Revert "lib: tdb: Use sigaction when testing for robust mutexes."
[Samba.git] / lib / tdb / common / mutex.c
blob12f89d3b3da7e2990a9512cad96f291de60342e3
1 /*
2 Unix SMB/CIFS implementation.
4 trivial database library
6 Copyright (C) Volker Lendecke 2012,2013
7 Copyright (C) Stefan Metzmacher 2013,2014
8 Copyright (C) Michael Adam 2014
10 ** NOTE! The following LGPL license applies to the tdb
11 ** library. This does NOT imply that all of Samba is released
12 ** under the LGPL
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
27 #include "tdb_private.h"
28 #include "system/threads.h"
30 #ifdef USE_TDB_MUTEX_LOCKING
33 * If we run with mutexes, we store the "struct tdb_mutexes" at the
34 * beginning of the file. We store an additional tdb_header right
35 * beyond the mutex area, page aligned. All the offsets within the tdb
36 * are relative to the area behind the mutex area. tdb->map_ptr points
37 * behind the mmap area as well, so the read and write path in the
38 * mutex case can remain unchanged.
40 * Early in the mutex development the mutexes were placed between the hash
41 * chain pointers and the real tdb data. This had two drawbacks: First, it
42 * made pointer calculations more complex. Second, we had to mmap the mutex
43 * area twice. One was the normal map_ptr in the tdb. This frequently changed
44 * from within tdb_oob. At least the Linux glibc robust mutex code assumes
45 * constant pointers in memory, so a constantly changing mmap area destroys
46 * the mutex list. So we had to mmap the first bytes of the file with a second
47 * mmap call. With that scheme, very weird errors happened that could be
48 * easily fixed by doing the mutex mmap in a second file. It seemed that
49 * mapping the same memory area twice does not end up in accessing the same
50 * physical page, looking at the mutexes in gdb it seemed that old data showed
51 * up after some re-mapping. To avoid a separate mutex file, the code now puts
52 * the real content of the tdb file after the mutex area. This way we do not
53 * have overlapping mmap areas, the mutex area is mmapped once and not
54 * changed, the tdb data area's mmap is constantly changed but does not
55 * overlap.
58 struct tdb_mutexes {
59 struct tdb_header hdr;
61 /* protect allrecord_lock */
62 pthread_mutex_t allrecord_mutex;
65 * F_UNLCK: free,
66 * F_RDLCK: shared,
67 * F_WRLCK: exclusive
69 short int allrecord_lock;
72 * Index 0 is the freelist mutex, followed by
73 * one mutex per hashchain.
75 pthread_mutex_t hashchains[1];
78 bool tdb_have_mutexes(struct tdb_context *tdb)
80 return ((tdb->feature_flags & TDB_FEATURE_FLAG_MUTEX) != 0);
83 size_t tdb_mutex_size(struct tdb_context *tdb)
85 size_t mutex_size;
87 if (!tdb_have_mutexes(tdb)) {
88 return 0;
91 mutex_size = sizeof(struct tdb_mutexes);
92 mutex_size += tdb->hash_size * sizeof(pthread_mutex_t);
94 return TDB_ALIGN(mutex_size, tdb->page_size);
98 * Get the index for a chain mutex
100 static bool tdb_mutex_index(struct tdb_context *tdb, off_t off, off_t len,
101 unsigned *idx)
104 * Weird but true: We fcntl lock 1 byte at an offset 4 bytes before
105 * the 4 bytes of the freelist start and the hash chain that is about
106 * to be locked. See lock_offset() where the freelist is -1 vs the
107 * "+1" in TDB_HASH_TOP(). Because the mutex array is represented in
108 * the tdb file itself as data, we need to adjust the offset here.
110 const off_t freelist_lock_ofs = FREELIST_TOP - sizeof(tdb_off_t);
112 if (!tdb_have_mutexes(tdb)) {
113 return false;
115 if (len != 1) {
116 /* Possibly the allrecord lock */
117 return false;
119 if (off < freelist_lock_ofs) {
120 /* One of the special locks */
121 return false;
123 if (tdb->hash_size == 0) {
124 /* tdb not initialized yet, called from tdb_open_ex() */
125 return false;
127 if (off >= TDB_DATA_START(tdb->hash_size)) {
128 /* Single record lock from traverses */
129 return false;
133 * Now we know it's a freelist or hash chain lock. Those are always 4
134 * byte aligned. Paranoia check.
136 if ((off % sizeof(tdb_off_t)) != 0) {
137 abort();
141 * Re-index the fcntl offset into an offset into the mutex array
143 off -= freelist_lock_ofs; /* rebase to index 0 */
144 off /= sizeof(tdb_off_t); /* 0 for freelist 1-n for hashchain */
146 *idx = off;
147 return true;
150 static bool tdb_have_mutex_chainlocks(struct tdb_context *tdb)
152 size_t i;
154 for (i=0; i < tdb->num_lockrecs; i++) {
155 bool ret;
156 unsigned idx;
158 ret = tdb_mutex_index(tdb,
159 tdb->lockrecs[i].off,
160 tdb->lockrecs[i].count,
161 &idx);
162 if (!ret) {
163 continue;
166 if (idx == 0) {
167 /* this is the freelist mutex */
168 continue;
171 return true;
174 return false;
177 static int chain_mutex_lock(pthread_mutex_t *m, bool waitflag)
179 int ret;
181 if (waitflag) {
182 ret = pthread_mutex_lock(m);
183 } else {
184 ret = pthread_mutex_trylock(m);
186 if (ret != EOWNERDEAD) {
187 return ret;
191 * For chainlocks, we don't do any cleanup (yet?)
193 return pthread_mutex_consistent(m);
196 static int allrecord_mutex_lock(struct tdb_mutexes *m, bool waitflag)
198 int ret;
200 if (waitflag) {
201 ret = pthread_mutex_lock(&m->allrecord_mutex);
202 } else {
203 ret = pthread_mutex_trylock(&m->allrecord_mutex);
205 if (ret != EOWNERDEAD) {
206 return ret;
210 * The allrecord lock holder died. We need to reset the allrecord_lock
211 * to F_UNLCK. This should also be the indication for
212 * tdb_needs_recovery.
214 m->allrecord_lock = F_UNLCK;
216 return pthread_mutex_consistent(&m->allrecord_mutex);
219 bool tdb_mutex_lock(struct tdb_context *tdb, int rw, off_t off, off_t len,
220 bool waitflag, int *pret)
222 struct tdb_mutexes *m = tdb->mutexes;
223 pthread_mutex_t *chain;
224 int ret;
225 unsigned idx;
226 bool allrecord_ok;
228 if (!tdb_mutex_index(tdb, off, len, &idx)) {
229 return false;
231 chain = &m->hashchains[idx];
233 again:
234 ret = chain_mutex_lock(chain, waitflag);
235 if (ret == EBUSY) {
236 ret = EAGAIN;
238 if (ret != 0) {
239 errno = ret;
240 goto fail;
243 if (idx == 0) {
245 * This is a freelist lock, which is independent to
246 * the allrecord lock. So we're done once we got the
247 * freelist mutex.
249 *pret = 0;
250 return true;
253 if (tdb_have_mutex_chainlocks(tdb)) {
255 * We can only check the allrecord lock once. If we do it with
256 * one chain mutex locked, we will deadlock with the allrecord
257 * locker process in the following way: We lock the first hash
258 * chain, we check for the allrecord lock. We keep the hash
259 * chain locked. Then the allrecord locker locks the
260 * allrecord_mutex. It walks the list of chain mutexes,
261 * locking them all in sequence. Meanwhile, we have the chain
262 * mutex locked, so the allrecord locker blocks trying to lock
263 * our chain mutex. Then we come in and try to lock the second
264 * chain lock, which in most cases will be the freelist. We
265 * see that the allrecord lock is locked and put ourselves on
266 * the allrecord_mutex. This will never be signalled though
267 * because the allrecord locker waits for us to give up the
268 * chain lock.
271 *pret = 0;
272 return true;
276 * Check if someone is has the allrecord lock: queue if so.
279 allrecord_ok = false;
281 if (m->allrecord_lock == F_UNLCK) {
283 * allrecord lock not taken
285 allrecord_ok = true;
288 if ((m->allrecord_lock == F_RDLCK) && (rw == F_RDLCK)) {
290 * allrecord shared lock taken, but we only want to read
292 allrecord_ok = true;
295 if (allrecord_ok) {
296 *pret = 0;
297 return true;
300 ret = pthread_mutex_unlock(chain);
301 if (ret != 0) {
302 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
303 "(chain_mutex) failed: %s\n", strerror(ret)));
304 errno = ret;
305 goto fail;
307 ret = allrecord_mutex_lock(m, waitflag);
308 if (ret == EBUSY) {
309 ret = EAGAIN;
311 if (ret != 0) {
312 if (waitflag || (ret != EAGAIN)) {
313 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_%slock"
314 "(allrecord_mutex) failed: %s\n",
315 waitflag ? "" : "try_", strerror(ret)));
317 errno = ret;
318 goto fail;
320 ret = pthread_mutex_unlock(&m->allrecord_mutex);
321 if (ret != 0) {
322 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
323 "(allrecord_mutex) failed: %s\n", strerror(ret)));
324 errno = ret;
325 goto fail;
327 goto again;
329 fail:
330 *pret = -1;
331 return true;
334 bool tdb_mutex_unlock(struct tdb_context *tdb, int rw, off_t off, off_t len,
335 int *pret)
337 struct tdb_mutexes *m = tdb->mutexes;
338 pthread_mutex_t *chain;
339 int ret;
340 unsigned idx;
342 if (!tdb_mutex_index(tdb, off, len, &idx)) {
343 return false;
345 chain = &m->hashchains[idx];
347 ret = pthread_mutex_unlock(chain);
348 if (ret == 0) {
349 *pret = 0;
350 return true;
352 errno = ret;
353 *pret = -1;
354 return true;
357 int tdb_mutex_allrecord_lock(struct tdb_context *tdb, int ltype,
358 enum tdb_lock_flags flags)
360 struct tdb_mutexes *m = tdb->mutexes;
361 int ret;
362 uint32_t i;
363 bool waitflag = (flags & TDB_LOCK_WAIT);
364 int saved_errno;
366 if (tdb->flags & TDB_NOLOCK) {
367 return 0;
370 if (flags & TDB_LOCK_MARK_ONLY) {
371 return 0;
374 ret = allrecord_mutex_lock(m, waitflag);
375 if (!waitflag && (ret == EBUSY)) {
376 errno = EAGAIN;
377 tdb->ecode = TDB_ERR_LOCK;
378 return -1;
380 if (ret != 0) {
381 if (!(flags & TDB_LOCK_PROBE)) {
382 TDB_LOG((tdb, TDB_DEBUG_TRACE,
383 "allrecord_mutex_lock() failed: %s\n",
384 strerror(ret)));
386 tdb->ecode = TDB_ERR_LOCK;
387 return -1;
390 if (m->allrecord_lock != F_UNLCK) {
391 TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
392 (int)m->allrecord_lock));
393 goto fail_unlock_allrecord_mutex;
395 m->allrecord_lock = (ltype == F_RDLCK) ? F_RDLCK : F_WRLCK;
397 for (i=0; i<tdb->hash_size; i++) {
399 /* ignore hashchains[0], the freelist */
400 pthread_mutex_t *chain = &m->hashchains[i+1];
402 ret = chain_mutex_lock(chain, waitflag);
403 if (!waitflag && (ret == EBUSY)) {
404 errno = EAGAIN;
405 goto fail_unroll_allrecord_lock;
407 if (ret != 0) {
408 if (!(flags & TDB_LOCK_PROBE)) {
409 TDB_LOG((tdb, TDB_DEBUG_TRACE,
410 "chain_mutex_lock() failed: %s\n",
411 strerror(ret)));
413 errno = ret;
414 goto fail_unroll_allrecord_lock;
417 ret = pthread_mutex_unlock(chain);
418 if (ret != 0) {
419 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
420 "(chainlock) failed: %s\n", strerror(ret)));
421 errno = ret;
422 goto fail_unroll_allrecord_lock;
426 * We leave this routine with m->allrecord_mutex locked
428 return 0;
430 fail_unroll_allrecord_lock:
431 m->allrecord_lock = F_UNLCK;
433 fail_unlock_allrecord_mutex:
434 saved_errno = errno;
435 ret = pthread_mutex_unlock(&m->allrecord_mutex);
436 if (ret != 0) {
437 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
438 "(allrecord_mutex) failed: %s\n", strerror(ret)));
440 errno = saved_errno;
441 tdb->ecode = TDB_ERR_LOCK;
442 return -1;
445 int tdb_mutex_allrecord_upgrade(struct tdb_context *tdb)
447 struct tdb_mutexes *m = tdb->mutexes;
448 int ret;
449 uint32_t i;
451 if (tdb->flags & TDB_NOLOCK) {
452 return 0;
456 * Our only caller tdb_allrecord_upgrade()
457 * garantees that we already own the allrecord lock.
459 * Which means m->allrecord_mutex is still locked by us.
462 if (m->allrecord_lock != F_RDLCK) {
463 tdb->ecode = TDB_ERR_LOCK;
464 TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
465 (int)m->allrecord_lock));
466 return -1;
469 m->allrecord_lock = F_WRLCK;
471 for (i=0; i<tdb->hash_size; i++) {
473 /* ignore hashchains[0], the freelist */
474 pthread_mutex_t *chain = &m->hashchains[i+1];
476 ret = chain_mutex_lock(chain, true);
477 if (ret != 0) {
478 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_lock"
479 "(chainlock) failed: %s\n", strerror(ret)));
480 goto fail_unroll_allrecord_lock;
483 ret = pthread_mutex_unlock(chain);
484 if (ret != 0) {
485 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
486 "(chainlock) failed: %s\n", strerror(ret)));
487 goto fail_unroll_allrecord_lock;
491 return 0;
493 fail_unroll_allrecord_lock:
494 m->allrecord_lock = F_RDLCK;
495 tdb->ecode = TDB_ERR_LOCK;
496 return -1;
499 void tdb_mutex_allrecord_downgrade(struct tdb_context *tdb)
501 struct tdb_mutexes *m = tdb->mutexes;
504 * Our only caller tdb_allrecord_upgrade() (in the error case)
505 * garantees that we already own the allrecord lock.
507 * Which means m->allrecord_mutex is still locked by us.
510 if (m->allrecord_lock != F_WRLCK) {
511 TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
512 (int)m->allrecord_lock));
513 return;
516 m->allrecord_lock = F_RDLCK;
517 return;
521 int tdb_mutex_allrecord_unlock(struct tdb_context *tdb)
523 struct tdb_mutexes *m = tdb->mutexes;
524 short old;
525 int ret;
527 if (tdb->flags & TDB_NOLOCK) {
528 return 0;
532 * Our only callers tdb_allrecord_unlock() and
533 * tdb_allrecord_lock() (in the error path)
534 * garantee that we already own the allrecord lock.
536 * Which means m->allrecord_mutex is still locked by us.
539 if ((m->allrecord_lock != F_RDLCK) && (m->allrecord_lock != F_WRLCK)) {
540 TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
541 (int)m->allrecord_lock));
542 return -1;
545 old = m->allrecord_lock;
546 m->allrecord_lock = F_UNLCK;
548 ret = pthread_mutex_unlock(&m->allrecord_mutex);
549 if (ret != 0) {
550 m->allrecord_lock = old;
551 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
552 "(allrecord_mutex) failed: %s\n", strerror(ret)));
553 return -1;
555 return 0;
558 int tdb_mutex_init(struct tdb_context *tdb)
560 struct tdb_mutexes *m;
561 pthread_mutexattr_t ma;
562 int i, ret;
564 ret = tdb_mutex_mmap(tdb);
565 if (ret == -1) {
566 return -1;
568 m = tdb->mutexes;
570 ret = pthread_mutexattr_init(&ma);
571 if (ret != 0) {
572 goto fail_munmap;
574 ret = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK);
575 if (ret != 0) {
576 goto fail;
578 ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED);
579 if (ret != 0) {
580 goto fail;
582 ret = pthread_mutexattr_setrobust(&ma, PTHREAD_MUTEX_ROBUST);
583 if (ret != 0) {
584 goto fail;
587 for (i=0; i<tdb->hash_size+1; i++) {
588 pthread_mutex_t *chain = &m->hashchains[i];
590 ret = pthread_mutex_init(chain, &ma);
591 if (ret != 0) {
592 goto fail;
596 m->allrecord_lock = F_UNLCK;
598 ret = pthread_mutex_init(&m->allrecord_mutex, &ma);
599 if (ret != 0) {
600 goto fail;
602 ret = 0;
603 fail:
604 pthread_mutexattr_destroy(&ma);
605 fail_munmap:
606 tdb_mutex_munmap(tdb);
608 if (ret == 0) {
609 return 0;
612 errno = ret;
613 return -1;
616 int tdb_mutex_mmap(struct tdb_context *tdb)
618 size_t len;
619 void *ptr;
621 len = tdb_mutex_size(tdb);
622 if (len == 0) {
623 return 0;
626 ptr = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_FILE,
627 tdb->fd, 0);
628 if (ptr == MAP_FAILED) {
629 return -1;
631 tdb->mutexes = (struct tdb_mutexes *)ptr;
633 return 0;
636 int tdb_mutex_munmap(struct tdb_context *tdb)
638 size_t len;
640 len = tdb_mutex_size(tdb);
641 if (len == 0) {
642 return 0;
645 return munmap(tdb->mutexes, len);
648 static bool tdb_mutex_locking_cached;
650 static bool tdb_mutex_locking_supported(void)
652 pthread_mutexattr_t ma;
653 pthread_mutex_t m;
654 int ret;
655 static bool initialized;
657 if (initialized) {
658 return tdb_mutex_locking_cached;
661 initialized = true;
663 ret = pthread_mutexattr_init(&ma);
664 if (ret != 0) {
665 return false;
667 ret = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK);
668 if (ret != 0) {
669 goto cleanup_ma;
671 ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED);
672 if (ret != 0) {
673 goto cleanup_ma;
675 ret = pthread_mutexattr_setrobust(&ma, PTHREAD_MUTEX_ROBUST);
676 if (ret != 0) {
677 goto cleanup_ma;
679 ret = pthread_mutex_init(&m, &ma);
680 if (ret != 0) {
681 goto cleanup_ma;
683 ret = pthread_mutex_lock(&m);
684 if (ret != 0) {
685 goto cleanup_m;
688 * This makes sure we have real mutexes
689 * from a threading library instead of just
690 * stubs from libc.
692 ret = pthread_mutex_lock(&m);
693 if (ret != EDEADLK) {
694 goto cleanup_lock;
696 ret = pthread_mutex_unlock(&m);
697 if (ret != 0) {
698 goto cleanup_m;
701 tdb_mutex_locking_cached = true;
702 goto cleanup_m;
704 cleanup_lock:
705 pthread_mutex_unlock(&m);
706 cleanup_m:
707 pthread_mutex_destroy(&m);
708 cleanup_ma:
709 pthread_mutexattr_destroy(&ma);
710 return tdb_mutex_locking_cached;
713 static void (*tdb_robust_mutext_old_handler)(int) = SIG_ERR;
714 static pid_t tdb_robust_mutex_pid = -1;
716 static void tdb_robust_mutex_handler(int sig)
718 if (tdb_robust_mutex_pid != -1) {
719 pid_t pid;
720 int status;
722 pid = waitpid(tdb_robust_mutex_pid, &status, WNOHANG);
723 if (pid == tdb_robust_mutex_pid) {
724 tdb_robust_mutex_pid = -1;
725 return;
729 if (tdb_robust_mutext_old_handler == SIG_DFL) {
730 return;
732 if (tdb_robust_mutext_old_handler == SIG_IGN) {
733 return;
735 if (tdb_robust_mutext_old_handler == SIG_ERR) {
736 return;
739 tdb_robust_mutext_old_handler(sig);
742 _PUBLIC_ bool tdb_runtime_check_for_robust_mutexes(void)
744 void *ptr;
745 pthread_mutex_t *m;
746 pthread_mutexattr_t ma;
747 int ret = 1;
748 int pipe_down[2] = { -1, -1 };
749 int pipe_up[2] = { -1, -1 };
750 ssize_t nread;
751 char c = 0;
752 bool ok;
753 int status;
754 static bool initialized;
756 if (initialized) {
757 return tdb_mutex_locking_cached;
760 initialized = true;
762 ok = tdb_mutex_locking_supported();
763 if (!ok) {
764 return false;
767 tdb_mutex_locking_cached = false;
769 ptr = mmap(NULL, sizeof(pthread_mutex_t), PROT_READ|PROT_WRITE,
770 MAP_SHARED|MAP_ANON, -1 /* fd */, 0);
771 if (ptr == MAP_FAILED) {
772 return false;
774 m = (pthread_mutex_t *)ptr;
776 ret = pipe(pipe_down);
777 if (ret != 0) {
778 goto cleanup_mmap;
780 ret = pipe(pipe_up);
781 if (ret != 0) {
782 goto cleanup_pipe;
785 ret = pthread_mutexattr_init(&ma);
786 if (ret != 0) {
787 goto cleanup_pipe;
789 ret = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK);
790 if (ret != 0) {
791 goto cleanup_ma;
793 ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED);
794 if (ret != 0) {
795 goto cleanup_ma;
797 ret = pthread_mutexattr_setrobust(&ma, PTHREAD_MUTEX_ROBUST);
798 if (ret != 0) {
799 goto cleanup_ma;
801 ret = pthread_mutex_init(m, &ma);
802 if (ret != 0) {
803 goto cleanup_ma;
806 tdb_robust_mutext_old_handler = signal(SIGCHLD,
807 tdb_robust_mutex_handler);
809 tdb_robust_mutex_pid = fork();
810 if (tdb_robust_mutex_pid == 0) {
811 size_t nwritten;
812 close(pipe_down[1]);
813 close(pipe_up[0]);
814 ret = pthread_mutex_lock(m);
815 nwritten = write(pipe_up[1], &ret, sizeof(ret));
816 if (nwritten != sizeof(ret)) {
817 _exit(1);
819 if (ret != 0) {
820 _exit(1);
822 nread = read(pipe_down[0], &c, 1);
823 if (nread != 1) {
824 _exit(1);
826 /* leave locked */
827 _exit(0);
829 if (tdb_robust_mutex_pid == -1) {
830 goto cleanup_sig_child;
832 close(pipe_down[0]);
833 pipe_down[0] = -1;
834 close(pipe_up[1]);
835 pipe_up[1] = -1;
837 nread = read(pipe_up[0], &ret, sizeof(ret));
838 if (nread != sizeof(ret)) {
839 goto cleanup_child;
842 ret = pthread_mutex_trylock(m);
843 if (ret != EBUSY) {
844 if (ret == 0) {
845 pthread_mutex_unlock(m);
847 goto cleanup_child;
850 if (write(pipe_down[1], &c, 1) != 1) {
851 goto cleanup_child;
854 nread = read(pipe_up[0], &c, 1);
855 if (nread != 0) {
856 goto cleanup_child;
859 while (tdb_robust_mutex_pid > 0) {
860 pid_t pid;
862 errno = 0;
863 pid = waitpid(tdb_robust_mutex_pid, &status, 0);
864 if (pid == tdb_robust_mutex_pid) {
865 tdb_robust_mutex_pid = -1;
866 break;
868 if (pid == -1 && errno != EINTR) {
869 goto cleanup_child;
872 signal(SIGCHLD, tdb_robust_mutext_old_handler);
874 ret = pthread_mutex_trylock(m);
875 if (ret != EOWNERDEAD) {
876 if (ret == 0) {
877 pthread_mutex_unlock(m);
879 goto cleanup_m;
882 ret = pthread_mutex_consistent(m);
883 if (ret != 0) {
884 goto cleanup_m;
887 ret = pthread_mutex_trylock(m);
888 if (ret != EDEADLK) {
889 pthread_mutex_unlock(m);
890 goto cleanup_m;
893 ret = pthread_mutex_unlock(m);
894 if (ret != 0) {
895 goto cleanup_m;
898 tdb_mutex_locking_cached = true;
899 goto cleanup_m;
901 cleanup_child:
902 while (tdb_robust_mutex_pid > 0) {
903 pid_t pid;
905 kill(tdb_robust_mutex_pid, SIGKILL);
907 errno = 0;
908 pid = waitpid(tdb_robust_mutex_pid, &status, 0);
909 if (pid == tdb_robust_mutex_pid) {
910 tdb_robust_mutex_pid = -1;
911 break;
913 if (pid == -1 && errno != EINTR) {
914 break;
917 cleanup_sig_child:
918 signal(SIGCHLD, tdb_robust_mutext_old_handler);
919 cleanup_m:
920 pthread_mutex_destroy(m);
921 cleanup_ma:
922 pthread_mutexattr_destroy(&ma);
923 cleanup_pipe:
924 if (pipe_down[0] != -1) {
925 close(pipe_down[0]);
927 if (pipe_down[1] != -1) {
928 close(pipe_down[1]);
930 if (pipe_up[0] != -1) {
931 close(pipe_up[0]);
933 if (pipe_up[1] != -1) {
934 close(pipe_up[1]);
936 cleanup_mmap:
937 munmap(ptr, sizeof(pthread_mutex_t));
939 return tdb_mutex_locking_cached;
942 #else
944 size_t tdb_mutex_size(struct tdb_context *tdb)
946 return 0;
949 bool tdb_have_mutexes(struct tdb_context *tdb)
951 return false;
954 int tdb_mutex_allrecord_lock(struct tdb_context *tdb, int ltype,
955 enum tdb_lock_flags flags)
957 tdb->ecode = TDB_ERR_LOCK;
958 return -1;
961 int tdb_mutex_allrecord_unlock(struct tdb_context *tdb)
963 return -1;
966 int tdb_mutex_allrecord_upgrade(struct tdb_context *tdb)
968 tdb->ecode = TDB_ERR_LOCK;
969 return -1;
972 void tdb_mutex_allrecord_downgrade(struct tdb_context *tdb)
974 return;
977 int tdb_mutex_mmap(struct tdb_context *tdb)
979 errno = ENOSYS;
980 return -1;
983 int tdb_mutex_munmap(struct tdb_context *tdb)
985 errno = ENOSYS;
986 return -1;
989 int tdb_mutex_init(struct tdb_context *tdb)
991 errno = ENOSYS;
992 return -1;
995 _PUBLIC_ bool tdb_runtime_check_for_robust_mutexes(void)
997 return false;
1000 #endif