sharesec: Check if share exists in configuration
[Samba.git] / lib / tdb / common / mutex.c
bloba7106164445df258fb4cf8385e37f151ea74c55e
1 /*
2 Unix SMB/CIFS implementation.
4 trivial database library
6 Copyright (C) Volker Lendecke 2012,2013
7 Copyright (C) Stefan Metzmacher 2013,2014
8 Copyright (C) Michael Adam 2014
10 ** NOTE! The following LGPL license applies to the tdb
11 ** library. This does NOT imply that all of Samba is released
12 ** under the LGPL
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
27 #include "tdb_private.h"
28 #include "system/threads.h"
30 #ifdef USE_TDB_MUTEX_LOCKING
33 * If we run with mutexes, we store the "struct tdb_mutexes" at the
34 * beginning of the file. We store an additional tdb_header right
35 * beyond the mutex area, page aligned. All the offsets within the tdb
36 * are relative to the area behind the mutex area. tdb->map_ptr points
37 * behind the mmap area as well, so the read and write path in the
38 * mutex case can remain unchanged.
40 * Early in the mutex development the mutexes were placed between the hash
41 * chain pointers and the real tdb data. This had two drawbacks: First, it
42 * made pointer calculations more complex. Second, we had to mmap the mutex
43 * area twice. One was the normal map_ptr in the tdb. This frequently changed
44 * from within tdb_oob. At least the Linux glibc robust mutex code assumes
45 * constant pointers in memory, so a constantly changing mmap area destroys
46 * the mutex list. So we had to mmap the first bytes of the file with a second
47 * mmap call. With that scheme, very weird errors happened that could be
48 * easily fixed by doing the mutex mmap in a second file. It seemed that
49 * mapping the same memory area twice does not end up in accessing the same
50 * physical page, looking at the mutexes in gdb it seemed that old data showed
51 * up after some re-mapping. To avoid a separate mutex file, the code now puts
52 * the real content of the tdb file after the mutex area. This way we do not
53 * have overlapping mmap areas, the mutex area is mmapped once and not
54 * changed, the tdb data area's mmap is constantly changed but does not
55 * overlap.
58 struct tdb_mutexes {
59 struct tdb_header hdr;
61 /* protect allrecord_lock */
62 pthread_mutex_t allrecord_mutex;
65 * F_UNLCK: free,
66 * F_RDLCK: shared,
67 * F_WRLCK: exclusive
69 short int allrecord_lock;
72 * Index 0 is the freelist mutex, followed by
73 * one mutex per hashchain.
75 pthread_mutex_t hashchains[1];
78 bool tdb_have_mutexes(struct tdb_context *tdb)
80 return ((tdb->feature_flags & TDB_FEATURE_FLAG_MUTEX) != 0);
83 size_t tdb_mutex_size(struct tdb_context *tdb)
85 size_t mutex_size;
87 if (!tdb_have_mutexes(tdb)) {
88 return 0;
91 mutex_size = sizeof(struct tdb_mutexes);
92 mutex_size += tdb->hash_size * sizeof(pthread_mutex_t);
94 return TDB_ALIGN(mutex_size, tdb->page_size);
98 * Get the index for a chain mutex
100 static bool tdb_mutex_index(struct tdb_context *tdb, off_t off, off_t len,
101 unsigned *idx)
104 * Weird but true: We fcntl lock 1 byte at an offset 4 bytes before
105 * the 4 bytes of the freelist start and the hash chain that is about
106 * to be locked. See lock_offset() where the freelist is -1 vs the
107 * "+1" in TDB_HASH_TOP(). Because the mutex array is represented in
108 * the tdb file itself as data, we need to adjust the offset here.
110 const off_t freelist_lock_ofs = FREELIST_TOP - sizeof(tdb_off_t);
112 if (!tdb_have_mutexes(tdb)) {
113 return false;
115 if (len != 1) {
116 /* Possibly the allrecord lock */
117 return false;
119 if (off < freelist_lock_ofs) {
120 /* One of the special locks */
121 return false;
123 if (tdb->hash_size == 0) {
124 /* tdb not initialized yet, called from tdb_open_ex() */
125 return false;
127 if (off >= TDB_DATA_START(tdb->hash_size)) {
128 /* Single record lock from traverses */
129 return false;
133 * Now we know it's a freelist or hash chain lock. Those are always 4
134 * byte aligned. Paranoia check.
136 if ((off % sizeof(tdb_off_t)) != 0) {
137 abort();
141 * Re-index the fcntl offset into an offset into the mutex array
143 off -= freelist_lock_ofs; /* rebase to index 0 */
144 off /= sizeof(tdb_off_t); /* 0 for freelist 1-n for hashchain */
146 *idx = off;
147 return true;
150 static bool tdb_have_mutex_chainlocks(struct tdb_context *tdb)
152 int i;
154 for (i=0; i < tdb->num_lockrecs; i++) {
155 bool ret;
156 unsigned idx;
158 ret = tdb_mutex_index(tdb,
159 tdb->lockrecs[i].off,
160 tdb->lockrecs[i].count,
161 &idx);
162 if (!ret) {
163 continue;
166 if (idx == 0) {
167 /* this is the freelist mutex */
168 continue;
171 return true;
174 return false;
177 static int chain_mutex_lock(pthread_mutex_t *m, bool waitflag)
179 int ret;
181 if (waitflag) {
182 ret = pthread_mutex_lock(m);
183 } else {
184 ret = pthread_mutex_trylock(m);
186 if (ret != EOWNERDEAD) {
187 return ret;
191 * For chainlocks, we don't do any cleanup (yet?)
193 return pthread_mutex_consistent(m);
196 static int allrecord_mutex_lock(struct tdb_mutexes *m, bool waitflag)
198 int ret;
200 if (waitflag) {
201 ret = pthread_mutex_lock(&m->allrecord_mutex);
202 } else {
203 ret = pthread_mutex_trylock(&m->allrecord_mutex);
205 if (ret != EOWNERDEAD) {
206 return ret;
210 * The allrecord lock holder died. We need to reset the allrecord_lock
211 * to F_UNLCK. This should also be the indication for
212 * tdb_needs_recovery.
214 m->allrecord_lock = F_UNLCK;
216 return pthread_mutex_consistent(&m->allrecord_mutex);
219 bool tdb_mutex_lock(struct tdb_context *tdb, int rw, off_t off, off_t len,
220 bool waitflag, int *pret)
222 struct tdb_mutexes *m = tdb->mutexes;
223 pthread_mutex_t *chain;
224 int ret;
225 unsigned idx;
226 bool allrecord_ok;
228 if (!tdb_mutex_index(tdb, off, len, &idx)) {
229 return false;
231 chain = &m->hashchains[idx];
233 again:
234 ret = chain_mutex_lock(chain, waitflag);
235 if (ret == EBUSY) {
236 ret = EAGAIN;
238 if (ret != 0) {
239 errno = ret;
240 goto fail;
243 if (idx == 0) {
245 * This is a freelist lock, which is independent to
246 * the allrecord lock. So we're done once we got the
247 * freelist mutex.
249 *pret = 0;
250 return true;
253 if (tdb_have_mutex_chainlocks(tdb)) {
255 * We can only check the allrecord lock once. If we do it with
256 * one chain mutex locked, we will deadlock with the allrecord
257 * locker process in the following way: We lock the first hash
258 * chain, we check for the allrecord lock. We keep the hash
259 * chain locked. Then the allrecord locker locks the
260 * allrecord_mutex. It walks the list of chain mutexes,
261 * locking them all in sequence. Meanwhile, we have the chain
262 * mutex locked, so the allrecord locker blocks trying to lock
263 * our chain mutex. Then we come in and try to lock the second
264 * chain lock, which in most cases will be the freelist. We
265 * see that the allrecord lock is locked and put ourselves on
266 * the allrecord_mutex. This will never be signalled though
267 * because the allrecord locker waits for us to give up the
268 * chain lock.
271 *pret = 0;
272 return true;
276 * Check if someone is has the allrecord lock: queue if so.
279 allrecord_ok = false;
281 if (m->allrecord_lock == F_UNLCK) {
283 * allrecord lock not taken
285 allrecord_ok = true;
288 if ((m->allrecord_lock == F_RDLCK) && (rw == F_RDLCK)) {
290 * allrecord shared lock taken, but we only want to read
292 allrecord_ok = true;
295 if (allrecord_ok) {
296 *pret = 0;
297 return true;
300 ret = pthread_mutex_unlock(chain);
301 if (ret != 0) {
302 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
303 "(chain_mutex) failed: %s\n", strerror(ret)));
304 errno = ret;
305 goto fail;
307 ret = allrecord_mutex_lock(m, waitflag);
308 if (ret == EBUSY) {
309 ret = EAGAIN;
311 if (ret != 0) {
312 if (waitflag || (ret != EAGAIN)) {
313 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_%slock"
314 "(allrecord_mutex) failed: %s\n",
315 waitflag ? "" : "try_", strerror(ret)));
317 errno = ret;
318 goto fail;
320 ret = pthread_mutex_unlock(&m->allrecord_mutex);
321 if (ret != 0) {
322 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
323 "(allrecord_mutex) failed: %s\n", strerror(ret)));
324 errno = ret;
325 goto fail;
327 goto again;
329 fail:
330 *pret = -1;
331 return true;
334 bool tdb_mutex_unlock(struct tdb_context *tdb, int rw, off_t off, off_t len,
335 int *pret)
337 struct tdb_mutexes *m = tdb->mutexes;
338 pthread_mutex_t *chain;
339 int ret;
340 unsigned idx;
342 if (!tdb_mutex_index(tdb, off, len, &idx)) {
343 return false;
345 chain = &m->hashchains[idx];
347 ret = pthread_mutex_unlock(chain);
348 if (ret == 0) {
349 *pret = 0;
350 return true;
352 errno = ret;
353 *pret = -1;
354 return true;
357 int tdb_mutex_allrecord_lock(struct tdb_context *tdb, int ltype,
358 enum tdb_lock_flags flags)
360 struct tdb_mutexes *m = tdb->mutexes;
361 int ret;
362 uint32_t i;
363 bool waitflag = (flags & TDB_LOCK_WAIT);
364 int saved_errno;
366 if (tdb->flags & TDB_NOLOCK) {
367 return 0;
370 if (flags & TDB_LOCK_MARK_ONLY) {
371 return 0;
374 ret = allrecord_mutex_lock(m, waitflag);
375 if (!waitflag && (ret == EBUSY)) {
376 errno = EAGAIN;
377 tdb->ecode = TDB_ERR_LOCK;
378 return -1;
380 if (ret != 0) {
381 if (!(flags & TDB_LOCK_PROBE)) {
382 TDB_LOG((tdb, TDB_DEBUG_TRACE,
383 "allrecord_mutex_lock() failed: %s\n",
384 strerror(ret)));
386 tdb->ecode = TDB_ERR_LOCK;
387 return -1;
390 if (m->allrecord_lock != F_UNLCK) {
391 TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
392 (int)m->allrecord_lock));
393 goto fail_unlock_allrecord_mutex;
395 m->allrecord_lock = (ltype == F_RDLCK) ? F_RDLCK : F_WRLCK;
397 for (i=0; i<tdb->hash_size; i++) {
399 /* ignore hashchains[0], the freelist */
400 pthread_mutex_t *chain = &m->hashchains[i+1];
402 ret = chain_mutex_lock(chain, waitflag);
403 if (!waitflag && (ret == EBUSY)) {
404 errno = EAGAIN;
405 goto fail_unroll_allrecord_lock;
407 if (ret != 0) {
408 if (!(flags & TDB_LOCK_PROBE)) {
409 TDB_LOG((tdb, TDB_DEBUG_TRACE,
410 "chain_mutex_lock() failed: %s\n",
411 strerror(ret)));
413 errno = ret;
414 goto fail_unroll_allrecord_lock;
417 ret = pthread_mutex_unlock(chain);
418 if (ret != 0) {
419 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
420 "(chainlock) failed: %s\n", strerror(ret)));
421 errno = ret;
422 goto fail_unroll_allrecord_lock;
426 * We leave this routine with m->allrecord_mutex locked
428 return 0;
430 fail_unroll_allrecord_lock:
431 m->allrecord_lock = F_UNLCK;
433 fail_unlock_allrecord_mutex:
434 saved_errno = errno;
435 ret = pthread_mutex_unlock(&m->allrecord_mutex);
436 if (ret != 0) {
437 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
438 "(allrecord_mutex) failed: %s\n", strerror(ret)));
440 errno = saved_errno;
441 tdb->ecode = TDB_ERR_LOCK;
442 return -1;
445 int tdb_mutex_allrecord_upgrade(struct tdb_context *tdb)
447 struct tdb_mutexes *m = tdb->mutexes;
448 int ret;
449 uint32_t i;
451 if (tdb->flags & TDB_NOLOCK) {
452 return 0;
456 * Our only caller tdb_allrecord_upgrade()
457 * guarantees that we already own the allrecord lock.
459 * Which means m->allrecord_mutex is still locked by us.
462 if (m->allrecord_lock != F_RDLCK) {
463 tdb->ecode = TDB_ERR_LOCK;
464 TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
465 (int)m->allrecord_lock));
466 return -1;
469 m->allrecord_lock = F_WRLCK;
471 for (i=0; i<tdb->hash_size; i++) {
473 /* ignore hashchains[0], the freelist */
474 pthread_mutex_t *chain = &m->hashchains[i+1];
476 ret = chain_mutex_lock(chain, true);
477 if (ret != 0) {
478 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_lock"
479 "(chainlock) failed: %s\n", strerror(ret)));
480 goto fail_unroll_allrecord_lock;
483 ret = pthread_mutex_unlock(chain);
484 if (ret != 0) {
485 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
486 "(chainlock) failed: %s\n", strerror(ret)));
487 goto fail_unroll_allrecord_lock;
491 return 0;
493 fail_unroll_allrecord_lock:
494 m->allrecord_lock = F_RDLCK;
495 tdb->ecode = TDB_ERR_LOCK;
496 return -1;
499 void tdb_mutex_allrecord_downgrade(struct tdb_context *tdb)
501 struct tdb_mutexes *m = tdb->mutexes;
504 * Our only caller tdb_allrecord_upgrade() (in the error case)
505 * guarantees that we already own the allrecord lock.
507 * Which means m->allrecord_mutex is still locked by us.
510 if (m->allrecord_lock != F_WRLCK) {
511 TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
512 (int)m->allrecord_lock));
513 return;
516 m->allrecord_lock = F_RDLCK;
517 return;
521 int tdb_mutex_allrecord_unlock(struct tdb_context *tdb)
523 struct tdb_mutexes *m = tdb->mutexes;
524 short old;
525 int ret;
527 if (tdb->flags & TDB_NOLOCK) {
528 return 0;
532 * Our only callers tdb_allrecord_unlock() and
533 * tdb_allrecord_lock() (in the error path)
534 * guarantee that we already own the allrecord lock.
536 * Which means m->allrecord_mutex is still locked by us.
539 if ((m->allrecord_lock != F_RDLCK) && (m->allrecord_lock != F_WRLCK)) {
540 TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
541 (int)m->allrecord_lock));
542 return -1;
545 old = m->allrecord_lock;
546 m->allrecord_lock = F_UNLCK;
548 ret = pthread_mutex_unlock(&m->allrecord_mutex);
549 if (ret != 0) {
550 m->allrecord_lock = old;
551 TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
552 "(allrecord_mutex) failed: %s\n", strerror(ret)));
553 return -1;
555 return 0;
558 int tdb_mutex_init(struct tdb_context *tdb)
560 struct tdb_mutexes *m;
561 pthread_mutexattr_t ma;
562 uint32_t i;
563 int ret;
565 ret = tdb_mutex_mmap(tdb);
566 if (ret == -1) {
567 return -1;
569 m = tdb->mutexes;
571 ret = pthread_mutexattr_init(&ma);
572 if (ret != 0) {
573 goto fail_munmap;
575 ret = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK);
576 if (ret != 0) {
577 goto fail;
579 ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED);
580 if (ret != 0) {
581 goto fail;
583 ret = pthread_mutexattr_setrobust(&ma, PTHREAD_MUTEX_ROBUST);
584 if (ret != 0) {
585 goto fail;
588 for (i=0; i<tdb->hash_size+1; i++) {
589 pthread_mutex_t *chain = &m->hashchains[i];
591 ret = pthread_mutex_init(chain, &ma);
592 if (ret != 0) {
593 goto fail;
597 m->allrecord_lock = F_UNLCK;
599 ret = pthread_mutex_init(&m->allrecord_mutex, &ma);
600 if (ret != 0) {
601 goto fail;
603 ret = 0;
604 fail:
605 pthread_mutexattr_destroy(&ma);
606 fail_munmap:
608 if (ret == 0) {
609 return 0;
612 tdb_mutex_munmap(tdb);
614 errno = ret;
615 return -1;
618 int tdb_mutex_mmap(struct tdb_context *tdb)
620 size_t len;
621 void *ptr;
623 len = tdb_mutex_size(tdb);
624 if (len == 0) {
625 return 0;
628 if (tdb->mutexes != NULL) {
629 return 0;
632 ptr = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_FILE,
633 tdb->fd, 0);
634 if (ptr == MAP_FAILED) {
635 return -1;
637 tdb->mutexes = (struct tdb_mutexes *)ptr;
639 return 0;
642 int tdb_mutex_munmap(struct tdb_context *tdb)
644 size_t len;
645 int ret;
647 len = tdb_mutex_size(tdb);
648 if (len == 0) {
649 return 0;
652 ret = munmap(tdb->mutexes, len);
653 if (ret == -1) {
654 return -1;
656 tdb->mutexes = NULL;
658 return 0;
661 static bool tdb_mutex_locking_cached;
663 static bool tdb_mutex_locking_supported(void)
665 pthread_mutexattr_t ma;
666 pthread_mutex_t m;
667 int ret;
668 static bool initialized;
670 if (initialized) {
671 return tdb_mutex_locking_cached;
674 initialized = true;
676 ret = pthread_mutexattr_init(&ma);
677 if (ret != 0) {
678 return false;
680 ret = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK);
681 if (ret != 0) {
682 goto cleanup_ma;
684 ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED);
685 if (ret != 0) {
686 goto cleanup_ma;
688 ret = pthread_mutexattr_setrobust(&ma, PTHREAD_MUTEX_ROBUST);
689 if (ret != 0) {
690 goto cleanup_ma;
692 ret = pthread_mutex_init(&m, &ma);
693 if (ret != 0) {
694 goto cleanup_ma;
696 ret = pthread_mutex_lock(&m);
697 if (ret != 0) {
698 goto cleanup_m;
701 * This makes sure we have real mutexes
702 * from a threading library instead of just
703 * stubs from libc.
705 ret = pthread_mutex_lock(&m);
706 if (ret != EDEADLK) {
707 goto cleanup_lock;
709 ret = pthread_mutex_unlock(&m);
710 if (ret != 0) {
711 goto cleanup_m;
714 tdb_mutex_locking_cached = true;
715 goto cleanup_m;
717 cleanup_lock:
718 pthread_mutex_unlock(&m);
719 cleanup_m:
720 pthread_mutex_destroy(&m);
721 cleanup_ma:
722 pthread_mutexattr_destroy(&ma);
723 return tdb_mutex_locking_cached;
726 static void (*tdb_robust_mutext_old_handler)(int) = SIG_ERR;
727 static pid_t tdb_robust_mutex_pid = -1;
729 static bool tdb_robust_mutex_setup_sigchild(void (*handler)(int),
730 void (**p_old_handler)(int))
732 #ifdef HAVE_SIGACTION
733 struct sigaction act;
734 struct sigaction oldact;
736 memset(&act, '\0', sizeof(act));
738 act.sa_handler = handler;
739 #ifdef SA_RESTART
740 act.sa_flags = SA_RESTART;
741 #endif
742 sigemptyset(&act.sa_mask);
743 sigaddset(&act.sa_mask, SIGCHLD);
744 sigaction(SIGCHLD, &act, &oldact);
745 if (p_old_handler) {
746 *p_old_handler = oldact.sa_handler;
748 return true;
749 #else /* !HAVE_SIGACTION */
750 return false;
751 #endif
754 static void tdb_robust_mutex_handler(int sig)
756 pid_t child_pid = tdb_robust_mutex_pid;
758 if (child_pid != -1) {
759 pid_t pid;
761 pid = waitpid(child_pid, NULL, WNOHANG);
762 if (pid == -1) {
763 switch (errno) {
764 case ECHILD:
765 tdb_robust_mutex_pid = -1;
766 return;
768 default:
769 return;
772 if (pid == child_pid) {
773 tdb_robust_mutex_pid = -1;
774 return;
778 if (tdb_robust_mutext_old_handler == SIG_DFL) {
779 return;
781 if (tdb_robust_mutext_old_handler == SIG_IGN) {
782 return;
784 if (tdb_robust_mutext_old_handler == SIG_ERR) {
785 return;
788 tdb_robust_mutext_old_handler(sig);
791 static void tdb_robust_mutex_wait_for_child(pid_t *child_pid)
793 int options = WNOHANG;
795 if (*child_pid == -1) {
796 return;
799 while (tdb_robust_mutex_pid > 0) {
800 pid_t pid;
803 * First we try with WNOHANG, as the process might not exist
804 * anymore. Once we've sent SIGKILL we block waiting for the
805 * exit.
807 pid = waitpid(*child_pid, NULL, options);
808 if (pid == -1) {
809 if (errno == EINTR) {
810 continue;
811 } else if (errno == ECHILD) {
812 break;
813 } else {
814 abort();
817 if (pid == *child_pid) {
818 break;
821 kill(*child_pid, SIGKILL);
822 options = 0;
825 tdb_robust_mutex_pid = -1;
826 *child_pid = -1;
829 _PUBLIC_ bool tdb_runtime_check_for_robust_mutexes(void)
831 void *ptr = NULL;
832 pthread_mutex_t *m = NULL;
833 pthread_mutexattr_t ma;
834 int ret = 1;
835 int pipe_down[2] = { -1, -1 };
836 int pipe_up[2] = { -1, -1 };
837 ssize_t nread;
838 char c = 0;
839 bool ok;
840 static bool initialized;
841 pid_t saved_child_pid = -1;
842 bool cleanup_ma = false;
844 if (initialized) {
845 return tdb_mutex_locking_cached;
848 initialized = true;
850 ok = tdb_mutex_locking_supported();
851 if (!ok) {
852 return false;
855 tdb_mutex_locking_cached = false;
857 ptr = mmap(NULL, sizeof(pthread_mutex_t), PROT_READ|PROT_WRITE,
858 MAP_SHARED|MAP_ANON, -1 /* fd */, 0);
859 if (ptr == MAP_FAILED) {
860 return false;
863 ret = pipe(pipe_down);
864 if (ret != 0) {
865 goto cleanup;
867 ret = pipe(pipe_up);
868 if (ret != 0) {
869 goto cleanup;
872 ret = pthread_mutexattr_init(&ma);
873 if (ret != 0) {
874 goto cleanup;
876 cleanup_ma = true;
877 ret = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK);
878 if (ret != 0) {
879 goto cleanup;
881 ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED);
882 if (ret != 0) {
883 goto cleanup;
885 ret = pthread_mutexattr_setrobust(&ma, PTHREAD_MUTEX_ROBUST);
886 if (ret != 0) {
887 goto cleanup;
889 ret = pthread_mutex_init(ptr, &ma);
890 if (ret != 0) {
891 goto cleanup;
893 m = (pthread_mutex_t *)ptr;
895 if (tdb_robust_mutex_setup_sigchild(tdb_robust_mutex_handler,
896 &tdb_robust_mutext_old_handler) == false) {
897 goto cleanup;
900 tdb_robust_mutex_pid = fork();
901 saved_child_pid = tdb_robust_mutex_pid;
902 if (tdb_robust_mutex_pid == 0) {
903 size_t nwritten;
904 close(pipe_down[1]);
905 close(pipe_up[0]);
906 ret = pthread_mutex_lock(m);
907 nwritten = write(pipe_up[1], &ret, sizeof(ret));
908 if (nwritten != sizeof(ret)) {
909 _exit(1);
911 if (ret != 0) {
912 _exit(1);
914 nread = read(pipe_down[0], &c, 1);
915 if (nread != 1) {
916 _exit(1);
918 /* leave locked */
919 _exit(0);
921 if (tdb_robust_mutex_pid == -1) {
922 goto cleanup;
924 close(pipe_down[0]);
925 pipe_down[0] = -1;
926 close(pipe_up[1]);
927 pipe_up[1] = -1;
929 nread = read(pipe_up[0], &ret, sizeof(ret));
930 if (nread != sizeof(ret)) {
931 goto cleanup;
934 ret = pthread_mutex_trylock(m);
935 if (ret != EBUSY) {
936 if (ret == 0) {
937 pthread_mutex_unlock(m);
939 goto cleanup;
942 if (write(pipe_down[1], &c, 1) != 1) {
943 goto cleanup;
946 nread = read(pipe_up[0], &c, 1);
947 if (nread != 0) {
948 goto cleanup;
951 tdb_robust_mutex_wait_for_child(&saved_child_pid);
953 ret = pthread_mutex_trylock(m);
954 if (ret != EOWNERDEAD) {
955 if (ret == 0) {
956 pthread_mutex_unlock(m);
958 goto cleanup;
961 ret = pthread_mutex_consistent(m);
962 if (ret != 0) {
963 goto cleanup;
966 ret = pthread_mutex_trylock(m);
967 if (ret != EDEADLK && ret != EBUSY) {
968 pthread_mutex_unlock(m);
969 goto cleanup;
972 ret = pthread_mutex_unlock(m);
973 if (ret != 0) {
974 goto cleanup;
977 tdb_mutex_locking_cached = true;
979 cleanup:
981 * Note that we don't reset the signal handler we just reset
982 * tdb_robust_mutex_pid to -1. This is ok as this code path is only
983 * called once per process.
985 * Leaving our signal handler avoids races with other threads potentially
986 * setting up their SIGCHLD handlers.
988 * The worst thing that can happen is that the other newer signal
989 * handler will get the SIGCHLD signal for our child and/or reap the
990 * child with a wait() function. tdb_robust_mutex_wait_for_child()
991 * handles the case where waitpid returns ECHILD.
993 tdb_robust_mutex_wait_for_child(&saved_child_pid);
995 if (m != NULL) {
996 pthread_mutex_destroy(m);
998 if (cleanup_ma) {
999 pthread_mutexattr_destroy(&ma);
1001 if (pipe_down[0] != -1) {
1002 close(pipe_down[0]);
1004 if (pipe_down[1] != -1) {
1005 close(pipe_down[1]);
1007 if (pipe_up[0] != -1) {
1008 close(pipe_up[0]);
1010 if (pipe_up[1] != -1) {
1011 close(pipe_up[1]);
1013 if (ptr != NULL) {
1014 munmap(ptr, sizeof(pthread_mutex_t));
1017 return tdb_mutex_locking_cached;
1020 #else
1022 size_t tdb_mutex_size(struct tdb_context *tdb)
1024 return 0;
1027 bool tdb_have_mutexes(struct tdb_context *tdb)
1029 return false;
1032 int tdb_mutex_allrecord_lock(struct tdb_context *tdb, int ltype,
1033 enum tdb_lock_flags flags)
1035 tdb->ecode = TDB_ERR_LOCK;
1036 return -1;
1039 int tdb_mutex_allrecord_unlock(struct tdb_context *tdb)
1041 return -1;
1044 int tdb_mutex_allrecord_upgrade(struct tdb_context *tdb)
1046 tdb->ecode = TDB_ERR_LOCK;
1047 return -1;
1050 void tdb_mutex_allrecord_downgrade(struct tdb_context *tdb)
1052 return;
1055 int tdb_mutex_mmap(struct tdb_context *tdb)
1057 errno = ENOSYS;
1058 return -1;
1061 int tdb_mutex_munmap(struct tdb_context *tdb)
1063 errno = ENOSYS;
1064 return -1;
1067 int tdb_mutex_init(struct tdb_context *tdb)
1069 errno = ENOSYS;
1070 return -1;
1073 _PUBLIC_ bool tdb_runtime_check_for_robust_mutexes(void)
1075 return false;
1078 #endif