. */
3514 /* Make a note of the offset within the stubs for this entry. */
3515 stub_entry
->stub_offset
= stub_sec
->size
;
3516 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3518 stub_bfd
= stub_sec
->owner
;
3520 /* This is the address of the stub destination. */
3521 sym_value
= (stub_entry
->target_value
3522 + stub_entry
->target_section
->output_offset
3523 + stub_entry
->target_section
->output_section
->vma
);
3525 template_sequence
= stub_entry
->stub_template
;
3526 template_size
= stub_entry
->stub_template_size
;
3529 for (i
= 0; i
< template_size
; i
++)
3531 switch (template_sequence
[i
].type
)
3535 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
3536 if (template_sequence
[i
].reloc_addend
!= 0)
3538 /* We've borrowed the reloc_addend field to mean we should
3539 insert a condition code into this (Thumb-1 branch)
3540 instruction. See THUMB16_BCOND_INSN. */
3541 BFD_ASSERT ((data
& 0xff00) == 0xd000);
3542 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
3544 bfd_put_16 (stub_bfd
, data
, loc
+ size
);
3550 bfd_put_16 (stub_bfd
,
3551 (template_sequence
[i
].data
>> 16) & 0xffff,
3553 bfd_put_16 (stub_bfd
, template_sequence
[i
].data
& 0xffff,
3555 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
3557 stub_reloc_idx
[nrelocs
] = i
;
3558 stub_reloc_offset
[nrelocs
++] = size
;
3564 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
,
3566 /* Handle cases where the target is encoded within the
3568 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
3570 stub_reloc_idx
[nrelocs
] = i
;
3571 stub_reloc_offset
[nrelocs
++] = size
;
3577 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
3578 stub_reloc_idx
[nrelocs
] = i
;
3579 stub_reloc_offset
[nrelocs
++] = size
;
3589 stub_sec
->size
+= size
;
3591 /* Stub size has already been computed in arm_size_one_stub. Check
3593 BFD_ASSERT (size
== stub_entry
->stub_size
);
3595 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3596 if (stub_entry
->st_type
== STT_ARM_TFUNC
)
3599 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3601 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
3603 for (i
= 0; i
< nrelocs
; i
++)
3604 if (template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
3605 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
3606 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
3607 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
3609 Elf_Internal_Rela rel
;
3610 bfd_boolean unresolved_reloc
;
3611 char *error_message
;
3613 = (template_sequence
[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
)
3614 ? STT_ARM_TFUNC
: 0;
3615 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
3617 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
3618 rel
.r_info
= ELF32_R_INFO (0,
3619 template_sequence
[stub_reloc_idx
[i
]].r_type
);
3620 rel
.r_addend
= template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
3622 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
3623 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3624 template should refer back to the instruction after the original
3626 points_to
= sym_value
;
3628 /* There may be unintended consequences if this is not true. */
3629 BFD_ASSERT (stub_entry
->h
== NULL
);
3631 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3632 properly. We should probably use this function unconditionally,
3633 rather than only for certain relocations listed in the enclosing
3634 conditional, for the sake of consistency. */
3635 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3636 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
3637 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
3638 points_to
, info
, stub_entry
->target_section
, "", sym_flags
,
3639 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
3644 Elf_Internal_Rela rel
;
3645 bfd_boolean unresolved_reloc
;
3646 char *error_message
;
3647 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
3648 + template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
3650 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
3651 rel
.r_info
= ELF32_R_INFO (0,
3652 template_sequence
[stub_reloc_idx
[i
]].r_type
);
3655 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3656 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
3657 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
3658 points_to
, info
, stub_entry
->target_section
, "", stub_entry
->st_type
,
3659 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
3667 /* Calculate the template, template size and instruction size for a stub.
3668 Return value is the instruction size. */
3671 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
3672 const insn_sequence
**stub_template
,
3673 int *stub_template_size
)
3675 const insn_sequence
*template_sequence
= NULL
;
3676 int template_size
= 0, i
;
3679 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
3680 template_size
= stub_definitions
[stub_type
].template_size
;
3683 for (i
= 0; i
< template_size
; i
++)
3685 switch (template_sequence
[i
].type
)
3704 *stub_template
= template_sequence
;
3706 if (stub_template_size
)
3707 *stub_template_size
= template_size
;
3712 /* As above, but don't actually build the stub. Just bump offset so
3713 we know stub section sizes. */
3716 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3717 void *in_arg ATTRIBUTE_UNUSED
)
3719 struct elf32_arm_stub_hash_entry
*stub_entry
;
3720 const insn_sequence
*template_sequence
;
3721 int template_size
, size
;
3723 /* Massage our args to the form they really have. */
3724 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3726 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
3727 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
3729 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
3732 stub_entry
->stub_size
= size
;
3733 stub_entry
->stub_template
= template_sequence
;
3734 stub_entry
->stub_template_size
= template_size
;
3736 size
= (size
+ 7) & ~7;
3737 stub_entry
->stub_sec
->size
+= size
;
3742 /* External entry points for sizing and building linker stubs. */
3744 /* Set up various things so that we can make a list of input sections
3745 for each output section included in the link. Returns -1 on error,
3746 0 when no stubs will be needed, and 1 on success. */
3749 elf32_arm_setup_section_lists (bfd
*output_bfd
,
3750 struct bfd_link_info
*info
)
3753 unsigned int bfd_count
;
3754 int top_id
, top_index
;
3756 asection
**input_list
, **list
;
3758 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3762 if (! is_elf_hash_table (htab
))
3765 /* Count the number of input BFDs and find the top input section id. */
3766 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3768 input_bfd
= input_bfd
->link_next
)
3771 for (section
= input_bfd
->sections
;
3773 section
= section
->next
)
3775 if (top_id
< section
->id
)
3776 top_id
= section
->id
;
3779 htab
->bfd_count
= bfd_count
;
3781 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3782 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
3783 if (htab
->stub_group
== NULL
)
3785 htab
->top_id
= top_id
;
3787 /* We can't use output_bfd->section_count here to find the top output
3788 section index as some sections may have been removed, and
3789 _bfd_strip_section_from_output doesn't renumber the indices. */
3790 for (section
= output_bfd
->sections
, top_index
= 0;
3792 section
= section
->next
)
3794 if (top_index
< section
->index
)
3795 top_index
= section
->index
;
3798 htab
->top_index
= top_index
;
3799 amt
= sizeof (asection
*) * (top_index
+ 1);
3800 input_list
= (asection
**) bfd_malloc (amt
);
3801 htab
->input_list
= input_list
;
3802 if (input_list
== NULL
)
3805 /* For sections we aren't interested in, mark their entries with a
3806 value we can check later. */
3807 list
= input_list
+ top_index
;
3809 *list
= bfd_abs_section_ptr
;
3810 while (list
-- != input_list
);
3812 for (section
= output_bfd
->sections
;
3814 section
= section
->next
)
3816 if ((section
->flags
& SEC_CODE
) != 0)
3817 input_list
[section
->index
] = NULL
;
3823 /* The linker repeatedly calls this function for each input section,
3824 in the order that input sections are linked into output sections.
3825 Build lists of input sections to determine groupings between which
3826 we may insert linker stubs. */
3829 elf32_arm_next_input_section (struct bfd_link_info
*info
,
3832 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3837 if (isec
->output_section
->index
<= htab
->top_index
)
3839 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3841 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
3843 /* Steal the link_sec pointer for our list. */
3844 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3845 /* This happens to make the list in reverse order,
3846 which we reverse later. */
3847 PREV_SEC (isec
) = *list
;
3853 /* See whether we can group stub sections together. Grouping stub
3854 sections may result in fewer stubs. More importantly, we need to
3855 put all .init* and .fini* stubs at the end of the .init or
3856 .fini output sections respectively, because glibc splits the
3857 _init and _fini functions into multiple parts. Putting a stub in
3858 the middle of a function is not a good idea. */
3861 group_sections (struct elf32_arm_link_hash_table
*htab
,
3862 bfd_size_type stub_group_size
,
3863 bfd_boolean stubs_always_after_branch
)
3865 asection
**list
= htab
->input_list
;
3869 asection
*tail
= *list
;
3872 if (tail
== bfd_abs_section_ptr
)
3875 /* Reverse the list: we must avoid placing stubs at the
3876 beginning of the section because the beginning of the text
3877 section may be required for an interrupt vector in bare metal
3879 #define NEXT_SEC PREV_SEC
3881 while (tail
!= NULL
)
3883 /* Pop from tail. */
3884 asection
*item
= tail
;
3885 tail
= PREV_SEC (item
);
3888 NEXT_SEC (item
) = head
;
3892 while (head
!= NULL
)
3896 bfd_vma stub_group_start
= head
->output_offset
;
3897 bfd_vma end_of_next
;
3900 while (NEXT_SEC (curr
) != NULL
)
3902 next
= NEXT_SEC (curr
);
3903 end_of_next
= next
->output_offset
+ next
->size
;
3904 if (end_of_next
- stub_group_start
>= stub_group_size
)
3905 /* End of NEXT is too far from start, so stop. */
3907 /* Add NEXT to the group. */
3911 /* OK, the size from the start to the start of CURR is less
3912 than stub_group_size and thus can be handled by one stub
3913 section. (Or the head section is itself larger than
3914 stub_group_size, in which case we may be toast.)
3915 We should really be keeping track of the total size of
3916 stubs added here, as stubs contribute to the final output
3920 next
= NEXT_SEC (head
);
3921 /* Set up this stub group. */
3922 htab
->stub_group
[head
->id
].link_sec
= curr
;
3924 while (head
!= curr
&& (head
= next
) != NULL
);
3926 /* But wait, there's more! Input sections up to stub_group_size
3927 bytes after the stub section can be handled by it too. */
3928 if (!stubs_always_after_branch
)
3930 stub_group_start
= curr
->output_offset
+ curr
->size
;
3932 while (next
!= NULL
)
3934 end_of_next
= next
->output_offset
+ next
->size
;
3935 if (end_of_next
- stub_group_start
>= stub_group_size
)
3936 /* End of NEXT is too far from stubs, so stop. */
3938 /* Add NEXT to the stub group. */
3940 next
= NEXT_SEC (head
);
3941 htab
->stub_group
[head
->id
].link_sec
= curr
;
3947 while (list
++ != htab
->input_list
+ htab
->top_index
);
3949 free (htab
->input_list
);
3954 /* Comparison function for sorting/searching relocations relating to Cortex-A8
3958 a8_reloc_compare (const void *a
, const void *b
)
3960 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
3961 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
3963 if (ra
->from
< rb
->from
)
3965 else if (ra
->from
> rb
->from
)
3971 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
3972 const char *, char **);
3974 /* Helper function to scan code for sequences which might trigger the Cortex-A8
3975 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
3976 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
3980 cortex_a8_erratum_scan (bfd
*input_bfd
,
3981 struct bfd_link_info
*info
,
3982 struct a8_erratum_fix
**a8_fixes_p
,
3983 unsigned int *num_a8_fixes_p
,
3984 unsigned int *a8_fix_table_size_p
,
3985 struct a8_erratum_reloc
*a8_relocs
,
3986 unsigned int num_a8_relocs
,
3987 unsigned prev_num_a8_fixes
,
3988 bfd_boolean
*stub_changed_p
)
3991 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3992 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
3993 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
3994 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
3999 for (section
= input_bfd
->sections
;
4001 section
= section
->next
)
4003 bfd_byte
*contents
= NULL
;
4004 struct _arm_elf_section_data
*sec_data
;
4008 if (elf_section_type (section
) != SHT_PROGBITS
4009 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
4010 || (section
->flags
& SEC_EXCLUDE
) != 0
4011 || (section
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
4012 || (section
->output_section
== bfd_abs_section_ptr
))
4015 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
4017 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
4018 contents
= elf_section_data (section
)->this_hdr
.contents
;
4019 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
4022 sec_data
= elf32_arm_section_data (section
);
4024 for (span
= 0; span
< sec_data
->mapcount
; span
++)
4026 unsigned int span_start
= sec_data
->map
[span
].vma
;
4027 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
4028 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
4030 char span_type
= sec_data
->map
[span
].type
;
4031 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
4033 if (span_type
!= 't')
4036 /* Span is entirely within a single 4KB region: skip scanning. */
4037 if (((base_vma
+ span_start
) & ~0xfff)
4038 == ((base_vma
+ span_end
) & ~0xfff))
4041 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4043 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4044 * The branch target is in the same 4KB region as the
4045 first half of the branch.
4046 * The instruction before the branch is a 32-bit
4047 length non-branch instruction. */
4048 for (i
= span_start
; i
< span_end
;)
4050 unsigned int insn
= bfd_getl16 (&contents
[i
]);
4051 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
4052 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
4054 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
4059 /* Load the rest of the insn (in manual-friendly order). */
4060 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
4062 /* Encoding T4: B<c>.W. */
4063 is_b
= (insn
& 0xf800d000) == 0xf0009000;
4064 /* Encoding T1: BL<c>.W. */
4065 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
4066 /* Encoding T2: BLX<c>.W. */
4067 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
4068 /* Encoding T3: B<c>.W (not permitted in IT block). */
4069 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
4070 && (insn
& 0x07f00000) != 0x03800000;
4073 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
4075 if (((base_vma
+ i
) & 0xfff) == 0xffe
4079 && ! last_was_branch
)
4081 bfd_signed_vma offset
= 0;
4082 bfd_boolean force_target_arm
= FALSE
;
4083 bfd_boolean force_target_thumb
= FALSE
;
4085 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4086 struct a8_erratum_reloc key
, *found
;
4088 key
.from
= base_vma
+ i
;
4089 found
= (struct a8_erratum_reloc
*)
4090 bsearch (&key
, a8_relocs
, num_a8_relocs
,
4091 sizeof (struct a8_erratum_reloc
),
4096 char *error_message
= NULL
;
4097 struct elf_link_hash_entry
*entry
;
4098 bfd_boolean use_plt
= FALSE
;
4100 /* We don't care about the error returned from this
4101 function, only if there is glue or not. */
4102 entry
= find_thumb_glue (info
, found
->sym_name
,
4106 found
->non_a8_stub
= TRUE
;
4108 /* Keep a simpler condition, for the sake of clarity. */
4109 if (htab
->splt
!= NULL
&& found
->hash
!= NULL
4110 && found
->hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4113 if (found
->r_type
== R_ARM_THM_CALL
)
4115 if (found
->st_type
!= STT_ARM_TFUNC
|| use_plt
)
4116 force_target_arm
= TRUE
;
4118 force_target_thumb
= TRUE
;
4122 /* Check if we have an offending branch instruction. */
4124 if (found
&& found
->non_a8_stub
)
4125 /* We've already made a stub for this instruction, e.g.
4126 it's a long branch or a Thumb->ARM stub. Assume that
4127 stub will suffice to work around the A8 erratum (see
4128 setting of always_after_branch above). */
4132 offset
= (insn
& 0x7ff) << 1;
4133 offset
|= (insn
& 0x3f0000) >> 4;
4134 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4135 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4136 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4137 if (offset
& 0x100000)
4138 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4139 stub_type
= arm_stub_a8_veneer_b_cond
;
4141 else if (is_b
|| is_bl
|| is_blx
)
4143 int s
= (insn
& 0x4000000) != 0;
4144 int j1
= (insn
& 0x2000) != 0;
4145 int j2
= (insn
& 0x800) != 0;
4149 offset
= (insn
& 0x7ff) << 1;
4150 offset
|= (insn
& 0x3ff0000) >> 4;
4154 if (offset
& 0x1000000)
4155 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4158 offset
&= ~ ((bfd_signed_vma
) 3);
4160 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4161 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4164 if (stub_type
!= arm_stub_none
)
4166 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4168 /* The original instruction is a BL, but the target is
4169 an ARM instruction. If we were not making a stub,
4170 the BL would have been converted to a BLX. Use the
4171 BLX stub instead in that case. */
4172 if (htab
->use_blx
&& force_target_arm
4173 && stub_type
== arm_stub_a8_veneer_bl
)
4175 stub_type
= arm_stub_a8_veneer_blx
;
4179 /* Conversely, if the original instruction was
4180 BLX but the target is Thumb mode, use the BL
4182 else if (force_target_thumb
4183 && stub_type
== arm_stub_a8_veneer_blx
)
4185 stub_type
= arm_stub_a8_veneer_bl
;
4191 pc_for_insn
&= ~ ((bfd_vma
) 3);
4193 /* If we found a relocation, use the proper destination,
4194 not the offset in the (unrelocated) instruction.
4195 Note this is always done if we switched the stub type
4199 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4201 target
= pc_for_insn
+ offset
;
4203 /* The BLX stub is ARM-mode code. Adjust the offset to
4204 take the different PC value (+8 instead of +4) into
4206 if (stub_type
== arm_stub_a8_veneer_blx
)
4209 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4211 char *stub_name
= NULL
;
4213 if (num_a8_fixes
== a8_fix_table_size
)
4215 a8_fix_table_size
*= 2;
4216 a8_fixes
= (struct a8_erratum_fix
*)
4217 bfd_realloc (a8_fixes
,
4218 sizeof (struct a8_erratum_fix
)
4219 * a8_fix_table_size
);
4222 if (num_a8_fixes
< prev_num_a8_fixes
)
4224 /* If we're doing a subsequent scan,
4225 check if we've found the same fix as
4226 before, and try and reuse the stub
4228 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
4229 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
4230 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
4234 *stub_changed_p
= TRUE
;
4240 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
4241 if (stub_name
!= NULL
)
4242 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4245 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4246 a8_fixes
[num_a8_fixes
].section
= section
;
4247 a8_fixes
[num_a8_fixes
].offset
= i
;
4248 a8_fixes
[num_a8_fixes
].addend
= offset
;
4249 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4250 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4251 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4252 a8_fixes
[num_a8_fixes
].st_type
=
4253 is_blx
? STT_FUNC
: STT_ARM_TFUNC
;
4260 i
+= insn_32bit
? 4 : 2;
4261 last_was_32bit
= insn_32bit
;
4262 last_was_branch
= is_32bit_branch
;
4266 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4270 *a8_fixes_p
= a8_fixes
;
4271 *num_a8_fixes_p
= num_a8_fixes
;
4272 *a8_fix_table_size_p
= a8_fix_table_size
;
4277 /* Determine and set the size of the stub section for a final link.
4279 The basic idea here is to examine all the relocations looking for
4280 PC-relative calls to a target that is unreachable with a "bl"
4284 elf32_arm_size_stubs (bfd
*output_bfd
,
4286 struct bfd_link_info
*info
,
4287 bfd_signed_vma group_size
,
4288 asection
* (*add_stub_section
) (const char *, asection
*),
4289 void (*layout_sections_again
) (void))
4291 bfd_size_type stub_group_size
;
4292 bfd_boolean stubs_always_after_branch
;
4293 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4294 struct a8_erratum_fix
*a8_fixes
= NULL
;
4295 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
4296 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4297 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4302 if (htab
->fix_cortex_a8
)
4304 a8_fixes
= (struct a8_erratum_fix
*)
4305 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
4306 a8_relocs
= (struct a8_erratum_reloc
*)
4307 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
4310 /* Propagate mach to stub bfd, because it may not have been
4311 finalized when we created stub_bfd. */
4312 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4313 bfd_get_mach (output_bfd
));
4315 /* Stash our params away. */
4316 htab
->stub_bfd
= stub_bfd
;
4317 htab
->add_stub_section
= add_stub_section
;
4318 htab
->layout_sections_again
= layout_sections_again
;
4319 stubs_always_after_branch
= group_size
< 0;
4321 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4322 as the first half of a 32-bit branch straddling two 4K pages. This is a
4323 crude way of enforcing that. */
4324 if (htab
->fix_cortex_a8
)
4325 stubs_always_after_branch
= 1;
4328 stub_group_size
= -group_size
;
4330 stub_group_size
= group_size
;
4332 if (stub_group_size
== 1)
4334 /* Default values. */
4335 /* Thumb branch range is +-4MB has to be used as the default
4336 maximum size (a given section can contain both ARM and Thumb
4337 code, so the worst case has to be taken into account).
4339 This value is 24K less than that, which allows for 2025
4340 12-byte stubs. If we exceed that, then we will fail to link.
4341 The user will have to relink with an explicit group size
4343 stub_group_size
= 4170000;
4346 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4348 /* If we're applying the cortex A8 fix, we need to determine the
4349 program header size now, because we cannot change it later --
4350 that could alter section placements. Notice the A8 erratum fix
4351 ends up requiring the section addresses to remain unchanged
4352 modulo the page size. That's something we cannot represent
4353 inside BFD, and we don't want to force the section alignment to
4354 be the page size. */
4355 if (htab
->fix_cortex_a8
)
4356 (*htab
->layout_sections_again
) ();
4361 unsigned int bfd_indx
;
4363 bfd_boolean stub_changed
= FALSE
;
4364 unsigned prev_num_a8_fixes
= num_a8_fixes
;
4367 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4369 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4371 Elf_Internal_Shdr
*symtab_hdr
;
4373 Elf_Internal_Sym
*local_syms
= NULL
;
4377 /* We'll need the symbol table in a second. */
4378 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4379 if (symtab_hdr
->sh_info
== 0)
4382 /* Walk over each section attached to the input bfd. */
4383 for (section
= input_bfd
->sections
;
4385 section
= section
->next
)
4387 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4389 /* If there aren't any relocs, then there's nothing more
4391 if ((section
->flags
& SEC_RELOC
) == 0
4392 || section
->reloc_count
== 0
4393 || (section
->flags
& SEC_CODE
) == 0)
4396 /* If this section is a link-once section that will be
4397 discarded, then don't create any stubs. */
4398 if (section
->output_section
== NULL
4399 || section
->output_section
->owner
!= output_bfd
)
4402 /* Get the relocs. */
4404 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4405 NULL
, info
->keep_memory
);
4406 if (internal_relocs
== NULL
)
4407 goto error_ret_free_local
;
4409 /* Now examine each relocation. */
4410 irela
= internal_relocs
;
4411 irelaend
= irela
+ section
->reloc_count
;
4412 for (; irela
< irelaend
; irela
++)
4414 unsigned int r_type
, r_indx
;
4415 enum elf32_arm_stub_type stub_type
;
4416 struct elf32_arm_stub_hash_entry
*stub_entry
;
4419 bfd_vma destination
;
4420 struct elf32_arm_link_hash_entry
*hash
;
4421 const char *sym_name
;
4423 const asection
*id_sec
;
4425 bfd_boolean created_stub
= FALSE
;
4427 r_type
= ELF32_R_TYPE (irela
->r_info
);
4428 r_indx
= ELF32_R_SYM (irela
->r_info
);
4430 if (r_type
>= (unsigned int) R_ARM_max
)
4432 bfd_set_error (bfd_error_bad_value
);
4433 error_ret_free_internal
:
4434 if (elf_section_data (section
)->relocs
== NULL
)
4435 free (internal_relocs
);
4436 goto error_ret_free_local
;
4439 /* Only look for stubs on branch instructions. */
4440 if ((r_type
!= (unsigned int) R_ARM_CALL
)
4441 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
4442 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
4443 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
4444 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
4445 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
4446 && (r_type
!= (unsigned int) R_ARM_PLT32
))
4449 /* Now determine the call target, its name, value,
4456 if (r_indx
< symtab_hdr
->sh_info
)
4458 /* It's a local symbol. */
4459 Elf_Internal_Sym
*sym
;
4460 Elf_Internal_Shdr
*hdr
;
4462 if (local_syms
== NULL
)
4465 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4466 if (local_syms
== NULL
)
4468 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4469 symtab_hdr
->sh_info
, 0,
4471 if (local_syms
== NULL
)
4472 goto error_ret_free_internal
;
4475 sym
= local_syms
+ r_indx
;
4476 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
4477 sym_sec
= hdr
->bfd_section
;
4479 /* This is an undefined symbol. It can never
4483 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
4484 sym_value
= sym
->st_value
;
4485 destination
= (sym_value
+ irela
->r_addend
4486 + sym_sec
->output_offset
4487 + sym_sec
->output_section
->vma
);
4488 st_type
= ELF_ST_TYPE (sym
->st_info
);
4490 = bfd_elf_string_from_elf_section (input_bfd
,
4491 symtab_hdr
->sh_link
,
4496 /* It's an external symbol. */
4499 e_indx
= r_indx
- symtab_hdr
->sh_info
;
4500 hash
= ((struct elf32_arm_link_hash_entry
*)
4501 elf_sym_hashes (input_bfd
)[e_indx
]);
4503 while (hash
->root
.root
.type
== bfd_link_hash_indirect
4504 || hash
->root
.root
.type
== bfd_link_hash_warning
)
4505 hash
= ((struct elf32_arm_link_hash_entry
*)
4506 hash
->root
.root
.u
.i
.link
);
4508 if (hash
->root
.root
.type
== bfd_link_hash_defined
4509 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
4511 sym_sec
= hash
->root
.root
.u
.def
.section
;
4512 sym_value
= hash
->root
.root
.u
.def
.value
;
4514 struct elf32_arm_link_hash_table
*globals
=
4515 elf32_arm_hash_table (info
);
4517 /* For a destination in a shared library,
4518 use the PLT stub as target address to
4519 decide whether a branch stub is
4522 && globals
->splt
!= NULL
4524 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4526 sym_sec
= globals
->splt
;
4527 sym_value
= hash
->root
.plt
.offset
;
4528 if (sym_sec
->output_section
!= NULL
)
4529 destination
= (sym_value
4530 + sym_sec
->output_offset
4531 + sym_sec
->output_section
->vma
);
4533 else if (sym_sec
->output_section
!= NULL
)
4534 destination
= (sym_value
+ irela
->r_addend
4535 + sym_sec
->output_offset
4536 + sym_sec
->output_section
->vma
);
4538 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
4539 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
4541 /* For a shared library, use the PLT stub as
4542 target address to decide whether a long
4543 branch stub is needed.
4544 For absolute code, they cannot be handled. */
4545 struct elf32_arm_link_hash_table
*globals
=
4546 elf32_arm_hash_table (info
);
4549 && globals
->splt
!= NULL
4551 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4553 sym_sec
= globals
->splt
;
4554 sym_value
= hash
->root
.plt
.offset
;
4555 if (sym_sec
->output_section
!= NULL
)
4556 destination
= (sym_value
4557 + sym_sec
->output_offset
4558 + sym_sec
->output_section
->vma
);
4565 bfd_set_error (bfd_error_bad_value
);
4566 goto error_ret_free_internal
;
4568 st_type
= ELF_ST_TYPE (hash
->root
.type
);
4569 sym_name
= hash
->root
.root
.root
.string
;
4574 /* Determine what (if any) linker stub is needed. */
4575 stub_type
= arm_type_of_stub (info
, section
, irela
,
4577 destination
, sym_sec
,
4578 input_bfd
, sym_name
);
4579 if (stub_type
== arm_stub_none
)
4582 /* Support for grouping stub sections. */
4583 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
4585 /* Get the name of this stub. */
4586 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
4589 goto error_ret_free_internal
;
4591 /* We've either created a stub for this reloc already,
4592 or we are about to. */
4593 created_stub
= TRUE
;
4595 stub_entry
= arm_stub_hash_lookup
4596 (&htab
->stub_hash_table
, stub_name
,
4598 if (stub_entry
!= NULL
)
4600 /* The proper stub has already been created. */
4602 stub_entry
->target_value
= sym_value
;
4606 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
4608 if (stub_entry
== NULL
)
4611 goto error_ret_free_internal
;
4614 stub_entry
->target_value
= sym_value
;
4615 stub_entry
->target_section
= sym_sec
;
4616 stub_entry
->stub_type
= stub_type
;
4617 stub_entry
->h
= hash
;
4618 stub_entry
->st_type
= st_type
;
4620 if (sym_name
== NULL
)
4621 sym_name
= "unnamed";
4622 stub_entry
->output_name
= (char *)
4623 bfd_alloc (htab
->stub_bfd
,
4624 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
4625 + strlen (sym_name
));
4626 if (stub_entry
->output_name
== NULL
)
4629 goto error_ret_free_internal
;
4632 /* For historical reasons, use the existing names for
4633 ARM-to-Thumb and Thumb-to-ARM stubs. */
4634 if ( ((r_type
== (unsigned int) R_ARM_THM_CALL
)
4635 || (r_type
== (unsigned int) R_ARM_THM_JUMP24
))
4636 && st_type
!= STT_ARM_TFUNC
)
4637 sprintf (stub_entry
->output_name
,
4638 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
4639 else if ( ((r_type
== (unsigned int) R_ARM_CALL
)
4640 || (r_type
== (unsigned int) R_ARM_JUMP24
))
4641 && st_type
== STT_ARM_TFUNC
)
4642 sprintf (stub_entry
->output_name
,
4643 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
4645 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
4648 stub_changed
= TRUE
;
4652 /* Look for relocations which might trigger Cortex-A8
4654 if (htab
->fix_cortex_a8
4655 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
4656 || r_type
== (unsigned int) R_ARM_THM_JUMP19
4657 || r_type
== (unsigned int) R_ARM_THM_CALL
4658 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
4660 bfd_vma from
= section
->output_section
->vma
4661 + section
->output_offset
4664 if ((from
& 0xfff) == 0xffe)
4666 /* Found a candidate. Note we haven't checked the
4667 destination is within 4K here: if we do so (and
4668 don't create an entry in a8_relocs) we can't tell
4669 that a branch should have been relocated when
4671 if (num_a8_relocs
== a8_reloc_table_size
)
4673 a8_reloc_table_size
*= 2;
4674 a8_relocs
= (struct a8_erratum_reloc
*)
4675 bfd_realloc (a8_relocs
,
4676 sizeof (struct a8_erratum_reloc
)
4677 * a8_reloc_table_size
);
4680 a8_relocs
[num_a8_relocs
].from
= from
;
4681 a8_relocs
[num_a8_relocs
].destination
= destination
;
4682 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
4683 a8_relocs
[num_a8_relocs
].st_type
= st_type
;
4684 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
4685 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
4686 a8_relocs
[num_a8_relocs
].hash
= hash
;
4693 /* We're done with the internal relocs, free them. */
4694 if (elf_section_data (section
)->relocs
== NULL
)
4695 free (internal_relocs
);
4698 if (htab
->fix_cortex_a8
)
4700 /* Sort relocs which might apply to Cortex-A8 erratum. */
4701 qsort (a8_relocs
, num_a8_relocs
,
4702 sizeof (struct a8_erratum_reloc
),
4705 /* Scan for branches which might trigger Cortex-A8 erratum. */
4706 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
4707 &num_a8_fixes
, &a8_fix_table_size
,
4708 a8_relocs
, num_a8_relocs
,
4709 prev_num_a8_fixes
, &stub_changed
)
4711 goto error_ret_free_local
;
4715 if (prev_num_a8_fixes
!= num_a8_fixes
)
4716 stub_changed
= TRUE
;
4721 /* OK, we've added some stubs. Find out the new size of the
4723 for (stub_sec
= htab
->stub_bfd
->sections
;
4725 stub_sec
= stub_sec
->next
)
4727 /* Ignore non-stub sections. */
4728 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4734 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
4736 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4737 if (htab
->fix_cortex_a8
)
4738 for (i
= 0; i
< num_a8_fixes
; i
++)
4740 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
4741 a8_fixes
[i
].section
, htab
);
4743 if (stub_sec
== NULL
)
4744 goto error_ret_free_local
;
4747 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
4752 /* Ask the linker to do its stuff. */
4753 (*htab
->layout_sections_again
) ();
4756 /* Add stubs for Cortex-A8 erratum fixes now. */
4757 if (htab
->fix_cortex_a8
)
4759 for (i
= 0; i
< num_a8_fixes
; i
++)
4761 struct elf32_arm_stub_hash_entry
*stub_entry
;
4762 char *stub_name
= a8_fixes
[i
].stub_name
;
4763 asection
*section
= a8_fixes
[i
].section
;
4764 unsigned int section_id
= a8_fixes
[i
].section
->id
;
4765 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
4766 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
4767 const insn_sequence
*template_sequence
;
4768 int template_size
, size
= 0;
4770 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4772 if (stub_entry
== NULL
)
4774 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
4780 stub_entry
->stub_sec
= stub_sec
;
4781 stub_entry
->stub_offset
= 0;
4782 stub_entry
->id_sec
= link_sec
;
4783 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
4784 stub_entry
->target_section
= a8_fixes
[i
].section
;
4785 stub_entry
->target_value
= a8_fixes
[i
].offset
;
4786 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
4787 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
4788 stub_entry
->st_type
= a8_fixes
[i
].st_type
;
4790 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
4794 stub_entry
->stub_size
= size
;
4795 stub_entry
->stub_template
= template_sequence
;
4796 stub_entry
->stub_template_size
= template_size
;
4799 /* Stash the Cortex-A8 erratum fix array for use later in
4800 elf32_arm_write_section(). */
4801 htab
->a8_erratum_fixes
= a8_fixes
;
4802 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
4806 htab
->a8_erratum_fixes
= NULL
;
4807 htab
->num_a8_erratum_fixes
= 0;
4811 error_ret_free_local
:
4815 /* Build all the stubs associated with the current output file. The
4816 stubs are kept in a hash table attached to the main linker hash
4817 table. We also set up the .plt entries for statically linked PIC
4818 functions here. This function is called via arm_elf_finish in the
4822 elf32_arm_build_stubs (struct bfd_link_info
*info
)
4825 struct bfd_hash_table
*table
;
4826 struct elf32_arm_link_hash_table
*htab
;
4828 htab
= elf32_arm_hash_table (info
);
4832 for (stub_sec
= htab
->stub_bfd
->sections
;
4834 stub_sec
= stub_sec
->next
)
4838 /* Ignore non-stub sections. */
4839 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4842 /* Allocate memory to hold the linker stubs. */
4843 size
= stub_sec
->size
;
4844 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
4845 if (stub_sec
->contents
== NULL
&& size
!= 0)
4850 /* Build the stubs as directed by the stub hash table. */
4851 table
= &htab
->stub_hash_table
;
4852 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
4853 if (htab
->fix_cortex_a8
)
4855 /* Place the cortex a8 stubs last. */
4856 htab
->fix_cortex_a8
= -1;
4857 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
4863 /* Locate the Thumb encoded calling stub for NAME. */
4865 static struct elf_link_hash_entry
*
4866 find_thumb_glue (struct bfd_link_info
*link_info
,
4868 char **error_message
)
4871 struct elf_link_hash_entry
*hash
;
4872 struct elf32_arm_link_hash_table
*hash_table
;
4874 /* We need a pointer to the armelf specific hash table. */
4875 hash_table
= elf32_arm_hash_table (link_info
);
4876 if (hash_table
== NULL
)
4879 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
4880 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
4882 BFD_ASSERT (tmp_name
);
4884 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
4886 hash
= elf_link_hash_lookup
4887 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4890 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
4891 tmp_name
, name
) == -1)
4892 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4899 /* Locate the ARM encoded calling stub for NAME. */
4901 static struct elf_link_hash_entry
*
4902 find_arm_glue (struct bfd_link_info
*link_info
,
4904 char **error_message
)
4907 struct elf_link_hash_entry
*myh
;
4908 struct elf32_arm_link_hash_table
*hash_table
;
4910 /* We need a pointer to the elfarm specific hash table. */
4911 hash_table
= elf32_arm_hash_table (link_info
);
4912 if (hash_table
== NULL
)
4915 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
4916 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4918 BFD_ASSERT (tmp_name
);
4920 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4922 myh
= elf_link_hash_lookup
4923 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4926 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
4927 tmp_name
, name
) == -1)
4928 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4935 /* ARM->Thumb glue (static images):
4939 ldr r12, __func_addr
4942 .word func @ behave as if you saw a ARM_32 reloc.
4949 .word func @ behave as if you saw a ARM_32 reloc.
4951 (relocatable images)
4954 ldr r12, __func_offset
4960 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4961 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
4962 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
4963 static const insn32 a2t3_func_addr_insn
= 0x00000001;
4965 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4966 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
4967 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
4969 #define ARM2THUMB_PIC_GLUE_SIZE 16
4970 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
4971 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
4972 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
4974 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4978 __func_from_thumb: __func_from_thumb:
4980 nop ldr r6, __func_addr
4990 #define THUMB2ARM_GLUE_SIZE 8
4991 static const insn16 t2a1_bx_pc_insn
= 0x4778;
4992 static const insn16 t2a2_noop_insn
= 0x46c0;
4993 static const insn32 t2a3_b_insn
= 0xea000000;
4995 #define VFP11_ERRATUM_VENEER_SIZE 8
4997 #define ARM_BX_VENEER_SIZE 12
4998 static const insn32 armbx1_tst_insn
= 0xe3100001;
4999 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
5000 static const insn32 armbx3_bx_insn
= 0xe12fff10;
5002 #ifndef ELFARM_NABI_C_INCLUDED
5004 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
5007 bfd_byte
* contents
;
5011 /* Do not include empty glue sections in the output. */
5014 s
= bfd_get_section_by_name (abfd
, name
);
5016 s
->flags
|= SEC_EXCLUDE
;
5021 BFD_ASSERT (abfd
!= NULL
);
5023 s
= bfd_get_section_by_name (abfd
, name
);
5024 BFD_ASSERT (s
!= NULL
);
5026 contents
= (bfd_byte
*) bfd_alloc (abfd
, size
);
5028 BFD_ASSERT (s
->size
== size
);
5029 s
->contents
= contents
;
5033 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
5035 struct elf32_arm_link_hash_table
* globals
;
5037 globals
= elf32_arm_hash_table (info
);
5038 BFD_ASSERT (globals
!= NULL
);
5040 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5041 globals
->arm_glue_size
,
5042 ARM2THUMB_GLUE_SECTION_NAME
);
5044 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5045 globals
->thumb_glue_size
,
5046 THUMB2ARM_GLUE_SECTION_NAME
);
5048 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5049 globals
->vfp11_erratum_glue_size
,
5050 VFP11_ERRATUM_VENEER_SECTION_NAME
);
5052 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5053 globals
->bx_glue_size
,
5054 ARM_BX_GLUE_SECTION_NAME
);
5059 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5060 returns the symbol identifying the stub. */
5062 static struct elf_link_hash_entry
*
5063 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
5064 struct elf_link_hash_entry
* h
)
5066 const char * name
= h
->root
.root
.string
;
5069 struct elf_link_hash_entry
* myh
;
5070 struct bfd_link_hash_entry
* bh
;
5071 struct elf32_arm_link_hash_table
* globals
;
5075 globals
= elf32_arm_hash_table (link_info
);
5076 BFD_ASSERT (globals
!= NULL
);
5077 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5079 s
= bfd_get_section_by_name
5080 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
5082 BFD_ASSERT (s
!= NULL
);
5084 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5085 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5087 BFD_ASSERT (tmp_name
);
5089 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5091 myh
= elf_link_hash_lookup
5092 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5096 /* We've already seen this guy. */
5101 /* The only trick here is using hash_table->arm_glue_size as the value.
5102 Even though the section isn't allocated yet, this is where we will be
5103 putting it. The +1 on the value marks that the stub has not been
5104 output yet - not that it is a Thumb function. */
5106 val
= globals
->arm_glue_size
+ 1;
5107 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5108 tmp_name
, BSF_GLOBAL
, s
, val
,
5109 NULL
, TRUE
, FALSE
, &bh
);
5111 myh
= (struct elf_link_hash_entry
*) bh
;
5112 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5113 myh
->forced_local
= 1;
5117 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
5118 || globals
->pic_veneer
)
5119 size
= ARM2THUMB_PIC_GLUE_SIZE
;
5120 else if (globals
->use_blx
)
5121 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
5123 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
5126 globals
->arm_glue_size
+= size
;
5131 /* Allocate space for ARMv4 BX veneers. */
5134 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
5137 struct elf32_arm_link_hash_table
*globals
;
5139 struct elf_link_hash_entry
*myh
;
5140 struct bfd_link_hash_entry
*bh
;
5143 /* BX PC does not need a veneer. */
5147 globals
= elf32_arm_hash_table (link_info
);
5148 BFD_ASSERT (globals
!= NULL
);
5149 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5151 /* Check if this veneer has already been allocated. */
5152 if (globals
->bx_glue_offset
[reg
])
5155 s
= bfd_get_section_by_name
5156 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
5158 BFD_ASSERT (s
!= NULL
);
5160 /* Add symbol for veneer. */
5162 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
5164 BFD_ASSERT (tmp_name
);
5166 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
5168 myh
= elf_link_hash_lookup
5169 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5171 BFD_ASSERT (myh
== NULL
);
5174 val
= globals
->bx_glue_size
;
5175 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5176 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5177 NULL
, TRUE
, FALSE
, &bh
);
5179 myh
= (struct elf_link_hash_entry
*) bh
;
5180 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5181 myh
->forced_local
= 1;
5183 s
->size
+= ARM_BX_VENEER_SIZE
;
5184 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5185 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5189 /* Add an entry to the code/data map for section SEC. */
5192 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5194 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5195 unsigned int newidx
;
5197 if (sec_data
->map
== NULL
)
5199 sec_data
->map
= (elf32_arm_section_map
*)
5200 bfd_malloc (sizeof (elf32_arm_section_map
));
5201 sec_data
->mapcount
= 0;
5202 sec_data
->mapsize
= 1;
5205 newidx
= sec_data
->mapcount
++;
5207 if (sec_data
->mapcount
> sec_data
->mapsize
)
5209 sec_data
->mapsize
*= 2;
5210 sec_data
->map
= (elf32_arm_section_map
*)
5211 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5212 * sizeof (elf32_arm_section_map
));
5217 sec_data
->map
[newidx
].vma
= vma
;
5218 sec_data
->map
[newidx
].type
= type
;
5223 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5224 veneers are handled for now. */
5227 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5228 elf32_vfp11_erratum_list
*branch
,
5230 asection
*branch_sec
,
5231 unsigned int offset
)
5234 struct elf32_arm_link_hash_table
*hash_table
;
5236 struct elf_link_hash_entry
*myh
;
5237 struct bfd_link_hash_entry
*bh
;
5239 struct _arm_elf_section_data
*sec_data
;
5240 elf32_vfp11_erratum_list
*newerr
;
5242 hash_table
= elf32_arm_hash_table (link_info
);
5243 BFD_ASSERT (hash_table
!= NULL
);
5244 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5246 s
= bfd_get_section_by_name
5247 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5249 sec_data
= elf32_arm_section_data (s
);
5251 BFD_ASSERT (s
!= NULL
);
5253 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
5254 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5256 BFD_ASSERT (tmp_name
);
5258 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5259 hash_table
->num_vfp11_fixes
);
5261 myh
= elf_link_hash_lookup
5262 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5264 BFD_ASSERT (myh
== NULL
);
5267 val
= hash_table
->vfp11_erratum_glue_size
;
5268 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5269 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5270 NULL
, TRUE
, FALSE
, &bh
);
5272 myh
= (struct elf_link_hash_entry
*) bh
;
5273 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5274 myh
->forced_local
= 1;
5276 /* Link veneer back to calling location. */
5277 sec_data
->erratumcount
+= 1;
5278 newerr
= (elf32_vfp11_erratum_list
*)
5279 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5281 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5283 newerr
->u
.v
.branch
= branch
;
5284 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5285 branch
->u
.b
.veneer
= newerr
;
5287 newerr
->next
= sec_data
->erratumlist
;
5288 sec_data
->erratumlist
= newerr
;
5290 /* A symbol for the return from the veneer. */
5291 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5292 hash_table
->num_vfp11_fixes
);
5294 myh
= elf_link_hash_lookup
5295 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5302 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5303 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5305 myh
= (struct elf_link_hash_entry
*) bh
;
5306 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5307 myh
->forced_local
= 1;
5311 /* Generate a mapping symbol for the veneer section, and explicitly add an
5312 entry for that symbol to the code/data map for the section. */
5313 if (hash_table
->vfp11_erratum_glue_size
== 0)
5316 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5317 ever requires this erratum fix. */
5318 _bfd_generic_link_add_one_symbol (link_info
,
5319 hash_table
->bfd_of_glue_owner
, "$a",
5320 BSF_LOCAL
, s
, 0, NULL
,
5323 myh
= (struct elf_link_hash_entry
*) bh
;
5324 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5325 myh
->forced_local
= 1;
5327 /* The elf32_arm_init_maps function only cares about symbols from input
5328 BFDs. We must make a note of this generated mapping symbol
5329 ourselves so that code byteswapping works properly in
5330 elf32_arm_write_section. */
5331 elf32_arm_section_map_add (s
, 'a', 0);
5334 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5335 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5336 hash_table
->num_vfp11_fixes
++;
5338 /* The offset of the veneer. */
5342 #define ARM_GLUE_SECTION_FLAGS \
5343 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5344 | SEC_READONLY | SEC_LINKER_CREATED)
5346 /* Create a fake section for use by the ARM backend of the linker. */
5349 arm_make_glue_section (bfd
* abfd
, const char * name
)
5353 sec
= bfd_get_section_by_name (abfd
, name
);
5358 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5361 || !bfd_set_section_alignment (abfd
, sec
, 2))
5364 /* Set the gc mark to prevent the section from being removed by garbage
5365 collection, despite the fact that no relocs refer to this section. */
5371 /* Add the glue sections to ABFD. This function is called from the
5372 linker scripts in ld/emultempl/{armelf}.em. */
5375 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5376 struct bfd_link_info
*info
)
5378 /* If we are only performing a partial
5379 link do not bother adding the glue. */
5380 if (info
->relocatable
)
5383 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5384 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
5385 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
5386 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
5389 /* Select a BFD to be used to hold the sections used by the glue code.
5390 This function is called from the linker scripts in ld/emultempl/
5394 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
5396 struct elf32_arm_link_hash_table
*globals
;
5398 /* If we are only performing a partial link
5399 do not bother getting a bfd to hold the glue. */
5400 if (info
->relocatable
)
5403 /* Make sure we don't attach the glue sections to a dynamic object. */
5404 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
5406 globals
= elf32_arm_hash_table (info
);
5407 BFD_ASSERT (globals
!= NULL
);
5409 if (globals
->bfd_of_glue_owner
!= NULL
)
5412 /* Save the bfd for later use. */
5413 globals
->bfd_of_glue_owner
= abfd
;
5419 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
5421 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
5423 globals
->use_blx
= 1;
5427 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
5428 struct bfd_link_info
*link_info
)
5430 Elf_Internal_Shdr
*symtab_hdr
;
5431 Elf_Internal_Rela
*internal_relocs
= NULL
;
5432 Elf_Internal_Rela
*irel
, *irelend
;
5433 bfd_byte
*contents
= NULL
;
5436 struct elf32_arm_link_hash_table
*globals
;
5438 /* If we are only performing a partial link do not bother
5439 to construct any glue. */
5440 if (link_info
->relocatable
)
5443 /* Here we have a bfd that is to be included on the link. We have a
5444 hook to do reloc rummaging, before section sizes are nailed down. */
5445 globals
= elf32_arm_hash_table (link_info
);
5446 BFD_ASSERT (globals
!= NULL
);
5448 check_use_blx (globals
);
5450 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
5452 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5457 /* PR 5398: If we have not decided to include any loadable sections in
5458 the output then we will not have a glue owner bfd. This is OK, it
5459 just means that there is nothing else for us to do here. */
5460 if (globals
->bfd_of_glue_owner
== NULL
)
5463 /* Rummage around all the relocs and map the glue vectors. */
5464 sec
= abfd
->sections
;
5469 for (; sec
!= NULL
; sec
= sec
->next
)
5471 if (sec
->reloc_count
== 0)
5474 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
5477 symtab_hdr
= & elf_symtab_hdr (abfd
);
5479 /* Load the relocs. */
5481 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
5483 if (internal_relocs
== NULL
)
5486 irelend
= internal_relocs
+ sec
->reloc_count
;
5487 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
5490 unsigned long r_index
;
5492 struct elf_link_hash_entry
*h
;
5494 r_type
= ELF32_R_TYPE (irel
->r_info
);
5495 r_index
= ELF32_R_SYM (irel
->r_info
);
5497 /* These are the only relocation types we care about. */
5498 if ( r_type
!= R_ARM_PC24
5499 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
5502 /* Get the section contents if we haven't done so already. */
5503 if (contents
== NULL
)
5505 /* Get cached copy if it exists. */
5506 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5507 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5510 /* Go get them off disk. */
5511 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5516 if (r_type
== R_ARM_V4BX
)
5520 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
5521 record_arm_bx_glue (link_info
, reg
);
5525 /* If the relocation is not against a symbol it cannot concern us. */
5528 /* We don't care about local symbols. */
5529 if (r_index
< symtab_hdr
->sh_info
)
5532 /* This is an external symbol. */
5533 r_index
-= symtab_hdr
->sh_info
;
5534 h
= (struct elf_link_hash_entry
*)
5535 elf_sym_hashes (abfd
)[r_index
];
5537 /* If the relocation is against a static symbol it must be within
5538 the current section and so cannot be a cross ARM/Thumb relocation. */
5542 /* If the call will go through a PLT entry then we do not need
5544 if (globals
->splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
5550 /* This one is a call from arm code. We need to look up
5551 the target of the call. If it is a thumb target, we
5553 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
5554 record_arm_to_thumb_glue (link_info
, h
);
5562 if (contents
!= NULL
5563 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5567 if (internal_relocs
!= NULL
5568 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5569 free (internal_relocs
);
5570 internal_relocs
= NULL
;
5576 if (contents
!= NULL
5577 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5579 if (internal_relocs
!= NULL
5580 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5581 free (internal_relocs
);
5588 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5591 bfd_elf32_arm_init_maps (bfd
*abfd
)
5593 Elf_Internal_Sym
*isymbuf
;
5594 Elf_Internal_Shdr
*hdr
;
5595 unsigned int i
, localsyms
;
5597 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5598 if (! is_arm_elf (abfd
))
5601 if ((abfd
->flags
& DYNAMIC
) != 0)
5604 hdr
= & elf_symtab_hdr (abfd
);
5605 localsyms
= hdr
->sh_info
;
5607 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5608 should contain the number of local symbols, which should come before any
5609 global symbols. Mapping symbols are always local. */
5610 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
5613 /* No internal symbols read? Skip this BFD. */
5614 if (isymbuf
== NULL
)
5617 for (i
= 0; i
< localsyms
; i
++)
5619 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
5620 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5624 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
5626 name
= bfd_elf_string_from_elf_section (abfd
,
5627 hdr
->sh_link
, isym
->st_name
);
5629 if (bfd_is_arm_special_symbol_name (name
,
5630 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
5631 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
5637 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5638 say what they wanted. */
5641 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5643 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5644 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5646 if (globals
== NULL
)
5649 if (globals
->fix_cortex_a8
== -1)
5651 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5652 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
5653 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
5654 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
5655 globals
->fix_cortex_a8
= 1;
5657 globals
->fix_cortex_a8
= 0;
5663 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5665 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5666 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5668 if (globals
== NULL
)
5670 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5671 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
5673 switch (globals
->vfp11_fix
)
5675 case BFD_ARM_VFP11_FIX_DEFAULT
:
5676 case BFD_ARM_VFP11_FIX_NONE
:
5677 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5681 /* Give a warning, but do as the user requests anyway. */
5682 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
5683 "workaround is not necessary for target architecture"), obfd
);
5686 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
5687 /* For earlier architectures, we might need the workaround, but do not
5688 enable it by default. If users is running with broken hardware, they
5689 must enable the erratum fix explicitly. */
5690 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5694 enum bfd_arm_vfp11_pipe
5702 /* Return a VFP register number. This is encoded as RX:X for single-precision
5703 registers, or X:RX for double-precision registers, where RX is the group of
5704 four bits in the instruction encoding and X is the single extension bit.
5705 RX and X fields are specified using their lowest (starting) bit. The return
5708 0...31: single-precision registers s0...s31
5709 32...63: double-precision registers d0...d31.
5711 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5712 encounter VFP3 instructions, so we allow the full range for DP registers. */
5715 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
5719 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
5721 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
5724 /* Set bits in *WMASK according to a register number REG as encoded by
5725 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5728 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
5733 *wmask
|= 3 << ((reg
- 32) * 2);
5736 /* Return TRUE if WMASK overwrites anything in REGS. */
5739 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
5743 for (i
= 0; i
< numregs
; i
++)
5745 unsigned int reg
= regs
[i
];
5747 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
5755 if ((wmask
& (3 << (reg
* 2))) != 0)
5762 /* In this function, we're interested in two things: finding input registers
5763 for VFP data-processing instructions, and finding the set of registers which
5764 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5765 hold the written set, so FLDM etc. are easy to deal with (we're only
5766 interested in 32 SP registers or 16 dp registers, due to the VFP version
5767 implemented by the chip in question). DP registers are marked by setting
5768 both SP registers in the write mask). */
5770 static enum bfd_arm_vfp11_pipe
5771 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
5774 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
5775 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
5777 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5780 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5781 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5783 pqrs
= ((insn
& 0x00800000) >> 20)
5784 | ((insn
& 0x00300000) >> 19)
5785 | ((insn
& 0x00000040) >> 6);
5789 case 0: /* fmac[sd]. */
5790 case 1: /* fnmac[sd]. */
5791 case 2: /* fmsc[sd]. */
5792 case 3: /* fnmsc[sd]. */
5794 bfd_arm_vfp11_write_mask (destmask
, fd
);
5796 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5801 case 4: /* fmul[sd]. */
5802 case 5: /* fnmul[sd]. */
5803 case 6: /* fadd[sd]. */
5804 case 7: /* fsub[sd]. */
5808 case 8: /* fdiv[sd]. */
5811 bfd_arm_vfp11_write_mask (destmask
, fd
);
5812 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5817 case 15: /* extended opcode. */
5819 unsigned int extn
= ((insn
>> 15) & 0x1e)
5820 | ((insn
>> 7) & 1);
5824 case 0: /* fcpy[sd]. */
5825 case 1: /* fabs[sd]. */
5826 case 2: /* fneg[sd]. */
5827 case 8: /* fcmp[sd]. */
5828 case 9: /* fcmpe[sd]. */
5829 case 10: /* fcmpz[sd]. */
5830 case 11: /* fcmpez[sd]. */
5831 case 16: /* fuito[sd]. */
5832 case 17: /* fsito[sd]. */
5833 case 24: /* ftoui[sd]. */
5834 case 25: /* ftouiz[sd]. */
5835 case 26: /* ftosi[sd]. */
5836 case 27: /* ftosiz[sd]. */
5837 /* These instructions will not bounce due to underflow. */
5842 case 3: /* fsqrt[sd]. */
5843 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5844 registers to cause the erratum in previous instructions. */
5845 bfd_arm_vfp11_write_mask (destmask
, fd
);
5849 case 15: /* fcvt{ds,sd}. */
5853 bfd_arm_vfp11_write_mask (destmask
, fd
);
5855 /* Only FCVTSD can underflow. */
5856 if ((insn
& 0x100) != 0)
5875 /* Two-register transfer. */
5876 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
5878 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5880 if ((insn
& 0x100000) == 0)
5883 bfd_arm_vfp11_write_mask (destmask
, fm
);
5886 bfd_arm_vfp11_write_mask (destmask
, fm
);
5887 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
5893 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
5895 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5896 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
5900 case 0: /* Two-reg transfer. We should catch these above. */
5903 case 2: /* fldm[sdx]. */
5907 unsigned int i
, offset
= insn
& 0xff;
5912 for (i
= fd
; i
< fd
+ offset
; i
++)
5913 bfd_arm_vfp11_write_mask (destmask
, i
);
5917 case 4: /* fld[sd]. */
5919 bfd_arm_vfp11_write_mask (destmask
, fd
);
5928 /* Single-register transfer. Note L==0. */
5929 else if ((insn
& 0x0f100e10) == 0x0e000a10)
5931 unsigned int opcode
= (insn
>> 21) & 7;
5932 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
5936 case 0: /* fmsr/fmdlr. */
5937 case 1: /* fmdhr. */
5938 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5939 destination register. I don't know if this is exactly right,
5940 but it is the conservative choice. */
5941 bfd_arm_vfp11_write_mask (destmask
, fn
);
5955 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
5958 /* Look for potentially-troublesome code sequences which might trigger the
5959 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5960 (available from ARM) for details of the erratum. A short version is
5961 described in ld.texinfo. */
5964 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
5967 bfd_byte
*contents
= NULL
;
5969 int regs
[3], numregs
= 0;
5970 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5971 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
5973 if (globals
== NULL
)
5976 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5977 The states transition as follows:
5979 0 -> 1 (vector) or 0 -> 2 (scalar)
5980 A VFP FMAC-pipeline instruction has been seen. Fill
5981 regs[0]..regs[numregs-1] with its input operands. Remember this
5982 instruction in 'first_fmac'.
5985 Any instruction, except for a VFP instruction which overwrites
5990 A VFP instruction has been seen which overwrites any of regs[*].
5991 We must make a veneer! Reset state to 0 before examining next
5995 If we fail to match anything in state 2, reset to state 0 and reset
5996 the instruction pointer to the instruction after 'first_fmac'.
5998 If the VFP11 vector mode is in use, there must be at least two unrelated
5999 instructions between anti-dependent VFP11 instructions to properly avoid
6000 triggering the erratum, hence the use of the extra state 1. */
6002 /* If we are only performing a partial link do not bother
6003 to construct any glue. */
6004 if (link_info
->relocatable
)
6007 /* Skip if this bfd does not correspond to an ELF image. */
6008 if (! is_arm_elf (abfd
))
6011 /* We should have chosen a fix type by the time we get here. */
6012 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
6014 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
6017 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6018 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
6021 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6023 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
6024 struct _arm_elf_section_data
*sec_data
;
6026 /* If we don't have executable progbits, we're not interested in this
6027 section. Also skip if section is to be excluded. */
6028 if (elf_section_type (sec
) != SHT_PROGBITS
6029 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
6030 || (sec
->flags
& SEC_EXCLUDE
) != 0
6031 || sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
6032 || sec
->output_section
== bfd_abs_section_ptr
6033 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
6036 sec_data
= elf32_arm_section_data (sec
);
6038 if (sec_data
->mapcount
== 0)
6041 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6042 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6043 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6046 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
6047 elf32_arm_compare_mapping
);
6049 for (span
= 0; span
< sec_data
->mapcount
; span
++)
6051 unsigned int span_start
= sec_data
->map
[span
].vma
;
6052 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
6053 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
6054 char span_type
= sec_data
->map
[span
].type
;
6056 /* FIXME: Only ARM mode is supported at present. We may need to
6057 support Thumb-2 mode also at some point. */
6058 if (span_type
!= 'a')
6061 for (i
= span_start
; i
< span_end
;)
6063 unsigned int next_i
= i
+ 4;
6064 unsigned int insn
= bfd_big_endian (abfd
)
6065 ? (contents
[i
] << 24)
6066 | (contents
[i
+ 1] << 16)
6067 | (contents
[i
+ 2] << 8)
6069 : (contents
[i
+ 3] << 24)
6070 | (contents
[i
+ 2] << 16)
6071 | (contents
[i
+ 1] << 8)
6073 unsigned int writemask
= 0;
6074 enum bfd_arm_vfp11_pipe vpipe
;
6079 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
6081 /* I'm assuming the VFP11 erratum can trigger with denorm
6082 operands on either the FMAC or the DS pipeline. This might
6083 lead to slightly overenthusiastic veneer insertion. */
6084 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
6086 state
= use_vector
? 1 : 2;
6088 veneer_of_insn
= insn
;
6094 int other_regs
[3], other_numregs
;
6095 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6098 if (vpipe
!= VFP11_BAD
6099 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6109 int other_regs
[3], other_numregs
;
6110 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6113 if (vpipe
!= VFP11_BAD
6114 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6120 next_i
= first_fmac
+ 4;
6126 abort (); /* Should be unreachable. */
6131 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
6132 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6134 elf32_arm_section_data (sec
)->erratumcount
+= 1;
6136 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
6141 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
6148 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
6153 newerr
->next
= sec_data
->erratumlist
;
6154 sec_data
->erratumlist
= newerr
;
6163 if (contents
!= NULL
6164 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6172 if (contents
!= NULL
6173 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6179 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6180 after sections have been laid out, using specially-named symbols. */
6183 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
6184 struct bfd_link_info
*link_info
)
6187 struct elf32_arm_link_hash_table
*globals
;
6190 if (link_info
->relocatable
)
6193 /* Skip if this bfd does not correspond to an ELF image. */
6194 if (! is_arm_elf (abfd
))
6197 globals
= elf32_arm_hash_table (link_info
);
6198 if (globals
== NULL
)
6201 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
6202 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6204 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6206 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6207 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6209 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6211 struct elf_link_hash_entry
*myh
;
6214 switch (errnode
->type
)
6216 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6217 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6218 /* Find veneer symbol. */
6219 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6220 errnode
->u
.b
.veneer
->u
.v
.id
);
6222 myh
= elf_link_hash_lookup
6223 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6226 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6227 "`%s'"), abfd
, tmp_name
);
6229 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6230 + myh
->root
.u
.def
.section
->output_offset
6231 + myh
->root
.u
.def
.value
;
6233 errnode
->u
.b
.veneer
->vma
= vma
;
6236 case VFP11_ERRATUM_ARM_VENEER
:
6237 case VFP11_ERRATUM_THUMB_VENEER
:
6238 /* Find return location. */
6239 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6242 myh
= elf_link_hash_lookup
6243 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6246 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6247 "`%s'"), abfd
, tmp_name
);
6249 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6250 + myh
->root
.u
.def
.section
->output_offset
6251 + myh
->root
.u
.def
.value
;
6253 errnode
->u
.v
.branch
->vma
= vma
;
6266 /* Set target relocation values needed during linking. */
6269 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6270 struct bfd_link_info
*link_info
,
6272 char * target2_type
,
6275 bfd_arm_vfp11_fix vfp11_fix
,
6276 int no_enum_warn
, int no_wchar_warn
,
6277 int pic_veneer
, int fix_cortex_a8
)
6279 struct elf32_arm_link_hash_table
*globals
;
6281 globals
= elf32_arm_hash_table (link_info
);
6282 if (globals
== NULL
)
6285 globals
->target1_is_rel
= target1_is_rel
;
6286 if (strcmp (target2_type
, "rel") == 0)
6287 globals
->target2_reloc
= R_ARM_REL32
;
6288 else if (strcmp (target2_type
, "abs") == 0)
6289 globals
->target2_reloc
= R_ARM_ABS32
;
6290 else if (strcmp (target2_type
, "got-rel") == 0)
6291 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6294 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6297 globals
->fix_v4bx
= fix_v4bx
;
6298 globals
->use_blx
|= use_blx
;
6299 globals
->vfp11_fix
= vfp11_fix
;
6300 globals
->pic_veneer
= pic_veneer
;
6301 globals
->fix_cortex_a8
= fix_cortex_a8
;
6303 BFD_ASSERT (is_arm_elf (output_bfd
));
6304 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6305 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6308 /* Replace the target offset of a Thumb bl or b.w instruction. */
6311 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6317 BFD_ASSERT ((offset
& 1) == 0);
6319 upper
= bfd_get_16 (abfd
, insn
);
6320 lower
= bfd_get_16 (abfd
, insn
+ 2);
6321 reloc_sign
= (offset
< 0) ? 1 : 0;
6322 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6323 | ((offset
>> 12) & 0x3ff)
6324 | (reloc_sign
<< 10);
6325 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6326 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6327 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6328 | ((offset
>> 1) & 0x7ff);
6329 bfd_put_16 (abfd
, upper
, insn
);
6330 bfd_put_16 (abfd
, lower
, insn
+ 2);
6333 /* Thumb code calling an ARM function. */
6336 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6340 asection
* input_section
,
6341 bfd_byte
* hit_data
,
6344 bfd_signed_vma addend
,
6346 char **error_message
)
6350 long int ret_offset
;
6351 struct elf_link_hash_entry
* myh
;
6352 struct elf32_arm_link_hash_table
* globals
;
6354 myh
= find_thumb_glue (info
, name
, error_message
);
6358 globals
= elf32_arm_hash_table (info
);
6359 BFD_ASSERT (globals
!= NULL
);
6360 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6362 my_offset
= myh
->root
.u
.def
.value
;
6364 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6365 THUMB2ARM_GLUE_SECTION_NAME
);
6367 BFD_ASSERT (s
!= NULL
);
6368 BFD_ASSERT (s
->contents
!= NULL
);
6369 BFD_ASSERT (s
->output_section
!= NULL
);
6371 if ((my_offset
& 0x01) == 0x01)
6374 && sym_sec
->owner
!= NULL
6375 && !INTERWORK_FLAG (sym_sec
->owner
))
6377 (*_bfd_error_handler
)
6378 (_("%B(%s): warning: interworking not enabled.\n"
6379 " first occurrence: %B: thumb call to arm"),
6380 sym_sec
->owner
, input_bfd
, name
);
6386 myh
->root
.u
.def
.value
= my_offset
;
6388 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
6389 s
->contents
+ my_offset
);
6391 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
6392 s
->contents
+ my_offset
+ 2);
6395 /* Address of destination of the stub. */
6396 ((bfd_signed_vma
) val
)
6398 /* Offset from the start of the current section
6399 to the start of the stubs. */
6401 /* Offset of the start of this stub from the start of the stubs. */
6403 /* Address of the start of the current section. */
6404 + s
->output_section
->vma
)
6405 /* The branch instruction is 4 bytes into the stub. */
6407 /* ARM branches work from the pc of the instruction + 8. */
6410 put_arm_insn (globals
, output_bfd
,
6411 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
6412 s
->contents
+ my_offset
+ 4);
6415 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
6417 /* Now go back and fix up the original BL insn to point to here. */
6419 /* Address of where the stub is located. */
6420 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
6421 /* Address of where the BL is located. */
6422 - (input_section
->output_section
->vma
+ input_section
->output_offset
6424 /* Addend in the relocation. */
6426 /* Biassing for PC-relative addressing. */
6429 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
6434 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6436 static struct elf_link_hash_entry
*
6437 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
6444 char ** error_message
)
6447 long int ret_offset
;
6448 struct elf_link_hash_entry
* myh
;
6449 struct elf32_arm_link_hash_table
* globals
;
6451 myh
= find_arm_glue (info
, name
, error_message
);
6455 globals
= elf32_arm_hash_table (info
);
6456 BFD_ASSERT (globals
!= NULL
);
6457 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6459 my_offset
= myh
->root
.u
.def
.value
;
6461 if ((my_offset
& 0x01) == 0x01)
6464 && sym_sec
->owner
!= NULL
6465 && !INTERWORK_FLAG (sym_sec
->owner
))
6467 (*_bfd_error_handler
)
6468 (_("%B(%s): warning: interworking not enabled.\n"
6469 " first occurrence: %B: arm call to thumb"),
6470 sym_sec
->owner
, input_bfd
, name
);
6474 myh
->root
.u
.def
.value
= my_offset
;
6476 if (info
->shared
|| globals
->root
.is_relocatable_executable
6477 || globals
->pic_veneer
)
6479 /* For relocatable objects we can't use absolute addresses,
6480 so construct the address from a relative offset. */
6481 /* TODO: If the offset is small it's probably worth
6482 constructing the address with adds. */
6483 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
6484 s
->contents
+ my_offset
);
6485 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
6486 s
->contents
+ my_offset
+ 4);
6487 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
6488 s
->contents
+ my_offset
+ 8);
6489 /* Adjust the offset by 4 for the position of the add,
6490 and 8 for the pipeline offset. */
6491 ret_offset
= (val
- (s
->output_offset
6492 + s
->output_section
->vma
6495 bfd_put_32 (output_bfd
, ret_offset
,
6496 s
->contents
+ my_offset
+ 12);
6498 else if (globals
->use_blx
)
6500 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
6501 s
->contents
+ my_offset
);
6503 /* It's a thumb address. Add the low order bit. */
6504 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
6505 s
->contents
+ my_offset
+ 4);
6509 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
6510 s
->contents
+ my_offset
);
6512 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
6513 s
->contents
+ my_offset
+ 4);
6515 /* It's a thumb address. Add the low order bit. */
6516 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
6517 s
->contents
+ my_offset
+ 8);
6523 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
6528 /* Arm code calling a Thumb function. */
6531 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
6535 asection
* input_section
,
6536 bfd_byte
* hit_data
,
6539 bfd_signed_vma addend
,
6541 char **error_message
)
6543 unsigned long int tmp
;
6546 long int ret_offset
;
6547 struct elf_link_hash_entry
* myh
;
6548 struct elf32_arm_link_hash_table
* globals
;
6550 globals
= elf32_arm_hash_table (info
);
6551 BFD_ASSERT (globals
!= NULL
);
6552 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6554 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6555 ARM2THUMB_GLUE_SECTION_NAME
);
6556 BFD_ASSERT (s
!= NULL
);
6557 BFD_ASSERT (s
->contents
!= NULL
);
6558 BFD_ASSERT (s
->output_section
!= NULL
);
6560 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
6561 sym_sec
, val
, s
, error_message
);
6565 my_offset
= myh
->root
.u
.def
.value
;
6566 tmp
= bfd_get_32 (input_bfd
, hit_data
);
6567 tmp
= tmp
& 0xFF000000;
6569 /* Somehow these are both 4 too far, so subtract 8. */
6570 ret_offset
= (s
->output_offset
6572 + s
->output_section
->vma
6573 - (input_section
->output_offset
6574 + input_section
->output_section
->vma
6578 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
6580 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
6585 /* Populate Arm stub for an exported Thumb function. */
6588 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
6590 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
6592 struct elf_link_hash_entry
* myh
;
6593 struct elf32_arm_link_hash_entry
*eh
;
6594 struct elf32_arm_link_hash_table
* globals
;
6597 char *error_message
;
6599 eh
= elf32_arm_hash_entry (h
);
6600 /* Allocate stubs for exported Thumb functions on v4t. */
6601 if (eh
->export_glue
== NULL
)
6604 globals
= elf32_arm_hash_table (info
);
6605 BFD_ASSERT (globals
!= NULL
);
6606 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6608 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6609 ARM2THUMB_GLUE_SECTION_NAME
);
6610 BFD_ASSERT (s
!= NULL
);
6611 BFD_ASSERT (s
->contents
!= NULL
);
6612 BFD_ASSERT (s
->output_section
!= NULL
);
6614 sec
= eh
->export_glue
->root
.u
.def
.section
;
6616 BFD_ASSERT (sec
->output_section
!= NULL
);
6618 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
6619 + sec
->output_section
->vma
;
6621 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
6622 h
->root
.u
.def
.section
->owner
,
6623 globals
->obfd
, sec
, val
, s
,
6629 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6632 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
6637 struct elf32_arm_link_hash_table
*globals
;
6639 globals
= elf32_arm_hash_table (info
);
6640 BFD_ASSERT (globals
!= NULL
);
6641 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6643 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6644 ARM_BX_GLUE_SECTION_NAME
);
6645 BFD_ASSERT (s
!= NULL
);
6646 BFD_ASSERT (s
->contents
!= NULL
);
6647 BFD_ASSERT (s
->output_section
!= NULL
);
6649 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
6651 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
6653 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
6655 p
= s
->contents
+ glue_addr
;
6656 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
6657 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
6658 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
6659 globals
->bx_glue_offset
[reg
] |= 1;
6662 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
6665 /* Generate Arm stubs for exported Thumb symbols. */
6667 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
6668 struct bfd_link_info
*link_info
)
6670 struct elf32_arm_link_hash_table
* globals
;
6672 if (link_info
== NULL
)
6673 /* Ignore this if we are not called by the ELF backend linker. */
6676 globals
= elf32_arm_hash_table (link_info
);
6677 if (globals
== NULL
)
6680 /* If blx is available then exported Thumb symbols are OK and there is
6682 if (globals
->use_blx
)
6685 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
6689 /* Some relocations map to different relocations depending on the
6690 target. Return the real relocation. */
6693 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
6699 if (globals
->target1_is_rel
)
6705 return globals
->target2_reloc
;
6712 /* Return the base VMA address which should be subtracted from real addresses
6713 when resolving @dtpoff relocation.
6714 This is PT_TLS segment p_vaddr. */
6717 dtpoff_base (struct bfd_link_info
*info
)
6719 /* If tls_sec is NULL, we should have signalled an error already. */
6720 if (elf_hash_table (info
)->tls_sec
== NULL
)
6722 return elf_hash_table (info
)->tls_sec
->vma
;
6725 /* Return the relocation value for @tpoff relocation
6726 if STT_TLS virtual address is ADDRESS. */
6729 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
6731 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6734 /* If tls_sec is NULL, we should have signalled an error already. */
6735 if (htab
->tls_sec
== NULL
)
6737 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
6738 return address
- htab
->tls_sec
->vma
+ base
;
6741 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6742 VALUE is the relocation value. */
6744 static bfd_reloc_status_type
6745 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
6748 return bfd_reloc_overflow
;
6750 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
6751 bfd_put_32 (abfd
, value
, data
);
6752 return bfd_reloc_ok
;
6755 /* For a given value of n, calculate the value of G_n as required to
6756 deal with group relocations. We return it in the form of an
6757 encoded constant-and-rotation, together with the final residual. If n is
6758 specified as less than zero, then final_residual is filled with the
6759 input value and no further action is performed. */
6762 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
6766 bfd_vma encoded_g_n
= 0;
6767 bfd_vma residual
= value
; /* Also known as Y_n. */
6769 for (current_n
= 0; current_n
<= n
; current_n
++)
6773 /* Calculate which part of the value to mask. */
6780 /* Determine the most significant bit in the residual and
6781 align the resulting value to a 2-bit boundary. */
6782 for (msb
= 30; msb
>= 0; msb
-= 2)
6783 if (residual
& (3 << msb
))
6786 /* The desired shift is now (msb - 6), or zero, whichever
6793 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6794 g_n
= residual
& (0xff << shift
);
6795 encoded_g_n
= (g_n
>> shift
)
6796 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
6798 /* Calculate the residual for the next time around. */
6802 *final_residual
= residual
;
6807 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6808 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6811 identify_add_or_sub (bfd_vma insn
)
6813 int opcode
= insn
& 0x1e00000;
6815 if (opcode
== 1 << 23) /* ADD */
6818 if (opcode
== 1 << 22) /* SUB */
6824 /* Perform a relocation as part of a final link. */
6826 static bfd_reloc_status_type
6827 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
6830 asection
* input_section
,
6831 bfd_byte
* contents
,
6832 Elf_Internal_Rela
* rel
,
6834 struct bfd_link_info
* info
,
6836 const char * sym_name
,
6838 struct elf_link_hash_entry
* h
,
6839 bfd_boolean
* unresolved_reloc_p
,
6840 char ** error_message
)
6842 unsigned long r_type
= howto
->type
;
6843 unsigned long r_symndx
;
6844 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
6845 bfd
* dynobj
= NULL
;
6846 bfd_vma
* local_got_offsets
;
6847 asection
* sgot
= NULL
;
6848 asection
* splt
= NULL
;
6849 asection
* sreloc
= NULL
;
6851 bfd_signed_vma signed_addend
;
6852 struct elf32_arm_link_hash_table
* globals
;
6854 globals
= elf32_arm_hash_table (info
);
6855 if (globals
== NULL
)
6856 return bfd_reloc_notsupported
;
6858 BFD_ASSERT (is_arm_elf (input_bfd
));
6860 /* Some relocation types map to different relocations depending on the
6861 target. We pick the right one here. */
6862 r_type
= arm_real_reloc_type (globals
, r_type
);
6863 if (r_type
!= howto
->type
)
6864 howto
= elf32_arm_howto_from_type (r_type
);
6866 /* If the start address has been set, then set the EF_ARM_HASENTRY
6867 flag. Setting this more than once is redundant, but the cost is
6868 not too high, and it keeps the code simple.
6870 The test is done here, rather than somewhere else, because the
6871 start address is only set just before the final link commences.
6873 Note - if the user deliberately sets a start address of 0, the
6874 flag will not be set. */
6875 if (bfd_get_start_address (output_bfd
) != 0)
6876 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
6878 dynobj
= elf_hash_table (info
)->dynobj
;
6881 sgot
= bfd_get_section_by_name (dynobj
, ".got");
6882 splt
= bfd_get_section_by_name (dynobj
, ".plt");
6884 local_got_offsets
= elf_local_got_offsets (input_bfd
);
6885 r_symndx
= ELF32_R_SYM (rel
->r_info
);
6887 if (globals
->use_rel
)
6889 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
6891 if (addend
& ((howto
->src_mask
+ 1) >> 1))
6894 signed_addend
&= ~ howto
->src_mask
;
6895 signed_addend
|= addend
;
6898 signed_addend
= addend
;
6901 addend
= signed_addend
= rel
->r_addend
;
6906 /* We don't need to find a value for this symbol. It's just a
6908 *unresolved_reloc_p
= FALSE
;
6909 return bfd_reloc_ok
;
6912 if (!globals
->vxworks_p
)
6913 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6917 case R_ARM_ABS32_NOI
:
6919 case R_ARM_REL32_NOI
:
6925 /* Handle relocations which should use the PLT entry. ABS32/REL32
6926 will use the symbol's value, which may point to a PLT entry, but we
6927 don't need to handle that here. If we created a PLT entry, all
6928 branches in this object should go to it, except if the PLT is too
6929 far away, in which case a long branch stub should be inserted. */
6930 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
6931 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
6932 && r_type
!= R_ARM_CALL
6933 && r_type
!= R_ARM_JUMP24
6934 && r_type
!= R_ARM_PLT32
)
6937 && h
->plt
.offset
!= (bfd_vma
) -1)
6939 /* If we've created a .plt section, and assigned a PLT entry to
6940 this function, it should not be known to bind locally. If
6941 it were, we would have cleared the PLT entry. */
6942 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
6944 value
= (splt
->output_section
->vma
6945 + splt
->output_offset
6947 *unresolved_reloc_p
= FALSE
;
6948 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6949 contents
, rel
->r_offset
, value
,
6953 /* When generating a shared object or relocatable executable, these
6954 relocations are copied into the output file to be resolved at
6956 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
6957 && (input_section
->flags
& SEC_ALLOC
)
6958 && !(globals
->vxworks_p
6959 && strcmp (input_section
->output_section
->name
,
6961 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
6962 || !SYMBOL_CALLS_LOCAL (info
, h
))
6963 && (!strstr (input_section
->name
, STUB_SUFFIX
))
6965 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6966 || h
->root
.type
!= bfd_link_hash_undefweak
)
6967 && r_type
!= R_ARM_PC24
6968 && r_type
!= R_ARM_CALL
6969 && r_type
!= R_ARM_JUMP24
6970 && r_type
!= R_ARM_PREL31
6971 && r_type
!= R_ARM_PLT32
)
6973 Elf_Internal_Rela outrel
;
6975 bfd_boolean skip
, relocate
;
6977 *unresolved_reloc_p
= FALSE
;
6981 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
6982 ! globals
->use_rel
);
6985 return bfd_reloc_notsupported
;
6991 outrel
.r_addend
= addend
;
6993 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
6995 if (outrel
.r_offset
== (bfd_vma
) -1)
6997 else if (outrel
.r_offset
== (bfd_vma
) -2)
6998 skip
= TRUE
, relocate
= TRUE
;
6999 outrel
.r_offset
+= (input_section
->output_section
->vma
7000 + input_section
->output_offset
);
7003 memset (&outrel
, 0, sizeof outrel
);
7008 || !h
->def_regular
))
7009 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
7014 /* This symbol is local, or marked to become local. */
7015 if (sym_flags
== STT_ARM_TFUNC
)
7017 if (globals
->symbian_p
)
7021 /* On Symbian OS, the data segment and text segement
7022 can be relocated independently. Therefore, we
7023 must indicate the segment to which this
7024 relocation is relative. The BPABI allows us to
7025 use any symbol in the right segment; we just use
7026 the section symbol as it is convenient. (We
7027 cannot use the symbol given by "h" directly as it
7028 will not appear in the dynamic symbol table.)
7030 Note that the dynamic linker ignores the section
7031 symbol value, so we don't subtract osec->vma
7032 from the emitted reloc addend. */
7034 osec
= sym_sec
->output_section
;
7036 osec
= input_section
->output_section
;
7037 symbol
= elf_section_data (osec
)->dynindx
;
7040 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
7042 if ((osec
->flags
& SEC_READONLY
) == 0
7043 && htab
->data_index_section
!= NULL
)
7044 osec
= htab
->data_index_section
;
7046 osec
= htab
->text_index_section
;
7047 symbol
= elf_section_data (osec
)->dynindx
;
7049 BFD_ASSERT (symbol
!= 0);
7052 /* On SVR4-ish systems, the dynamic loader cannot
7053 relocate the text and data segments independently,
7054 so the symbol does not matter. */
7056 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
7057 if (globals
->use_rel
)
7060 outrel
.r_addend
+= value
;
7063 loc
= sreloc
->contents
;
7064 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
7065 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7067 /* If this reloc is against an external symbol, we do not want to
7068 fiddle with the addend. Otherwise, we need to include the symbol
7069 value so that it becomes an addend for the dynamic reloc. */
7071 return bfd_reloc_ok
;
7073 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7074 contents
, rel
->r_offset
, value
,
7077 else switch (r_type
)
7080 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
7082 case R_ARM_XPC25
: /* Arm BLX instruction. */
7085 case R_ARM_PC24
: /* Arm B/BL instruction. */
7088 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
7090 if (r_type
== R_ARM_XPC25
)
7092 /* Check for Arm calling Arm function. */
7093 /* FIXME: Should we translate the instruction into a BL
7094 instruction instead ? */
7095 if (sym_flags
!= STT_ARM_TFUNC
)
7096 (*_bfd_error_handler
)
7097 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7099 h
? h
->root
.root
.string
: "(local)");
7101 else if (r_type
== R_ARM_PC24
)
7103 /* Check for Arm calling Thumb function. */
7104 if (sym_flags
== STT_ARM_TFUNC
)
7106 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
7107 output_bfd
, input_section
,
7108 hit_data
, sym_sec
, rel
->r_offset
,
7109 signed_addend
, value
,
7111 return bfd_reloc_ok
;
7113 return bfd_reloc_dangerous
;
7117 /* Check if a stub has to be inserted because the
7118 destination is too far or we are changing mode. */
7119 if ( r_type
== R_ARM_CALL
7120 || r_type
== R_ARM_JUMP24
7121 || r_type
== R_ARM_PLT32
)
7123 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
7124 struct elf32_arm_link_hash_entry
*hash
;
7126 hash
= (struct elf32_arm_link_hash_entry
*) h
;
7127 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
7130 input_bfd
, sym_name
);
7132 if (stub_type
!= arm_stub_none
)
7134 /* The target is out of reach, so redirect the
7135 branch to the local stub for this function. */
7137 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7141 if (stub_entry
!= NULL
)
7142 value
= (stub_entry
->stub_offset
7143 + stub_entry
->stub_sec
->output_offset
7144 + stub_entry
->stub_sec
->output_section
->vma
);
7148 /* If the call goes through a PLT entry, make sure to
7149 check distance to the right destination address. */
7152 && h
->plt
.offset
!= (bfd_vma
) -1)
7154 value
= (splt
->output_section
->vma
7155 + splt
->output_offset
7157 *unresolved_reloc_p
= FALSE
;
7158 /* The PLT entry is in ARM mode, regardless of the
7160 sym_flags
= STT_FUNC
;
7165 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7167 S is the address of the symbol in the relocation.
7168 P is address of the instruction being relocated.
7169 A is the addend (extracted from the instruction) in bytes.
7171 S is held in 'value'.
7172 P is the base address of the section containing the
7173 instruction plus the offset of the reloc into that
7175 (input_section->output_section->vma +
7176 input_section->output_offset +
7178 A is the addend, converted into bytes, ie:
7181 Note: None of these operations have knowledge of the pipeline
7182 size of the processor, thus it is up to the assembler to
7183 encode this information into the addend. */
7184 value
-= (input_section
->output_section
->vma
7185 + input_section
->output_offset
);
7186 value
-= rel
->r_offset
;
7187 if (globals
->use_rel
)
7188 value
+= (signed_addend
<< howto
->size
);
7190 /* RELA addends do not have to be adjusted by howto->size. */
7191 value
+= signed_addend
;
7193 signed_addend
= value
;
7194 signed_addend
>>= howto
->rightshift
;
7196 /* A branch to an undefined weak symbol is turned into a jump to
7197 the next instruction unless a PLT entry will be created.
7198 Do the same for local undefined symbols.
7199 The jump to the next instruction is optimized as a NOP depending
7200 on the architecture. */
7201 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
7202 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7203 : bfd_is_und_section (sym_sec
))
7205 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
7207 if (arch_has_arm_nop (globals
))
7208 value
|= 0x0320f000;
7210 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
7214 /* Perform a signed range check. */
7215 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
7216 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
7217 return bfd_reloc_overflow
;
7219 addend
= (value
& 2);
7221 value
= (signed_addend
& howto
->dst_mask
)
7222 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7224 if (r_type
== R_ARM_CALL
)
7226 /* Set the H bit in the BLX instruction. */
7227 if (sym_flags
== STT_ARM_TFUNC
)
7232 value
&= ~(bfd_vma
)(1 << 24);
7235 /* Select the correct instruction (BL or BLX). */
7236 /* Only if we are not handling a BL to a stub. In this
7237 case, mode switching is performed by the stub. */
7238 if (sym_flags
== STT_ARM_TFUNC
&& !stub_entry
)
7242 value
&= ~(bfd_vma
)(1 << 28);
7252 if (sym_flags
== STT_ARM_TFUNC
)
7256 case R_ARM_ABS32_NOI
:
7262 if (sym_flags
== STT_ARM_TFUNC
)
7264 value
-= (input_section
->output_section
->vma
7265 + input_section
->output_offset
+ rel
->r_offset
);
7268 case R_ARM_REL32_NOI
:
7270 value
-= (input_section
->output_section
->vma
7271 + input_section
->output_offset
+ rel
->r_offset
);
7275 value
-= (input_section
->output_section
->vma
7276 + input_section
->output_offset
+ rel
->r_offset
);
7277 value
+= signed_addend
;
7278 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
7280 /* Check for overflow. */
7281 if ((value
^ (value
>> 1)) & (1 << 30))
7282 return bfd_reloc_overflow
;
7284 value
&= 0x7fffffff;
7285 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
7286 if (sym_flags
== STT_ARM_TFUNC
)
7291 bfd_put_32 (input_bfd
, value
, hit_data
);
7292 return bfd_reloc_ok
;
7297 /* There is no way to tell whether the user intended to use a signed or
7298 unsigned addend. When checking for overflow we accept either,
7299 as specified by the AAELF. */
7300 if ((long) value
> 0xff || (long) value
< -0x80)
7301 return bfd_reloc_overflow
;
7303 bfd_put_8 (input_bfd
, value
, hit_data
);
7304 return bfd_reloc_ok
;
7309 /* See comment for R_ARM_ABS8. */
7310 if ((long) value
> 0xffff || (long) value
< -0x8000)
7311 return bfd_reloc_overflow
;
7313 bfd_put_16 (input_bfd
, value
, hit_data
);
7314 return bfd_reloc_ok
;
7316 case R_ARM_THM_ABS5
:
7317 /* Support ldr and str instructions for the thumb. */
7318 if (globals
->use_rel
)
7320 /* Need to refetch addend. */
7321 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7322 /* ??? Need to determine shift amount from operand size. */
7323 addend
>>= howto
->rightshift
;
7327 /* ??? Isn't value unsigned? */
7328 if ((long) value
> 0x1f || (long) value
< -0x10)
7329 return bfd_reloc_overflow
;
7331 /* ??? Value needs to be properly shifted into place first. */
7332 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
7333 bfd_put_16 (input_bfd
, value
, hit_data
);
7334 return bfd_reloc_ok
;
7336 case R_ARM_THM_ALU_PREL_11_0
:
7337 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7340 bfd_signed_vma relocation
;
7342 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7343 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7345 if (globals
->use_rel
)
7347 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
7348 | ((insn
& (1 << 26)) >> 15);
7349 if (insn
& 0xf00000)
7350 signed_addend
= -signed_addend
;
7353 relocation
= value
+ signed_addend
;
7354 relocation
-= (input_section
->output_section
->vma
7355 + input_section
->output_offset
7358 value
= abs (relocation
);
7360 if (value
>= 0x1000)
7361 return bfd_reloc_overflow
;
7363 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
7364 | ((value
& 0x700) << 4)
7365 | ((value
& 0x800) << 15);
7369 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7370 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7372 return bfd_reloc_ok
;
7376 /* PR 10073: This reloc is not generated by the GNU toolchain,
7377 but it is supported for compatibility with third party libraries
7378 generated by other compilers, specifically the ARM/IAR. */
7381 bfd_signed_vma relocation
;
7383 insn
= bfd_get_16 (input_bfd
, hit_data
);
7385 if (globals
->use_rel
)
7386 addend
= (insn
& 0x00ff) << 2;
7388 relocation
= value
+ addend
;
7389 relocation
-= (input_section
->output_section
->vma
7390 + input_section
->output_offset
7393 value
= abs (relocation
);
7395 /* We do not check for overflow of this reloc. Although strictly
7396 speaking this is incorrect, it appears to be necessary in order
7397 to work with IAR generated relocs. Since GCC and GAS do not
7398 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7399 a problem for them. */
7402 insn
= (insn
& 0xff00) | (value
>> 2);
7404 bfd_put_16 (input_bfd
, insn
, hit_data
);
7406 return bfd_reloc_ok
;
7409 case R_ARM_THM_PC12
:
7410 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7413 bfd_signed_vma relocation
;
7415 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7416 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7418 if (globals
->use_rel
)
7420 signed_addend
= insn
& 0xfff;
7421 if (!(insn
& (1 << 23)))
7422 signed_addend
= -signed_addend
;
7425 relocation
= value
+ signed_addend
;
7426 relocation
-= (input_section
->output_section
->vma
7427 + input_section
->output_offset
7430 value
= abs (relocation
);
7432 if (value
>= 0x1000)
7433 return bfd_reloc_overflow
;
7435 insn
= (insn
& 0xff7ff000) | value
;
7436 if (relocation
>= 0)
7439 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7440 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7442 return bfd_reloc_ok
;
7445 case R_ARM_THM_XPC22
:
7446 case R_ARM_THM_CALL
:
7447 case R_ARM_THM_JUMP24
:
7448 /* Thumb BL (branch long instruction). */
7452 bfd_boolean overflow
= FALSE
;
7453 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7454 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7455 bfd_signed_vma reloc_signed_max
;
7456 bfd_signed_vma reloc_signed_min
;
7458 bfd_signed_vma signed_check
;
7460 const int thumb2
= using_thumb2 (globals
);
7462 /* A branch to an undefined weak symbol is turned into a jump to
7463 the next instruction unless a PLT entry will be created.
7464 The jump to the next instruction is optimized as a NOP.W for
7465 Thumb-2 enabled architectures. */
7466 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
7467 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7469 if (arch_has_thumb2_nop (globals
))
7471 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
7472 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
7476 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
7477 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
7479 return bfd_reloc_ok
;
7482 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7483 with Thumb-1) involving the J1 and J2 bits. */
7484 if (globals
->use_rel
)
7486 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
7487 bfd_vma upper
= upper_insn
& 0x3ff;
7488 bfd_vma lower
= lower_insn
& 0x7ff;
7489 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
7490 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
7491 bfd_vma i1
= j1
^ s
? 0 : 1;
7492 bfd_vma i2
= j2
^ s
? 0 : 1;
7494 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
7496 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
7498 signed_addend
= addend
;
7501 if (r_type
== R_ARM_THM_XPC22
)
7503 /* Check for Thumb to Thumb call. */
7504 /* FIXME: Should we translate the instruction into a BL
7505 instruction instead ? */
7506 if (sym_flags
== STT_ARM_TFUNC
)
7507 (*_bfd_error_handler
)
7508 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7510 h
? h
->root
.root
.string
: "(local)");
7514 /* If it is not a call to Thumb, assume call to Arm.
7515 If it is a call relative to a section name, then it is not a
7516 function call at all, but rather a long jump. Calls through
7517 the PLT do not require stubs. */
7518 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
7519 && (h
== NULL
|| splt
== NULL
7520 || h
->plt
.offset
== (bfd_vma
) -1))
7522 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7524 /* Convert BL to BLX. */
7525 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7527 else if (( r_type
!= R_ARM_THM_CALL
)
7528 && (r_type
!= R_ARM_THM_JUMP24
))
7530 if (elf32_thumb_to_arm_stub
7531 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
7532 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
7534 return bfd_reloc_ok
;
7536 return bfd_reloc_dangerous
;
7539 else if (sym_flags
== STT_ARM_TFUNC
&& globals
->use_blx
7540 && r_type
== R_ARM_THM_CALL
)
7542 /* Make sure this is a BL. */
7543 lower_insn
|= 0x1800;
7547 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
7548 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
7550 /* Check if a stub has to be inserted because the destination
7552 struct elf32_arm_stub_hash_entry
*stub_entry
;
7553 struct elf32_arm_link_hash_entry
*hash
;
7555 hash
= (struct elf32_arm_link_hash_entry
*) h
;
7557 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
7558 &sym_flags
, hash
, value
, sym_sec
,
7559 input_bfd
, sym_name
);
7561 if (stub_type
!= arm_stub_none
)
7563 /* The target is out of reach or we are changing modes, so
7564 redirect the branch to the local stub for this
7566 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7570 if (stub_entry
!= NULL
)
7571 value
= (stub_entry
->stub_offset
7572 + stub_entry
->stub_sec
->output_offset
7573 + stub_entry
->stub_sec
->output_section
->vma
);
7575 /* If this call becomes a call to Arm, force BLX. */
7576 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
7579 && !arm_stub_is_thumb (stub_entry
->stub_type
))
7580 || (sym_flags
!= STT_ARM_TFUNC
))
7581 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7586 /* Handle calls via the PLT. */
7587 if (stub_type
== arm_stub_none
7590 && h
->plt
.offset
!= (bfd_vma
) -1)
7592 value
= (splt
->output_section
->vma
7593 + splt
->output_offset
7596 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7598 /* If the Thumb BLX instruction is available, convert
7599 the BL to a BLX instruction to call the ARM-mode
7601 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7602 sym_flags
= STT_FUNC
;
7606 /* Target the Thumb stub before the ARM PLT entry. */
7607 value
-= PLT_THUMB_STUB_SIZE
;
7608 sym_flags
= STT_ARM_TFUNC
;
7610 *unresolved_reloc_p
= FALSE
;
7613 relocation
= value
+ signed_addend
;
7615 relocation
-= (input_section
->output_section
->vma
7616 + input_section
->output_offset
7619 check
= relocation
>> howto
->rightshift
;
7621 /* If this is a signed value, the rightshift just dropped
7622 leading 1 bits (assuming twos complement). */
7623 if ((bfd_signed_vma
) relocation
>= 0)
7624 signed_check
= check
;
7626 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
7628 /* Calculate the permissable maximum and minimum values for
7629 this relocation according to whether we're relocating for
7631 bitsize
= howto
->bitsize
;
7634 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
7635 reloc_signed_min
= ~reloc_signed_max
;
7637 /* Assumes two's complement. */
7638 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7641 if ((lower_insn
& 0x5000) == 0x4000)
7642 /* For a BLX instruction, make sure that the relocation is rounded up
7643 to a word boundary. This follows the semantics of the instruction
7644 which specifies that bit 1 of the target address will come from bit
7645 1 of the base address. */
7646 relocation
= (relocation
+ 2) & ~ 3;
7648 /* Put RELOCATION back into the insn. Assumes two's complement.
7649 We use the Thumb-2 encoding, which is safe even if dealing with
7650 a Thumb-1 instruction by virtue of our overflow check above. */
7651 reloc_sign
= (signed_check
< 0) ? 1 : 0;
7652 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
7653 | ((relocation
>> 12) & 0x3ff)
7654 | (reloc_sign
<< 10);
7655 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
7656 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
7657 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
7658 | ((relocation
>> 1) & 0x7ff);
7660 /* Put the relocated value back in the object file: */
7661 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7662 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7664 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7668 case R_ARM_THM_JUMP19
:
7669 /* Thumb32 conditional branch instruction. */
7672 bfd_boolean overflow
= FALSE
;
7673 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7674 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7675 bfd_signed_vma reloc_signed_max
= 0xffffe;
7676 bfd_signed_vma reloc_signed_min
= -0x100000;
7677 bfd_signed_vma signed_check
;
7679 /* Need to refetch the addend, reconstruct the top three bits,
7680 and squish the two 11 bit pieces together. */
7681 if (globals
->use_rel
)
7683 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
7684 bfd_vma upper
= (upper_insn
& 0x003f);
7685 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
7686 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
7687 bfd_vma lower
= (lower_insn
& 0x07ff);
7692 upper
-= 0x0100; /* Sign extend. */
7694 addend
= (upper
<< 12) | (lower
<< 1);
7695 signed_addend
= addend
;
7698 /* Handle calls via the PLT. */
7699 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7701 value
= (splt
->output_section
->vma
7702 + splt
->output_offset
7704 /* Target the Thumb stub before the ARM PLT entry. */
7705 value
-= PLT_THUMB_STUB_SIZE
;
7706 *unresolved_reloc_p
= FALSE
;
7709 /* ??? Should handle interworking? GCC might someday try to
7710 use this for tail calls. */
7712 relocation
= value
+ signed_addend
;
7713 relocation
-= (input_section
->output_section
->vma
7714 + input_section
->output_offset
7716 signed_check
= (bfd_signed_vma
) relocation
;
7718 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7721 /* Put RELOCATION back into the insn. */
7723 bfd_vma S
= (relocation
& 0x00100000) >> 20;
7724 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
7725 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
7726 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
7727 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
7729 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
7730 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
7733 /* Put the relocated value back in the object file: */
7734 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7735 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7737 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7740 case R_ARM_THM_JUMP11
:
7741 case R_ARM_THM_JUMP8
:
7742 case R_ARM_THM_JUMP6
:
7743 /* Thumb B (branch) instruction). */
7745 bfd_signed_vma relocation
;
7746 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
7747 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
7748 bfd_signed_vma signed_check
;
7750 /* CZB cannot jump backward. */
7751 if (r_type
== R_ARM_THM_JUMP6
)
7752 reloc_signed_min
= 0;
7754 if (globals
->use_rel
)
7756 /* Need to refetch addend. */
7757 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7758 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7761 signed_addend
&= ~ howto
->src_mask
;
7762 signed_addend
|= addend
;
7765 signed_addend
= addend
;
7766 /* The value in the insn has been right shifted. We need to
7767 undo this, so that we can perform the address calculation
7768 in terms of bytes. */
7769 signed_addend
<<= howto
->rightshift
;
7771 relocation
= value
+ signed_addend
;
7773 relocation
-= (input_section
->output_section
->vma
7774 + input_section
->output_offset
7777 relocation
>>= howto
->rightshift
;
7778 signed_check
= relocation
;
7780 if (r_type
== R_ARM_THM_JUMP6
)
7781 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
7783 relocation
&= howto
->dst_mask
;
7784 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7786 bfd_put_16 (input_bfd
, relocation
, hit_data
);
7788 /* Assumes two's complement. */
7789 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7790 return bfd_reloc_overflow
;
7792 return bfd_reloc_ok
;
7795 case R_ARM_ALU_PCREL7_0
:
7796 case R_ARM_ALU_PCREL15_8
:
7797 case R_ARM_ALU_PCREL23_15
:
7802 insn
= bfd_get_32 (input_bfd
, hit_data
);
7803 if (globals
->use_rel
)
7805 /* Extract the addend. */
7806 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
7807 signed_addend
= addend
;
7809 relocation
= value
+ signed_addend
;
7811 relocation
-= (input_section
->output_section
->vma
7812 + input_section
->output_offset
7814 insn
= (insn
& ~0xfff)
7815 | ((howto
->bitpos
<< 7) & 0xf00)
7816 | ((relocation
>> howto
->bitpos
) & 0xff);
7817 bfd_put_32 (input_bfd
, value
, hit_data
);
7819 return bfd_reloc_ok
;
7821 case R_ARM_GNU_VTINHERIT
:
7822 case R_ARM_GNU_VTENTRY
:
7823 return bfd_reloc_ok
;
7825 case R_ARM_GOTOFF32
:
7826 /* Relocation is relative to the start of the
7827 global offset table. */
7829 BFD_ASSERT (sgot
!= NULL
);
7831 return bfd_reloc_notsupported
;
7833 /* If we are addressing a Thumb function, we need to adjust the
7834 address by one, so that attempts to call the function pointer will
7835 correctly interpret it as Thumb code. */
7836 if (sym_flags
== STT_ARM_TFUNC
)
7839 /* Note that sgot->output_offset is not involved in this
7840 calculation. We always want the start of .got. If we
7841 define _GLOBAL_OFFSET_TABLE in a different way, as is
7842 permitted by the ABI, we might have to change this
7844 value
-= sgot
->output_section
->vma
;
7845 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7846 contents
, rel
->r_offset
, value
,
7850 /* Use global offset table as symbol value. */
7851 BFD_ASSERT (sgot
!= NULL
);
7854 return bfd_reloc_notsupported
;
7856 *unresolved_reloc_p
= FALSE
;
7857 value
= sgot
->output_section
->vma
;
7858 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7859 contents
, rel
->r_offset
, value
,
7863 case R_ARM_GOT_PREL
:
7864 /* Relocation is to the entry for this symbol in the
7865 global offset table. */
7867 return bfd_reloc_notsupported
;
7874 off
= h
->got
.offset
;
7875 BFD_ASSERT (off
!= (bfd_vma
) -1);
7876 dyn
= globals
->root
.dynamic_sections_created
;
7878 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
7880 && SYMBOL_REFERENCES_LOCAL (info
, h
))
7881 || (ELF_ST_VISIBILITY (h
->other
)
7882 && h
->root
.type
== bfd_link_hash_undefweak
))
7884 /* This is actually a static link, or it is a -Bsymbolic link
7885 and the symbol is defined locally. We must initialize this
7886 entry in the global offset table. Since the offset must
7887 always be a multiple of 4, we use the least significant bit
7888 to record whether we have initialized it already.
7890 When doing a dynamic link, we create a .rel(a).got relocation
7891 entry to initialize the value. This is done in the
7892 finish_dynamic_symbol routine. */
7897 /* If we are addressing a Thumb function, we need to
7898 adjust the address by one, so that attempts to
7899 call the function pointer will correctly
7900 interpret it as Thumb code. */
7901 if (sym_flags
== STT_ARM_TFUNC
)
7904 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7909 *unresolved_reloc_p
= FALSE
;
7911 value
= sgot
->output_offset
+ off
;
7917 BFD_ASSERT (local_got_offsets
!= NULL
&&
7918 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
7920 off
= local_got_offsets
[r_symndx
];
7922 /* The offset must always be a multiple of 4. We use the
7923 least significant bit to record whether we have already
7924 generated the necessary reloc. */
7929 /* If we are addressing a Thumb function, we need to
7930 adjust the address by one, so that attempts to
7931 call the function pointer will correctly
7932 interpret it as Thumb code. */
7933 if (sym_flags
== STT_ARM_TFUNC
)
7936 if (globals
->use_rel
)
7937 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7942 Elf_Internal_Rela outrel
;
7945 srelgot
= (bfd_get_section_by_name
7946 (dynobj
, RELOC_SECTION (globals
, ".got")));
7947 BFD_ASSERT (srelgot
!= NULL
);
7949 outrel
.r_addend
= addend
+ value
;
7950 outrel
.r_offset
= (sgot
->output_section
->vma
7951 + sgot
->output_offset
7953 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
7954 loc
= srelgot
->contents
;
7955 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
7956 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7959 local_got_offsets
[r_symndx
] |= 1;
7962 value
= sgot
->output_offset
+ off
;
7964 if (r_type
!= R_ARM_GOT32
)
7965 value
+= sgot
->output_section
->vma
;
7967 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7968 contents
, rel
->r_offset
, value
,
7971 case R_ARM_TLS_LDO32
:
7972 value
= value
- dtpoff_base (info
);
7974 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7975 contents
, rel
->r_offset
, value
,
7978 case R_ARM_TLS_LDM32
:
7982 if (globals
->sgot
== NULL
)
7985 off
= globals
->tls_ldm_got
.offset
;
7991 /* If we don't know the module number, create a relocation
7995 Elf_Internal_Rela outrel
;
7998 if (globals
->srelgot
== NULL
)
8001 outrel
.r_addend
= 0;
8002 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
8003 + globals
->sgot
->output_offset
+ off
);
8004 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
8006 if (globals
->use_rel
)
8007 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8008 globals
->sgot
->contents
+ off
);
8010 loc
= globals
->srelgot
->contents
;
8011 loc
+= globals
->srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
8012 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8015 bfd_put_32 (output_bfd
, 1, globals
->sgot
->contents
+ off
);
8017 globals
->tls_ldm_got
.offset
|= 1;
8020 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
8021 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
8023 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8024 contents
, rel
->r_offset
, value
,
8028 case R_ARM_TLS_GD32
:
8029 case R_ARM_TLS_IE32
:
8035 if (globals
->sgot
== NULL
)
8042 dyn
= globals
->root
.dynamic_sections_created
;
8043 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
8045 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
8047 *unresolved_reloc_p
= FALSE
;
8050 off
= h
->got
.offset
;
8051 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
8055 if (local_got_offsets
== NULL
)
8057 off
= local_got_offsets
[r_symndx
];
8058 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
8061 if (tls_type
== GOT_UNKNOWN
)
8068 bfd_boolean need_relocs
= FALSE
;
8069 Elf_Internal_Rela outrel
;
8070 bfd_byte
*loc
= NULL
;
8073 /* The GOT entries have not been initialized yet. Do it
8074 now, and emit any relocations. If both an IE GOT and a
8075 GD GOT are necessary, we emit the GD first. */
8077 if ((info
->shared
|| indx
!= 0)
8079 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8080 || h
->root
.type
!= bfd_link_hash_undefweak
))
8083 if (globals
->srelgot
== NULL
)
8085 loc
= globals
->srelgot
->contents
;
8086 loc
+= globals
->srelgot
->reloc_count
* RELOC_SIZE (globals
);
8089 if (tls_type
& GOT_TLS_GD
)
8093 outrel
.r_addend
= 0;
8094 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
8095 + globals
->sgot
->output_offset
8097 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
8099 if (globals
->use_rel
)
8100 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8101 globals
->sgot
->contents
+ cur_off
);
8103 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8104 globals
->srelgot
->reloc_count
++;
8105 loc
+= RELOC_SIZE (globals
);
8108 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
8109 globals
->sgot
->contents
+ cur_off
+ 4);
8112 outrel
.r_addend
= 0;
8113 outrel
.r_info
= ELF32_R_INFO (indx
,
8114 R_ARM_TLS_DTPOFF32
);
8115 outrel
.r_offset
+= 4;
8117 if (globals
->use_rel
)
8118 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8119 globals
->sgot
->contents
+ cur_off
+ 4);
8122 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8123 globals
->srelgot
->reloc_count
++;
8124 loc
+= RELOC_SIZE (globals
);
8129 /* If we are not emitting relocations for a
8130 general dynamic reference, then we must be in a
8131 static link or an executable link with the
8132 symbol binding locally. Mark it as belonging
8133 to module 1, the executable. */
8134 bfd_put_32 (output_bfd
, 1,
8135 globals
->sgot
->contents
+ cur_off
);
8136 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
8137 globals
->sgot
->contents
+ cur_off
+ 4);
8143 if (tls_type
& GOT_TLS_IE
)
8148 outrel
.r_addend
= value
- dtpoff_base (info
);
8150 outrel
.r_addend
= 0;
8151 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
8152 + globals
->sgot
->output_offset
8154 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
8156 if (globals
->use_rel
)
8157 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8158 globals
->sgot
->contents
+ cur_off
);
8160 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
8161 globals
->srelgot
->reloc_count
++;
8162 loc
+= RELOC_SIZE (globals
);
8165 bfd_put_32 (output_bfd
, tpoff (info
, value
),
8166 globals
->sgot
->contents
+ cur_off
);
8173 local_got_offsets
[r_symndx
] |= 1;
8176 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
8178 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
8179 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
8181 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8182 contents
, rel
->r_offset
, value
,
8186 case R_ARM_TLS_LE32
:
8189 (*_bfd_error_handler
)
8190 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8191 input_bfd
, input_section
,
8192 (long) rel
->r_offset
, howto
->name
);
8193 return (bfd_reloc_status_type
) FALSE
;
8196 value
= tpoff (info
, value
);
8198 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8199 contents
, rel
->r_offset
, value
,
8203 if (globals
->fix_v4bx
)
8205 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8207 /* Ensure that we have a BX instruction. */
8208 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
8210 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
8212 /* Branch to veneer. */
8214 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
8215 glue_addr
-= input_section
->output_section
->vma
8216 + input_section
->output_offset
8217 + rel
->r_offset
+ 8;
8218 insn
= (insn
& 0xf0000000) | 0x0a000000
8219 | ((glue_addr
>> 2) & 0x00ffffff);
8223 /* Preserve Rm (lowest four bits) and the condition code
8224 (highest four bits). Other bits encode MOV PC,Rm. */
8225 insn
= (insn
& 0xf000000f) | 0x01a0f000;
8228 bfd_put_32 (input_bfd
, insn
, hit_data
);
8230 return bfd_reloc_ok
;
8232 case R_ARM_MOVW_ABS_NC
:
8233 case R_ARM_MOVT_ABS
:
8234 case R_ARM_MOVW_PREL_NC
:
8235 case R_ARM_MOVT_PREL
:
8236 /* Until we properly support segment-base-relative addressing then
8237 we assume the segment base to be zero, as for the group relocations.
8238 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8239 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8240 case R_ARM_MOVW_BREL_NC
:
8241 case R_ARM_MOVW_BREL
:
8242 case R_ARM_MOVT_BREL
:
8244 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8246 if (globals
->use_rel
)
8248 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
8249 signed_addend
= (addend
^ 0x8000) - 0x8000;
8252 value
+= signed_addend
;
8254 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
8255 value
-= (input_section
->output_section
->vma
8256 + input_section
->output_offset
+ rel
->r_offset
);
8258 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
8259 return bfd_reloc_overflow
;
8261 if (sym_flags
== STT_ARM_TFUNC
)
8264 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
8265 || r_type
== R_ARM_MOVT_BREL
)
8269 insn
|= value
& 0xfff;
8270 insn
|= (value
& 0xf000) << 4;
8271 bfd_put_32 (input_bfd
, insn
, hit_data
);
8273 return bfd_reloc_ok
;
8275 case R_ARM_THM_MOVW_ABS_NC
:
8276 case R_ARM_THM_MOVT_ABS
:
8277 case R_ARM_THM_MOVW_PREL_NC
:
8278 case R_ARM_THM_MOVT_PREL
:
8279 /* Until we properly support segment-base-relative addressing then
8280 we assume the segment base to be zero, as for the above relocations.
8281 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8282 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8283 as R_ARM_THM_MOVT_ABS. */
8284 case R_ARM_THM_MOVW_BREL_NC
:
8285 case R_ARM_THM_MOVW_BREL
:
8286 case R_ARM_THM_MOVT_BREL
:
8290 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
8291 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
8293 if (globals
->use_rel
)
8295 addend
= ((insn
>> 4) & 0xf000)
8296 | ((insn
>> 15) & 0x0800)
8297 | ((insn
>> 4) & 0x0700)
8299 signed_addend
= (addend
^ 0x8000) - 0x8000;
8302 value
+= signed_addend
;
8304 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
8305 value
-= (input_section
->output_section
->vma
8306 + input_section
->output_offset
+ rel
->r_offset
);
8308 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
8309 return bfd_reloc_overflow
;
8311 if (sym_flags
== STT_ARM_TFUNC
)
8314 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
8315 || r_type
== R_ARM_THM_MOVT_BREL
)
8319 insn
|= (value
& 0xf000) << 4;
8320 insn
|= (value
& 0x0800) << 15;
8321 insn
|= (value
& 0x0700) << 4;
8322 insn
|= (value
& 0x00ff);
8324 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8325 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8327 return bfd_reloc_ok
;
8329 case R_ARM_ALU_PC_G0_NC
:
8330 case R_ARM_ALU_PC_G1_NC
:
8331 case R_ARM_ALU_PC_G0
:
8332 case R_ARM_ALU_PC_G1
:
8333 case R_ARM_ALU_PC_G2
:
8334 case R_ARM_ALU_SB_G0_NC
:
8335 case R_ARM_ALU_SB_G1_NC
:
8336 case R_ARM_ALU_SB_G0
:
8337 case R_ARM_ALU_SB_G1
:
8338 case R_ARM_ALU_SB_G2
:
8340 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8341 bfd_vma pc
= input_section
->output_section
->vma
8342 + input_section
->output_offset
+ rel
->r_offset
;
8343 /* sb should be the origin of the *segment* containing the symbol.
8344 It is not clear how to obtain this OS-dependent value, so we
8345 make an arbitrary choice of zero. */
8349 bfd_signed_vma signed_value
;
8352 /* Determine which group of bits to select. */
8355 case R_ARM_ALU_PC_G0_NC
:
8356 case R_ARM_ALU_PC_G0
:
8357 case R_ARM_ALU_SB_G0_NC
:
8358 case R_ARM_ALU_SB_G0
:
8362 case R_ARM_ALU_PC_G1_NC
:
8363 case R_ARM_ALU_PC_G1
:
8364 case R_ARM_ALU_SB_G1_NC
:
8365 case R_ARM_ALU_SB_G1
:
8369 case R_ARM_ALU_PC_G2
:
8370 case R_ARM_ALU_SB_G2
:
8378 /* If REL, extract the addend from the insn. If RELA, it will
8379 have already been fetched for us. */
8380 if (globals
->use_rel
)
8383 bfd_vma constant
= insn
& 0xff;
8384 bfd_vma rotation
= (insn
& 0xf00) >> 8;
8387 signed_addend
= constant
;
8390 /* Compensate for the fact that in the instruction, the
8391 rotation is stored in multiples of 2 bits. */
8394 /* Rotate "constant" right by "rotation" bits. */
8395 signed_addend
= (constant
>> rotation
) |
8396 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
8399 /* Determine if the instruction is an ADD or a SUB.
8400 (For REL, this determines the sign of the addend.) */
8401 negative
= identify_add_or_sub (insn
);
8404 (*_bfd_error_handler
)
8405 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8406 input_bfd
, input_section
,
8407 (long) rel
->r_offset
, howto
->name
);
8408 return bfd_reloc_overflow
;
8411 signed_addend
*= negative
;
8414 /* Compute the value (X) to go in the place. */
8415 if (r_type
== R_ARM_ALU_PC_G0_NC
8416 || r_type
== R_ARM_ALU_PC_G1_NC
8417 || r_type
== R_ARM_ALU_PC_G0
8418 || r_type
== R_ARM_ALU_PC_G1
8419 || r_type
== R_ARM_ALU_PC_G2
)
8421 signed_value
= value
- pc
+ signed_addend
;
8423 /* Section base relative. */
8424 signed_value
= value
- sb
+ signed_addend
;
8426 /* If the target symbol is a Thumb function, then set the
8427 Thumb bit in the address. */
8428 if (sym_flags
== STT_ARM_TFUNC
)
8431 /* Calculate the value of the relevant G_n, in encoded
8432 constant-with-rotation format. */
8433 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
8436 /* Check for overflow if required. */
8437 if ((r_type
== R_ARM_ALU_PC_G0
8438 || r_type
== R_ARM_ALU_PC_G1
8439 || r_type
== R_ARM_ALU_PC_G2
8440 || r_type
== R_ARM_ALU_SB_G0
8441 || r_type
== R_ARM_ALU_SB_G1
8442 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
8444 (*_bfd_error_handler
)
8445 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8446 input_bfd
, input_section
,
8447 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8448 return bfd_reloc_overflow
;
8451 /* Mask out the value and the ADD/SUB part of the opcode; take care
8452 not to destroy the S bit. */
8455 /* Set the opcode according to whether the value to go in the
8456 place is negative. */
8457 if (signed_value
< 0)
8462 /* Encode the offset. */
8465 bfd_put_32 (input_bfd
, insn
, hit_data
);
8467 return bfd_reloc_ok
;
8469 case R_ARM_LDR_PC_G0
:
8470 case R_ARM_LDR_PC_G1
:
8471 case R_ARM_LDR_PC_G2
:
8472 case R_ARM_LDR_SB_G0
:
8473 case R_ARM_LDR_SB_G1
:
8474 case R_ARM_LDR_SB_G2
:
8476 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8477 bfd_vma pc
= input_section
->output_section
->vma
8478 + input_section
->output_offset
+ rel
->r_offset
;
8479 bfd_vma sb
= 0; /* See note above. */
8481 bfd_signed_vma signed_value
;
8484 /* Determine which groups of bits to calculate. */
8487 case R_ARM_LDR_PC_G0
:
8488 case R_ARM_LDR_SB_G0
:
8492 case R_ARM_LDR_PC_G1
:
8493 case R_ARM_LDR_SB_G1
:
8497 case R_ARM_LDR_PC_G2
:
8498 case R_ARM_LDR_SB_G2
:
8506 /* If REL, extract the addend from the insn. If RELA, it will
8507 have already been fetched for us. */
8508 if (globals
->use_rel
)
8510 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8511 signed_addend
= negative
* (insn
& 0xfff);
8514 /* Compute the value (X) to go in the place. */
8515 if (r_type
== R_ARM_LDR_PC_G0
8516 || r_type
== R_ARM_LDR_PC_G1
8517 || r_type
== R_ARM_LDR_PC_G2
)
8519 signed_value
= value
- pc
+ signed_addend
;
8521 /* Section base relative. */
8522 signed_value
= value
- sb
+ signed_addend
;
8524 /* Calculate the value of the relevant G_{n-1} to obtain
8525 the residual at that stage. */
8526 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8528 /* Check for overflow. */
8529 if (residual
>= 0x1000)
8531 (*_bfd_error_handler
)
8532 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8533 input_bfd
, input_section
,
8534 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8535 return bfd_reloc_overflow
;
8538 /* Mask out the value and U bit. */
8541 /* Set the U bit if the value to go in the place is non-negative. */
8542 if (signed_value
>= 0)
8545 /* Encode the offset. */
8548 bfd_put_32 (input_bfd
, insn
, hit_data
);
8550 return bfd_reloc_ok
;
8552 case R_ARM_LDRS_PC_G0
:
8553 case R_ARM_LDRS_PC_G1
:
8554 case R_ARM_LDRS_PC_G2
:
8555 case R_ARM_LDRS_SB_G0
:
8556 case R_ARM_LDRS_SB_G1
:
8557 case R_ARM_LDRS_SB_G2
:
8559 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8560 bfd_vma pc
= input_section
->output_section
->vma
8561 + input_section
->output_offset
+ rel
->r_offset
;
8562 bfd_vma sb
= 0; /* See note above. */
8564 bfd_signed_vma signed_value
;
8567 /* Determine which groups of bits to calculate. */
8570 case R_ARM_LDRS_PC_G0
:
8571 case R_ARM_LDRS_SB_G0
:
8575 case R_ARM_LDRS_PC_G1
:
8576 case R_ARM_LDRS_SB_G1
:
8580 case R_ARM_LDRS_PC_G2
:
8581 case R_ARM_LDRS_SB_G2
:
8589 /* If REL, extract the addend from the insn. If RELA, it will
8590 have already been fetched for us. */
8591 if (globals
->use_rel
)
8593 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8594 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
8597 /* Compute the value (X) to go in the place. */
8598 if (r_type
== R_ARM_LDRS_PC_G0
8599 || r_type
== R_ARM_LDRS_PC_G1
8600 || r_type
== R_ARM_LDRS_PC_G2
)
8602 signed_value
= value
- pc
+ signed_addend
;
8604 /* Section base relative. */
8605 signed_value
= value
- sb
+ signed_addend
;
8607 /* Calculate the value of the relevant G_{n-1} to obtain
8608 the residual at that stage. */
8609 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8611 /* Check for overflow. */
8612 if (residual
>= 0x100)
8614 (*_bfd_error_handler
)
8615 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8616 input_bfd
, input_section
,
8617 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8618 return bfd_reloc_overflow
;
8621 /* Mask out the value and U bit. */
8624 /* Set the U bit if the value to go in the place is non-negative. */
8625 if (signed_value
>= 0)
8628 /* Encode the offset. */
8629 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
8631 bfd_put_32 (input_bfd
, insn
, hit_data
);
8633 return bfd_reloc_ok
;
8635 case R_ARM_LDC_PC_G0
:
8636 case R_ARM_LDC_PC_G1
:
8637 case R_ARM_LDC_PC_G2
:
8638 case R_ARM_LDC_SB_G0
:
8639 case R_ARM_LDC_SB_G1
:
8640 case R_ARM_LDC_SB_G2
:
8642 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8643 bfd_vma pc
= input_section
->output_section
->vma
8644 + input_section
->output_offset
+ rel
->r_offset
;
8645 bfd_vma sb
= 0; /* See note above. */
8647 bfd_signed_vma signed_value
;
8650 /* Determine which groups of bits to calculate. */
8653 case R_ARM_LDC_PC_G0
:
8654 case R_ARM_LDC_SB_G0
:
8658 case R_ARM_LDC_PC_G1
:
8659 case R_ARM_LDC_SB_G1
:
8663 case R_ARM_LDC_PC_G2
:
8664 case R_ARM_LDC_SB_G2
:
8672 /* If REL, extract the addend from the insn. If RELA, it will
8673 have already been fetched for us. */
8674 if (globals
->use_rel
)
8676 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8677 signed_addend
= negative
* ((insn
& 0xff) << 2);
8680 /* Compute the value (X) to go in the place. */
8681 if (r_type
== R_ARM_LDC_PC_G0
8682 || r_type
== R_ARM_LDC_PC_G1
8683 || r_type
== R_ARM_LDC_PC_G2
)
8685 signed_value
= value
- pc
+ signed_addend
;
8687 /* Section base relative. */
8688 signed_value
= value
- sb
+ signed_addend
;
8690 /* Calculate the value of the relevant G_{n-1} to obtain
8691 the residual at that stage. */
8692 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8694 /* Check for overflow. (The absolute value to go in the place must be
8695 divisible by four and, after having been divided by four, must
8696 fit in eight bits.) */
8697 if ((residual
& 0x3) != 0 || residual
>= 0x400)
8699 (*_bfd_error_handler
)
8700 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8701 input_bfd
, input_section
,
8702 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8703 return bfd_reloc_overflow
;
8706 /* Mask out the value and U bit. */
8709 /* Set the U bit if the value to go in the place is non-negative. */
8710 if (signed_value
>= 0)
8713 /* Encode the offset. */
8714 insn
|= residual
>> 2;
8716 bfd_put_32 (input_bfd
, insn
, hit_data
);
8718 return bfd_reloc_ok
;
8721 return bfd_reloc_notsupported
;
8725 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8727 arm_add_to_rel (bfd
* abfd
,
8729 reloc_howto_type
* howto
,
8730 bfd_signed_vma increment
)
8732 bfd_signed_vma addend
;
8734 if (howto
->type
== R_ARM_THM_CALL
8735 || howto
->type
== R_ARM_THM_JUMP24
)
8737 int upper_insn
, lower_insn
;
8740 upper_insn
= bfd_get_16 (abfd
, address
);
8741 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
8742 upper
= upper_insn
& 0x7ff;
8743 lower
= lower_insn
& 0x7ff;
8745 addend
= (upper
<< 12) | (lower
<< 1);
8746 addend
+= increment
;
8749 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
8750 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
8752 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
8753 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
8759 contents
= bfd_get_32 (abfd
, address
);
8761 /* Get the (signed) value from the instruction. */
8762 addend
= contents
& howto
->src_mask
;
8763 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8765 bfd_signed_vma mask
;
8768 mask
&= ~ howto
->src_mask
;
8772 /* Add in the increment, (which is a byte value). */
8773 switch (howto
->type
)
8776 addend
+= increment
;
8783 addend
<<= howto
->size
;
8784 addend
+= increment
;
8786 /* Should we check for overflow here ? */
8788 /* Drop any undesired bits. */
8789 addend
>>= howto
->rightshift
;
8793 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
8795 bfd_put_32 (abfd
, contents
, address
);
8799 #define IS_ARM_TLS_RELOC(R_TYPE) \
8800 ((R_TYPE) == R_ARM_TLS_GD32 \
8801 || (R_TYPE) == R_ARM_TLS_LDO32 \
8802 || (R_TYPE) == R_ARM_TLS_LDM32 \
8803 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8804 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8805 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8806 || (R_TYPE) == R_ARM_TLS_LE32 \
8807 || (R_TYPE) == R_ARM_TLS_IE32)
8809 /* Relocate an ARM ELF section. */
8812 elf32_arm_relocate_section (bfd
* output_bfd
,
8813 struct bfd_link_info
* info
,
8815 asection
* input_section
,
8816 bfd_byte
* contents
,
8817 Elf_Internal_Rela
* relocs
,
8818 Elf_Internal_Sym
* local_syms
,
8819 asection
** local_sections
)
8821 Elf_Internal_Shdr
*symtab_hdr
;
8822 struct elf_link_hash_entry
**sym_hashes
;
8823 Elf_Internal_Rela
*rel
;
8824 Elf_Internal_Rela
*relend
;
8826 struct elf32_arm_link_hash_table
* globals
;
8828 globals
= elf32_arm_hash_table (info
);
8829 if (globals
== NULL
)
8832 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
8833 sym_hashes
= elf_sym_hashes (input_bfd
);
8836 relend
= relocs
+ input_section
->reloc_count
;
8837 for (; rel
< relend
; rel
++)
8840 reloc_howto_type
* howto
;
8841 unsigned long r_symndx
;
8842 Elf_Internal_Sym
* sym
;
8844 struct elf_link_hash_entry
* h
;
8846 bfd_reloc_status_type r
;
8849 bfd_boolean unresolved_reloc
= FALSE
;
8850 char *error_message
= NULL
;
8852 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8853 r_type
= ELF32_R_TYPE (rel
->r_info
);
8854 r_type
= arm_real_reloc_type (globals
, r_type
);
8856 if ( r_type
== R_ARM_GNU_VTENTRY
8857 || r_type
== R_ARM_GNU_VTINHERIT
)
8860 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
8861 howto
= bfd_reloc
.howto
;
8867 if (r_symndx
< symtab_hdr
->sh_info
)
8869 sym
= local_syms
+ r_symndx
;
8870 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
8871 sec
= local_sections
[r_symndx
];
8873 /* An object file might have a reference to a local
8874 undefined symbol. This is a daft object file, but we
8875 should at least do something about it. V4BX & NONE
8876 relocations do not use the symbol and are explicitly
8877 allowed to use the undefined symbol, so allow those. */
8878 if (r_type
!= R_ARM_V4BX
8879 && r_type
!= R_ARM_NONE
8880 && bfd_is_und_section (sec
)
8881 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
8883 if (!info
->callbacks
->undefined_symbol
8884 (info
, bfd_elf_string_from_elf_section
8885 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
8886 input_bfd
, input_section
,
8887 rel
->r_offset
, TRUE
))
8891 if (globals
->use_rel
)
8893 relocation
= (sec
->output_section
->vma
8894 + sec
->output_offset
8896 if (!info
->relocatable
8897 && (sec
->flags
& SEC_MERGE
)
8898 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8901 bfd_vma addend
, value
;
8905 case R_ARM_MOVW_ABS_NC
:
8906 case R_ARM_MOVT_ABS
:
8907 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8908 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
8909 addend
= (addend
^ 0x8000) - 0x8000;
8912 case R_ARM_THM_MOVW_ABS_NC
:
8913 case R_ARM_THM_MOVT_ABS
:
8914 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
8916 value
|= bfd_get_16 (input_bfd
,
8917 contents
+ rel
->r_offset
+ 2);
8918 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
8919 | ((value
& 0x04000000) >> 15);
8920 addend
= (addend
^ 0x8000) - 0x8000;
8924 if (howto
->rightshift
8925 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
8927 (*_bfd_error_handler
)
8928 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8929 input_bfd
, input_section
,
8930 (long) rel
->r_offset
, howto
->name
);
8934 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8936 /* Get the (signed) value from the instruction. */
8937 addend
= value
& howto
->src_mask
;
8938 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8940 bfd_signed_vma mask
;
8943 mask
&= ~ howto
->src_mask
;
8951 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
8953 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
8955 /* Cases here must match those in the preceeding
8956 switch statement. */
8959 case R_ARM_MOVW_ABS_NC
:
8960 case R_ARM_MOVT_ABS
:
8961 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
8963 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8966 case R_ARM_THM_MOVW_ABS_NC
:
8967 case R_ARM_THM_MOVT_ABS
:
8968 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
8969 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
8970 bfd_put_16 (input_bfd
, value
>> 16,
8971 contents
+ rel
->r_offset
);
8972 bfd_put_16 (input_bfd
, value
,
8973 contents
+ rel
->r_offset
+ 2);
8977 value
= (value
& ~ howto
->dst_mask
)
8978 | (addend
& howto
->dst_mask
);
8979 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8985 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8991 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
8992 r_symndx
, symtab_hdr
, sym_hashes
,
8994 unresolved_reloc
, warned
);
8999 if (sec
!= NULL
&& elf_discarded_section (sec
))
9001 /* For relocs against symbols from removed linkonce sections,
9002 or sections discarded by a linker script, we just want the
9003 section contents zeroed. Avoid any special processing. */
9004 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
9010 if (info
->relocatable
)
9012 /* This is a relocatable link. We don't have to change
9013 anything, unless the reloc is against a section symbol,
9014 in which case we have to adjust according to where the
9015 section symbol winds up in the output section. */
9016 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
9018 if (globals
->use_rel
)
9019 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
9020 howto
, (bfd_signed_vma
) sec
->output_offset
);
9022 rel
->r_addend
+= sec
->output_offset
;
9028 name
= h
->root
.root
.string
;
9031 name
= (bfd_elf_string_from_elf_section
9032 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
9033 if (name
== NULL
|| *name
== '\0')
9034 name
= bfd_section_name (input_bfd
, sec
);
9038 && r_type
!= R_ARM_NONE
9040 || h
->root
.type
== bfd_link_hash_defined
9041 || h
->root
.type
== bfd_link_hash_defweak
)
9042 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
9044 (*_bfd_error_handler
)
9045 ((sym_type
== STT_TLS
9046 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9047 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
9050 (long) rel
->r_offset
,
9055 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
9056 input_section
, contents
, rel
,
9057 relocation
, info
, sec
, name
,
9058 (h
? ELF_ST_TYPE (h
->type
) :
9059 ELF_ST_TYPE (sym
->st_info
)), h
,
9060 &unresolved_reloc
, &error_message
);
9062 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9063 because such sections are not SEC_ALLOC and thus ld.so will
9064 not process them. */
9065 if (unresolved_reloc
9066 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
9069 (*_bfd_error_handler
)
9070 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9073 (long) rel
->r_offset
,
9075 h
->root
.root
.string
);
9079 if (r
!= bfd_reloc_ok
)
9083 case bfd_reloc_overflow
:
9084 /* If the overflowing reloc was to an undefined symbol,
9085 we have already printed one error message and there
9086 is no point complaining again. */
9088 h
->root
.type
!= bfd_link_hash_undefined
)
9089 && (!((*info
->callbacks
->reloc_overflow
)
9090 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
9091 (bfd_vma
) 0, input_bfd
, input_section
,
9096 case bfd_reloc_undefined
:
9097 if (!((*info
->callbacks
->undefined_symbol
)
9098 (info
, name
, input_bfd
, input_section
,
9099 rel
->r_offset
, TRUE
)))
9103 case bfd_reloc_outofrange
:
9104 error_message
= _("out of range");
9107 case bfd_reloc_notsupported
:
9108 error_message
= _("unsupported relocation");
9111 case bfd_reloc_dangerous
:
9112 /* error_message should already be set. */
9116 error_message
= _("unknown error");
9120 BFD_ASSERT (error_message
!= NULL
);
9121 if (!((*info
->callbacks
->reloc_dangerous
)
9122 (info
, error_message
, input_bfd
, input_section
,
9133 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
9134 adds the edit to the start of the list. (The list must be built in order of
9135 ascending TINDEX: the function's callers are primarily responsible for
9136 maintaining that condition). */
9139 add_unwind_table_edit (arm_unwind_table_edit
**head
,
9140 arm_unwind_table_edit
**tail
,
9141 arm_unwind_edit_type type
,
9142 asection
*linked_section
,
9143 unsigned int tindex
)
9145 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
9146 xmalloc (sizeof (arm_unwind_table_edit
));
9148 new_edit
->type
= type
;
9149 new_edit
->linked_section
= linked_section
;
9150 new_edit
->index
= tindex
;
9154 new_edit
->next
= NULL
;
9157 (*tail
)->next
= new_edit
;
9166 new_edit
->next
= *head
;
9175 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
9177 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9179 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
9183 if (!exidx_sec
->rawsize
)
9184 exidx_sec
->rawsize
= exidx_sec
->size
;
9186 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
9187 out_sec
= exidx_sec
->output_section
;
9188 /* Adjust size of output section. */
9189 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
9192 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9194 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
9196 struct _arm_elf_section_data
*exidx_arm_data
;
9198 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9199 add_unwind_table_edit (
9200 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
9201 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
9202 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
9204 adjust_exidx_size(exidx_sec
, 8);
9207 /* Scan .ARM.exidx tables, and create a list describing edits which should be
9208 made to those tables, such that:
9210 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9211 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9212 codes which have been inlined into the index).
9214 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
9216 The edits are applied when the tables are written
9217 (in elf32_arm_write_section).
9221 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
9222 unsigned int num_text_sections
,
9223 struct bfd_link_info
*info
,
9224 bfd_boolean merge_exidx_entries
)
9227 unsigned int last_second_word
= 0, i
;
9228 asection
*last_exidx_sec
= NULL
;
9229 asection
*last_text_sec
= NULL
;
9230 int last_unwind_type
= -1;
9232 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9234 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
9238 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
9240 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
9241 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
9243 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
9246 if (elf_sec
->linked_to
)
9248 Elf_Internal_Shdr
*linked_hdr
9249 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
9250 struct _arm_elf_section_data
*linked_sec_arm_data
9251 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
9253 if (linked_sec_arm_data
== NULL
)
9256 /* Link this .ARM.exidx section back from the text section it
9258 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
9263 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9264 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9265 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
9267 for (i
= 0; i
< num_text_sections
; i
++)
9269 asection
*sec
= text_section_order
[i
];
9270 asection
*exidx_sec
;
9271 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
9272 struct _arm_elf_section_data
*exidx_arm_data
;
9273 bfd_byte
*contents
= NULL
;
9274 int deleted_exidx_bytes
= 0;
9276 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
9277 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
9278 Elf_Internal_Shdr
*hdr
;
9281 if (arm_data
== NULL
)
9284 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
9285 if (exidx_sec
== NULL
)
9287 /* Section has no unwind data. */
9288 if (last_unwind_type
== 0 || !last_exidx_sec
)
9291 /* Ignore zero sized sections. */
9295 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9296 last_unwind_type
= 0;
9300 /* Skip /DISCARD/ sections. */
9301 if (bfd_is_abs_section (exidx_sec
->output_section
))
9304 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
9305 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
9308 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9309 if (exidx_arm_data
== NULL
)
9312 ibfd
= exidx_sec
->owner
;
9314 if (hdr
->contents
!= NULL
)
9315 contents
= hdr
->contents
;
9316 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
9320 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
9322 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
9326 /* An EXIDX_CANTUNWIND entry. */
9327 if (second_word
== 1)
9329 if (last_unwind_type
== 0)
9333 /* Inlined unwinding data. Merge if equal to previous. */
9334 else if ((second_word
& 0x80000000) != 0)
9336 if (merge_exidx_entries
9337 && last_second_word
== second_word
&& last_unwind_type
== 1)
9340 last_second_word
= second_word
;
9342 /* Normal table entry. In theory we could merge these too,
9343 but duplicate entries are likely to be much less common. */
9349 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
9350 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
9352 deleted_exidx_bytes
+= 8;
9355 last_unwind_type
= unwind_type
;
9358 /* Free contents if we allocated it ourselves. */
9359 if (contents
!= hdr
->contents
)
9362 /* Record edits to be applied later (in elf32_arm_write_section). */
9363 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
9364 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
9366 if (deleted_exidx_bytes
> 0)
9367 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
9369 last_exidx_sec
= exidx_sec
;
9370 last_text_sec
= sec
;
9373 /* Add terminating CANTUNWIND entry. */
9374 if (last_exidx_sec
&& last_unwind_type
!= 0)
9375 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9381 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
9382 bfd
*ibfd
, const char *name
)
9384 asection
*sec
, *osec
;
9386 sec
= bfd_get_section_by_name (ibfd
, name
);
9387 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
9390 osec
= sec
->output_section
;
9391 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
9394 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
9395 sec
->output_offset
, sec
->size
))
9402 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9404 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
9405 asection
*sec
, *osec
;
9407 if (globals
== NULL
)
9410 /* Invoke the regular ELF backend linker to do all the work. */
9411 if (!bfd_elf_final_link (abfd
, info
))
9414 /* Process stub sections (eg BE8 encoding, ...). */
9415 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
9417 for(i
=0; i
<htab
->top_id
; i
++) {
9418 sec
= htab
->stub_group
[i
].stub_sec
;
9420 osec
= sec
->output_section
;
9421 elf32_arm_write_section (abfd
, info
, sec
, sec
->contents
);
9422 if (! bfd_set_section_contents (abfd
, osec
, sec
->contents
,
9423 sec
->output_offset
, sec
->size
))
9428 /* Write out any glue sections now that we have created all the
9430 if (globals
->bfd_of_glue_owner
!= NULL
)
9432 if (! elf32_arm_output_glue_section (info
, abfd
,
9433 globals
->bfd_of_glue_owner
,
9434 ARM2THUMB_GLUE_SECTION_NAME
))
9437 if (! elf32_arm_output_glue_section (info
, abfd
,
9438 globals
->bfd_of_glue_owner
,
9439 THUMB2ARM_GLUE_SECTION_NAME
))
9442 if (! elf32_arm_output_glue_section (info
, abfd
,
9443 globals
->bfd_of_glue_owner
,
9444 VFP11_ERRATUM_VENEER_SECTION_NAME
))
9447 if (! elf32_arm_output_glue_section (info
, abfd
,
9448 globals
->bfd_of_glue_owner
,
9449 ARM_BX_GLUE_SECTION_NAME
))
9456 /* Set the right machine number. */
9459 elf32_arm_object_p (bfd
*abfd
)
9463 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
9465 if (mach
!= bfd_mach_arm_unknown
)
9466 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9468 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
9469 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
9472 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9477 /* Function to keep ARM specific flags in the ELF header. */
9480 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
9482 if (elf_flags_init (abfd
)
9483 && elf_elfheader (abfd
)->e_flags
!= flags
)
9485 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
9487 if (flags
& EF_ARM_INTERWORK
)
9488 (*_bfd_error_handler
)
9489 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9493 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9499 elf_elfheader (abfd
)->e_flags
= flags
;
9500 elf_flags_init (abfd
) = TRUE
;
9506 /* Copy backend specific data from one object module to another. */
9509 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
9514 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
9517 in_flags
= elf_elfheader (ibfd
)->e_flags
;
9518 out_flags
= elf_elfheader (obfd
)->e_flags
;
9520 if (elf_flags_init (obfd
)
9521 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
9522 && in_flags
!= out_flags
)
9524 /* Cannot mix APCS26 and APCS32 code. */
9525 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
9528 /* Cannot mix float APCS and non-float APCS code. */
9529 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
9532 /* If the src and dest have different interworking flags
9533 then turn off the interworking bit. */
9534 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
9536 if (out_flags
& EF_ARM_INTERWORK
)
9538 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9541 in_flags
&= ~EF_ARM_INTERWORK
;
9544 /* Likewise for PIC, though don't warn for this case. */
9545 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
9546 in_flags
&= ~EF_ARM_PIC
;
9549 elf_elfheader (obfd
)->e_flags
= in_flags
;
9550 elf_flags_init (obfd
) = TRUE
;
9552 /* Also copy the EI_OSABI field. */
9553 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
9554 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
9556 /* Copy object attributes. */
9557 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9562 /* Values for Tag_ABI_PCS_R9_use. */
9571 /* Values for Tag_ABI_PCS_RW_data. */
9574 AEABI_PCS_RW_data_absolute
,
9575 AEABI_PCS_RW_data_PCrel
,
9576 AEABI_PCS_RW_data_SBrel
,
9577 AEABI_PCS_RW_data_unused
9580 /* Values for Tag_ABI_enum_size. */
9586 AEABI_enum_forced_wide
9589 /* Determine whether an object attribute tag takes an integer, a
9593 elf32_arm_obj_attrs_arg_type (int tag
)
9595 if (tag
== Tag_compatibility
)
9596 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
9597 else if (tag
== Tag_nodefaults
)
9598 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
9599 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
9600 return ATTR_TYPE_FLAG_STR_VAL
;
9602 return ATTR_TYPE_FLAG_INT_VAL
;
9604 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
9607 /* The ABI defines that Tag_conformance should be emitted first, and that
9608 Tag_nodefaults should be second (if either is defined). This sets those
9609 two positions, and bumps up the position of all the remaining tags to
9612 elf32_arm_obj_attrs_order (int num
)
9614 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
)
9615 return Tag_conformance
;
9616 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
+ 1)
9617 return Tag_nodefaults
;
9618 if ((num
- 2) < Tag_nodefaults
)
9620 if ((num
- 1) < Tag_conformance
)
9625 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
9626 Returns -1 if no architecture could be read. */
9629 get_secondary_compatible_arch (bfd
*abfd
)
9631 obj_attribute
*attr
=
9632 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9634 /* Note: the tag and its argument below are uleb128 values, though
9635 currently-defined values fit in one byte for each. */
9637 && attr
->s
[0] == Tag_CPU_arch
9638 && (attr
->s
[1] & 128) != 128
9642 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9646 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9647 The tag is removed if ARCH is -1. */
9650 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
9652 obj_attribute
*attr
=
9653 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9661 /* Note: the tag and its argument below are uleb128 values, though
9662 currently-defined values fit in one byte for each. */
9664 attr
->s
= (char *) bfd_alloc (abfd
, 3);
9665 attr
->s
[0] = Tag_CPU_arch
;
9670 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9674 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
9675 int newtag
, int secondary_compat
)
9677 #define T(X) TAG_CPU_ARCH_##X
9678 int tagl
, tagh
, result
;
9681 T(V6T2
), /* PRE_V4. */
9685 T(V6T2
), /* V5TE. */
9686 T(V6T2
), /* V5TEJ. */
9693 T(V6K
), /* PRE_V4. */
9698 T(V6K
), /* V5TEJ. */
9700 T(V6KZ
), /* V6KZ. */
9706 T(V7
), /* PRE_V4. */
9725 T(V6K
), /* V5TEJ. */
9727 T(V6KZ
), /* V6KZ. */
9740 T(V6K
), /* V5TEJ. */
9742 T(V6KZ
), /* V6KZ. */
9746 T(V6S_M
), /* V6_M. */
9747 T(V6S_M
) /* V6S_M. */
9753 T(V7E_M
), /* V4T. */
9754 T(V7E_M
), /* V5T. */
9755 T(V7E_M
), /* V5TE. */
9756 T(V7E_M
), /* V5TEJ. */
9758 T(V7E_M
), /* V6KZ. */
9759 T(V7E_M
), /* V6T2. */
9760 T(V7E_M
), /* V6K. */
9762 T(V7E_M
), /* V6_M. */
9763 T(V7E_M
), /* V6S_M. */
9764 T(V7E_M
) /* V7E_M. */
9766 const int v4t_plus_v6_m
[] =
9772 T(V5TE
), /* V5TE. */
9773 T(V5TEJ
), /* V5TEJ. */
9775 T(V6KZ
), /* V6KZ. */
9776 T(V6T2
), /* V6T2. */
9779 T(V6_M
), /* V6_M. */
9780 T(V6S_M
), /* V6S_M. */
9781 T(V7E_M
), /* V7E_M. */
9782 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
9792 /* Pseudo-architecture. */
9796 /* Check we've not got a higher architecture than we know about. */
9798 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
9800 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
9804 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9806 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
9807 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
9808 oldtag
= T(V4T_PLUS_V6_M
);
9810 /* And override the new tag if we have a Tag_also_compatible_with on the
9813 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
9814 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
9815 newtag
= T(V4T_PLUS_V6_M
);
9817 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
9818 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
9820 /* Architectures before V6KZ add features monotonically. */
9821 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
9824 result
= comb
[tagh
- T(V6T2
)][tagl
];
9826 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9827 as the canonical version. */
9828 if (result
== T(V4T_PLUS_V6_M
))
9831 *secondary_compat_out
= T(V6_M
);
9834 *secondary_compat_out
= -1;
9838 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9839 ibfd
, oldtag
, newtag
);
9847 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9848 are conflicting attributes. */
9851 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
9853 obj_attribute
*in_attr
;
9854 obj_attribute
*out_attr
;
9855 obj_attribute_list
*in_list
;
9856 obj_attribute_list
*out_list
;
9857 obj_attribute_list
**out_listp
;
9858 /* Some tags have 0 = don't care, 1 = strong requirement,
9859 2 = weak requirement. */
9860 static const int order_021
[3] = {0, 2, 1};
9862 bfd_boolean result
= TRUE
;
9864 /* Skip the linker stubs file. This preserves previous behavior
9865 of accepting unknown attributes in the first input file - but
9867 if (ibfd
->flags
& BFD_LINKER_CREATED
)
9870 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
9872 /* This is the first object. Copy the attributes. */
9873 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9875 out_attr
= elf_known_obj_attributes_proc (obfd
);
9877 /* Use the Tag_null value to indicate the attributes have been
9881 /* We do not output objects with Tag_MPextension_use_legacy - we move
9882 the attribute's value to Tag_MPextension_use. */
9883 if (out_attr
[Tag_MPextension_use_legacy
].i
!= 0)
9885 if (out_attr
[Tag_MPextension_use
].i
!= 0
9886 && out_attr
[Tag_MPextension_use_legacy
].i
9887 != out_attr
[Tag_MPextension_use
].i
)
9890 (_("Error: %B has both the current and legacy "
9891 "Tag_MPextension_use attributes"), ibfd
);
9895 out_attr
[Tag_MPextension_use
] =
9896 out_attr
[Tag_MPextension_use_legacy
];
9897 out_attr
[Tag_MPextension_use_legacy
].type
= 0;
9898 out_attr
[Tag_MPextension_use_legacy
].i
= 0;
9904 in_attr
= elf_known_obj_attributes_proc (ibfd
);
9905 out_attr
= elf_known_obj_attributes_proc (obfd
);
9906 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9907 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
9909 /* Ignore mismatches if the object doesn't use floating point. */
9910 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
9911 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
9912 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
9915 (_("error: %B uses VFP register arguments, %B does not"),
9916 in_attr
[Tag_ABI_VFP_args
].i
? ibfd
: obfd
,
9917 in_attr
[Tag_ABI_VFP_args
].i
? obfd
: ibfd
);
9922 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
9924 /* Merge this attribute with existing attributes. */
9927 case Tag_CPU_raw_name
:
9929 /* These are merged after Tag_CPU_arch. */
9932 case Tag_ABI_optimization_goals
:
9933 case Tag_ABI_FP_optimization_goals
:
9934 /* Use the first value seen. */
9939 int secondary_compat
= -1, secondary_compat_out
= -1;
9940 unsigned int saved_out_attr
= out_attr
[i
].i
;
9941 static const char *name_table
[] = {
9942 /* These aren't real CPU names, but we can't guess
9943 that from the architecture version alone. */
9959 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9960 secondary_compat
= get_secondary_compatible_arch (ibfd
);
9961 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
9962 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
9963 &secondary_compat_out
,
9966 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
9968 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9969 if (out_attr
[i
].i
== saved_out_attr
)
9970 ; /* Leave the names alone. */
9971 else if (out_attr
[i
].i
== in_attr
[i
].i
)
9973 /* The output architecture has been changed to match the
9974 input architecture. Use the input names. */
9975 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
9976 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
9978 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
9979 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
9984 out_attr
[Tag_CPU_name
].s
= NULL
;
9985 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
9988 /* If we still don't have a value for Tag_CPU_name,
9989 make one up now. Tag_CPU_raw_name remains blank. */
9990 if (out_attr
[Tag_CPU_name
].s
== NULL
9991 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
9992 out_attr
[Tag_CPU_name
].s
=
9993 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
9997 case Tag_ARM_ISA_use
:
9998 case Tag_THUMB_ISA_use
:
10000 case Tag_Advanced_SIMD_arch
:
10001 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
10002 case Tag_ABI_FP_rounding
:
10003 case Tag_ABI_FP_exceptions
:
10004 case Tag_ABI_FP_user_exceptions
:
10005 case Tag_ABI_FP_number_model
:
10006 case Tag_FP_HP_extension
:
10007 case Tag_CPU_unaligned_access
:
10009 case Tag_MPextension_use
:
10010 /* Use the largest value specified. */
10011 if (in_attr
[i
].i
> out_attr
[i
].i
)
10012 out_attr
[i
].i
= in_attr
[i
].i
;
10015 case Tag_ABI_align_preserved
:
10016 case Tag_ABI_PCS_RO_data
:
10017 /* Use the smallest value specified. */
10018 if (in_attr
[i
].i
< out_attr
[i
].i
)
10019 out_attr
[i
].i
= in_attr
[i
].i
;
10022 case Tag_ABI_align_needed
:
10023 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
10024 && (in_attr
[Tag_ABI_align_preserved
].i
== 0
10025 || out_attr
[Tag_ABI_align_preserved
].i
== 0))
10027 /* This error message should be enabled once all non-conformant
10028 binaries in the toolchain have had the attributes set
10031 (_("error: %B: 8-byte data alignment conflicts with %B"),
10035 /* Fall through. */
10036 case Tag_ABI_FP_denormal
:
10037 case Tag_ABI_PCS_GOT_use
:
10038 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
10039 value if greater than 2 (for future-proofing). */
10040 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
10041 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
10042 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
10043 out_attr
[i
].i
= in_attr
[i
].i
;
10046 case Tag_Virtualization_use
:
10047 /* The virtualization tag effectively stores two bits of
10048 information: the intended use of TrustZone (in bit 0), and the
10049 intended use of Virtualization (in bit 1). */
10050 if (out_attr
[i
].i
== 0)
10051 out_attr
[i
].i
= in_attr
[i
].i
;
10052 else if (in_attr
[i
].i
!= 0
10053 && in_attr
[i
].i
!= out_attr
[i
].i
)
10055 if (in_attr
[i
].i
<= 3 && out_attr
[i
].i
<= 3)
10060 (_("error: %B: unable to merge virtualization attributes "
10068 case Tag_CPU_arch_profile
:
10069 if (out_attr
[i
].i
!= in_attr
[i
].i
)
10071 /* 0 will merge with anything.
10072 'A' and 'S' merge to 'A'.
10073 'R' and 'S' merge to 'R'.
10074 'M' and 'A|R|S' is an error. */
10075 if (out_attr
[i
].i
== 0
10076 || (out_attr
[i
].i
== 'S'
10077 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
10078 out_attr
[i
].i
= in_attr
[i
].i
;
10079 else if (in_attr
[i
].i
== 0
10080 || (in_attr
[i
].i
== 'S'
10081 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
10082 ; /* Do nothing. */
10086 (_("error: %B: Conflicting architecture profiles %c/%c"),
10088 in_attr
[i
].i
? in_attr
[i
].i
: '0',
10089 out_attr
[i
].i
? out_attr
[i
].i
: '0');
10096 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
10097 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
10098 when it's 0. It might mean absence of FP hardware if
10099 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
10101 static const struct
10105 } vfp_versions
[7] =
10119 /* If the output has no requirement about FP hardware,
10120 follow the requirement of the input. */
10121 if (out_attr
[i
].i
== 0)
10123 BFD_ASSERT (out_attr
[Tag_ABI_HardFP_use
].i
== 0);
10124 out_attr
[i
].i
= in_attr
[i
].i
;
10125 out_attr
[Tag_ABI_HardFP_use
].i
10126 = in_attr
[Tag_ABI_HardFP_use
].i
;
10129 /* If the input has no requirement about FP hardware, do
10131 else if (in_attr
[i
].i
== 0)
10133 BFD_ASSERT (in_attr
[Tag_ABI_HardFP_use
].i
== 0);
10137 /* Both the input and the output have nonzero Tag_FP_arch.
10138 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
10140 /* If both the input and the output have zero Tag_ABI_HardFP_use,
10142 if (in_attr
[Tag_ABI_HardFP_use
].i
== 0
10143 && out_attr
[Tag_ABI_HardFP_use
].i
== 0)
10145 /* If the input and the output have different Tag_ABI_HardFP_use,
10146 the combination of them is 3 (SP & DP). */
10147 else if (in_attr
[Tag_ABI_HardFP_use
].i
10148 != out_attr
[Tag_ABI_HardFP_use
].i
)
10149 out_attr
[Tag_ABI_HardFP_use
].i
= 3;
10151 /* Now we can handle Tag_FP_arch. */
10153 /* Values greater than 6 aren't defined, so just pick the
10155 if (in_attr
[i
].i
> 6 && in_attr
[i
].i
> out_attr
[i
].i
)
10157 out_attr
[i
] = in_attr
[i
];
10160 /* The output uses the superset of input features
10161 (ISA version) and registers. */
10162 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
10163 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
10164 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
10165 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
10166 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
10167 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
10168 /* This assumes all possible supersets are also a valid
10170 for (newval
= 6; newval
> 0; newval
--)
10172 if (regs
== vfp_versions
[newval
].regs
10173 && ver
== vfp_versions
[newval
].ver
)
10176 out_attr
[i
].i
= newval
;
10179 case Tag_PCS_config
:
10180 if (out_attr
[i
].i
== 0)
10181 out_attr
[i
].i
= in_attr
[i
].i
;
10182 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
10184 /* It's sometimes ok to mix different configs, so this is only
10187 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
10190 case Tag_ABI_PCS_R9_use
:
10191 if (in_attr
[i
].i
!= out_attr
[i
].i
10192 && out_attr
[i
].i
!= AEABI_R9_unused
10193 && in_attr
[i
].i
!= AEABI_R9_unused
)
10196 (_("error: %B: Conflicting use of R9"), ibfd
);
10199 if (out_attr
[i
].i
== AEABI_R9_unused
)
10200 out_attr
[i
].i
= in_attr
[i
].i
;
10202 case Tag_ABI_PCS_RW_data
:
10203 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
10204 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
10205 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
10208 (_("error: %B: SB relative addressing conflicts with use of R9"),
10212 /* Use the smallest value specified. */
10213 if (in_attr
[i
].i
< out_attr
[i
].i
)
10214 out_attr
[i
].i
= in_attr
[i
].i
;
10216 case Tag_ABI_PCS_wchar_t
:
10217 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
10218 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
10221 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10222 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
10224 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
10225 out_attr
[i
].i
= in_attr
[i
].i
;
10227 case Tag_ABI_enum_size
:
10228 if (in_attr
[i
].i
!= AEABI_enum_unused
)
10230 if (out_attr
[i
].i
== AEABI_enum_unused
10231 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
10233 /* The existing object is compatible with anything.
10234 Use whatever requirements the new object has. */
10235 out_attr
[i
].i
= in_attr
[i
].i
;
10237 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
10238 && out_attr
[i
].i
!= in_attr
[i
].i
10239 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
10241 static const char *aeabi_enum_names
[] =
10242 { "", "variable-size", "32-bit", "" };
10243 const char *in_name
=
10244 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
10245 ? aeabi_enum_names
[in_attr
[i
].i
]
10247 const char *out_name
=
10248 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
10249 ? aeabi_enum_names
[out_attr
[i
].i
]
10252 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
10253 ibfd
, in_name
, out_name
);
10257 case Tag_ABI_VFP_args
:
10260 case Tag_ABI_WMMX_args
:
10261 if (in_attr
[i
].i
!= out_attr
[i
].i
)
10264 (_("error: %B uses iWMMXt register arguments, %B does not"),
10269 case Tag_compatibility
:
10270 /* Merged in target-independent code. */
10272 case Tag_ABI_HardFP_use
:
10273 /* This is handled along with Tag_FP_arch. */
10275 case Tag_ABI_FP_16bit_format
:
10276 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
10278 if (in_attr
[i
].i
!= out_attr
[i
].i
)
10281 (_("error: fp16 format mismatch between %B and %B"),
10286 if (in_attr
[i
].i
!= 0)
10287 out_attr
[i
].i
= in_attr
[i
].i
;
10291 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
10292 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10293 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10294 CPU. We will merge as follows: If the input attribute's value
10295 is one then the output attribute's value remains unchanged. If
10296 the input attribute's value is zero or two then if the output
10297 attribute's value is one the output value is set to the input
10298 value, otherwise the output value must be the same as the
10300 if (in_attr
[i
].i
!= 1 && out_attr
[i
].i
!= 1)
10302 if (in_attr
[i
].i
!= out_attr
[i
].i
)
10305 (_("DIV usage mismatch between %B and %B"),
10311 if (in_attr
[i
].i
!= 1)
10312 out_attr
[i
].i
= in_attr
[i
].i
;
10316 case Tag_MPextension_use_legacy
:
10317 /* We don't output objects with Tag_MPextension_use_legacy - we
10318 move the value to Tag_MPextension_use. */
10319 if (in_attr
[i
].i
!= 0 && in_attr
[Tag_MPextension_use
].i
!= 0)
10321 if (in_attr
[Tag_MPextension_use
].i
!= in_attr
[i
].i
)
10324 (_("%B has has both the current and legacy "
10325 "Tag_MPextension_use attributes"),
10331 if (in_attr
[i
].i
> out_attr
[Tag_MPextension_use
].i
)
10332 out_attr
[Tag_MPextension_use
] = in_attr
[i
];
10336 case Tag_nodefaults
:
10337 /* This tag is set if it exists, but the value is unused (and is
10338 typically zero). We don't actually need to do anything here -
10339 the merge happens automatically when the type flags are merged
10342 case Tag_also_compatible_with
:
10343 /* Already done in Tag_CPU_arch. */
10345 case Tag_conformance
:
10346 /* Keep the attribute if it matches. Throw it away otherwise.
10347 No attribute means no claim to conform. */
10348 if (!in_attr
[i
].s
|| !out_attr
[i
].s
10349 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
10350 out_attr
[i
].s
= NULL
;
10355 bfd
*err_bfd
= NULL
;
10357 /* The "known_obj_attributes" table does contain some undefined
10358 attributes. Ensure that there are unused. */
10359 if (out_attr
[i
].i
!= 0 || out_attr
[i
].s
!= NULL
)
10361 else if (in_attr
[i
].i
!= 0 || in_attr
[i
].s
!= NULL
)
10364 if (err_bfd
!= NULL
)
10366 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10367 if ((i
& 127) < 64)
10370 (_("%B: Unknown mandatory EABI object attribute %d"),
10372 bfd_set_error (bfd_error_bad_value
);
10378 (_("Warning: %B: Unknown EABI object attribute %d"),
10383 /* Only pass on attributes that match in both inputs. */
10384 if (in_attr
[i
].i
!= out_attr
[i
].i
10385 || in_attr
[i
].s
!= out_attr
[i
].s
10386 || (in_attr
[i
].s
!= NULL
&& out_attr
[i
].s
!= NULL
10387 && strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0))
10390 out_attr
[i
].s
= NULL
;
10395 /* If out_attr was copied from in_attr then it won't have a type yet. */
10396 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
10397 out_attr
[i
].type
= in_attr
[i
].type
;
10400 /* Merge Tag_compatibility attributes and any common GNU ones. */
10401 if (!_bfd_elf_merge_object_attributes (ibfd
, obfd
))
10404 /* Check for any attributes not known on ARM. */
10405 in_list
= elf_other_obj_attributes_proc (ibfd
);
10406 out_listp
= &elf_other_obj_attributes_proc (obfd
);
10407 out_list
= *out_listp
;
10409 for (; in_list
|| out_list
; )
10411 bfd
*err_bfd
= NULL
;
10414 /* The tags for each list are in numerical order. */
10415 /* If the tags are equal, then merge. */
10416 if (out_list
&& (!in_list
|| in_list
->tag
> out_list
->tag
))
10418 /* This attribute only exists in obfd. We can't merge, and we don't
10419 know what the tag means, so delete it. */
10421 err_tag
= out_list
->tag
;
10422 *out_listp
= out_list
->next
;
10423 out_list
= *out_listp
;
10425 else if (in_list
&& (!out_list
|| in_list
->tag
< out_list
->tag
))
10427 /* This attribute only exists in ibfd. We can't merge, and we don't
10428 know what the tag means, so ignore it. */
10430 err_tag
= in_list
->tag
;
10431 in_list
= in_list
->next
;
10433 else /* The tags are equal. */
10435 /* As present, all attributes in the list are unknown, and
10436 therefore can't be merged meaningfully. */
10438 err_tag
= out_list
->tag
;
10440 /* Only pass on attributes that match in both inputs. */
10441 if (in_list
->attr
.i
!= out_list
->attr
.i
10442 || in_list
->attr
.s
!= out_list
->attr
.s
10443 || (in_list
->attr
.s
&& out_list
->attr
.s
10444 && strcmp (in_list
->attr
.s
, out_list
->attr
.s
) != 0))
10446 /* No match. Delete the attribute. */
10447 *out_listp
= out_list
->next
;
10448 out_list
= *out_listp
;
10452 /* Matched. Keep the attribute and move to the next. */
10453 out_list
= out_list
->next
;
10454 in_list
= in_list
->next
;
10460 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10461 if ((err_tag
& 127) < 64)
10464 (_("%B: Unknown mandatory EABI object attribute %d"),
10466 bfd_set_error (bfd_error_bad_value
);
10472 (_("Warning: %B: Unknown EABI object attribute %d"),
10481 /* Return TRUE if the two EABI versions are incompatible. */
10484 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
10486 /* v4 and v5 are the same spec before and after it was released,
10487 so allow mixing them. */
10488 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
10489 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
10492 return (iver
== over
);
10495 /* Merge backend specific data from an object file to the output
10496 object file when linking. */
10499 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
);
10501 /* Display the flags field. */
10504 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
10506 FILE * file
= (FILE *) ptr
;
10507 unsigned long flags
;
10509 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
10511 /* Print normal ELF private data. */
10512 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
10514 flags
= elf_elfheader (abfd
)->e_flags
;
10515 /* Ignore init flag - it may not be set, despite the flags field
10516 containing valid data. */
10518 /* xgettext:c-format */
10519 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
10521 switch (EF_ARM_EABI_VERSION (flags
))
10523 case EF_ARM_EABI_UNKNOWN
:
10524 /* The following flag bits are GNU extensions and not part of the
10525 official ARM ELF extended ABI. Hence they are only decoded if
10526 the EABI version is not set. */
10527 if (flags
& EF_ARM_INTERWORK
)
10528 fprintf (file
, _(" [interworking enabled]"));
10530 if (flags
& EF_ARM_APCS_26
)
10531 fprintf (file
, " [APCS-26]");
10533 fprintf (file
, " [APCS-32]");
10535 if (flags
& EF_ARM_VFP_FLOAT
)
10536 fprintf (file
, _(" [VFP float format]"));
10537 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
10538 fprintf (file
, _(" [Maverick float format]"));
10540 fprintf (file
, _(" [FPA float format]"));
10542 if (flags
& EF_ARM_APCS_FLOAT
)
10543 fprintf (file
, _(" [floats passed in float registers]"));
10545 if (flags
& EF_ARM_PIC
)
10546 fprintf (file
, _(" [position independent]"));
10548 if (flags
& EF_ARM_NEW_ABI
)
10549 fprintf (file
, _(" [new ABI]"));
10551 if (flags
& EF_ARM_OLD_ABI
)
10552 fprintf (file
, _(" [old ABI]"));
10554 if (flags
& EF_ARM_SOFT_FLOAT
)
10555 fprintf (file
, _(" [software FP]"));
10557 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
10558 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
10559 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
10560 | EF_ARM_MAVERICK_FLOAT
);
10563 case EF_ARM_EABI_VER1
:
10564 fprintf (file
, _(" [Version1 EABI]"));
10566 if (flags
& EF_ARM_SYMSARESORTED
)
10567 fprintf (file
, _(" [sorted symbol table]"));
10569 fprintf (file
, _(" [unsorted symbol table]"));
10571 flags
&= ~ EF_ARM_SYMSARESORTED
;
10574 case EF_ARM_EABI_VER2
:
10575 fprintf (file
, _(" [Version2 EABI]"));
10577 if (flags
& EF_ARM_SYMSARESORTED
)
10578 fprintf (file
, _(" [sorted symbol table]"));
10580 fprintf (file
, _(" [unsorted symbol table]"));
10582 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
10583 fprintf (file
, _(" [dynamic symbols use segment index]"));
10585 if (flags
& EF_ARM_MAPSYMSFIRST
)
10586 fprintf (file
, _(" [mapping symbols precede others]"));
10588 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
10589 | EF_ARM_MAPSYMSFIRST
);
10592 case EF_ARM_EABI_VER3
:
10593 fprintf (file
, _(" [Version3 EABI]"));
10596 case EF_ARM_EABI_VER4
:
10597 fprintf (file
, _(" [Version4 EABI]"));
10600 case EF_ARM_EABI_VER5
:
10601 fprintf (file
, _(" [Version5 EABI]"));
10603 if (flags
& EF_ARM_BE8
)
10604 fprintf (file
, _(" [BE8]"));
10606 if (flags
& EF_ARM_LE8
)
10607 fprintf (file
, _(" [LE8]"));
10609 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
10613 fprintf (file
, _(" <EABI version unrecognised>"));
10617 flags
&= ~ EF_ARM_EABIMASK
;
10619 if (flags
& EF_ARM_RELEXEC
)
10620 fprintf (file
, _(" [relocatable executable]"));
10622 if (flags
& EF_ARM_HASENTRY
)
10623 fprintf (file
, _(" [has entry point]"));
10625 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
10628 fprintf (file
, _("<Unrecognised flag bits set>"));
10630 fputc ('\n', file
);
10636 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
10638 switch (ELF_ST_TYPE (elf_sym
->st_info
))
10640 case STT_ARM_TFUNC
:
10641 return ELF_ST_TYPE (elf_sym
->st_info
);
10643 case STT_ARM_16BIT
:
10644 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10645 This allows us to distinguish between data used by Thumb instructions
10646 and non-data (which is probably code) inside Thumb regions of an
10648 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
10649 return ELF_ST_TYPE (elf_sym
->st_info
);
10660 elf32_arm_gc_mark_hook (asection
*sec
,
10661 struct bfd_link_info
*info
,
10662 Elf_Internal_Rela
*rel
,
10663 struct elf_link_hash_entry
*h
,
10664 Elf_Internal_Sym
*sym
)
10667 switch (ELF32_R_TYPE (rel
->r_info
))
10669 case R_ARM_GNU_VTINHERIT
:
10670 case R_ARM_GNU_VTENTRY
:
10674 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10677 /* Update the got entry reference counts for the section being removed. */
10680 elf32_arm_gc_sweep_hook (bfd
* abfd
,
10681 struct bfd_link_info
* info
,
10683 const Elf_Internal_Rela
* relocs
)
10685 Elf_Internal_Shdr
*symtab_hdr
;
10686 struct elf_link_hash_entry
**sym_hashes
;
10687 bfd_signed_vma
*local_got_refcounts
;
10688 const Elf_Internal_Rela
*rel
, *relend
;
10689 struct elf32_arm_link_hash_table
* globals
;
10691 if (info
->relocatable
)
10694 globals
= elf32_arm_hash_table (info
);
10695 if (globals
== NULL
)
10698 elf_section_data (sec
)->local_dynrel
= NULL
;
10700 symtab_hdr
= & elf_symtab_hdr (abfd
);
10701 sym_hashes
= elf_sym_hashes (abfd
);
10702 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10704 check_use_blx (globals
);
10706 relend
= relocs
+ sec
->reloc_count
;
10707 for (rel
= relocs
; rel
< relend
; rel
++)
10709 unsigned long r_symndx
;
10710 struct elf_link_hash_entry
*h
= NULL
;
10713 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10714 if (r_symndx
>= symtab_hdr
->sh_info
)
10716 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10717 while (h
->root
.type
== bfd_link_hash_indirect
10718 || h
->root
.type
== bfd_link_hash_warning
)
10719 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10722 r_type
= ELF32_R_TYPE (rel
->r_info
);
10723 r_type
= arm_real_reloc_type (globals
, r_type
);
10727 case R_ARM_GOT_PREL
:
10728 case R_ARM_TLS_GD32
:
10729 case R_ARM_TLS_IE32
:
10732 if (h
->got
.refcount
> 0)
10733 h
->got
.refcount
-= 1;
10735 else if (local_got_refcounts
!= NULL
)
10737 if (local_got_refcounts
[r_symndx
] > 0)
10738 local_got_refcounts
[r_symndx
] -= 1;
10742 case R_ARM_TLS_LDM32
:
10743 globals
->tls_ldm_got
.refcount
-= 1;
10747 case R_ARM_ABS32_NOI
:
10749 case R_ARM_REL32_NOI
:
10755 case R_ARM_THM_CALL
:
10756 case R_ARM_THM_JUMP24
:
10757 case R_ARM_THM_JUMP19
:
10758 case R_ARM_MOVW_ABS_NC
:
10759 case R_ARM_MOVT_ABS
:
10760 case R_ARM_MOVW_PREL_NC
:
10761 case R_ARM_MOVT_PREL
:
10762 case R_ARM_THM_MOVW_ABS_NC
:
10763 case R_ARM_THM_MOVT_ABS
:
10764 case R_ARM_THM_MOVW_PREL_NC
:
10765 case R_ARM_THM_MOVT_PREL
:
10766 /* Should the interworking branches be here also? */
10770 struct elf32_arm_link_hash_entry
*eh
;
10771 struct elf32_arm_relocs_copied
**pp
;
10772 struct elf32_arm_relocs_copied
*p
;
10774 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10776 if (h
->plt
.refcount
> 0)
10778 h
->plt
.refcount
-= 1;
10779 if (r_type
== R_ARM_THM_CALL
)
10780 eh
->plt_maybe_thumb_refcount
--;
10782 if (r_type
== R_ARM_THM_JUMP24
10783 || r_type
== R_ARM_THM_JUMP19
)
10784 eh
->plt_thumb_refcount
--;
10787 if (r_type
== R_ARM_ABS32
10788 || r_type
== R_ARM_REL32
10789 || r_type
== R_ARM_ABS32_NOI
10790 || r_type
== R_ARM_REL32_NOI
)
10792 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
;
10794 if (p
->section
== sec
)
10797 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32
10798 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32_NOI
)
10816 /* Look through the relocs for a section during the first phase. */
10819 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
10820 asection
*sec
, const Elf_Internal_Rela
*relocs
)
10822 Elf_Internal_Shdr
*symtab_hdr
;
10823 struct elf_link_hash_entry
**sym_hashes
;
10824 const Elf_Internal_Rela
*rel
;
10825 const Elf_Internal_Rela
*rel_end
;
10828 struct elf32_arm_link_hash_table
*htab
;
10829 bfd_boolean needs_plt
;
10830 unsigned long nsyms
;
10832 if (info
->relocatable
)
10835 BFD_ASSERT (is_arm_elf (abfd
));
10837 htab
= elf32_arm_hash_table (info
);
10843 /* Create dynamic sections for relocatable executables so that we can
10844 copy relocations. */
10845 if (htab
->root
.is_relocatable_executable
10846 && ! htab
->root
.dynamic_sections_created
)
10848 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
10852 dynobj
= elf_hash_table (info
)->dynobj
;
10853 symtab_hdr
= & elf_symtab_hdr (abfd
);
10854 sym_hashes
= elf_sym_hashes (abfd
);
10855 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
10857 rel_end
= relocs
+ sec
->reloc_count
;
10858 for (rel
= relocs
; rel
< rel_end
; rel
++)
10860 struct elf_link_hash_entry
*h
;
10861 struct elf32_arm_link_hash_entry
*eh
;
10862 unsigned long r_symndx
;
10865 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10866 r_type
= ELF32_R_TYPE (rel
->r_info
);
10867 r_type
= arm_real_reloc_type (htab
, r_type
);
10869 if (r_symndx
>= nsyms
10870 /* PR 9934: It is possible to have relocations that do not
10871 refer to symbols, thus it is also possible to have an
10872 object file containing relocations but no symbol table. */
10873 && (r_symndx
> 0 || nsyms
> 0))
10875 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
10880 if (nsyms
== 0 || r_symndx
< symtab_hdr
->sh_info
)
10884 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10885 while (h
->root
.type
== bfd_link_hash_indirect
10886 || h
->root
.type
== bfd_link_hash_warning
)
10887 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10890 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10895 case R_ARM_GOT_PREL
:
10896 case R_ARM_TLS_GD32
:
10897 case R_ARM_TLS_IE32
:
10898 /* This symbol requires a global offset table entry. */
10900 int tls_type
, old_tls_type
;
10904 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
10905 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
10906 default: tls_type
= GOT_NORMAL
; break;
10912 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
10916 bfd_signed_vma
*local_got_refcounts
;
10918 /* This is a global offset table entry for a local symbol. */
10919 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10920 if (local_got_refcounts
== NULL
)
10922 bfd_size_type size
;
10924 size
= symtab_hdr
->sh_info
;
10925 size
*= (sizeof (bfd_signed_vma
) + sizeof (char));
10926 local_got_refcounts
= (bfd_signed_vma
*)
10927 bfd_zalloc (abfd
, size
);
10928 if (local_got_refcounts
== NULL
)
10930 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
10931 elf32_arm_local_got_tls_type (abfd
)
10932 = (char *) (local_got_refcounts
+ symtab_hdr
->sh_info
);
10934 local_got_refcounts
[r_symndx
] += 1;
10935 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
10938 /* We will already have issued an error message if there is a
10939 TLS / non-TLS mismatch, based on the symbol type. We don't
10940 support any linker relaxations. So just combine any TLS
10942 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
10943 && tls_type
!= GOT_NORMAL
)
10944 tls_type
|= old_tls_type
;
10946 if (old_tls_type
!= tls_type
)
10949 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
10951 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
10954 /* Fall through. */
10956 case R_ARM_TLS_LDM32
:
10957 if (r_type
== R_ARM_TLS_LDM32
)
10958 htab
->tls_ldm_got
.refcount
++;
10959 /* Fall through. */
10961 case R_ARM_GOTOFF32
:
10963 if (htab
->sgot
== NULL
)
10965 if (htab
->root
.dynobj
== NULL
)
10966 htab
->root
.dynobj
= abfd
;
10967 if (!create_got_section (htab
->root
.dynobj
, info
))
10973 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10974 ldr __GOTT_INDEX__ offsets. */
10975 if (!htab
->vxworks_p
)
10977 /* Fall through. */
10984 case R_ARM_THM_CALL
:
10985 case R_ARM_THM_JUMP24
:
10986 case R_ARM_THM_JUMP19
:
10990 case R_ARM_MOVW_ABS_NC
:
10991 case R_ARM_MOVT_ABS
:
10992 case R_ARM_THM_MOVW_ABS_NC
:
10993 case R_ARM_THM_MOVT_ABS
:
10996 (*_bfd_error_handler
)
10997 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10998 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
10999 (h
) ? h
->root
.root
.string
: "a local symbol");
11000 bfd_set_error (bfd_error_bad_value
);
11004 /* Fall through. */
11006 case R_ARM_ABS32_NOI
:
11008 case R_ARM_REL32_NOI
:
11009 case R_ARM_MOVW_PREL_NC
:
11010 case R_ARM_MOVT_PREL
:
11011 case R_ARM_THM_MOVW_PREL_NC
:
11012 case R_ARM_THM_MOVT_PREL
:
11016 /* Should the interworking branches be listed here? */
11019 /* If this reloc is in a read-only section, we might
11020 need a copy reloc. We can't check reliably at this
11021 stage whether the section is read-only, as input
11022 sections have not yet been mapped to output sections.
11023 Tentatively set the flag for now, and correct in
11024 adjust_dynamic_symbol. */
11026 h
->non_got_ref
= 1;
11028 /* We may need a .plt entry if the function this reloc
11029 refers to is in a different object. We can't tell for
11030 sure yet, because something later might force the
11035 /* If we create a PLT entry, this relocation will reference
11036 it, even if it's an ABS32 relocation. */
11037 h
->plt
.refcount
+= 1;
11039 /* It's too early to use htab->use_blx here, so we have to
11040 record possible blx references separately from
11041 relocs that definitely need a thumb stub. */
11043 if (r_type
== R_ARM_THM_CALL
)
11044 eh
->plt_maybe_thumb_refcount
+= 1;
11046 if (r_type
== R_ARM_THM_JUMP24
11047 || r_type
== R_ARM_THM_JUMP19
)
11048 eh
->plt_thumb_refcount
+= 1;
11051 /* If we are creating a shared library or relocatable executable,
11052 and this is a reloc against a global symbol, or a non PC
11053 relative reloc against a local symbol, then we need to copy
11054 the reloc into the shared library. However, if we are linking
11055 with -Bsymbolic, we do not need to copy a reloc against a
11056 global symbol which is defined in an object we are
11057 including in the link (i.e., DEF_REGULAR is set). At
11058 this point we have not seen all the input files, so it is
11059 possible that DEF_REGULAR is not set now but will be set
11060 later (it is never cleared). We account for that
11061 possibility below by storing information in the
11062 relocs_copied field of the hash table entry. */
11063 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
11064 && (sec
->flags
& SEC_ALLOC
) != 0
11065 && ((r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
)
11066 || (h
!= NULL
&& ! h
->needs_plt
11067 && (! info
->symbolic
|| ! h
->def_regular
))))
11069 struct elf32_arm_relocs_copied
*p
, **head
;
11071 /* When creating a shared object, we must copy these
11072 reloc types into the output file. We create a reloc
11073 section in dynobj and make room for this reloc. */
11074 if (sreloc
== NULL
)
11076 sreloc
= _bfd_elf_make_dynamic_reloc_section
11077 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
11079 if (sreloc
== NULL
)
11082 /* BPABI objects never have dynamic relocations mapped. */
11083 if (htab
->symbian_p
)
11087 flags
= bfd_get_section_flags (dynobj
, sreloc
);
11088 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
11089 bfd_set_section_flags (dynobj
, sreloc
, flags
);
11093 /* If this is a global symbol, we count the number of
11094 relocations we need for this symbol. */
11097 head
= &((struct elf32_arm_link_hash_entry
*) h
)->relocs_copied
;
11101 /* Track dynamic relocs needed for local syms too.
11102 We really need local syms available to do this
11103 easily. Oh well. */
11106 Elf_Internal_Sym
*isym
;
11108 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
11113 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
11117 vpp
= &elf_section_data (s
)->local_dynrel
;
11118 head
= (struct elf32_arm_relocs_copied
**) vpp
;
11122 if (p
== NULL
|| p
->section
!= sec
)
11124 bfd_size_type amt
= sizeof *p
;
11126 p
= (struct elf32_arm_relocs_copied
*)
11127 bfd_alloc (htab
->root
.dynobj
, amt
);
11137 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
11143 /* This relocation describes the C++ object vtable hierarchy.
11144 Reconstruct it for later use during GC. */
11145 case R_ARM_GNU_VTINHERIT
:
11146 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
11150 /* This relocation describes which C++ vtable entries are actually
11151 used. Record for later use during GC. */
11152 case R_ARM_GNU_VTENTRY
:
11153 BFD_ASSERT (h
!= NULL
);
11155 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
11164 /* Unwinding tables are not referenced directly. This pass marks them as
11165 required if the corresponding code section is marked. */
11168 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
11169 elf_gc_mark_hook_fn gc_mark_hook
)
11172 Elf_Internal_Shdr
**elf_shdrp
;
11175 /* Marking EH data may cause additional code sections to be marked,
11176 requiring multiple passes. */
11181 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11185 if (! is_arm_elf (sub
))
11188 elf_shdrp
= elf_elfsections (sub
);
11189 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11191 Elf_Internal_Shdr
*hdr
;
11193 hdr
= &elf_section_data (o
)->this_hdr
;
11194 if (hdr
->sh_type
== SHT_ARM_EXIDX
11196 && hdr
->sh_link
< elf_numsections (sub
)
11198 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
11201 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11211 /* Treat mapping symbols as special target symbols. */
11214 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
11216 return bfd_is_arm_special_symbol_name (sym
->name
,
11217 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
11220 /* This is a copy of elf_find_function() from elf.c except that
11221 ARM mapping symbols are ignored when looking for function names
11222 and STT_ARM_TFUNC is considered to a function type. */
11225 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
11226 asection
* section
,
11227 asymbol
** symbols
,
11229 const char ** filename_ptr
,
11230 const char ** functionname_ptr
)
11232 const char * filename
= NULL
;
11233 asymbol
* func
= NULL
;
11234 bfd_vma low_func
= 0;
11237 for (p
= symbols
; *p
!= NULL
; p
++)
11239 elf_symbol_type
*q
;
11241 q
= (elf_symbol_type
*) *p
;
11243 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
11248 filename
= bfd_asymbol_name (&q
->symbol
);
11251 case STT_ARM_TFUNC
:
11253 /* Skip mapping symbols. */
11254 if ((q
->symbol
.flags
& BSF_LOCAL
)
11255 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
11256 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
11258 /* Fall through. */
11259 if (bfd_get_section (&q
->symbol
) == section
11260 && q
->symbol
.value
>= low_func
11261 && q
->symbol
.value
<= offset
)
11263 func
= (asymbol
*) q
;
11264 low_func
= q
->symbol
.value
;
11274 *filename_ptr
= filename
;
11275 if (functionname_ptr
)
11276 *functionname_ptr
= bfd_asymbol_name (func
);
11282 /* Find the nearest line to a particular section and offset, for error
11283 reporting. This code is a duplicate of the code in elf.c, except
11284 that it uses arm_elf_find_function. */
11287 elf32_arm_find_nearest_line (bfd
* abfd
,
11288 asection
* section
,
11289 asymbol
** symbols
,
11291 const char ** filename_ptr
,
11292 const char ** functionname_ptr
,
11293 unsigned int * line_ptr
)
11295 bfd_boolean found
= FALSE
;
11297 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11299 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11300 filename_ptr
, functionname_ptr
,
11302 & elf_tdata (abfd
)->dwarf2_find_line_info
))
11304 if (!*functionname_ptr
)
11305 arm_elf_find_function (abfd
, section
, symbols
, offset
,
11306 *filename_ptr
? NULL
: filename_ptr
,
11312 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
11313 & found
, filename_ptr
,
11314 functionname_ptr
, line_ptr
,
11315 & elf_tdata (abfd
)->line_info
))
11318 if (found
&& (*functionname_ptr
|| *line_ptr
))
11321 if (symbols
== NULL
)
11324 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
11325 filename_ptr
, functionname_ptr
))
11333 elf32_arm_find_inliner_info (bfd
* abfd
,
11334 const char ** filename_ptr
,
11335 const char ** functionname_ptr
,
11336 unsigned int * line_ptr
)
11339 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11340 functionname_ptr
, line_ptr
,
11341 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11345 /* Adjust a symbol defined by a dynamic object and referenced by a
11346 regular object. The current definition is in some section of the
11347 dynamic object, but we're not including those sections. We have to
11348 change the definition to something the rest of the link can
11352 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
11353 struct elf_link_hash_entry
* h
)
11357 struct elf32_arm_link_hash_entry
* eh
;
11358 struct elf32_arm_link_hash_table
*globals
;
11360 globals
= elf32_arm_hash_table (info
);
11361 if (globals
== NULL
)
11364 dynobj
= elf_hash_table (info
)->dynobj
;
11366 /* Make sure we know what is going on here. */
11367 BFD_ASSERT (dynobj
!= NULL
11369 || h
->u
.weakdef
!= NULL
11372 && !h
->def_regular
)));
11374 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11376 /* If this is a function, put it in the procedure linkage table. We
11377 will fill in the contents of the procedure linkage table later,
11378 when we know the address of the .got section. */
11379 if (h
->type
== STT_FUNC
|| h
->type
== STT_ARM_TFUNC
11382 if (h
->plt
.refcount
<= 0
11383 || SYMBOL_CALLS_LOCAL (info
, h
)
11384 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
11385 && h
->root
.type
== bfd_link_hash_undefweak
))
11387 /* This case can occur if we saw a PLT32 reloc in an input
11388 file, but the symbol was never referred to by a dynamic
11389 object, or if all references were garbage collected. In
11390 such a case, we don't actually need to build a procedure
11391 linkage table, and we can just do a PC24 reloc instead. */
11392 h
->plt
.offset
= (bfd_vma
) -1;
11393 eh
->plt_thumb_refcount
= 0;
11394 eh
->plt_maybe_thumb_refcount
= 0;
11402 /* It's possible that we incorrectly decided a .plt reloc was
11403 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11404 in check_relocs. We can't decide accurately between function
11405 and non-function syms in check-relocs; Objects loaded later in
11406 the link may change h->type. So fix it now. */
11407 h
->plt
.offset
= (bfd_vma
) -1;
11408 eh
->plt_thumb_refcount
= 0;
11409 eh
->plt_maybe_thumb_refcount
= 0;
11412 /* If this is a weak symbol, and there is a real definition, the
11413 processor independent code will have arranged for us to see the
11414 real definition first, and we can just use the same value. */
11415 if (h
->u
.weakdef
!= NULL
)
11417 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
11418 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
11419 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
11420 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
11424 /* If there are no non-GOT references, we do not need a copy
11426 if (!h
->non_got_ref
)
11429 /* This is a reference to a symbol defined by a dynamic object which
11430 is not a function. */
11432 /* If we are creating a shared library, we must presume that the
11433 only references to the symbol are via the global offset table.
11434 For such cases we need not do anything here; the relocations will
11435 be handled correctly by relocate_section. Relocatable executables
11436 can reference data in shared objects directly, so we don't need to
11437 do anything here. */
11438 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
11443 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
11444 h
->root
.root
.string
);
11448 /* We must allocate the symbol in our .dynbss section, which will
11449 become part of the .bss section of the executable. There will be
11450 an entry for this symbol in the .dynsym section. The dynamic
11451 object will contain position independent code, so all references
11452 from the dynamic object to this symbol will go through the global
11453 offset table. The dynamic linker will use the .dynsym entry to
11454 determine the address it must put in the global offset table, so
11455 both the dynamic object and the regular object will refer to the
11456 same memory location for the variable. */
11457 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
11458 BFD_ASSERT (s
!= NULL
);
11460 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11461 copy the initial value out of the dynamic object and into the
11462 runtime process image. We need to remember the offset into the
11463 .rel(a).bss section we are going to use. */
11464 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
11468 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
11469 BFD_ASSERT (srel
!= NULL
);
11470 srel
->size
+= RELOC_SIZE (globals
);
11474 return _bfd_elf_adjust_dynamic_copy (h
, s
);
11477 /* Allocate space in .plt, .got and associated reloc sections for
11481 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
11483 struct bfd_link_info
*info
;
11484 struct elf32_arm_link_hash_table
*htab
;
11485 struct elf32_arm_link_hash_entry
*eh
;
11486 struct elf32_arm_relocs_copied
*p
;
11487 bfd_signed_vma thumb_refs
;
11489 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11491 if (h
->root
.type
== bfd_link_hash_indirect
)
11494 if (h
->root
.type
== bfd_link_hash_warning
)
11495 /* When warning symbols are created, they **replace** the "real"
11496 entry in the hash table, thus we never get to see the real
11497 symbol in a hash traversal. So look at it now. */
11498 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11500 info
= (struct bfd_link_info
*) inf
;
11501 htab
= elf32_arm_hash_table (info
);
11505 if (htab
->root
.dynamic_sections_created
11506 && h
->plt
.refcount
> 0)
11508 /* Make sure this symbol is output as a dynamic symbol.
11509 Undefined weak syms won't yet be marked as dynamic. */
11510 if (h
->dynindx
== -1
11511 && !h
->forced_local
)
11513 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11518 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
11520 asection
*s
= htab
->splt
;
11522 /* If this is the first .plt entry, make room for the special
11525 s
->size
+= htab
->plt_header_size
;
11527 h
->plt
.offset
= s
->size
;
11529 /* If we will insert a Thumb trampoline before this PLT, leave room
11531 thumb_refs
= eh
->plt_thumb_refcount
;
11532 if (!htab
->use_blx
)
11533 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
11535 if (thumb_refs
> 0)
11537 h
->plt
.offset
+= PLT_THUMB_STUB_SIZE
;
11538 s
->size
+= PLT_THUMB_STUB_SIZE
;
11541 /* If this symbol is not defined in a regular file, and we are
11542 not generating a shared library, then set the symbol to this
11543 location in the .plt. This is required to make function
11544 pointers compare as equal between the normal executable and
11545 the shared library. */
11547 && !h
->def_regular
)
11549 h
->root
.u
.def
.section
= s
;
11550 h
->root
.u
.def
.value
= h
->plt
.offset
;
11552 /* Make sure the function is not marked as Thumb, in case
11553 it is the target of an ABS32 relocation, which will
11554 point to the PLT entry. */
11555 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
11556 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11559 /* Make room for this entry. */
11560 s
->size
+= htab
->plt_entry_size
;
11562 if (!htab
->symbian_p
)
11564 /* We also need to make an entry in the .got.plt section, which
11565 will be placed in the .got section by the linker script. */
11566 eh
->plt_got_offset
= htab
->sgotplt
->size
;
11567 htab
->sgotplt
->size
+= 4;
11570 /* We also need to make an entry in the .rel(a).plt section. */
11571 htab
->srelplt
->size
+= RELOC_SIZE (htab
);
11573 /* VxWorks executables have a second set of relocations for
11574 each PLT entry. They go in a separate relocation section,
11575 which is processed by the kernel loader. */
11576 if (htab
->vxworks_p
&& !info
->shared
)
11578 /* There is a relocation for the initial PLT entry:
11579 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11580 if (h
->plt
.offset
== htab
->plt_header_size
)
11581 htab
->srelplt2
->size
+= RELOC_SIZE (htab
);
11583 /* There are two extra relocations for each subsequent
11584 PLT entry: an R_ARM_32 relocation for the GOT entry,
11585 and an R_ARM_32 relocation for the PLT entry. */
11586 htab
->srelplt2
->size
+= RELOC_SIZE (htab
) * 2;
11591 h
->plt
.offset
= (bfd_vma
) -1;
11597 h
->plt
.offset
= (bfd_vma
) -1;
11601 if (h
->got
.refcount
> 0)
11605 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
11608 /* Make sure this symbol is output as a dynamic symbol.
11609 Undefined weak syms won't yet be marked as dynamic. */
11610 if (h
->dynindx
== -1
11611 && !h
->forced_local
)
11613 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11617 if (!htab
->symbian_p
)
11620 h
->got
.offset
= s
->size
;
11622 if (tls_type
== GOT_UNKNOWN
)
11625 if (tls_type
== GOT_NORMAL
)
11626 /* Non-TLS symbols need one GOT slot. */
11630 if (tls_type
& GOT_TLS_GD
)
11631 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11633 if (tls_type
& GOT_TLS_IE
)
11634 /* R_ARM_TLS_IE32 needs one GOT slot. */
11638 dyn
= htab
->root
.dynamic_sections_created
;
11641 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
11643 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
11646 if (tls_type
!= GOT_NORMAL
11647 && (info
->shared
|| indx
!= 0)
11648 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11649 || h
->root
.type
!= bfd_link_hash_undefweak
))
11651 if (tls_type
& GOT_TLS_IE
)
11652 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11654 if (tls_type
& GOT_TLS_GD
)
11655 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11657 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
11658 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11660 else if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11661 || h
->root
.type
!= bfd_link_hash_undefweak
)
11663 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
11664 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11668 h
->got
.offset
= (bfd_vma
) -1;
11670 /* Allocate stubs for exported Thumb functions on v4t. */
11671 if (!htab
->use_blx
&& h
->dynindx
!= -1
11673 && ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
11674 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
11676 struct elf_link_hash_entry
* th
;
11677 struct bfd_link_hash_entry
* bh
;
11678 struct elf_link_hash_entry
* myh
;
11682 /* Create a new symbol to regist the real location of the function. */
11683 s
= h
->root
.u
.def
.section
;
11684 sprintf (name
, "__real_%s", h
->root
.root
.string
);
11685 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
11686 name
, BSF_GLOBAL
, s
,
11687 h
->root
.u
.def
.value
,
11688 NULL
, TRUE
, FALSE
, &bh
);
11690 myh
= (struct elf_link_hash_entry
*) bh
;
11691 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
11692 myh
->forced_local
= 1;
11693 eh
->export_glue
= myh
;
11694 th
= record_arm_to_thumb_glue (info
, h
);
11695 /* Point the symbol at the stub. */
11696 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11697 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
11698 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
11701 if (eh
->relocs_copied
== NULL
)
11704 /* In the shared -Bsymbolic case, discard space allocated for
11705 dynamic pc-relative relocs against symbols which turn out to be
11706 defined in regular objects. For the normal shared case, discard
11707 space for pc-relative relocs that have become local due to symbol
11708 visibility changes. */
11710 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
11712 /* The only relocs that use pc_count are R_ARM_REL32 and
11713 R_ARM_REL32_NOI, which will appear on something like
11714 ".long foo - .". We want calls to protected symbols to resolve
11715 directly to the function rather than going via the plt. If people
11716 want function pointer comparisons to work as expected then they
11717 should avoid writing assembly like ".long foo - .". */
11718 if (SYMBOL_CALLS_LOCAL (info
, h
))
11720 struct elf32_arm_relocs_copied
**pp
;
11722 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11724 p
->count
-= p
->pc_count
;
11733 if (htab
->vxworks_p
)
11735 struct elf32_arm_relocs_copied
**pp
;
11737 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11739 if (strcmp (p
->section
->output_section
->name
, ".tls_vars") == 0)
11746 /* Also discard relocs on undefined weak syms with non-default
11748 if (eh
->relocs_copied
!= NULL
11749 && h
->root
.type
== bfd_link_hash_undefweak
)
11751 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
11752 eh
->relocs_copied
= NULL
;
11754 /* Make sure undefined weak symbols are output as a dynamic
11756 else if (h
->dynindx
== -1
11757 && !h
->forced_local
)
11759 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11764 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
11765 && h
->root
.type
== bfd_link_hash_new
)
11767 /* Output absolute symbols so that we can create relocations
11768 against them. For normal symbols we output a relocation
11769 against the section that contains them. */
11770 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11777 /* For the non-shared case, discard space for relocs against
11778 symbols which turn out to need copy relocs or are not
11781 if (!h
->non_got_ref
11782 && ((h
->def_dynamic
11783 && !h
->def_regular
)
11784 || (htab
->root
.dynamic_sections_created
11785 && (h
->root
.type
== bfd_link_hash_undefweak
11786 || h
->root
.type
== bfd_link_hash_undefined
))))
11788 /* Make sure this symbol is output as a dynamic symbol.
11789 Undefined weak syms won't yet be marked as dynamic. */
11790 if (h
->dynindx
== -1
11791 && !h
->forced_local
)
11793 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11797 /* If that succeeded, we know we'll be keeping all the
11799 if (h
->dynindx
!= -1)
11803 eh
->relocs_copied
= NULL
;
11808 /* Finally, allocate space. */
11809 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11811 asection
*sreloc
= elf_section_data (p
->section
)->sreloc
;
11812 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
11818 /* Find any dynamic relocs that apply to read-only sections. */
11821 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
11823 struct elf32_arm_link_hash_entry
* eh
;
11824 struct elf32_arm_relocs_copied
* p
;
11826 if (h
->root
.type
== bfd_link_hash_warning
)
11827 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11829 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11830 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11832 asection
*s
= p
->section
;
11834 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
11836 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11838 info
->flags
|= DF_TEXTREL
;
11840 /* Not an error, just cut short the traversal. */
11848 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
11851 struct elf32_arm_link_hash_table
*globals
;
11853 globals
= elf32_arm_hash_table (info
);
11854 if (globals
== NULL
)
11857 globals
->byteswap_code
= byteswap_code
;
11860 /* Set the sizes of the dynamic sections. */
11863 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
11864 struct bfd_link_info
* info
)
11869 bfd_boolean relocs
;
11871 struct elf32_arm_link_hash_table
*htab
;
11873 htab
= elf32_arm_hash_table (info
);
11877 dynobj
= elf_hash_table (info
)->dynobj
;
11878 BFD_ASSERT (dynobj
!= NULL
);
11879 check_use_blx (htab
);
11881 if (elf_hash_table (info
)->dynamic_sections_created
)
11883 /* Set the contents of the .interp section to the interpreter. */
11884 if (info
->executable
)
11886 s
= bfd_get_section_by_name (dynobj
, ".interp");
11887 BFD_ASSERT (s
!= NULL
);
11888 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
11889 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
11893 /* Set up .got offsets for local syms, and space for local dynamic
11895 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11897 bfd_signed_vma
*local_got
;
11898 bfd_signed_vma
*end_local_got
;
11899 char *local_tls_type
;
11900 bfd_size_type locsymcount
;
11901 Elf_Internal_Shdr
*symtab_hdr
;
11903 bfd_boolean is_vxworks
= htab
->vxworks_p
;
11905 if (! is_arm_elf (ibfd
))
11908 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
11910 struct elf32_arm_relocs_copied
*p
;
11912 for (p
= (struct elf32_arm_relocs_copied
*)
11913 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
11915 if (!bfd_is_abs_section (p
->section
)
11916 && bfd_is_abs_section (p
->section
->output_section
))
11918 /* Input section has been discarded, either because
11919 it is a copy of a linkonce section or due to
11920 linker script /DISCARD/, so we'll be discarding
11923 else if (is_vxworks
11924 && strcmp (p
->section
->output_section
->name
,
11927 /* Relocations in vxworks .tls_vars sections are
11928 handled specially by the loader. */
11930 else if (p
->count
!= 0)
11932 srel
= elf_section_data (p
->section
)->sreloc
;
11933 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
11934 if ((p
->section
->output_section
->flags
& SEC_READONLY
) != 0)
11935 info
->flags
|= DF_TEXTREL
;
11940 local_got
= elf_local_got_refcounts (ibfd
);
11944 symtab_hdr
= & elf_symtab_hdr (ibfd
);
11945 locsymcount
= symtab_hdr
->sh_info
;
11946 end_local_got
= local_got
+ locsymcount
;
11947 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
11949 srel
= htab
->srelgot
;
11950 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
11952 if (*local_got
> 0)
11954 *local_got
= s
->size
;
11955 if (*local_tls_type
& GOT_TLS_GD
)
11956 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11958 if (*local_tls_type
& GOT_TLS_IE
)
11960 if (*local_tls_type
== GOT_NORMAL
)
11963 if (info
->shared
|| *local_tls_type
== GOT_TLS_GD
)
11964 srel
->size
+= RELOC_SIZE (htab
);
11967 *local_got
= (bfd_vma
) -1;
11971 if (htab
->tls_ldm_got
.refcount
> 0)
11973 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11974 for R_ARM_TLS_LDM32 relocations. */
11975 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
11976 htab
->sgot
->size
+= 8;
11978 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11981 htab
->tls_ldm_got
.offset
= -1;
11983 /* Allocate global sym .plt and .got entries, and space for global
11984 sym dynamic relocs. */
11985 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
11987 /* Here we rummage through the found bfds to collect glue information. */
11988 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11990 if (! is_arm_elf (ibfd
))
11993 /* Initialise mapping tables for code/data. */
11994 bfd_elf32_arm_init_maps (ibfd
);
11996 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
11997 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
11998 /* xgettext:c-format */
11999 _bfd_error_handler (_("Errors encountered processing file %s"),
12003 /* Allocate space for the glue sections now that we've sized them. */
12004 bfd_elf32_arm_allocate_interworking_sections (info
);
12006 /* The check_relocs and adjust_dynamic_symbol entry points have
12007 determined the sizes of the various dynamic sections. Allocate
12008 memory for them. */
12011 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
12015 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
12018 /* It's OK to base decisions on the section name, because none
12019 of the dynobj section names depend upon the input files. */
12020 name
= bfd_get_section_name (dynobj
, s
);
12022 if (strcmp (name
, ".plt") == 0)
12024 /* Remember whether there is a PLT. */
12025 plt
= s
->size
!= 0;
12027 else if (CONST_STRNEQ (name
, ".rel"))
12031 /* Remember whether there are any reloc sections other
12032 than .rel(a).plt and .rela.plt.unloaded. */
12033 if (s
!= htab
->srelplt
&& s
!= htab
->srelplt2
)
12036 /* We use the reloc_count field as a counter if we need
12037 to copy relocs into the output file. */
12038 s
->reloc_count
= 0;
12041 else if (! CONST_STRNEQ (name
, ".got")
12042 && strcmp (name
, ".dynbss") != 0)
12044 /* It's not one of our sections, so don't allocate space. */
12050 /* If we don't need this section, strip it from the
12051 output file. This is mostly to handle .rel(a).bss and
12052 .rel(a).plt. We must create both sections in
12053 create_dynamic_sections, because they must be created
12054 before the linker maps input sections to output
12055 sections. The linker does that before
12056 adjust_dynamic_symbol is called, and it is that
12057 function which decides whether anything needs to go
12058 into these sections. */
12059 s
->flags
|= SEC_EXCLUDE
;
12063 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
12066 /* Allocate memory for the section contents. */
12067 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
12068 if (s
->contents
== NULL
)
12072 if (elf_hash_table (info
)->dynamic_sections_created
)
12074 /* Add some entries to the .dynamic section. We fill in the
12075 values later, in elf32_arm_finish_dynamic_sections, but we
12076 must add the entries now so that we get the correct size for
12077 the .dynamic section. The DT_DEBUG entry is filled in by the
12078 dynamic linker and used by the debugger. */
12079 #define add_dynamic_entry(TAG, VAL) \
12080 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
12082 if (info
->executable
)
12084 if (!add_dynamic_entry (DT_DEBUG
, 0))
12090 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
12091 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
12092 || !add_dynamic_entry (DT_PLTREL
,
12093 htab
->use_rel
? DT_REL
: DT_RELA
)
12094 || !add_dynamic_entry (DT_JMPREL
, 0))
12102 if (!add_dynamic_entry (DT_REL
, 0)
12103 || !add_dynamic_entry (DT_RELSZ
, 0)
12104 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
12109 if (!add_dynamic_entry (DT_RELA
, 0)
12110 || !add_dynamic_entry (DT_RELASZ
, 0)
12111 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
12116 /* If any dynamic relocs apply to a read-only section,
12117 then we need a DT_TEXTREL entry. */
12118 if ((info
->flags
& DF_TEXTREL
) == 0)
12119 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
12122 if ((info
->flags
& DF_TEXTREL
) != 0)
12124 if (!add_dynamic_entry (DT_TEXTREL
, 0))
12127 if (htab
->vxworks_p
12128 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
12131 #undef add_dynamic_entry
12136 /* Finish up dynamic symbol handling. We set the contents of various
12137 dynamic sections here. */
12140 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
12141 struct bfd_link_info
* info
,
12142 struct elf_link_hash_entry
* h
,
12143 Elf_Internal_Sym
* sym
)
12146 struct elf32_arm_link_hash_table
*htab
;
12147 struct elf32_arm_link_hash_entry
*eh
;
12149 dynobj
= elf_hash_table (info
)->dynobj
;
12150 htab
= elf32_arm_hash_table (info
);
12154 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12156 if (h
->plt
.offset
!= (bfd_vma
) -1)
12162 Elf_Internal_Rela rel
;
12164 /* This symbol has an entry in the procedure linkage table. Set
12167 BFD_ASSERT (h
->dynindx
!= -1);
12169 splt
= bfd_get_section_by_name (dynobj
, ".plt");
12170 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".plt"));
12171 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
12173 /* Fill in the entry in the procedure linkage table. */
12174 if (htab
->symbian_p
)
12176 put_arm_insn (htab
, output_bfd
,
12177 elf32_arm_symbian_plt_entry
[0],
12178 splt
->contents
+ h
->plt
.offset
);
12179 bfd_put_32 (output_bfd
,
12180 elf32_arm_symbian_plt_entry
[1],
12181 splt
->contents
+ h
->plt
.offset
+ 4);
12183 /* Fill in the entry in the .rel.plt section. */
12184 rel
.r_offset
= (splt
->output_section
->vma
12185 + splt
->output_offset
12186 + h
->plt
.offset
+ 4);
12187 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
12189 /* Get the index in the procedure linkage table which
12190 corresponds to this symbol. This is the index of this symbol
12191 in all the symbols for which we are making plt entries. The
12192 first entry in the procedure linkage table is reserved. */
12193 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
12194 / htab
->plt_entry_size
);
12198 bfd_vma got_offset
, got_address
, plt_address
;
12199 bfd_vma got_displacement
;
12203 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
12204 BFD_ASSERT (sgot
!= NULL
);
12206 /* Get the offset into the .got.plt table of the entry that
12207 corresponds to this function. */
12208 got_offset
= eh
->plt_got_offset
;
12210 /* Get the index in the procedure linkage table which
12211 corresponds to this symbol. This is the index of this symbol
12212 in all the symbols for which we are making plt entries. The
12213 first three entries in .got.plt are reserved; after that
12214 symbols appear in the same order as in .plt. */
12215 plt_index
= (got_offset
- 12) / 4;
12217 /* Calculate the address of the GOT entry. */
12218 got_address
= (sgot
->output_section
->vma
12219 + sgot
->output_offset
12222 /* ...and the address of the PLT entry. */
12223 plt_address
= (splt
->output_section
->vma
12224 + splt
->output_offset
12227 ptr
= htab
->splt
->contents
+ h
->plt
.offset
;
12228 if (htab
->vxworks_p
&& info
->shared
)
12233 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
12235 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
12237 val
|= got_address
- sgot
->output_section
->vma
;
12239 val
|= plt_index
* RELOC_SIZE (htab
);
12240 if (i
== 2 || i
== 5)
12241 bfd_put_32 (output_bfd
, val
, ptr
);
12243 put_arm_insn (htab
, output_bfd
, val
, ptr
);
12246 else if (htab
->vxworks_p
)
12251 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
12253 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
12255 val
|= got_address
;
12257 val
|= 0xffffff & -((h
->plt
.offset
+ i
* 4 + 8) >> 2);
12259 val
|= plt_index
* RELOC_SIZE (htab
);
12260 if (i
== 2 || i
== 5)
12261 bfd_put_32 (output_bfd
, val
, ptr
);
12263 put_arm_insn (htab
, output_bfd
, val
, ptr
);
12266 loc
= (htab
->srelplt2
->contents
12267 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
12269 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12270 referencing the GOT for this PLT entry. */
12271 rel
.r_offset
= plt_address
+ 8;
12272 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12273 rel
.r_addend
= got_offset
;
12274 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12275 loc
+= RELOC_SIZE (htab
);
12277 /* Create the R_ARM_ABS32 relocation referencing the
12278 beginning of the PLT for this GOT entry. */
12279 rel
.r_offset
= got_address
;
12280 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12282 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12286 bfd_signed_vma thumb_refs
;
12287 /* Calculate the displacement between the PLT slot and the
12288 entry in the GOT. The eight-byte offset accounts for the
12289 value produced by adding to pc in the first instruction
12290 of the PLT stub. */
12291 got_displacement
= got_address
- (plt_address
+ 8);
12293 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
12295 thumb_refs
= eh
->plt_thumb_refcount
;
12296 if (!htab
->use_blx
)
12297 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12299 if (thumb_refs
> 0)
12301 put_thumb_insn (htab
, output_bfd
,
12302 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
12303 put_thumb_insn (htab
, output_bfd
,
12304 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
12307 put_arm_insn (htab
, output_bfd
,
12308 elf32_arm_plt_entry
[0]
12309 | ((got_displacement
& 0x0ff00000) >> 20),
12311 put_arm_insn (htab
, output_bfd
,
12312 elf32_arm_plt_entry
[1]
12313 | ((got_displacement
& 0x000ff000) >> 12),
12315 put_arm_insn (htab
, output_bfd
,
12316 elf32_arm_plt_entry
[2]
12317 | (got_displacement
& 0x00000fff),
12319 #ifdef FOUR_WORD_PLT
12320 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
12324 /* Fill in the entry in the global offset table. */
12325 bfd_put_32 (output_bfd
,
12326 (splt
->output_section
->vma
12327 + splt
->output_offset
),
12328 sgot
->contents
+ got_offset
);
12330 /* Fill in the entry in the .rel(a).plt section. */
12332 rel
.r_offset
= got_address
;
12333 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
12336 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
12337 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12339 if (!h
->def_regular
)
12341 /* Mark the symbol as undefined, rather than as defined in
12342 the .plt section. Leave the value alone. */
12343 sym
->st_shndx
= SHN_UNDEF
;
12344 /* If the symbol is weak, we do need to clear the value.
12345 Otherwise, the PLT entry would provide a definition for
12346 the symbol even if the symbol wasn't defined anywhere,
12347 and so the symbol would never be NULL. */
12348 if (!h
->ref_regular_nonweak
)
12353 if (h
->got
.offset
!= (bfd_vma
) -1
12354 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_GD
) == 0
12355 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_IE
) == 0)
12359 Elf_Internal_Rela rel
;
12363 /* This symbol has an entry in the global offset table. Set it
12365 sgot
= bfd_get_section_by_name (dynobj
, ".got");
12366 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".got"));
12367 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
12369 offset
= (h
->got
.offset
& ~(bfd_vma
) 1);
12371 rel
.r_offset
= (sgot
->output_section
->vma
12372 + sgot
->output_offset
12375 /* If this is a static link, or it is a -Bsymbolic link and the
12376 symbol is defined locally or was forced to be local because
12377 of a version file, we just want to emit a RELATIVE reloc.
12378 The entry in the global offset table will already have been
12379 initialized in the relocate_section function. */
12381 && SYMBOL_REFERENCES_LOCAL (info
, h
))
12383 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
12384 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12385 if (!htab
->use_rel
)
12387 rel
.r_addend
= bfd_get_32 (output_bfd
, sgot
->contents
+ offset
);
12388 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12393 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
12394 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12395 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
12398 loc
= srel
->contents
+ srel
->reloc_count
++ * RELOC_SIZE (htab
);
12399 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12405 Elf_Internal_Rela rel
;
12408 /* This symbol needs a copy reloc. Set it up. */
12409 BFD_ASSERT (h
->dynindx
!= -1
12410 && (h
->root
.type
== bfd_link_hash_defined
12411 || h
->root
.type
== bfd_link_hash_defweak
));
12413 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
12414 RELOC_SECTION (htab
, ".bss"));
12415 BFD_ASSERT (s
!= NULL
);
12418 rel
.r_offset
= (h
->root
.u
.def
.value
12419 + h
->root
.u
.def
.section
->output_section
->vma
12420 + h
->root
.u
.def
.section
->output_offset
);
12421 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
12422 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
12423 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12426 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12427 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12428 to the ".got" section. */
12429 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
12430 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
12431 sym
->st_shndx
= SHN_ABS
;
12436 /* Finish up the dynamic sections. */
12439 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
12444 struct elf32_arm_link_hash_table
*htab
;
12446 htab
= elf32_arm_hash_table (info
);
12450 dynobj
= elf_hash_table (info
)->dynobj
;
12452 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
12453 BFD_ASSERT (htab
->symbian_p
|| sgot
!= NULL
);
12454 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
12456 if (elf_hash_table (info
)->dynamic_sections_created
)
12459 Elf32_External_Dyn
*dyncon
, *dynconend
;
12461 splt
= bfd_get_section_by_name (dynobj
, ".plt");
12462 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
12464 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
12465 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
12467 for (; dyncon
< dynconend
; dyncon
++)
12469 Elf_Internal_Dyn dyn
;
12473 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
12480 if (htab
->vxworks_p
12481 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
12482 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12487 goto get_vma_if_bpabi
;
12490 goto get_vma_if_bpabi
;
12493 goto get_vma_if_bpabi
;
12495 name
= ".gnu.version";
12496 goto get_vma_if_bpabi
;
12498 name
= ".gnu.version_d";
12499 goto get_vma_if_bpabi
;
12501 name
= ".gnu.version_r";
12502 goto get_vma_if_bpabi
;
12508 name
= RELOC_SECTION (htab
, ".plt");
12510 s
= bfd_get_section_by_name (output_bfd
, name
);
12511 BFD_ASSERT (s
!= NULL
);
12512 if (!htab
->symbian_p
)
12513 dyn
.d_un
.d_ptr
= s
->vma
;
12515 /* In the BPABI, tags in the PT_DYNAMIC section point
12516 at the file offset, not the memory address, for the
12517 convenience of the post linker. */
12518 dyn
.d_un
.d_ptr
= s
->filepos
;
12519 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12523 if (htab
->symbian_p
)
12528 s
= bfd_get_section_by_name (output_bfd
,
12529 RELOC_SECTION (htab
, ".plt"));
12530 BFD_ASSERT (s
!= NULL
);
12531 dyn
.d_un
.d_val
= s
->size
;
12532 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12537 if (!htab
->symbian_p
)
12539 /* My reading of the SVR4 ABI indicates that the
12540 procedure linkage table relocs (DT_JMPREL) should be
12541 included in the overall relocs (DT_REL). This is
12542 what Solaris does. However, UnixWare can not handle
12543 that case. Therefore, we override the DT_RELSZ entry
12544 here to make it not include the JMPREL relocs. Since
12545 the linker script arranges for .rel(a).plt to follow all
12546 other relocation sections, we don't have to worry
12547 about changing the DT_REL entry. */
12548 s
= bfd_get_section_by_name (output_bfd
,
12549 RELOC_SECTION (htab
, ".plt"));
12551 dyn
.d_un
.d_val
-= s
->size
;
12552 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12555 /* Fall through. */
12559 /* In the BPABI, the DT_REL tag must point at the file
12560 offset, not the VMA, of the first relocation
12561 section. So, we use code similar to that in
12562 elflink.c, but do not check for SHF_ALLOC on the
12563 relcoation section, since relocations sections are
12564 never allocated under the BPABI. The comments above
12565 about Unixware notwithstanding, we include all of the
12566 relocations here. */
12567 if (htab
->symbian_p
)
12570 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
12571 ? SHT_REL
: SHT_RELA
);
12572 dyn
.d_un
.d_val
= 0;
12573 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
12575 Elf_Internal_Shdr
*hdr
12576 = elf_elfsections (output_bfd
)[i
];
12577 if (hdr
->sh_type
== type
)
12579 if (dyn
.d_tag
== DT_RELSZ
12580 || dyn
.d_tag
== DT_RELASZ
)
12581 dyn
.d_un
.d_val
+= hdr
->sh_size
;
12582 else if ((ufile_ptr
) hdr
->sh_offset
12583 <= dyn
.d_un
.d_val
- 1)
12584 dyn
.d_un
.d_val
= hdr
->sh_offset
;
12587 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12591 /* Set the bottom bit of DT_INIT/FINI if the
12592 corresponding function is Thumb. */
12594 name
= info
->init_function
;
12597 name
= info
->fini_function
;
12599 /* If it wasn't set by elf_bfd_final_link
12600 then there is nothing to adjust. */
12601 if (dyn
.d_un
.d_val
!= 0)
12603 struct elf_link_hash_entry
* eh
;
12605 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
12606 FALSE
, FALSE
, TRUE
);
12608 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
12610 dyn
.d_un
.d_val
|= 1;
12611 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12618 /* Fill in the first entry in the procedure linkage table. */
12619 if (splt
->size
> 0 && htab
->plt_header_size
)
12621 const bfd_vma
*plt0_entry
;
12622 bfd_vma got_address
, plt_address
, got_displacement
;
12624 /* Calculate the addresses of the GOT and PLT. */
12625 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
12626 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
12628 if (htab
->vxworks_p
)
12630 /* The VxWorks GOT is relocated by the dynamic linker.
12631 Therefore, we must emit relocations rather than simply
12632 computing the values now. */
12633 Elf_Internal_Rela rel
;
12635 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
12636 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12637 splt
->contents
+ 0);
12638 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12639 splt
->contents
+ 4);
12640 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12641 splt
->contents
+ 8);
12642 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
12644 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
12645 rel
.r_offset
= plt_address
+ 12;
12646 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12648 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
12649 htab
->srelplt2
->contents
);
12653 got_displacement
= got_address
- (plt_address
+ 16);
12655 plt0_entry
= elf32_arm_plt0_entry
;
12656 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12657 splt
->contents
+ 0);
12658 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12659 splt
->contents
+ 4);
12660 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12661 splt
->contents
+ 8);
12662 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
12663 splt
->contents
+ 12);
12665 #ifdef FOUR_WORD_PLT
12666 /* The displacement value goes in the otherwise-unused
12667 last word of the second entry. */
12668 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
12670 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
12675 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12676 really seem like the right value. */
12677 if (splt
->output_section
->owner
== output_bfd
)
12678 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
12680 if (htab
->vxworks_p
&& !info
->shared
&& htab
->splt
->size
> 0)
12682 /* Correct the .rel(a).plt.unloaded relocations. They will have
12683 incorrect symbol indexes. */
12687 num_plts
= ((htab
->splt
->size
- htab
->plt_header_size
)
12688 / htab
->plt_entry_size
);
12689 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
12691 for (; num_plts
; num_plts
--)
12693 Elf_Internal_Rela rel
;
12695 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12696 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12697 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12698 p
+= RELOC_SIZE (htab
);
12700 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12701 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12702 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12703 p
+= RELOC_SIZE (htab
);
12708 /* Fill in the first three entries in the global offset table. */
12711 if (sgot
->size
> 0)
12714 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
12716 bfd_put_32 (output_bfd
,
12717 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
12719 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
12720 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
12723 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
12730 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
12732 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
12733 struct elf32_arm_link_hash_table
*globals
;
12735 i_ehdrp
= elf_elfheader (abfd
);
12737 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
12738 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
12740 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
12741 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
12745 globals
= elf32_arm_hash_table (link_info
);
12746 if (globals
!= NULL
&& globals
->byteswap_code
)
12747 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
12751 static enum elf_reloc_type_class
12752 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
12754 switch ((int) ELF32_R_TYPE (rela
->r_info
))
12756 case R_ARM_RELATIVE
:
12757 return reloc_class_relative
;
12758 case R_ARM_JUMP_SLOT
:
12759 return reloc_class_plt
;
12761 return reloc_class_copy
;
12763 return reloc_class_normal
;
12767 /* Set the right machine number for an Arm ELF file. */
12770 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
12772 if (hdr
->sh_type
== SHT_NOTE
)
12773 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
12779 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
12781 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
12784 /* Return TRUE if this is an unwinding table entry. */
12787 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
12789 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
12790 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
12794 /* Set the type and flags for an ARM section. We do this by
12795 the section name, which is a hack, but ought to work. */
12798 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
12802 name
= bfd_get_section_name (abfd
, sec
);
12804 if (is_arm_elf_unwind_section_name (abfd
, name
))
12806 hdr
->sh_type
= SHT_ARM_EXIDX
;
12807 hdr
->sh_flags
|= SHF_LINK_ORDER
;
12812 /* Handle an ARM specific section when reading an object file. This is
12813 called when bfd_section_from_shdr finds a section with an unknown
12817 elf32_arm_section_from_shdr (bfd
*abfd
,
12818 Elf_Internal_Shdr
* hdr
,
12822 /* There ought to be a place to keep ELF backend specific flags, but
12823 at the moment there isn't one. We just keep track of the
12824 sections by their name, instead. Fortunately, the ABI gives
12825 names for all the ARM specific sections, so we will probably get
12827 switch (hdr
->sh_type
)
12829 case SHT_ARM_EXIDX
:
12830 case SHT_ARM_PREEMPTMAP
:
12831 case SHT_ARM_ATTRIBUTES
:
12838 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
12844 static _arm_elf_section_data
*
12845 get_arm_elf_section_data (asection
* sec
)
12847 if (sec
&& sec
->owner
&& is_arm_elf (sec
->owner
))
12848 return elf32_arm_section_data (sec
);
12856 struct bfd_link_info
*info
;
12859 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
12860 asection
*, struct elf_link_hash_entry
*);
12861 } output_arch_syminfo
;
12863 enum map_symbol_type
12871 /* Output a single mapping symbol. */
12874 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
12875 enum map_symbol_type type
,
12878 static const char *names
[3] = {"$a", "$t", "$d"};
12879 Elf_Internal_Sym sym
;
12881 sym
.st_value
= osi
->sec
->output_section
->vma
12882 + osi
->sec
->output_offset
12886 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
12887 sym
.st_shndx
= osi
->sec_shndx
;
12888 elf32_arm_section_map_add (osi
->sec
, names
[type
][1], offset
);
12889 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
12893 /* Output mapping symbols for PLT entries associated with H. */
12896 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
12898 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
12899 struct elf32_arm_link_hash_table
*htab
;
12900 struct elf32_arm_link_hash_entry
*eh
;
12903 if (h
->root
.type
== bfd_link_hash_indirect
)
12906 if (h
->root
.type
== bfd_link_hash_warning
)
12907 /* When warning symbols are created, they **replace** the "real"
12908 entry in the hash table, thus we never get to see the real
12909 symbol in a hash traversal. So look at it now. */
12910 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12912 if (h
->plt
.offset
== (bfd_vma
) -1)
12915 htab
= elf32_arm_hash_table (osi
->info
);
12919 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12920 addr
= h
->plt
.offset
;
12921 if (htab
->symbian_p
)
12923 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12925 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
12928 else if (htab
->vxworks_p
)
12930 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12932 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
12934 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
12936 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
12941 bfd_signed_vma thumb_refs
;
12943 thumb_refs
= eh
->plt_thumb_refcount
;
12944 if (!htab
->use_blx
)
12945 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12947 if (thumb_refs
> 0)
12949 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
12952 #ifdef FOUR_WORD_PLT
12953 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12955 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
12958 /* A three-word PLT with no Thumb thunk contains only Arm code,
12959 so only need to output a mapping symbol for the first PLT entry and
12960 entries with thumb thunks. */
12961 if (thumb_refs
> 0 || addr
== 20)
12963 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12972 /* Output a single local symbol for a generated stub. */
12975 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
12976 bfd_vma offset
, bfd_vma size
)
12978 Elf_Internal_Sym sym
;
12980 sym
.st_value
= osi
->sec
->output_section
->vma
12981 + osi
->sec
->output_offset
12983 sym
.st_size
= size
;
12985 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
12986 sym
.st_shndx
= osi
->sec_shndx
;
12987 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
12991 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
12994 struct elf32_arm_stub_hash_entry
*stub_entry
;
12995 asection
*stub_sec
;
12998 output_arch_syminfo
*osi
;
12999 const insn_sequence
*template_sequence
;
13000 enum stub_insn_type prev_type
;
13003 enum map_symbol_type sym_type
;
13005 /* Massage our args to the form they really have. */
13006 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
13007 osi
= (output_arch_syminfo
*) in_arg
;
13009 stub_sec
= stub_entry
->stub_sec
;
13011 /* Ensure this stub is attached to the current section being
13013 if (stub_sec
!= osi
->sec
)
13016 addr
= (bfd_vma
) stub_entry
->stub_offset
;
13017 stub_name
= stub_entry
->output_name
;
13019 template_sequence
= stub_entry
->stub_template
;
13020 switch (template_sequence
[0].type
)
13023 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
13028 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
13029 stub_entry
->stub_size
))
13037 prev_type
= DATA_TYPE
;
13039 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
13041 switch (template_sequence
[i
].type
)
13044 sym_type
= ARM_MAP_ARM
;
13049 sym_type
= ARM_MAP_THUMB
;
13053 sym_type
= ARM_MAP_DATA
;
13061 if (template_sequence
[i
].type
!= prev_type
)
13063 prev_type
= template_sequence
[i
].type
;
13064 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
13068 switch (template_sequence
[i
].type
)
13092 /* Output mapping symbols for linker generated sections,
13093 and for those data-only sections that do not have a
13097 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
13098 struct bfd_link_info
*info
,
13100 int (*func
) (void *, const char *,
13101 Elf_Internal_Sym
*,
13103 struct elf_link_hash_entry
*))
13105 output_arch_syminfo osi
;
13106 struct elf32_arm_link_hash_table
*htab
;
13108 bfd_size_type size
;
13111 htab
= elf32_arm_hash_table (info
);
13115 check_use_blx (htab
);
13121 /* Add a $d mapping symbol to data-only sections that
13122 don't have any mapping symbol. This may result in (harmless) redundant
13123 mapping symbols. */
13124 for (input_bfd
= info
->input_bfds
;
13126 input_bfd
= input_bfd
->link_next
)
13128 if ((input_bfd
->flags
& (BFD_LINKER_CREATED
| HAS_SYMS
)) == HAS_SYMS
)
13129 for (osi
.sec
= input_bfd
->sections
;
13131 osi
.sec
= osi
.sec
->next
)
13133 if (osi
.sec
->output_section
!= NULL
13134 && ((osi
.sec
->output_section
->flags
& (SEC_ALLOC
| SEC_CODE
))
13136 && (osi
.sec
->flags
& (SEC_HAS_CONTENTS
| SEC_LINKER_CREATED
))
13137 == SEC_HAS_CONTENTS
13138 && get_arm_elf_section_data (osi
.sec
) != NULL
13139 && get_arm_elf_section_data (osi
.sec
)->mapcount
== 0
13140 && osi
.sec
->size
> 0)
13142 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13143 (output_bfd
, osi
.sec
->output_section
);
13144 if (osi
.sec_shndx
!= (int)SHN_BAD
)
13145 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 0);
13150 /* ARM->Thumb glue. */
13151 if (htab
->arm_glue_size
> 0)
13153 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13154 ARM2THUMB_GLUE_SECTION_NAME
);
13156 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13157 (output_bfd
, osi
.sec
->output_section
);
13158 if (info
->shared
|| htab
->root
.is_relocatable_executable
13159 || htab
->pic_veneer
)
13160 size
= ARM2THUMB_PIC_GLUE_SIZE
;
13161 else if (htab
->use_blx
)
13162 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
13164 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
13166 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
13168 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
13169 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
13173 /* Thumb->ARM glue. */
13174 if (htab
->thumb_glue_size
> 0)
13176 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13177 THUMB2ARM_GLUE_SECTION_NAME
);
13179 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13180 (output_bfd
, osi
.sec
->output_section
);
13181 size
= THUMB2ARM_GLUE_SIZE
;
13183 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
13185 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
13186 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
13190 /* ARMv4 BX veneers. */
13191 if (htab
->bx_glue_size
> 0)
13193 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
13194 ARM_BX_GLUE_SECTION_NAME
);
13196 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13197 (output_bfd
, osi
.sec
->output_section
);
13199 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
13202 /* Long calls stubs. */
13203 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
13205 asection
* stub_sec
;
13207 for (stub_sec
= htab
->stub_bfd
->sections
;
13209 stub_sec
= stub_sec
->next
)
13211 /* Ignore non-stub sections. */
13212 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
13215 osi
.sec
= stub_sec
;
13217 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13218 (output_bfd
, osi
.sec
->output_section
);
13220 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
13224 /* Finally, output mapping symbols for the PLT. */
13225 if (!htab
->splt
|| htab
->splt
->size
== 0)
13228 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
13229 htab
->splt
->output_section
);
13230 osi
.sec
= htab
->splt
;
13231 /* Output mapping symbols for the plt header. SymbianOS does not have a
13233 if (htab
->vxworks_p
)
13235 /* VxWorks shared libraries have no PLT header. */
13238 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13240 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
13244 else if (!htab
->symbian_p
)
13246 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13248 #ifndef FOUR_WORD_PLT
13249 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
13254 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, (void *) &osi
);
13258 /* Allocate target specific section data. */
13261 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
13263 if (!sec
->used_by_bfd
)
13265 _arm_elf_section_data
*sdata
;
13266 bfd_size_type amt
= sizeof (*sdata
);
13268 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
13271 sec
->used_by_bfd
= sdata
;
13274 return _bfd_elf_new_section_hook (abfd
, sec
);
13278 /* Used to order a list of mapping symbols by address. */
13281 elf32_arm_compare_mapping (const void * a
, const void * b
)
13283 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
13284 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
13286 if (amap
->vma
> bmap
->vma
)
13288 else if (amap
->vma
< bmap
->vma
)
13290 else if (amap
->type
> bmap
->type
)
13291 /* Ensure results do not depend on the host qsort for objects with
13292 multiple mapping symbols at the same address by sorting on type
13295 else if (amap
->type
< bmap
->type
)
13301 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13303 static unsigned long
13304 offset_prel31 (unsigned long addr
, bfd_vma offset
)
13306 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
13309 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13313 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
13315 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
13316 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
13318 /* High bit of first word is supposed to be zero. */
13319 if ((first_word
& 0x80000000ul
) == 0)
13320 first_word
= offset_prel31 (first_word
, offset
);
13322 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13323 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13324 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
13325 second_word
= offset_prel31 (second_word
, offset
);
13327 bfd_put_32 (output_bfd
, first_word
, to
);
13328 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
13331 /* Data for make_branch_to_a8_stub(). */
13333 struct a8_branch_to_stub_data
{
13334 asection
*writing_section
;
13335 bfd_byte
*contents
;
13339 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
13340 places for a particular section. */
13343 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
13346 struct elf32_arm_stub_hash_entry
*stub_entry
;
13347 struct a8_branch_to_stub_data
*data
;
13348 bfd_byte
*contents
;
13349 unsigned long branch_insn
;
13350 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
13351 bfd_signed_vma branch_offset
;
13353 unsigned int target
;
13355 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
13356 data
= (struct a8_branch_to_stub_data
*) in_arg
;
13358 if (stub_entry
->target_section
!= data
->writing_section
13359 || stub_entry
->stub_type
< arm_stub_a8_veneer_b_cond
)
13362 contents
= data
->contents
;
13364 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
13365 + stub_entry
->target_section
->output_offset
13366 + stub_entry
->target_value
;
13368 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
13369 + stub_entry
->stub_sec
->output_offset
13370 + stub_entry
->stub_offset
;
13372 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
13373 veneered_insn_loc
&= ~3u;
13375 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
13377 abfd
= stub_entry
->target_section
->owner
;
13378 target
= stub_entry
->target_value
;
13380 /* We attempt to avoid this condition by setting stubs_always_after_branch
13381 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13382 This check is just to be on the safe side... */
13383 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
13385 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
13386 "allocated in unsafe location"), abfd
);
13390 switch (stub_entry
->stub_type
)
13392 case arm_stub_a8_veneer_b
:
13393 case arm_stub_a8_veneer_b_cond
:
13394 branch_insn
= 0xf0009000;
13397 case arm_stub_a8_veneer_blx
:
13398 branch_insn
= 0xf000e800;
13401 case arm_stub_a8_veneer_bl
:
13403 unsigned int i1
, j1
, i2
, j2
, s
;
13405 branch_insn
= 0xf000d000;
13408 if (branch_offset
< -16777216 || branch_offset
> 16777214)
13410 /* There's not much we can do apart from complain if this
13412 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
13413 "of range (input file too large)"), abfd
);
13417 /* i1 = not(j1 eor s), so:
13419 j1 = (not i1) eor s. */
13421 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
13422 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
13423 i2
= (branch_offset
>> 22) & 1;
13424 i1
= (branch_offset
>> 23) & 1;
13425 s
= (branch_offset
>> 24) & 1;
13428 branch_insn
|= j2
<< 11;
13429 branch_insn
|= j1
<< 13;
13430 branch_insn
|= s
<< 26;
13439 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[target
]);
13440 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[target
+ 2]);
13445 /* Do code byteswapping. Return FALSE afterwards so that the section is
13446 written out as normal. */
13449 elf32_arm_write_section (bfd
*output_bfd
,
13450 struct bfd_link_info
*link_info
,
13452 bfd_byte
*contents
)
13454 unsigned int mapcount
, errcount
;
13455 _arm_elf_section_data
*arm_data
;
13456 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
13457 elf32_arm_section_map
*map
;
13458 elf32_vfp11_erratum_list
*errnode
;
13461 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
13465 if (globals
== NULL
)
13468 /* If this section has not been allocated an _arm_elf_section_data
13469 structure then we cannot record anything. */
13470 arm_data
= get_arm_elf_section_data (sec
);
13471 if (arm_data
== NULL
)
13474 mapcount
= arm_data
->mapcount
;
13475 map
= arm_data
->map
;
13476 errcount
= arm_data
->erratumcount
;
13480 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
13482 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
13483 errnode
= errnode
->next
)
13485 bfd_vma target
= errnode
->vma
- offset
;
13487 switch (errnode
->type
)
13489 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
13491 bfd_vma branch_to_veneer
;
13492 /* Original condition code of instruction, plus bit mask for
13493 ARM B instruction. */
13494 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
13497 /* The instruction is before the label. */
13500 /* Above offset included in -4 below. */
13501 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
13502 - errnode
->vma
- 4;
13504 if ((signed) branch_to_veneer
< -(1 << 25)
13505 || (signed) branch_to_veneer
>= (1 << 25))
13506 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13507 "range"), output_bfd
);
13509 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
13510 contents
[endianflip
^ target
] = insn
& 0xff;
13511 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
13512 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
13513 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
13517 case VFP11_ERRATUM_ARM_VENEER
:
13519 bfd_vma branch_from_veneer
;
13522 /* Take size of veneer into account. */
13523 branch_from_veneer
= errnode
->u
.v
.branch
->vma
13524 - errnode
->vma
- 12;
13526 if ((signed) branch_from_veneer
< -(1 << 25)
13527 || (signed) branch_from_veneer
>= (1 << 25))
13528 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13529 "range"), output_bfd
);
13531 /* Original instruction. */
13532 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
13533 contents
[endianflip
^ target
] = insn
& 0xff;
13534 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
13535 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
13536 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
13538 /* Branch back to insn after original insn. */
13539 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
13540 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
13541 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
13542 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
13543 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
13553 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
13555 arm_unwind_table_edit
*edit_node
13556 = arm_data
->u
.exidx
.unwind_edit_list
;
13557 /* Now, sec->size is the size of the section we will write. The original
13558 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13559 markers) was sec->rawsize. (This isn't the case if we perform no
13560 edits, then rawsize will be zero and we should use size). */
13561 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
13562 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
13563 unsigned int in_index
, out_index
;
13564 bfd_vma add_to_offsets
= 0;
13566 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
13570 unsigned int edit_index
= edit_node
->index
;
13572 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
13574 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13575 contents
+ in_index
* 8, add_to_offsets
);
13579 else if (in_index
== edit_index
13580 || (in_index
* 8 >= input_size
13581 && edit_index
== UINT_MAX
))
13583 switch (edit_node
->type
)
13585 case DELETE_EXIDX_ENTRY
:
13587 add_to_offsets
+= 8;
13590 case INSERT_EXIDX_CANTUNWIND_AT_END
:
13592 asection
*text_sec
= edit_node
->linked_section
;
13593 bfd_vma text_offset
= text_sec
->output_section
->vma
13594 + text_sec
->output_offset
13596 bfd_vma exidx_offset
= offset
+ out_index
* 8;
13597 unsigned long prel31_offset
;
13599 /* Note: this is meant to be equivalent to an
13600 R_ARM_PREL31 relocation. These synthetic
13601 EXIDX_CANTUNWIND markers are not relocated by the
13602 usual BFD method. */
13603 prel31_offset
= (text_offset
- exidx_offset
)
13606 /* First address we can't unwind. */
13607 bfd_put_32 (output_bfd
, prel31_offset
,
13608 &edited_contents
[out_index
* 8]);
13610 /* Code for EXIDX_CANTUNWIND. */
13611 bfd_put_32 (output_bfd
, 0x1,
13612 &edited_contents
[out_index
* 8 + 4]);
13615 add_to_offsets
-= 8;
13620 edit_node
= edit_node
->next
;
13625 /* No more edits, copy remaining entries verbatim. */
13626 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13627 contents
+ in_index
* 8, add_to_offsets
);
13633 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
13634 bfd_set_section_contents (output_bfd
, sec
->output_section
,
13636 (file_ptr
) sec
->output_offset
, sec
->size
);
13641 /* Fix code to point to Cortex-A8 erratum stubs. */
13642 if (globals
->fix_cortex_a8
)
13644 struct a8_branch_to_stub_data data
;
13646 data
.writing_section
= sec
;
13647 data
.contents
= contents
;
13649 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
13656 if (globals
->byteswap_code
)
13658 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
13661 for (i
= 0; i
< mapcount
; i
++)
13663 if (i
== mapcount
- 1)
13666 end
= map
[i
+ 1].vma
;
13668 switch (map
[i
].type
)
13671 /* Byte swap code words. */
13672 while (ptr
+ 3 < end
)
13674 tmp
= contents
[ptr
];
13675 contents
[ptr
] = contents
[ptr
+ 3];
13676 contents
[ptr
+ 3] = tmp
;
13677 tmp
= contents
[ptr
+ 1];
13678 contents
[ptr
+ 1] = contents
[ptr
+ 2];
13679 contents
[ptr
+ 2] = tmp
;
13685 /* Byte swap code halfwords. */
13686 while (ptr
+ 1 < end
)
13688 tmp
= contents
[ptr
];
13689 contents
[ptr
] = contents
[ptr
+ 1];
13690 contents
[ptr
+ 1] = tmp
;
13696 /* Leave data alone. */
13704 arm_data
->mapcount
= -1;
13705 arm_data
->mapsize
= 0;
13706 arm_data
->map
= NULL
;
13711 /* Display STT_ARM_TFUNC symbols as functions. */
13714 elf32_arm_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
13717 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
13719 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_ARM_TFUNC
)
13720 elfsym
->symbol
.flags
|= BSF_FUNCTION
;
13724 /* Mangle thumb function symbols as we read them in. */
13727 elf32_arm_swap_symbol_in (bfd
* abfd
,
13730 Elf_Internal_Sym
*dst
)
13732 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
13735 /* New EABI objects mark thumb function symbols by setting the low bit of
13736 the address. Turn these into STT_ARM_TFUNC. */
13737 if ((ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
)
13738 && (dst
->st_value
& 1))
13740 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_ARM_TFUNC
);
13741 dst
->st_value
&= ~(bfd_vma
) 1;
13747 /* Mangle thumb function symbols as we write them out. */
13750 elf32_arm_swap_symbol_out (bfd
*abfd
,
13751 const Elf_Internal_Sym
*src
,
13755 Elf_Internal_Sym newsym
;
13757 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13758 of the address set, as per the new EABI. We do this unconditionally
13759 because objcopy does not set the elf header flags until after
13760 it writes out the symbol table. */
13761 if (ELF_ST_TYPE (src
->st_info
) == STT_ARM_TFUNC
)
13764 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
13765 if (newsym
.st_shndx
!= SHN_UNDEF
)
13767 /* Do this only for defined symbols. At link type, the static
13768 linker will simulate the work of dynamic linker of resolving
13769 symbols and will carry over the thumbness of found symbols to
13770 the output symbol table. It's not clear how it happens, but
13771 the thumbness of undefined symbols can well be different at
13772 runtime, and writing '1' for them will be confusing for users
13773 and possibly for dynamic linker itself.
13775 newsym
.st_value
|= 1;
13780 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
13783 /* Add the PT_ARM_EXIDX program header. */
13786 elf32_arm_modify_segment_map (bfd
*abfd
,
13787 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13789 struct elf_segment_map
*m
;
13792 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13793 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13795 /* If there is already a PT_ARM_EXIDX header, then we do not
13796 want to add another one. This situation arises when running
13797 "strip"; the input binary already has the header. */
13798 m
= elf_tdata (abfd
)->segment_map
;
13799 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
13803 m
= (struct elf_segment_map
*)
13804 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
13807 m
->p_type
= PT_ARM_EXIDX
;
13809 m
->sections
[0] = sec
;
13811 m
->next
= elf_tdata (abfd
)->segment_map
;
13812 elf_tdata (abfd
)->segment_map
= m
;
13819 /* We may add a PT_ARM_EXIDX program header. */
13822 elf32_arm_additional_program_headers (bfd
*abfd
,
13823 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13827 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13828 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13834 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
13837 elf32_arm_is_function_type (unsigned int type
)
13839 return (type
== STT_FUNC
) || (type
== STT_ARM_TFUNC
);
13842 /* We use this to override swap_symbol_in and swap_symbol_out. */
13843 const struct elf_size_info elf32_arm_size_info
=
13845 sizeof (Elf32_External_Ehdr
),
13846 sizeof (Elf32_External_Phdr
),
13847 sizeof (Elf32_External_Shdr
),
13848 sizeof (Elf32_External_Rel
),
13849 sizeof (Elf32_External_Rela
),
13850 sizeof (Elf32_External_Sym
),
13851 sizeof (Elf32_External_Dyn
),
13852 sizeof (Elf_External_Note
),
13856 ELFCLASS32
, EV_CURRENT
,
13857 bfd_elf32_write_out_phdrs
,
13858 bfd_elf32_write_shdrs_and_ehdr
,
13859 bfd_elf32_checksum_contents
,
13860 bfd_elf32_write_relocs
,
13861 elf32_arm_swap_symbol_in
,
13862 elf32_arm_swap_symbol_out
,
13863 bfd_elf32_slurp_reloc_table
,
13864 bfd_elf32_slurp_symbol_table
,
13865 bfd_elf32_swap_dyn_in
,
13866 bfd_elf32_swap_dyn_out
,
13867 bfd_elf32_swap_reloc_in
,
13868 bfd_elf32_swap_reloc_out
,
13869 bfd_elf32_swap_reloca_in
,
13870 bfd_elf32_swap_reloca_out
13873 #define ELF_ARCH bfd_arch_arm
13874 #define ELF_MACHINE_CODE EM_ARM
13875 #ifdef __QNXTARGET__
13876 #define ELF_MAXPAGESIZE 0x1000
13878 #define ELF_MAXPAGESIZE 0x8000
13880 #define ELF_MINPAGESIZE 0x1000
13881 #define ELF_COMMONPAGESIZE 0x1000
13883 #define bfd_elf32_mkobject elf32_arm_mkobject
13885 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13886 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
13887 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13888 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13889 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
13890 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
13891 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
13892 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13893 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
13894 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
13895 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
13896 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
13897 #define bfd_elf32_bfd_final_link elf32_arm_final_link
13899 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13900 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
13901 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
13902 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13903 #define elf_backend_check_relocs elf32_arm_check_relocs
13904 #define elf_backend_relocate_section elf32_arm_relocate_section
13905 #define elf_backend_write_section elf32_arm_write_section
13906 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
13907 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
13908 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13909 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13910 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
13911 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
13912 #define elf_backend_post_process_headers elf32_arm_post_process_headers
13913 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
13914 #define elf_backend_object_p elf32_arm_object_p
13915 #define elf_backend_section_flags elf32_arm_section_flags
13916 #define elf_backend_fake_sections elf32_arm_fake_sections
13917 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
13918 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13919 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
13920 #define elf_backend_symbol_processing elf32_arm_symbol_processing
13921 #define elf_backend_size_info elf32_arm_size_info
13922 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
13923 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13924 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13925 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13926 #define elf_backend_is_function_type elf32_arm_is_function_type
13928 #define elf_backend_can_refcount 1
13929 #define elf_backend_can_gc_sections 1
13930 #define elf_backend_plt_readonly 1
13931 #define elf_backend_want_got_plt 1
13932 #define elf_backend_want_plt_sym 0
13933 #define elf_backend_may_use_rel_p 1
13934 #define elf_backend_may_use_rela_p 0
13935 #define elf_backend_default_use_rela_p 0
13937 #define elf_backend_got_header_size 12
13939 #undef elf_backend_obj_attrs_vendor
13940 #define elf_backend_obj_attrs_vendor "aeabi"
13941 #undef elf_backend_obj_attrs_section
13942 #define elf_backend_obj_attrs_section ".ARM.attributes"
13943 #undef elf_backend_obj_attrs_arg_type
13944 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13945 #undef elf_backend_obj_attrs_section_type
13946 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
13947 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
13949 #include "elf32-target.h"
13951 /* VxWorks Targets. */
13953 #undef TARGET_LITTLE_SYM
13954 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
13955 #undef TARGET_LITTLE_NAME
13956 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
13957 #undef TARGET_BIG_SYM
13958 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
13959 #undef TARGET_BIG_NAME
13960 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13962 /* Like elf32_arm_link_hash_table_create -- but overrides
13963 appropriately for VxWorks. */
13965 static struct bfd_link_hash_table
*
13966 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
13968 struct bfd_link_hash_table
*ret
;
13970 ret
= elf32_arm_link_hash_table_create (abfd
);
13973 struct elf32_arm_link_hash_table
*htab
13974 = (struct elf32_arm_link_hash_table
*) ret
;
13976 htab
->vxworks_p
= 1;
13982 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
13984 elf32_arm_final_write_processing (abfd
, linker
);
13985 elf_vxworks_final_write_processing (abfd
, linker
);
13989 #define elf32_bed elf32_arm_vxworks_bed
13991 #undef bfd_elf32_bfd_link_hash_table_create
13992 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13993 #undef elf_backend_add_symbol_hook
13994 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13995 #undef elf_backend_final_write_processing
13996 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13997 #undef elf_backend_emit_relocs
13998 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
14000 #undef elf_backend_may_use_rel_p
14001 #define elf_backend_may_use_rel_p 0
14002 #undef elf_backend_may_use_rela_p
14003 #define elf_backend_may_use_rela_p 1
14004 #undef elf_backend_default_use_rela_p
14005 #define elf_backend_default_use_rela_p 1
14006 #undef elf_backend_want_plt_sym
14007 #define elf_backend_want_plt_sym 1
14008 #undef ELF_MAXPAGESIZE
14009 #define ELF_MAXPAGESIZE 0x1000
14011 #include "elf32-target.h"
14014 /* Merge backend specific data from an object file to the output
14015 object file when linking. */
14018 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
14020 flagword out_flags
;
14022 bfd_boolean flags_compatible
= TRUE
;
14025 /* Check if we have the same endianess. */
14026 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
14029 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
14032 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
14035 /* The input BFD must have had its flags initialised. */
14036 /* The following seems bogus to me -- The flags are initialized in
14037 the assembler but I don't think an elf_flags_init field is
14038 written into the object. */
14039 /* BFD_ASSERT (elf_flags_init (ibfd)); */
14041 in_flags
= elf_elfheader (ibfd
)->e_flags
;
14042 out_flags
= elf_elfheader (obfd
)->e_flags
;
14044 /* In theory there is no reason why we couldn't handle this. However
14045 in practice it isn't even close to working and there is no real
14046 reason to want it. */
14047 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
14048 && !(ibfd
->flags
& DYNAMIC
)
14049 && (in_flags
& EF_ARM_BE8
))
14051 _bfd_error_handler (_("error: %B is already in final BE8 format"),
14056 if (!elf_flags_init (obfd
))
14058 /* If the input is the default architecture and had the default
14059 flags then do not bother setting the flags for the output
14060 architecture, instead allow future merges to do this. If no
14061 future merges ever set these flags then they will retain their
14062 uninitialised values, which surprise surprise, correspond
14063 to the default values. */
14064 if (bfd_get_arch_info (ibfd
)->the_default
14065 && elf_elfheader (ibfd
)->e_flags
== 0)
14068 elf_flags_init (obfd
) = TRUE
;
14069 elf_elfheader (obfd
)->e_flags
= in_flags
;
14071 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
14072 && bfd_get_arch_info (obfd
)->the_default
)
14073 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
14078 /* Determine what should happen if the input ARM architecture
14079 does not match the output ARM architecture. */
14080 if (! bfd_arm_merge_machines (ibfd
, obfd
))
14083 /* Identical flags must be compatible. */
14084 if (in_flags
== out_flags
)
14087 /* Check to see if the input BFD actually contains any sections. If
14088 not, its flags may not have been initialised either, but it
14089 cannot actually cause any incompatiblity. Do not short-circuit
14090 dynamic objects; their section list may be emptied by
14091 elf_link_add_object_symbols.
14093 Also check to see if there are no code sections in the input.
14094 In this case there is no need to check for code specific flags.
14095 XXX - do we need to worry about floating-point format compatability
14096 in data sections ? */
14097 if (!(ibfd
->flags
& DYNAMIC
))
14099 bfd_boolean null_input_bfd
= TRUE
;
14100 bfd_boolean only_data_sections
= TRUE
;
14102 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
14104 /* Ignore synthetic glue sections. */
14105 if (strcmp (sec
->name
, ".glue_7")
14106 && strcmp (sec
->name
, ".glue_7t"))
14108 if ((bfd_get_section_flags (ibfd
, sec
)
14109 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
14110 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
14111 only_data_sections
= FALSE
;
14113 null_input_bfd
= FALSE
;
14118 if (null_input_bfd
|| only_data_sections
)
14122 /* Complain about various flag mismatches. */
14123 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
14124 EF_ARM_EABI_VERSION (out_flags
)))
14127 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
14129 (in_flags
& EF_ARM_EABIMASK
) >> 24,
14130 (out_flags
& EF_ARM_EABIMASK
) >> 24);
14134 /* Not sure what needs to be checked for EABI versions >= 1. */
14135 /* VxWorks libraries do not use these flags. */
14136 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
14137 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
14138 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
14140 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
14143 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
14145 in_flags
& EF_ARM_APCS_26
? 26 : 32,
14146 out_flags
& EF_ARM_APCS_26
? 26 : 32);
14147 flags_compatible
= FALSE
;
14150 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
14152 if (in_flags
& EF_ARM_APCS_FLOAT
)
14154 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
14158 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
14161 flags_compatible
= FALSE
;
14164 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
14166 if (in_flags
& EF_ARM_VFP_FLOAT
)
14168 (_("error: %B uses VFP instructions, whereas %B does not"),
14172 (_("error: %B uses FPA instructions, whereas %B does not"),
14175 flags_compatible
= FALSE
;
14178 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
14180 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
14182 (_("error: %B uses Maverick instructions, whereas %B does not"),
14186 (_("error: %B does not use Maverick instructions, whereas %B does"),
14189 flags_compatible
= FALSE
;
14192 #ifdef EF_ARM_SOFT_FLOAT
14193 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
14195 /* We can allow interworking between code that is VFP format
14196 layout, and uses either soft float or integer regs for
14197 passing floating point arguments and results. We already
14198 know that the APCS_FLOAT flags match; similarly for VFP
14200 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
14201 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
14203 if (in_flags
& EF_ARM_SOFT_FLOAT
)
14205 (_("error: %B uses software FP, whereas %B uses hardware FP"),
14209 (_("error: %B uses hardware FP, whereas %B uses software FP"),
14212 flags_compatible
= FALSE
;
14217 /* Interworking mismatch is only a warning. */
14218 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
14220 if (in_flags
& EF_ARM_INTERWORK
)
14223 (_("Warning: %B supports interworking, whereas %B does not"),
14229 (_("Warning: %B does not support interworking, whereas %B does"),
14235 return flags_compatible
;
14239 /* Symbian OS Targets. */
14241 #undef TARGET_LITTLE_SYM
14242 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
14243 #undef TARGET_LITTLE_NAME
14244 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
14245 #undef TARGET_BIG_SYM
14246 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
14247 #undef TARGET_BIG_NAME
14248 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
14250 /* Like elf32_arm_link_hash_table_create -- but overrides
14251 appropriately for Symbian OS. */
14253 static struct bfd_link_hash_table
*
14254 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
14256 struct bfd_link_hash_table
*ret
;
14258 ret
= elf32_arm_link_hash_table_create (abfd
);
14261 struct elf32_arm_link_hash_table
*htab
14262 = (struct elf32_arm_link_hash_table
*)ret
;
14263 /* There is no PLT header for Symbian OS. */
14264 htab
->plt_header_size
= 0;
14265 /* The PLT entries are each one instruction and one word. */
14266 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
14267 htab
->symbian_p
= 1;
14268 /* Symbian uses armv5t or above, so use_blx is always true. */
14270 htab
->root
.is_relocatable_executable
= 1;
14275 static const struct bfd_elf_special_section
14276 elf32_arm_symbian_special_sections
[] =
14278 /* In a BPABI executable, the dynamic linking sections do not go in
14279 the loadable read-only segment. The post-linker may wish to
14280 refer to these sections, but they are not part of the final
14282 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
14283 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
14284 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
14285 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
14286 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
14287 /* These sections do not need to be writable as the SymbianOS
14288 postlinker will arrange things so that no dynamic relocation is
14290 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
14291 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
14292 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
14293 { NULL
, 0, 0, 0, 0 }
14297 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
14298 struct bfd_link_info
*link_info
)
14300 /* BPABI objects are never loaded directly by an OS kernel; they are
14301 processed by a postlinker first, into an OS-specific format. If
14302 the D_PAGED bit is set on the file, BFD will align segments on
14303 page boundaries, so that an OS can directly map the file. With
14304 BPABI objects, that just results in wasted space. In addition,
14305 because we clear the D_PAGED bit, map_sections_to_segments will
14306 recognize that the program headers should not be mapped into any
14307 loadable segment. */
14308 abfd
->flags
&= ~D_PAGED
;
14309 elf32_arm_begin_write_processing (abfd
, link_info
);
14313 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
14314 struct bfd_link_info
*info
)
14316 struct elf_segment_map
*m
;
14319 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14320 segment. However, because the .dynamic section is not marked
14321 with SEC_LOAD, the generic ELF code will not create such a
14323 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
14326 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
14327 if (m
->p_type
== PT_DYNAMIC
)
14332 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
14333 m
->next
= elf_tdata (abfd
)->segment_map
;
14334 elf_tdata (abfd
)->segment_map
= m
;
14338 /* Also call the generic arm routine. */
14339 return elf32_arm_modify_segment_map (abfd
, info
);
14342 /* Return address for Ith PLT stub in section PLT, for relocation REL
14343 or (bfd_vma) -1 if it should not be included. */
14346 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
14347 const arelent
*rel ATTRIBUTE_UNUSED
)
14349 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
14354 #define elf32_bed elf32_arm_symbian_bed
14356 /* The dynamic sections are not allocated on SymbianOS; the postlinker
14357 will process them and then discard them. */
14358 #undef ELF_DYNAMIC_SEC_FLAGS
14359 #define ELF_DYNAMIC_SEC_FLAGS \
14360 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14362 #undef elf_backend_add_symbol_hook
14363 #undef elf_backend_emit_relocs
14365 #undef bfd_elf32_bfd_link_hash_table_create
14366 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14367 #undef elf_backend_special_sections
14368 #define elf_backend_special_sections elf32_arm_symbian_special_sections
14369 #undef elf_backend_begin_write_processing
14370 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14371 #undef elf_backend_final_write_processing
14372 #define elf_backend_final_write_processing elf32_arm_final_write_processing
14374 #undef elf_backend_modify_segment_map
14375 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14377 /* There is no .got section for BPABI objects, and hence no header. */
14378 #undef elf_backend_got_header_size
14379 #define elf_backend_got_header_size 0
14381 /* Similarly, there is no .got.plt section. */
14382 #undef elf_backend_want_got_plt
14383 #define elf_backend_want_got_plt 0
14385 #undef elf_backend_plt_sym_val
14386 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14388 #undef elf_backend_may_use_rel_p
14389 #define elf_backend_may_use_rel_p 1
14390 #undef elf_backend_may_use_rela_p
14391 #define elf_backend_may_use_rela_p 0
14392 #undef elf_backend_default_use_rela_p
14393 #define elf_backend_default_use_rela_p 0
14394 #undef elf_backend_want_plt_sym
14395 #define elf_backend_want_plt_sym 0
14396 #undef ELF_MAXPAGESIZE
14397 #define ELF_MAXPAGESIZE 0x8000
14399 #include "elf32-target.h"