Unleashed v1.4
[unleashed.git] / kernel / fs / zfs / zil.c
blob3651ad2536660f4a9987111975a108f00fd7ac73
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
27 /* Portions Copyright 2010 Robert Milkowski */
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47 * calls that change the file system. Each itx has enough information to
48 * be able to replay them after a system crash, power loss, or
49 * equivalent failure mode. These are stored in memory until either:
51 * 1. they are committed to the pool by the DMU transaction group
52 * (txg), at which point they can be discarded; or
53 * 2. they are committed to the on-disk ZIL for the dataset being
54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55 * requirement).
57 * In the event of a crash or power loss, the itxs contained by each
58 * dataset's on-disk ZIL will be replayed when that dataset is first
59 * instantianted (e.g. if the dataset is a normal fileystem, when it is
60 * first mounted).
62 * As hinted at above, there is one ZIL per dataset (both the in-memory
63 * representation, and the on-disk representation). The on-disk format
64 * consists of 3 parts:
66 * - a single, per-dataset, ZIL header; which points to a chain of
67 * - zero or more ZIL blocks; each of which contains
68 * - zero or more ZIL records
70 * A ZIL record holds the information necessary to replay a single
71 * system call transaction. A ZIL block can hold many ZIL records, and
72 * the blocks are chained together, similarly to a singly linked list.
74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75 * block in the chain, and the ZIL header points to the first block in
76 * the chain.
78 * Note, there is not a fixed place in the pool to hold these ZIL
79 * blocks; they are dynamically allocated and freed as needed from the
80 * blocks available on the pool, though they can be preferentially
81 * allocated from a dedicated "log" vdev.
85 * This controls the amount of time that a ZIL block (lwb) will remain
86 * "open" when it isn't "full", and it has a thread waiting for it to be
87 * committed to stable storage. Please refer to the zil_commit_waiter()
88 * function (and the comments within it) for more details.
90 int zfs_commit_timeout_pct = 5;
93 * Disable intent logging replay. This global ZIL switch affects all pools.
95 int zil_replay_disable = 0;
98 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
99 * the disk(s) by the ZIL after an LWB write has completed. Setting this
100 * will cause ZIL corruption on power loss if a volatile out-of-order
101 * write cache is enabled.
103 boolean_t zil_nocacheflush = B_FALSE;
106 * Limit SLOG write size per commit executed with synchronous priority.
107 * Any writes above that will be executed with lower (asynchronous) priority
108 * to limit potential SLOG device abuse by single active ZIL writer.
110 uint64_t zil_slog_bulk = 768 * 1024;
112 static kmem_cache_t *zil_lwb_cache;
113 static kmem_cache_t *zil_zcw_cache;
115 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
117 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
118 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
120 static int
121 zil_bp_compare(const void *x1, const void *x2)
123 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
124 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
126 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
127 return (-1);
128 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
129 return (1);
131 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
132 return (-1);
133 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
134 return (1);
136 return (0);
139 static void
140 zil_bp_tree_init(zilog_t *zilog)
142 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
143 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
146 static void
147 zil_bp_tree_fini(zilog_t *zilog)
149 avl_tree_t *t = &zilog->zl_bp_tree;
150 zil_bp_node_t *zn;
151 void *cookie = NULL;
153 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
154 kmem_free(zn, sizeof (zil_bp_node_t));
156 avl_destroy(t);
160 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
162 avl_tree_t *t = &zilog->zl_bp_tree;
163 const dva_t *dva;
164 zil_bp_node_t *zn;
165 avl_index_t where;
167 if (BP_IS_EMBEDDED(bp))
168 return (0);
170 dva = BP_IDENTITY(bp);
172 if (avl_find(t, dva, &where) != NULL)
173 return (SET_ERROR(EEXIST));
175 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
176 zn->zn_dva = *dva;
177 avl_insert(t, zn, where);
179 return (0);
182 static zil_header_t *
183 zil_header_in_syncing_context(zilog_t *zilog)
185 return ((zil_header_t *)zilog->zl_header);
188 static void
189 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
191 zio_cksum_t *zc = &bp->blk_cksum;
193 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
194 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
195 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
196 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
200 * Read a log block and make sure it's valid.
202 static int
203 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
204 char **end)
206 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
207 arc_flags_t aflags = ARC_FLAG_WAIT;
208 arc_buf_t *abuf = NULL;
209 zbookmark_phys_t zb;
210 int error;
212 if (zilog->zl_header->zh_claim_txg == 0)
213 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
215 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
216 zio_flags |= ZIO_FLAG_SPECULATIVE;
218 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
219 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
221 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
222 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
224 if (error == 0) {
225 zio_cksum_t cksum = bp->blk_cksum;
228 * Validate the checksummed log block.
230 * Sequence numbers should be... sequential. The checksum
231 * verifier for the next block should be bp's checksum plus 1.
233 * Also check the log chain linkage and size used.
235 cksum.zc_word[ZIL_ZC_SEQ]++;
237 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
238 zil_chain_t *zilc = abuf->b_data;
239 char *lr = (char *)(zilc + 1);
240 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
242 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
243 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
244 error = SET_ERROR(ECKSUM);
245 } else {
246 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
247 bcopy(lr, dst, len);
248 *end = (char *)dst + len;
249 *nbp = zilc->zc_next_blk;
251 } else {
252 char *lr = abuf->b_data;
253 uint64_t size = BP_GET_LSIZE(bp);
254 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
256 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
257 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
258 (zilc->zc_nused > (size - sizeof (*zilc)))) {
259 error = SET_ERROR(ECKSUM);
260 } else {
261 ASSERT3U(zilc->zc_nused, <=,
262 SPA_OLD_MAXBLOCKSIZE);
263 bcopy(lr, dst, zilc->zc_nused);
264 *end = (char *)dst + zilc->zc_nused;
265 *nbp = zilc->zc_next_blk;
269 arc_buf_destroy(abuf, &abuf);
272 return (error);
276 * Read a TX_WRITE log data block.
278 static int
279 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
281 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
282 const blkptr_t *bp = &lr->lr_blkptr;
283 arc_flags_t aflags = ARC_FLAG_WAIT;
284 arc_buf_t *abuf = NULL;
285 zbookmark_phys_t zb;
286 int error;
288 if (BP_IS_HOLE(bp)) {
289 if (wbuf != NULL)
290 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
291 return (0);
294 if (zilog->zl_header->zh_claim_txg == 0)
295 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
297 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
298 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
300 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
301 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
303 if (error == 0) {
304 if (wbuf != NULL)
305 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
306 arc_buf_destroy(abuf, &abuf);
309 return (error);
313 * Parse the intent log, and call parse_func for each valid record within.
316 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
317 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
319 const zil_header_t *zh = zilog->zl_header;
320 boolean_t claimed = !!zh->zh_claim_txg;
321 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
322 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
323 uint64_t max_blk_seq = 0;
324 uint64_t max_lr_seq = 0;
325 uint64_t blk_count = 0;
326 uint64_t lr_count = 0;
327 blkptr_t blk, next_blk;
328 char *lrbuf, *lrp;
329 int error = 0;
332 * Old logs didn't record the maximum zh_claim_lr_seq.
334 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
335 claim_lr_seq = UINT64_MAX;
338 * Starting at the block pointed to by zh_log we read the log chain.
339 * For each block in the chain we strongly check that block to
340 * ensure its validity. We stop when an invalid block is found.
341 * For each block pointer in the chain we call parse_blk_func().
342 * For each record in each valid block we call parse_lr_func().
343 * If the log has been claimed, stop if we encounter a sequence
344 * number greater than the highest claimed sequence number.
346 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
347 zil_bp_tree_init(zilog);
349 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
350 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
351 int reclen;
352 char *end;
354 if (blk_seq > claim_blk_seq)
355 break;
356 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
357 break;
358 ASSERT3U(max_blk_seq, <, blk_seq);
359 max_blk_seq = blk_seq;
360 blk_count++;
362 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
363 break;
365 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
366 if (error != 0)
367 break;
369 for (lrp = lrbuf; lrp < end; lrp += reclen) {
370 lr_t *lr = (lr_t *)lrp;
371 reclen = lr->lrc_reclen;
372 ASSERT3U(reclen, >=, sizeof (lr_t));
373 if (lr->lrc_seq > claim_lr_seq)
374 goto done;
375 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
376 goto done;
377 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
378 max_lr_seq = lr->lrc_seq;
379 lr_count++;
382 done:
383 zilog->zl_parse_error = error;
384 zilog->zl_parse_blk_seq = max_blk_seq;
385 zilog->zl_parse_lr_seq = max_lr_seq;
386 zilog->zl_parse_blk_count = blk_count;
387 zilog->zl_parse_lr_count = lr_count;
389 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
390 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
392 zil_bp_tree_fini(zilog);
393 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
395 return (error);
398 /* ARGSUSED */
399 static int
400 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
402 ASSERT(!BP_IS_HOLE(bp));
405 * As we call this function from the context of a rewind to a
406 * checkpoint, each ZIL block whose txg is later than the txg
407 * that we rewind to is invalid. Thus, we return -1 so
408 * zil_parse() doesn't attempt to read it.
410 if (bp->blk_birth >= first_txg)
411 return (-1);
413 if (zil_bp_tree_add(zilog, bp) != 0)
414 return (0);
416 zio_free(zilog->zl_spa, first_txg, bp);
417 return (0);
420 /* ARGSUSED */
421 static int
422 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
424 return (0);
427 static int
428 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
431 * Claim log block if not already committed and not already claimed.
432 * If tx == NULL, just verify that the block is claimable.
434 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
435 zil_bp_tree_add(zilog, bp) != 0)
436 return (0);
438 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
439 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
440 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
443 static int
444 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
446 lr_write_t *lr = (lr_write_t *)lrc;
447 int error;
449 if (lrc->lrc_txtype != TX_WRITE)
450 return (0);
453 * If the block is not readable, don't claim it. This can happen
454 * in normal operation when a log block is written to disk before
455 * some of the dmu_sync() blocks it points to. In this case, the
456 * transaction cannot have been committed to anyone (we would have
457 * waited for all writes to be stable first), so it is semantically
458 * correct to declare this the end of the log.
460 if (lr->lr_blkptr.blk_birth >= first_txg &&
461 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
462 return (error);
463 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
466 /* ARGSUSED */
467 static int
468 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
470 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
472 return (0);
475 static int
476 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
478 lr_write_t *lr = (lr_write_t *)lrc;
479 blkptr_t *bp = &lr->lr_blkptr;
482 * If we previously claimed it, we need to free it.
484 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
485 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
486 !BP_IS_HOLE(bp))
487 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
489 return (0);
492 static int
493 zil_lwb_vdev_compare(const void *x1, const void *x2)
495 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
496 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
498 if (v1 < v2)
499 return (-1);
500 if (v1 > v2)
501 return (1);
503 return (0);
506 static lwb_t *
507 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
509 lwb_t *lwb;
511 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
512 lwb->lwb_zilog = zilog;
513 lwb->lwb_blk = *bp;
514 lwb->lwb_slog = slog;
515 lwb->lwb_state = LWB_STATE_CLOSED;
516 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
517 lwb->lwb_max_txg = txg;
518 lwb->lwb_write_zio = NULL;
519 lwb->lwb_root_zio = NULL;
520 lwb->lwb_tx = NULL;
521 lwb->lwb_issued_timestamp = 0;
522 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
523 lwb->lwb_nused = sizeof (zil_chain_t);
524 lwb->lwb_sz = BP_GET_LSIZE(bp);
525 } else {
526 lwb->lwb_nused = 0;
527 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
530 mutex_enter(&zilog->zl_lock);
531 list_insert_tail(&zilog->zl_lwb_list, lwb);
532 mutex_exit(&zilog->zl_lock);
534 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
535 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
536 VERIFY(list_is_empty(&lwb->lwb_waiters));
538 return (lwb);
541 static void
542 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
544 ASSERT(MUTEX_HELD(&zilog->zl_lock));
545 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
546 VERIFY(list_is_empty(&lwb->lwb_waiters));
547 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
548 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
549 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
550 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
551 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
552 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
555 * Clear the zilog's field to indicate this lwb is no longer
556 * valid, and prevent use-after-free errors.
558 if (zilog->zl_last_lwb_opened == lwb)
559 zilog->zl_last_lwb_opened = NULL;
561 kmem_cache_free(zil_lwb_cache, lwb);
565 * Called when we create in-memory log transactions so that we know
566 * to cleanup the itxs at the end of spa_sync().
568 void
569 zilog_dirty(zilog_t *zilog, uint64_t txg)
571 dsl_pool_t *dp = zilog->zl_dmu_pool;
572 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
574 ASSERT(spa_writeable(zilog->zl_spa));
576 if (ds->ds_is_snapshot)
577 panic("dirtying snapshot!");
579 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
580 /* up the hold count until we can be written out */
581 dmu_buf_add_ref(ds->ds_dbuf, zilog);
583 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
588 * Determine if the zil is dirty in the specified txg. Callers wanting to
589 * ensure that the dirty state does not change must hold the itxg_lock for
590 * the specified txg. Holding the lock will ensure that the zil cannot be
591 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
592 * state.
594 boolean_t
595 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
597 dsl_pool_t *dp = zilog->zl_dmu_pool;
599 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
600 return (B_TRUE);
601 return (B_FALSE);
605 * Determine if the zil is dirty. The zil is considered dirty if it has
606 * any pending itx records that have not been cleaned by zil_clean().
608 boolean_t
609 zilog_is_dirty(zilog_t *zilog)
611 dsl_pool_t *dp = zilog->zl_dmu_pool;
613 for (int t = 0; t < TXG_SIZE; t++) {
614 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
615 return (B_TRUE);
617 return (B_FALSE);
621 * Create an on-disk intent log.
623 static lwb_t *
624 zil_create(zilog_t *zilog)
626 const zil_header_t *zh = zilog->zl_header;
627 lwb_t *lwb = NULL;
628 uint64_t txg = 0;
629 dmu_tx_t *tx = NULL;
630 blkptr_t blk;
631 int error = 0;
632 boolean_t slog = FALSE;
635 * Wait for any previous destroy to complete.
637 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
639 ASSERT(zh->zh_claim_txg == 0);
640 ASSERT(zh->zh_replay_seq == 0);
642 blk = zh->zh_log;
645 * Allocate an initial log block if:
646 * - there isn't one already
647 * - the existing block is the wrong endianess
649 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
650 tx = dmu_tx_create(zilog->zl_os);
651 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
652 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
653 txg = dmu_tx_get_txg(tx);
655 if (!BP_IS_HOLE(&blk)) {
656 zio_free(zilog->zl_spa, txg, &blk);
657 BP_ZERO(&blk);
660 error = zio_alloc_zil(zilog->zl_spa,
661 zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
662 ZIL_MIN_BLKSZ, &slog);
664 if (error == 0)
665 zil_init_log_chain(zilog, &blk);
669 * Allocate a log write block (lwb) for the first log block.
671 if (error == 0)
672 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
675 * If we just allocated the first log block, commit our transaction
676 * and wait for zil_sync() to stuff the block poiner into zh_log.
677 * (zh is part of the MOS, so we cannot modify it in open context.)
679 if (tx != NULL) {
680 dmu_tx_commit(tx);
681 txg_wait_synced(zilog->zl_dmu_pool, txg);
684 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
686 return (lwb);
690 * In one tx, free all log blocks and clear the log header. If keep_first
691 * is set, then we're replaying a log with no content. We want to keep the
692 * first block, however, so that the first synchronous transaction doesn't
693 * require a txg_wait_synced() in zil_create(). We don't need to
694 * txg_wait_synced() here either when keep_first is set, because both
695 * zil_create() and zil_destroy() will wait for any in-progress destroys
696 * to complete.
698 void
699 zil_destroy(zilog_t *zilog, boolean_t keep_first)
701 const zil_header_t *zh = zilog->zl_header;
702 lwb_t *lwb;
703 dmu_tx_t *tx;
704 uint64_t txg;
707 * Wait for any previous destroy to complete.
709 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
711 zilog->zl_old_header = *zh; /* debugging aid */
713 if (BP_IS_HOLE(&zh->zh_log))
714 return;
716 tx = dmu_tx_create(zilog->zl_os);
717 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
718 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
719 txg = dmu_tx_get_txg(tx);
721 mutex_enter(&zilog->zl_lock);
723 ASSERT3U(zilog->zl_destroy_txg, <, txg);
724 zilog->zl_destroy_txg = txg;
725 zilog->zl_keep_first = keep_first;
727 if (!list_is_empty(&zilog->zl_lwb_list)) {
728 ASSERT(zh->zh_claim_txg == 0);
729 VERIFY(!keep_first);
730 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
731 list_remove(&zilog->zl_lwb_list, lwb);
732 if (lwb->lwb_buf != NULL)
733 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
734 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
735 zil_free_lwb(zilog, lwb);
737 } else if (!keep_first) {
738 zil_destroy_sync(zilog, tx);
740 mutex_exit(&zilog->zl_lock);
742 dmu_tx_commit(tx);
745 void
746 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
748 ASSERT(list_is_empty(&zilog->zl_lwb_list));
749 (void) zil_parse(zilog, zil_free_log_block,
750 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
754 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
756 dmu_tx_t *tx = txarg;
757 zilog_t *zilog;
758 uint64_t first_txg;
759 zil_header_t *zh;
760 objset_t *os;
761 int error;
763 error = dmu_objset_own_obj(dp, ds->ds_object,
764 DMU_OST_ANY, B_FALSE, FTAG, &os);
765 if (error != 0) {
767 * EBUSY indicates that the objset is inconsistent, in which
768 * case it can not have a ZIL.
770 if (error != EBUSY) {
771 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
772 (unsigned long long)ds->ds_object, error);
774 return (0);
777 zilog = dmu_objset_zil(os);
778 zh = zil_header_in_syncing_context(zilog);
779 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
780 first_txg = spa_min_claim_txg(zilog->zl_spa);
783 * If the spa_log_state is not set to be cleared, check whether
784 * the current uberblock is a checkpoint one and if the current
785 * header has been claimed before moving on.
787 * If the current uberblock is a checkpointed uberblock then
788 * one of the following scenarios took place:
790 * 1] We are currently rewinding to the checkpoint of the pool.
791 * 2] We crashed in the middle of a checkpoint rewind but we
792 * did manage to write the checkpointed uberblock to the
793 * vdev labels, so when we tried to import the pool again
794 * the checkpointed uberblock was selected from the import
795 * procedure.
797 * In both cases we want to zero out all the ZIL blocks, except
798 * the ones that have been claimed at the time of the checkpoint
799 * (their zh_claim_txg != 0). The reason is that these blocks
800 * may be corrupted since we may have reused their locations on
801 * disk after we took the checkpoint.
803 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
804 * when we first figure out whether the current uberblock is
805 * checkpointed or not. Unfortunately, that would discard all
806 * the logs, including the ones that are claimed, and we would
807 * leak space.
809 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
810 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
811 zh->zh_claim_txg == 0)) {
812 if (!BP_IS_HOLE(&zh->zh_log)) {
813 (void) zil_parse(zilog, zil_clear_log_block,
814 zil_noop_log_record, tx, first_txg);
816 BP_ZERO(&zh->zh_log);
817 dsl_dataset_dirty(dmu_objset_ds(os), tx);
818 dmu_objset_disown(os, FTAG);
819 return (0);
823 * If we are not rewinding and opening the pool normally, then
824 * the min_claim_txg should be equal to the first txg of the pool.
826 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
829 * Claim all log blocks if we haven't already done so, and remember
830 * the highest claimed sequence number. This ensures that if we can
831 * read only part of the log now (e.g. due to a missing device),
832 * but we can read the entire log later, we will not try to replay
833 * or destroy beyond the last block we successfully claimed.
835 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
836 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
837 (void) zil_parse(zilog, zil_claim_log_block,
838 zil_claim_log_record, tx, first_txg);
839 zh->zh_claim_txg = first_txg;
840 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
841 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
842 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
843 zh->zh_flags |= ZIL_REPLAY_NEEDED;
844 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
845 dsl_dataset_dirty(dmu_objset_ds(os), tx);
848 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
849 dmu_objset_disown(os, FTAG);
850 return (0);
854 * Check the log by walking the log chain.
855 * Checksum errors are ok as they indicate the end of the chain.
856 * Any other error (no device or read failure) returns an error.
858 /* ARGSUSED */
860 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
862 zilog_t *zilog;
863 objset_t *os;
864 blkptr_t *bp;
865 int error;
867 ASSERT(tx == NULL);
869 error = dmu_objset_from_ds(ds, &os);
870 if (error != 0) {
871 cmn_err(CE_WARN, "can't open objset %llu, error %d",
872 (unsigned long long)ds->ds_object, error);
873 return (0);
876 zilog = dmu_objset_zil(os);
877 bp = (blkptr_t *)&zilog->zl_header->zh_log;
879 if (!BP_IS_HOLE(bp)) {
880 vdev_t *vd;
881 boolean_t valid = B_TRUE;
884 * Check the first block and determine if it's on a log device
885 * which may have been removed or faulted prior to loading this
886 * pool. If so, there's no point in checking the rest of the
887 * log as its content should have already been synced to the
888 * pool.
890 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
891 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
892 if (vd->vdev_islog && vdev_is_dead(vd))
893 valid = vdev_log_state_valid(vd);
894 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
896 if (!valid)
897 return (0);
900 * Check whether the current uberblock is checkpointed (e.g.
901 * we are rewinding) and whether the current header has been
902 * claimed or not. If it hasn't then skip verifying it. We
903 * do this because its ZIL blocks may be part of the pool's
904 * state before the rewind, which is no longer valid.
906 zil_header_t *zh = zil_header_in_syncing_context(zilog);
907 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
908 zh->zh_claim_txg == 0)
909 return (0);
913 * Because tx == NULL, zil_claim_log_block() will not actually claim
914 * any blocks, but just determine whether it is possible to do so.
915 * In addition to checking the log chain, zil_claim_log_block()
916 * will invoke zio_claim() with a done func of spa_claim_notify(),
917 * which will update spa_max_claim_txg. See spa_load() for details.
919 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
920 zilog->zl_header->zh_claim_txg ? -1ULL :
921 spa_min_claim_txg(os->os_spa));
923 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
927 * When an itx is "skipped", this function is used to properly mark the
928 * waiter as "done, and signal any thread(s) waiting on it. An itx can
929 * be skipped (and not committed to an lwb) for a variety of reasons,
930 * one of them being that the itx was committed via spa_sync(), prior to
931 * it being committed to an lwb; this can happen if a thread calling
932 * zil_commit() is racing with spa_sync().
934 static void
935 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
937 mutex_enter(&zcw->zcw_lock);
938 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
939 zcw->zcw_done = B_TRUE;
940 cv_broadcast(&zcw->zcw_cv);
941 mutex_exit(&zcw->zcw_lock);
945 * This function is used when the given waiter is to be linked into an
946 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
947 * At this point, the waiter will no longer be referenced by the itx,
948 * and instead, will be referenced by the lwb.
950 static void
951 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
954 * The lwb_waiters field of the lwb is protected by the zilog's
955 * zl_lock, thus it must be held when calling this function.
957 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
959 mutex_enter(&zcw->zcw_lock);
960 ASSERT(!list_link_active(&zcw->zcw_node));
961 ASSERT3P(zcw->zcw_lwb, ==, NULL);
962 ASSERT3P(lwb, !=, NULL);
963 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
964 lwb->lwb_state == LWB_STATE_ISSUED ||
965 lwb->lwb_state == LWB_STATE_WRITE_DONE);
967 list_insert_tail(&lwb->lwb_waiters, zcw);
968 zcw->zcw_lwb = lwb;
969 mutex_exit(&zcw->zcw_lock);
973 * This function is used when zio_alloc_zil() fails to allocate a ZIL
974 * block, and the given waiter must be linked to the "nolwb waiters"
975 * list inside of zil_process_commit_list().
977 static void
978 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
980 mutex_enter(&zcw->zcw_lock);
981 ASSERT(!list_link_active(&zcw->zcw_node));
982 ASSERT3P(zcw->zcw_lwb, ==, NULL);
983 list_insert_tail(nolwb, zcw);
984 mutex_exit(&zcw->zcw_lock);
987 void
988 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
990 avl_tree_t *t = &lwb->lwb_vdev_tree;
991 avl_index_t where;
992 zil_vdev_node_t *zv, zvsearch;
993 int ndvas = BP_GET_NDVAS(bp);
994 int i;
996 if (zil_nocacheflush)
997 return;
999 mutex_enter(&lwb->lwb_vdev_lock);
1000 for (i = 0; i < ndvas; i++) {
1001 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1002 if (avl_find(t, &zvsearch, &where) == NULL) {
1003 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1004 zv->zv_vdev = zvsearch.zv_vdev;
1005 avl_insert(t, zv, where);
1008 mutex_exit(&lwb->lwb_vdev_lock);
1011 static void
1012 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1014 avl_tree_t *src = &lwb->lwb_vdev_tree;
1015 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1016 void *cookie = NULL;
1017 zil_vdev_node_t *zv;
1019 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1020 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1021 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1024 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1025 * not need the protection of lwb_vdev_lock (it will only be modified
1026 * while holding zilog->zl_lock) as its writes and those of its
1027 * children have all completed. The younger 'nlwb' may be waiting on
1028 * future writes to additional vdevs.
1030 mutex_enter(&nlwb->lwb_vdev_lock);
1032 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1033 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1035 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1036 avl_index_t where;
1038 if (avl_find(dst, zv, &where) == NULL) {
1039 avl_insert(dst, zv, where);
1040 } else {
1041 kmem_free(zv, sizeof (*zv));
1044 mutex_exit(&nlwb->lwb_vdev_lock);
1047 void
1048 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1050 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1054 * This function is a called after all vdevs associated with a given lwb
1055 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1056 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1057 * all "previous" lwb's will have completed before this function is
1058 * called; i.e. this function is called for all previous lwbs before
1059 * it's called for "this" lwb (enforced via zio the dependencies
1060 * configured in zil_lwb_set_zio_dependency()).
1062 * The intention is for this function to be called as soon as the
1063 * contents of an lwb are considered "stable" on disk, and will survive
1064 * any sudden loss of power. At this point, any threads waiting for the
1065 * lwb to reach this state are signalled, and the "waiter" structures
1066 * are marked "done".
1068 static void
1069 zil_lwb_flush_vdevs_done(zio_t *zio)
1071 lwb_t *lwb = zio->io_private;
1072 zilog_t *zilog = lwb->lwb_zilog;
1073 dmu_tx_t *tx = lwb->lwb_tx;
1074 zil_commit_waiter_t *zcw;
1076 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1078 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1080 mutex_enter(&zilog->zl_lock);
1083 * Ensure the lwb buffer pointer is cleared before releasing the
1084 * txg. If we have had an allocation failure and the txg is
1085 * waiting to sync then we want zil_sync() to remove the lwb so
1086 * that it's not picked up as the next new one in
1087 * zil_process_commit_list(). zil_sync() will only remove the
1088 * lwb if lwb_buf is null.
1090 lwb->lwb_buf = NULL;
1091 lwb->lwb_tx = NULL;
1093 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1094 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1096 lwb->lwb_root_zio = NULL;
1098 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1099 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1101 if (zilog->zl_last_lwb_opened == lwb) {
1103 * Remember the highest committed log sequence number
1104 * for ztest. We only update this value when all the log
1105 * writes succeeded, because ztest wants to ASSERT that
1106 * it got the whole log chain.
1108 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1111 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1112 mutex_enter(&zcw->zcw_lock);
1114 ASSERT(list_link_active(&zcw->zcw_node));
1115 list_remove(&lwb->lwb_waiters, zcw);
1117 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1118 zcw->zcw_lwb = NULL;
1120 zcw->zcw_zio_error = zio->io_error;
1122 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1123 zcw->zcw_done = B_TRUE;
1124 cv_broadcast(&zcw->zcw_cv);
1126 mutex_exit(&zcw->zcw_lock);
1129 mutex_exit(&zilog->zl_lock);
1132 * Now that we've written this log block, we have a stable pointer
1133 * to the next block in the chain, so it's OK to let the txg in
1134 * which we allocated the next block sync.
1136 dmu_tx_commit(tx);
1140 * This is called when an lwb's write zio completes. The callback's
1141 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1142 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1143 * in writing out this specific lwb's data, and in the case that cache
1144 * flushes have been deferred, vdevs involved in writing the data for
1145 * previous lwbs. The writes corresponding to all the vdevs in the
1146 * lwb_vdev_tree will have completed by the time this is called, due to
1147 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1148 * which takes deferred flushes into account. The lwb will be "done"
1149 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1150 * completion callback for the lwb's root zio.
1152 static void
1153 zil_lwb_write_done(zio_t *zio)
1155 lwb_t *lwb = zio->io_private;
1156 spa_t *spa = zio->io_spa;
1157 zilog_t *zilog = lwb->lwb_zilog;
1158 avl_tree_t *t = &lwb->lwb_vdev_tree;
1159 void *cookie = NULL;
1160 zil_vdev_node_t *zv;
1161 lwb_t *nlwb;
1163 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1165 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1166 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1167 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1168 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1169 ASSERT(!BP_IS_GANG(zio->io_bp));
1170 ASSERT(!BP_IS_HOLE(zio->io_bp));
1171 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1173 abd_put(zio->io_abd);
1175 mutex_enter(&zilog->zl_lock);
1176 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1177 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1178 lwb->lwb_write_zio = NULL;
1179 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1180 mutex_exit(&zilog->zl_lock);
1182 if (avl_numnodes(t) == 0)
1183 return;
1186 * If there was an IO error, we're not going to call zio_flush()
1187 * on these vdevs, so we simply empty the tree and free the
1188 * nodes. We avoid calling zio_flush() since there isn't any
1189 * good reason for doing so, after the lwb block failed to be
1190 * written out.
1192 if (zio->io_error != 0) {
1193 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1194 kmem_free(zv, sizeof (*zv));
1195 return;
1199 * If this lwb does not have any threads waiting for it to
1200 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1201 * command to the vdevs written to by "this" lwb, and instead
1202 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1203 * command for those vdevs. Thus, we merge the vdev tree of
1204 * "this" lwb with the vdev tree of the "next" lwb in the list,
1205 * and assume the "next" lwb will handle flushing the vdevs (or
1206 * deferring the flush(s) again).
1208 * This is a useful performance optimization, especially for
1209 * workloads with lots of async write activity and few sync
1210 * write and/or fsync activity, as it has the potential to
1211 * coalesce multiple flush commands to a vdev into one.
1213 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1214 zil_lwb_flush_defer(lwb, nlwb);
1215 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1216 return;
1219 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1220 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1221 if (vd != NULL)
1222 zio_flush(lwb->lwb_root_zio, vd);
1223 kmem_free(zv, sizeof (*zv));
1227 static void
1228 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1230 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1232 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1233 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1236 * The zilog's "zl_last_lwb_opened" field is used to build the
1237 * lwb/zio dependency chain, which is used to preserve the
1238 * ordering of lwb completions that is required by the semantics
1239 * of the ZIL. Each new lwb zio becomes a parent of the
1240 * "previous" lwb zio, such that the new lwb's zio cannot
1241 * complete until the "previous" lwb's zio completes.
1243 * This is required by the semantics of zil_commit(); the commit
1244 * waiters attached to the lwbs will be woken in the lwb zio's
1245 * completion callback, so this zio dependency graph ensures the
1246 * waiters are woken in the correct order (the same order the
1247 * lwbs were created).
1249 if (last_lwb_opened != NULL &&
1250 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1251 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1252 last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1253 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1255 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1256 zio_add_child(lwb->lwb_root_zio,
1257 last_lwb_opened->lwb_root_zio);
1260 * If the previous lwb's write hasn't already completed,
1261 * we also want to order the completion of the lwb write
1262 * zios (above, we only order the completion of the lwb
1263 * root zios). This is required because of how we can
1264 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1266 * When the DKIOCFLUSHWRITECACHE commands are defered,
1267 * the previous lwb will rely on this lwb to flush the
1268 * vdevs written to by that previous lwb. Thus, we need
1269 * to ensure this lwb doesn't issue the flush until
1270 * after the previous lwb's write completes. We ensure
1271 * this ordering by setting the zio parent/child
1272 * relationship here.
1274 * Without this relationship on the lwb's write zio,
1275 * it's possible for this lwb's write to complete prior
1276 * to the previous lwb's write completing; and thus, the
1277 * vdevs for the previous lwb would be flushed prior to
1278 * that lwb's data being written to those vdevs (the
1279 * vdevs are flushed in the lwb write zio's completion
1280 * handler, zil_lwb_write_done()).
1282 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1283 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1284 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1286 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1287 zio_add_child(lwb->lwb_write_zio,
1288 last_lwb_opened->lwb_write_zio);
1295 * This function's purpose is to "open" an lwb such that it is ready to
1296 * accept new itxs being committed to it. To do this, the lwb's zio
1297 * structures are created, and linked to the lwb. This function is
1298 * idempotent; if the passed in lwb has already been opened, this
1299 * function is essentially a no-op.
1301 static void
1302 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1304 zbookmark_phys_t zb;
1305 zio_priority_t prio;
1307 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1308 ASSERT3P(lwb, !=, NULL);
1309 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1310 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1312 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1313 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1314 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1316 if (lwb->lwb_root_zio == NULL) {
1317 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1318 BP_GET_LSIZE(&lwb->lwb_blk));
1320 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1321 prio = ZIO_PRIORITY_SYNC_WRITE;
1322 else
1323 prio = ZIO_PRIORITY_ASYNC_WRITE;
1325 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1326 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1327 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1329 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1330 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1331 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1332 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1333 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1335 lwb->lwb_state = LWB_STATE_OPENED;
1337 mutex_enter(&zilog->zl_lock);
1338 zil_lwb_set_zio_dependency(zilog, lwb);
1339 zilog->zl_last_lwb_opened = lwb;
1340 mutex_exit(&zilog->zl_lock);
1343 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1344 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1345 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1349 * Define a limited set of intent log block sizes.
1351 * These must be a multiple of 4KB. Note only the amount used (again
1352 * aligned to 4KB) actually gets written. However, we can't always just
1353 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1355 uint64_t zil_block_buckets[] = {
1356 4096, /* non TX_WRITE */
1357 8192+4096, /* data base */
1358 32*1024 + 4096, /* NFS writes */
1359 UINT64_MAX
1363 * Start a log block write and advance to the next log block.
1364 * Calls are serialized.
1366 static lwb_t *
1367 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1369 lwb_t *nlwb = NULL;
1370 zil_chain_t *zilc;
1371 spa_t *spa = zilog->zl_spa;
1372 blkptr_t *bp;
1373 dmu_tx_t *tx;
1374 uint64_t txg;
1375 uint64_t zil_blksz, wsz;
1376 int i, error;
1377 boolean_t slog;
1379 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1380 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1381 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1382 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1384 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1385 zilc = (zil_chain_t *)lwb->lwb_buf;
1386 bp = &zilc->zc_next_blk;
1387 } else {
1388 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1389 bp = &zilc->zc_next_blk;
1392 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1395 * Allocate the next block and save its address in this block
1396 * before writing it in order to establish the log chain.
1397 * Note that if the allocation of nlwb synced before we wrote
1398 * the block that points at it (lwb), we'd leak it if we crashed.
1399 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1400 * We dirty the dataset to ensure that zil_sync() will be called
1401 * to clean up in the event of allocation failure or I/O failure.
1404 tx = dmu_tx_create(zilog->zl_os);
1407 * Since we are not going to create any new dirty data, and we
1408 * can even help with clearing the existing dirty data, we
1409 * should not be subject to the dirty data based delays. We
1410 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1412 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1414 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1415 txg = dmu_tx_get_txg(tx);
1417 lwb->lwb_tx = tx;
1420 * Log blocks are pre-allocated. Here we select the size of the next
1421 * block, based on size used in the last block.
1422 * - first find the smallest bucket that will fit the block from a
1423 * limited set of block sizes. This is because it's faster to write
1424 * blocks allocated from the same metaslab as they are adjacent or
1425 * close.
1426 * - next find the maximum from the new suggested size and an array of
1427 * previous sizes. This lessens a picket fence effect of wrongly
1428 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1429 * requests.
1431 * Note we only write what is used, but we can't just allocate
1432 * the maximum block size because we can exhaust the available
1433 * pool log space.
1435 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1436 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1437 continue;
1438 zil_blksz = zil_block_buckets[i];
1439 if (zil_blksz == UINT64_MAX)
1440 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1441 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1442 for (i = 0; i < ZIL_PREV_BLKS; i++)
1443 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1444 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1446 BP_ZERO(bp);
1448 /* pass the old blkptr in order to spread log blocks across devs */
1449 error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1450 txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1451 if (error == 0) {
1452 ASSERT3U(bp->blk_birth, ==, txg);
1453 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1454 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1457 * Allocate a new log write block (lwb).
1459 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1462 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1463 /* For Slim ZIL only write what is used. */
1464 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1465 ASSERT3U(wsz, <=, lwb->lwb_sz);
1466 zio_shrink(lwb->lwb_write_zio, wsz);
1468 } else {
1469 wsz = lwb->lwb_sz;
1472 zilc->zc_pad = 0;
1473 zilc->zc_nused = lwb->lwb_nused;
1474 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1477 * clear unused data for security
1479 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1481 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1483 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1484 lwb->lwb_issued_timestamp = gethrtime();
1485 lwb->lwb_state = LWB_STATE_ISSUED;
1487 zio_nowait(lwb->lwb_root_zio);
1488 zio_nowait(lwb->lwb_write_zio);
1491 * If there was an allocation failure then nlwb will be null which
1492 * forces a txg_wait_synced().
1494 return (nlwb);
1497 static lwb_t *
1498 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1500 lr_t *lrcb, *lrc;
1501 lr_write_t *lrwb, *lrw;
1502 char *lr_buf;
1503 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1505 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1506 ASSERT3P(lwb, !=, NULL);
1507 ASSERT3P(lwb->lwb_buf, !=, NULL);
1509 zil_lwb_write_open(zilog, lwb);
1511 lrc = &itx->itx_lr;
1512 lrw = (lr_write_t *)lrc;
1515 * A commit itx doesn't represent any on-disk state; instead
1516 * it's simply used as a place holder on the commit list, and
1517 * provides a mechanism for attaching a "commit waiter" onto the
1518 * correct lwb (such that the waiter can be signalled upon
1519 * completion of that lwb). Thus, we don't process this itx's
1520 * log record if it's a commit itx (these itx's don't have log
1521 * records), and instead link the itx's waiter onto the lwb's
1522 * list of waiters.
1524 * For more details, see the comment above zil_commit().
1526 if (lrc->lrc_txtype == TX_COMMIT) {
1527 mutex_enter(&zilog->zl_lock);
1528 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1529 itx->itx_private = NULL;
1530 mutex_exit(&zilog->zl_lock);
1531 return (lwb);
1534 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1535 dlen = P2ROUNDUP_TYPED(
1536 lrw->lr_length, sizeof (uint64_t), uint64_t);
1537 } else {
1538 dlen = 0;
1540 reclen = lrc->lrc_reclen;
1541 zilog->zl_cur_used += (reclen + dlen);
1542 txg = lrc->lrc_txg;
1544 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1546 cont:
1548 * If this record won't fit in the current log block, start a new one.
1549 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1551 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1552 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1553 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1554 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1555 lwb = zil_lwb_write_issue(zilog, lwb);
1556 if (lwb == NULL)
1557 return (NULL);
1558 zil_lwb_write_open(zilog, lwb);
1559 ASSERT(LWB_EMPTY(lwb));
1560 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1561 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1564 dnow = MIN(dlen, lwb_sp - reclen);
1565 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1566 bcopy(lrc, lr_buf, reclen);
1567 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1568 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1571 * If it's a write, fetch the data or get its blkptr as appropriate.
1573 if (lrc->lrc_txtype == TX_WRITE) {
1574 if (txg > spa_freeze_txg(zilog->zl_spa))
1575 txg_wait_synced(zilog->zl_dmu_pool, txg);
1576 if (itx->itx_wr_state != WR_COPIED) {
1577 char *dbuf;
1578 int error;
1580 if (itx->itx_wr_state == WR_NEED_COPY) {
1581 dbuf = lr_buf + reclen;
1582 lrcb->lrc_reclen += dnow;
1583 if (lrwb->lr_length > dnow)
1584 lrwb->lr_length = dnow;
1585 lrw->lr_offset += dnow;
1586 lrw->lr_length -= dnow;
1587 } else {
1588 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1589 dbuf = NULL;
1593 * We pass in the "lwb_write_zio" rather than
1594 * "lwb_root_zio" so that the "lwb_write_zio"
1595 * becomes the parent of any zio's created by
1596 * the "zl_get_data" callback. The vdevs are
1597 * flushed after the "lwb_write_zio" completes,
1598 * so we want to make sure that completion
1599 * callback waits for these additional zio's,
1600 * such that the vdevs used by those zio's will
1601 * be included in the lwb's vdev tree, and those
1602 * vdevs will be properly flushed. If we passed
1603 * in "lwb_root_zio" here, then these additional
1604 * vdevs may not be flushed; e.g. if these zio's
1605 * completed after "lwb_write_zio" completed.
1607 error = zilog->zl_get_data(itx->itx_private,
1608 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1610 if (error == EIO) {
1611 txg_wait_synced(zilog->zl_dmu_pool, txg);
1612 return (lwb);
1614 if (error != 0) {
1615 ASSERT(error == ENOENT || error == EEXIST ||
1616 error == EALREADY);
1617 return (lwb);
1623 * We're actually making an entry, so update lrc_seq to be the
1624 * log record sequence number. Note that this is generally not
1625 * equal to the itx sequence number because not all transactions
1626 * are synchronous, and sometimes spa_sync() gets there first.
1628 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1629 lwb->lwb_nused += reclen + dnow;
1631 zil_lwb_add_txg(lwb, txg);
1633 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1634 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1636 dlen -= dnow;
1637 if (dlen > 0) {
1638 zilog->zl_cur_used += reclen;
1639 goto cont;
1642 return (lwb);
1645 itx_t *
1646 zil_itx_create(uint64_t txtype, size_t lrsize)
1648 itx_t *itx;
1650 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1652 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1653 itx->itx_lr.lrc_txtype = txtype;
1654 itx->itx_lr.lrc_reclen = lrsize;
1655 itx->itx_lr.lrc_seq = 0; /* defensive */
1656 itx->itx_sync = B_TRUE; /* default is synchronous */
1658 return (itx);
1661 void
1662 zil_itx_destroy(itx_t *itx)
1664 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1668 * Free up the sync and async itxs. The itxs_t has already been detached
1669 * so no locks are needed.
1671 static void
1672 zil_itxg_clean(itxs_t *itxs)
1674 itx_t *itx;
1675 list_t *list;
1676 avl_tree_t *t;
1677 void *cookie;
1678 itx_async_node_t *ian;
1680 list = &itxs->i_sync_list;
1681 while ((itx = list_head(list)) != NULL) {
1683 * In the general case, commit itxs will not be found
1684 * here, as they'll be committed to an lwb via
1685 * zil_lwb_commit(), and free'd in that function. Having
1686 * said that, it is still possible for commit itxs to be
1687 * found here, due to the following race:
1689 * - a thread calls zil_commit() which assigns the
1690 * commit itx to a per-txg i_sync_list
1691 * - zil_itxg_clean() is called (e.g. via spa_sync())
1692 * while the waiter is still on the i_sync_list
1694 * There's nothing to prevent syncing the txg while the
1695 * waiter is on the i_sync_list. This normally doesn't
1696 * happen because spa_sync() is slower than zil_commit(),
1697 * but if zil_commit() calls txg_wait_synced() (e.g.
1698 * because zil_create() or zil_commit_writer_stall() is
1699 * called) we will hit this case.
1701 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1702 zil_commit_waiter_skip(itx->itx_private);
1704 list_remove(list, itx);
1705 zil_itx_destroy(itx);
1708 cookie = NULL;
1709 t = &itxs->i_async_tree;
1710 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1711 list = &ian->ia_list;
1712 while ((itx = list_head(list)) != NULL) {
1713 list_remove(list, itx);
1714 /* commit itxs should never be on the async lists. */
1715 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1716 zil_itx_destroy(itx);
1718 list_destroy(list);
1719 kmem_free(ian, sizeof (itx_async_node_t));
1721 avl_destroy(t);
1723 kmem_free(itxs, sizeof (itxs_t));
1726 static int
1727 zil_aitx_compare(const void *x1, const void *x2)
1729 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1730 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1732 if (o1 < o2)
1733 return (-1);
1734 if (o1 > o2)
1735 return (1);
1737 return (0);
1741 * Remove all async itx with the given oid.
1743 static void
1744 zil_remove_async(zilog_t *zilog, uint64_t oid)
1746 uint64_t otxg, txg;
1747 itx_async_node_t *ian;
1748 avl_tree_t *t;
1749 avl_index_t where;
1750 list_t clean_list;
1751 itx_t *itx;
1753 ASSERT(oid != 0);
1754 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1756 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1757 otxg = ZILTEST_TXG;
1758 else
1759 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1761 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1762 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1764 mutex_enter(&itxg->itxg_lock);
1765 if (itxg->itxg_txg != txg) {
1766 mutex_exit(&itxg->itxg_lock);
1767 continue;
1771 * Locate the object node and append its list.
1773 t = &itxg->itxg_itxs->i_async_tree;
1774 ian = avl_find(t, &oid, &where);
1775 if (ian != NULL)
1776 list_move_tail(&clean_list, &ian->ia_list);
1777 mutex_exit(&itxg->itxg_lock);
1779 while ((itx = list_head(&clean_list)) != NULL) {
1780 list_remove(&clean_list, itx);
1781 /* commit itxs should never be on the async lists. */
1782 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1783 zil_itx_destroy(itx);
1785 list_destroy(&clean_list);
1788 void
1789 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1791 uint64_t txg;
1792 itxg_t *itxg;
1793 itxs_t *itxs, *clean = NULL;
1796 * Object ids can be re-instantiated in the next txg so
1797 * remove any async transactions to avoid future leaks.
1798 * This can happen if a fsync occurs on the re-instantiated
1799 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1800 * the new file data and flushes a write record for the old object.
1802 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1803 zil_remove_async(zilog, itx->itx_oid);
1806 * Ensure the data of a renamed file is committed before the rename.
1808 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1809 zil_async_to_sync(zilog, itx->itx_oid);
1811 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1812 txg = ZILTEST_TXG;
1813 else
1814 txg = dmu_tx_get_txg(tx);
1816 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1817 mutex_enter(&itxg->itxg_lock);
1818 itxs = itxg->itxg_itxs;
1819 if (itxg->itxg_txg != txg) {
1820 if (itxs != NULL) {
1822 * The zil_clean callback hasn't got around to cleaning
1823 * this itxg. Save the itxs for release below.
1824 * This should be rare.
1826 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1827 "txg %llu", itxg->itxg_txg);
1828 clean = itxg->itxg_itxs;
1830 itxg->itxg_txg = txg;
1831 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1833 list_create(&itxs->i_sync_list, sizeof (itx_t),
1834 offsetof(itx_t, itx_node));
1835 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1836 sizeof (itx_async_node_t),
1837 offsetof(itx_async_node_t, ia_node));
1839 if (itx->itx_sync) {
1840 list_insert_tail(&itxs->i_sync_list, itx);
1841 } else {
1842 avl_tree_t *t = &itxs->i_async_tree;
1843 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1844 itx_async_node_t *ian;
1845 avl_index_t where;
1847 ian = avl_find(t, &foid, &where);
1848 if (ian == NULL) {
1849 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1850 list_create(&ian->ia_list, sizeof (itx_t),
1851 offsetof(itx_t, itx_node));
1852 ian->ia_foid = foid;
1853 avl_insert(t, ian, where);
1855 list_insert_tail(&ian->ia_list, itx);
1858 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1861 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1862 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1863 * need to be careful to always dirty the ZIL using the "real"
1864 * TXG (not itxg_txg) even when the SPA is frozen.
1866 zilog_dirty(zilog, dmu_tx_get_txg(tx));
1867 mutex_exit(&itxg->itxg_lock);
1869 /* Release the old itxs now we've dropped the lock */
1870 if (clean != NULL)
1871 zil_itxg_clean(clean);
1875 * If there are any in-memory intent log transactions which have now been
1876 * synced then start up a taskq to free them. We should only do this after we
1877 * have written out the uberblocks (i.e. txg has been comitted) so that
1878 * don't inadvertently clean out in-memory log records that would be required
1879 * by zil_commit().
1881 void
1882 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1884 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1885 itxs_t *clean_me;
1887 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1889 mutex_enter(&itxg->itxg_lock);
1890 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1891 mutex_exit(&itxg->itxg_lock);
1892 return;
1894 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1895 ASSERT3U(itxg->itxg_txg, !=, 0);
1896 clean_me = itxg->itxg_itxs;
1897 itxg->itxg_itxs = NULL;
1898 itxg->itxg_txg = 0;
1899 mutex_exit(&itxg->itxg_lock);
1901 * Preferably start a task queue to free up the old itxs but
1902 * if taskq_dispatch can't allocate resources to do that then
1903 * free it in-line. This should be rare. Note, using TQ_SLEEP
1904 * created a bad performance problem.
1906 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1907 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1908 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1909 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1910 zil_itxg_clean(clean_me);
1914 * This function will traverse the queue of itxs that need to be
1915 * committed, and move them onto the ZIL's zl_itx_commit_list.
1917 static void
1918 zil_get_commit_list(zilog_t *zilog)
1920 uint64_t otxg, txg;
1921 list_t *commit_list = &zilog->zl_itx_commit_list;
1923 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1925 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1926 otxg = ZILTEST_TXG;
1927 else
1928 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1931 * This is inherently racy, since there is nothing to prevent
1932 * the last synced txg from changing. That's okay since we'll
1933 * only commit things in the future.
1935 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1936 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1938 mutex_enter(&itxg->itxg_lock);
1939 if (itxg->itxg_txg != txg) {
1940 mutex_exit(&itxg->itxg_lock);
1941 continue;
1945 * If we're adding itx records to the zl_itx_commit_list,
1946 * then the zil better be dirty in this "txg". We can assert
1947 * that here since we're holding the itxg_lock which will
1948 * prevent spa_sync from cleaning it. Once we add the itxs
1949 * to the zl_itx_commit_list we must commit it to disk even
1950 * if it's unnecessary (i.e. the txg was synced).
1952 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1953 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1954 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1956 mutex_exit(&itxg->itxg_lock);
1961 * Move the async itxs for a specified object to commit into sync lists.
1963 static void
1964 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1966 uint64_t otxg, txg;
1967 itx_async_node_t *ian;
1968 avl_tree_t *t;
1969 avl_index_t where;
1971 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1972 otxg = ZILTEST_TXG;
1973 else
1974 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1977 * This is inherently racy, since there is nothing to prevent
1978 * the last synced txg from changing.
1980 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1981 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1983 mutex_enter(&itxg->itxg_lock);
1984 if (itxg->itxg_txg != txg) {
1985 mutex_exit(&itxg->itxg_lock);
1986 continue;
1990 * If a foid is specified then find that node and append its
1991 * list. Otherwise walk the tree appending all the lists
1992 * to the sync list. We add to the end rather than the
1993 * beginning to ensure the create has happened.
1995 t = &itxg->itxg_itxs->i_async_tree;
1996 if (foid != 0) {
1997 ian = avl_find(t, &foid, &where);
1998 if (ian != NULL) {
1999 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2000 &ian->ia_list);
2002 } else {
2003 void *cookie = NULL;
2005 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2006 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2007 &ian->ia_list);
2008 list_destroy(&ian->ia_list);
2009 kmem_free(ian, sizeof (itx_async_node_t));
2012 mutex_exit(&itxg->itxg_lock);
2017 * This function will prune commit itxs that are at the head of the
2018 * commit list (it won't prune past the first non-commit itx), and
2019 * either: a) attach them to the last lwb that's still pending
2020 * completion, or b) skip them altogether.
2022 * This is used as a performance optimization to prevent commit itxs
2023 * from generating new lwbs when it's unnecessary to do so.
2025 static void
2026 zil_prune_commit_list(zilog_t *zilog)
2028 itx_t *itx;
2030 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2032 while (itx = list_head(&zilog->zl_itx_commit_list)) {
2033 lr_t *lrc = &itx->itx_lr;
2034 if (lrc->lrc_txtype != TX_COMMIT)
2035 break;
2037 mutex_enter(&zilog->zl_lock);
2039 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2040 if (last_lwb == NULL ||
2041 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2043 * All of the itxs this waiter was waiting on
2044 * must have already completed (or there were
2045 * never any itx's for it to wait on), so it's
2046 * safe to skip this waiter and mark it done.
2048 zil_commit_waiter_skip(itx->itx_private);
2049 } else {
2050 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2051 itx->itx_private = NULL;
2054 mutex_exit(&zilog->zl_lock);
2056 list_remove(&zilog->zl_itx_commit_list, itx);
2057 zil_itx_destroy(itx);
2060 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2063 static void
2064 zil_commit_writer_stall(zilog_t *zilog)
2067 * When zio_alloc_zil() fails to allocate the next lwb block on
2068 * disk, we must call txg_wait_synced() to ensure all of the
2069 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2070 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2071 * to zil_process_commit_list()) will have to call zil_create(),
2072 * and start a new ZIL chain.
2074 * Since zil_alloc_zil() failed, the lwb that was previously
2075 * issued does not have a pointer to the "next" lwb on disk.
2076 * Thus, if another ZIL writer thread was to allocate the "next"
2077 * on-disk lwb, that block could be leaked in the event of a
2078 * crash (because the previous lwb on-disk would not point to
2079 * it).
2081 * We must hold the zilog's zl_issuer_lock while we do this, to
2082 * ensure no new threads enter zil_process_commit_list() until
2083 * all lwb's in the zl_lwb_list have been synced and freed
2084 * (which is achieved via the txg_wait_synced() call).
2086 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2087 txg_wait_synced(zilog->zl_dmu_pool, 0);
2088 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2092 * This function will traverse the commit list, creating new lwbs as
2093 * needed, and committing the itxs from the commit list to these newly
2094 * created lwbs. Additionally, as a new lwb is created, the previous
2095 * lwb will be issued to the zio layer to be written to disk.
2097 static void
2098 zil_process_commit_list(zilog_t *zilog)
2100 spa_t *spa = zilog->zl_spa;
2101 list_t nolwb_waiters;
2102 lwb_t *lwb;
2103 itx_t *itx;
2105 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2108 * Return if there's nothing to commit before we dirty the fs by
2109 * calling zil_create().
2111 if (list_head(&zilog->zl_itx_commit_list) == NULL)
2112 return;
2114 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2115 offsetof(zil_commit_waiter_t, zcw_node));
2117 lwb = list_tail(&zilog->zl_lwb_list);
2118 if (lwb == NULL) {
2119 lwb = zil_create(zilog);
2120 } else {
2121 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2122 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2123 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2126 while (itx = list_head(&zilog->zl_itx_commit_list)) {
2127 lr_t *lrc = &itx->itx_lr;
2128 uint64_t txg = lrc->lrc_txg;
2130 ASSERT3U(txg, !=, 0);
2132 if (lrc->lrc_txtype == TX_COMMIT) {
2133 DTRACE_PROBE2(zil__process__commit__itx,
2134 zilog_t *, zilog, itx_t *, itx);
2135 } else {
2136 DTRACE_PROBE2(zil__process__normal__itx,
2137 zilog_t *, zilog, itx_t *, itx);
2140 boolean_t synced = txg <= spa_last_synced_txg(spa);
2141 boolean_t frozen = txg > spa_freeze_txg(spa);
2144 * If the txg of this itx has already been synced out, then
2145 * we don't need to commit this itx to an lwb. This is
2146 * because the data of this itx will have already been
2147 * written to the main pool. This is inherently racy, and
2148 * it's still ok to commit an itx whose txg has already
2149 * been synced; this will result in a write that's
2150 * unnecessary, but will do no harm.
2152 * With that said, we always want to commit TX_COMMIT itxs
2153 * to an lwb, regardless of whether or not that itx's txg
2154 * has been synced out. We do this to ensure any OPENED lwb
2155 * will always have at least one zil_commit_waiter_t linked
2156 * to the lwb.
2158 * As a counter-example, if we skipped TX_COMMIT itx's
2159 * whose txg had already been synced, the following
2160 * situation could occur if we happened to be racing with
2161 * spa_sync:
2163 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2164 * itx's txg is 10 and the last synced txg is 9.
2165 * 2. spa_sync finishes syncing out txg 10.
2166 * 3. we move to the next itx in the list, it's a TX_COMMIT
2167 * whose txg is 10, so we skip it rather than committing
2168 * it to the lwb used in (1).
2170 * If the itx that is skipped in (3) is the last TX_COMMIT
2171 * itx in the commit list, than it's possible for the lwb
2172 * used in (1) to remain in the OPENED state indefinitely.
2174 * To prevent the above scenario from occuring, ensuring
2175 * that once an lwb is OPENED it will transition to ISSUED
2176 * and eventually DONE, we always commit TX_COMMIT itx's to
2177 * an lwb here, even if that itx's txg has already been
2178 * synced.
2180 * Finally, if the pool is frozen, we _always_ commit the
2181 * itx. The point of freezing the pool is to prevent data
2182 * from being written to the main pool via spa_sync, and
2183 * instead rely solely on the ZIL to persistently store the
2184 * data; i.e. when the pool is frozen, the last synced txg
2185 * value can't be trusted.
2187 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2188 if (lwb != NULL) {
2189 lwb = zil_lwb_commit(zilog, itx, lwb);
2190 } else if (lrc->lrc_txtype == TX_COMMIT) {
2191 ASSERT3P(lwb, ==, NULL);
2192 zil_commit_waiter_link_nolwb(
2193 itx->itx_private, &nolwb_waiters);
2197 list_remove(&zilog->zl_itx_commit_list, itx);
2198 zil_itx_destroy(itx);
2201 if (lwb == NULL) {
2203 * This indicates zio_alloc_zil() failed to allocate the
2204 * "next" lwb on-disk. When this happens, we must stall
2205 * the ZIL write pipeline; see the comment within
2206 * zil_commit_writer_stall() for more details.
2208 zil_commit_writer_stall(zilog);
2211 * Additionally, we have to signal and mark the "nolwb"
2212 * waiters as "done" here, since without an lwb, we
2213 * can't do this via zil_lwb_flush_vdevs_done() like
2214 * normal.
2216 zil_commit_waiter_t *zcw;
2217 while (zcw = list_head(&nolwb_waiters)) {
2218 zil_commit_waiter_skip(zcw);
2219 list_remove(&nolwb_waiters, zcw);
2221 } else {
2222 ASSERT(list_is_empty(&nolwb_waiters));
2223 ASSERT3P(lwb, !=, NULL);
2224 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2225 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2226 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2229 * At this point, the ZIL block pointed at by the "lwb"
2230 * variable is in one of the following states: "closed"
2231 * or "open".
2233 * If its "closed", then no itxs have been committed to
2234 * it, so there's no point in issuing its zio (i.e.
2235 * it's "empty").
2237 * If its "open" state, then it contains one or more
2238 * itxs that eventually need to be committed to stable
2239 * storage. In this case we intentionally do not issue
2240 * the lwb's zio to disk yet, and instead rely on one of
2241 * the following two mechanisms for issuing the zio:
2243 * 1. Ideally, there will be more ZIL activity occuring
2244 * on the system, such that this function will be
2245 * immediately called again (not necessarily by the same
2246 * thread) and this lwb's zio will be issued via
2247 * zil_lwb_commit(). This way, the lwb is guaranteed to
2248 * be "full" when it is issued to disk, and we'll make
2249 * use of the lwb's size the best we can.
2251 * 2. If there isn't sufficient ZIL activity occuring on
2252 * the system, such that this lwb's zio isn't issued via
2253 * zil_lwb_commit(), zil_commit_waiter() will issue the
2254 * lwb's zio. If this occurs, the lwb is not guaranteed
2255 * to be "full" by the time its zio is issued, and means
2256 * the size of the lwb was "too large" given the amount
2257 * of ZIL activity occuring on the system at that time.
2259 * We do this for a couple of reasons:
2261 * 1. To try and reduce the number of IOPs needed to
2262 * write the same number of itxs. If an lwb has space
2263 * available in it's buffer for more itxs, and more itxs
2264 * will be committed relatively soon (relative to the
2265 * latency of performing a write), then it's beneficial
2266 * to wait for these "next" itxs. This way, more itxs
2267 * can be committed to stable storage with fewer writes.
2269 * 2. To try and use the largest lwb block size that the
2270 * incoming rate of itxs can support. Again, this is to
2271 * try and pack as many itxs into as few lwbs as
2272 * possible, without significantly impacting the latency
2273 * of each individual itx.
2279 * This function is responsible for ensuring the passed in commit waiter
2280 * (and associated commit itx) is committed to an lwb. If the waiter is
2281 * not already committed to an lwb, all itxs in the zilog's queue of
2282 * itxs will be processed. The assumption is the passed in waiter's
2283 * commit itx will found in the queue just like the other non-commit
2284 * itxs, such that when the entire queue is processed, the waiter will
2285 * have been commited to an lwb.
2287 * The lwb associated with the passed in waiter is not guaranteed to
2288 * have been issued by the time this function completes. If the lwb is
2289 * not issued, we rely on future calls to zil_commit_writer() to issue
2290 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2292 static void
2293 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2295 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2296 ASSERT(spa_writeable(zilog->zl_spa));
2298 mutex_enter(&zilog->zl_issuer_lock);
2300 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2302 * It's possible that, while we were waiting to acquire
2303 * the "zl_issuer_lock", another thread committed this
2304 * waiter to an lwb. If that occurs, we bail out early,
2305 * without processing any of the zilog's queue of itxs.
2307 * On certain workloads and system configurations, the
2308 * "zl_issuer_lock" can become highly contended. In an
2309 * attempt to reduce this contention, we immediately drop
2310 * the lock if the waiter has already been processed.
2312 * We've measured this optimization to reduce CPU spent
2313 * contending on this lock by up to 5%, using a system
2314 * with 32 CPUs, low latency storage (~50 usec writes),
2315 * and 1024 threads performing sync writes.
2317 goto out;
2320 zil_get_commit_list(zilog);
2321 zil_prune_commit_list(zilog);
2322 zil_process_commit_list(zilog);
2324 out:
2325 mutex_exit(&zilog->zl_issuer_lock);
2328 static void
2329 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2331 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2332 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2333 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2335 lwb_t *lwb = zcw->zcw_lwb;
2336 ASSERT3P(lwb, !=, NULL);
2337 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2340 * If the lwb has already been issued by another thread, we can
2341 * immediately return since there's no work to be done (the
2342 * point of this function is to issue the lwb). Additionally, we
2343 * do this prior to acquiring the zl_issuer_lock, to avoid
2344 * acquiring it when it's not necessary to do so.
2346 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2347 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2348 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2349 return;
2352 * In order to call zil_lwb_write_issue() we must hold the
2353 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2354 * since we're already holding the commit waiter's "zcw_lock",
2355 * and those two locks are aquired in the opposite order
2356 * elsewhere.
2358 mutex_exit(&zcw->zcw_lock);
2359 mutex_enter(&zilog->zl_issuer_lock);
2360 mutex_enter(&zcw->zcw_lock);
2363 * Since we just dropped and re-acquired the commit waiter's
2364 * lock, we have to re-check to see if the waiter was marked
2365 * "done" during that process. If the waiter was marked "done",
2366 * the "lwb" pointer is no longer valid (it can be free'd after
2367 * the waiter is marked "done"), so without this check we could
2368 * wind up with a use-after-free error below.
2370 if (zcw->zcw_done)
2371 goto out;
2373 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2376 * We've already checked this above, but since we hadn't acquired
2377 * the zilog's zl_issuer_lock, we have to perform this check a
2378 * second time while holding the lock.
2380 * We don't need to hold the zl_lock since the lwb cannot transition
2381 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2382 * _can_ transition from ISSUED to DONE, but it's OK to race with
2383 * that transition since we treat the lwb the same, whether it's in
2384 * the ISSUED or DONE states.
2386 * The important thing, is we treat the lwb differently depending on
2387 * if it's ISSUED or OPENED, and block any other threads that might
2388 * attempt to issue this lwb. For that reason we hold the
2389 * zl_issuer_lock when checking the lwb_state; we must not call
2390 * zil_lwb_write_issue() if the lwb had already been issued.
2392 * See the comment above the lwb_state_t structure definition for
2393 * more details on the lwb states, and locking requirements.
2395 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2396 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2397 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2398 goto out;
2400 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2403 * As described in the comments above zil_commit_waiter() and
2404 * zil_process_commit_list(), we need to issue this lwb's zio
2405 * since we've reached the commit waiter's timeout and it still
2406 * hasn't been issued.
2408 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2410 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2413 * Since the lwb's zio hadn't been issued by the time this thread
2414 * reached its timeout, we reset the zilog's "zl_cur_used" field
2415 * to influence the zil block size selection algorithm.
2417 * By having to issue the lwb's zio here, it means the size of the
2418 * lwb was too large, given the incoming throughput of itxs. By
2419 * setting "zl_cur_used" to zero, we communicate this fact to the
2420 * block size selection algorithm, so it can take this informaiton
2421 * into account, and potentially select a smaller size for the
2422 * next lwb block that is allocated.
2424 zilog->zl_cur_used = 0;
2426 if (nlwb == NULL) {
2428 * When zil_lwb_write_issue() returns NULL, this
2429 * indicates zio_alloc_zil() failed to allocate the
2430 * "next" lwb on-disk. When this occurs, the ZIL write
2431 * pipeline must be stalled; see the comment within the
2432 * zil_commit_writer_stall() function for more details.
2434 * We must drop the commit waiter's lock prior to
2435 * calling zil_commit_writer_stall() or else we can wind
2436 * up with the following deadlock:
2438 * - This thread is waiting for the txg to sync while
2439 * holding the waiter's lock; txg_wait_synced() is
2440 * used within txg_commit_writer_stall().
2442 * - The txg can't sync because it is waiting for this
2443 * lwb's zio callback to call dmu_tx_commit().
2445 * - The lwb's zio callback can't call dmu_tx_commit()
2446 * because it's blocked trying to acquire the waiter's
2447 * lock, which occurs prior to calling dmu_tx_commit()
2449 mutex_exit(&zcw->zcw_lock);
2450 zil_commit_writer_stall(zilog);
2451 mutex_enter(&zcw->zcw_lock);
2454 out:
2455 mutex_exit(&zilog->zl_issuer_lock);
2456 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2460 * This function is responsible for performing the following two tasks:
2462 * 1. its primary responsibility is to block until the given "commit
2463 * waiter" is considered "done".
2465 * 2. its secondary responsibility is to issue the zio for the lwb that
2466 * the given "commit waiter" is waiting on, if this function has
2467 * waited "long enough" and the lwb is still in the "open" state.
2469 * Given a sufficient amount of itxs being generated and written using
2470 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2471 * function. If this does not occur, this secondary responsibility will
2472 * ensure the lwb is issued even if there is not other synchronous
2473 * activity on the system.
2475 * For more details, see zil_process_commit_list(); more specifically,
2476 * the comment at the bottom of that function.
2478 static void
2479 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2481 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2482 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2483 ASSERT(spa_writeable(zilog->zl_spa));
2485 mutex_enter(&zcw->zcw_lock);
2488 * The timeout is scaled based on the lwb latency to avoid
2489 * significantly impacting the latency of each individual itx.
2490 * For more details, see the comment at the bottom of the
2491 * zil_process_commit_list() function.
2493 int pct = MAX(zfs_commit_timeout_pct, 1);
2494 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2495 hrtime_t wakeup = gethrtime() + sleep;
2496 boolean_t timedout = B_FALSE;
2498 while (!zcw->zcw_done) {
2499 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2501 lwb_t *lwb = zcw->zcw_lwb;
2504 * Usually, the waiter will have a non-NULL lwb field here,
2505 * but it's possible for it to be NULL as a result of
2506 * zil_commit() racing with spa_sync().
2508 * When zil_clean() is called, it's possible for the itxg
2509 * list (which may be cleaned via a taskq) to contain
2510 * commit itxs. When this occurs, the commit waiters linked
2511 * off of these commit itxs will not be committed to an
2512 * lwb. Additionally, these commit waiters will not be
2513 * marked done until zil_commit_waiter_skip() is called via
2514 * zil_itxg_clean().
2516 * Thus, it's possible for this commit waiter (i.e. the
2517 * "zcw" variable) to be found in this "in between" state;
2518 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2519 * been skipped, so it's "zcw_done" field is still B_FALSE.
2521 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2523 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2524 ASSERT3B(timedout, ==, B_FALSE);
2527 * If the lwb hasn't been issued yet, then we
2528 * need to wait with a timeout, in case this
2529 * function needs to issue the lwb after the
2530 * timeout is reached; responsibility (2) from
2531 * the comment above this function.
2533 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2534 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2535 CALLOUT_FLAG_ABSOLUTE);
2537 if (timeleft >= 0 || zcw->zcw_done)
2538 continue;
2540 timedout = B_TRUE;
2541 zil_commit_waiter_timeout(zilog, zcw);
2543 if (!zcw->zcw_done) {
2545 * If the commit waiter has already been
2546 * marked "done", it's possible for the
2547 * waiter's lwb structure to have already
2548 * been freed. Thus, we can only reliably
2549 * make these assertions if the waiter
2550 * isn't done.
2552 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2553 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2555 } else {
2557 * If the lwb isn't open, then it must have already
2558 * been issued. In that case, there's no need to
2559 * use a timeout when waiting for the lwb to
2560 * complete.
2562 * Additionally, if the lwb is NULL, the waiter
2563 * will soon be signalled and marked done via
2564 * zil_clean() and zil_itxg_clean(), so no timeout
2565 * is required.
2568 IMPLY(lwb != NULL,
2569 lwb->lwb_state == LWB_STATE_ISSUED ||
2570 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2571 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2572 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2576 mutex_exit(&zcw->zcw_lock);
2579 static zil_commit_waiter_t *
2580 zil_alloc_commit_waiter()
2582 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2584 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2585 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2586 list_link_init(&zcw->zcw_node);
2587 zcw->zcw_lwb = NULL;
2588 zcw->zcw_done = B_FALSE;
2589 zcw->zcw_zio_error = 0;
2591 return (zcw);
2594 static void
2595 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2597 ASSERT(!list_link_active(&zcw->zcw_node));
2598 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2599 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2600 mutex_destroy(&zcw->zcw_lock);
2601 cv_destroy(&zcw->zcw_cv);
2602 kmem_cache_free(zil_zcw_cache, zcw);
2606 * This function is used to create a TX_COMMIT itx and assign it. This
2607 * way, it will be linked into the ZIL's list of synchronous itxs, and
2608 * then later committed to an lwb (or skipped) when
2609 * zil_process_commit_list() is called.
2611 static void
2612 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2614 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2615 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2617 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2618 itx->itx_sync = B_TRUE;
2619 itx->itx_private = zcw;
2621 zil_itx_assign(zilog, itx, tx);
2623 dmu_tx_commit(tx);
2627 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2629 * When writing ZIL transactions to the on-disk representation of the
2630 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2631 * itxs can be committed to a single lwb. Once a lwb is written and
2632 * committed to stable storage (i.e. the lwb is written, and vdevs have
2633 * been flushed), each itx that was committed to that lwb is also
2634 * considered to be committed to stable storage.
2636 * When an itx is committed to an lwb, the log record (lr_t) contained
2637 * by the itx is copied into the lwb's zio buffer, and once this buffer
2638 * is written to disk, it becomes an on-disk ZIL block.
2640 * As itxs are generated, they're inserted into the ZIL's queue of
2641 * uncommitted itxs. The semantics of zil_commit() are such that it will
2642 * block until all itxs that were in the queue when it was called, are
2643 * committed to stable storage.
2645 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2646 * itxs, for all objects in the dataset, will be committed to stable
2647 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2648 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2649 * that correspond to the foid passed in, will be committed to stable
2650 * storage prior to zil_commit() returning.
2652 * Generally speaking, when zil_commit() is called, the consumer doesn't
2653 * actually care about _all_ of the uncommitted itxs. Instead, they're
2654 * simply trying to waiting for a specific itx to be committed to disk,
2655 * but the interface(s) for interacting with the ZIL don't allow such
2656 * fine-grained communication. A better interface would allow a consumer
2657 * to create and assign an itx, and then pass a reference to this itx to
2658 * zil_commit(); such that zil_commit() would return as soon as that
2659 * specific itx was committed to disk (instead of waiting for _all_
2660 * itxs to be committed).
2662 * When a thread calls zil_commit() a special "commit itx" will be
2663 * generated, along with a corresponding "waiter" for this commit itx.
2664 * zil_commit() will wait on this waiter's CV, such that when the waiter
2665 * is marked done, and signalled, zil_commit() will return.
2667 * This commit itx is inserted into the queue of uncommitted itxs. This
2668 * provides an easy mechanism for determining which itxs were in the
2669 * queue prior to zil_commit() having been called, and which itxs were
2670 * added after zil_commit() was called.
2672 * The commit it is special; it doesn't have any on-disk representation.
2673 * When a commit itx is "committed" to an lwb, the waiter associated
2674 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2675 * completes, each waiter on the lwb's list is marked done and signalled
2676 * -- allowing the thread waiting on the waiter to return from zil_commit().
2678 * It's important to point out a few critical factors that allow us
2679 * to make use of the commit itxs, commit waiters, per-lwb lists of
2680 * commit waiters, and zio completion callbacks like we're doing:
2682 * 1. The list of waiters for each lwb is traversed, and each commit
2683 * waiter is marked "done" and signalled, in the zio completion
2684 * callback of the lwb's zio[*].
2686 * * Actually, the waiters are signalled in the zio completion
2687 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2688 * that are sent to the vdevs upon completion of the lwb zio.
2690 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2691 * itxs, the order in which they are inserted is preserved[*]; as
2692 * itxs are added to the queue, they are added to the tail of
2693 * in-memory linked lists.
2695 * When committing the itxs to lwbs (to be written to disk), they
2696 * are committed in the same order in which the itxs were added to
2697 * the uncommitted queue's linked list(s); i.e. the linked list of
2698 * itxs to commit is traversed from head to tail, and each itx is
2699 * committed to an lwb in that order.
2701 * * To clarify:
2703 * - the order of "sync" itxs is preserved w.r.t. other
2704 * "sync" itxs, regardless of the corresponding objects.
2705 * - the order of "async" itxs is preserved w.r.t. other
2706 * "async" itxs corresponding to the same object.
2707 * - the order of "async" itxs is *not* preserved w.r.t. other
2708 * "async" itxs corresponding to different objects.
2709 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2710 * versa) is *not* preserved, even for itxs that correspond
2711 * to the same object.
2713 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2714 * zil_get_commit_list(), and zil_process_commit_list().
2716 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2717 * lwb cannot be considered committed to stable storage, until its
2718 * "previous" lwb is also committed to stable storage. This fact,
2719 * coupled with the fact described above, means that itxs are
2720 * committed in (roughly) the order in which they were generated.
2721 * This is essential because itxs are dependent on prior itxs.
2722 * Thus, we *must not* deem an itx as being committed to stable
2723 * storage, until *all* prior itxs have also been committed to
2724 * stable storage.
2726 * To enforce this ordering of lwb zio's, while still leveraging as
2727 * much of the underlying storage performance as possible, we rely
2728 * on two fundamental concepts:
2730 * 1. The creation and issuance of lwb zio's is protected by
2731 * the zilog's "zl_issuer_lock", which ensures only a single
2732 * thread is creating and/or issuing lwb's at a time
2733 * 2. The "previous" lwb is a child of the "current" lwb
2734 * (leveraging the zio parent-child depenency graph)
2736 * By relying on this parent-child zio relationship, we can have
2737 * many lwb zio's concurrently issued to the underlying storage,
2738 * but the order in which they complete will be the same order in
2739 * which they were created.
2741 void
2742 zil_commit(zilog_t *zilog, uint64_t foid)
2745 * We should never attempt to call zil_commit on a snapshot for
2746 * a couple of reasons:
2748 * 1. A snapshot may never be modified, thus it cannot have any
2749 * in-flight itxs that would have modified the dataset.
2751 * 2. By design, when zil_commit() is called, a commit itx will
2752 * be assigned to this zilog; as a result, the zilog will be
2753 * dirtied. We must not dirty the zilog of a snapshot; there's
2754 * checks in the code that enforce this invariant, and will
2755 * cause a panic if it's not upheld.
2757 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2759 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2760 return;
2762 if (!spa_writeable(zilog->zl_spa)) {
2764 * If the SPA is not writable, there should never be any
2765 * pending itxs waiting to be committed to disk. If that
2766 * weren't true, we'd skip writing those itxs out, and
2767 * would break the sematics of zil_commit(); thus, we're
2768 * verifying that truth before we return to the caller.
2770 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2771 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2772 for (int i = 0; i < TXG_SIZE; i++)
2773 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2774 return;
2778 * If the ZIL is suspended, we don't want to dirty it by calling
2779 * zil_commit_itx_assign() below, nor can we write out
2780 * lwbs like would be done in zil_commit_write(). Thus, we
2781 * simply rely on txg_wait_synced() to maintain the necessary
2782 * semantics, and avoid calling those functions altogether.
2784 if (zilog->zl_suspend > 0) {
2785 txg_wait_synced(zilog->zl_dmu_pool, 0);
2786 return;
2789 zil_commit_impl(zilog, foid);
2792 void
2793 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2796 * Move the "async" itxs for the specified foid to the "sync"
2797 * queues, such that they will be later committed (or skipped)
2798 * to an lwb when zil_process_commit_list() is called.
2800 * Since these "async" itxs must be committed prior to this
2801 * call to zil_commit returning, we must perform this operation
2802 * before we call zil_commit_itx_assign().
2804 zil_async_to_sync(zilog, foid);
2807 * We allocate a new "waiter" structure which will initially be
2808 * linked to the commit itx using the itx's "itx_private" field.
2809 * Since the commit itx doesn't represent any on-disk state,
2810 * when it's committed to an lwb, rather than copying the its
2811 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2812 * added to the lwb's list of waiters. Then, when the lwb is
2813 * committed to stable storage, each waiter in the lwb's list of
2814 * waiters will be marked "done", and signalled.
2816 * We must create the waiter and assign the commit itx prior to
2817 * calling zil_commit_writer(), or else our specific commit itx
2818 * is not guaranteed to be committed to an lwb prior to calling
2819 * zil_commit_waiter().
2821 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2822 zil_commit_itx_assign(zilog, zcw);
2824 zil_commit_writer(zilog, zcw);
2825 zil_commit_waiter(zilog, zcw);
2827 if (zcw->zcw_zio_error != 0) {
2829 * If there was an error writing out the ZIL blocks that
2830 * this thread is waiting on, then we fallback to
2831 * relying on spa_sync() to write out the data this
2832 * thread is waiting on. Obviously this has performance
2833 * implications, but the expectation is for this to be
2834 * an exceptional case, and shouldn't occur often.
2836 DTRACE_PROBE2(zil__commit__io__error,
2837 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2838 txg_wait_synced(zilog->zl_dmu_pool, 0);
2841 zil_free_commit_waiter(zcw);
2845 * Called in syncing context to free committed log blocks and update log header.
2847 void
2848 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2850 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2851 uint64_t txg = dmu_tx_get_txg(tx);
2852 spa_t *spa = zilog->zl_spa;
2853 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2854 lwb_t *lwb;
2857 * We don't zero out zl_destroy_txg, so make sure we don't try
2858 * to destroy it twice.
2860 if (spa_sync_pass(spa) != 1)
2861 return;
2863 mutex_enter(&zilog->zl_lock);
2865 ASSERT(zilog->zl_stop_sync == 0);
2867 if (*replayed_seq != 0) {
2868 ASSERT(zh->zh_replay_seq < *replayed_seq);
2869 zh->zh_replay_seq = *replayed_seq;
2870 *replayed_seq = 0;
2873 if (zilog->zl_destroy_txg == txg) {
2874 blkptr_t blk = zh->zh_log;
2876 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2878 bzero(zh, sizeof (zil_header_t));
2879 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2881 if (zilog->zl_keep_first) {
2883 * If this block was part of log chain that couldn't
2884 * be claimed because a device was missing during
2885 * zil_claim(), but that device later returns,
2886 * then this block could erroneously appear valid.
2887 * To guard against this, assign a new GUID to the new
2888 * log chain so it doesn't matter what blk points to.
2890 zil_init_log_chain(zilog, &blk);
2891 zh->zh_log = blk;
2895 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2896 zh->zh_log = lwb->lwb_blk;
2897 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2898 break;
2899 list_remove(&zilog->zl_lwb_list, lwb);
2900 zio_free(spa, txg, &lwb->lwb_blk);
2901 zil_free_lwb(zilog, lwb);
2904 * If we don't have anything left in the lwb list then
2905 * we've had an allocation failure and we need to zero
2906 * out the zil_header blkptr so that we don't end
2907 * up freeing the same block twice.
2909 if (list_head(&zilog->zl_lwb_list) == NULL)
2910 BP_ZERO(&zh->zh_log);
2912 mutex_exit(&zilog->zl_lock);
2915 /* ARGSUSED */
2916 static int
2917 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2919 lwb_t *lwb = vbuf;
2920 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2921 offsetof(zil_commit_waiter_t, zcw_node));
2922 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2923 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2924 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2925 return (0);
2928 /* ARGSUSED */
2929 static void
2930 zil_lwb_dest(void *vbuf, void *unused)
2932 lwb_t *lwb = vbuf;
2933 mutex_destroy(&lwb->lwb_vdev_lock);
2934 avl_destroy(&lwb->lwb_vdev_tree);
2935 list_destroy(&lwb->lwb_waiters);
2938 void
2939 zil_init(void)
2941 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2942 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2944 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2945 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2948 void
2949 zil_fini(void)
2951 kmem_cache_destroy(zil_zcw_cache);
2952 kmem_cache_destroy(zil_lwb_cache);
2955 void
2956 zil_set_sync(zilog_t *zilog, uint64_t sync)
2958 zilog->zl_sync = sync;
2961 void
2962 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2964 zilog->zl_logbias = logbias;
2967 zilog_t *
2968 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2970 zilog_t *zilog;
2972 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2974 zilog->zl_header = zh_phys;
2975 zilog->zl_os = os;
2976 zilog->zl_spa = dmu_objset_spa(os);
2977 zilog->zl_dmu_pool = dmu_objset_pool(os);
2978 zilog->zl_destroy_txg = TXG_INITIAL - 1;
2979 zilog->zl_logbias = dmu_objset_logbias(os);
2980 zilog->zl_sync = dmu_objset_syncprop(os);
2981 zilog->zl_dirty_max_txg = 0;
2982 zilog->zl_last_lwb_opened = NULL;
2983 zilog->zl_last_lwb_latency = 0;
2985 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2986 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2988 for (int i = 0; i < TXG_SIZE; i++) {
2989 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2990 MUTEX_DEFAULT, NULL);
2993 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2994 offsetof(lwb_t, lwb_node));
2996 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2997 offsetof(itx_t, itx_node));
2999 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3001 return (zilog);
3004 void
3005 zil_free(zilog_t *zilog)
3007 zilog->zl_stop_sync = 1;
3009 ASSERT0(zilog->zl_suspend);
3010 ASSERT0(zilog->zl_suspending);
3012 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3013 list_destroy(&zilog->zl_lwb_list);
3015 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3016 list_destroy(&zilog->zl_itx_commit_list);
3018 for (int i = 0; i < TXG_SIZE; i++) {
3020 * It's possible for an itx to be generated that doesn't dirty
3021 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3022 * callback to remove the entry. We remove those here.
3024 * Also free up the ziltest itxs.
3026 if (zilog->zl_itxg[i].itxg_itxs)
3027 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3028 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3031 mutex_destroy(&zilog->zl_issuer_lock);
3032 mutex_destroy(&zilog->zl_lock);
3034 cv_destroy(&zilog->zl_cv_suspend);
3036 kmem_free(zilog, sizeof (zilog_t));
3040 * Open an intent log.
3042 zilog_t *
3043 zil_open(objset_t *os, zil_get_data_t *get_data)
3045 zilog_t *zilog = dmu_objset_zil(os);
3047 ASSERT3P(zilog->zl_get_data, ==, NULL);
3048 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3049 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3051 zilog->zl_get_data = get_data;
3053 return (zilog);
3057 * Close an intent log.
3059 void
3060 zil_close(zilog_t *zilog)
3062 lwb_t *lwb;
3063 uint64_t txg;
3065 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3066 zil_commit(zilog, 0);
3067 } else {
3068 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3069 ASSERT0(zilog->zl_dirty_max_txg);
3070 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3073 mutex_enter(&zilog->zl_lock);
3074 lwb = list_tail(&zilog->zl_lwb_list);
3075 if (lwb == NULL)
3076 txg = zilog->zl_dirty_max_txg;
3077 else
3078 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3079 mutex_exit(&zilog->zl_lock);
3082 * We need to use txg_wait_synced() to wait long enough for the
3083 * ZIL to be clean, and to wait for all pending lwbs to be
3084 * written out.
3086 if (txg != 0)
3087 txg_wait_synced(zilog->zl_dmu_pool, txg);
3089 if (zilog_is_dirty(zilog))
3090 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
3091 VERIFY(!zilog_is_dirty(zilog));
3093 zilog->zl_get_data = NULL;
3096 * We should have only one lwb left on the list; remove it now.
3098 mutex_enter(&zilog->zl_lock);
3099 lwb = list_head(&zilog->zl_lwb_list);
3100 if (lwb != NULL) {
3101 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3102 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3103 list_remove(&zilog->zl_lwb_list, lwb);
3104 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3105 zil_free_lwb(zilog, lwb);
3107 mutex_exit(&zilog->zl_lock);
3110 static char *suspend_tag = "zil suspending";
3113 * Suspend an intent log. While in suspended mode, we still honor
3114 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3115 * On old version pools, we suspend the log briefly when taking a
3116 * snapshot so that it will have an empty intent log.
3118 * Long holds are not really intended to be used the way we do here --
3119 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3120 * could fail. Therefore we take pains to only put a long hold if it is
3121 * actually necessary. Fortunately, it will only be necessary if the
3122 * objset is currently mounted (or the ZVOL equivalent). In that case it
3123 * will already have a long hold, so we are not really making things any worse.
3125 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3126 * zvol_state_t), and use their mechanism to prevent their hold from being
3127 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3128 * very little gain.
3130 * if cookiep == NULL, this does both the suspend & resume.
3131 * Otherwise, it returns with the dataset "long held", and the cookie
3132 * should be passed into zil_resume().
3135 zil_suspend(const char *osname, void **cookiep)
3137 objset_t *os;
3138 zilog_t *zilog;
3139 const zil_header_t *zh;
3140 int error;
3142 error = dmu_objset_hold(osname, suspend_tag, &os);
3143 if (error != 0)
3144 return (error);
3145 zilog = dmu_objset_zil(os);
3147 mutex_enter(&zilog->zl_lock);
3148 zh = zilog->zl_header;
3150 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3151 mutex_exit(&zilog->zl_lock);
3152 dmu_objset_rele(os, suspend_tag);
3153 return (SET_ERROR(EBUSY));
3157 * Don't put a long hold in the cases where we can avoid it. This
3158 * is when there is no cookie so we are doing a suspend & resume
3159 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3160 * for the suspend because it's already suspended, or there's no ZIL.
3162 if (cookiep == NULL && !zilog->zl_suspending &&
3163 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3164 mutex_exit(&zilog->zl_lock);
3165 dmu_objset_rele(os, suspend_tag);
3166 return (0);
3169 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3170 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3172 zilog->zl_suspend++;
3174 if (zilog->zl_suspend > 1) {
3176 * Someone else is already suspending it.
3177 * Just wait for them to finish.
3180 while (zilog->zl_suspending)
3181 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3182 mutex_exit(&zilog->zl_lock);
3184 if (cookiep == NULL)
3185 zil_resume(os);
3186 else
3187 *cookiep = os;
3188 return (0);
3192 * If there is no pointer to an on-disk block, this ZIL must not
3193 * be active (e.g. filesystem not mounted), so there's nothing
3194 * to clean up.
3196 if (BP_IS_HOLE(&zh->zh_log)) {
3197 ASSERT(cookiep != NULL); /* fast path already handled */
3199 *cookiep = os;
3200 mutex_exit(&zilog->zl_lock);
3201 return (0);
3204 zilog->zl_suspending = B_TRUE;
3205 mutex_exit(&zilog->zl_lock);
3208 * We need to use zil_commit_impl to ensure we wait for all
3209 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3210 * to disk before proceeding. If we used zil_commit instead, it
3211 * would just call txg_wait_synced(), because zl_suspend is set.
3212 * txg_wait_synced() doesn't wait for these lwb's to be
3213 * LWB_STATE_FLUSH_DONE before returning.
3215 zil_commit_impl(zilog, 0);
3218 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3219 * use txg_wait_synced() to ensure the data from the zilog has
3220 * migrated to the main pool before calling zil_destroy().
3222 txg_wait_synced(zilog->zl_dmu_pool, 0);
3224 zil_destroy(zilog, B_FALSE);
3226 mutex_enter(&zilog->zl_lock);
3227 zilog->zl_suspending = B_FALSE;
3228 cv_broadcast(&zilog->zl_cv_suspend);
3229 mutex_exit(&zilog->zl_lock);
3231 if (cookiep == NULL)
3232 zil_resume(os);
3233 else
3234 *cookiep = os;
3235 return (0);
3238 void
3239 zil_resume(void *cookie)
3241 objset_t *os = cookie;
3242 zilog_t *zilog = dmu_objset_zil(os);
3244 mutex_enter(&zilog->zl_lock);
3245 ASSERT(zilog->zl_suspend != 0);
3246 zilog->zl_suspend--;
3247 mutex_exit(&zilog->zl_lock);
3248 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3249 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3252 typedef struct zil_replay_arg {
3253 zil_replay_func_t **zr_replay;
3254 void *zr_arg;
3255 boolean_t zr_byteswap;
3256 char *zr_lr;
3257 } zil_replay_arg_t;
3259 static int
3260 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3262 char name[ZFS_MAX_DATASET_NAME_LEN];
3264 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3266 dmu_objset_name(zilog->zl_os, name);
3268 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3269 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3270 (u_longlong_t)lr->lrc_seq,
3271 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3272 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3274 return (error);
3277 static int
3278 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3280 zil_replay_arg_t *zr = zra;
3281 const zil_header_t *zh = zilog->zl_header;
3282 uint64_t reclen = lr->lrc_reclen;
3283 uint64_t txtype = lr->lrc_txtype;
3284 int error = 0;
3286 zilog->zl_replaying_seq = lr->lrc_seq;
3288 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3289 return (0);
3291 if (lr->lrc_txg < claim_txg) /* already committed */
3292 return (0);
3294 /* Strip case-insensitive bit, still present in log record */
3295 txtype &= ~TX_CI;
3297 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3298 return (zil_replay_error(zilog, lr, EINVAL));
3301 * If this record type can be logged out of order, the object
3302 * (lr_foid) may no longer exist. That's legitimate, not an error.
3304 if (TX_OOO(txtype)) {
3305 error = dmu_object_info(zilog->zl_os,
3306 ((lr_ooo_t *)lr)->lr_foid, NULL);
3307 if (error == ENOENT || error == EEXIST)
3308 return (0);
3312 * Make a copy of the data so we can revise and extend it.
3314 bcopy(lr, zr->zr_lr, reclen);
3317 * If this is a TX_WRITE with a blkptr, suck in the data.
3319 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3320 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3321 zr->zr_lr + reclen);
3322 if (error != 0)
3323 return (zil_replay_error(zilog, lr, error));
3327 * The log block containing this lr may have been byteswapped
3328 * so that we can easily examine common fields like lrc_txtype.
3329 * However, the log is a mix of different record types, and only the
3330 * replay vectors know how to byteswap their records. Therefore, if
3331 * the lr was byteswapped, undo it before invoking the replay vector.
3333 if (zr->zr_byteswap)
3334 byteswap_uint64_array(zr->zr_lr, reclen);
3337 * We must now do two things atomically: replay this log record,
3338 * and update the log header sequence number to reflect the fact that
3339 * we did so. At the end of each replay function the sequence number
3340 * is updated if we are in replay mode.
3342 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3343 if (error != 0) {
3345 * The DMU's dnode layer doesn't see removes until the txg
3346 * commits, so a subsequent claim can spuriously fail with
3347 * EEXIST. So if we receive any error we try syncing out
3348 * any removes then retry the transaction. Note that we
3349 * specify B_FALSE for byteswap now, so we don't do it twice.
3351 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3352 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3353 if (error != 0)
3354 return (zil_replay_error(zilog, lr, error));
3356 return (0);
3359 /* ARGSUSED */
3360 static int
3361 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3363 zilog->zl_replay_blks++;
3365 return (0);
3369 * If this dataset has a non-empty intent log, replay it and destroy it.
3371 void
3372 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3374 zilog_t *zilog = dmu_objset_zil(os);
3375 const zil_header_t *zh = zilog->zl_header;
3376 zil_replay_arg_t zr;
3378 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3379 zil_destroy(zilog, B_TRUE);
3380 return;
3383 zr.zr_replay = replay_func;
3384 zr.zr_arg = arg;
3385 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3386 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3389 * Wait for in-progress removes to sync before starting replay.
3391 txg_wait_synced(zilog->zl_dmu_pool, 0);
3393 zilog->zl_replay = B_TRUE;
3394 zilog->zl_replay_time = ddi_get_lbolt();
3395 ASSERT(zilog->zl_replay_blks == 0);
3396 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3397 zh->zh_claim_txg);
3398 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3400 zil_destroy(zilog, B_FALSE);
3401 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3402 zilog->zl_replay = B_FALSE;
3405 boolean_t
3406 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3408 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3409 return (B_TRUE);
3411 if (zilog->zl_replay) {
3412 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3413 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3414 zilog->zl_replaying_seq;
3415 return (B_TRUE);
3418 return (B_FALSE);
3421 /* ARGSUSED */
3423 zil_reset(const char *osname, void *arg)
3425 int error;
3427 error = zil_suspend(osname, NULL);
3428 if (error != 0)
3429 return (SET_ERROR(EEXIST));
3430 return (0);