ldb: version 1.1.27
[Samba.git] / lib / util / asn1.c
blobd3b46aac857155f729d542d8ff8bef57a8ead97b
1 /*
2 Unix SMB/CIFS implementation.
3 simple ASN1 routines
4 Copyright (C) Andrew Tridgell 2001
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "replace.h"
21 #include "system/locale.h"
22 #include "lib/util/asn1.h"
23 #include "lib/util/debug.h"
24 #include "lib/util/samba_util.h"
26 struct nesting {
27 off_t start;
28 size_t taglen; /* for parsing */
29 struct nesting *next;
33 struct asn1_data {
34 uint8_t *data;
35 size_t length;
36 off_t ofs;
37 struct nesting *nesting;
38 bool has_error;
41 /* allocate an asn1 structure */
42 struct asn1_data *asn1_init(TALLOC_CTX *mem_ctx)
44 struct asn1_data *ret = talloc_zero(mem_ctx, struct asn1_data);
45 if (ret == NULL) {
46 DEBUG(0,("asn1_init failed! out of memory\n"));
48 return ret;
51 /* free an asn1 structure */
52 void asn1_free(struct asn1_data *data)
54 talloc_free(data);
57 bool asn1_has_error(const struct asn1_data *data)
59 return data->has_error;
62 void asn1_set_error(struct asn1_data *data)
64 data->has_error = true;
67 bool asn1_has_nesting(const struct asn1_data *data)
69 return data->nesting != NULL;
72 off_t asn1_current_ofs(const struct asn1_data *data)
74 return data->ofs;
77 /* write to the ASN1 buffer, advancing the buffer pointer */
78 bool asn1_write(struct asn1_data *data, const void *p, int len)
80 if (data->has_error) return false;
82 if ((len < 0) || (data->ofs + (size_t)len < data->ofs)) {
83 data->has_error = true;
84 return false;
87 if (data->length < data->ofs+len) {
88 uint8_t *newp;
89 newp = talloc_realloc(data, data->data, uint8_t, data->ofs+len);
90 if (!newp) {
91 data->has_error = true;
92 return false;
94 data->data = newp;
95 data->length = data->ofs+len;
97 memcpy(data->data + data->ofs, p, len);
98 data->ofs += len;
99 return true;
102 /* useful fn for writing a uint8_t */
103 bool asn1_write_uint8(struct asn1_data *data, uint8_t v)
105 return asn1_write(data, &v, 1);
108 /* push a tag onto the asn1 data buffer. Used for nested structures */
109 bool asn1_push_tag(struct asn1_data *data, uint8_t tag)
111 struct nesting *nesting;
113 if (!asn1_write_uint8(data, tag)) {
114 return false;
116 nesting = talloc(data, struct nesting);
117 if (!nesting) {
118 data->has_error = true;
119 return false;
122 nesting->start = data->ofs;
123 nesting->next = data->nesting;
124 data->nesting = nesting;
125 return asn1_write_uint8(data, 0xff);
128 /* pop a tag */
129 bool asn1_pop_tag(struct asn1_data *data)
131 struct nesting *nesting;
132 size_t len;
134 if (data->has_error) {
135 return false;
138 nesting = data->nesting;
140 if (!nesting) {
141 data->has_error = true;
142 return false;
144 len = data->ofs - (nesting->start+1);
145 /* yes, this is ugly. We don't know in advance how many bytes the length
146 of a tag will take, so we assumed 1 byte. If we were wrong then we
147 need to correct our mistake */
148 if (len > 0xFFFFFF) {
149 data->data[nesting->start] = 0x84;
150 if (!asn1_write_uint8(data, 0)) return false;
151 if (!asn1_write_uint8(data, 0)) return false;
152 if (!asn1_write_uint8(data, 0)) return false;
153 if (!asn1_write_uint8(data, 0)) return false;
154 memmove(data->data+nesting->start+5, data->data+nesting->start+1, len);
155 data->data[nesting->start+1] = (len>>24) & 0xFF;
156 data->data[nesting->start+2] = (len>>16) & 0xFF;
157 data->data[nesting->start+3] = (len>>8) & 0xFF;
158 data->data[nesting->start+4] = len&0xff;
159 } else if (len > 0xFFFF) {
160 data->data[nesting->start] = 0x83;
161 if (!asn1_write_uint8(data, 0)) return false;
162 if (!asn1_write_uint8(data, 0)) return false;
163 if (!asn1_write_uint8(data, 0)) return false;
164 memmove(data->data+nesting->start+4, data->data+nesting->start+1, len);
165 data->data[nesting->start+1] = (len>>16) & 0xFF;
166 data->data[nesting->start+2] = (len>>8) & 0xFF;
167 data->data[nesting->start+3] = len&0xff;
168 } else if (len > 255) {
169 data->data[nesting->start] = 0x82;
170 if (!asn1_write_uint8(data, 0)) return false;
171 if (!asn1_write_uint8(data, 0)) return false;
172 memmove(data->data+nesting->start+3, data->data+nesting->start+1, len);
173 data->data[nesting->start+1] = len>>8;
174 data->data[nesting->start+2] = len&0xff;
175 } else if (len > 127) {
176 data->data[nesting->start] = 0x81;
177 if (!asn1_write_uint8(data, 0)) return false;
178 memmove(data->data+nesting->start+2, data->data+nesting->start+1, len);
179 data->data[nesting->start+1] = len;
180 } else {
181 data->data[nesting->start] = len;
184 data->nesting = nesting->next;
185 talloc_free(nesting);
186 return true;
189 /* "i" is the one's complement representation, as is the normal result of an
190 * implicit signed->unsigned conversion */
192 static bool push_int_bigendian(struct asn1_data *data, unsigned int i, bool negative)
194 uint8_t lowest = i & 0xFF;
196 i = i >> 8;
197 if (i != 0)
198 if (!push_int_bigendian(data, i, negative))
199 return false;
201 if (data->nesting->start+1 == data->ofs) {
203 /* We did not write anything yet, looking at the highest
204 * valued byte */
206 if (negative) {
207 /* Don't write leading 0xff's */
208 if (lowest == 0xFF)
209 return true;
211 if ((lowest & 0x80) == 0) {
212 /* The only exception for a leading 0xff is if
213 * the highest bit is 0, which would indicate
214 * a positive value */
215 if (!asn1_write_uint8(data, 0xff))
216 return false;
218 } else {
219 if (lowest & 0x80) {
220 /* The highest bit of a positive integer is 1,
221 * this would indicate a negative number. Push
222 * a 0 to indicate a positive one */
223 if (!asn1_write_uint8(data, 0))
224 return false;
229 return asn1_write_uint8(data, lowest);
232 /* write an Integer without the tag framing. Needed for example for the LDAP
233 * Abandon Operation */
235 bool asn1_write_implicit_Integer(struct asn1_data *data, int i)
237 if (data->has_error) {
238 return false;
241 if (i == -1) {
242 /* -1 is special as it consists of all-0xff bytes. In
243 push_int_bigendian this is the only case that is not
244 properly handled, as all 0xff bytes would be handled as
245 leading ones to be ignored. */
246 return asn1_write_uint8(data, 0xff);
247 } else {
248 return push_int_bigendian(data, i, i<0);
253 /* write an integer */
254 bool asn1_write_Integer(struct asn1_data *data, int i)
256 if (!asn1_push_tag(data, ASN1_INTEGER)) return false;
257 if (!asn1_write_implicit_Integer(data, i)) return false;
258 return asn1_pop_tag(data);
261 /* write a BIT STRING */
262 bool asn1_write_BitString(struct asn1_data *data, const void *p, size_t length, uint8_t padding)
264 if (!asn1_push_tag(data, ASN1_BIT_STRING)) return false;
265 if (!asn1_write_uint8(data, padding)) return false;
266 if (!asn1_write(data, p, length)) return false;
267 return asn1_pop_tag(data);
270 bool ber_write_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB *blob, const char *OID)
272 unsigned int v, v2;
273 const char *p = (const char *)OID;
274 char *newp;
275 int i;
277 if (!isdigit(*p)) return false;
278 v = strtoul(p, &newp, 10);
279 if (newp[0] != '.') return false;
280 p = newp + 1;
282 if (!isdigit(*p)) return false;
283 v2 = strtoul(p, &newp, 10);
284 if (newp[0] != '.') return false;
285 p = newp + 1;
287 /*the ber representation can't use more space than the string one */
288 *blob = data_blob_talloc(mem_ctx, NULL, strlen(OID));
289 if (!blob->data) return false;
291 blob->data[0] = 40*v + v2;
293 i = 1;
294 while (*p) {
295 if (!isdigit(*p)) return false;
296 v = strtoul(p, &newp, 10);
297 if (newp[0] == '.') {
298 p = newp + 1;
299 /* check for empty last component */
300 if (!*p) return false;
301 } else if (newp[0] == '\0') {
302 p = newp;
303 } else {
304 data_blob_free(blob);
305 return false;
307 if (v >= (1<<28)) blob->data[i++] = (0x80 | ((v>>28)&0x7f));
308 if (v >= (1<<21)) blob->data[i++] = (0x80 | ((v>>21)&0x7f));
309 if (v >= (1<<14)) blob->data[i++] = (0x80 | ((v>>14)&0x7f));
310 if (v >= (1<<7)) blob->data[i++] = (0x80 | ((v>>7)&0x7f));
311 blob->data[i++] = (v&0x7f);
314 blob->length = i;
316 return true;
320 * Serialize partial OID string.
321 * Partial OIDs are in the form:
322 * 1:2.5.6:0x81
323 * 1:2.5.6:0x8182
325 bool ber_write_partial_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB *blob, const char *partial_oid)
327 TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
328 char *oid = talloc_strdup(tmp_ctx, partial_oid);
329 char *p;
331 /* truncate partial part so ber_write_OID_String() works */
332 p = strchr(oid, ':');
333 if (p) {
334 *p = '\0';
335 p++;
338 if (!ber_write_OID_String(mem_ctx, blob, oid)) {
339 talloc_free(tmp_ctx);
340 return false;
343 /* Add partially encoded sub-identifier */
344 if (p) {
345 DATA_BLOB tmp_blob = strhex_to_data_blob(tmp_ctx, p);
346 if (!data_blob_append(mem_ctx, blob, tmp_blob.data,
347 tmp_blob.length)) {
348 talloc_free(tmp_ctx);
349 return false;
353 talloc_free(tmp_ctx);
355 return true;
358 /* write an object ID to a ASN1 buffer */
359 bool asn1_write_OID(struct asn1_data *data, const char *OID)
361 DATA_BLOB blob;
363 if (!asn1_push_tag(data, ASN1_OID)) return false;
365 if (!ber_write_OID_String(NULL, &blob, OID)) {
366 data->has_error = true;
367 return false;
370 if (!asn1_write(data, blob.data, blob.length)) {
371 data_blob_free(&blob);
372 data->has_error = true;
373 return false;
375 data_blob_free(&blob);
376 return asn1_pop_tag(data);
379 /* write an octet string */
380 bool asn1_write_OctetString(struct asn1_data *data, const void *p, size_t length)
382 if (!asn1_push_tag(data, ASN1_OCTET_STRING)) return false;
383 if (!asn1_write(data, p, length)) return false;
384 return asn1_pop_tag(data);
387 /* write a LDAP string */
388 bool asn1_write_LDAPString(struct asn1_data *data, const char *s)
390 return asn1_write(data, s, strlen(s));
393 /* write a LDAP string from a DATA_BLOB */
394 bool asn1_write_DATA_BLOB_LDAPString(struct asn1_data *data, const DATA_BLOB *s)
396 return asn1_write(data, s->data, s->length);
399 /* write a general string */
400 bool asn1_write_GeneralString(struct asn1_data *data, const char *s)
402 if (!asn1_push_tag(data, ASN1_GENERAL_STRING)) return false;
403 if (!asn1_write_LDAPString(data, s)) return false;
404 return asn1_pop_tag(data);
407 bool asn1_write_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
409 if (!asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
410 if (!asn1_write(data, blob->data, blob->length)) return false;
411 return asn1_pop_tag(data);
414 /* write a BOOLEAN */
415 bool asn1_write_BOOLEAN(struct asn1_data *data, bool v)
417 if (!asn1_push_tag(data, ASN1_BOOLEAN)) return false;
418 if (!asn1_write_uint8(data, v ? 0xFF : 0)) return false;
419 return asn1_pop_tag(data);
422 bool asn1_read_BOOLEAN(struct asn1_data *data, bool *v)
424 uint8_t tmp = 0;
425 if (!asn1_start_tag(data, ASN1_BOOLEAN)) return false;
426 *v = false;
427 if (!asn1_read_uint8(data, &tmp)) return false;
428 if (tmp == 0xFF) {
429 *v = true;
431 return asn1_end_tag(data);
434 /* write a BOOLEAN in a simple context */
435 bool asn1_write_BOOLEAN_context(struct asn1_data *data, bool v, int context)
437 if (!asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(context))) return false;
438 if (!asn1_write_uint8(data, v ? 0xFF : 0)) return false;
439 return asn1_pop_tag(data);
442 bool asn1_read_BOOLEAN_context(struct asn1_data *data, bool *v, int context)
444 uint8_t tmp = 0;
445 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(context))) return false;
446 *v = false;
447 if (!asn1_read_uint8(data, &tmp)) return false;
448 if (tmp == 0xFF) {
449 *v = true;
451 return asn1_end_tag(data);
454 /* check a BOOLEAN */
455 bool asn1_check_BOOLEAN(struct asn1_data *data, bool v)
457 uint8_t b = 0;
459 if (!asn1_read_uint8(data, &b)) return false;
460 if (b != ASN1_BOOLEAN) {
461 data->has_error = true;
462 return false;
464 if (!asn1_read_uint8(data, &b)) return false;
465 if (b != v) {
466 data->has_error = true;
467 return false;
469 return !data->has_error;
473 /* load a struct asn1_data structure with a lump of data, ready to be parsed */
474 bool asn1_load(struct asn1_data *data, DATA_BLOB blob)
476 ZERO_STRUCTP(data);
477 data->data = (uint8_t *)talloc_memdup(data, blob.data, blob.length);
478 if (!data->data) {
479 data->has_error = true;
480 return false;
482 data->length = blob.length;
483 return true;
486 /* Peek into an ASN1 buffer, not advancing the pointer */
487 bool asn1_peek(struct asn1_data *data, void *p, int len)
489 if (data->has_error)
490 return false;
492 if (len < 0 || data->ofs + len < data->ofs || data->ofs + len < len)
493 return false;
495 if (data->ofs + len > data->length) {
496 /* we need to mark the buffer as consumed, so the caller knows
497 this was an out of data error, and not a decode error */
498 data->ofs = data->length;
499 return false;
502 memcpy(p, data->data + data->ofs, len);
503 return true;
506 /* read from a ASN1 buffer, advancing the buffer pointer */
507 bool asn1_read(struct asn1_data *data, void *p, int len)
509 if (!asn1_peek(data, p, len)) {
510 data->has_error = true;
511 return false;
514 data->ofs += len;
515 return true;
518 /* read a uint8_t from a ASN1 buffer */
519 bool asn1_read_uint8(struct asn1_data *data, uint8_t *v)
521 return asn1_read(data, v, 1);
524 bool asn1_peek_uint8(struct asn1_data *data, uint8_t *v)
526 return asn1_peek(data, v, 1);
529 bool asn1_peek_tag(struct asn1_data *data, uint8_t tag)
531 uint8_t b;
533 if (asn1_tag_remaining(data) <= 0) {
534 return false;
537 if (!asn1_peek_uint8(data, &b))
538 return false;
540 return (b == tag);
544 * just get the needed size the tag would consume
546 static bool asn1_peek_tag_needed_size(struct asn1_data *data, uint8_t tag,
547 size_t *size)
549 off_t start_ofs = data->ofs;
550 uint8_t b;
551 size_t taglen = 0;
553 if (data->has_error) {
554 return false;
557 if (!asn1_read_uint8(data, &b)) {
558 data->ofs = start_ofs;
559 data->has_error = false;
560 return false;
563 if (b != tag) {
564 data->ofs = start_ofs;
565 data->has_error = false;
566 return false;
569 if (!asn1_read_uint8(data, &b)) {
570 data->ofs = start_ofs;
571 data->has_error = false;
572 return false;
575 if (b & 0x80) {
576 int n = b & 0x7f;
577 if (!asn1_read_uint8(data, &b)) {
578 data->ofs = start_ofs;
579 data->has_error = false;
580 return false;
582 if (n > 4) {
584 * We should not allow more than 4 bytes
585 * for the encoding of the tag length.
587 * Otherwise we'd overflow the taglen
588 * variable on 32 bit systems.
590 data->ofs = start_ofs;
591 data->has_error = false;
592 return false;
594 taglen = b;
595 while (n > 1) {
596 size_t tmp_taglen;
598 if (!asn1_read_uint8(data, &b)) {
599 data->ofs = start_ofs;
600 data->has_error = false;
601 return false;
604 tmp_taglen = (taglen << 8) | b;
606 if ((tmp_taglen >> 8) != taglen) {
607 /* overflow */
608 data->ofs = start_ofs;
609 data->has_error = false;
610 return false;
612 taglen = tmp_taglen;
614 n--;
616 } else {
617 taglen = b;
620 *size = (data->ofs - start_ofs) + taglen;
622 data->ofs = start_ofs;
623 data->has_error = false;
624 return true;
627 /* start reading a nested asn1 structure */
628 bool asn1_start_tag(struct asn1_data *data, uint8_t tag)
630 uint8_t b;
631 struct nesting *nesting;
633 if (!asn1_read_uint8(data, &b))
634 return false;
636 if (b != tag) {
637 data->has_error = true;
638 return false;
640 nesting = talloc(data, struct nesting);
641 if (!nesting) {
642 data->has_error = true;
643 return false;
646 if (!asn1_read_uint8(data, &b)) {
647 return false;
650 if (b & 0x80) {
651 int n = b & 0x7f;
652 if (!asn1_read_uint8(data, &b))
653 return false;
654 nesting->taglen = b;
655 while (n > 1) {
656 size_t taglen;
658 if (!asn1_read_uint8(data, &b))
659 return false;
661 taglen = (nesting->taglen << 8) | b;
663 if ((taglen >> 8) != nesting->taglen) {
664 /* overflow */
665 data->has_error = true;
666 return false;
668 nesting->taglen = taglen;
670 n--;
672 } else {
673 nesting->taglen = b;
675 nesting->start = data->ofs;
676 nesting->next = data->nesting;
677 data->nesting = nesting;
678 if (asn1_tag_remaining(data) == -1) {
679 return false;
681 return !data->has_error;
684 /* stop reading a tag */
685 bool asn1_end_tag(struct asn1_data *data)
687 struct nesting *nesting;
689 /* make sure we read it all */
690 if (asn1_tag_remaining(data) != 0) {
691 data->has_error = true;
692 return false;
695 nesting = data->nesting;
697 if (!nesting) {
698 data->has_error = true;
699 return false;
702 data->nesting = nesting->next;
703 talloc_free(nesting);
704 return true;
707 /* work out how many bytes are left in this nested tag */
708 int asn1_tag_remaining(struct asn1_data *data)
710 int remaining;
711 if (data->has_error) {
712 return -1;
715 if (!data->nesting) {
716 data->has_error = true;
717 return -1;
719 remaining = data->nesting->taglen - (data->ofs - data->nesting->start);
720 if (remaining > (data->length - data->ofs)) {
721 data->has_error = true;
722 return -1;
724 if (remaining < 0) {
725 data->has_error = true;
726 return -1;
728 return remaining;
732 * Internal implementation for reading binary OIDs
733 * Reading is done as far in the buffer as valid OID
734 * till buffer ends or not valid sub-identifier is found.
736 static bool _ber_read_OID_String_impl(TALLOC_CTX *mem_ctx, DATA_BLOB blob,
737 char **OID, size_t *bytes_eaten)
739 int i;
740 uint8_t *b;
741 unsigned int v;
742 char *tmp_oid = NULL;
744 if (blob.length < 2) return false;
746 b = blob.data;
748 tmp_oid = talloc_asprintf(mem_ctx, "%u.%u", b[0]/40, b[0]%40);
749 if (!tmp_oid) goto nomem;
751 if (bytes_eaten != NULL) {
752 *bytes_eaten = 0;
755 for(i = 1, v = 0; i < blob.length; i++) {
756 v = (v<<7) | (b[i]&0x7f);
757 if ( ! (b[i] & 0x80)) {
758 tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u", v);
759 v = 0;
760 if (bytes_eaten)
761 *bytes_eaten = i+1;
763 if (!tmp_oid) goto nomem;
766 *OID = tmp_oid;
767 return true;
769 nomem:
770 return false;
773 /* read an object ID from a data blob */
774 bool ber_read_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob, char **OID)
776 size_t bytes_eaten;
778 if (!_ber_read_OID_String_impl(mem_ctx, blob, OID, &bytes_eaten))
779 return false;
781 return (bytes_eaten == blob.length);
785 * Deserialize partial OID string.
786 * Partial OIDs are in the form:
787 * 1:2.5.6:0x81
788 * 1:2.5.6:0x8182
790 bool ber_read_partial_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob,
791 char **partial_oid)
793 size_t bytes_left;
794 size_t bytes_eaten;
795 char *identifier = NULL;
796 char *tmp_oid = NULL;
798 if (!_ber_read_OID_String_impl(mem_ctx, blob, &tmp_oid, &bytes_eaten))
799 return false;
801 if (bytes_eaten < blob.length) {
802 bytes_left = blob.length - bytes_eaten;
803 identifier = hex_encode_talloc(mem_ctx, &blob.data[bytes_eaten], bytes_left);
804 if (!identifier) goto nomem;
806 *partial_oid = talloc_asprintf_append_buffer(tmp_oid, ":0x%s", identifier);
807 if (!*partial_oid) goto nomem;
808 TALLOC_FREE(identifier);
809 } else {
810 *partial_oid = tmp_oid;
813 return true;
815 nomem:
816 TALLOC_FREE(identifier);
817 TALLOC_FREE(tmp_oid);
818 return false;
821 /* read an object ID from a ASN1 buffer */
822 bool asn1_read_OID(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **OID)
824 DATA_BLOB blob;
825 int len;
827 if (!asn1_start_tag(data, ASN1_OID)) return false;
829 len = asn1_tag_remaining(data);
830 if (len < 0) {
831 data->has_error = true;
832 return false;
835 blob = data_blob(NULL, len);
836 if (!blob.data) {
837 data->has_error = true;
838 return false;
841 if (!asn1_read(data, blob.data, len)) return false;
842 if (!asn1_end_tag(data)) {
843 data_blob_free(&blob);
844 return false;
847 if (!ber_read_OID_String(mem_ctx, blob, OID)) {
848 data->has_error = true;
849 data_blob_free(&blob);
850 return false;
853 data_blob_free(&blob);
854 return true;
857 /* check that the next object ID is correct */
858 bool asn1_check_OID(struct asn1_data *data, const char *OID)
860 char *id;
862 if (!asn1_read_OID(data, data, &id)) return false;
864 if (strcmp(id, OID) != 0) {
865 talloc_free(id);
866 data->has_error = true;
867 return false;
869 talloc_free(id);
870 return true;
873 /* read a LDAPString from a ASN1 buffer */
874 bool asn1_read_LDAPString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
876 int len;
877 len = asn1_tag_remaining(data);
878 if (len < 0) {
879 data->has_error = true;
880 return false;
882 *s = talloc_array(mem_ctx, char, len+1);
883 if (! *s) {
884 data->has_error = true;
885 return false;
887 (*s)[len] = 0;
888 return asn1_read(data, *s, len);
892 /* read a GeneralString from a ASN1 buffer */
893 bool asn1_read_GeneralString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
895 if (!asn1_start_tag(data, ASN1_GENERAL_STRING)) return false;
896 if (!asn1_read_LDAPString(data, mem_ctx, s)) return false;
897 return asn1_end_tag(data);
901 /* read a octet string blob */
902 bool asn1_read_OctetString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob)
904 int len;
905 ZERO_STRUCTP(blob);
906 if (!asn1_start_tag(data, ASN1_OCTET_STRING)) return false;
907 len = asn1_tag_remaining(data);
908 if (len < 0) {
909 data->has_error = true;
910 return false;
912 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
913 if (!blob->data || blob->length < len) {
914 data->has_error = true;
915 return false;
917 if (!asn1_read(data, blob->data, len)) goto err;
918 if (!asn1_end_tag(data)) goto err;
919 blob->length--;
920 blob->data[len] = 0;
921 return true;
923 err:
925 data_blob_free(blob);
926 *blob = data_blob_null;
927 return false;
930 bool asn1_read_ContextSimple(struct asn1_data *data, TALLOC_CTX *mem_ctx, uint8_t num,
931 DATA_BLOB *blob)
933 int len;
934 ZERO_STRUCTP(blob);
935 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
936 len = asn1_tag_remaining(data);
937 if (len < 0) {
938 data->has_error = true;
939 return false;
941 *blob = data_blob_talloc(mem_ctx, NULL, len + 1);
942 if ((len != 0) && (!blob->data)) {
943 data->has_error = true;
944 return false;
946 if (!asn1_read(data, blob->data, len)) return false;
947 blob->length--;
948 blob->data[len] = 0;
949 return asn1_end_tag(data);
952 /* read an integer without tag*/
953 bool asn1_read_implicit_Integer(struct asn1_data *data, int *i)
955 uint8_t b;
956 bool first_byte = true;
957 *i = 0;
959 while (!data->has_error && asn1_tag_remaining(data)>0) {
960 if (!asn1_read_uint8(data, &b)) return false;
961 if (first_byte) {
962 if (b & 0x80) {
963 /* Number is negative.
964 Set i to -1 for sign extend. */
965 *i = -1;
967 first_byte = false;
969 *i = (*i << 8) + b;
971 return !data->has_error;
974 /* read an integer */
975 bool asn1_read_Integer(struct asn1_data *data, int *i)
977 *i = 0;
979 if (!asn1_start_tag(data, ASN1_INTEGER)) return false;
980 if (!asn1_read_implicit_Integer(data, i)) return false;
981 return asn1_end_tag(data);
984 /* read a BIT STRING */
985 bool asn1_read_BitString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob, uint8_t *padding)
987 int len;
988 ZERO_STRUCTP(blob);
989 if (!asn1_start_tag(data, ASN1_BIT_STRING)) return false;
990 len = asn1_tag_remaining(data);
991 if (len < 0) {
992 data->has_error = true;
993 return false;
995 if (!asn1_read_uint8(data, padding)) return false;
997 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
998 if (!blob->data || blob->length < len) {
999 data->has_error = true;
1000 return false;
1002 if (asn1_read(data, blob->data, len - 1)) {
1003 blob->length--;
1004 blob->data[len] = 0;
1005 asn1_end_tag(data);
1008 if (data->has_error) {
1009 data_blob_free(blob);
1010 *blob = data_blob_null;
1011 *padding = 0;
1012 return false;
1014 return true;
1017 /* read an integer */
1018 bool asn1_read_enumerated(struct asn1_data *data, int *v)
1020 *v = 0;
1022 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
1023 while (!data->has_error && asn1_tag_remaining(data)>0) {
1024 uint8_t b;
1025 if (!asn1_read_uint8(data, &b)) {
1026 return false;
1028 *v = (*v << 8) + b;
1030 return asn1_end_tag(data);
1033 /* check a enumerated value is correct */
1034 bool asn1_check_enumerated(struct asn1_data *data, int v)
1036 uint8_t b;
1037 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
1038 if (!asn1_read_uint8(data, &b)) return false;
1039 if (!asn1_end_tag(data)) return false;
1041 if (v != b)
1042 data->has_error = false;
1044 return !data->has_error;
1047 /* write an enumerated value to the stream */
1048 bool asn1_write_enumerated(struct asn1_data *data, uint8_t v)
1050 if (!asn1_push_tag(data, ASN1_ENUMERATED)) return false;
1051 if (!asn1_write_uint8(data, v)) return false;
1052 return asn1_pop_tag(data);
1056 Get us the data just written without copying
1058 bool asn1_blob(const struct asn1_data *asn1, DATA_BLOB *blob)
1060 if (asn1->has_error) {
1061 return false;
1063 if (asn1->nesting != NULL) {
1064 return false;
1066 blob->data = asn1->data;
1067 blob->length = asn1->length;
1068 return true;
1071 bool asn1_extract_blob(struct asn1_data *asn1, TALLOC_CTX *mem_ctx,
1072 DATA_BLOB *pblob)
1074 DATA_BLOB blob;
1076 if (!asn1_blob(asn1, &blob)) {
1077 return false;
1080 *pblob = (DATA_BLOB) { .length = blob.length };
1081 pblob->data = talloc_move(mem_ctx, &blob.data);
1084 * Stop access from here on
1086 asn1->has_error = true;
1088 return true;
1092 Fill in an asn1 struct without making a copy
1094 void asn1_load_nocopy(struct asn1_data *data, uint8_t *buf, size_t len)
1096 ZERO_STRUCTP(data);
1097 data->data = buf;
1098 data->length = len;
1101 int asn1_peek_full_tag(DATA_BLOB blob, uint8_t tag, size_t *packet_size)
1103 struct asn1_data asn1;
1104 size_t size;
1105 bool ok;
1107 ZERO_STRUCT(asn1);
1108 asn1.data = blob.data;
1109 asn1.length = blob.length;
1111 ok = asn1_peek_tag_needed_size(&asn1, tag, &size);
1112 if (!ok) {
1113 return EMSGSIZE;
1116 if (size > blob.length) {
1117 *packet_size = size;
1118 return EAGAIN;
1121 *packet_size = size;
1122 return 0;