s3: tests: Add new test_stream_dir_rename.sh test.
[Samba.git] / lib / util / asn1.c
blob1a92a55c2477adbd4fbff39864e6c6346279f049
1 /*
2 Unix SMB/CIFS implementation.
3 simple ASN1 routines
4 Copyright (C) Andrew Tridgell 2001
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "replace.h"
21 #include "system/locale.h"
22 #include "lib/util/asn1.h"
23 #include "lib/util/debug.h"
24 #include "lib/util/samba_util.h"
25 #include "lib/util/smb_strtox.h"
27 struct nesting {
28 off_t start;
29 size_t taglen; /* for parsing */
30 struct nesting *next;
34 struct asn1_data {
35 uint8_t *data;
36 size_t length;
37 off_t ofs;
38 struct nesting *nesting;
39 bool has_error;
40 unsigned depth;
41 unsigned max_depth;
44 /* allocate an asn1 structure */
45 struct asn1_data *asn1_init(TALLOC_CTX *mem_ctx, unsigned max_depth)
47 struct asn1_data *ret = talloc_zero(mem_ctx, struct asn1_data);
48 if (ret == NULL) {
49 DBG_ERR("asn1_init failed! out of memory\n");
50 return ret;
52 ret->max_depth = max_depth;
53 return ret;
56 /* free an asn1 structure */
57 void asn1_free(struct asn1_data *data)
59 talloc_free(data);
62 bool asn1_has_error(const struct asn1_data *data)
64 return data->has_error;
67 void asn1_set_error(struct asn1_data *data)
69 data->has_error = true;
72 bool asn1_has_nesting(const struct asn1_data *data)
74 return data->nesting != NULL;
77 off_t asn1_current_ofs(const struct asn1_data *data)
79 return data->ofs;
82 /* write to the ASN1 buffer, advancing the buffer pointer */
83 bool asn1_write(struct asn1_data *data, const void *p, int len)
85 if (data->has_error) return false;
87 if ((len < 0) || (data->ofs + (size_t)len < data->ofs)) {
88 data->has_error = true;
89 return false;
92 if (data->length < data->ofs+len) {
93 uint8_t *newp;
94 newp = talloc_realloc(data, data->data, uint8_t, data->ofs+len);
95 if (!newp) {
96 data->has_error = true;
97 return false;
99 data->data = newp;
100 data->length = data->ofs+len;
102 if (len > 0) {
103 memcpy(data->data + data->ofs, p, len);
104 data->ofs += len;
106 return true;
109 /* useful fn for writing a uint8_t */
110 bool asn1_write_uint8(struct asn1_data *data, uint8_t v)
112 return asn1_write(data, &v, 1);
115 /* push a tag onto the asn1 data buffer. Used for nested structures */
116 bool asn1_push_tag(struct asn1_data *data, uint8_t tag)
118 struct nesting *nesting;
120 if (!asn1_write_uint8(data, tag)) {
121 return false;
123 nesting = talloc(data, struct nesting);
124 if (!nesting) {
125 data->has_error = true;
126 return false;
129 nesting->start = data->ofs;
130 nesting->next = data->nesting;
131 data->nesting = nesting;
132 return asn1_write_uint8(data, 0xff);
135 /* pop a tag */
136 bool asn1_pop_tag(struct asn1_data *data)
138 struct nesting *nesting;
139 size_t len;
141 if (data->has_error) {
142 return false;
145 nesting = data->nesting;
147 if (!nesting) {
148 data->has_error = true;
149 return false;
151 len = data->ofs - (nesting->start+1);
152 /* yes, this is ugly. We don't know in advance how many bytes the length
153 of a tag will take, so we assumed 1 byte. If we were wrong then we
154 need to correct our mistake */
155 if (len > 0xFFFFFF) {
156 data->data[nesting->start] = 0x84;
157 if (!asn1_write_uint8(data, 0)) return false;
158 if (!asn1_write_uint8(data, 0)) return false;
159 if (!asn1_write_uint8(data, 0)) return false;
160 if (!asn1_write_uint8(data, 0)) return false;
161 memmove(data->data+nesting->start+5, data->data+nesting->start+1, len);
162 data->data[nesting->start+1] = (len>>24) & 0xFF;
163 data->data[nesting->start+2] = (len>>16) & 0xFF;
164 data->data[nesting->start+3] = (len>>8) & 0xFF;
165 data->data[nesting->start+4] = len&0xff;
166 } else if (len > 0xFFFF) {
167 data->data[nesting->start] = 0x83;
168 if (!asn1_write_uint8(data, 0)) return false;
169 if (!asn1_write_uint8(data, 0)) return false;
170 if (!asn1_write_uint8(data, 0)) return false;
171 memmove(data->data+nesting->start+4, data->data+nesting->start+1, len);
172 data->data[nesting->start+1] = (len>>16) & 0xFF;
173 data->data[nesting->start+2] = (len>>8) & 0xFF;
174 data->data[nesting->start+3] = len&0xff;
175 } else if (len > 255) {
176 data->data[nesting->start] = 0x82;
177 if (!asn1_write_uint8(data, 0)) return false;
178 if (!asn1_write_uint8(data, 0)) return false;
179 memmove(data->data+nesting->start+3, data->data+nesting->start+1, len);
180 data->data[nesting->start+1] = len>>8;
181 data->data[nesting->start+2] = len&0xff;
182 } else if (len > 127) {
183 data->data[nesting->start] = 0x81;
184 if (!asn1_write_uint8(data, 0)) return false;
185 memmove(data->data+nesting->start+2, data->data+nesting->start+1, len);
186 data->data[nesting->start+1] = len;
187 } else {
188 data->data[nesting->start] = len;
191 data->nesting = nesting->next;
192 talloc_free(nesting);
193 return true;
196 /* "i" is the one's complement representation, as is the normal result of an
197 * implicit signed->unsigned conversion */
199 static bool push_int_bigendian(struct asn1_data *data, unsigned int i, bool negative)
201 uint8_t lowest = i & 0xFF;
203 i = i >> 8;
204 if (i != 0)
205 if (!push_int_bigendian(data, i, negative))
206 return false;
208 if (data->nesting->start+1 == data->ofs) {
210 /* We did not write anything yet, looking at the highest
211 * valued byte */
213 if (negative) {
214 /* Don't write leading 0xff's */
215 if (lowest == 0xFF)
216 return true;
218 if ((lowest & 0x80) == 0) {
219 /* The only exception for a leading 0xff is if
220 * the highest bit is 0, which would indicate
221 * a positive value */
222 if (!asn1_write_uint8(data, 0xff))
223 return false;
225 } else {
226 if (lowest & 0x80) {
227 /* The highest bit of a positive integer is 1,
228 * this would indicate a negative number. Push
229 * a 0 to indicate a positive one */
230 if (!asn1_write_uint8(data, 0))
231 return false;
236 return asn1_write_uint8(data, lowest);
239 /* write an Integer without the tag framing. Needed for example for the LDAP
240 * Abandon Operation */
242 bool asn1_write_implicit_Integer(struct asn1_data *data, int i)
244 if (data->has_error) {
245 return false;
248 if (i == -1) {
249 /* -1 is special as it consists of all-0xff bytes. In
250 push_int_bigendian this is the only case that is not
251 properly handled, as all 0xff bytes would be handled as
252 leading ones to be ignored. */
253 return asn1_write_uint8(data, 0xff);
254 } else {
255 return push_int_bigendian(data, i, i<0);
260 /* write an integer */
261 bool asn1_write_Integer(struct asn1_data *data, int i)
263 if (!asn1_push_tag(data, ASN1_INTEGER)) return false;
264 if (!asn1_write_implicit_Integer(data, i)) return false;
265 return asn1_pop_tag(data);
268 /* write a BIT STRING */
269 bool asn1_write_BitString(struct asn1_data *data, const void *p, size_t length, uint8_t padding)
271 if (!asn1_push_tag(data, ASN1_BIT_STRING)) return false;
272 if (!asn1_write_uint8(data, padding)) return false;
273 if (!asn1_write(data, p, length)) return false;
274 return asn1_pop_tag(data);
277 bool ber_write_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB *blob, const char *OID)
279 unsigned int v, v2;
280 const char *p = (const char *)OID;
281 char *newp;
282 int i;
283 int error = 0;
285 if (!isdigit(*p)) return false;
286 v = smb_strtoul(p, &newp, 10, &error, SMB_STR_STANDARD);
287 if (newp[0] != '.' || error != 0) {
288 return false;
290 p = newp + 1;
292 if (!isdigit(*p)) return false;
293 v2 = smb_strtoul(p, &newp, 10, &error, SMB_STR_STANDARD);
294 if (newp[0] != '.' || error != 0) {
295 return false;
297 p = newp + 1;
299 /*the ber representation can't use more space than the string one */
300 *blob = data_blob_talloc(mem_ctx, NULL, strlen(OID));
301 if (!blob->data) return false;
303 blob->data[0] = 40*v + v2;
305 i = 1;
306 while (*p) {
307 if (!isdigit(*p)) return false;
308 v = smb_strtoul(p, &newp, 10, &error, SMB_STR_STANDARD);
309 if (newp[0] == '.' || error != 0) {
310 p = newp + 1;
311 /* check for empty last component */
312 if (!*p) return false;
313 } else if (newp[0] == '\0') {
314 p = newp;
315 } else {
316 data_blob_free(blob);
317 return false;
319 if (v >= (1<<28)) blob->data[i++] = (0x80 | ((v>>28)&0x7f));
320 if (v >= (1<<21)) blob->data[i++] = (0x80 | ((v>>21)&0x7f));
321 if (v >= (1<<14)) blob->data[i++] = (0x80 | ((v>>14)&0x7f));
322 if (v >= (1<<7)) blob->data[i++] = (0x80 | ((v>>7)&0x7f));
323 blob->data[i++] = (v&0x7f);
326 blob->length = i;
328 return true;
332 * Serialize partial OID string.
333 * Partial OIDs are in the form:
334 * 1:2.5.6:0x81
335 * 1:2.5.6:0x8182
337 bool ber_write_partial_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB *blob, const char *partial_oid)
339 TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
340 char *oid = talloc_strdup(tmp_ctx, partial_oid);
341 char *p;
343 /* truncate partial part so ber_write_OID_String() works */
344 p = strchr(oid, ':');
345 if (p) {
346 *p = '\0';
347 p++;
350 if (!ber_write_OID_String(mem_ctx, blob, oid)) {
351 talloc_free(tmp_ctx);
352 return false;
355 /* Add partially encoded sub-identifier */
356 if (p) {
357 DATA_BLOB tmp_blob = strhex_to_data_blob(tmp_ctx, p);
358 if (!data_blob_append(mem_ctx, blob, tmp_blob.data,
359 tmp_blob.length)) {
360 talloc_free(tmp_ctx);
361 return false;
365 talloc_free(tmp_ctx);
367 return true;
370 /* write an object ID to a ASN1 buffer */
371 bool asn1_write_OID(struct asn1_data *data, const char *OID)
373 DATA_BLOB blob;
375 if (!asn1_push_tag(data, ASN1_OID)) return false;
377 if (!ber_write_OID_String(NULL, &blob, OID)) {
378 data->has_error = true;
379 return false;
382 if (!asn1_write(data, blob.data, blob.length)) {
383 data_blob_free(&blob);
384 data->has_error = true;
385 return false;
387 data_blob_free(&blob);
388 return asn1_pop_tag(data);
391 /* write an octet string */
392 bool asn1_write_OctetString(struct asn1_data *data, const void *p, size_t length)
394 if (!asn1_push_tag(data, ASN1_OCTET_STRING)) return false;
395 if (!asn1_write(data, p, length)) return false;
396 return asn1_pop_tag(data);
399 /* write a LDAP string */
400 bool asn1_write_LDAPString(struct asn1_data *data, const char *s)
402 return asn1_write(data, s, strlen(s));
405 /* write a LDAP string from a DATA_BLOB */
406 bool asn1_write_DATA_BLOB_LDAPString(struct asn1_data *data, const DATA_BLOB *s)
408 return asn1_write(data, s->data, s->length);
411 /* write a general string */
412 bool asn1_write_GeneralString(struct asn1_data *data, const char *s)
414 if (!asn1_push_tag(data, ASN1_GENERAL_STRING)) return false;
415 if (!asn1_write_LDAPString(data, s)) return false;
416 return asn1_pop_tag(data);
419 bool asn1_write_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
421 if (!asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
422 if (!asn1_write(data, blob->data, blob->length)) return false;
423 return asn1_pop_tag(data);
426 /* write a BOOLEAN */
427 bool asn1_write_BOOLEAN(struct asn1_data *data, bool v)
429 if (!asn1_push_tag(data, ASN1_BOOLEAN)) return false;
430 if (!asn1_write_uint8(data, v ? 0xFF : 0)) return false;
431 return asn1_pop_tag(data);
434 bool asn1_read_BOOLEAN(struct asn1_data *data, bool *v)
436 uint8_t tmp = 0;
437 if (!asn1_start_tag(data, ASN1_BOOLEAN)) return false;
438 *v = false;
439 if (!asn1_read_uint8(data, &tmp)) return false;
440 if (tmp == 0xFF) {
441 *v = true;
443 return asn1_end_tag(data);
446 /* write a BOOLEAN in a simple context */
447 bool asn1_write_BOOLEAN_context(struct asn1_data *data, bool v, int context)
449 if (!asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(context))) return false;
450 if (!asn1_write_uint8(data, v ? 0xFF : 0)) return false;
451 return asn1_pop_tag(data);
454 bool asn1_read_BOOLEAN_context(struct asn1_data *data, bool *v, int context)
456 uint8_t tmp = 0;
457 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(context))) return false;
458 *v = false;
459 if (!asn1_read_uint8(data, &tmp)) return false;
460 if (tmp == 0xFF) {
461 *v = true;
463 return asn1_end_tag(data);
466 /* check a BOOLEAN */
467 bool asn1_check_BOOLEAN(struct asn1_data *data, bool v)
469 uint8_t b = 0;
471 if (!asn1_read_uint8(data, &b)) return false;
472 if (b != ASN1_BOOLEAN) {
473 data->has_error = true;
474 return false;
476 if (!asn1_read_uint8(data, &b)) return false;
477 if (b != v) {
478 data->has_error = true;
479 return false;
481 return !data->has_error;
485 /* load a struct asn1_data structure with a lump of data, ready to be parsed */
486 bool asn1_load(struct asn1_data *data, DATA_BLOB blob)
489 * Save the maximum depth
491 unsigned max_depth = data->max_depth;
493 ZERO_STRUCTP(data);
494 data->data = (uint8_t *)talloc_memdup(data, blob.data, blob.length);
495 if (!data->data) {
496 data->has_error = true;
497 return false;
499 data->length = blob.length;
500 data->max_depth = max_depth;
501 return true;
504 /* Peek into an ASN1 buffer, not advancing the pointer */
505 bool asn1_peek(struct asn1_data *data, void *p, int len)
507 if (data->has_error)
508 return false;
510 if (len < 0 || data->ofs + len < data->ofs || data->ofs + len < len)
511 return false;
513 if (data->ofs + len > data->length) {
514 /* we need to mark the buffer as consumed, so the caller knows
515 this was an out of data error, and not a decode error */
516 data->ofs = data->length;
517 return false;
520 memcpy(p, data->data + data->ofs, len);
521 return true;
524 /* read from a ASN1 buffer, advancing the buffer pointer */
525 bool asn1_read(struct asn1_data *data, void *p, int len)
527 if (!asn1_peek(data, p, len)) {
528 data->has_error = true;
529 return false;
532 data->ofs += len;
533 return true;
536 /* read a uint8_t from a ASN1 buffer */
537 bool asn1_read_uint8(struct asn1_data *data, uint8_t *v)
539 return asn1_read(data, v, 1);
542 bool asn1_peek_uint8(struct asn1_data *data, uint8_t *v)
544 return asn1_peek(data, v, 1);
547 bool asn1_peek_tag(struct asn1_data *data, uint8_t tag)
549 uint8_t b;
551 if (asn1_tag_remaining(data) <= 0) {
552 return false;
555 if (!asn1_peek_uint8(data, &b))
556 return false;
558 return (b == tag);
562 * just get the needed size the tag would consume
564 static bool asn1_peek_tag_needed_size(struct asn1_data *data, uint8_t tag,
565 size_t *size)
567 off_t start_ofs = data->ofs;
568 uint8_t b;
569 size_t taglen = 0;
571 if (data->has_error) {
572 return false;
575 if (!asn1_read_uint8(data, &b)) {
576 data->ofs = start_ofs;
577 data->has_error = false;
578 return false;
581 if (b != tag) {
582 data->ofs = start_ofs;
583 data->has_error = false;
584 return false;
587 if (!asn1_read_uint8(data, &b)) {
588 data->ofs = start_ofs;
589 data->has_error = false;
590 return false;
593 if (b & 0x80) {
594 int n = b & 0x7f;
595 if (!asn1_read_uint8(data, &b)) {
596 data->ofs = start_ofs;
597 data->has_error = false;
598 return false;
600 if (n > 4) {
602 * We should not allow more than 4 bytes
603 * for the encoding of the tag length.
605 * Otherwise we'd overflow the taglen
606 * variable on 32 bit systems.
608 data->ofs = start_ofs;
609 data->has_error = false;
610 return false;
612 taglen = b;
613 while (n > 1) {
614 size_t tmp_taglen;
616 if (!asn1_read_uint8(data, &b)) {
617 data->ofs = start_ofs;
618 data->has_error = false;
619 return false;
622 tmp_taglen = (taglen << 8) | b;
624 if ((tmp_taglen >> 8) != taglen) {
625 /* overflow */
626 data->ofs = start_ofs;
627 data->has_error = false;
628 return false;
630 taglen = tmp_taglen;
632 n--;
634 } else {
635 taglen = b;
638 *size = (data->ofs - start_ofs) + taglen;
640 data->ofs = start_ofs;
641 data->has_error = false;
642 return true;
645 /* start reading a nested asn1 structure */
646 bool asn1_start_tag(struct asn1_data *data, uint8_t tag)
648 uint8_t b;
649 struct nesting *nesting;
652 * Check the depth of the parse tree and prevent it from growing
653 * too large.
655 data->depth++;
656 if (data->depth > data->max_depth) {
657 data->has_error = true;
658 return false;
661 if (!asn1_read_uint8(data, &b))
662 return false;
664 if (b != tag) {
665 data->has_error = true;
666 return false;
668 nesting = talloc(data, struct nesting);
669 if (!nesting) {
670 data->has_error = true;
671 return false;
674 if (!asn1_read_uint8(data, &b)) {
675 return false;
678 if (b & 0x80) {
679 int n = b & 0x7f;
680 if (!asn1_read_uint8(data, &b))
681 return false;
682 nesting->taglen = b;
683 while (n > 1) {
684 size_t taglen;
686 if (!asn1_read_uint8(data, &b))
687 return false;
689 taglen = (nesting->taglen << 8) | b;
691 if ((taglen >> 8) != nesting->taglen) {
692 /* overflow */
693 data->has_error = true;
694 return false;
696 nesting->taglen = taglen;
698 n--;
700 } else {
701 nesting->taglen = b;
703 nesting->start = data->ofs;
704 nesting->next = data->nesting;
705 data->nesting = nesting;
706 if (asn1_tag_remaining(data) == -1) {
707 return false;
709 return !data->has_error;
712 /* stop reading a tag */
713 bool asn1_end_tag(struct asn1_data *data)
715 struct nesting *nesting;
717 if (data->depth == 0) {
718 smb_panic("Unbalanced ASN.1 Tag nesting");
720 data->depth--;
721 /* make sure we read it all */
722 if (asn1_tag_remaining(data) != 0) {
723 data->has_error = true;
724 return false;
727 nesting = data->nesting;
729 if (!nesting) {
730 data->has_error = true;
731 return false;
734 data->nesting = nesting->next;
735 talloc_free(nesting);
736 return true;
739 /* work out how many bytes are left in this nested tag */
740 int asn1_tag_remaining(struct asn1_data *data)
742 int remaining;
743 if (data->has_error) {
744 return -1;
747 if (!data->nesting) {
748 data->has_error = true;
749 return -1;
751 remaining = data->nesting->taglen - (data->ofs - data->nesting->start);
752 if (remaining > (data->length - data->ofs)) {
753 data->has_error = true;
754 return -1;
756 if (remaining < 0) {
757 data->has_error = true;
758 return -1;
760 return remaining;
764 * Internal implementation for reading binary OIDs
765 * Reading is done as far in the buffer as valid OID
766 * till buffer ends or not valid sub-identifier is found.
768 static bool _ber_read_OID_String_impl(TALLOC_CTX *mem_ctx, DATA_BLOB blob,
769 char **OID, size_t *bytes_eaten)
771 int i;
772 uint8_t *b;
773 unsigned int v;
774 char *tmp_oid = NULL;
776 if (blob.length < 2) return false;
778 b = blob.data;
780 tmp_oid = talloc_asprintf(mem_ctx, "%u.%u", b[0]/40, b[0]%40);
781 if (!tmp_oid) goto nomem;
783 if (bytes_eaten != NULL) {
784 *bytes_eaten = 0;
787 for(i = 1, v = 0; i < blob.length; i++) {
788 v = (v<<7) | (b[i]&0x7f);
789 if ( ! (b[i] & 0x80)) {
790 tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u", v);
791 v = 0;
792 if (bytes_eaten)
793 *bytes_eaten = i+1;
795 if (!tmp_oid) goto nomem;
798 *OID = tmp_oid;
799 return true;
801 nomem:
802 return false;
805 /* read an object ID from a data blob */
806 bool ber_read_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob, char **OID)
808 size_t bytes_eaten;
810 if (!_ber_read_OID_String_impl(mem_ctx, blob, OID, &bytes_eaten))
811 return false;
813 return (bytes_eaten == blob.length);
817 * Deserialize partial OID string.
818 * Partial OIDs are in the form:
819 * 1:2.5.6:0x81
820 * 1:2.5.6:0x8182
822 bool ber_read_partial_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob,
823 char **partial_oid)
825 size_t bytes_left;
826 size_t bytes_eaten;
827 char *identifier = NULL;
828 char *tmp_oid = NULL;
830 if (!_ber_read_OID_String_impl(mem_ctx, blob, &tmp_oid, &bytes_eaten))
831 return false;
833 if (bytes_eaten < blob.length) {
834 bytes_left = blob.length - bytes_eaten;
835 identifier = hex_encode_talloc(mem_ctx, &blob.data[bytes_eaten], bytes_left);
836 if (!identifier) goto nomem;
838 *partial_oid = talloc_asprintf_append_buffer(tmp_oid, ":0x%s", identifier);
839 if (!*partial_oid) goto nomem;
840 TALLOC_FREE(identifier);
841 } else {
842 *partial_oid = tmp_oid;
845 return true;
847 nomem:
848 TALLOC_FREE(identifier);
849 TALLOC_FREE(tmp_oid);
850 return false;
853 /* read an object ID from a ASN1 buffer */
854 bool asn1_read_OID(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **OID)
856 DATA_BLOB blob;
857 int len;
859 if (!asn1_start_tag(data, ASN1_OID)) return false;
861 len = asn1_tag_remaining(data);
862 if (len < 0) {
863 data->has_error = true;
864 return false;
867 blob = data_blob(NULL, len);
868 if (!blob.data) {
869 data->has_error = true;
870 return false;
873 if (!asn1_read(data, blob.data, len)) return false;
874 if (!asn1_end_tag(data)) {
875 data_blob_free(&blob);
876 return false;
879 if (!ber_read_OID_String(mem_ctx, blob, OID)) {
880 data->has_error = true;
881 data_blob_free(&blob);
882 return false;
885 data_blob_free(&blob);
886 return true;
889 /* check that the next object ID is correct */
890 bool asn1_check_OID(struct asn1_data *data, const char *OID)
892 char *id;
894 if (!asn1_read_OID(data, data, &id)) return false;
896 if (strcmp(id, OID) != 0) {
897 talloc_free(id);
898 data->has_error = true;
899 return false;
901 talloc_free(id);
902 return true;
905 /* read a LDAPString from a ASN1 buffer */
906 bool asn1_read_LDAPString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
908 int len;
909 len = asn1_tag_remaining(data);
910 if (len < 0) {
911 data->has_error = true;
912 return false;
914 *s = talloc_array(mem_ctx, char, len+1);
915 if (! *s) {
916 data->has_error = true;
917 return false;
919 (*s)[len] = 0;
920 return asn1_read(data, *s, len);
924 /* read a GeneralString from a ASN1 buffer */
925 bool asn1_read_GeneralString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
927 if (!asn1_start_tag(data, ASN1_GENERAL_STRING)) return false;
928 if (!asn1_read_LDAPString(data, mem_ctx, s)) return false;
929 return asn1_end_tag(data);
933 /* read a octet string blob */
934 bool asn1_read_OctetString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob)
936 int len;
937 ZERO_STRUCTP(blob);
938 if (!asn1_start_tag(data, ASN1_OCTET_STRING)) return false;
939 len = asn1_tag_remaining(data);
940 if (len < 0) {
941 data->has_error = true;
942 return false;
944 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
945 if (!blob->data || blob->length < len) {
946 data->has_error = true;
947 return false;
949 if (!asn1_read(data, blob->data, len)) goto err;
950 if (!asn1_end_tag(data)) goto err;
951 blob->length--;
952 blob->data[len] = 0;
953 return true;
955 err:
957 data_blob_free(blob);
958 *blob = data_blob_null;
959 return false;
962 bool asn1_read_ContextSimple(struct asn1_data *data, TALLOC_CTX *mem_ctx, uint8_t num,
963 DATA_BLOB *blob)
965 int len;
966 ZERO_STRUCTP(blob);
967 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
968 len = asn1_tag_remaining(data);
969 if (len < 0) {
970 data->has_error = true;
971 return false;
973 *blob = data_blob_talloc(mem_ctx, NULL, len + 1);
974 if ((len != 0) && (!blob->data)) {
975 data->has_error = true;
976 return false;
978 if (!asn1_read(data, blob->data, len)) return false;
979 blob->length--;
980 blob->data[len] = 0;
981 return asn1_end_tag(data);
984 /* read an integer without tag*/
985 bool asn1_read_implicit_Integer(struct asn1_data *data, int *i)
987 uint8_t b;
988 uint32_t x = 0;
989 bool first_byte = true;
991 *i = 0;
993 while (!data->has_error && asn1_tag_remaining(data)>0) {
994 if (!asn1_read_uint8(data, &b)) return false;
995 if (first_byte) {
996 if (b & 0x80) {
997 /* Number is negative. */
998 x = (uint32_t)-1;
1000 first_byte = false;
1002 x = (x << 8) + b;
1004 *i = (int)x;
1006 return !data->has_error;
1009 /* read an integer */
1010 bool asn1_read_Integer(struct asn1_data *data, int *i)
1012 *i = 0;
1014 if (!asn1_start_tag(data, ASN1_INTEGER)) return false;
1015 if (!asn1_read_implicit_Integer(data, i)) return false;
1016 return asn1_end_tag(data);
1019 /* read a BIT STRING */
1020 bool asn1_read_BitString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob, uint8_t *padding)
1022 int len;
1023 ZERO_STRUCTP(blob);
1024 if (!asn1_start_tag(data, ASN1_BIT_STRING)) return false;
1025 len = asn1_tag_remaining(data);
1026 if (len < 0) {
1027 data->has_error = true;
1028 return false;
1030 if (!asn1_read_uint8(data, padding)) return false;
1032 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
1033 if (!blob->data || blob->length < len) {
1034 data->has_error = true;
1035 return false;
1037 if (asn1_read(data, blob->data, len - 1)) {
1038 blob->length--;
1039 blob->data[len] = 0;
1040 asn1_end_tag(data);
1043 if (data->has_error) {
1044 data_blob_free(blob);
1045 *blob = data_blob_null;
1046 *padding = 0;
1047 return false;
1049 return true;
1052 /* read a non-negative enumerated value */
1053 bool asn1_read_enumerated(struct asn1_data *data, int *v)
1055 unsigned int val_will_wrap = (0xFFU << ((sizeof(int)*8)-8));
1056 *v = 0;
1058 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
1059 while (!data->has_error && asn1_tag_remaining(data)>0) {
1060 uint8_t b;
1061 if (!asn1_read_uint8(data, &b)) {
1062 return false;
1064 if (*v & val_will_wrap) {
1066 * There is something already in
1067 * the top byte of the int. If we
1068 * shift left by 8 it's going to
1069 * wrap. Prevent this.
1071 data->has_error = true;
1072 return false;
1075 * To please/fool the Undefined Behaviour Sanitizer we cast to
1076 * unsigned for the left shift.
1078 *v = ((unsigned int)*v << 8) + b;
1079 if (*v < 0) {
1080 /* ASN1_ENUMERATED can't be -ve. */
1081 data->has_error = true;
1082 return false;
1085 return asn1_end_tag(data);
1088 /* write an enumerated value to the stream */
1089 bool asn1_write_enumerated(struct asn1_data *data, uint8_t v)
1091 if (!asn1_push_tag(data, ASN1_ENUMERATED)) return false;
1092 if (!asn1_write_uint8(data, v)) return false;
1093 return asn1_pop_tag(data);
1097 Get us the data just written without copying
1099 bool asn1_blob(const struct asn1_data *asn1, DATA_BLOB *blob)
1101 if (asn1->has_error) {
1102 return false;
1104 if (asn1->nesting != NULL) {
1105 return false;
1107 blob->data = asn1->data;
1108 blob->length = asn1->length;
1109 return true;
1112 bool asn1_extract_blob(struct asn1_data *asn1, TALLOC_CTX *mem_ctx,
1113 DATA_BLOB *pblob)
1115 DATA_BLOB blob;
1117 if (!asn1_blob(asn1, &blob)) {
1118 return false;
1121 *pblob = (DATA_BLOB) { .length = blob.length };
1122 pblob->data = talloc_move(mem_ctx, &blob.data);
1125 * Stop access from here on
1127 asn1->has_error = true;
1129 return true;
1133 Fill in an asn1 struct without making a copy
1135 void asn1_load_nocopy(struct asn1_data *data, uint8_t *buf, size_t len)
1138 * Save max_depth
1140 unsigned max_depth = data->max_depth;
1141 ZERO_STRUCTP(data);
1142 data->data = buf;
1143 data->length = len;
1144 data->max_depth = max_depth;
1147 int asn1_peek_full_tag(DATA_BLOB blob, uint8_t tag, size_t *packet_size)
1149 struct asn1_data asn1;
1150 size_t size;
1151 bool ok;
1153 ZERO_STRUCT(asn1);
1154 asn1.data = blob.data;
1155 asn1.length = blob.length;
1157 ok = asn1_peek_tag_needed_size(&asn1, tag, &size);
1158 if (!ok) {
1159 return EMSGSIZE;
1162 if (size > blob.length) {
1163 *packet_size = size;
1164 return EAGAIN;
1167 *packet_size = size;
1168 return 0;
1172 * Get the length of the ASN.1 data
1174 size_t asn1_get_length(const struct asn1_data *asn1) {
1175 return asn1->length;