auth/credentials: don't ignore "client use kerberos" and --use-kerberos for machine...
[Samba.git] / lib / util / asn1.c
blob644f40275ee3d1bdfcb07ab82c0c5a0c30e4ddec
1 /*
2 Unix SMB/CIFS implementation.
3 simple ASN1 routines
4 Copyright (C) Andrew Tridgell 2001
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "replace.h"
21 #include "system/locale.h"
22 #include "lib/util/asn1.h"
23 #include "lib/util/debug.h"
24 #include "lib/util/samba_util.h"
25 #include "lib/util/smb_strtox.h"
27 struct nesting {
28 off_t start;
29 size_t taglen; /* for parsing */
30 struct nesting *next;
34 struct asn1_data {
35 uint8_t *data;
36 size_t length;
37 off_t ofs;
38 struct nesting *nesting;
39 bool has_error;
40 unsigned depth;
41 unsigned max_depth;
44 /* allocate an asn1 structure */
45 struct asn1_data *asn1_init(TALLOC_CTX *mem_ctx, unsigned max_depth)
47 struct asn1_data *ret = talloc_zero(mem_ctx, struct asn1_data);
48 if (ret == NULL) {
49 DBG_ERR("asn1_init failed! out of memory\n");
50 return ret;
52 ret->max_depth = max_depth;
53 return ret;
56 /* free an asn1 structure */
57 void asn1_free(struct asn1_data *data)
59 talloc_free(data);
62 bool asn1_has_error(const struct asn1_data *data)
64 return data->has_error;
67 void asn1_set_error(struct asn1_data *data)
69 data->has_error = true;
72 bool asn1_has_nesting(const struct asn1_data *data)
74 return data->nesting != NULL;
77 off_t asn1_current_ofs(const struct asn1_data *data)
79 return data->ofs;
82 /* write to the ASN1 buffer, advancing the buffer pointer */
83 bool asn1_write(struct asn1_data *data, const void *p, int len)
85 if (data->has_error) return false;
87 if ((len < 0) || (data->ofs + (size_t)len < data->ofs)) {
88 data->has_error = true;
89 return false;
92 if (data->length < data->ofs+len) {
93 uint8_t *newp;
94 newp = talloc_realloc(data, data->data, uint8_t, data->ofs+len);
95 if (!newp) {
96 data->has_error = true;
97 return false;
99 data->data = newp;
100 data->length = data->ofs+len;
102 if (len > 0) {
103 memcpy(data->data + data->ofs, p, len);
104 data->ofs += len;
106 return true;
109 /* useful fn for writing a uint8_t */
110 bool asn1_write_uint8(struct asn1_data *data, uint8_t v)
112 return asn1_write(data, &v, 1);
115 /* push a tag onto the asn1 data buffer. Used for nested structures */
116 bool asn1_push_tag(struct asn1_data *data, uint8_t tag)
118 struct nesting *nesting;
120 if (!asn1_write_uint8(data, tag)) {
121 return false;
123 nesting = talloc(data, struct nesting);
124 if (!nesting) {
125 data->has_error = true;
126 return false;
129 nesting->start = data->ofs;
130 nesting->next = data->nesting;
131 data->nesting = nesting;
132 return asn1_write_uint8(data, 0xff);
135 /* pop a tag */
136 bool asn1_pop_tag(struct asn1_data *data)
138 struct nesting *nesting;
139 size_t len;
141 if (data->has_error) {
142 return false;
145 nesting = data->nesting;
147 if (!nesting) {
148 data->has_error = true;
149 return false;
151 len = data->ofs - (nesting->start+1);
152 /* yes, this is ugly. We don't know in advance how many bytes the length
153 of a tag will take, so we assumed 1 byte. If we were wrong then we
154 need to correct our mistake */
155 if (len > 0xFFFFFF) {
156 data->data[nesting->start] = 0x84;
157 if (!asn1_write_uint8(data, 0)) return false;
158 if (!asn1_write_uint8(data, 0)) return false;
159 if (!asn1_write_uint8(data, 0)) return false;
160 if (!asn1_write_uint8(data, 0)) return false;
161 memmove(data->data+nesting->start+5, data->data+nesting->start+1, len);
162 data->data[nesting->start+1] = (len>>24) & 0xFF;
163 data->data[nesting->start+2] = (len>>16) & 0xFF;
164 data->data[nesting->start+3] = (len>>8) & 0xFF;
165 data->data[nesting->start+4] = len&0xff;
166 } else if (len > 0xFFFF) {
167 data->data[nesting->start] = 0x83;
168 if (!asn1_write_uint8(data, 0)) return false;
169 if (!asn1_write_uint8(data, 0)) return false;
170 if (!asn1_write_uint8(data, 0)) return false;
171 memmove(data->data+nesting->start+4, data->data+nesting->start+1, len);
172 data->data[nesting->start+1] = (len>>16) & 0xFF;
173 data->data[nesting->start+2] = (len>>8) & 0xFF;
174 data->data[nesting->start+3] = len&0xff;
175 } else if (len > 255) {
176 data->data[nesting->start] = 0x82;
177 if (!asn1_write_uint8(data, 0)) return false;
178 if (!asn1_write_uint8(data, 0)) return false;
179 memmove(data->data+nesting->start+3, data->data+nesting->start+1, len);
180 data->data[nesting->start+1] = len>>8;
181 data->data[nesting->start+2] = len&0xff;
182 } else if (len > 127) {
183 data->data[nesting->start] = 0x81;
184 if (!asn1_write_uint8(data, 0)) return false;
185 memmove(data->data+nesting->start+2, data->data+nesting->start+1, len);
186 data->data[nesting->start+1] = len;
187 } else {
188 data->data[nesting->start] = len;
191 data->nesting = nesting->next;
192 talloc_free(nesting);
193 return true;
196 /* "i" is the one's complement representation, as is the normal result of an
197 * implicit signed->unsigned conversion */
199 static bool push_int_bigendian(struct asn1_data *data, unsigned int i, bool negative)
201 uint8_t lowest = i & 0xFF;
203 i = i >> 8;
204 if (i != 0)
205 if (!push_int_bigendian(data, i, negative))
206 return false;
208 if (data->nesting->start+1 == data->ofs) {
210 /* We did not write anything yet, looking at the highest
211 * valued byte */
213 if (negative) {
214 /* Don't write leading 0xff's */
215 if (lowest == 0xFF)
216 return true;
218 if ((lowest & 0x80) == 0) {
219 /* The only exception for a leading 0xff is if
220 * the highest bit is 0, which would indicate
221 * a positive value */
222 if (!asn1_write_uint8(data, 0xff))
223 return false;
225 } else {
226 if (lowest & 0x80) {
227 /* The highest bit of a positive integer is 1,
228 * this would indicate a negative number. Push
229 * a 0 to indicate a positive one */
230 if (!asn1_write_uint8(data, 0))
231 return false;
236 return asn1_write_uint8(data, lowest);
239 /* write an Integer without the tag framing. Needed for example for the LDAP
240 * Abandon Operation */
242 bool asn1_write_implicit_Integer(struct asn1_data *data, int i)
244 if (data->has_error) {
245 return false;
248 if (i == -1) {
249 /* -1 is special as it consists of all-0xff bytes. In
250 push_int_bigendian this is the only case that is not
251 properly handled, as all 0xff bytes would be handled as
252 leading ones to be ignored. */
253 return asn1_write_uint8(data, 0xff);
254 } else {
255 return push_int_bigendian(data, i, i<0);
260 /* write an integer */
261 bool asn1_write_Integer(struct asn1_data *data, int i)
263 if (!asn1_push_tag(data, ASN1_INTEGER)) return false;
264 if (!asn1_write_implicit_Integer(data, i)) return false;
265 return asn1_pop_tag(data);
268 /* write a BIT STRING */
269 bool asn1_write_BitString(struct asn1_data *data, const void *p, size_t length, uint8_t padding)
271 if (!asn1_push_tag(data, ASN1_BIT_STRING)) return false;
272 if (!asn1_write_uint8(data, padding)) return false;
273 if (!asn1_write(data, p, length)) return false;
274 return asn1_pop_tag(data);
277 bool ber_write_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB *blob, const char *OID)
279 unsigned long int v, v2;
280 const char *p = (const char *)OID;
281 char *newp;
282 int i;
283 int error = 0;
285 if (!isdigit(*p)) return false;
286 v = smb_strtoul(p, &newp, 10, &error, SMB_STR_STANDARD);
287 if (newp[0] != '.' || error != 0) {
288 return false;
290 p = newp + 1;
292 if (!isdigit(*p)) return false;
293 v2 = smb_strtoul(p, &newp, 10, &error, SMB_STR_STANDARD);
294 if (newp[0] != '.' || error != 0) {
295 return false;
297 p = newp + 1;
299 /*the ber representation can't use more space than the string one */
300 *blob = data_blob_talloc(mem_ctx, NULL, strlen(OID));
301 if (!blob->data) return false;
303 blob->data[0] = 40*v + v2;
305 i = 1;
306 while (*p) {
307 if (!isdigit(*p)) return false;
308 v = smb_strtoul(p, &newp, 10, &error, SMB_STR_STANDARD);
309 if (newp[0] == '.' || error != 0) {
310 p = newp + 1;
311 if (!*p) {
312 /* empty last component */
313 data_blob_free(blob);
314 return false;
316 } else if (newp[0] == '\0') {
317 p = newp;
318 } else {
319 data_blob_free(blob);
320 return false;
322 if (v >= (1<<28)) blob->data[i++] = (0x80 | ((v>>28)&0x7f));
323 if (v >= (1<<21)) blob->data[i++] = (0x80 | ((v>>21)&0x7f));
324 if (v >= (1<<14)) blob->data[i++] = (0x80 | ((v>>14)&0x7f));
325 if (v >= (1<<7)) blob->data[i++] = (0x80 | ((v>>7)&0x7f));
326 blob->data[i++] = (v&0x7f);
329 blob->length = i;
331 return true;
335 * Serialize partial OID string.
336 * Partial OIDs are in the form:
337 * 1:2.5.6:0x81
338 * 1:2.5.6:0x8182
340 bool ber_write_partial_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB *blob, const char *partial_oid)
342 TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
343 char *oid = talloc_strdup(tmp_ctx, partial_oid);
344 char *p;
346 /* truncate partial part so ber_write_OID_String() works */
347 p = strchr(oid, ':');
348 if (p) {
349 *p = '\0';
350 p++;
353 if (!ber_write_OID_String(mem_ctx, blob, oid)) {
354 talloc_free(tmp_ctx);
355 return false;
358 /* Add partially encoded sub-identifier */
359 if (p) {
360 DATA_BLOB tmp_blob = strhex_to_data_blob(tmp_ctx, p);
361 if (!data_blob_append(mem_ctx, blob, tmp_blob.data,
362 tmp_blob.length)) {
363 talloc_free(tmp_ctx);
364 return false;
368 talloc_free(tmp_ctx);
370 return true;
373 /* write an object ID to a ASN1 buffer */
374 bool asn1_write_OID(struct asn1_data *data, const char *OID)
376 DATA_BLOB blob;
378 if (!asn1_push_tag(data, ASN1_OID)) return false;
380 if (!ber_write_OID_String(NULL, &blob, OID)) {
381 data->has_error = true;
382 return false;
385 if (!asn1_write(data, blob.data, blob.length)) {
386 data_blob_free(&blob);
387 data->has_error = true;
388 return false;
390 data_blob_free(&blob);
391 return asn1_pop_tag(data);
394 /* write an octet string */
395 bool asn1_write_OctetString(struct asn1_data *data, const void *p, size_t length)
397 if (!asn1_push_tag(data, ASN1_OCTET_STRING)) return false;
398 if (!asn1_write(data, p, length)) return false;
399 return asn1_pop_tag(data);
402 /* write a LDAP string */
403 bool asn1_write_LDAPString(struct asn1_data *data, const char *s)
405 return asn1_write(data, s, strlen(s));
408 /* write a LDAP string from a DATA_BLOB */
409 bool asn1_write_DATA_BLOB_LDAPString(struct asn1_data *data, const DATA_BLOB *s)
411 return asn1_write(data, s->data, s->length);
414 /* write a general string */
415 bool asn1_write_GeneralString(struct asn1_data *data, const char *s)
417 if (!asn1_push_tag(data, ASN1_GENERAL_STRING)) return false;
418 if (!asn1_write_LDAPString(data, s)) return false;
419 return asn1_pop_tag(data);
422 bool asn1_write_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
424 if (!asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
425 if (!asn1_write(data, blob->data, blob->length)) return false;
426 return asn1_pop_tag(data);
429 /* write a BOOLEAN */
430 bool asn1_write_BOOLEAN(struct asn1_data *data, bool v)
432 if (!asn1_push_tag(data, ASN1_BOOLEAN)) return false;
433 if (!asn1_write_uint8(data, v ? 0xFF : 0)) return false;
434 return asn1_pop_tag(data);
437 bool asn1_read_BOOLEAN(struct asn1_data *data, bool *v)
439 uint8_t tmp = 0;
440 if (!asn1_start_tag(data, ASN1_BOOLEAN)) return false;
441 *v = false;
442 if (!asn1_read_uint8(data, &tmp)) return false;
443 if (tmp == 0xFF) {
444 *v = true;
446 return asn1_end_tag(data);
449 /* write a BOOLEAN in a simple context */
450 bool asn1_write_BOOLEAN_context(struct asn1_data *data, bool v, int context)
452 if (!asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(context))) return false;
453 if (!asn1_write_uint8(data, v ? 0xFF : 0)) return false;
454 return asn1_pop_tag(data);
457 bool asn1_read_BOOLEAN_context(struct asn1_data *data, bool *v, int context)
459 uint8_t tmp = 0;
460 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(context))) return false;
461 *v = false;
462 if (!asn1_read_uint8(data, &tmp)) return false;
463 if (tmp == 0xFF) {
464 *v = true;
466 return asn1_end_tag(data);
469 /* check a BOOLEAN */
470 bool asn1_check_BOOLEAN(struct asn1_data *data, bool v)
472 uint8_t b = 0;
474 if (!asn1_read_uint8(data, &b)) return false;
475 if (b != ASN1_BOOLEAN) {
476 data->has_error = true;
477 return false;
479 if (!asn1_read_uint8(data, &b)) return false;
480 if (b != v) {
481 data->has_error = true;
482 return false;
484 return !data->has_error;
488 /* load a struct asn1_data structure with a lump of data, ready to be parsed */
489 bool asn1_load(struct asn1_data *data, DATA_BLOB blob)
492 * Save the maximum depth
494 unsigned max_depth = data->max_depth;
496 ZERO_STRUCTP(data);
497 data->data = (uint8_t *)talloc_memdup(data, blob.data, blob.length);
498 if (!data->data) {
499 data->has_error = true;
500 return false;
502 data->length = blob.length;
503 data->max_depth = max_depth;
504 return true;
507 /* Peek into an ASN1 buffer, not advancing the pointer */
508 bool asn1_peek(struct asn1_data *data, void *p, int len)
510 if (data->has_error)
511 return false;
513 if (len < 0 || data->ofs + len < data->ofs || data->ofs + len < len)
514 return false;
516 if (data->ofs + len > data->length) {
517 /* we need to mark the buffer as consumed, so the caller knows
518 this was an out of data error, and not a decode error */
519 data->ofs = data->length;
520 return false;
523 memcpy(p, data->data + data->ofs, len);
524 return true;
527 /* read from a ASN1 buffer, advancing the buffer pointer */
528 bool asn1_read(struct asn1_data *data, void *p, int len)
530 if (!asn1_peek(data, p, len)) {
531 data->has_error = true;
532 return false;
535 data->ofs += len;
536 return true;
539 /* read a uint8_t from a ASN1 buffer */
540 bool asn1_read_uint8(struct asn1_data *data, uint8_t *v)
542 return asn1_read(data, v, 1);
545 bool asn1_peek_uint8(struct asn1_data *data, uint8_t *v)
547 return asn1_peek(data, v, 1);
550 bool asn1_peek_tag(struct asn1_data *data, uint8_t tag)
552 uint8_t b;
554 if (asn1_tag_remaining(data) <= 0) {
555 return false;
558 if (!asn1_peek_uint8(data, &b))
559 return false;
561 return (b == tag);
565 * just get the needed size the tag would consume
567 static bool asn1_peek_tag_needed_size(struct asn1_data *data, uint8_t tag,
568 size_t *size)
570 off_t start_ofs = data->ofs;
571 uint8_t b;
572 size_t taglen = 0;
574 if (data->has_error) {
575 return false;
578 if (!asn1_read_uint8(data, &b)) {
579 data->ofs = start_ofs;
580 data->has_error = false;
581 return false;
584 if (b != tag) {
585 data->ofs = start_ofs;
586 data->has_error = false;
587 return false;
590 if (!asn1_read_uint8(data, &b)) {
591 data->ofs = start_ofs;
592 data->has_error = false;
593 return false;
596 if (b & 0x80) {
597 int n = b & 0x7f;
598 if (!asn1_read_uint8(data, &b)) {
599 data->ofs = start_ofs;
600 data->has_error = false;
601 return false;
603 if (n > 4) {
605 * We should not allow more than 4 bytes
606 * for the encoding of the tag length.
608 * Otherwise we'd overflow the taglen
609 * variable on 32 bit systems.
611 data->ofs = start_ofs;
612 data->has_error = false;
613 return false;
615 taglen = b;
616 while (n > 1) {
617 size_t tmp_taglen;
619 if (!asn1_read_uint8(data, &b)) {
620 data->ofs = start_ofs;
621 data->has_error = false;
622 return false;
625 tmp_taglen = (taglen << 8) | b;
627 if ((tmp_taglen >> 8) != taglen) {
628 /* overflow */
629 data->ofs = start_ofs;
630 data->has_error = false;
631 return false;
633 taglen = tmp_taglen;
635 n--;
637 } else {
638 taglen = b;
641 *size = (data->ofs - start_ofs) + taglen;
643 data->ofs = start_ofs;
644 data->has_error = false;
645 return true;
648 /* start reading a nested asn1 structure */
649 bool asn1_start_tag(struct asn1_data *data, uint8_t tag)
651 uint8_t b;
652 struct nesting *nesting;
655 * Check the depth of the parse tree and prevent it from growing
656 * too large.
658 data->depth++;
659 if (data->depth > data->max_depth) {
660 data->has_error = true;
661 return false;
664 if (!asn1_read_uint8(data, &b))
665 return false;
667 if (b != tag) {
668 data->has_error = true;
669 return false;
671 nesting = talloc(data, struct nesting);
672 if (!nesting) {
673 data->has_error = true;
674 return false;
677 if (!asn1_read_uint8(data, &b)) {
678 return false;
681 if (b & 0x80) {
682 int n = b & 0x7f;
683 if (!asn1_read_uint8(data, &b))
684 return false;
685 nesting->taglen = b;
686 while (n > 1) {
687 size_t taglen;
689 if (!asn1_read_uint8(data, &b))
690 return false;
692 taglen = (nesting->taglen << 8) | b;
694 if ((taglen >> 8) != nesting->taglen) {
695 /* overflow */
696 data->has_error = true;
697 return false;
699 nesting->taglen = taglen;
701 n--;
703 } else {
704 nesting->taglen = b;
706 nesting->start = data->ofs;
707 nesting->next = data->nesting;
708 data->nesting = nesting;
709 if (asn1_tag_remaining(data) == -1) {
710 return false;
712 return !data->has_error;
715 /* stop reading a tag */
716 bool asn1_end_tag(struct asn1_data *data)
718 struct nesting *nesting;
720 if (data->depth == 0) {
721 smb_panic("Unbalanced ASN.1 Tag nesting");
723 data->depth--;
724 /* make sure we read it all */
725 if (asn1_tag_remaining(data) != 0) {
726 data->has_error = true;
727 return false;
730 nesting = data->nesting;
732 if (!nesting) {
733 data->has_error = true;
734 return false;
737 data->nesting = nesting->next;
738 talloc_free(nesting);
739 return true;
742 /* work out how many bytes are left in this nested tag */
743 int asn1_tag_remaining(struct asn1_data *data)
745 int remaining;
746 if (data->has_error) {
747 return -1;
750 if (!data->nesting) {
751 data->has_error = true;
752 return -1;
754 remaining = data->nesting->taglen - (data->ofs - data->nesting->start);
755 if (remaining > (data->length - data->ofs)) {
756 data->has_error = true;
757 return -1;
759 if (remaining < 0) {
760 data->has_error = true;
761 return -1;
763 return remaining;
767 * Internal implementation for reading binary OIDs
768 * Reading is done as far in the buffer as valid OID
769 * till buffer ends or not valid sub-identifier is found.
771 static bool _ber_read_OID_String_impl(TALLOC_CTX *mem_ctx, DATA_BLOB blob,
772 char **OID, size_t *bytes_eaten)
774 size_t i;
775 uint8_t *b;
776 unsigned int v;
777 char *tmp_oid = NULL;
779 if (blob.length < 2) return false;
781 b = blob.data;
783 tmp_oid = talloc_asprintf(mem_ctx, "%u.%u", b[0]/40, b[0]%40);
785 if (bytes_eaten != NULL) {
786 *bytes_eaten = 0;
789 for(i = 1, v = 0; i < blob.length; i++) {
790 v = (v<<7) | (b[i]&0x7f);
791 if ( ! (b[i] & 0x80)) {
792 talloc_asprintf_addbuf(&tmp_oid, ".%u", v);
793 v = 0;
794 if (bytes_eaten)
795 *bytes_eaten = i+1;
799 if (tmp_oid == NULL) {
800 goto nomem;
803 *OID = tmp_oid;
804 return true;
806 nomem:
807 return false;
810 /* read an object ID from a data blob */
811 bool ber_read_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob, char **OID)
813 size_t bytes_eaten;
815 if (!_ber_read_OID_String_impl(mem_ctx, blob, OID, &bytes_eaten))
816 return false;
818 return (bytes_eaten == blob.length);
822 * Deserialize partial OID string.
823 * Partial OIDs are in the form:
824 * 1:2.5.6:0x81
825 * 1:2.5.6:0x8182
827 bool ber_read_partial_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob,
828 char **partial_oid)
830 size_t bytes_left;
831 size_t bytes_eaten;
832 char *identifier = NULL;
833 char *tmp_oid = NULL;
835 if (!_ber_read_OID_String_impl(mem_ctx, blob, &tmp_oid, &bytes_eaten))
836 return false;
838 if (bytes_eaten < blob.length) {
839 bytes_left = blob.length - bytes_eaten;
840 identifier = hex_encode_talloc(mem_ctx, &blob.data[bytes_eaten], bytes_left);
841 if (!identifier) goto nomem;
843 *partial_oid = talloc_asprintf_append_buffer(tmp_oid, ":0x%s", identifier);
844 if (!*partial_oid) goto nomem;
845 TALLOC_FREE(identifier);
846 } else {
847 *partial_oid = tmp_oid;
850 return true;
852 nomem:
853 TALLOC_FREE(identifier);
854 TALLOC_FREE(tmp_oid);
855 return false;
858 /* read an object ID from a ASN1 buffer */
859 bool asn1_read_OID(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **OID)
861 DATA_BLOB blob;
862 int len;
864 if (!asn1_start_tag(data, ASN1_OID)) return false;
866 len = asn1_tag_remaining(data);
867 if (len < 0) {
868 data->has_error = true;
869 return false;
872 blob = data_blob(NULL, len);
873 if (!blob.data) {
874 data->has_error = true;
875 return false;
878 if (!asn1_read(data, blob.data, len)) return false;
879 if (!asn1_end_tag(data)) {
880 data_blob_free(&blob);
881 return false;
884 if (!ber_read_OID_String(mem_ctx, blob, OID)) {
885 data->has_error = true;
886 data_blob_free(&blob);
887 return false;
890 data_blob_free(&blob);
891 return true;
894 /* check that the next object ID is correct */
895 bool asn1_check_OID(struct asn1_data *data, const char *OID)
897 char *id;
899 if (!asn1_read_OID(data, data, &id)) return false;
901 if (strcmp(id, OID) != 0) {
902 talloc_free(id);
903 data->has_error = true;
904 return false;
906 talloc_free(id);
907 return true;
910 /* read a LDAPString from a ASN1 buffer */
911 bool asn1_read_LDAPString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
913 int len;
914 len = asn1_tag_remaining(data);
915 if (len < 0) {
916 data->has_error = true;
917 return false;
919 *s = talloc_array(mem_ctx, char, len+1);
920 if (! *s) {
921 data->has_error = true;
922 return false;
924 (*s)[len] = 0;
925 return asn1_read(data, *s, len);
929 /* read a GeneralString from a ASN1 buffer */
930 bool asn1_read_GeneralString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
932 if (!asn1_start_tag(data, ASN1_GENERAL_STRING)) return false;
933 if (!asn1_read_LDAPString(data, mem_ctx, s)) return false;
934 return asn1_end_tag(data);
938 /* read a octet string blob */
939 bool asn1_read_OctetString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob)
941 int len;
942 ZERO_STRUCTP(blob);
943 if (!asn1_start_tag(data, ASN1_OCTET_STRING)) return false;
944 len = asn1_tag_remaining(data);
945 if (len < 0) {
946 data->has_error = true;
947 return false;
949 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
950 if (!blob->data || blob->length < len) {
951 data->has_error = true;
952 return false;
954 if (!asn1_read(data, blob->data, len)) goto err;
955 if (!asn1_end_tag(data)) goto err;
956 blob->length--;
957 blob->data[len] = 0;
958 return true;
960 err:
962 data_blob_free(blob);
963 *blob = data_blob_null;
964 return false;
967 bool asn1_read_ContextSimple(struct asn1_data *data, TALLOC_CTX *mem_ctx, uint8_t num,
968 DATA_BLOB *blob)
970 int len;
971 ZERO_STRUCTP(blob);
972 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
973 len = asn1_tag_remaining(data);
974 if (len < 0) {
975 data->has_error = true;
976 return false;
978 *blob = data_blob_talloc(mem_ctx, NULL, len + 1);
979 if ((len != 0) && (!blob->data)) {
980 data->has_error = true;
981 return false;
983 if (!asn1_read(data, blob->data, len)) return false;
984 blob->length--;
985 blob->data[len] = 0;
986 return asn1_end_tag(data);
989 /* read an integer without tag*/
990 bool asn1_read_implicit_Integer(struct asn1_data *data, int *i)
992 uint8_t b;
993 uint32_t x = 0;
994 bool first_byte = true;
996 *i = 0;
998 while (!data->has_error && asn1_tag_remaining(data)>0) {
999 if (!asn1_read_uint8(data, &b)) return false;
1000 if (first_byte) {
1001 if (b & 0x80) {
1002 /* Number is negative. */
1003 x = (uint32_t)-1;
1005 first_byte = false;
1007 x = (x << 8) + b;
1009 *i = (int)x;
1011 return !data->has_error;
1014 /* read an integer */
1015 bool asn1_read_Integer(struct asn1_data *data, int *i)
1017 *i = 0;
1019 if (!asn1_start_tag(data, ASN1_INTEGER)) return false;
1020 if (!asn1_read_implicit_Integer(data, i)) return false;
1021 return asn1_end_tag(data);
1024 /* read a BIT STRING */
1025 bool asn1_read_BitString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob, uint8_t *padding)
1027 int len;
1028 ZERO_STRUCTP(blob);
1029 if (!asn1_start_tag(data, ASN1_BIT_STRING)) return false;
1030 len = asn1_tag_remaining(data);
1031 if (len < 0) {
1032 data->has_error = true;
1033 return false;
1035 if (!asn1_read_uint8(data, padding)) return false;
1037 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
1038 if (!blob->data || blob->length < len) {
1039 data->has_error = true;
1040 return false;
1042 if (asn1_read(data, blob->data, len - 1)) {
1043 blob->length--;
1044 blob->data[len] = 0;
1045 asn1_end_tag(data);
1048 if (data->has_error) {
1049 data_blob_free(blob);
1050 *blob = data_blob_null;
1051 *padding = 0;
1052 return false;
1054 return true;
1057 /* read a non-negative enumerated value */
1058 bool asn1_read_enumerated(struct asn1_data *data, int *v)
1060 unsigned int val_will_wrap = (0xFFU << ((sizeof(int)*8)-8));
1061 *v = 0;
1063 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
1064 while (!data->has_error && asn1_tag_remaining(data)>0) {
1065 uint8_t b;
1066 if (!asn1_read_uint8(data, &b)) {
1067 return false;
1069 if (*v & val_will_wrap) {
1071 * There is something already in
1072 * the top byte of the int. If we
1073 * shift left by 8 it's going to
1074 * wrap. Prevent this.
1076 data->has_error = true;
1077 return false;
1080 * To please/fool the Undefined Behaviour Sanitizer we cast to
1081 * unsigned for the left shift.
1083 *v = ((unsigned int)*v << 8) + b;
1084 if (*v < 0) {
1085 /* ASN1_ENUMERATED can't be -ve. */
1086 data->has_error = true;
1087 return false;
1090 return asn1_end_tag(data);
1093 /* write an enumerated value to the stream */
1094 bool asn1_write_enumerated(struct asn1_data *data, uint8_t v)
1096 if (!asn1_push_tag(data, ASN1_ENUMERATED)) return false;
1097 if (!asn1_write_uint8(data, v)) return false;
1098 return asn1_pop_tag(data);
1102 Get us the data just written without copying
1104 bool asn1_blob(const struct asn1_data *asn1, DATA_BLOB *blob)
1106 if (asn1->has_error) {
1107 return false;
1109 if (asn1->nesting != NULL) {
1110 return false;
1112 blob->data = asn1->data;
1113 blob->length = asn1->length;
1114 return true;
1117 bool asn1_extract_blob(struct asn1_data *asn1, TALLOC_CTX *mem_ctx,
1118 DATA_BLOB *pblob)
1120 DATA_BLOB blob;
1122 if (!asn1_blob(asn1, &blob)) {
1123 return false;
1126 *pblob = (DATA_BLOB) { .length = blob.length };
1127 pblob->data = talloc_move(mem_ctx, &blob.data);
1130 * Stop access from here on
1132 asn1->has_error = true;
1134 return true;
1138 Fill in an asn1 struct without making a copy
1140 void asn1_load_nocopy(struct asn1_data *data, uint8_t *buf, size_t len)
1143 * Save max_depth
1145 unsigned max_depth = data->max_depth;
1146 ZERO_STRUCTP(data);
1147 data->data = buf;
1148 data->length = len;
1149 data->max_depth = max_depth;
1152 int asn1_peek_full_tag(DATA_BLOB blob, uint8_t tag, size_t *packet_size)
1154 struct asn1_data asn1;
1155 size_t size;
1156 bool ok;
1158 ZERO_STRUCT(asn1);
1159 asn1.data = blob.data;
1160 asn1.length = blob.length;
1162 ok = asn1_peek_tag_needed_size(&asn1, tag, &size);
1163 if (!ok) {
1164 return EMSGSIZE;
1167 if (size > blob.length) {
1168 *packet_size = size;
1169 return EAGAIN;
1172 *packet_size = size;
1173 return 0;
1177 * Get the length of the ASN.1 data
1179 size_t asn1_get_length(const struct asn1_data *asn1) {
1180 return asn1->length;