Make dyn idle startup increase configurable (#12432)
[betaflight.git] / src / main / flight / pid.c
blobd9c6827fd1161936cf76f1973ba4a625c7fe5d84
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <math.h>
27 #include "platform.h"
29 #include "build/build_config.h"
30 #include "build/debug.h"
32 #include "common/axis.h"
33 #include "common/filter.h"
35 #include "config/config.h"
36 #include "config/config_reset.h"
37 #include "config/simplified_tuning.h"
39 #include "drivers/pwm_output.h"
40 #include "drivers/sound_beeper.h"
41 #include "drivers/time.h"
43 #include "fc/controlrate_profile.h"
44 #include "fc/core.h"
45 #include "fc/rc.h"
46 #include "fc/rc_controls.h"
47 #include "fc/runtime_config.h"
49 #include "flight/gps_rescue.h"
50 #include "flight/imu.h"
51 #include "flight/mixer.h"
52 #include "flight/rpm_filter.h"
53 #include "flight/feedforward.h"
55 #include "io/gps.h"
57 #include "pg/pg.h"
58 #include "pg/pg_ids.h"
60 #include "sensors/acceleration.h"
61 #include "sensors/battery.h"
62 #include "sensors/gyro.h"
64 #include "pid.h"
66 typedef enum {
67 LEVEL_MODE_OFF = 0,
68 LEVEL_MODE_R,
69 LEVEL_MODE_RP,
70 } levelMode_e;
72 const char pidNames[] =
73 "ROLL;"
74 "PITCH;"
75 "YAW;"
76 "LEVEL;"
77 "MAG;";
79 FAST_DATA_ZERO_INIT uint32_t targetPidLooptime;
80 FAST_DATA_ZERO_INIT pidAxisData_t pidData[XYZ_AXIS_COUNT];
81 FAST_DATA_ZERO_INIT pidRuntime_t pidRuntime;
83 #if defined(USE_ABSOLUTE_CONTROL)
84 STATIC_UNIT_TESTED FAST_DATA_ZERO_INIT float axisError[XYZ_AXIS_COUNT];
85 #endif
87 #if defined(USE_THROTTLE_BOOST)
88 FAST_DATA_ZERO_INIT float throttleBoost;
89 pt1Filter_t throttleLpf;
90 #endif
92 PG_REGISTER_WITH_RESET_TEMPLATE(pidConfig_t, pidConfig, PG_PID_CONFIG, 3);
94 #if defined(STM32F411xE)
95 #define PID_PROCESS_DENOM_DEFAULT 2
96 #else
97 #define PID_PROCESS_DENOM_DEFAULT 1
98 #endif
100 #ifdef USE_RUNAWAY_TAKEOFF
101 PG_RESET_TEMPLATE(pidConfig_t, pidConfig,
102 .pid_process_denom = PID_PROCESS_DENOM_DEFAULT,
103 .runaway_takeoff_prevention = true,
104 .runaway_takeoff_deactivate_throttle = 20, // throttle level % needed to accumulate deactivation time
105 .runaway_takeoff_deactivate_delay = 500, // Accumulated time (in milliseconds) before deactivation in successful takeoff
107 #else
108 PG_RESET_TEMPLATE(pidConfig_t, pidConfig,
109 .pid_process_denom = PID_PROCESS_DENOM_DEFAULT,
111 #endif
113 #ifdef USE_ACRO_TRAINER
114 #define ACRO_TRAINER_LOOKAHEAD_RATE_LIMIT 500.0f // Max gyro rate for lookahead time scaling
115 #define ACRO_TRAINER_SETPOINT_LIMIT 1000.0f // Limit the correcting setpoint
116 #endif // USE_ACRO_TRAINER
118 #define CRASH_RECOVERY_DETECTION_DELAY_US 1000000 // 1 second delay before crash recovery detection is active after entering a self-level mode
120 #define LAUNCH_CONTROL_YAW_ITERM_LIMIT 50 // yaw iterm windup limit when launch mode is "FULL" (all axes)
122 PG_REGISTER_ARRAY_WITH_RESET_FN(pidProfile_t, PID_PROFILE_COUNT, pidProfiles, PG_PID_PROFILE, 6);
124 void resetPidProfile(pidProfile_t *pidProfile)
126 RESET_CONFIG(pidProfile_t, pidProfile,
127 .pid = {
128 [PID_ROLL] = PID_ROLL_DEFAULT,
129 [PID_PITCH] = PID_PITCH_DEFAULT,
130 [PID_YAW] = PID_YAW_DEFAULT,
131 [PID_LEVEL] = { 50, 50, 75, 0 },
132 [PID_MAG] = { 40, 0, 0, 0 },
134 .pidSumLimit = PIDSUM_LIMIT,
135 .pidSumLimitYaw = PIDSUM_LIMIT_YAW,
136 .yaw_lowpass_hz = 100,
137 .dterm_notch_hz = 0,
138 .dterm_notch_cutoff = 0,
139 .itermWindupPointPercent = 85,
140 .pidAtMinThrottle = PID_STABILISATION_ON,
141 .levelAngleLimit = 55,
142 .feedforward_transition = 0,
143 .yawRateAccelLimit = 0,
144 .rateAccelLimit = 0,
145 .anti_gravity_gain = 80,
146 .crash_time = 500, // ms
147 .crash_delay = 0, // ms
148 .crash_recovery_angle = 10, // degrees
149 .crash_recovery_rate = 100, // degrees/second
150 .crash_dthreshold = 50, // degrees/second/second
151 .crash_gthreshold = 400, // degrees/second
152 .crash_setpoint_threshold = 350, // degrees/second
153 .crash_recovery = PID_CRASH_RECOVERY_OFF, // off by default
154 .horizon_tilt_effect = 75,
155 .horizon_tilt_expert_mode = false,
156 .crash_limit_yaw = 200,
157 .itermLimit = 400,
158 .throttle_boost = 5,
159 .throttle_boost_cutoff = 15,
160 .iterm_rotation = false,
161 .iterm_relax = ITERM_RELAX_RP,
162 .iterm_relax_cutoff = ITERM_RELAX_CUTOFF_DEFAULT,
163 .iterm_relax_type = ITERM_RELAX_SETPOINT,
164 .acro_trainer_angle_limit = 20,
165 .acro_trainer_lookahead_ms = 50,
166 .acro_trainer_debug_axis = FD_ROLL,
167 .acro_trainer_gain = 75,
168 .abs_control_gain = 0,
169 .abs_control_limit = 90,
170 .abs_control_error_limit = 20,
171 .abs_control_cutoff = 11,
172 .dterm_lpf1_static_hz = DTERM_LPF1_DYN_MIN_HZ_DEFAULT,
173 // NOTE: dynamic lpf is enabled by default so this setting is actually
174 // overridden and the static lowpass 1 is disabled. We can't set this
175 // value to 0 otherwise Configurator versions 10.4 and earlier will also
176 // reset the lowpass filter type to PT1 overriding the desired BIQUAD setting.
177 .dterm_lpf2_static_hz = DTERM_LPF2_HZ_DEFAULT, // second Dterm LPF ON by default
178 .dterm_lpf1_type = FILTER_PT1,
179 .dterm_lpf2_type = FILTER_PT1,
180 .dterm_lpf1_dyn_min_hz = DTERM_LPF1_DYN_MIN_HZ_DEFAULT,
181 .dterm_lpf1_dyn_max_hz = DTERM_LPF1_DYN_MAX_HZ_DEFAULT,
182 .launchControlMode = LAUNCH_CONTROL_MODE_NORMAL,
183 .launchControlThrottlePercent = 20,
184 .launchControlAngleLimit = 0,
185 .launchControlGain = 40,
186 .launchControlAllowTriggerReset = true,
187 .use_integrated_yaw = false,
188 .integrated_yaw_relax = 200,
189 .thrustLinearization = 0,
190 .d_min = D_MIN_DEFAULT,
191 .d_min_gain = 37,
192 .d_min_advance = 20,
193 .motor_output_limit = 100,
194 .auto_profile_cell_count = AUTO_PROFILE_CELL_COUNT_STAY,
195 .transient_throttle_limit = 0,
196 .profileName = { 0 },
197 .dyn_idle_min_rpm = 0,
198 .dyn_idle_p_gain = 50,
199 .dyn_idle_i_gain = 50,
200 .dyn_idle_d_gain = 50,
201 .dyn_idle_max_increase = 150,
202 .dyn_idle_start_increase = 50,
203 .feedforward_averaging = FEEDFORWARD_AVERAGING_OFF,
204 .feedforward_max_rate_limit = 90,
205 .feedforward_smooth_factor = 25,
206 .feedforward_jitter_factor = 7,
207 .feedforward_boost = 15,
208 .dterm_lpf1_dyn_expo = 5,
209 .level_race_mode = false,
210 .vbat_sag_compensation = 0,
211 .simplified_pids_mode = PID_SIMPLIFIED_TUNING_RPY,
212 .simplified_master_multiplier = SIMPLIFIED_TUNING_DEFAULT,
213 .simplified_roll_pitch_ratio = SIMPLIFIED_TUNING_DEFAULT,
214 .simplified_i_gain = SIMPLIFIED_TUNING_DEFAULT,
215 .simplified_d_gain = SIMPLIFIED_TUNING_D_DEFAULT,
216 .simplified_pi_gain = SIMPLIFIED_TUNING_DEFAULT,
217 .simplified_dmin_ratio = SIMPLIFIED_TUNING_D_DEFAULT,
218 .simplified_feedforward_gain = SIMPLIFIED_TUNING_DEFAULT,
219 .simplified_pitch_pi_gain = SIMPLIFIED_TUNING_DEFAULT,
220 .simplified_dterm_filter = true,
221 .simplified_dterm_filter_multiplier = SIMPLIFIED_TUNING_DEFAULT,
222 .anti_gravity_cutoff_hz = 5,
223 .anti_gravity_p_gain = 100,
224 .tpa_mode = TPA_MODE_D,
225 .tpa_rate = 65,
226 .tpa_breakpoint = 1350,
229 #ifndef USE_D_MIN
230 pidProfile->pid[PID_ROLL].D = 30;
231 pidProfile->pid[PID_PITCH].D = 32;
232 #endif
235 void pgResetFn_pidProfiles(pidProfile_t *pidProfiles)
237 for (int i = 0; i < PID_PROFILE_COUNT; i++) {
238 resetPidProfile(&pidProfiles[i]);
242 // Scale factors to make best use of range with D_LPF debugging, aiming for max +/-16K as debug values are 16 bit
243 #define D_LPF_RAW_SCALE 25
244 #define D_LPF_FILT_SCALE 22
247 void pidSetItermAccelerator(float newItermAccelerator)
249 pidRuntime.itermAccelerator = newItermAccelerator;
252 bool pidOsdAntiGravityActive(void)
254 return (pidRuntime.itermAccelerator > pidRuntime.antiGravityOsdCutoff);
257 void pidStabilisationState(pidStabilisationState_e pidControllerState)
259 pidRuntime.pidStabilisationEnabled = (pidControllerState == PID_STABILISATION_ON) ? true : false;
262 const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH };
264 #ifdef USE_FEEDFORWARD
265 float pidGetFeedforwardTransitionFactor(void)
267 return pidRuntime.feedforwardTransitionFactor;
270 float pidGetFeedforwardSmoothFactor(void)
272 return pidRuntime.feedforwardSmoothFactor;
275 float pidGetFeedforwardJitterFactor(void)
277 return pidRuntime.feedforwardJitterFactor;
280 float pidGetFeedforwardBoostFactor(void)
282 return pidRuntime.feedforwardBoostFactor;
284 #endif
286 void pidResetIterm(void)
288 for (int axis = 0; axis < 3; axis++) {
289 pidData[axis].I = 0.0f;
290 #if defined(USE_ABSOLUTE_CONTROL)
291 axisError[axis] = 0.0f;
292 #endif
296 void pidUpdateTpaFactor(float throttle)
298 pidProfile_t *currentPidProfile;
300 currentPidProfile = pidProfilesMutable(systemConfig()->pidProfileIndex);
301 const float tpaBreakpoint = (currentPidProfile->tpa_breakpoint - 1000) / 1000.0f;
302 float tpaRate = currentPidProfile->tpa_rate / 100.0f;
304 if (throttle > tpaBreakpoint) {
305 if (throttle < 1.0f) {
306 tpaRate *= (throttle - tpaBreakpoint) / (1.0f - tpaBreakpoint);
308 } else {
309 tpaRate = 0.0f;
311 pidRuntime.tpaFactor = 1.0f - tpaRate;
314 void pidUpdateAntiGravityThrottleFilter(float throttle)
316 static float previousThrottle = 0.0f;
317 const float throttleInv = 1.0f - throttle;
318 float throttleDerivative = fabsf(throttle - previousThrottle) * pidRuntime.pidFrequency;
319 DEBUG_SET(DEBUG_ANTI_GRAVITY, 0, lrintf(throttleDerivative * 100));
320 throttleDerivative *= throttleInv * throttleInv;
321 // generally focus on the low throttle period
322 if (throttle > previousThrottle) {
323 throttleDerivative *= throttleInv * 0.5f;
324 // when increasing throttle, focus even more on the low throttle range
326 previousThrottle = throttle;
327 throttleDerivative = pt2FilterApply(&pidRuntime.antiGravityLpf, throttleDerivative);
328 // lower cutoff suppresses peaks relative to troughs and prolongs the effects
329 // PT2 smoothing of throttle derivative.
330 // 6 is a typical value for the peak boost factor with default cutoff of 6Hz
331 DEBUG_SET(DEBUG_ANTI_GRAVITY, 1, lrintf(throttleDerivative * 100));
332 pidRuntime.antiGravityThrottleD = throttleDerivative;
335 #ifdef USE_ACRO_TRAINER
336 void pidAcroTrainerInit(void)
338 pidRuntime.acroTrainerAxisState[FD_ROLL] = 0;
339 pidRuntime.acroTrainerAxisState[FD_PITCH] = 0;
341 #endif // USE_ACRO_TRAINER
343 #ifdef USE_THRUST_LINEARIZATION
344 float pidCompensateThrustLinearization(float throttle)
346 if (pidRuntime.thrustLinearization != 0.0f) {
347 // for whoops where a lot of TL is needed, allow more throttle boost
348 const float throttleReversed = (1.0f - throttle);
349 throttle /= 1.0f + pidRuntime.throttleCompensateAmount * sq(throttleReversed);
351 return throttle;
354 float pidApplyThrustLinearization(float motorOutput)
356 if (pidRuntime.thrustLinearization != 0.0f) {
357 if (motorOutput > 0.0f) {
358 const float motorOutputReversed = (1.0f - motorOutput);
359 motorOutput *= 1.0f + sq(motorOutputReversed) * pidRuntime.thrustLinearization;
362 return motorOutput;
364 #endif
366 #if defined(USE_ACC)
367 // calculate the stick deflection while applying level mode expo
368 static float getLevelModeRcDeflection(uint8_t axis)
370 const float stickDeflection = getRcDeflection(axis);
371 if (axis < FD_YAW) {
372 const float expof = currentControlRateProfile->levelExpo[axis] / 100.0f;
373 return power3(stickDeflection) * expof + stickDeflection * (1 - expof);
374 } else {
375 return stickDeflection;
379 // calculates strength of horizon leveling; 0 = none, 1.0 = most leveling
380 STATIC_UNIT_TESTED FAST_CODE_NOINLINE float calcHorizonLevelStrength(void)
382 // start with 1.0 at center stick, 0.0 at max stick deflection:
383 float horizonLevelStrength = 1.0f - MAX(fabsf(getLevelModeRcDeflection(FD_ROLL)), fabsf(getLevelModeRcDeflection(FD_PITCH)));
385 // 0 at level, 90 at vertical, 180 at inverted (degrees):
386 const float currentInclination = MAX(abs(attitude.values.roll), abs(attitude.values.pitch)) / 10.0f;
388 // horizonTiltExpertMode: 0 = leveling always active when sticks centered,
389 // 1 = leveling can be totally off when inverted
390 if (pidRuntime.horizonTiltExpertMode) {
391 if (pidRuntime.horizonTransition > 0 && pidRuntime.horizonCutoffDegrees > 0) {
392 // if d_level > 0 and horizonTiltEffect < 175
393 // horizonCutoffDegrees: 0 to 125 => 270 to 90 (represents where leveling goes to zero)
394 // inclinationLevelRatio (0.0 to 1.0) is smaller (less leveling)
395 // for larger inclinations; 0.0 at horizonCutoffDegrees value:
396 const float inclinationLevelRatio = constrainf((pidRuntime.horizonCutoffDegrees-currentInclination) / pidRuntime.horizonCutoffDegrees, 0, 1);
397 // apply configured horizon sensitivity:
398 // when stick is near center (horizonLevelStrength ~= 1.0)
399 // H_sensitivity value has little effect,
400 // when stick is deflected (horizonLevelStrength near 0.0)
401 // H_sensitivity value has more effect:
402 horizonLevelStrength = (horizonLevelStrength - 1) * 100 / pidRuntime.horizonTransition + 1;
403 // apply inclination ratio, which may lower leveling
404 // to zero regardless of stick position:
405 horizonLevelStrength *= inclinationLevelRatio;
406 } else { // d_level=0 or horizon_tilt_effect>=175 means no leveling
407 horizonLevelStrength = 0;
409 } else { // horizon_tilt_expert_mode = 0 (leveling always active when sticks centered)
410 float sensitFact;
411 if (pidRuntime.horizonFactorRatio < 1.0f) { // if horizonTiltEffect > 0
412 // horizonFactorRatio: 1.0 to 0.0 (larger means more leveling)
413 // inclinationLevelRatio (0.0 to 1.0) is smaller (less leveling)
414 // for larger inclinations, goes to 1.0 at inclination==level:
415 const float inclinationLevelRatio = (180 - currentInclination) / 180 * (1.0f - pidRuntime.horizonFactorRatio) + pidRuntime.horizonFactorRatio;
416 // apply ratio to configured horizon sensitivity:
417 sensitFact = pidRuntime.horizonTransition * inclinationLevelRatio;
418 } else { // horizonTiltEffect=0 for "old" functionality
419 sensitFact = pidRuntime.horizonTransition;
422 if (sensitFact <= 0) { // zero means no leveling
423 horizonLevelStrength = 0;
424 } else {
425 // when stick is near center (horizonLevelStrength ~= 1.0)
426 // sensitFact value has little effect,
427 // when stick is deflected (horizonLevelStrength near 0.0)
428 // sensitFact value has more effect:
429 horizonLevelStrength = ((horizonLevelStrength - 1) * (100 / sensitFact)) + 1;
433 return constrainf(horizonLevelStrength, 0, 1);
436 // Use the FAST_CODE_NOINLINE directive to avoid this code from being inlined into ITCM RAM to avoid overflow.
437 // The impact is possibly slightly slower performance on F7/H7 but they have more than enough
438 // processing power that it should be a non-issue.
439 STATIC_UNIT_TESTED FAST_CODE_NOINLINE float pidLevel(int axis, const pidProfile_t *pidProfile, const rollAndPitchTrims_t *angleTrim,
440 float currentPidSetpoint, float horizonLevelStrength)
442 const float levelAngleLimit = pidProfile->levelAngleLimit;
443 // calculate error angle and limit the angle to the max inclination
444 // rcDeflection is in range [-1.0, 1.0]
445 float angle = levelAngleLimit * getLevelModeRcDeflection(axis);
446 #ifdef USE_GPS_RESCUE
447 angle += gpsRescueAngle[axis] / 100; // ANGLE IS IN CENTIDEGREES
448 #endif
449 angle = constrainf(angle, -levelAngleLimit, levelAngleLimit);
450 const float errorAngle = angle - ((attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f);
451 if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(GPS_RESCUE_MODE)) {
452 // ANGLE mode - control is angle based
453 const float setpointCorrection = errorAngle * pidRuntime.levelGain;
454 currentPidSetpoint = pt3FilterApply(&pidRuntime.attitudeFilter[axis], setpointCorrection);
455 } else {
456 // HORIZON mode - mix of ANGLE and ACRO modes
457 // mix in errorAngle to currentPidSetpoint to add a little auto-level feel
458 const float setpointCorrection = errorAngle * pidRuntime.horizonGain * horizonLevelStrength;
459 currentPidSetpoint += pt3FilterApply(&pidRuntime.attitudeFilter[axis], setpointCorrection);
461 return currentPidSetpoint;
464 static FAST_CODE_NOINLINE void handleCrashRecovery(
465 const pidCrashRecovery_e crash_recovery, const rollAndPitchTrims_t *angleTrim,
466 const int axis, const timeUs_t currentTimeUs, const float gyroRate, float *currentPidSetpoint, float *errorRate)
468 if (pidRuntime.inCrashRecoveryMode && cmpTimeUs(currentTimeUs, pidRuntime.crashDetectedAtUs) > pidRuntime.crashTimeDelayUs) {
469 if (crash_recovery == PID_CRASH_RECOVERY_BEEP) {
470 BEEP_ON;
472 if (axis == FD_YAW) {
473 *errorRate = constrainf(*errorRate, -pidRuntime.crashLimitYaw, pidRuntime.crashLimitYaw);
474 } else {
475 // on roll and pitch axes calculate currentPidSetpoint and errorRate to level the aircraft to recover from crash
476 if (sensors(SENSOR_ACC)) {
477 // errorAngle is deviation from horizontal
478 const float errorAngle = -(attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f;
479 *currentPidSetpoint = errorAngle * pidRuntime.levelGain;
480 *errorRate = *currentPidSetpoint - gyroRate;
483 // reset iterm, since accumulated error before crash is now meaningless
484 // and iterm windup during crash recovery can be extreme, especially on yaw axis
485 pidData[axis].I = 0.0f;
486 if (cmpTimeUs(currentTimeUs, pidRuntime.crashDetectedAtUs) > pidRuntime.crashTimeLimitUs
487 || (getMotorMixRange() < 1.0f
488 && fabsf(gyro.gyroADCf[FD_ROLL]) < pidRuntime.crashRecoveryRate
489 && fabsf(gyro.gyroADCf[FD_PITCH]) < pidRuntime.crashRecoveryRate
490 && fabsf(gyro.gyroADCf[FD_YAW]) < pidRuntime.crashRecoveryRate)) {
491 if (sensors(SENSOR_ACC)) {
492 // check aircraft nearly level
493 if (abs(attitude.raw[FD_ROLL] - angleTrim->raw[FD_ROLL]) < pidRuntime.crashRecoveryAngleDeciDegrees
494 && abs(attitude.raw[FD_PITCH] - angleTrim->raw[FD_PITCH]) < pidRuntime.crashRecoveryAngleDeciDegrees) {
495 pidRuntime.inCrashRecoveryMode = false;
496 BEEP_OFF;
498 } else {
499 pidRuntime.inCrashRecoveryMode = false;
500 BEEP_OFF;
506 static FAST_CODE_NOINLINE void detectAndSetCrashRecovery(
507 const pidCrashRecovery_e crash_recovery, const int axis,
508 const timeUs_t currentTimeUs, const float delta, const float errorRate)
510 // if crash recovery is on and accelerometer enabled and there is no gyro overflow, then check for a crash
511 // no point in trying to recover if the crash is so severe that the gyro overflows
512 if ((crash_recovery || FLIGHT_MODE(GPS_RESCUE_MODE)) && !gyroOverflowDetected()) {
513 if (ARMING_FLAG(ARMED)) {
514 if (getMotorMixRange() >= 1.0f && !pidRuntime.inCrashRecoveryMode
515 && fabsf(delta) > pidRuntime.crashDtermThreshold
516 && fabsf(errorRate) > pidRuntime.crashGyroThreshold
517 && fabsf(getSetpointRate(axis)) < pidRuntime.crashSetpointThreshold) {
518 if (crash_recovery == PID_CRASH_RECOVERY_DISARM) {
519 setArmingDisabled(ARMING_DISABLED_CRASH_DETECTED);
520 disarm(DISARM_REASON_CRASH_PROTECTION);
521 } else {
522 pidRuntime.inCrashRecoveryMode = true;
523 pidRuntime.crashDetectedAtUs = currentTimeUs;
526 if (pidRuntime.inCrashRecoveryMode && cmpTimeUs(currentTimeUs, pidRuntime.crashDetectedAtUs) < pidRuntime.crashTimeDelayUs && (fabsf(errorRate) < pidRuntime.crashGyroThreshold
527 || fabsf(getSetpointRate(axis)) > pidRuntime.crashSetpointThreshold)) {
528 pidRuntime.inCrashRecoveryMode = false;
529 BEEP_OFF;
531 } else if (pidRuntime.inCrashRecoveryMode) {
532 pidRuntime.inCrashRecoveryMode = false;
533 BEEP_OFF;
537 #endif // USE_ACC
539 #ifdef USE_ACRO_TRAINER
541 int acroTrainerSign(float x)
543 return x > 0 ? 1 : -1;
546 // Acro Trainer - Manipulate the setPoint to limit axis angle while in acro mode
547 // There are three states:
548 // 1. Current angle has exceeded limit
549 // Apply correction to return to limit (similar to pidLevel)
550 // 2. Future overflow has been projected based on current angle and gyro rate
551 // Manage the setPoint to control the gyro rate as the actual angle approaches the limit (try to prevent overshoot)
552 // 3. If no potential overflow is detected, then return the original setPoint
554 // Use the FAST_CODE_NOINLINE directive to avoid this code from being inlined into ITCM RAM. We accept the
555 // performance decrease when Acro Trainer mode is active under the assumption that user is unlikely to be
556 // expecting ultimate flight performance at very high loop rates when in this mode.
557 static FAST_CODE_NOINLINE float applyAcroTrainer(int axis, const rollAndPitchTrims_t *angleTrim, float setPoint)
559 float ret = setPoint;
561 if (!FLIGHT_MODE(ANGLE_MODE) && !FLIGHT_MODE(HORIZON_MODE) && !FLIGHT_MODE(GPS_RESCUE_MODE)) {
562 bool resetIterm = false;
563 float projectedAngle = 0;
564 const int setpointSign = acroTrainerSign(setPoint);
565 const float currentAngle = (attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f;
566 const int angleSign = acroTrainerSign(currentAngle);
568 if ((pidRuntime.acroTrainerAxisState[axis] != 0) && (pidRuntime.acroTrainerAxisState[axis] != setpointSign)) { // stick has reversed - stop limiting
569 pidRuntime.acroTrainerAxisState[axis] = 0;
572 // Limit and correct the angle when it exceeds the limit
573 if ((fabsf(currentAngle) > pidRuntime.acroTrainerAngleLimit) && (pidRuntime.acroTrainerAxisState[axis] == 0)) {
574 if (angleSign == setpointSign) {
575 pidRuntime.acroTrainerAxisState[axis] = angleSign;
576 resetIterm = true;
580 if (pidRuntime.acroTrainerAxisState[axis] != 0) {
581 ret = constrainf(((pidRuntime.acroTrainerAngleLimit * angleSign) - currentAngle) * pidRuntime.acroTrainerGain, -ACRO_TRAINER_SETPOINT_LIMIT, ACRO_TRAINER_SETPOINT_LIMIT);
582 } else {
584 // Not currently over the limit so project the angle based on current angle and
585 // gyro angular rate using a sliding window based on gyro rate (faster rotation means larger window.
586 // If the projected angle exceeds the limit then apply limiting to minimize overshoot.
587 // Calculate the lookahead window by scaling proportionally with gyro rate from 0-500dps
588 float checkInterval = constrainf(fabsf(gyro.gyroADCf[axis]) / ACRO_TRAINER_LOOKAHEAD_RATE_LIMIT, 0.0f, 1.0f) * pidRuntime.acroTrainerLookaheadTime;
589 projectedAngle = (gyro.gyroADCf[axis] * checkInterval) + currentAngle;
590 const int projectedAngleSign = acroTrainerSign(projectedAngle);
591 if ((fabsf(projectedAngle) > pidRuntime.acroTrainerAngleLimit) && (projectedAngleSign == setpointSign)) {
592 ret = ((pidRuntime.acroTrainerAngleLimit * projectedAngleSign) - projectedAngle) * pidRuntime.acroTrainerGain;
593 resetIterm = true;
597 if (resetIterm) {
598 pidData[axis].I = 0;
601 if (axis == pidRuntime.acroTrainerDebugAxis) {
602 DEBUG_SET(DEBUG_ACRO_TRAINER, 0, lrintf(currentAngle * 10.0f));
603 DEBUG_SET(DEBUG_ACRO_TRAINER, 1, pidRuntime.acroTrainerAxisState[axis]);
604 DEBUG_SET(DEBUG_ACRO_TRAINER, 2, lrintf(ret));
605 DEBUG_SET(DEBUG_ACRO_TRAINER, 3, lrintf(projectedAngle * 10.0f));
609 return ret;
611 #endif // USE_ACRO_TRAINER
613 static float accelerationLimit(int axis, float currentPidSetpoint)
615 static float previousSetpoint[XYZ_AXIS_COUNT];
616 const float currentVelocity = currentPidSetpoint - previousSetpoint[axis];
618 if (fabsf(currentVelocity) > pidRuntime.maxVelocity[axis]) {
619 currentPidSetpoint = (currentVelocity > 0) ? previousSetpoint[axis] + pidRuntime.maxVelocity[axis] : previousSetpoint[axis] - pidRuntime.maxVelocity[axis];
622 previousSetpoint[axis] = currentPidSetpoint;
623 return currentPidSetpoint;
626 static void rotateVector(float v[XYZ_AXIS_COUNT], float rotation[XYZ_AXIS_COUNT])
628 // rotate v around rotation vector rotation
629 // rotation in radians, all elements must be small
630 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
631 int i_1 = (i + 1) % 3;
632 int i_2 = (i + 2) % 3;
633 float newV = v[i_1] + v[i_2] * rotation[i];
634 v[i_2] -= v[i_1] * rotation[i];
635 v[i_1] = newV;
639 STATIC_UNIT_TESTED void rotateItermAndAxisError(void)
641 if (pidRuntime.itermRotation
642 #if defined(USE_ABSOLUTE_CONTROL)
643 || pidRuntime.acGain > 0 || debugMode == DEBUG_AC_ERROR
644 #endif
646 const float gyroToAngle = pidRuntime.dT * RAD;
647 float rotationRads[XYZ_AXIS_COUNT];
648 for (int i = FD_ROLL; i <= FD_YAW; i++) {
649 rotationRads[i] = gyro.gyroADCf[i] * gyroToAngle;
651 #if defined(USE_ABSOLUTE_CONTROL)
652 if (pidRuntime.acGain > 0 || debugMode == DEBUG_AC_ERROR) {
653 rotateVector(axisError, rotationRads);
655 #endif
656 if (pidRuntime.itermRotation) {
657 float v[XYZ_AXIS_COUNT];
658 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
659 v[i] = pidData[i].I;
661 rotateVector(v, rotationRads );
662 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
663 pidData[i].I = v[i];
669 #ifdef USE_RC_SMOOTHING_FILTER
670 float FAST_CODE applyRcSmoothingFeedforwardFilter(int axis, float pidSetpointDelta)
672 float ret = pidSetpointDelta;
673 if (axis == pidRuntime.rcSmoothingDebugAxis) {
674 DEBUG_SET(DEBUG_RC_SMOOTHING, 1, lrintf(pidSetpointDelta * 100.0f));
676 if (pidRuntime.feedforwardLpfInitialized) {
677 ret = pt3FilterApply(&pidRuntime.feedforwardPt3[axis], pidSetpointDelta);
678 if (axis == pidRuntime.rcSmoothingDebugAxis) {
679 DEBUG_SET(DEBUG_RC_SMOOTHING, 2, lrintf(ret * 100.0f));
682 return ret;
684 #endif // USE_RC_SMOOTHING_FILTER
686 #if defined(USE_ITERM_RELAX)
687 #if defined(USE_ABSOLUTE_CONTROL)
688 STATIC_UNIT_TESTED void applyAbsoluteControl(const int axis, const float gyroRate, float *currentPidSetpoint, float *itermErrorRate)
690 if (pidRuntime.acGain > 0 || debugMode == DEBUG_AC_ERROR) {
691 const float setpointLpf = pt1FilterApply(&pidRuntime.acLpf[axis], *currentPidSetpoint);
692 const float setpointHpf = fabsf(*currentPidSetpoint - setpointLpf);
693 float acErrorRate = 0;
694 const float gmaxac = setpointLpf + 2 * setpointHpf;
695 const float gminac = setpointLpf - 2 * setpointHpf;
696 if (gyroRate >= gminac && gyroRate <= gmaxac) {
697 const float acErrorRate1 = gmaxac - gyroRate;
698 const float acErrorRate2 = gminac - gyroRate;
699 if (acErrorRate1 * axisError[axis] < 0) {
700 acErrorRate = acErrorRate1;
701 } else {
702 acErrorRate = acErrorRate2;
704 if (fabsf(acErrorRate * pidRuntime.dT) > fabsf(axisError[axis]) ) {
705 acErrorRate = -axisError[axis] * pidRuntime.pidFrequency;
707 } else {
708 acErrorRate = (gyroRate > gmaxac ? gmaxac : gminac ) - gyroRate;
711 if (isAirmodeActivated()) {
712 axisError[axis] = constrainf(axisError[axis] + acErrorRate * pidRuntime.dT,
713 -pidRuntime.acErrorLimit, pidRuntime.acErrorLimit);
714 const float acCorrection = constrainf(axisError[axis] * pidRuntime.acGain, -pidRuntime.acLimit, pidRuntime.acLimit);
715 *currentPidSetpoint += acCorrection;
716 *itermErrorRate += acCorrection;
717 DEBUG_SET(DEBUG_AC_CORRECTION, axis, lrintf(acCorrection * 10));
718 if (axis == FD_ROLL) {
719 DEBUG_SET(DEBUG_ITERM_RELAX, 3, lrintf(acCorrection * 10));
722 DEBUG_SET(DEBUG_AC_ERROR, axis, lrintf(axisError[axis] * 10));
725 #endif
727 STATIC_UNIT_TESTED void applyItermRelax(const int axis, const float iterm,
728 const float gyroRate, float *itermErrorRate, float *currentPidSetpoint)
730 const float setpointLpf = pt1FilterApply(&pidRuntime.windupLpf[axis], *currentPidSetpoint);
731 const float setpointHpf = fabsf(*currentPidSetpoint - setpointLpf);
733 if (pidRuntime.itermRelax) {
734 if (axis < FD_YAW || pidRuntime.itermRelax == ITERM_RELAX_RPY || pidRuntime.itermRelax == ITERM_RELAX_RPY_INC) {
735 const float itermRelaxFactor = MAX(0, 1 - setpointHpf / ITERM_RELAX_SETPOINT_THRESHOLD);
736 const bool isDecreasingI =
737 ((iterm > 0) && (*itermErrorRate < 0)) || ((iterm < 0) && (*itermErrorRate > 0));
738 if ((pidRuntime.itermRelax >= ITERM_RELAX_RP_INC) && isDecreasingI) {
739 // Do Nothing, use the precalculed itermErrorRate
740 } else if (pidRuntime.itermRelaxType == ITERM_RELAX_SETPOINT) {
741 *itermErrorRate *= itermRelaxFactor;
742 } else if (pidRuntime.itermRelaxType == ITERM_RELAX_GYRO ) {
743 *itermErrorRate = fapplyDeadband(setpointLpf - gyroRate, setpointHpf);
744 } else {
745 *itermErrorRate = 0.0f;
748 if (axis == FD_ROLL) {
749 DEBUG_SET(DEBUG_ITERM_RELAX, 0, lrintf(setpointHpf));
750 DEBUG_SET(DEBUG_ITERM_RELAX, 1, lrintf(itermRelaxFactor * 100.0f));
751 DEBUG_SET(DEBUG_ITERM_RELAX, 2, lrintf(*itermErrorRate));
755 #if defined(USE_ABSOLUTE_CONTROL)
756 applyAbsoluteControl(axis, gyroRate, currentPidSetpoint, itermErrorRate);
757 #endif
760 #endif
762 #ifdef USE_AIRMODE_LPF
763 void pidUpdateAirmodeLpf(float currentOffset)
765 if (pidRuntime.airmodeThrottleOffsetLimit == 0.0f) {
766 return;
769 float offsetHpf = currentOffset * 2.5f;
770 offsetHpf = offsetHpf - pt1FilterApply(&pidRuntime.airmodeThrottleLpf2, offsetHpf);
772 // During high frequency oscillation 2 * currentOffset averages to the offset required to avoid mirroring of the waveform
773 pt1FilterApply(&pidRuntime.airmodeThrottleLpf1, offsetHpf);
774 // Bring offset up immediately so the filter only applies to the decline
775 if (currentOffset * pidRuntime.airmodeThrottleLpf1.state >= 0 && fabsf(currentOffset) > pidRuntime.airmodeThrottleLpf1.state) {
776 pidRuntime.airmodeThrottleLpf1.state = currentOffset;
778 pidRuntime.airmodeThrottleLpf1.state = constrainf(pidRuntime.airmodeThrottleLpf1.state, -pidRuntime.airmodeThrottleOffsetLimit, pidRuntime.airmodeThrottleOffsetLimit);
781 float pidGetAirmodeThrottleOffset(void)
783 return pidRuntime.airmodeThrottleLpf1.state;
785 #endif
787 #ifdef USE_LAUNCH_CONTROL
788 #define LAUNCH_CONTROL_MAX_RATE 100.0f
789 #define LAUNCH_CONTROL_MIN_RATE 5.0f
790 #define LAUNCH_CONTROL_ANGLE_WINDOW 10.0f // The remaining angle degrees where rate dampening starts
792 // Use the FAST_CODE_NOINLINE directive to avoid this code from being inlined into ITCM RAM to avoid overflow.
793 // The impact is possibly slightly slower performance on F7/H7 but they have more than enough
794 // processing power that it should be a non-issue.
795 static FAST_CODE_NOINLINE float applyLaunchControl(int axis, const rollAndPitchTrims_t *angleTrim)
797 float ret = 0.0f;
799 // Scale the rates based on stick deflection only. Fixed rates with a max of 100deg/sec
800 // reached at 50% stick deflection. This keeps the launch control positioning consistent
801 // regardless of the user's rates.
802 if ((axis == FD_PITCH) || (pidRuntime.launchControlMode != LAUNCH_CONTROL_MODE_PITCHONLY)) {
803 const float stickDeflection = constrainf(getRcDeflection(axis), -0.5f, 0.5f);
804 ret = LAUNCH_CONTROL_MAX_RATE * stickDeflection * 2;
807 #if defined(USE_ACC)
808 // If ACC is enabled and a limit angle is set, then try to limit forward tilt
809 // to that angle and slow down the rate as the limit is approached to reduce overshoot
810 if ((axis == FD_PITCH) && (pidRuntime.launchControlAngleLimit > 0) && (ret > 0)) {
811 const float currentAngle = (attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f;
812 if (currentAngle >= pidRuntime.launchControlAngleLimit) {
813 ret = 0.0f;
814 } else {
815 //for the last 10 degrees scale the rate from the current input to 5 dps
816 const float angleDelta = pidRuntime.launchControlAngleLimit - currentAngle;
817 if (angleDelta <= LAUNCH_CONTROL_ANGLE_WINDOW) {
818 ret = scaleRangef(angleDelta, 0, LAUNCH_CONTROL_ANGLE_WINDOW, LAUNCH_CONTROL_MIN_RATE, ret);
822 #else
823 UNUSED(angleTrim);
824 #endif
826 return ret;
828 #endif
830 // Betaflight pid controller, which will be maintained in the future with additional features specialised for current (mini) multirotor usage.
831 // Based on 2DOF reference design (matlab)
832 void FAST_CODE pidController(const pidProfile_t *pidProfile, timeUs_t currentTimeUs)
834 static float previousGyroRateDterm[XYZ_AXIS_COUNT];
835 static float previousRawGyroRateDterm[XYZ_AXIS_COUNT];
837 #ifdef USE_TPA_MODE
838 const float tpaFactorKp = (pidProfile->tpa_mode == TPA_MODE_PD) ? pidRuntime.tpaFactor : 1.0f;
839 #else
840 const float tpaFactorKp = pidRuntime.tpaFactor;
841 #endif
843 #ifdef USE_YAW_SPIN_RECOVERY
844 const bool yawSpinActive = gyroYawSpinDetected();
845 #endif
847 const bool launchControlActive = isLaunchControlActive();
849 #if defined(USE_ACC)
850 static timeUs_t levelModeStartTimeUs = 0;
851 static bool gpsRescuePreviousState = false;
852 const rollAndPitchTrims_t *angleTrim = &accelerometerConfig()->accelerometerTrims;
853 float horizonLevelStrength = 0.0f;
855 const bool gpsRescueIsActive = FLIGHT_MODE(GPS_RESCUE_MODE);
856 levelMode_e levelMode;
857 if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE) || gpsRescueIsActive) {
858 if (pidRuntime.levelRaceMode && !gpsRescueIsActive) {
859 levelMode = LEVEL_MODE_R;
860 } else {
861 levelMode = LEVEL_MODE_RP;
864 // Keep track of when we entered a self-level mode so that we can
865 // add a guard time before crash recovery can activate.
866 // Also reset the guard time whenever GPS Rescue is activated.
867 if ((levelModeStartTimeUs == 0) || (gpsRescueIsActive && !gpsRescuePreviousState)) {
868 levelModeStartTimeUs = currentTimeUs;
871 // Calc horizonLevelStrength if needed
872 if (FLIGHT_MODE(HORIZON_MODE)) {
873 horizonLevelStrength = calcHorizonLevelStrength();
875 } else {
876 levelMode = LEVEL_MODE_OFF;
877 levelModeStartTimeUs = 0;
880 gpsRescuePreviousState = gpsRescueIsActive;
881 #else
882 UNUSED(pidProfile);
883 UNUSED(currentTimeUs);
884 #endif
886 // Anti Gravity
887 if (pidRuntime.antiGravityEnabled) {
888 pidRuntime.antiGravityThrottleD *= pidRuntime.antiGravityGain;
889 // used later to increase pTerm
890 pidRuntime.itermAccelerator = pidRuntime.antiGravityThrottleD * ANTIGRAVITY_KI;
891 } else {
892 pidRuntime.antiGravityThrottleD = 0.0f;
893 pidRuntime.itermAccelerator = 0.0f;
895 DEBUG_SET(DEBUG_ANTI_GRAVITY, 2, lrintf((1 + (pidRuntime.itermAccelerator / pidRuntime.pidCoefficient[FD_PITCH].Ki)) * 1000));
896 // amount of antigravity added relative to user's pitch iTerm coefficient
897 // used later to increase iTerm
899 // iTerm windup (attenuation of iTerm if motorMix range is large)
900 float dynCi = 1.0;
901 if (pidRuntime.itermWindupPointInv > 1.0f) {
902 dynCi = constrainf((1.0f - getMotorMixRange()) * pidRuntime.itermWindupPointInv, 0.0f, 1.0f);
905 // Precalculate gyro delta for D-term here, this allows loop unrolling
906 float gyroRateDterm[XYZ_AXIS_COUNT];
907 for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
908 gyroRateDterm[axis] = gyro.gyroADCf[axis];
909 // -----calculate raw, unfiltered D component
911 // Divide rate change by dT to get differential (ie dr/dt).
912 // dT is fixed and calculated from the target PID loop time
913 // This is done to avoid DTerm spikes that occur with dynamically
914 // calculated deltaT whenever another task causes the PID
915 // loop execution to be delayed.
917 // Log the unfiltered D for ROLL and PITCH
918 if (axis != FD_YAW) {
919 const float delta = (previousRawGyroRateDterm[axis] - gyroRateDterm[axis]) * pidRuntime.pidFrequency / D_LPF_RAW_SCALE;
920 previousRawGyroRateDterm[axis] = gyroRateDterm[axis];
921 DEBUG_SET(DEBUG_D_LPF, axis, lrintf(delta));
924 gyroRateDterm[axis] = pidRuntime.dtermNotchApplyFn((filter_t *) &pidRuntime.dtermNotch[axis], gyroRateDterm[axis]);
925 gyroRateDterm[axis] = pidRuntime.dtermLowpassApplyFn((filter_t *) &pidRuntime.dtermLowpass[axis], gyroRateDterm[axis]);
926 gyroRateDterm[axis] = pidRuntime.dtermLowpass2ApplyFn((filter_t *) &pidRuntime.dtermLowpass2[axis], gyroRateDterm[axis]);
929 rotateItermAndAxisError();
931 #ifdef USE_RPM_FILTER
932 rpmFilterUpdate();
933 #endif
935 #ifdef USE_FEEDFORWARD
936 const bool newRcFrame = getShouldUpdateFeedforward();
937 #endif
939 // ----------PID controller----------
940 for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
942 float currentPidSetpoint = getSetpointRate(axis);
943 if (pidRuntime.maxVelocity[axis]) {
944 currentPidSetpoint = accelerationLimit(axis, currentPidSetpoint);
946 // Yaw control is GYRO based, direct sticks control is applied to rate PID
947 // When Race Mode is active PITCH control is also GYRO based in level or horizon mode
948 #if defined(USE_ACC)
949 if ((levelMode == LEVEL_MODE_R && axis == FD_ROLL)
950 || (levelMode == LEVEL_MODE_RP && (axis == FD_ROLL || axis == FD_PITCH)) ) {
951 currentPidSetpoint = pidLevel(axis, pidProfile, angleTrim, currentPidSetpoint, horizonLevelStrength);
952 DEBUG_SET(DEBUG_ATTITUDE, axis - FD_ROLL + 2, currentPidSetpoint);
954 #endif
956 #ifdef USE_ACRO_TRAINER
957 if ((axis != FD_YAW) && pidRuntime.acroTrainerActive && !pidRuntime.inCrashRecoveryMode && !launchControlActive) {
958 currentPidSetpoint = applyAcroTrainer(axis, angleTrim, currentPidSetpoint);
960 #endif // USE_ACRO_TRAINER
962 #ifdef USE_LAUNCH_CONTROL
963 if (launchControlActive) {
964 #if defined(USE_ACC)
965 currentPidSetpoint = applyLaunchControl(axis, angleTrim);
966 #else
967 currentPidSetpoint = applyLaunchControl(axis, NULL);
968 #endif
970 #endif
972 // Handle yaw spin recovery - zero the setpoint on yaw to aid in recovery
973 // It's not necessary to zero the set points for R/P because the PIDs will be zeroed below
974 #ifdef USE_YAW_SPIN_RECOVERY
975 if ((axis == FD_YAW) && yawSpinActive) {
976 currentPidSetpoint = 0.0f;
978 #endif // USE_YAW_SPIN_RECOVERY
980 // -----calculate error rate
981 const float gyroRate = gyro.gyroADCf[axis]; // Process variable from gyro output in deg/sec
982 float errorRate = currentPidSetpoint - gyroRate; // r - y
983 #if defined(USE_ACC)
984 handleCrashRecovery(
985 pidProfile->crash_recovery, angleTrim, axis, currentTimeUs, gyroRate,
986 &currentPidSetpoint, &errorRate);
987 #endif
989 const float previousIterm = pidData[axis].I;
990 float itermErrorRate = errorRate;
991 #ifdef USE_ABSOLUTE_CONTROL
992 const float uncorrectedSetpoint = currentPidSetpoint;
993 #endif
995 #if defined(USE_ITERM_RELAX)
996 if (!launchControlActive && !pidRuntime.inCrashRecoveryMode) {
997 applyItermRelax(axis, previousIterm, gyroRate, &itermErrorRate, &currentPidSetpoint);
998 errorRate = currentPidSetpoint - gyroRate;
1000 #endif
1001 #ifdef USE_ABSOLUTE_CONTROL
1002 const float setpointCorrection = currentPidSetpoint - uncorrectedSetpoint;
1003 #endif
1005 // --------low-level gyro-based PID based on 2DOF PID controller. ----------
1006 // 2-DOF PID controller with optional filter on derivative term.
1007 // b = 1 and only c (feedforward weight) can be tuned (amount derivative on measurement or error).
1009 // -----calculate P component
1010 pidData[axis].P = pidRuntime.pidCoefficient[axis].Kp * errorRate * tpaFactorKp;
1011 if (axis == FD_YAW) {
1012 pidData[axis].P = pidRuntime.ptermYawLowpassApplyFn((filter_t *) &pidRuntime.ptermYawLowpass, pidData[axis].P);
1015 // -----calculate I component
1016 float Ki = pidRuntime.pidCoefficient[axis].Ki;
1017 #ifdef USE_LAUNCH_CONTROL
1018 // if launch control is active override the iterm gains and apply iterm windup protection to all axes
1019 if (launchControlActive) {
1020 Ki = pidRuntime.launchControlKi;
1021 } else
1022 #endif
1024 if (axis == FD_YAW) {
1025 pidRuntime.itermAccelerator = 0.0f; // no antigravity on yaw iTerm
1028 const float iTermChange = (Ki + pidRuntime.itermAccelerator) * dynCi * pidRuntime.dT * itermErrorRate;
1029 pidData[axis].I = constrainf(previousIterm + iTermChange, -pidRuntime.itermLimit, pidRuntime.itermLimit);
1031 // -----calculate pidSetpointDelta
1032 float pidSetpointDelta = 0;
1033 #ifdef USE_FEEDFORWARD
1034 pidSetpointDelta = feedforwardApply(axis, newRcFrame, pidRuntime.feedforwardAveraging);
1035 #endif
1036 pidRuntime.previousPidSetpoint[axis] = currentPidSetpoint;
1038 // -----calculate D component
1039 // disable D if launch control is active
1040 if ((pidRuntime.pidCoefficient[axis].Kd > 0) && !launchControlActive) {
1042 // Divide rate change by dT to get differential (ie dr/dt).
1043 // dT is fixed and calculated from the target PID loop time
1044 // This is done to avoid DTerm spikes that occur with dynamically
1045 // calculated deltaT whenever another task causes the PID
1046 // loop execution to be delayed.
1047 const float delta =
1048 - (gyroRateDterm[axis] - previousGyroRateDterm[axis]) * pidRuntime.pidFrequency;
1049 float preTpaD = pidRuntime.pidCoefficient[axis].Kd * delta;
1051 #if defined(USE_ACC)
1052 if (cmpTimeUs(currentTimeUs, levelModeStartTimeUs) > CRASH_RECOVERY_DETECTION_DELAY_US) {
1053 detectAndSetCrashRecovery(pidProfile->crash_recovery, axis, currentTimeUs, delta, errorRate);
1055 #endif
1057 #if defined(USE_D_MIN)
1058 float dMinFactor = 1.0f;
1059 if (pidRuntime.dMinPercent[axis] > 0) {
1060 float dMinGyroFactor = pt2FilterApply(&pidRuntime.dMinRange[axis], delta);
1061 dMinGyroFactor = fabsf(dMinGyroFactor) * pidRuntime.dMinGyroGain;
1062 const float dMinSetpointFactor = (fabsf(pidSetpointDelta)) * pidRuntime.dMinSetpointGain;
1063 dMinFactor = MAX(dMinGyroFactor, dMinSetpointFactor);
1064 dMinFactor = pidRuntime.dMinPercent[axis] + (1.0f - pidRuntime.dMinPercent[axis]) * dMinFactor;
1065 dMinFactor = pt2FilterApply(&pidRuntime.dMinLowpass[axis], dMinFactor);
1066 dMinFactor = MIN(dMinFactor, 1.0f);
1067 if (axis == FD_ROLL) {
1068 DEBUG_SET(DEBUG_D_MIN, 0, lrintf(dMinGyroFactor * 100));
1069 DEBUG_SET(DEBUG_D_MIN, 1, lrintf(dMinSetpointFactor * 100));
1070 DEBUG_SET(DEBUG_D_MIN, 2, lrintf(pidRuntime.pidCoefficient[axis].Kd * dMinFactor * 10 / DTERM_SCALE));
1071 } else if (axis == FD_PITCH) {
1072 DEBUG_SET(DEBUG_D_MIN, 3, lrintf(pidRuntime.pidCoefficient[axis].Kd * dMinFactor * 10 / DTERM_SCALE));
1076 // Apply the dMinFactor
1077 preTpaD *= dMinFactor;
1078 #endif
1079 pidData[axis].D = preTpaD * pidRuntime.tpaFactor;
1081 // Log the value of D pre application of TPA
1082 preTpaD *= D_LPF_FILT_SCALE;
1084 if (axis != FD_YAW) {
1085 DEBUG_SET(DEBUG_D_LPF, axis - FD_ROLL + 2, lrintf(preTpaD));
1087 } else {
1088 pidData[axis].D = 0;
1089 if (axis != FD_YAW) {
1090 DEBUG_SET(DEBUG_D_LPF, axis - FD_ROLL + 2, 0);
1094 previousGyroRateDterm[axis] = gyroRateDterm[axis];
1096 // -----calculate feedforward component
1097 #ifdef USE_ABSOLUTE_CONTROL
1098 // include abs control correction in feedforward
1099 pidSetpointDelta += setpointCorrection - pidRuntime.oldSetpointCorrection[axis];
1100 pidRuntime.oldSetpointCorrection[axis] = setpointCorrection;
1101 #endif
1103 // no feedforward in launch control
1104 float feedforwardGain = launchControlActive ? 0.0f : pidRuntime.pidCoefficient[axis].Kf;
1105 if (feedforwardGain > 0) {
1106 // halve feedforward in Level mode since stick sensitivity is weaker by about half
1107 feedforwardGain *= FLIGHT_MODE(ANGLE_MODE) ? 0.5f : 1.0f;
1108 // transition now calculated in feedforward.c when new RC data arrives
1109 float feedForward = feedforwardGain * pidSetpointDelta * pidRuntime.pidFrequency;
1111 #ifdef USE_FEEDFORWARD
1112 pidData[axis].F = shouldApplyFeedforwardLimits(axis) ?
1113 applyFeedforwardLimit(axis, feedForward, pidRuntime.pidCoefficient[axis].Kp, currentPidSetpoint) : feedForward;
1114 #else
1115 pidData[axis].F = feedForward;
1116 #endif
1117 #ifdef USE_RC_SMOOTHING_FILTER
1118 pidData[axis].F = applyRcSmoothingFeedforwardFilter(axis, pidData[axis].F);
1119 #endif // USE_RC_SMOOTHING_FILTER
1120 } else {
1121 pidData[axis].F = 0;
1124 #ifdef USE_YAW_SPIN_RECOVERY
1125 if (yawSpinActive) {
1126 pidData[axis].I = 0; // in yaw spin always disable I
1127 if (axis <= FD_PITCH) {
1128 // zero PIDs on pitch and roll leaving yaw P to correct spin
1129 pidData[axis].P = 0;
1130 pidData[axis].D = 0;
1131 pidData[axis].F = 0;
1134 #endif // USE_YAW_SPIN_RECOVERY
1136 #ifdef USE_LAUNCH_CONTROL
1137 // Disable P/I appropriately based on the launch control mode
1138 if (launchControlActive) {
1139 // if not using FULL mode then disable I accumulation on yaw as
1140 // yaw has a tendency to windup. Otherwise limit yaw iterm accumulation.
1141 const int launchControlYawItermLimit = (pidRuntime.launchControlMode == LAUNCH_CONTROL_MODE_FULL) ? LAUNCH_CONTROL_YAW_ITERM_LIMIT : 0;
1142 pidData[FD_YAW].I = constrainf(pidData[FD_YAW].I, -launchControlYawItermLimit, launchControlYawItermLimit);
1144 // for pitch-only mode we disable everything except pitch P/I
1145 if (pidRuntime.launchControlMode == LAUNCH_CONTROL_MODE_PITCHONLY) {
1146 pidData[FD_ROLL].P = 0;
1147 pidData[FD_ROLL].I = 0;
1148 pidData[FD_YAW].P = 0;
1149 // don't let I go negative (pitch backwards) as front motors are limited in the mixer
1150 pidData[FD_PITCH].I = MAX(0.0f, pidData[FD_PITCH].I);
1153 #endif
1155 // Add P boost from antiGravity when sticks are close to zero
1156 if (axis != FD_YAW) {
1157 float agSetpointAttenuator = fabsf(currentPidSetpoint) / 50.0f;
1158 agSetpointAttenuator = MAX(agSetpointAttenuator, 1.0f);
1159 // attenuate effect if turning more than 50 deg/s, half at 100 deg/s
1160 const float antiGravityPBoost = 1.0f + (pidRuntime.antiGravityThrottleD / agSetpointAttenuator) * pidRuntime.antiGravityPGain;
1161 pidData[axis].P *= antiGravityPBoost;
1162 if (axis == FD_PITCH) {
1163 DEBUG_SET(DEBUG_ANTI_GRAVITY, 3, lrintf(antiGravityPBoost * 1000));
1167 // calculating the PID sum
1168 const float pidSum = pidData[axis].P + pidData[axis].I + pidData[axis].D + pidData[axis].F;
1169 #ifdef USE_INTEGRATED_YAW_CONTROL
1170 if (axis == FD_YAW && pidRuntime.useIntegratedYaw) {
1171 pidData[axis].Sum += pidSum * pidRuntime.dT * 100.0f;
1172 pidData[axis].Sum -= pidData[axis].Sum * pidRuntime.integratedYawRelax / 100000.0f * pidRuntime.dT / 0.000125f;
1173 } else
1174 #endif
1176 pidData[axis].Sum = pidSum;
1180 // Disable PID control if at zero throttle or if gyro overflow detected
1181 // This may look very innefficient, but it is done on purpose to always show real CPU usage as in flight
1182 if (!pidRuntime.pidStabilisationEnabled || gyroOverflowDetected()) {
1183 for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
1184 pidData[axis].P = 0;
1185 pidData[axis].I = 0;
1186 pidData[axis].D = 0;
1187 pidData[axis].F = 0;
1189 pidData[axis].Sum = 0;
1191 } else if (pidRuntime.zeroThrottleItermReset) {
1192 pidResetIterm();
1196 bool crashRecoveryModeActive(void)
1198 return pidRuntime.inCrashRecoveryMode;
1201 #ifdef USE_ACRO_TRAINER
1202 void pidSetAcroTrainerState(bool newState)
1204 if (pidRuntime.acroTrainerActive != newState) {
1205 if (newState) {
1206 pidAcroTrainerInit();
1208 pidRuntime.acroTrainerActive = newState;
1211 #endif // USE_ACRO_TRAINER
1213 void pidSetAntiGravityState(bool newState)
1215 if (newState != pidRuntime.antiGravityEnabled) {
1216 // reset the accelerator on state changes
1217 pidRuntime.itermAccelerator = 0.0f;
1219 pidRuntime.antiGravityEnabled = newState;
1222 bool pidAntiGravityEnabled(void)
1224 return pidRuntime.antiGravityEnabled;
1227 #ifdef USE_DYN_LPF
1228 void dynLpfDTermUpdate(float throttle)
1230 if (pidRuntime.dynLpfFilter != DYN_LPF_NONE) {
1231 float cutoffFreq;
1232 if (pidRuntime.dynLpfCurveExpo > 0) {
1233 cutoffFreq = dynLpfCutoffFreq(throttle, pidRuntime.dynLpfMin, pidRuntime.dynLpfMax, pidRuntime.dynLpfCurveExpo);
1234 } else {
1235 cutoffFreq = fmaxf(dynThrottle(throttle) * pidRuntime.dynLpfMax, pidRuntime.dynLpfMin);
1238 switch (pidRuntime.dynLpfFilter) {
1239 case DYN_LPF_PT1:
1240 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1241 pt1FilterUpdateCutoff(&pidRuntime.dtermLowpass[axis].pt1Filter, pt1FilterGain(cutoffFreq, pidRuntime.dT));
1243 break;
1244 case DYN_LPF_BIQUAD:
1245 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1246 biquadFilterUpdateLPF(&pidRuntime.dtermLowpass[axis].biquadFilter, cutoffFreq, targetPidLooptime);
1248 break;
1249 case DYN_LPF_PT2:
1250 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1251 pt2FilterUpdateCutoff(&pidRuntime.dtermLowpass[axis].pt2Filter, pt2FilterGain(cutoffFreq, pidRuntime.dT));
1253 break;
1254 case DYN_LPF_PT3:
1255 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1256 pt3FilterUpdateCutoff(&pidRuntime.dtermLowpass[axis].pt3Filter, pt3FilterGain(cutoffFreq, pidRuntime.dT));
1258 break;
1262 #endif
1264 float dynLpfCutoffFreq(float throttle, uint16_t dynLpfMin, uint16_t dynLpfMax, uint8_t expo)
1266 const float expof = expo / 10.0f;
1267 const float curve = throttle * (1 - throttle) * expof + throttle;
1268 return (dynLpfMax - dynLpfMin) * curve + dynLpfMin;
1271 void pidSetItermReset(bool enabled)
1273 pidRuntime.zeroThrottleItermReset = enabled;
1276 float pidGetPreviousSetpoint(int axis)
1278 return pidRuntime.previousPidSetpoint[axis];
1281 float pidGetDT(void)
1283 return pidRuntime.dT;
1286 float pidGetPidFrequency(void)
1288 return pidRuntime.pidFrequency;