Merge commit '8671400134a11c848244896ca51a7db4d0f69da4'
[unleashed.git] / kernel / fs / zfs / zil.c
blob9578bf4b5ff319d3b8b07a1130d52eba20f3798d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
27 /* Portions Copyright 2010 Robert Milkowski */
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47 * calls that change the file system. Each itx has enough information to
48 * be able to replay them after a system crash, power loss, or
49 * equivalent failure mode. These are stored in memory until either:
51 * 1. they are committed to the pool by the DMU transaction group
52 * (txg), at which point they can be discarded; or
53 * 2. they are committed to the on-disk ZIL for the dataset being
54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55 * requirement).
57 * In the event of a crash or power loss, the itxs contained by each
58 * dataset's on-disk ZIL will be replayed when that dataset is first
59 * instantianted (e.g. if the dataset is a normal fileystem, when it is
60 * first mounted).
62 * As hinted at above, there is one ZIL per dataset (both the in-memory
63 * representation, and the on-disk representation). The on-disk format
64 * consists of 3 parts:
66 * - a single, per-dataset, ZIL header; which points to a chain of
67 * - zero or more ZIL blocks; each of which contains
68 * - zero or more ZIL records
70 * A ZIL record holds the information necessary to replay a single
71 * system call transaction. A ZIL block can hold many ZIL records, and
72 * the blocks are chained together, similarly to a singly linked list.
74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75 * block in the chain, and the ZIL header points to the first block in
76 * the chain.
78 * Note, there is not a fixed place in the pool to hold these ZIL
79 * blocks; they are dynamically allocated and freed as needed from the
80 * blocks available on the pool, though they can be preferentially
81 * allocated from a dedicated "log" vdev.
85 * This controls the amount of time that a ZIL block (lwb) will remain
86 * "open" when it isn't "full", and it has a thread waiting for it to be
87 * committed to stable storage. Please refer to the zil_commit_waiter()
88 * function (and the comments within it) for more details.
90 int zfs_commit_timeout_pct = 5;
93 * Disable intent logging replay. This global ZIL switch affects all pools.
95 int zil_replay_disable = 0;
98 * Tunable parameter for debugging or performance analysis. Setting
99 * zfs_nocacheflush will cause corruption on power loss if a volatile
100 * out-of-order write cache is enabled.
102 boolean_t zfs_nocacheflush = B_FALSE;
105 * Limit SLOG write size per commit executed with synchronous priority.
106 * Any writes above that will be executed with lower (asynchronous) priority
107 * to limit potential SLOG device abuse by single active ZIL writer.
109 uint64_t zil_slog_bulk = 768 * 1024;
111 static kmem_cache_t *zil_lwb_cache;
112 static kmem_cache_t *zil_zcw_cache;
114 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
116 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
117 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
119 static int
120 zil_bp_compare(const void *x1, const void *x2)
122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
125 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
126 return (-1);
127 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
128 return (1);
130 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
131 return (-1);
132 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
133 return (1);
135 return (0);
138 static void
139 zil_bp_tree_init(zilog_t *zilog)
141 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
142 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
145 static void
146 zil_bp_tree_fini(zilog_t *zilog)
148 avl_tree_t *t = &zilog->zl_bp_tree;
149 zil_bp_node_t *zn;
150 void *cookie = NULL;
152 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
153 kmem_free(zn, sizeof (zil_bp_node_t));
155 avl_destroy(t);
159 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
161 avl_tree_t *t = &zilog->zl_bp_tree;
162 const dva_t *dva;
163 zil_bp_node_t *zn;
164 avl_index_t where;
166 if (BP_IS_EMBEDDED(bp))
167 return (0);
169 dva = BP_IDENTITY(bp);
171 if (avl_find(t, dva, &where) != NULL)
172 return (SET_ERROR(EEXIST));
174 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
175 zn->zn_dva = *dva;
176 avl_insert(t, zn, where);
178 return (0);
181 static zil_header_t *
182 zil_header_in_syncing_context(zilog_t *zilog)
184 return ((zil_header_t *)zilog->zl_header);
187 static void
188 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
190 zio_cksum_t *zc = &bp->blk_cksum;
192 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
193 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
194 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
195 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
199 * Read a log block and make sure it's valid.
201 static int
202 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
203 char **end)
205 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
206 arc_flags_t aflags = ARC_FLAG_WAIT;
207 arc_buf_t *abuf = NULL;
208 zbookmark_phys_t zb;
209 int error;
211 if (zilog->zl_header->zh_claim_txg == 0)
212 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
214 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
215 zio_flags |= ZIO_FLAG_SPECULATIVE;
217 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
218 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
220 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
221 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
223 if (error == 0) {
224 zio_cksum_t cksum = bp->blk_cksum;
227 * Validate the checksummed log block.
229 * Sequence numbers should be... sequential. The checksum
230 * verifier for the next block should be bp's checksum plus 1.
232 * Also check the log chain linkage and size used.
234 cksum.zc_word[ZIL_ZC_SEQ]++;
236 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
237 zil_chain_t *zilc = abuf->b_data;
238 char *lr = (char *)(zilc + 1);
239 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
241 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
242 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
243 error = SET_ERROR(ECKSUM);
244 } else {
245 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
246 bcopy(lr, dst, len);
247 *end = (char *)dst + len;
248 *nbp = zilc->zc_next_blk;
250 } else {
251 char *lr = abuf->b_data;
252 uint64_t size = BP_GET_LSIZE(bp);
253 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
255 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
256 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
257 (zilc->zc_nused > (size - sizeof (*zilc)))) {
258 error = SET_ERROR(ECKSUM);
259 } else {
260 ASSERT3U(zilc->zc_nused, <=,
261 SPA_OLD_MAXBLOCKSIZE);
262 bcopy(lr, dst, zilc->zc_nused);
263 *end = (char *)dst + zilc->zc_nused;
264 *nbp = zilc->zc_next_blk;
268 arc_buf_destroy(abuf, &abuf);
271 return (error);
275 * Read a TX_WRITE log data block.
277 static int
278 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
280 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
281 const blkptr_t *bp = &lr->lr_blkptr;
282 arc_flags_t aflags = ARC_FLAG_WAIT;
283 arc_buf_t *abuf = NULL;
284 zbookmark_phys_t zb;
285 int error;
287 if (BP_IS_HOLE(bp)) {
288 if (wbuf != NULL)
289 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
290 return (0);
293 if (zilog->zl_header->zh_claim_txg == 0)
294 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
296 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
297 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
299 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
300 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
302 if (error == 0) {
303 if (wbuf != NULL)
304 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
305 arc_buf_destroy(abuf, &abuf);
308 return (error);
312 * Parse the intent log, and call parse_func for each valid record within.
315 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
316 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
318 const zil_header_t *zh = zilog->zl_header;
319 boolean_t claimed = !!zh->zh_claim_txg;
320 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
321 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
322 uint64_t max_blk_seq = 0;
323 uint64_t max_lr_seq = 0;
324 uint64_t blk_count = 0;
325 uint64_t lr_count = 0;
326 blkptr_t blk, next_blk;
327 char *lrbuf, *lrp;
328 int error = 0;
331 * Old logs didn't record the maximum zh_claim_lr_seq.
333 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
334 claim_lr_seq = UINT64_MAX;
337 * Starting at the block pointed to by zh_log we read the log chain.
338 * For each block in the chain we strongly check that block to
339 * ensure its validity. We stop when an invalid block is found.
340 * For each block pointer in the chain we call parse_blk_func().
341 * For each record in each valid block we call parse_lr_func().
342 * If the log has been claimed, stop if we encounter a sequence
343 * number greater than the highest claimed sequence number.
345 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
346 zil_bp_tree_init(zilog);
348 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
349 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
350 int reclen;
351 char *end;
353 if (blk_seq > claim_blk_seq)
354 break;
355 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
356 break;
357 ASSERT3U(max_blk_seq, <, blk_seq);
358 max_blk_seq = blk_seq;
359 blk_count++;
361 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
362 break;
364 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
365 if (error != 0)
366 break;
368 for (lrp = lrbuf; lrp < end; lrp += reclen) {
369 lr_t *lr = (lr_t *)lrp;
370 reclen = lr->lrc_reclen;
371 ASSERT3U(reclen, >=, sizeof (lr_t));
372 if (lr->lrc_seq > claim_lr_seq)
373 goto done;
374 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
375 goto done;
376 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
377 max_lr_seq = lr->lrc_seq;
378 lr_count++;
381 done:
382 zilog->zl_parse_error = error;
383 zilog->zl_parse_blk_seq = max_blk_seq;
384 zilog->zl_parse_lr_seq = max_lr_seq;
385 zilog->zl_parse_blk_count = blk_count;
386 zilog->zl_parse_lr_count = lr_count;
388 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
389 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
391 zil_bp_tree_fini(zilog);
392 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
394 return (error);
397 /* ARGSUSED */
398 static int
399 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
401 ASSERT(!BP_IS_HOLE(bp));
404 * As we call this function from the context of a rewind to a
405 * checkpoint, each ZIL block whose txg is later than the txg
406 * that we rewind to is invalid. Thus, we return -1 so
407 * zil_parse() doesn't attempt to read it.
409 if (bp->blk_birth >= first_txg)
410 return (-1);
412 if (zil_bp_tree_add(zilog, bp) != 0)
413 return (0);
415 zio_free(zilog->zl_spa, first_txg, bp);
416 return (0);
419 /* ARGSUSED */
420 static int
421 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
423 return (0);
426 static int
427 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
430 * Claim log block if not already committed and not already claimed.
431 * If tx == NULL, just verify that the block is claimable.
433 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
434 zil_bp_tree_add(zilog, bp) != 0)
435 return (0);
437 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
438 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
439 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
442 static int
443 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
445 lr_write_t *lr = (lr_write_t *)lrc;
446 int error;
448 if (lrc->lrc_txtype != TX_WRITE)
449 return (0);
452 * If the block is not readable, don't claim it. This can happen
453 * in normal operation when a log block is written to disk before
454 * some of the dmu_sync() blocks it points to. In this case, the
455 * transaction cannot have been committed to anyone (we would have
456 * waited for all writes to be stable first), so it is semantically
457 * correct to declare this the end of the log.
459 if (lr->lr_blkptr.blk_birth >= first_txg &&
460 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
461 return (error);
462 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
465 /* ARGSUSED */
466 static int
467 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
469 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
471 return (0);
474 static int
475 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
477 lr_write_t *lr = (lr_write_t *)lrc;
478 blkptr_t *bp = &lr->lr_blkptr;
481 * If we previously claimed it, we need to free it.
483 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
484 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
485 !BP_IS_HOLE(bp))
486 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
488 return (0);
491 static int
492 zil_lwb_vdev_compare(const void *x1, const void *x2)
494 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
495 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
497 if (v1 < v2)
498 return (-1);
499 if (v1 > v2)
500 return (1);
502 return (0);
505 static lwb_t *
506 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
508 lwb_t *lwb;
510 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
511 lwb->lwb_zilog = zilog;
512 lwb->lwb_blk = *bp;
513 lwb->lwb_slog = slog;
514 lwb->lwb_state = LWB_STATE_CLOSED;
515 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
516 lwb->lwb_max_txg = txg;
517 lwb->lwb_write_zio = NULL;
518 lwb->lwb_root_zio = NULL;
519 lwb->lwb_tx = NULL;
520 lwb->lwb_issued_timestamp = 0;
521 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
522 lwb->lwb_nused = sizeof (zil_chain_t);
523 lwb->lwb_sz = BP_GET_LSIZE(bp);
524 } else {
525 lwb->lwb_nused = 0;
526 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
529 mutex_enter(&zilog->zl_lock);
530 list_insert_tail(&zilog->zl_lwb_list, lwb);
531 mutex_exit(&zilog->zl_lock);
533 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
534 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
535 VERIFY(list_is_empty(&lwb->lwb_waiters));
537 return (lwb);
540 static void
541 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
543 ASSERT(MUTEX_HELD(&zilog->zl_lock));
544 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
545 VERIFY(list_is_empty(&lwb->lwb_waiters));
546 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
547 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
548 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
549 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
550 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
551 lwb->lwb_state == LWB_STATE_DONE);
554 * Clear the zilog's field to indicate this lwb is no longer
555 * valid, and prevent use-after-free errors.
557 if (zilog->zl_last_lwb_opened == lwb)
558 zilog->zl_last_lwb_opened = NULL;
560 kmem_cache_free(zil_lwb_cache, lwb);
564 * Called when we create in-memory log transactions so that we know
565 * to cleanup the itxs at the end of spa_sync().
567 void
568 zilog_dirty(zilog_t *zilog, uint64_t txg)
570 dsl_pool_t *dp = zilog->zl_dmu_pool;
571 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
573 ASSERT(spa_writeable(zilog->zl_spa));
575 if (ds->ds_is_snapshot)
576 panic("dirtying snapshot!");
578 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
579 /* up the hold count until we can be written out */
580 dmu_buf_add_ref(ds->ds_dbuf, zilog);
582 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
587 * Determine if the zil is dirty in the specified txg. Callers wanting to
588 * ensure that the dirty state does not change must hold the itxg_lock for
589 * the specified txg. Holding the lock will ensure that the zil cannot be
590 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
591 * state.
593 boolean_t
594 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
596 dsl_pool_t *dp = zilog->zl_dmu_pool;
598 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
599 return (B_TRUE);
600 return (B_FALSE);
604 * Determine if the zil is dirty. The zil is considered dirty if it has
605 * any pending itx records that have not been cleaned by zil_clean().
607 boolean_t
608 zilog_is_dirty(zilog_t *zilog)
610 dsl_pool_t *dp = zilog->zl_dmu_pool;
612 for (int t = 0; t < TXG_SIZE; t++) {
613 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
614 return (B_TRUE);
616 return (B_FALSE);
620 * Create an on-disk intent log.
622 static lwb_t *
623 zil_create(zilog_t *zilog)
625 const zil_header_t *zh = zilog->zl_header;
626 lwb_t *lwb = NULL;
627 uint64_t txg = 0;
628 dmu_tx_t *tx = NULL;
629 blkptr_t blk;
630 int error = 0;
631 boolean_t slog = FALSE;
634 * Wait for any previous destroy to complete.
636 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
638 ASSERT(zh->zh_claim_txg == 0);
639 ASSERT(zh->zh_replay_seq == 0);
641 blk = zh->zh_log;
644 * Allocate an initial log block if:
645 * - there isn't one already
646 * - the existing block is the wrong endianess
648 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
649 tx = dmu_tx_create(zilog->zl_os);
650 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
651 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
652 txg = dmu_tx_get_txg(tx);
654 if (!BP_IS_HOLE(&blk)) {
655 zio_free(zilog->zl_spa, txg, &blk);
656 BP_ZERO(&blk);
659 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
660 ZIL_MIN_BLKSZ, &slog);
662 if (error == 0)
663 zil_init_log_chain(zilog, &blk);
667 * Allocate a log write block (lwb) for the first log block.
669 if (error == 0)
670 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
673 * If we just allocated the first log block, commit our transaction
674 * and wait for zil_sync() to stuff the block poiner into zh_log.
675 * (zh is part of the MOS, so we cannot modify it in open context.)
677 if (tx != NULL) {
678 dmu_tx_commit(tx);
679 txg_wait_synced(zilog->zl_dmu_pool, txg);
682 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
684 return (lwb);
688 * In one tx, free all log blocks and clear the log header. If keep_first
689 * is set, then we're replaying a log with no content. We want to keep the
690 * first block, however, so that the first synchronous transaction doesn't
691 * require a txg_wait_synced() in zil_create(). We don't need to
692 * txg_wait_synced() here either when keep_first is set, because both
693 * zil_create() and zil_destroy() will wait for any in-progress destroys
694 * to complete.
696 void
697 zil_destroy(zilog_t *zilog, boolean_t keep_first)
699 const zil_header_t *zh = zilog->zl_header;
700 lwb_t *lwb;
701 dmu_tx_t *tx;
702 uint64_t txg;
705 * Wait for any previous destroy to complete.
707 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
709 zilog->zl_old_header = *zh; /* debugging aid */
711 if (BP_IS_HOLE(&zh->zh_log))
712 return;
714 tx = dmu_tx_create(zilog->zl_os);
715 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
716 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
717 txg = dmu_tx_get_txg(tx);
719 mutex_enter(&zilog->zl_lock);
721 ASSERT3U(zilog->zl_destroy_txg, <, txg);
722 zilog->zl_destroy_txg = txg;
723 zilog->zl_keep_first = keep_first;
725 if (!list_is_empty(&zilog->zl_lwb_list)) {
726 ASSERT(zh->zh_claim_txg == 0);
727 VERIFY(!keep_first);
728 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
729 list_remove(&zilog->zl_lwb_list, lwb);
730 if (lwb->lwb_buf != NULL)
731 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
732 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
733 zil_free_lwb(zilog, lwb);
735 } else if (!keep_first) {
736 zil_destroy_sync(zilog, tx);
738 mutex_exit(&zilog->zl_lock);
740 dmu_tx_commit(tx);
743 void
744 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
746 ASSERT(list_is_empty(&zilog->zl_lwb_list));
747 (void) zil_parse(zilog, zil_free_log_block,
748 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
752 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
754 dmu_tx_t *tx = txarg;
755 zilog_t *zilog;
756 uint64_t first_txg;
757 zil_header_t *zh;
758 objset_t *os;
759 int error;
761 error = dmu_objset_own_obj(dp, ds->ds_object,
762 DMU_OST_ANY, B_FALSE, FTAG, &os);
763 if (error != 0) {
765 * EBUSY indicates that the objset is inconsistent, in which
766 * case it can not have a ZIL.
768 if (error != EBUSY) {
769 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
770 (unsigned long long)ds->ds_object, error);
772 return (0);
775 zilog = dmu_objset_zil(os);
776 zh = zil_header_in_syncing_context(zilog);
777 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
778 first_txg = spa_min_claim_txg(zilog->zl_spa);
781 * If the spa_log_state is not set to be cleared, check whether
782 * the current uberblock is a checkpoint one and if the current
783 * header has been claimed before moving on.
785 * If the current uberblock is a checkpointed uberblock then
786 * one of the following scenarios took place:
788 * 1] We are currently rewinding to the checkpoint of the pool.
789 * 2] We crashed in the middle of a checkpoint rewind but we
790 * did manage to write the checkpointed uberblock to the
791 * vdev labels, so when we tried to import the pool again
792 * the checkpointed uberblock was selected from the import
793 * procedure.
795 * In both cases we want to zero out all the ZIL blocks, except
796 * the ones that have been claimed at the time of the checkpoint
797 * (their zh_claim_txg != 0). The reason is that these blocks
798 * may be corrupted since we may have reused their locations on
799 * disk after we took the checkpoint.
801 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
802 * when we first figure out whether the current uberblock is
803 * checkpointed or not. Unfortunately, that would discard all
804 * the logs, including the ones that are claimed, and we would
805 * leak space.
807 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
808 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
809 zh->zh_claim_txg == 0)) {
810 if (!BP_IS_HOLE(&zh->zh_log)) {
811 (void) zil_parse(zilog, zil_clear_log_block,
812 zil_noop_log_record, tx, first_txg);
814 BP_ZERO(&zh->zh_log);
815 dsl_dataset_dirty(dmu_objset_ds(os), tx);
816 dmu_objset_disown(os, FTAG);
817 return (0);
821 * If we are not rewinding and opening the pool normally, then
822 * the min_claim_txg should be equal to the first txg of the pool.
824 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
827 * Claim all log blocks if we haven't already done so, and remember
828 * the highest claimed sequence number. This ensures that if we can
829 * read only part of the log now (e.g. due to a missing device),
830 * but we can read the entire log later, we will not try to replay
831 * or destroy beyond the last block we successfully claimed.
833 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
834 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
835 (void) zil_parse(zilog, zil_claim_log_block,
836 zil_claim_log_record, tx, first_txg);
837 zh->zh_claim_txg = first_txg;
838 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
839 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
840 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
841 zh->zh_flags |= ZIL_REPLAY_NEEDED;
842 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
843 dsl_dataset_dirty(dmu_objset_ds(os), tx);
846 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
847 dmu_objset_disown(os, FTAG);
848 return (0);
852 * Check the log by walking the log chain.
853 * Checksum errors are ok as they indicate the end of the chain.
854 * Any other error (no device or read failure) returns an error.
856 /* ARGSUSED */
858 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
860 zilog_t *zilog;
861 objset_t *os;
862 blkptr_t *bp;
863 int error;
865 ASSERT(tx == NULL);
867 error = dmu_objset_from_ds(ds, &os);
868 if (error != 0) {
869 cmn_err(CE_WARN, "can't open objset %llu, error %d",
870 (unsigned long long)ds->ds_object, error);
871 return (0);
874 zilog = dmu_objset_zil(os);
875 bp = (blkptr_t *)&zilog->zl_header->zh_log;
877 if (!BP_IS_HOLE(bp)) {
878 vdev_t *vd;
879 boolean_t valid = B_TRUE;
882 * Check the first block and determine if it's on a log device
883 * which may have been removed or faulted prior to loading this
884 * pool. If so, there's no point in checking the rest of the
885 * log as its content should have already been synced to the
886 * pool.
888 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
889 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
890 if (vd->vdev_islog && vdev_is_dead(vd))
891 valid = vdev_log_state_valid(vd);
892 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
894 if (!valid)
895 return (0);
898 * Check whether the current uberblock is checkpointed (e.g.
899 * we are rewinding) and whether the current header has been
900 * claimed or not. If it hasn't then skip verifying it. We
901 * do this because its ZIL blocks may be part of the pool's
902 * state before the rewind, which is no longer valid.
904 zil_header_t *zh = zil_header_in_syncing_context(zilog);
905 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
906 zh->zh_claim_txg == 0)
907 return (0);
911 * Because tx == NULL, zil_claim_log_block() will not actually claim
912 * any blocks, but just determine whether it is possible to do so.
913 * In addition to checking the log chain, zil_claim_log_block()
914 * will invoke zio_claim() with a done func of spa_claim_notify(),
915 * which will update spa_max_claim_txg. See spa_load() for details.
917 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
918 zilog->zl_header->zh_claim_txg ? -1ULL :
919 spa_min_claim_txg(os->os_spa));
921 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
925 * When an itx is "skipped", this function is used to properly mark the
926 * waiter as "done, and signal any thread(s) waiting on it. An itx can
927 * be skipped (and not committed to an lwb) for a variety of reasons,
928 * one of them being that the itx was committed via spa_sync(), prior to
929 * it being committed to an lwb; this can happen if a thread calling
930 * zil_commit() is racing with spa_sync().
932 static void
933 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
935 mutex_enter(&zcw->zcw_lock);
936 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
937 zcw->zcw_done = B_TRUE;
938 cv_broadcast(&zcw->zcw_cv);
939 mutex_exit(&zcw->zcw_lock);
943 * This function is used when the given waiter is to be linked into an
944 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
945 * At this point, the waiter will no longer be referenced by the itx,
946 * and instead, will be referenced by the lwb.
948 static void
949 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
952 * The lwb_waiters field of the lwb is protected by the zilog's
953 * zl_lock, thus it must be held when calling this function.
955 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
957 mutex_enter(&zcw->zcw_lock);
958 ASSERT(!list_link_active(&zcw->zcw_node));
959 ASSERT3P(zcw->zcw_lwb, ==, NULL);
960 ASSERT3P(lwb, !=, NULL);
961 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
962 lwb->lwb_state == LWB_STATE_ISSUED);
964 list_insert_tail(&lwb->lwb_waiters, zcw);
965 zcw->zcw_lwb = lwb;
966 mutex_exit(&zcw->zcw_lock);
970 * This function is used when zio_alloc_zil() fails to allocate a ZIL
971 * block, and the given waiter must be linked to the "nolwb waiters"
972 * list inside of zil_process_commit_list().
974 static void
975 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
977 mutex_enter(&zcw->zcw_lock);
978 ASSERT(!list_link_active(&zcw->zcw_node));
979 ASSERT3P(zcw->zcw_lwb, ==, NULL);
980 list_insert_tail(nolwb, zcw);
981 mutex_exit(&zcw->zcw_lock);
984 void
985 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
987 avl_tree_t *t = &lwb->lwb_vdev_tree;
988 avl_index_t where;
989 zil_vdev_node_t *zv, zvsearch;
990 int ndvas = BP_GET_NDVAS(bp);
991 int i;
993 if (zfs_nocacheflush)
994 return;
996 mutex_enter(&lwb->lwb_vdev_lock);
997 for (i = 0; i < ndvas; i++) {
998 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
999 if (avl_find(t, &zvsearch, &where) == NULL) {
1000 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1001 zv->zv_vdev = zvsearch.zv_vdev;
1002 avl_insert(t, zv, where);
1005 mutex_exit(&lwb->lwb_vdev_lock);
1008 void
1009 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1011 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1015 * This function is a called after all VDEVs associated with a given lwb
1016 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1017 * as the lwb write completes, if "zfs_nocacheflush" is set.
1019 * The intention is for this function to be called as soon as the
1020 * contents of an lwb are considered "stable" on disk, and will survive
1021 * any sudden loss of power. At this point, any threads waiting for the
1022 * lwb to reach this state are signalled, and the "waiter" structures
1023 * are marked "done".
1025 static void
1026 zil_lwb_flush_vdevs_done(zio_t *zio)
1028 lwb_t *lwb = zio->io_private;
1029 zilog_t *zilog = lwb->lwb_zilog;
1030 dmu_tx_t *tx = lwb->lwb_tx;
1031 zil_commit_waiter_t *zcw;
1033 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1035 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1037 mutex_enter(&zilog->zl_lock);
1040 * Ensure the lwb buffer pointer is cleared before releasing the
1041 * txg. If we have had an allocation failure and the txg is
1042 * waiting to sync then we want zil_sync() to remove the lwb so
1043 * that it's not picked up as the next new one in
1044 * zil_process_commit_list(). zil_sync() will only remove the
1045 * lwb if lwb_buf is null.
1047 lwb->lwb_buf = NULL;
1048 lwb->lwb_tx = NULL;
1050 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1051 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1053 lwb->lwb_root_zio = NULL;
1054 lwb->lwb_state = LWB_STATE_DONE;
1056 if (zilog->zl_last_lwb_opened == lwb) {
1058 * Remember the highest committed log sequence number
1059 * for ztest. We only update this value when all the log
1060 * writes succeeded, because ztest wants to ASSERT that
1061 * it got the whole log chain.
1063 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1066 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1067 mutex_enter(&zcw->zcw_lock);
1069 ASSERT(list_link_active(&zcw->zcw_node));
1070 list_remove(&lwb->lwb_waiters, zcw);
1072 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1073 zcw->zcw_lwb = NULL;
1075 zcw->zcw_zio_error = zio->io_error;
1077 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1078 zcw->zcw_done = B_TRUE;
1079 cv_broadcast(&zcw->zcw_cv);
1081 mutex_exit(&zcw->zcw_lock);
1084 mutex_exit(&zilog->zl_lock);
1087 * Now that we've written this log block, we have a stable pointer
1088 * to the next block in the chain, so it's OK to let the txg in
1089 * which we allocated the next block sync.
1091 dmu_tx_commit(tx);
1095 * This is called when an lwb write completes. This means, this specific
1096 * lwb was written to disk, and all dependent lwb have also been
1097 * written to disk.
1099 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1100 * the VDEVs involved in writing out this specific lwb. The lwb will be
1101 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1102 * zio completion callback for the lwb's root zio.
1104 static void
1105 zil_lwb_write_done(zio_t *zio)
1107 lwb_t *lwb = zio->io_private;
1108 spa_t *spa = zio->io_spa;
1109 zilog_t *zilog = lwb->lwb_zilog;
1110 avl_tree_t *t = &lwb->lwb_vdev_tree;
1111 void *cookie = NULL;
1112 zil_vdev_node_t *zv;
1114 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1116 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1117 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1118 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1119 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1120 ASSERT(!BP_IS_GANG(zio->io_bp));
1121 ASSERT(!BP_IS_HOLE(zio->io_bp));
1122 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1124 abd_put(zio->io_abd);
1126 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1128 mutex_enter(&zilog->zl_lock);
1129 lwb->lwb_write_zio = NULL;
1130 mutex_exit(&zilog->zl_lock);
1132 if (avl_numnodes(t) == 0)
1133 return;
1136 * If there was an IO error, we're not going to call zio_flush()
1137 * on these vdevs, so we simply empty the tree and free the
1138 * nodes. We avoid calling zio_flush() since there isn't any
1139 * good reason for doing so, after the lwb block failed to be
1140 * written out.
1142 if (zio->io_error != 0) {
1143 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1144 kmem_free(zv, sizeof (*zv));
1145 return;
1148 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1149 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1150 if (vd != NULL)
1151 zio_flush(lwb->lwb_root_zio, vd);
1152 kmem_free(zv, sizeof (*zv));
1157 * This function's purpose is to "open" an lwb such that it is ready to
1158 * accept new itxs being committed to it. To do this, the lwb's zio
1159 * structures are created, and linked to the lwb. This function is
1160 * idempotent; if the passed in lwb has already been opened, this
1161 * function is essentially a no-op.
1163 static void
1164 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1166 zbookmark_phys_t zb;
1167 zio_priority_t prio;
1169 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1170 ASSERT3P(lwb, !=, NULL);
1171 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1172 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1174 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1175 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1176 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1178 if (lwb->lwb_root_zio == NULL) {
1179 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1180 BP_GET_LSIZE(&lwb->lwb_blk));
1182 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1183 prio = ZIO_PRIORITY_SYNC_WRITE;
1184 else
1185 prio = ZIO_PRIORITY_ASYNC_WRITE;
1187 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1188 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1189 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1191 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1192 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1193 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1194 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1195 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1197 lwb->lwb_state = LWB_STATE_OPENED;
1199 mutex_enter(&zilog->zl_lock);
1202 * The zilog's "zl_last_lwb_opened" field is used to
1203 * build the lwb/zio dependency chain, which is used to
1204 * preserve the ordering of lwb completions that is
1205 * required by the semantics of the ZIL. Each new lwb
1206 * zio becomes a parent of the "previous" lwb zio, such
1207 * that the new lwb's zio cannot complete until the
1208 * "previous" lwb's zio completes.
1210 * This is required by the semantics of zil_commit();
1211 * the commit waiters attached to the lwbs will be woken
1212 * in the lwb zio's completion callback, so this zio
1213 * dependency graph ensures the waiters are woken in the
1214 * correct order (the same order the lwbs were created).
1216 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1217 if (last_lwb_opened != NULL &&
1218 last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1219 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1220 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1221 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1222 zio_add_child(lwb->lwb_root_zio,
1223 last_lwb_opened->lwb_root_zio);
1225 zilog->zl_last_lwb_opened = lwb;
1227 mutex_exit(&zilog->zl_lock);
1230 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1231 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1232 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1236 * Define a limited set of intent log block sizes.
1238 * These must be a multiple of 4KB. Note only the amount used (again
1239 * aligned to 4KB) actually gets written. However, we can't always just
1240 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1242 uint64_t zil_block_buckets[] = {
1243 4096, /* non TX_WRITE */
1244 8192+4096, /* data base */
1245 32*1024 + 4096, /* NFS writes */
1246 UINT64_MAX
1250 * Start a log block write and advance to the next log block.
1251 * Calls are serialized.
1253 static lwb_t *
1254 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1256 lwb_t *nlwb = NULL;
1257 zil_chain_t *zilc;
1258 spa_t *spa = zilog->zl_spa;
1259 blkptr_t *bp;
1260 dmu_tx_t *tx;
1261 uint64_t txg;
1262 uint64_t zil_blksz, wsz;
1263 int i, error;
1264 boolean_t slog;
1266 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1267 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1268 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1269 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1271 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1272 zilc = (zil_chain_t *)lwb->lwb_buf;
1273 bp = &zilc->zc_next_blk;
1274 } else {
1275 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1276 bp = &zilc->zc_next_blk;
1279 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1282 * Allocate the next block and save its address in this block
1283 * before writing it in order to establish the log chain.
1284 * Note that if the allocation of nlwb synced before we wrote
1285 * the block that points at it (lwb), we'd leak it if we crashed.
1286 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1287 * We dirty the dataset to ensure that zil_sync() will be called
1288 * to clean up in the event of allocation failure or I/O failure.
1291 tx = dmu_tx_create(zilog->zl_os);
1294 * Since we are not going to create any new dirty data, and we
1295 * can even help with clearing the existing dirty data, we
1296 * should not be subject to the dirty data based delays. We
1297 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1299 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1301 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1302 txg = dmu_tx_get_txg(tx);
1304 lwb->lwb_tx = tx;
1307 * Log blocks are pre-allocated. Here we select the size of the next
1308 * block, based on size used in the last block.
1309 * - first find the smallest bucket that will fit the block from a
1310 * limited set of block sizes. This is because it's faster to write
1311 * blocks allocated from the same metaslab as they are adjacent or
1312 * close.
1313 * - next find the maximum from the new suggested size and an array of
1314 * previous sizes. This lessens a picket fence effect of wrongly
1315 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1316 * requests.
1318 * Note we only write what is used, but we can't just allocate
1319 * the maximum block size because we can exhaust the available
1320 * pool log space.
1322 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1323 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1324 continue;
1325 zil_blksz = zil_block_buckets[i];
1326 if (zil_blksz == UINT64_MAX)
1327 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1328 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1329 for (i = 0; i < ZIL_PREV_BLKS; i++)
1330 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1331 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1333 BP_ZERO(bp);
1335 /* pass the old blkptr in order to spread log blocks across devs */
1336 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1337 if (error == 0) {
1338 ASSERT3U(bp->blk_birth, ==, txg);
1339 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1340 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1343 * Allocate a new log write block (lwb).
1345 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1348 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1349 /* For Slim ZIL only write what is used. */
1350 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1351 ASSERT3U(wsz, <=, lwb->lwb_sz);
1352 zio_shrink(lwb->lwb_write_zio, wsz);
1354 } else {
1355 wsz = lwb->lwb_sz;
1358 zilc->zc_pad = 0;
1359 zilc->zc_nused = lwb->lwb_nused;
1360 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1363 * clear unused data for security
1365 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1367 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1369 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1370 lwb->lwb_issued_timestamp = gethrtime();
1371 lwb->lwb_state = LWB_STATE_ISSUED;
1373 zio_nowait(lwb->lwb_root_zio);
1374 zio_nowait(lwb->lwb_write_zio);
1377 * If there was an allocation failure then nlwb will be null which
1378 * forces a txg_wait_synced().
1380 return (nlwb);
1383 static lwb_t *
1384 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1386 lr_t *lrcb, *lrc;
1387 lr_write_t *lrwb, *lrw;
1388 char *lr_buf;
1389 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1391 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1392 ASSERT3P(lwb, !=, NULL);
1393 ASSERT3P(lwb->lwb_buf, !=, NULL);
1395 zil_lwb_write_open(zilog, lwb);
1397 lrc = &itx->itx_lr;
1398 lrw = (lr_write_t *)lrc;
1401 * A commit itx doesn't represent any on-disk state; instead
1402 * it's simply used as a place holder on the commit list, and
1403 * provides a mechanism for attaching a "commit waiter" onto the
1404 * correct lwb (such that the waiter can be signalled upon
1405 * completion of that lwb). Thus, we don't process this itx's
1406 * log record if it's a commit itx (these itx's don't have log
1407 * records), and instead link the itx's waiter onto the lwb's
1408 * list of waiters.
1410 * For more details, see the comment above zil_commit().
1412 if (lrc->lrc_txtype == TX_COMMIT) {
1413 mutex_enter(&zilog->zl_lock);
1414 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1415 itx->itx_private = NULL;
1416 mutex_exit(&zilog->zl_lock);
1417 return (lwb);
1420 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1421 dlen = P2ROUNDUP_TYPED(
1422 lrw->lr_length, sizeof (uint64_t), uint64_t);
1423 } else {
1424 dlen = 0;
1426 reclen = lrc->lrc_reclen;
1427 zilog->zl_cur_used += (reclen + dlen);
1428 txg = lrc->lrc_txg;
1430 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1432 cont:
1434 * If this record won't fit in the current log block, start a new one.
1435 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1437 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1438 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1439 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1440 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1441 lwb = zil_lwb_write_issue(zilog, lwb);
1442 if (lwb == NULL)
1443 return (NULL);
1444 zil_lwb_write_open(zilog, lwb);
1445 ASSERT(LWB_EMPTY(lwb));
1446 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1447 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1450 dnow = MIN(dlen, lwb_sp - reclen);
1451 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1452 bcopy(lrc, lr_buf, reclen);
1453 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1454 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1457 * If it's a write, fetch the data or get its blkptr as appropriate.
1459 if (lrc->lrc_txtype == TX_WRITE) {
1460 if (txg > spa_freeze_txg(zilog->zl_spa))
1461 txg_wait_synced(zilog->zl_dmu_pool, txg);
1462 if (itx->itx_wr_state != WR_COPIED) {
1463 char *dbuf;
1464 int error;
1466 if (itx->itx_wr_state == WR_NEED_COPY) {
1467 dbuf = lr_buf + reclen;
1468 lrcb->lrc_reclen += dnow;
1469 if (lrwb->lr_length > dnow)
1470 lrwb->lr_length = dnow;
1471 lrw->lr_offset += dnow;
1472 lrw->lr_length -= dnow;
1473 } else {
1474 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1475 dbuf = NULL;
1479 * We pass in the "lwb_write_zio" rather than
1480 * "lwb_root_zio" so that the "lwb_write_zio"
1481 * becomes the parent of any zio's created by
1482 * the "zl_get_data" callback. The vdevs are
1483 * flushed after the "lwb_write_zio" completes,
1484 * so we want to make sure that completion
1485 * callback waits for these additional zio's,
1486 * such that the vdevs used by those zio's will
1487 * be included in the lwb's vdev tree, and those
1488 * vdevs will be properly flushed. If we passed
1489 * in "lwb_root_zio" here, then these additional
1490 * vdevs may not be flushed; e.g. if these zio's
1491 * completed after "lwb_write_zio" completed.
1493 error = zilog->zl_get_data(itx->itx_private,
1494 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1496 if (error == EIO) {
1497 txg_wait_synced(zilog->zl_dmu_pool, txg);
1498 return (lwb);
1500 if (error != 0) {
1501 ASSERT(error == ENOENT || error == EEXIST ||
1502 error == EALREADY);
1503 return (lwb);
1509 * We're actually making an entry, so update lrc_seq to be the
1510 * log record sequence number. Note that this is generally not
1511 * equal to the itx sequence number because not all transactions
1512 * are synchronous, and sometimes spa_sync() gets there first.
1514 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1515 lwb->lwb_nused += reclen + dnow;
1517 zil_lwb_add_txg(lwb, txg);
1519 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1520 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1522 dlen -= dnow;
1523 if (dlen > 0) {
1524 zilog->zl_cur_used += reclen;
1525 goto cont;
1528 return (lwb);
1531 itx_t *
1532 zil_itx_create(uint64_t txtype, size_t lrsize)
1534 itx_t *itx;
1536 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1538 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1539 itx->itx_lr.lrc_txtype = txtype;
1540 itx->itx_lr.lrc_reclen = lrsize;
1541 itx->itx_lr.lrc_seq = 0; /* defensive */
1542 itx->itx_sync = B_TRUE; /* default is synchronous */
1544 return (itx);
1547 void
1548 zil_itx_destroy(itx_t *itx)
1550 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1554 * Free up the sync and async itxs. The itxs_t has already been detached
1555 * so no locks are needed.
1557 static void
1558 zil_itxg_clean(itxs_t *itxs)
1560 itx_t *itx;
1561 list_t *list;
1562 avl_tree_t *t;
1563 void *cookie;
1564 itx_async_node_t *ian;
1566 list = &itxs->i_sync_list;
1567 while ((itx = list_head(list)) != NULL) {
1569 * In the general case, commit itxs will not be found
1570 * here, as they'll be committed to an lwb via
1571 * zil_lwb_commit(), and free'd in that function. Having
1572 * said that, it is still possible for commit itxs to be
1573 * found here, due to the following race:
1575 * - a thread calls zil_commit() which assigns the
1576 * commit itx to a per-txg i_sync_list
1577 * - zil_itxg_clean() is called (e.g. via spa_sync())
1578 * while the waiter is still on the i_sync_list
1580 * There's nothing to prevent syncing the txg while the
1581 * waiter is on the i_sync_list. This normally doesn't
1582 * happen because spa_sync() is slower than zil_commit(),
1583 * but if zil_commit() calls txg_wait_synced() (e.g.
1584 * because zil_create() or zil_commit_writer_stall() is
1585 * called) we will hit this case.
1587 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1588 zil_commit_waiter_skip(itx->itx_private);
1590 list_remove(list, itx);
1591 zil_itx_destroy(itx);
1594 cookie = NULL;
1595 t = &itxs->i_async_tree;
1596 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1597 list = &ian->ia_list;
1598 while ((itx = list_head(list)) != NULL) {
1599 list_remove(list, itx);
1600 /* commit itxs should never be on the async lists. */
1601 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1602 zil_itx_destroy(itx);
1604 list_destroy(list);
1605 kmem_free(ian, sizeof (itx_async_node_t));
1607 avl_destroy(t);
1609 kmem_free(itxs, sizeof (itxs_t));
1612 static int
1613 zil_aitx_compare(const void *x1, const void *x2)
1615 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1616 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1618 if (o1 < o2)
1619 return (-1);
1620 if (o1 > o2)
1621 return (1);
1623 return (0);
1627 * Remove all async itx with the given oid.
1629 static void
1630 zil_remove_async(zilog_t *zilog, uint64_t oid)
1632 uint64_t otxg, txg;
1633 itx_async_node_t *ian;
1634 avl_tree_t *t;
1635 avl_index_t where;
1636 list_t clean_list;
1637 itx_t *itx;
1639 ASSERT(oid != 0);
1640 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1642 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1643 otxg = ZILTEST_TXG;
1644 else
1645 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1647 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1648 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1650 mutex_enter(&itxg->itxg_lock);
1651 if (itxg->itxg_txg != txg) {
1652 mutex_exit(&itxg->itxg_lock);
1653 continue;
1657 * Locate the object node and append its list.
1659 t = &itxg->itxg_itxs->i_async_tree;
1660 ian = avl_find(t, &oid, &where);
1661 if (ian != NULL)
1662 list_move_tail(&clean_list, &ian->ia_list);
1663 mutex_exit(&itxg->itxg_lock);
1665 while ((itx = list_head(&clean_list)) != NULL) {
1666 list_remove(&clean_list, itx);
1667 /* commit itxs should never be on the async lists. */
1668 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1669 zil_itx_destroy(itx);
1671 list_destroy(&clean_list);
1674 void
1675 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1677 uint64_t txg;
1678 itxg_t *itxg;
1679 itxs_t *itxs, *clean = NULL;
1682 * Object ids can be re-instantiated in the next txg so
1683 * remove any async transactions to avoid future leaks.
1684 * This can happen if a fsync occurs on the re-instantiated
1685 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1686 * the new file data and flushes a write record for the old object.
1688 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1689 zil_remove_async(zilog, itx->itx_oid);
1692 * Ensure the data of a renamed file is committed before the rename.
1694 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1695 zil_async_to_sync(zilog, itx->itx_oid);
1697 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1698 txg = ZILTEST_TXG;
1699 else
1700 txg = dmu_tx_get_txg(tx);
1702 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1703 mutex_enter(&itxg->itxg_lock);
1704 itxs = itxg->itxg_itxs;
1705 if (itxg->itxg_txg != txg) {
1706 if (itxs != NULL) {
1708 * The zil_clean callback hasn't got around to cleaning
1709 * this itxg. Save the itxs for release below.
1710 * This should be rare.
1712 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1713 "txg %llu", itxg->itxg_txg);
1714 clean = itxg->itxg_itxs;
1716 itxg->itxg_txg = txg;
1717 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1719 list_create(&itxs->i_sync_list, sizeof (itx_t),
1720 offsetof(itx_t, itx_node));
1721 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1722 sizeof (itx_async_node_t),
1723 offsetof(itx_async_node_t, ia_node));
1725 if (itx->itx_sync) {
1726 list_insert_tail(&itxs->i_sync_list, itx);
1727 } else {
1728 avl_tree_t *t = &itxs->i_async_tree;
1729 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1730 itx_async_node_t *ian;
1731 avl_index_t where;
1733 ian = avl_find(t, &foid, &where);
1734 if (ian == NULL) {
1735 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1736 list_create(&ian->ia_list, sizeof (itx_t),
1737 offsetof(itx_t, itx_node));
1738 ian->ia_foid = foid;
1739 avl_insert(t, ian, where);
1741 list_insert_tail(&ian->ia_list, itx);
1744 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1747 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1748 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1749 * need to be careful to always dirty the ZIL using the "real"
1750 * TXG (not itxg_txg) even when the SPA is frozen.
1752 zilog_dirty(zilog, dmu_tx_get_txg(tx));
1753 mutex_exit(&itxg->itxg_lock);
1755 /* Release the old itxs now we've dropped the lock */
1756 if (clean != NULL)
1757 zil_itxg_clean(clean);
1761 * If there are any in-memory intent log transactions which have now been
1762 * synced then start up a taskq to free them. We should only do this after we
1763 * have written out the uberblocks (i.e. txg has been comitted) so that
1764 * don't inadvertently clean out in-memory log records that would be required
1765 * by zil_commit().
1767 void
1768 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1770 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1771 itxs_t *clean_me;
1773 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1775 mutex_enter(&itxg->itxg_lock);
1776 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1777 mutex_exit(&itxg->itxg_lock);
1778 return;
1780 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1781 ASSERT3U(itxg->itxg_txg, !=, 0);
1782 clean_me = itxg->itxg_itxs;
1783 itxg->itxg_itxs = NULL;
1784 itxg->itxg_txg = 0;
1785 mutex_exit(&itxg->itxg_lock);
1787 * Preferably start a task queue to free up the old itxs but
1788 * if taskq_dispatch can't allocate resources to do that then
1789 * free it in-line. This should be rare. Note, using TQ_SLEEP
1790 * created a bad performance problem.
1792 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1793 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1794 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1795 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1796 zil_itxg_clean(clean_me);
1800 * This function will traverse the queue of itxs that need to be
1801 * committed, and move them onto the ZIL's zl_itx_commit_list.
1803 static void
1804 zil_get_commit_list(zilog_t *zilog)
1806 uint64_t otxg, txg;
1807 list_t *commit_list = &zilog->zl_itx_commit_list;
1809 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1811 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1812 otxg = ZILTEST_TXG;
1813 else
1814 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1817 * This is inherently racy, since there is nothing to prevent
1818 * the last synced txg from changing. That's okay since we'll
1819 * only commit things in the future.
1821 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1822 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1824 mutex_enter(&itxg->itxg_lock);
1825 if (itxg->itxg_txg != txg) {
1826 mutex_exit(&itxg->itxg_lock);
1827 continue;
1831 * If we're adding itx records to the zl_itx_commit_list,
1832 * then the zil better be dirty in this "txg". We can assert
1833 * that here since we're holding the itxg_lock which will
1834 * prevent spa_sync from cleaning it. Once we add the itxs
1835 * to the zl_itx_commit_list we must commit it to disk even
1836 * if it's unnecessary (i.e. the txg was synced).
1838 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1839 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1840 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1842 mutex_exit(&itxg->itxg_lock);
1847 * Move the async itxs for a specified object to commit into sync lists.
1849 static void
1850 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1852 uint64_t otxg, txg;
1853 itx_async_node_t *ian;
1854 avl_tree_t *t;
1855 avl_index_t where;
1857 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1858 otxg = ZILTEST_TXG;
1859 else
1860 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1863 * This is inherently racy, since there is nothing to prevent
1864 * the last synced txg from changing.
1866 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1867 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1869 mutex_enter(&itxg->itxg_lock);
1870 if (itxg->itxg_txg != txg) {
1871 mutex_exit(&itxg->itxg_lock);
1872 continue;
1876 * If a foid is specified then find that node and append its
1877 * list. Otherwise walk the tree appending all the lists
1878 * to the sync list. We add to the end rather than the
1879 * beginning to ensure the create has happened.
1881 t = &itxg->itxg_itxs->i_async_tree;
1882 if (foid != 0) {
1883 ian = avl_find(t, &foid, &where);
1884 if (ian != NULL) {
1885 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1886 &ian->ia_list);
1888 } else {
1889 void *cookie = NULL;
1891 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1892 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1893 &ian->ia_list);
1894 list_destroy(&ian->ia_list);
1895 kmem_free(ian, sizeof (itx_async_node_t));
1898 mutex_exit(&itxg->itxg_lock);
1903 * This function will prune commit itxs that are at the head of the
1904 * commit list (it won't prune past the first non-commit itx), and
1905 * either: a) attach them to the last lwb that's still pending
1906 * completion, or b) skip them altogether.
1908 * This is used as a performance optimization to prevent commit itxs
1909 * from generating new lwbs when it's unnecessary to do so.
1911 static void
1912 zil_prune_commit_list(zilog_t *zilog)
1914 itx_t *itx;
1916 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1918 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1919 lr_t *lrc = &itx->itx_lr;
1920 if (lrc->lrc_txtype != TX_COMMIT)
1921 break;
1923 mutex_enter(&zilog->zl_lock);
1925 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1926 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1928 * All of the itxs this waiter was waiting on
1929 * must have already completed (or there were
1930 * never any itx's for it to wait on), so it's
1931 * safe to skip this waiter and mark it done.
1933 zil_commit_waiter_skip(itx->itx_private);
1934 } else {
1935 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1936 itx->itx_private = NULL;
1939 mutex_exit(&zilog->zl_lock);
1941 list_remove(&zilog->zl_itx_commit_list, itx);
1942 zil_itx_destroy(itx);
1945 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1948 static void
1949 zil_commit_writer_stall(zilog_t *zilog)
1952 * When zio_alloc_zil() fails to allocate the next lwb block on
1953 * disk, we must call txg_wait_synced() to ensure all of the
1954 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1955 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1956 * to zil_process_commit_list()) will have to call zil_create(),
1957 * and start a new ZIL chain.
1959 * Since zil_alloc_zil() failed, the lwb that was previously
1960 * issued does not have a pointer to the "next" lwb on disk.
1961 * Thus, if another ZIL writer thread was to allocate the "next"
1962 * on-disk lwb, that block could be leaked in the event of a
1963 * crash (because the previous lwb on-disk would not point to
1964 * it).
1966 * We must hold the zilog's zl_issuer_lock while we do this, to
1967 * ensure no new threads enter zil_process_commit_list() until
1968 * all lwb's in the zl_lwb_list have been synced and freed
1969 * (which is achieved via the txg_wait_synced() call).
1971 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1972 txg_wait_synced(zilog->zl_dmu_pool, 0);
1973 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1977 * This function will traverse the commit list, creating new lwbs as
1978 * needed, and committing the itxs from the commit list to these newly
1979 * created lwbs. Additionally, as a new lwb is created, the previous
1980 * lwb will be issued to the zio layer to be written to disk.
1982 static void
1983 zil_process_commit_list(zilog_t *zilog)
1985 spa_t *spa = zilog->zl_spa;
1986 list_t nolwb_waiters;
1987 lwb_t *lwb;
1988 itx_t *itx;
1990 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1993 * Return if there's nothing to commit before we dirty the fs by
1994 * calling zil_create().
1996 if (list_head(&zilog->zl_itx_commit_list) == NULL)
1997 return;
1999 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2000 offsetof(zil_commit_waiter_t, zcw_node));
2002 lwb = list_tail(&zilog->zl_lwb_list);
2003 if (lwb == NULL) {
2004 lwb = zil_create(zilog);
2005 } else {
2006 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2007 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2010 while (itx = list_head(&zilog->zl_itx_commit_list)) {
2011 lr_t *lrc = &itx->itx_lr;
2012 uint64_t txg = lrc->lrc_txg;
2014 ASSERT3U(txg, !=, 0);
2016 if (lrc->lrc_txtype == TX_COMMIT) {
2017 DTRACE_PROBE2(zil__process__commit__itx,
2018 zilog_t *, zilog, itx_t *, itx);
2019 } else {
2020 DTRACE_PROBE2(zil__process__normal__itx,
2021 zilog_t *, zilog, itx_t *, itx);
2024 boolean_t synced = txg <= spa_last_synced_txg(spa);
2025 boolean_t frozen = txg > spa_freeze_txg(spa);
2028 * If the txg of this itx has already been synced out, then
2029 * we don't need to commit this itx to an lwb. This is
2030 * because the data of this itx will have already been
2031 * written to the main pool. This is inherently racy, and
2032 * it's still ok to commit an itx whose txg has already
2033 * been synced; this will result in a write that's
2034 * unnecessary, but will do no harm.
2036 * With that said, we always want to commit TX_COMMIT itxs
2037 * to an lwb, regardless of whether or not that itx's txg
2038 * has been synced out. We do this to ensure any OPENED lwb
2039 * will always have at least one zil_commit_waiter_t linked
2040 * to the lwb.
2042 * As a counter-example, if we skipped TX_COMMIT itx's
2043 * whose txg had already been synced, the following
2044 * situation could occur if we happened to be racing with
2045 * spa_sync:
2047 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2048 * itx's txg is 10 and the last synced txg is 9.
2049 * 2. spa_sync finishes syncing out txg 10.
2050 * 3. we move to the next itx in the list, it's a TX_COMMIT
2051 * whose txg is 10, so we skip it rather than committing
2052 * it to the lwb used in (1).
2054 * If the itx that is skipped in (3) is the last TX_COMMIT
2055 * itx in the commit list, than it's possible for the lwb
2056 * used in (1) to remain in the OPENED state indefinitely.
2058 * To prevent the above scenario from occuring, ensuring
2059 * that once an lwb is OPENED it will transition to ISSUED
2060 * and eventually DONE, we always commit TX_COMMIT itx's to
2061 * an lwb here, even if that itx's txg has already been
2062 * synced.
2064 * Finally, if the pool is frozen, we _always_ commit the
2065 * itx. The point of freezing the pool is to prevent data
2066 * from being written to the main pool via spa_sync, and
2067 * instead rely solely on the ZIL to persistently store the
2068 * data; i.e. when the pool is frozen, the last synced txg
2069 * value can't be trusted.
2071 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2072 if (lwb != NULL) {
2073 lwb = zil_lwb_commit(zilog, itx, lwb);
2074 } else if (lrc->lrc_txtype == TX_COMMIT) {
2075 ASSERT3P(lwb, ==, NULL);
2076 zil_commit_waiter_link_nolwb(
2077 itx->itx_private, &nolwb_waiters);
2081 list_remove(&zilog->zl_itx_commit_list, itx);
2082 zil_itx_destroy(itx);
2085 if (lwb == NULL) {
2087 * This indicates zio_alloc_zil() failed to allocate the
2088 * "next" lwb on-disk. When this happens, we must stall
2089 * the ZIL write pipeline; see the comment within
2090 * zil_commit_writer_stall() for more details.
2092 zil_commit_writer_stall(zilog);
2095 * Additionally, we have to signal and mark the "nolwb"
2096 * waiters as "done" here, since without an lwb, we
2097 * can't do this via zil_lwb_flush_vdevs_done() like
2098 * normal.
2100 zil_commit_waiter_t *zcw;
2101 while (zcw = list_head(&nolwb_waiters)) {
2102 zil_commit_waiter_skip(zcw);
2103 list_remove(&nolwb_waiters, zcw);
2105 } else {
2106 ASSERT(list_is_empty(&nolwb_waiters));
2107 ASSERT3P(lwb, !=, NULL);
2108 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2109 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2112 * At this point, the ZIL block pointed at by the "lwb"
2113 * variable is in one of the following states: "closed"
2114 * or "open".
2116 * If its "closed", then no itxs have been committed to
2117 * it, so there's no point in issuing its zio (i.e.
2118 * it's "empty").
2120 * If its "open" state, then it contains one or more
2121 * itxs that eventually need to be committed to stable
2122 * storage. In this case we intentionally do not issue
2123 * the lwb's zio to disk yet, and instead rely on one of
2124 * the following two mechanisms for issuing the zio:
2126 * 1. Ideally, there will be more ZIL activity occuring
2127 * on the system, such that this function will be
2128 * immediately called again (not necessarily by the same
2129 * thread) and this lwb's zio will be issued via
2130 * zil_lwb_commit(). This way, the lwb is guaranteed to
2131 * be "full" when it is issued to disk, and we'll make
2132 * use of the lwb's size the best we can.
2134 * 2. If there isn't sufficient ZIL activity occuring on
2135 * the system, such that this lwb's zio isn't issued via
2136 * zil_lwb_commit(), zil_commit_waiter() will issue the
2137 * lwb's zio. If this occurs, the lwb is not guaranteed
2138 * to be "full" by the time its zio is issued, and means
2139 * the size of the lwb was "too large" given the amount
2140 * of ZIL activity occuring on the system at that time.
2142 * We do this for a couple of reasons:
2144 * 1. To try and reduce the number of IOPs needed to
2145 * write the same number of itxs. If an lwb has space
2146 * available in it's buffer for more itxs, and more itxs
2147 * will be committed relatively soon (relative to the
2148 * latency of performing a write), then it's beneficial
2149 * to wait for these "next" itxs. This way, more itxs
2150 * can be committed to stable storage with fewer writes.
2152 * 2. To try and use the largest lwb block size that the
2153 * incoming rate of itxs can support. Again, this is to
2154 * try and pack as many itxs into as few lwbs as
2155 * possible, without significantly impacting the latency
2156 * of each individual itx.
2162 * This function is responsible for ensuring the passed in commit waiter
2163 * (and associated commit itx) is committed to an lwb. If the waiter is
2164 * not already committed to an lwb, all itxs in the zilog's queue of
2165 * itxs will be processed. The assumption is the passed in waiter's
2166 * commit itx will found in the queue just like the other non-commit
2167 * itxs, such that when the entire queue is processed, the waiter will
2168 * have been commited to an lwb.
2170 * The lwb associated with the passed in waiter is not guaranteed to
2171 * have been issued by the time this function completes. If the lwb is
2172 * not issued, we rely on future calls to zil_commit_writer() to issue
2173 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2175 static void
2176 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2178 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2179 ASSERT(spa_writeable(zilog->zl_spa));
2181 mutex_enter(&zilog->zl_issuer_lock);
2183 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2185 * It's possible that, while we were waiting to acquire
2186 * the "zl_issuer_lock", another thread committed this
2187 * waiter to an lwb. If that occurs, we bail out early,
2188 * without processing any of the zilog's queue of itxs.
2190 * On certain workloads and system configurations, the
2191 * "zl_issuer_lock" can become highly contended. In an
2192 * attempt to reduce this contention, we immediately drop
2193 * the lock if the waiter has already been processed.
2195 * We've measured this optimization to reduce CPU spent
2196 * contending on this lock by up to 5%, using a system
2197 * with 32 CPUs, low latency storage (~50 usec writes),
2198 * and 1024 threads performing sync writes.
2200 goto out;
2203 zil_get_commit_list(zilog);
2204 zil_prune_commit_list(zilog);
2205 zil_process_commit_list(zilog);
2207 out:
2208 mutex_exit(&zilog->zl_issuer_lock);
2211 static void
2212 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2214 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2215 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2216 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2218 lwb_t *lwb = zcw->zcw_lwb;
2219 ASSERT3P(lwb, !=, NULL);
2220 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2223 * If the lwb has already been issued by another thread, we can
2224 * immediately return since there's no work to be done (the
2225 * point of this function is to issue the lwb). Additionally, we
2226 * do this prior to acquiring the zl_issuer_lock, to avoid
2227 * acquiring it when it's not necessary to do so.
2229 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2230 lwb->lwb_state == LWB_STATE_DONE)
2231 return;
2234 * In order to call zil_lwb_write_issue() we must hold the
2235 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2236 * since we're already holding the commit waiter's "zcw_lock",
2237 * and those two locks are aquired in the opposite order
2238 * elsewhere.
2240 mutex_exit(&zcw->zcw_lock);
2241 mutex_enter(&zilog->zl_issuer_lock);
2242 mutex_enter(&zcw->zcw_lock);
2245 * Since we just dropped and re-acquired the commit waiter's
2246 * lock, we have to re-check to see if the waiter was marked
2247 * "done" during that process. If the waiter was marked "done",
2248 * the "lwb" pointer is no longer valid (it can be free'd after
2249 * the waiter is marked "done"), so without this check we could
2250 * wind up with a use-after-free error below.
2252 if (zcw->zcw_done)
2253 goto out;
2255 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2258 * We've already checked this above, but since we hadn't acquired
2259 * the zilog's zl_issuer_lock, we have to perform this check a
2260 * second time while holding the lock.
2262 * We don't need to hold the zl_lock since the lwb cannot transition
2263 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2264 * _can_ transition from ISSUED to DONE, but it's OK to race with
2265 * that transition since we treat the lwb the same, whether it's in
2266 * the ISSUED or DONE states.
2268 * The important thing, is we treat the lwb differently depending on
2269 * if it's ISSUED or OPENED, and block any other threads that might
2270 * attempt to issue this lwb. For that reason we hold the
2271 * zl_issuer_lock when checking the lwb_state; we must not call
2272 * zil_lwb_write_issue() if the lwb had already been issued.
2274 * See the comment above the lwb_state_t structure definition for
2275 * more details on the lwb states, and locking requirements.
2277 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2278 lwb->lwb_state == LWB_STATE_DONE)
2279 goto out;
2281 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2284 * As described in the comments above zil_commit_waiter() and
2285 * zil_process_commit_list(), we need to issue this lwb's zio
2286 * since we've reached the commit waiter's timeout and it still
2287 * hasn't been issued.
2289 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2291 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2294 * Since the lwb's zio hadn't been issued by the time this thread
2295 * reached its timeout, we reset the zilog's "zl_cur_used" field
2296 * to influence the zil block size selection algorithm.
2298 * By having to issue the lwb's zio here, it means the size of the
2299 * lwb was too large, given the incoming throughput of itxs. By
2300 * setting "zl_cur_used" to zero, we communicate this fact to the
2301 * block size selection algorithm, so it can take this informaiton
2302 * into account, and potentially select a smaller size for the
2303 * next lwb block that is allocated.
2305 zilog->zl_cur_used = 0;
2307 if (nlwb == NULL) {
2309 * When zil_lwb_write_issue() returns NULL, this
2310 * indicates zio_alloc_zil() failed to allocate the
2311 * "next" lwb on-disk. When this occurs, the ZIL write
2312 * pipeline must be stalled; see the comment within the
2313 * zil_commit_writer_stall() function for more details.
2315 * We must drop the commit waiter's lock prior to
2316 * calling zil_commit_writer_stall() or else we can wind
2317 * up with the following deadlock:
2319 * - This thread is waiting for the txg to sync while
2320 * holding the waiter's lock; txg_wait_synced() is
2321 * used within txg_commit_writer_stall().
2323 * - The txg can't sync because it is waiting for this
2324 * lwb's zio callback to call dmu_tx_commit().
2326 * - The lwb's zio callback can't call dmu_tx_commit()
2327 * because it's blocked trying to acquire the waiter's
2328 * lock, which occurs prior to calling dmu_tx_commit()
2330 mutex_exit(&zcw->zcw_lock);
2331 zil_commit_writer_stall(zilog);
2332 mutex_enter(&zcw->zcw_lock);
2335 out:
2336 mutex_exit(&zilog->zl_issuer_lock);
2337 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2341 * This function is responsible for performing the following two tasks:
2343 * 1. its primary responsibility is to block until the given "commit
2344 * waiter" is considered "done".
2346 * 2. its secondary responsibility is to issue the zio for the lwb that
2347 * the given "commit waiter" is waiting on, if this function has
2348 * waited "long enough" and the lwb is still in the "open" state.
2350 * Given a sufficient amount of itxs being generated and written using
2351 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2352 * function. If this does not occur, this secondary responsibility will
2353 * ensure the lwb is issued even if there is not other synchronous
2354 * activity on the system.
2356 * For more details, see zil_process_commit_list(); more specifically,
2357 * the comment at the bottom of that function.
2359 static void
2360 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2362 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2363 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2364 ASSERT(spa_writeable(zilog->zl_spa));
2366 mutex_enter(&zcw->zcw_lock);
2369 * The timeout is scaled based on the lwb latency to avoid
2370 * significantly impacting the latency of each individual itx.
2371 * For more details, see the comment at the bottom of the
2372 * zil_process_commit_list() function.
2374 int pct = MAX(zfs_commit_timeout_pct, 1);
2375 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2376 hrtime_t wakeup = gethrtime() + sleep;
2377 boolean_t timedout = B_FALSE;
2379 while (!zcw->zcw_done) {
2380 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2382 lwb_t *lwb = zcw->zcw_lwb;
2385 * Usually, the waiter will have a non-NULL lwb field here,
2386 * but it's possible for it to be NULL as a result of
2387 * zil_commit() racing with spa_sync().
2389 * When zil_clean() is called, it's possible for the itxg
2390 * list (which may be cleaned via a taskq) to contain
2391 * commit itxs. When this occurs, the commit waiters linked
2392 * off of these commit itxs will not be committed to an
2393 * lwb. Additionally, these commit waiters will not be
2394 * marked done until zil_commit_waiter_skip() is called via
2395 * zil_itxg_clean().
2397 * Thus, it's possible for this commit waiter (i.e. the
2398 * "zcw" variable) to be found in this "in between" state;
2399 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2400 * been skipped, so it's "zcw_done" field is still B_FALSE.
2402 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2404 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2405 ASSERT3B(timedout, ==, B_FALSE);
2408 * If the lwb hasn't been issued yet, then we
2409 * need to wait with a timeout, in case this
2410 * function needs to issue the lwb after the
2411 * timeout is reached; responsibility (2) from
2412 * the comment above this function.
2414 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2415 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2416 CALLOUT_FLAG_ABSOLUTE);
2418 if (timeleft >= 0 || zcw->zcw_done)
2419 continue;
2421 timedout = B_TRUE;
2422 zil_commit_waiter_timeout(zilog, zcw);
2424 if (!zcw->zcw_done) {
2426 * If the commit waiter has already been
2427 * marked "done", it's possible for the
2428 * waiter's lwb structure to have already
2429 * been freed. Thus, we can only reliably
2430 * make these assertions if the waiter
2431 * isn't done.
2433 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2434 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2436 } else {
2438 * If the lwb isn't open, then it must have already
2439 * been issued. In that case, there's no need to
2440 * use a timeout when waiting for the lwb to
2441 * complete.
2443 * Additionally, if the lwb is NULL, the waiter
2444 * will soon be signalled and marked done via
2445 * zil_clean() and zil_itxg_clean(), so no timeout
2446 * is required.
2449 IMPLY(lwb != NULL,
2450 lwb->lwb_state == LWB_STATE_ISSUED ||
2451 lwb->lwb_state == LWB_STATE_DONE);
2452 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2456 mutex_exit(&zcw->zcw_lock);
2459 static zil_commit_waiter_t *
2460 zil_alloc_commit_waiter()
2462 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2464 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2465 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2466 list_link_init(&zcw->zcw_node);
2467 zcw->zcw_lwb = NULL;
2468 zcw->zcw_done = B_FALSE;
2469 zcw->zcw_zio_error = 0;
2471 return (zcw);
2474 static void
2475 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2477 ASSERT(!list_link_active(&zcw->zcw_node));
2478 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2479 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2480 mutex_destroy(&zcw->zcw_lock);
2481 cv_destroy(&zcw->zcw_cv);
2482 kmem_cache_free(zil_zcw_cache, zcw);
2486 * This function is used to create a TX_COMMIT itx and assign it. This
2487 * way, it will be linked into the ZIL's list of synchronous itxs, and
2488 * then later committed to an lwb (or skipped) when
2489 * zil_process_commit_list() is called.
2491 static void
2492 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2494 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2495 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2497 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2498 itx->itx_sync = B_TRUE;
2499 itx->itx_private = zcw;
2501 zil_itx_assign(zilog, itx, tx);
2503 dmu_tx_commit(tx);
2507 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2509 * When writing ZIL transactions to the on-disk representation of the
2510 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2511 * itxs can be committed to a single lwb. Once a lwb is written and
2512 * committed to stable storage (i.e. the lwb is written, and vdevs have
2513 * been flushed), each itx that was committed to that lwb is also
2514 * considered to be committed to stable storage.
2516 * When an itx is committed to an lwb, the log record (lr_t) contained
2517 * by the itx is copied into the lwb's zio buffer, and once this buffer
2518 * is written to disk, it becomes an on-disk ZIL block.
2520 * As itxs are generated, they're inserted into the ZIL's queue of
2521 * uncommitted itxs. The semantics of zil_commit() are such that it will
2522 * block until all itxs that were in the queue when it was called, are
2523 * committed to stable storage.
2525 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2526 * itxs, for all objects in the dataset, will be committed to stable
2527 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2528 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2529 * that correspond to the foid passed in, will be committed to stable
2530 * storage prior to zil_commit() returning.
2532 * Generally speaking, when zil_commit() is called, the consumer doesn't
2533 * actually care about _all_ of the uncommitted itxs. Instead, they're
2534 * simply trying to waiting for a specific itx to be committed to disk,
2535 * but the interface(s) for interacting with the ZIL don't allow such
2536 * fine-grained communication. A better interface would allow a consumer
2537 * to create and assign an itx, and then pass a reference to this itx to
2538 * zil_commit(); such that zil_commit() would return as soon as that
2539 * specific itx was committed to disk (instead of waiting for _all_
2540 * itxs to be committed).
2542 * When a thread calls zil_commit() a special "commit itx" will be
2543 * generated, along with a corresponding "waiter" for this commit itx.
2544 * zil_commit() will wait on this waiter's CV, such that when the waiter
2545 * is marked done, and signalled, zil_commit() will return.
2547 * This commit itx is inserted into the queue of uncommitted itxs. This
2548 * provides an easy mechanism for determining which itxs were in the
2549 * queue prior to zil_commit() having been called, and which itxs were
2550 * added after zil_commit() was called.
2552 * The commit it is special; it doesn't have any on-disk representation.
2553 * When a commit itx is "committed" to an lwb, the waiter associated
2554 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2555 * completes, each waiter on the lwb's list is marked done and signalled
2556 * -- allowing the thread waiting on the waiter to return from zil_commit().
2558 * It's important to point out a few critical factors that allow us
2559 * to make use of the commit itxs, commit waiters, per-lwb lists of
2560 * commit waiters, and zio completion callbacks like we're doing:
2562 * 1. The list of waiters for each lwb is traversed, and each commit
2563 * waiter is marked "done" and signalled, in the zio completion
2564 * callback of the lwb's zio[*].
2566 * * Actually, the waiters are signalled in the zio completion
2567 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2568 * that are sent to the vdevs upon completion of the lwb zio.
2570 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2571 * itxs, the order in which they are inserted is preserved[*]; as
2572 * itxs are added to the queue, they are added to the tail of
2573 * in-memory linked lists.
2575 * When committing the itxs to lwbs (to be written to disk), they
2576 * are committed in the same order in which the itxs were added to
2577 * the uncommitted queue's linked list(s); i.e. the linked list of
2578 * itxs to commit is traversed from head to tail, and each itx is
2579 * committed to an lwb in that order.
2581 * * To clarify:
2583 * - the order of "sync" itxs is preserved w.r.t. other
2584 * "sync" itxs, regardless of the corresponding objects.
2585 * - the order of "async" itxs is preserved w.r.t. other
2586 * "async" itxs corresponding to the same object.
2587 * - the order of "async" itxs is *not* preserved w.r.t. other
2588 * "async" itxs corresponding to different objects.
2589 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2590 * versa) is *not* preserved, even for itxs that correspond
2591 * to the same object.
2593 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2594 * zil_get_commit_list(), and zil_process_commit_list().
2596 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2597 * lwb cannot be considered committed to stable storage, until its
2598 * "previous" lwb is also committed to stable storage. This fact,
2599 * coupled with the fact described above, means that itxs are
2600 * committed in (roughly) the order in which they were generated.
2601 * This is essential because itxs are dependent on prior itxs.
2602 * Thus, we *must not* deem an itx as being committed to stable
2603 * storage, until *all* prior itxs have also been committed to
2604 * stable storage.
2606 * To enforce this ordering of lwb zio's, while still leveraging as
2607 * much of the underlying storage performance as possible, we rely
2608 * on two fundamental concepts:
2610 * 1. The creation and issuance of lwb zio's is protected by
2611 * the zilog's "zl_issuer_lock", which ensures only a single
2612 * thread is creating and/or issuing lwb's at a time
2613 * 2. The "previous" lwb is a child of the "current" lwb
2614 * (leveraging the zio parent-child depenency graph)
2616 * By relying on this parent-child zio relationship, we can have
2617 * many lwb zio's concurrently issued to the underlying storage,
2618 * but the order in which they complete will be the same order in
2619 * which they were created.
2621 void
2622 zil_commit(zilog_t *zilog, uint64_t foid)
2625 * We should never attempt to call zil_commit on a snapshot for
2626 * a couple of reasons:
2628 * 1. A snapshot may never be modified, thus it cannot have any
2629 * in-flight itxs that would have modified the dataset.
2631 * 2. By design, when zil_commit() is called, a commit itx will
2632 * be assigned to this zilog; as a result, the zilog will be
2633 * dirtied. We must not dirty the zilog of a snapshot; there's
2634 * checks in the code that enforce this invariant, and will
2635 * cause a panic if it's not upheld.
2637 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2639 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2640 return;
2642 if (!spa_writeable(zilog->zl_spa)) {
2644 * If the SPA is not writable, there should never be any
2645 * pending itxs waiting to be committed to disk. If that
2646 * weren't true, we'd skip writing those itxs out, and
2647 * would break the sematics of zil_commit(); thus, we're
2648 * verifying that truth before we return to the caller.
2650 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2651 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2652 for (int i = 0; i < TXG_SIZE; i++)
2653 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2654 return;
2658 * If the ZIL is suspended, we don't want to dirty it by calling
2659 * zil_commit_itx_assign() below, nor can we write out
2660 * lwbs like would be done in zil_commit_write(). Thus, we
2661 * simply rely on txg_wait_synced() to maintain the necessary
2662 * semantics, and avoid calling those functions altogether.
2664 if (zilog->zl_suspend > 0) {
2665 txg_wait_synced(zilog->zl_dmu_pool, 0);
2666 return;
2669 zil_commit_impl(zilog, foid);
2672 void
2673 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2676 * Move the "async" itxs for the specified foid to the "sync"
2677 * queues, such that they will be later committed (or skipped)
2678 * to an lwb when zil_process_commit_list() is called.
2680 * Since these "async" itxs must be committed prior to this
2681 * call to zil_commit returning, we must perform this operation
2682 * before we call zil_commit_itx_assign().
2684 zil_async_to_sync(zilog, foid);
2687 * We allocate a new "waiter" structure which will initially be
2688 * linked to the commit itx using the itx's "itx_private" field.
2689 * Since the commit itx doesn't represent any on-disk state,
2690 * when it's committed to an lwb, rather than copying the its
2691 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2692 * added to the lwb's list of waiters. Then, when the lwb is
2693 * committed to stable storage, each waiter in the lwb's list of
2694 * waiters will be marked "done", and signalled.
2696 * We must create the waiter and assign the commit itx prior to
2697 * calling zil_commit_writer(), or else our specific commit itx
2698 * is not guaranteed to be committed to an lwb prior to calling
2699 * zil_commit_waiter().
2701 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2702 zil_commit_itx_assign(zilog, zcw);
2704 zil_commit_writer(zilog, zcw);
2705 zil_commit_waiter(zilog, zcw);
2707 if (zcw->zcw_zio_error != 0) {
2709 * If there was an error writing out the ZIL blocks that
2710 * this thread is waiting on, then we fallback to
2711 * relying on spa_sync() to write out the data this
2712 * thread is waiting on. Obviously this has performance
2713 * implications, but the expectation is for this to be
2714 * an exceptional case, and shouldn't occur often.
2716 DTRACE_PROBE2(zil__commit__io__error,
2717 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2718 txg_wait_synced(zilog->zl_dmu_pool, 0);
2721 zil_free_commit_waiter(zcw);
2725 * Called in syncing context to free committed log blocks and update log header.
2727 void
2728 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2730 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2731 uint64_t txg = dmu_tx_get_txg(tx);
2732 spa_t *spa = zilog->zl_spa;
2733 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2734 lwb_t *lwb;
2737 * We don't zero out zl_destroy_txg, so make sure we don't try
2738 * to destroy it twice.
2740 if (spa_sync_pass(spa) != 1)
2741 return;
2743 mutex_enter(&zilog->zl_lock);
2745 ASSERT(zilog->zl_stop_sync == 0);
2747 if (*replayed_seq != 0) {
2748 ASSERT(zh->zh_replay_seq < *replayed_seq);
2749 zh->zh_replay_seq = *replayed_seq;
2750 *replayed_seq = 0;
2753 if (zilog->zl_destroy_txg == txg) {
2754 blkptr_t blk = zh->zh_log;
2756 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2758 bzero(zh, sizeof (zil_header_t));
2759 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2761 if (zilog->zl_keep_first) {
2763 * If this block was part of log chain that couldn't
2764 * be claimed because a device was missing during
2765 * zil_claim(), but that device later returns,
2766 * then this block could erroneously appear valid.
2767 * To guard against this, assign a new GUID to the new
2768 * log chain so it doesn't matter what blk points to.
2770 zil_init_log_chain(zilog, &blk);
2771 zh->zh_log = blk;
2775 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2776 zh->zh_log = lwb->lwb_blk;
2777 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2778 break;
2779 list_remove(&zilog->zl_lwb_list, lwb);
2780 zio_free(spa, txg, &lwb->lwb_blk);
2781 zil_free_lwb(zilog, lwb);
2784 * If we don't have anything left in the lwb list then
2785 * we've had an allocation failure and we need to zero
2786 * out the zil_header blkptr so that we don't end
2787 * up freeing the same block twice.
2789 if (list_head(&zilog->zl_lwb_list) == NULL)
2790 BP_ZERO(&zh->zh_log);
2792 mutex_exit(&zilog->zl_lock);
2795 /* ARGSUSED */
2796 static int
2797 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2799 lwb_t *lwb = vbuf;
2800 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2801 offsetof(zil_commit_waiter_t, zcw_node));
2802 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2803 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2804 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2805 return (0);
2808 /* ARGSUSED */
2809 static void
2810 zil_lwb_dest(void *vbuf, void *unused)
2812 lwb_t *lwb = vbuf;
2813 mutex_destroy(&lwb->lwb_vdev_lock);
2814 avl_destroy(&lwb->lwb_vdev_tree);
2815 list_destroy(&lwb->lwb_waiters);
2818 void
2819 zil_init(void)
2821 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2822 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2824 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2825 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2828 void
2829 zil_fini(void)
2831 kmem_cache_destroy(zil_zcw_cache);
2832 kmem_cache_destroy(zil_lwb_cache);
2835 void
2836 zil_set_sync(zilog_t *zilog, uint64_t sync)
2838 zilog->zl_sync = sync;
2841 void
2842 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2844 zilog->zl_logbias = logbias;
2847 zilog_t *
2848 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2850 zilog_t *zilog;
2852 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2854 zilog->zl_header = zh_phys;
2855 zilog->zl_os = os;
2856 zilog->zl_spa = dmu_objset_spa(os);
2857 zilog->zl_dmu_pool = dmu_objset_pool(os);
2858 zilog->zl_destroy_txg = TXG_INITIAL - 1;
2859 zilog->zl_logbias = dmu_objset_logbias(os);
2860 zilog->zl_sync = dmu_objset_syncprop(os);
2861 zilog->zl_dirty_max_txg = 0;
2862 zilog->zl_last_lwb_opened = NULL;
2863 zilog->zl_last_lwb_latency = 0;
2865 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2866 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2868 for (int i = 0; i < TXG_SIZE; i++) {
2869 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2870 MUTEX_DEFAULT, NULL);
2873 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2874 offsetof(lwb_t, lwb_node));
2876 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2877 offsetof(itx_t, itx_node));
2879 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2881 return (zilog);
2884 void
2885 zil_free(zilog_t *zilog)
2887 zilog->zl_stop_sync = 1;
2889 ASSERT0(zilog->zl_suspend);
2890 ASSERT0(zilog->zl_suspending);
2892 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2893 list_destroy(&zilog->zl_lwb_list);
2895 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2896 list_destroy(&zilog->zl_itx_commit_list);
2898 for (int i = 0; i < TXG_SIZE; i++) {
2900 * It's possible for an itx to be generated that doesn't dirty
2901 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2902 * callback to remove the entry. We remove those here.
2904 * Also free up the ziltest itxs.
2906 if (zilog->zl_itxg[i].itxg_itxs)
2907 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2908 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2911 mutex_destroy(&zilog->zl_issuer_lock);
2912 mutex_destroy(&zilog->zl_lock);
2914 cv_destroy(&zilog->zl_cv_suspend);
2916 kmem_free(zilog, sizeof (zilog_t));
2920 * Open an intent log.
2922 zilog_t *
2923 zil_open(objset_t *os, zil_get_data_t *get_data)
2925 zilog_t *zilog = dmu_objset_zil(os);
2927 ASSERT3P(zilog->zl_get_data, ==, NULL);
2928 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2929 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2931 zilog->zl_get_data = get_data;
2933 return (zilog);
2937 * Close an intent log.
2939 void
2940 zil_close(zilog_t *zilog)
2942 lwb_t *lwb;
2943 uint64_t txg;
2945 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2946 zil_commit(zilog, 0);
2947 } else {
2948 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2949 ASSERT0(zilog->zl_dirty_max_txg);
2950 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2953 mutex_enter(&zilog->zl_lock);
2954 lwb = list_tail(&zilog->zl_lwb_list);
2955 if (lwb == NULL)
2956 txg = zilog->zl_dirty_max_txg;
2957 else
2958 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2959 mutex_exit(&zilog->zl_lock);
2962 * We need to use txg_wait_synced() to wait long enough for the
2963 * ZIL to be clean, and to wait for all pending lwbs to be
2964 * written out.
2966 if (txg != 0)
2967 txg_wait_synced(zilog->zl_dmu_pool, txg);
2969 if (zilog_is_dirty(zilog))
2970 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2971 VERIFY(!zilog_is_dirty(zilog));
2973 zilog->zl_get_data = NULL;
2976 * We should have only one lwb left on the list; remove it now.
2978 mutex_enter(&zilog->zl_lock);
2979 lwb = list_head(&zilog->zl_lwb_list);
2980 if (lwb != NULL) {
2981 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2982 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2983 list_remove(&zilog->zl_lwb_list, lwb);
2984 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2985 zil_free_lwb(zilog, lwb);
2987 mutex_exit(&zilog->zl_lock);
2990 static char *suspend_tag = "zil suspending";
2993 * Suspend an intent log. While in suspended mode, we still honor
2994 * synchronous semantics, but we rely on txg_wait_synced() to do it.
2995 * On old version pools, we suspend the log briefly when taking a
2996 * snapshot so that it will have an empty intent log.
2998 * Long holds are not really intended to be used the way we do here --
2999 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3000 * could fail. Therefore we take pains to only put a long hold if it is
3001 * actually necessary. Fortunately, it will only be necessary if the
3002 * objset is currently mounted (or the ZVOL equivalent). In that case it
3003 * will already have a long hold, so we are not really making things any worse.
3005 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3006 * zvol_state_t), and use their mechanism to prevent their hold from being
3007 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3008 * very little gain.
3010 * if cookiep == NULL, this does both the suspend & resume.
3011 * Otherwise, it returns with the dataset "long held", and the cookie
3012 * should be passed into zil_resume().
3015 zil_suspend(const char *osname, void **cookiep)
3017 objset_t *os;
3018 zilog_t *zilog;
3019 const zil_header_t *zh;
3020 int error;
3022 error = dmu_objset_hold(osname, suspend_tag, &os);
3023 if (error != 0)
3024 return (error);
3025 zilog = dmu_objset_zil(os);
3027 mutex_enter(&zilog->zl_lock);
3028 zh = zilog->zl_header;
3030 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3031 mutex_exit(&zilog->zl_lock);
3032 dmu_objset_rele(os, suspend_tag);
3033 return (SET_ERROR(EBUSY));
3037 * Don't put a long hold in the cases where we can avoid it. This
3038 * is when there is no cookie so we are doing a suspend & resume
3039 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3040 * for the suspend because it's already suspended, or there's no ZIL.
3042 if (cookiep == NULL && !zilog->zl_suspending &&
3043 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3044 mutex_exit(&zilog->zl_lock);
3045 dmu_objset_rele(os, suspend_tag);
3046 return (0);
3049 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3050 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3052 zilog->zl_suspend++;
3054 if (zilog->zl_suspend > 1) {
3056 * Someone else is already suspending it.
3057 * Just wait for them to finish.
3060 while (zilog->zl_suspending)
3061 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3062 mutex_exit(&zilog->zl_lock);
3064 if (cookiep == NULL)
3065 zil_resume(os);
3066 else
3067 *cookiep = os;
3068 return (0);
3072 * If there is no pointer to an on-disk block, this ZIL must not
3073 * be active (e.g. filesystem not mounted), so there's nothing
3074 * to clean up.
3076 if (BP_IS_HOLE(&zh->zh_log)) {
3077 ASSERT(cookiep != NULL); /* fast path already handled */
3079 *cookiep = os;
3080 mutex_exit(&zilog->zl_lock);
3081 return (0);
3084 zilog->zl_suspending = B_TRUE;
3085 mutex_exit(&zilog->zl_lock);
3088 * We need to use zil_commit_impl to ensure we wait for all
3089 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3090 * to disk before proceeding. If we used zil_commit instead, it
3091 * would just call txg_wait_synced(), because zl_suspend is set.
3092 * txg_wait_synced() doesn't wait for these lwb's to be
3093 * LWB_STATE_DONE before returning.
3095 zil_commit_impl(zilog, 0);
3098 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3099 * txg_wait_synced() to ensure the data from the zilog has
3100 * migrated to the main pool before calling zil_destroy().
3102 txg_wait_synced(zilog->zl_dmu_pool, 0);
3104 zil_destroy(zilog, B_FALSE);
3106 mutex_enter(&zilog->zl_lock);
3107 zilog->zl_suspending = B_FALSE;
3108 cv_broadcast(&zilog->zl_cv_suspend);
3109 mutex_exit(&zilog->zl_lock);
3111 if (cookiep == NULL)
3112 zil_resume(os);
3113 else
3114 *cookiep = os;
3115 return (0);
3118 void
3119 zil_resume(void *cookie)
3121 objset_t *os = cookie;
3122 zilog_t *zilog = dmu_objset_zil(os);
3124 mutex_enter(&zilog->zl_lock);
3125 ASSERT(zilog->zl_suspend != 0);
3126 zilog->zl_suspend--;
3127 mutex_exit(&zilog->zl_lock);
3128 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3129 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3132 typedef struct zil_replay_arg {
3133 zil_replay_func_t **zr_replay;
3134 void *zr_arg;
3135 boolean_t zr_byteswap;
3136 char *zr_lr;
3137 } zil_replay_arg_t;
3139 static int
3140 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3142 char name[ZFS_MAX_DATASET_NAME_LEN];
3144 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3146 dmu_objset_name(zilog->zl_os, name);
3148 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3149 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3150 (u_longlong_t)lr->lrc_seq,
3151 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3152 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3154 return (error);
3157 static int
3158 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3160 zil_replay_arg_t *zr = zra;
3161 const zil_header_t *zh = zilog->zl_header;
3162 uint64_t reclen = lr->lrc_reclen;
3163 uint64_t txtype = lr->lrc_txtype;
3164 int error = 0;
3166 zilog->zl_replaying_seq = lr->lrc_seq;
3168 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3169 return (0);
3171 if (lr->lrc_txg < claim_txg) /* already committed */
3172 return (0);
3174 /* Strip case-insensitive bit, still present in log record */
3175 txtype &= ~TX_CI;
3177 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3178 return (zil_replay_error(zilog, lr, EINVAL));
3181 * If this record type can be logged out of order, the object
3182 * (lr_foid) may no longer exist. That's legitimate, not an error.
3184 if (TX_OOO(txtype)) {
3185 error = dmu_object_info(zilog->zl_os,
3186 ((lr_ooo_t *)lr)->lr_foid, NULL);
3187 if (error == ENOENT || error == EEXIST)
3188 return (0);
3192 * Make a copy of the data so we can revise and extend it.
3194 bcopy(lr, zr->zr_lr, reclen);
3197 * If this is a TX_WRITE with a blkptr, suck in the data.
3199 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3200 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3201 zr->zr_lr + reclen);
3202 if (error != 0)
3203 return (zil_replay_error(zilog, lr, error));
3207 * The log block containing this lr may have been byteswapped
3208 * so that we can easily examine common fields like lrc_txtype.
3209 * However, the log is a mix of different record types, and only the
3210 * replay vectors know how to byteswap their records. Therefore, if
3211 * the lr was byteswapped, undo it before invoking the replay vector.
3213 if (zr->zr_byteswap)
3214 byteswap_uint64_array(zr->zr_lr, reclen);
3217 * We must now do two things atomically: replay this log record,
3218 * and update the log header sequence number to reflect the fact that
3219 * we did so. At the end of each replay function the sequence number
3220 * is updated if we are in replay mode.
3222 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3223 if (error != 0) {
3225 * The DMU's dnode layer doesn't see removes until the txg
3226 * commits, so a subsequent claim can spuriously fail with
3227 * EEXIST. So if we receive any error we try syncing out
3228 * any removes then retry the transaction. Note that we
3229 * specify B_FALSE for byteswap now, so we don't do it twice.
3231 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3232 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3233 if (error != 0)
3234 return (zil_replay_error(zilog, lr, error));
3236 return (0);
3239 /* ARGSUSED */
3240 static int
3241 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3243 zilog->zl_replay_blks++;
3245 return (0);
3249 * If this dataset has a non-empty intent log, replay it and destroy it.
3251 void
3252 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3254 zilog_t *zilog = dmu_objset_zil(os);
3255 const zil_header_t *zh = zilog->zl_header;
3256 zil_replay_arg_t zr;
3258 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3259 zil_destroy(zilog, B_TRUE);
3260 return;
3263 zr.zr_replay = replay_func;
3264 zr.zr_arg = arg;
3265 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3266 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3269 * Wait for in-progress removes to sync before starting replay.
3271 txg_wait_synced(zilog->zl_dmu_pool, 0);
3273 zilog->zl_replay = B_TRUE;
3274 zilog->zl_replay_time = ddi_get_lbolt();
3275 ASSERT(zilog->zl_replay_blks == 0);
3276 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3277 zh->zh_claim_txg);
3278 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3280 zil_destroy(zilog, B_FALSE);
3281 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3282 zilog->zl_replay = B_FALSE;
3285 boolean_t
3286 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3288 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3289 return (B_TRUE);
3291 if (zilog->zl_replay) {
3292 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3293 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3294 zilog->zl_replaying_seq;
3295 return (B_TRUE);
3298 return (B_FALSE);
3301 /* ARGSUSED */
3303 zil_reset(const char *osname, void *arg)
3305 int error;
3307 error = zil_suspend(osname, NULL);
3308 if (error != 0)
3309 return (SET_ERROR(EEXIST));
3310 return (0);