Initial commit.
[CMakeLuaTailorHgBridge.git] / CMakeLua / Source / kwsys / MD5.c
blobe412d3381c87c518bb78051dcee31a8bab662761
1 /*=========================================================================
3 Program: KWSys - Kitware System Library
4 Module: $RCSfile: MD5.c,v $
6 Copyright (c) Kitware, Inc., Insight Consortium. All rights reserved.
7 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
9 This software is distributed WITHOUT ANY WARRANTY; without even
10 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
11 PURPOSE. See the above copyright notices for more information.
13 =========================================================================*/
14 #include "kwsysPrivate.h"
15 #include KWSYS_HEADER(MD5.h)
17 /* Work-around CMake dependency scanning limitation. This must
18 duplicate the above list of headers. */
19 #if 0
20 # include "MD5.h.in"
21 #endif
23 #include <stdlib.h> /* malloc, free */
24 #include <string.h> /* memcpy, strlen */
26 /*--------------------------------------------------------------------------*/
28 /* This MD5 implementation has been taken from a third party. Slight
29 modifications to the arrangement of the code have been made to put
30 it in a single source file instead of a separate header and
31 implementation file. */
34 Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.
36 This software is provided 'as-is', without any express or implied
37 warranty. In no event will the authors be held liable for any damages
38 arising from the use of this software.
40 Permission is granted to anyone to use this software for any purpose,
41 including commercial applications, and to alter it and redistribute it
42 freely, subject to the following restrictions:
44 1. The origin of this software must not be misrepresented; you must not
45 claim that you wrote the original software. If you use this software
46 in a product, an acknowledgment in the product documentation would be
47 appreciated but is not required.
48 2. Altered source versions must be plainly marked as such, and must not be
49 misrepresented as being the original software.
50 3. This notice may not be removed or altered from any source distribution.
52 L. Peter Deutsch
53 ghost@aladdin.com
56 /* $Id: MD5.c,v 1.1 2007/03/14 19:12:10 king Exp $ */
58 Independent implementation of MD5 (RFC 1321).
60 This code implements the MD5 Algorithm defined in RFC 1321, whose
61 text is available at
62 http://www.ietf.org/rfc/rfc1321.txt
63 The code is derived from the text of the RFC, including the test suite
64 (section A.5) but excluding the rest of Appendix A. It does not include
65 any code or documentation that is identified in the RFC as being
66 copyrighted.
68 The original and principal author of md5.c is L. Peter Deutsch
69 <ghost@aladdin.com>. Other authors are noted in the change history
70 that follows (in reverse chronological order):
72 2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
73 either statically or dynamically; added missing #include <string.h>
74 in library.
75 2002-03-11 lpd Corrected argument list for main(), and added int return
76 type, in test program and T value program.
77 2002-02-21 lpd Added missing #include <stdio.h> in test program.
78 2000-07-03 lpd Patched to eliminate warnings about "constant is
79 unsigned in ANSI C, signed in traditional"; made test program
80 self-checking.
81 1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
82 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
83 1999-05-03 lpd Original version.
87 * This package supports both compile-time and run-time determination of CPU
88 * byte order. If ARCH_IS_BIG_ENDIAN is defined as 0, the code will be
89 * compiled to run only on little-endian CPUs; if ARCH_IS_BIG_ENDIAN is
90 * defined as non-zero, the code will be compiled to run only on big-endian
91 * CPUs; if ARCH_IS_BIG_ENDIAN is not defined, the code will be compiled to
92 * run on either big- or little-endian CPUs, but will run slightly less
93 * efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined.
96 typedef unsigned char md5_byte_t; /* 8-bit byte */
97 typedef unsigned int md5_word_t; /* 32-bit word */
99 /* Define the state of the MD5 Algorithm. */
100 typedef struct md5_state_s {
101 md5_word_t count[2]; /* message length in bits, lsw first */
102 md5_word_t abcd[4]; /* digest buffer */
103 md5_byte_t buf[64]; /* accumulate block */
104 } md5_state_t;
106 #undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
107 #ifdef ARCH_IS_BIG_ENDIAN
108 # define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
109 #else
110 # define BYTE_ORDER 0
111 #endif
113 #define T_MASK ((md5_word_t)~0)
114 #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
115 #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
116 #define T3 0x242070db
117 #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
118 #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
119 #define T6 0x4787c62a
120 #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
121 #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
122 #define T9 0x698098d8
123 #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
124 #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
125 #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
126 #define T13 0x6b901122
127 #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
128 #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
129 #define T16 0x49b40821
130 #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
131 #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
132 #define T19 0x265e5a51
133 #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
134 #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
135 #define T22 0x02441453
136 #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
137 #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
138 #define T25 0x21e1cde6
139 #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
140 #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
141 #define T28 0x455a14ed
142 #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
143 #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
144 #define T31 0x676f02d9
145 #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
146 #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
147 #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
148 #define T35 0x6d9d6122
149 #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
150 #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
151 #define T38 0x4bdecfa9
152 #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
153 #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
154 #define T41 0x289b7ec6
155 #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
156 #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
157 #define T44 0x04881d05
158 #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
159 #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
160 #define T47 0x1fa27cf8
161 #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
162 #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
163 #define T50 0x432aff97
164 #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
165 #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
166 #define T53 0x655b59c3
167 #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
168 #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
169 #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
170 #define T57 0x6fa87e4f
171 #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
172 #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
173 #define T60 0x4e0811a1
174 #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
175 #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
176 #define T63 0x2ad7d2bb
177 #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)
180 static void
181 md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/)
183 md5_word_t
184 a = pms->abcd[0], b = pms->abcd[1],
185 c = pms->abcd[2], d = pms->abcd[3];
186 md5_word_t t;
187 #if BYTE_ORDER > 0
188 /* Define storage only for big-endian CPUs. */
189 md5_word_t X[16];
190 #else
191 /* Define storage for little-endian or both types of CPUs. */
192 md5_word_t xbuf[16];
193 const md5_word_t *X;
194 #endif
197 #if BYTE_ORDER == 0
199 * Determine dynamically whether this is a big-endian or
200 * little-endian machine, since we can use a more efficient
201 * algorithm on the latter.
203 static const int w = 1;
205 if (*((const md5_byte_t *)&w)) /* dynamic little-endian */
206 #endif
207 #if BYTE_ORDER <= 0 /* little-endian */
210 * On little-endian machines, we can process properly aligned
211 * data without copying it.
213 if (!((data - (const md5_byte_t *)0) & 3)) {
214 /* data are properly aligned */
215 X = (const md5_word_t *)data;
216 } else {
217 /* not aligned */
218 memcpy(xbuf, data, 64);
219 X = xbuf;
222 #endif
223 #if BYTE_ORDER == 0
224 else /* dynamic big-endian */
225 #endif
226 #if BYTE_ORDER >= 0 /* big-endian */
229 * On big-endian machines, we must arrange the bytes in the
230 * right order.
232 const md5_byte_t *xp = data;
233 int i;
235 # if BYTE_ORDER == 0
236 X = xbuf; /* (dynamic only) */
237 # else
238 # define xbuf X /* (static only) */
239 # endif
240 for (i = 0; i < 16; ++i, xp += 4)
241 xbuf[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24);
243 #endif
246 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
248 /* Round 1. */
249 /* Let [abcd k s i] denote the operation
250 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
251 #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
252 #define SET(a, b, c, d, k, s, Ti)\
253 t = a + F(b,c,d) + X[k] + Ti;\
254 a = ROTATE_LEFT(t, s) + b
255 /* Do the following 16 operations. */
256 SET(a, b, c, d, 0, 7, T1);
257 SET(d, a, b, c, 1, 12, T2);
258 SET(c, d, a, b, 2, 17, T3);
259 SET(b, c, d, a, 3, 22, T4);
260 SET(a, b, c, d, 4, 7, T5);
261 SET(d, a, b, c, 5, 12, T6);
262 SET(c, d, a, b, 6, 17, T7);
263 SET(b, c, d, a, 7, 22, T8);
264 SET(a, b, c, d, 8, 7, T9);
265 SET(d, a, b, c, 9, 12, T10);
266 SET(c, d, a, b, 10, 17, T11);
267 SET(b, c, d, a, 11, 22, T12);
268 SET(a, b, c, d, 12, 7, T13);
269 SET(d, a, b, c, 13, 12, T14);
270 SET(c, d, a, b, 14, 17, T15);
271 SET(b, c, d, a, 15, 22, T16);
272 #undef SET
274 /* Round 2. */
275 /* Let [abcd k s i] denote the operation
276 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
277 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
278 #define SET(a, b, c, d, k, s, Ti)\
279 t = a + G(b,c,d) + X[k] + Ti;\
280 a = ROTATE_LEFT(t, s) + b
281 /* Do the following 16 operations. */
282 SET(a, b, c, d, 1, 5, T17);
283 SET(d, a, b, c, 6, 9, T18);
284 SET(c, d, a, b, 11, 14, T19);
285 SET(b, c, d, a, 0, 20, T20);
286 SET(a, b, c, d, 5, 5, T21);
287 SET(d, a, b, c, 10, 9, T22);
288 SET(c, d, a, b, 15, 14, T23);
289 SET(b, c, d, a, 4, 20, T24);
290 SET(a, b, c, d, 9, 5, T25);
291 SET(d, a, b, c, 14, 9, T26);
292 SET(c, d, a, b, 3, 14, T27);
293 SET(b, c, d, a, 8, 20, T28);
294 SET(a, b, c, d, 13, 5, T29);
295 SET(d, a, b, c, 2, 9, T30);
296 SET(c, d, a, b, 7, 14, T31);
297 SET(b, c, d, a, 12, 20, T32);
298 #undef SET
300 /* Round 3. */
301 /* Let [abcd k s t] denote the operation
302 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
303 #define H(x, y, z) ((x) ^ (y) ^ (z))
304 #define SET(a, b, c, d, k, s, Ti)\
305 t = a + H(b,c,d) + X[k] + Ti;\
306 a = ROTATE_LEFT(t, s) + b
307 /* Do the following 16 operations. */
308 SET(a, b, c, d, 5, 4, T33);
309 SET(d, a, b, c, 8, 11, T34);
310 SET(c, d, a, b, 11, 16, T35);
311 SET(b, c, d, a, 14, 23, T36);
312 SET(a, b, c, d, 1, 4, T37);
313 SET(d, a, b, c, 4, 11, T38);
314 SET(c, d, a, b, 7, 16, T39);
315 SET(b, c, d, a, 10, 23, T40);
316 SET(a, b, c, d, 13, 4, T41);
317 SET(d, a, b, c, 0, 11, T42);
318 SET(c, d, a, b, 3, 16, T43);
319 SET(b, c, d, a, 6, 23, T44);
320 SET(a, b, c, d, 9, 4, T45);
321 SET(d, a, b, c, 12, 11, T46);
322 SET(c, d, a, b, 15, 16, T47);
323 SET(b, c, d, a, 2, 23, T48);
324 #undef SET
326 /* Round 4. */
327 /* Let [abcd k s t] denote the operation
328 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
329 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
330 #define SET(a, b, c, d, k, s, Ti)\
331 t = a + I(b,c,d) + X[k] + Ti;\
332 a = ROTATE_LEFT(t, s) + b
333 /* Do the following 16 operations. */
334 SET(a, b, c, d, 0, 6, T49);
335 SET(d, a, b, c, 7, 10, T50);
336 SET(c, d, a, b, 14, 15, T51);
337 SET(b, c, d, a, 5, 21, T52);
338 SET(a, b, c, d, 12, 6, T53);
339 SET(d, a, b, c, 3, 10, T54);
340 SET(c, d, a, b, 10, 15, T55);
341 SET(b, c, d, a, 1, 21, T56);
342 SET(a, b, c, d, 8, 6, T57);
343 SET(d, a, b, c, 15, 10, T58);
344 SET(c, d, a, b, 6, 15, T59);
345 SET(b, c, d, a, 13, 21, T60);
346 SET(a, b, c, d, 4, 6, T61);
347 SET(d, a, b, c, 11, 10, T62);
348 SET(c, d, a, b, 2, 15, T63);
349 SET(b, c, d, a, 9, 21, T64);
350 #undef SET
352 /* Then perform the following additions. (That is increment each
353 of the four registers by the value it had before this block
354 was started.) */
355 pms->abcd[0] += a;
356 pms->abcd[1] += b;
357 pms->abcd[2] += c;
358 pms->abcd[3] += d;
361 /* Initialize the algorithm. */
362 static void md5_init(md5_state_t *pms)
364 pms->count[0] = pms->count[1] = 0;
365 pms->abcd[0] = 0x67452301;
366 pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
367 pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
368 pms->abcd[3] = 0x10325476;
371 /* Append a string to the message. */
372 static void md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes)
374 const md5_byte_t *p = data;
375 int left = nbytes;
376 int offset = (pms->count[0] >> 3) & 63;
377 md5_word_t nbits = (md5_word_t)(nbytes << 3);
379 if (nbytes <= 0)
380 return;
382 /* Update the message length. */
383 pms->count[1] += nbytes >> 29;
384 pms->count[0] += nbits;
385 if (pms->count[0] < nbits)
386 pms->count[1]++;
388 /* Process an initial partial block. */
389 if (offset) {
390 int copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
392 memcpy(pms->buf + offset, p, copy);
393 if (offset + copy < 64)
394 return;
395 p += copy;
396 left -= copy;
397 md5_process(pms, pms->buf);
400 /* Process full blocks. */
401 for (; left >= 64; p += 64, left -= 64)
402 md5_process(pms, p);
404 /* Process a final partial block. */
405 if (left)
406 memcpy(pms->buf, p, left);
409 /* Finish the message and return the digest. */
410 static void md5_finish(md5_state_t *pms, md5_byte_t digest[16])
412 static const md5_byte_t pad[64] = {
413 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
414 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
415 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
416 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
418 md5_byte_t data[8];
419 int i;
421 /* Save the length before padding. */
422 for (i = 0; i < 8; ++i)
423 data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
424 /* Pad to 56 bytes mod 64. */
425 md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
426 /* Append the length. */
427 md5_append(pms, data, 8);
428 for (i = 0; i < 16; ++i)
429 digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
432 /*--------------------------------------------------------------------------*/
433 /* Wrap up the MD5 state in our opaque structure. */
434 struct kwsysMD5_s
436 md5_state_t md5_state;
439 /*--------------------------------------------------------------------------*/
440 kwsysMD5* kwsysMD5_New(void)
442 /* Allocate a process control structure. */
443 kwsysMD5* md5 = (kwsysMD5*)malloc(sizeof(kwsysMD5));
444 if(!md5)
446 return 0;
448 return md5;
451 /*--------------------------------------------------------------------------*/
452 void kwsysMD5_Delete(kwsysMD5* md5)
454 /* Make sure we have an instance. */
455 if(!md5)
457 return;
460 /* Free memory. */
461 free(md5);
464 /*--------------------------------------------------------------------------*/
465 void kwsysMD5_Initialize(kwsysMD5* md5)
467 md5_init(&md5->md5_state);
470 /*--------------------------------------------------------------------------*/
471 void kwsysMD5_Append(kwsysMD5* md5, unsigned char const* data, int length)
473 if(length < 0)
475 length = (int)strlen((char const*)data);
477 md5_append(&md5->md5_state, (md5_byte_t const*)data, length);
480 /*--------------------------------------------------------------------------*/
481 void kwsysMD5_Finalize(kwsysMD5* md5, unsigned char digest[16])
483 md5_finish(&md5->md5_state, (md5_byte_t*)digest);
486 /*--------------------------------------------------------------------------*/
487 void kwsysMD5_FinalizeHex(kwsysMD5* md5, char buffer[32])
489 unsigned char digest[16];
490 kwsysMD5_Finalize(md5, digest);
491 kwsysMD5_DigestToHex(digest, buffer);
494 /*--------------------------------------------------------------------------*/
495 void kwsysMD5_DigestToHex(unsigned char const digest[16], char buffer[32])
497 /* Map from 4-bit index to hexadecimal representation. */
498 static char const hex[16] =
499 {'0', '1', '2', '3', '4', '5', '6', '7',
500 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
502 /* Map each 4-bit block separately. */
503 char* out = buffer;
504 int i;
505 for(i=0; i < 16; ++i)
507 *out++ = hex[digest[i] >> 4];
508 *out++ = hex[digest[i] & 0xF];