Merge commit '37e84ab74e939caf52150fc3352081786ecc0c29' into merges
[unleashed.git] / kernel / fs / zfs / zil.c
blob19f8f624526b1d8de3b220e5ffaa52bfb3c53cee
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
27 /* Portions Copyright 2010 Robert Milkowski */
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/abd.h>
45 * The zfs intent log (ZIL) saves transaction records of system calls
46 * that change the file system in memory with enough information
47 * to be able to replay them. These are stored in memory until
48 * either the DMU transaction group (txg) commits them to the stable pool
49 * and they can be discarded, or they are flushed to the stable log
50 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
51 * requirement. In the event of a panic or power fail then those log
52 * records (transactions) are replayed.
54 * There is one ZIL per file system. Its on-disk (pool) format consists
55 * of 3 parts:
57 * - ZIL header
58 * - ZIL blocks
59 * - ZIL records
61 * A log record holds a system call transaction. Log blocks can
62 * hold many log records and the blocks are chained together.
63 * Each ZIL block contains a block pointer (blkptr_t) to the next
64 * ZIL block in the chain. The ZIL header points to the first
65 * block in the chain. Note there is not a fixed place in the pool
66 * to hold blocks. They are dynamically allocated and freed as
67 * needed from the blocks available. Figure X shows the ZIL structure:
71 * Disable intent logging replay. This global ZIL switch affects all pools.
73 int zil_replay_disable = 0;
76 * Tunable parameter for debugging or performance analysis. Setting
77 * zfs_nocacheflush will cause corruption on power loss if a volatile
78 * out-of-order write cache is enabled.
80 boolean_t zfs_nocacheflush = B_FALSE;
83 * Limit SLOG write size per commit executed with synchronous priority.
84 * Any writes above that will be executed with lower (asynchronous) priority
85 * to limit potential SLOG device abuse by single active ZIL writer.
87 uint64_t zil_slog_bulk = 768 * 1024;
89 static kmem_cache_t *zil_lwb_cache;
91 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
93 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
94 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
96 static int
97 zil_bp_compare(const void *x1, const void *x2)
99 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
100 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
102 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
103 return (-1);
104 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
105 return (1);
107 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
108 return (-1);
109 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
110 return (1);
112 return (0);
115 static void
116 zil_bp_tree_init(zilog_t *zilog)
118 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
119 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
122 static void
123 zil_bp_tree_fini(zilog_t *zilog)
125 avl_tree_t *t = &zilog->zl_bp_tree;
126 zil_bp_node_t *zn;
127 void *cookie = NULL;
129 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
130 kmem_free(zn, sizeof (zil_bp_node_t));
132 avl_destroy(t);
136 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
138 avl_tree_t *t = &zilog->zl_bp_tree;
139 const dva_t *dva;
140 zil_bp_node_t *zn;
141 avl_index_t where;
143 if (BP_IS_EMBEDDED(bp))
144 return (0);
146 dva = BP_IDENTITY(bp);
148 if (avl_find(t, dva, &where) != NULL)
149 return (SET_ERROR(EEXIST));
151 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
152 zn->zn_dva = *dva;
153 avl_insert(t, zn, where);
155 return (0);
158 static zil_header_t *
159 zil_header_in_syncing_context(zilog_t *zilog)
161 return ((zil_header_t *)zilog->zl_header);
164 static void
165 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
167 zio_cksum_t *zc = &bp->blk_cksum;
169 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
170 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
171 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
172 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
176 * Read a log block and make sure it's valid.
178 static int
179 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
180 char **end)
182 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
183 arc_flags_t aflags = ARC_FLAG_WAIT;
184 arc_buf_t *abuf = NULL;
185 zbookmark_phys_t zb;
186 int error;
188 if (zilog->zl_header->zh_claim_txg == 0)
189 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
191 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
192 zio_flags |= ZIO_FLAG_SPECULATIVE;
194 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
195 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
197 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
198 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
200 if (error == 0) {
201 zio_cksum_t cksum = bp->blk_cksum;
204 * Validate the checksummed log block.
206 * Sequence numbers should be... sequential. The checksum
207 * verifier for the next block should be bp's checksum plus 1.
209 * Also check the log chain linkage and size used.
211 cksum.zc_word[ZIL_ZC_SEQ]++;
213 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
214 zil_chain_t *zilc = abuf->b_data;
215 char *lr = (char *)(zilc + 1);
216 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
218 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
219 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
220 error = SET_ERROR(ECKSUM);
221 } else {
222 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
223 bcopy(lr, dst, len);
224 *end = (char *)dst + len;
225 *nbp = zilc->zc_next_blk;
227 } else {
228 char *lr = abuf->b_data;
229 uint64_t size = BP_GET_LSIZE(bp);
230 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
232 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
233 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
234 (zilc->zc_nused > (size - sizeof (*zilc)))) {
235 error = SET_ERROR(ECKSUM);
236 } else {
237 ASSERT3U(zilc->zc_nused, <=,
238 SPA_OLD_MAXBLOCKSIZE);
239 bcopy(lr, dst, zilc->zc_nused);
240 *end = (char *)dst + zilc->zc_nused;
241 *nbp = zilc->zc_next_blk;
245 arc_buf_destroy(abuf, &abuf);
248 return (error);
252 * Read a TX_WRITE log data block.
254 static int
255 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
257 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
258 const blkptr_t *bp = &lr->lr_blkptr;
259 arc_flags_t aflags = ARC_FLAG_WAIT;
260 arc_buf_t *abuf = NULL;
261 zbookmark_phys_t zb;
262 int error;
264 if (BP_IS_HOLE(bp)) {
265 if (wbuf != NULL)
266 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
267 return (0);
270 if (zilog->zl_header->zh_claim_txg == 0)
271 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
273 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
274 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
276 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
277 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
279 if (error == 0) {
280 if (wbuf != NULL)
281 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
282 arc_buf_destroy(abuf, &abuf);
285 return (error);
289 * Parse the intent log, and call parse_func for each valid record within.
292 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
293 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
295 const zil_header_t *zh = zilog->zl_header;
296 boolean_t claimed = !!zh->zh_claim_txg;
297 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
298 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
299 uint64_t max_blk_seq = 0;
300 uint64_t max_lr_seq = 0;
301 uint64_t blk_count = 0;
302 uint64_t lr_count = 0;
303 blkptr_t blk, next_blk;
304 char *lrbuf, *lrp;
305 int error = 0;
308 * Old logs didn't record the maximum zh_claim_lr_seq.
310 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
311 claim_lr_seq = UINT64_MAX;
314 * Starting at the block pointed to by zh_log we read the log chain.
315 * For each block in the chain we strongly check that block to
316 * ensure its validity. We stop when an invalid block is found.
317 * For each block pointer in the chain we call parse_blk_func().
318 * For each record in each valid block we call parse_lr_func().
319 * If the log has been claimed, stop if we encounter a sequence
320 * number greater than the highest claimed sequence number.
322 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
323 zil_bp_tree_init(zilog);
325 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
326 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
327 int reclen;
328 char *end;
330 if (blk_seq > claim_blk_seq)
331 break;
332 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
333 break;
334 ASSERT3U(max_blk_seq, <, blk_seq);
335 max_blk_seq = blk_seq;
336 blk_count++;
338 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
339 break;
341 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
342 if (error != 0)
343 break;
345 for (lrp = lrbuf; lrp < end; lrp += reclen) {
346 lr_t *lr = (lr_t *)lrp;
347 reclen = lr->lrc_reclen;
348 ASSERT3U(reclen, >=, sizeof (lr_t));
349 if (lr->lrc_seq > claim_lr_seq)
350 goto done;
351 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
352 goto done;
353 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
354 max_lr_seq = lr->lrc_seq;
355 lr_count++;
358 done:
359 zilog->zl_parse_error = error;
360 zilog->zl_parse_blk_seq = max_blk_seq;
361 zilog->zl_parse_lr_seq = max_lr_seq;
362 zilog->zl_parse_blk_count = blk_count;
363 zilog->zl_parse_lr_count = lr_count;
365 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
366 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
368 zil_bp_tree_fini(zilog);
369 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
371 return (error);
374 static int
375 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
378 * Claim log block if not already committed and not already claimed.
379 * If tx == NULL, just verify that the block is claimable.
381 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
382 zil_bp_tree_add(zilog, bp) != 0)
383 return (0);
385 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
386 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
387 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
390 static int
391 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
393 lr_write_t *lr = (lr_write_t *)lrc;
394 int error;
396 if (lrc->lrc_txtype != TX_WRITE)
397 return (0);
400 * If the block is not readable, don't claim it. This can happen
401 * in normal operation when a log block is written to disk before
402 * some of the dmu_sync() blocks it points to. In this case, the
403 * transaction cannot have been committed to anyone (we would have
404 * waited for all writes to be stable first), so it is semantically
405 * correct to declare this the end of the log.
407 if (lr->lr_blkptr.blk_birth >= first_txg &&
408 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
409 return (error);
410 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
413 /* ARGSUSED */
414 static int
415 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
417 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
419 return (0);
422 static int
423 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
425 lr_write_t *lr = (lr_write_t *)lrc;
426 blkptr_t *bp = &lr->lr_blkptr;
429 * If we previously claimed it, we need to free it.
431 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
432 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
433 !BP_IS_HOLE(bp))
434 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
436 return (0);
439 static lwb_t *
440 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
442 lwb_t *lwb;
444 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
445 lwb->lwb_zilog = zilog;
446 lwb->lwb_blk = *bp;
447 lwb->lwb_slog = slog;
448 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
449 lwb->lwb_max_txg = txg;
450 lwb->lwb_zio = NULL;
451 lwb->lwb_tx = NULL;
452 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
453 lwb->lwb_nused = sizeof (zil_chain_t);
454 lwb->lwb_sz = BP_GET_LSIZE(bp);
455 } else {
456 lwb->lwb_nused = 0;
457 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
460 mutex_enter(&zilog->zl_lock);
461 list_insert_tail(&zilog->zl_lwb_list, lwb);
462 mutex_exit(&zilog->zl_lock);
464 return (lwb);
468 * Called when we create in-memory log transactions so that we know
469 * to cleanup the itxs at the end of spa_sync().
471 void
472 zilog_dirty(zilog_t *zilog, uint64_t txg)
474 dsl_pool_t *dp = zilog->zl_dmu_pool;
475 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
477 if (ds->ds_is_snapshot)
478 panic("dirtying snapshot!");
480 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
481 /* up the hold count until we can be written out */
482 dmu_buf_add_ref(ds->ds_dbuf, zilog);
487 * Determine if the zil is dirty in the specified txg. Callers wanting to
488 * ensure that the dirty state does not change must hold the itxg_lock for
489 * the specified txg. Holding the lock will ensure that the zil cannot be
490 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
491 * state.
493 boolean_t
494 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
496 dsl_pool_t *dp = zilog->zl_dmu_pool;
498 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
499 return (B_TRUE);
500 return (B_FALSE);
504 * Determine if the zil is dirty. The zil is considered dirty if it has
505 * any pending itx records that have not been cleaned by zil_clean().
507 boolean_t
508 zilog_is_dirty(zilog_t *zilog)
510 dsl_pool_t *dp = zilog->zl_dmu_pool;
512 for (int t = 0; t < TXG_SIZE; t++) {
513 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
514 return (B_TRUE);
516 return (B_FALSE);
520 * Create an on-disk intent log.
522 static lwb_t *
523 zil_create(zilog_t *zilog)
525 const zil_header_t *zh = zilog->zl_header;
526 lwb_t *lwb = NULL;
527 uint64_t txg = 0;
528 dmu_tx_t *tx = NULL;
529 blkptr_t blk;
530 int error = 0;
531 boolean_t slog = FALSE;
534 * Wait for any previous destroy to complete.
536 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
538 ASSERT(zh->zh_claim_txg == 0);
539 ASSERT(zh->zh_replay_seq == 0);
541 blk = zh->zh_log;
544 * Allocate an initial log block if:
545 * - there isn't one already
546 * - the existing block is the wrong endianess
548 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
549 tx = dmu_tx_create(zilog->zl_os);
550 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
551 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
552 txg = dmu_tx_get_txg(tx);
554 if (!BP_IS_HOLE(&blk)) {
555 zio_free_zil(zilog->zl_spa, txg, &blk);
556 BP_ZERO(&blk);
559 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
560 ZIL_MIN_BLKSZ, &slog);
562 if (error == 0)
563 zil_init_log_chain(zilog, &blk);
567 * Allocate a log write buffer (lwb) for the first log block.
569 if (error == 0)
570 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
573 * If we just allocated the first log block, commit our transaction
574 * and wait for zil_sync() to stuff the block poiner into zh_log.
575 * (zh is part of the MOS, so we cannot modify it in open context.)
577 if (tx != NULL) {
578 dmu_tx_commit(tx);
579 txg_wait_synced(zilog->zl_dmu_pool, txg);
582 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
584 return (lwb);
588 * In one tx, free all log blocks and clear the log header.
589 * If keep_first is set, then we're replaying a log with no content.
590 * We want to keep the first block, however, so that the first
591 * synchronous transaction doesn't require a txg_wait_synced()
592 * in zil_create(). We don't need to txg_wait_synced() here either
593 * when keep_first is set, because both zil_create() and zil_destroy()
594 * will wait for any in-progress destroys to complete.
596 void
597 zil_destroy(zilog_t *zilog, boolean_t keep_first)
599 const zil_header_t *zh = zilog->zl_header;
600 lwb_t *lwb;
601 dmu_tx_t *tx;
602 uint64_t txg;
605 * Wait for any previous destroy to complete.
607 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
609 zilog->zl_old_header = *zh; /* debugging aid */
611 if (BP_IS_HOLE(&zh->zh_log))
612 return;
614 tx = dmu_tx_create(zilog->zl_os);
615 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
616 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
617 txg = dmu_tx_get_txg(tx);
619 mutex_enter(&zilog->zl_lock);
621 ASSERT3U(zilog->zl_destroy_txg, <, txg);
622 zilog->zl_destroy_txg = txg;
623 zilog->zl_keep_first = keep_first;
625 if (!list_is_empty(&zilog->zl_lwb_list)) {
626 ASSERT(zh->zh_claim_txg == 0);
627 VERIFY(!keep_first);
628 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
629 list_remove(&zilog->zl_lwb_list, lwb);
630 if (lwb->lwb_buf != NULL)
631 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
632 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
633 kmem_cache_free(zil_lwb_cache, lwb);
635 } else if (!keep_first) {
636 zil_destroy_sync(zilog, tx);
638 mutex_exit(&zilog->zl_lock);
640 dmu_tx_commit(tx);
643 void
644 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
646 ASSERT(list_is_empty(&zilog->zl_lwb_list));
647 (void) zil_parse(zilog, zil_free_log_block,
648 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
652 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
654 dmu_tx_t *tx = txarg;
655 uint64_t first_txg = dmu_tx_get_txg(tx);
656 zilog_t *zilog;
657 zil_header_t *zh;
658 objset_t *os;
659 int error;
661 error = dmu_objset_own_obj(dp, ds->ds_object,
662 DMU_OST_ANY, B_FALSE, FTAG, &os);
663 if (error != 0) {
665 * EBUSY indicates that the objset is inconsistent, in which
666 * case it can not have a ZIL.
668 if (error != EBUSY) {
669 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
670 (unsigned long long)ds->ds_object, error);
672 return (0);
675 zilog = dmu_objset_zil(os);
676 zh = zil_header_in_syncing_context(zilog);
678 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
679 if (!BP_IS_HOLE(&zh->zh_log))
680 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
681 BP_ZERO(&zh->zh_log);
682 dsl_dataset_dirty(dmu_objset_ds(os), tx);
683 dmu_objset_disown(os, FTAG);
684 return (0);
688 * Claim all log blocks if we haven't already done so, and remember
689 * the highest claimed sequence number. This ensures that if we can
690 * read only part of the log now (e.g. due to a missing device),
691 * but we can read the entire log later, we will not try to replay
692 * or destroy beyond the last block we successfully claimed.
694 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
695 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
696 (void) zil_parse(zilog, zil_claim_log_block,
697 zil_claim_log_record, tx, first_txg);
698 zh->zh_claim_txg = first_txg;
699 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
700 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
701 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
702 zh->zh_flags |= ZIL_REPLAY_NEEDED;
703 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
704 dsl_dataset_dirty(dmu_objset_ds(os), tx);
707 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
708 dmu_objset_disown(os, FTAG);
709 return (0);
713 * Check the log by walking the log chain.
714 * Checksum errors are ok as they indicate the end of the chain.
715 * Any other error (no device or read failure) returns an error.
717 /* ARGSUSED */
719 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
721 zilog_t *zilog;
722 objset_t *os;
723 blkptr_t *bp;
724 int error;
726 ASSERT(tx == NULL);
728 error = dmu_objset_from_ds(ds, &os);
729 if (error != 0) {
730 cmn_err(CE_WARN, "can't open objset %llu, error %d",
731 (unsigned long long)ds->ds_object, error);
732 return (0);
735 zilog = dmu_objset_zil(os);
736 bp = (blkptr_t *)&zilog->zl_header->zh_log;
739 * Check the first block and determine if it's on a log device
740 * which may have been removed or faulted prior to loading this
741 * pool. If so, there's no point in checking the rest of the log
742 * as its content should have already been synced to the pool.
744 if (!BP_IS_HOLE(bp)) {
745 vdev_t *vd;
746 boolean_t valid = B_TRUE;
748 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
749 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
750 if (vd->vdev_islog && vdev_is_dead(vd))
751 valid = vdev_log_state_valid(vd);
752 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
754 if (!valid)
755 return (0);
759 * Because tx == NULL, zil_claim_log_block() will not actually claim
760 * any blocks, but just determine whether it is possible to do so.
761 * In addition to checking the log chain, zil_claim_log_block()
762 * will invoke zio_claim() with a done func of spa_claim_notify(),
763 * which will update spa_max_claim_txg. See spa_load() for details.
765 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
766 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
768 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
771 static int
772 zil_vdev_compare(const void *x1, const void *x2)
774 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
775 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
777 if (v1 < v2)
778 return (-1);
779 if (v1 > v2)
780 return (1);
782 return (0);
785 void
786 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
788 avl_tree_t *t = &zilog->zl_vdev_tree;
789 avl_index_t where;
790 zil_vdev_node_t *zv, zvsearch;
791 int ndvas = BP_GET_NDVAS(bp);
792 int i;
794 if (zfs_nocacheflush)
795 return;
797 ASSERT(zilog->zl_writer);
800 * Even though we're zl_writer, we still need a lock because the
801 * zl_get_data() callbacks may have dmu_sync() done callbacks
802 * that will run concurrently.
804 mutex_enter(&zilog->zl_vdev_lock);
805 for (i = 0; i < ndvas; i++) {
806 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
807 if (avl_find(t, &zvsearch, &where) == NULL) {
808 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
809 zv->zv_vdev = zvsearch.zv_vdev;
810 avl_insert(t, zv, where);
813 mutex_exit(&zilog->zl_vdev_lock);
816 static void
817 zil_flush_vdevs(zilog_t *zilog)
819 spa_t *spa = zilog->zl_spa;
820 avl_tree_t *t = &zilog->zl_vdev_tree;
821 void *cookie = NULL;
822 zil_vdev_node_t *zv;
823 zio_t *zio;
825 ASSERT(zilog->zl_writer);
828 * We don't need zl_vdev_lock here because we're the zl_writer,
829 * and all zl_get_data() callbacks are done.
831 if (avl_numnodes(t) == 0)
832 return;
834 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
836 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
838 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
839 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
840 if (vd != NULL)
841 zio_flush(zio, vd);
842 kmem_free(zv, sizeof (*zv));
846 * Wait for all the flushes to complete. Not all devices actually
847 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
849 (void) zio_wait(zio);
851 spa_config_exit(spa, SCL_STATE, FTAG);
855 * Function called when a log block write completes
857 static void
858 zil_lwb_write_done(zio_t *zio)
860 lwb_t *lwb = zio->io_private;
861 zilog_t *zilog = lwb->lwb_zilog;
862 dmu_tx_t *tx = lwb->lwb_tx;
864 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
865 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
866 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
867 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
868 ASSERT(!BP_IS_GANG(zio->io_bp));
869 ASSERT(!BP_IS_HOLE(zio->io_bp));
870 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
873 * Ensure the lwb buffer pointer is cleared before releasing
874 * the txg. If we have had an allocation failure and
875 * the txg is waiting to sync then we want want zil_sync()
876 * to remove the lwb so that it's not picked up as the next new
877 * one in zil_commit_writer(). zil_sync() will only remove
878 * the lwb if lwb_buf is null.
880 abd_put(zio->io_abd);
881 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
882 mutex_enter(&zilog->zl_lock);
883 lwb->lwb_buf = NULL;
884 lwb->lwb_tx = NULL;
885 mutex_exit(&zilog->zl_lock);
888 * Now that we've written this log block, we have a stable pointer
889 * to the next block in the chain, so it's OK to let the txg in
890 * which we allocated the next block sync.
892 dmu_tx_commit(tx);
896 * Initialize the io for a log block.
898 static void
899 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
901 zbookmark_phys_t zb;
902 zio_priority_t prio;
904 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
905 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
906 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
908 if (zilog->zl_root_zio == NULL) {
909 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
910 ZIO_FLAG_CANFAIL);
912 if (lwb->lwb_zio == NULL) {
913 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
914 BP_GET_LSIZE(&lwb->lwb_blk));
915 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
916 prio = ZIO_PRIORITY_SYNC_WRITE;
917 else
918 prio = ZIO_PRIORITY_ASYNC_WRITE;
919 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
920 0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk),
921 zil_lwb_write_done, lwb, prio,
922 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
927 * Define a limited set of intent log block sizes.
929 * These must be a multiple of 4KB. Note only the amount used (again
930 * aligned to 4KB) actually gets written. However, we can't always just
931 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
933 uint64_t zil_block_buckets[] = {
934 4096, /* non TX_WRITE */
935 8192+4096, /* data base */
936 32*1024 + 4096, /* NFS writes */
937 UINT64_MAX
941 * Start a log block write and advance to the next log block.
942 * Calls are serialized.
944 static lwb_t *
945 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
947 lwb_t *nlwb = NULL;
948 zil_chain_t *zilc;
949 spa_t *spa = zilog->zl_spa;
950 blkptr_t *bp;
951 dmu_tx_t *tx;
952 uint64_t txg;
953 uint64_t zil_blksz, wsz;
954 int i, error;
955 boolean_t slog;
957 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
958 zilc = (zil_chain_t *)lwb->lwb_buf;
959 bp = &zilc->zc_next_blk;
960 } else {
961 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
962 bp = &zilc->zc_next_blk;
965 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
968 * Allocate the next block and save its address in this block
969 * before writing it in order to establish the log chain.
970 * Note that if the allocation of nlwb synced before we wrote
971 * the block that points at it (lwb), we'd leak it if we crashed.
972 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
973 * We dirty the dataset to ensure that zil_sync() will be called
974 * to clean up in the event of allocation failure or I/O failure.
976 tx = dmu_tx_create(zilog->zl_os);
979 * Since we are not going to create any new dirty data and we can even
980 * help with clearing the existing dirty data, we should not be subject
981 * to the dirty data based delays.
982 * We (ab)use TXG_WAITED to bypass the delay mechanism.
983 * One side effect from using TXG_WAITED is that dmu_tx_assign() can
984 * fail if the pool is suspended. Those are dramatic circumstances,
985 * so we return NULL to signal that the normal ZIL processing is not
986 * possible and txg_wait_synced() should be used to ensure that the data
987 * is on disk.
989 error = dmu_tx_assign(tx, TXG_WAITED);
990 if (error != 0) {
991 ASSERT3S(error, ==, EIO);
992 dmu_tx_abort(tx);
993 return (NULL);
995 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
996 txg = dmu_tx_get_txg(tx);
998 lwb->lwb_tx = tx;
1001 * Log blocks are pre-allocated. Here we select the size of the next
1002 * block, based on size used in the last block.
1003 * - first find the smallest bucket that will fit the block from a
1004 * limited set of block sizes. This is because it's faster to write
1005 * blocks allocated from the same metaslab as they are adjacent or
1006 * close.
1007 * - next find the maximum from the new suggested size and an array of
1008 * previous sizes. This lessens a picket fence effect of wrongly
1009 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1010 * requests.
1012 * Note we only write what is used, but we can't just allocate
1013 * the maximum block size because we can exhaust the available
1014 * pool log space.
1016 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1017 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1018 continue;
1019 zil_blksz = zil_block_buckets[i];
1020 if (zil_blksz == UINT64_MAX)
1021 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1022 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1023 for (i = 0; i < ZIL_PREV_BLKS; i++)
1024 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1025 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1027 BP_ZERO(bp);
1028 /* pass the old blkptr in order to spread log blocks across devs */
1029 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1030 if (error == 0) {
1031 ASSERT3U(bp->blk_birth, ==, txg);
1032 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1033 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1036 * Allocate a new log write buffer (lwb).
1038 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1040 /* Record the block for later vdev flushing */
1041 zil_add_block(zilog, &lwb->lwb_blk);
1044 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1045 /* For Slim ZIL only write what is used. */
1046 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1047 ASSERT3U(wsz, <=, lwb->lwb_sz);
1048 zio_shrink(lwb->lwb_zio, wsz);
1050 } else {
1051 wsz = lwb->lwb_sz;
1054 zilc->zc_pad = 0;
1055 zilc->zc_nused = lwb->lwb_nused;
1056 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1059 * clear unused data for security
1061 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1063 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1066 * If there was an allocation failure then nlwb will be null which
1067 * forces a txg_wait_synced().
1069 return (nlwb);
1072 static lwb_t *
1073 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1075 lr_t *lrcb, *lrc;
1076 lr_write_t *lrwb, *lrw;
1077 char *lr_buf;
1078 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1080 if (lwb == NULL)
1081 return (NULL);
1083 ASSERT(lwb->lwb_buf != NULL);
1085 lrc = &itx->itx_lr; /* Common log record inside itx. */
1086 lrw = (lr_write_t *)lrc; /* Write log record inside itx. */
1087 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1088 dlen = P2ROUNDUP_TYPED(
1089 lrw->lr_length, sizeof (uint64_t), uint64_t);
1090 } else {
1091 dlen = 0;
1093 reclen = lrc->lrc_reclen;
1094 zilog->zl_cur_used += (reclen + dlen);
1095 txg = lrc->lrc_txg;
1097 zil_lwb_write_init(zilog, lwb);
1099 cont:
1101 * If this record won't fit in the current log block, start a new one.
1102 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1104 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1105 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1106 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1107 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1108 lwb = zil_lwb_write_start(zilog, lwb);
1109 if (lwb == NULL)
1110 return (NULL);
1111 zil_lwb_write_init(zilog, lwb);
1112 ASSERT(LWB_EMPTY(lwb));
1113 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1114 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1117 dnow = MIN(dlen, lwb_sp - reclen);
1118 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1119 bcopy(lrc, lr_buf, reclen);
1120 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1121 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1124 * If it's a write, fetch the data or get its blkptr as appropriate.
1126 if (lrc->lrc_txtype == TX_WRITE) {
1127 if (txg > spa_freeze_txg(zilog->zl_spa))
1128 txg_wait_synced(zilog->zl_dmu_pool, txg);
1129 if (itx->itx_wr_state != WR_COPIED) {
1130 char *dbuf;
1131 int error;
1133 if (itx->itx_wr_state == WR_NEED_COPY) {
1134 dbuf = lr_buf + reclen;
1135 lrcb->lrc_reclen += dnow;
1136 if (lrwb->lr_length > dnow)
1137 lrwb->lr_length = dnow;
1138 lrw->lr_offset += dnow;
1139 lrw->lr_length -= dnow;
1140 } else {
1141 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1142 dbuf = NULL;
1144 error = zilog->zl_get_data(
1145 itx->itx_private, lrwb, dbuf, lwb->lwb_zio);
1146 if (error == EIO) {
1147 txg_wait_synced(zilog->zl_dmu_pool, txg);
1148 return (lwb);
1150 if (error != 0) {
1151 ASSERT(error == ENOENT || error == EEXIST ||
1152 error == EALREADY);
1153 return (lwb);
1159 * We're actually making an entry, so update lrc_seq to be the
1160 * log record sequence number. Note that this is generally not
1161 * equal to the itx sequence number because not all transactions
1162 * are synchronous, and sometimes spa_sync() gets there first.
1164 lrcb->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1165 lwb->lwb_nused += reclen + dnow;
1166 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1167 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1168 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1170 dlen -= dnow;
1171 if (dlen > 0) {
1172 zilog->zl_cur_used += reclen;
1173 goto cont;
1176 return (lwb);
1179 itx_t *
1180 zil_itx_create(uint64_t txtype, size_t lrsize)
1182 itx_t *itx;
1184 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1186 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1187 itx->itx_lr.lrc_txtype = txtype;
1188 itx->itx_lr.lrc_reclen = lrsize;
1189 itx->itx_lr.lrc_seq = 0; /* defensive */
1190 itx->itx_sync = B_TRUE; /* default is synchronous */
1192 return (itx);
1195 void
1196 zil_itx_destroy(itx_t *itx)
1198 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1202 * Free up the sync and async itxs. The itxs_t has already been detached
1203 * so no locks are needed.
1205 static void
1206 zil_itxg_clean(itxs_t *itxs)
1208 itx_t *itx;
1209 list_t *list;
1210 avl_tree_t *t;
1211 void *cookie;
1212 itx_async_node_t *ian;
1214 list = &itxs->i_sync_list;
1215 while ((itx = list_head(list)) != NULL) {
1216 list_remove(list, itx);
1217 kmem_free(itx, offsetof(itx_t, itx_lr) +
1218 itx->itx_lr.lrc_reclen);
1221 cookie = NULL;
1222 t = &itxs->i_async_tree;
1223 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1224 list = &ian->ia_list;
1225 while ((itx = list_head(list)) != NULL) {
1226 list_remove(list, itx);
1227 kmem_free(itx, offsetof(itx_t, itx_lr) +
1228 itx->itx_lr.lrc_reclen);
1230 list_destroy(list);
1231 kmem_free(ian, sizeof (itx_async_node_t));
1233 avl_destroy(t);
1235 kmem_free(itxs, sizeof (itxs_t));
1238 static int
1239 zil_aitx_compare(const void *x1, const void *x2)
1241 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1242 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1244 if (o1 < o2)
1245 return (-1);
1246 if (o1 > o2)
1247 return (1);
1249 return (0);
1253 * Remove all async itx with the given oid.
1255 static void
1256 zil_remove_async(zilog_t *zilog, uint64_t oid)
1258 uint64_t otxg, txg;
1259 itx_async_node_t *ian;
1260 avl_tree_t *t;
1261 avl_index_t where;
1262 list_t clean_list;
1263 itx_t *itx;
1265 ASSERT(oid != 0);
1266 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1268 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1269 otxg = ZILTEST_TXG;
1270 else
1271 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1273 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1274 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1276 mutex_enter(&itxg->itxg_lock);
1277 if (itxg->itxg_txg != txg) {
1278 mutex_exit(&itxg->itxg_lock);
1279 continue;
1283 * Locate the object node and append its list.
1285 t = &itxg->itxg_itxs->i_async_tree;
1286 ian = avl_find(t, &oid, &where);
1287 if (ian != NULL)
1288 list_move_tail(&clean_list, &ian->ia_list);
1289 mutex_exit(&itxg->itxg_lock);
1291 while ((itx = list_head(&clean_list)) != NULL) {
1292 list_remove(&clean_list, itx);
1293 kmem_free(itx, offsetof(itx_t, itx_lr) +
1294 itx->itx_lr.lrc_reclen);
1296 list_destroy(&clean_list);
1299 void
1300 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1302 uint64_t txg;
1303 itxg_t *itxg;
1304 itxs_t *itxs, *clean = NULL;
1307 * Object ids can be re-instantiated in the next txg so
1308 * remove any async transactions to avoid future leaks.
1309 * This can happen if a fsync occurs on the re-instantiated
1310 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1311 * the new file data and flushes a write record for the old object.
1313 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1314 zil_remove_async(zilog, itx->itx_oid);
1317 * Ensure the data of a renamed file is committed before the rename.
1319 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1320 zil_async_to_sync(zilog, itx->itx_oid);
1322 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1323 txg = ZILTEST_TXG;
1324 else
1325 txg = dmu_tx_get_txg(tx);
1327 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1328 mutex_enter(&itxg->itxg_lock);
1329 itxs = itxg->itxg_itxs;
1330 if (itxg->itxg_txg != txg) {
1331 if (itxs != NULL) {
1333 * The zil_clean callback hasn't got around to cleaning
1334 * this itxg. Save the itxs for release below.
1335 * This should be rare.
1337 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1338 "txg %llu", itxg->itxg_txg);
1339 clean = itxg->itxg_itxs;
1341 itxg->itxg_txg = txg;
1342 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1344 list_create(&itxs->i_sync_list, sizeof (itx_t),
1345 offsetof(itx_t, itx_node));
1346 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1347 sizeof (itx_async_node_t),
1348 offsetof(itx_async_node_t, ia_node));
1350 if (itx->itx_sync) {
1351 list_insert_tail(&itxs->i_sync_list, itx);
1352 } else {
1353 avl_tree_t *t = &itxs->i_async_tree;
1354 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1355 itx_async_node_t *ian;
1356 avl_index_t where;
1358 ian = avl_find(t, &foid, &where);
1359 if (ian == NULL) {
1360 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1361 list_create(&ian->ia_list, sizeof (itx_t),
1362 offsetof(itx_t, itx_node));
1363 ian->ia_foid = foid;
1364 avl_insert(t, ian, where);
1366 list_insert_tail(&ian->ia_list, itx);
1369 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1370 zilog_dirty(zilog, txg);
1371 mutex_exit(&itxg->itxg_lock);
1373 /* Release the old itxs now we've dropped the lock */
1374 if (clean != NULL)
1375 zil_itxg_clean(clean);
1379 * If there are any in-memory intent log transactions which have now been
1380 * synced then start up a taskq to free them. We should only do this after we
1381 * have written out the uberblocks (i.e. txg has been comitted) so that
1382 * don't inadvertently clean out in-memory log records that would be required
1383 * by zil_commit().
1385 void
1386 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1388 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1389 itxs_t *clean_me;
1391 mutex_enter(&itxg->itxg_lock);
1392 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1393 mutex_exit(&itxg->itxg_lock);
1394 return;
1396 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1397 ASSERT3U(itxg->itxg_txg, !=, 0);
1398 clean_me = itxg->itxg_itxs;
1399 itxg->itxg_itxs = NULL;
1400 itxg->itxg_txg = 0;
1401 mutex_exit(&itxg->itxg_lock);
1403 * Preferably start a task queue to free up the old itxs but
1404 * if taskq_dispatch can't allocate resources to do that then
1405 * free it in-line. This should be rare. Note, using TQ_SLEEP
1406 * created a bad performance problem.
1408 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1409 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1410 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1411 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1412 zil_itxg_clean(clean_me);
1416 * Get the list of itxs to commit into zl_itx_commit_list.
1418 static void
1419 zil_get_commit_list(zilog_t *zilog)
1421 uint64_t otxg, txg;
1422 list_t *commit_list = &zilog->zl_itx_commit_list;
1424 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1425 otxg = ZILTEST_TXG;
1426 else
1427 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1430 * This is inherently racy, since there is nothing to prevent
1431 * the last synced txg from changing. That's okay since we'll
1432 * only commit things in the future.
1434 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1435 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1437 mutex_enter(&itxg->itxg_lock);
1438 if (itxg->itxg_txg != txg) {
1439 mutex_exit(&itxg->itxg_lock);
1440 continue;
1444 * If we're adding itx records to the zl_itx_commit_list,
1445 * then the zil better be dirty in this "txg". We can assert
1446 * that here since we're holding the itxg_lock which will
1447 * prevent spa_sync from cleaning it. Once we add the itxs
1448 * to the zl_itx_commit_list we must commit it to disk even
1449 * if it's unnecessary (i.e. the txg was synced).
1451 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1452 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1453 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1455 mutex_exit(&itxg->itxg_lock);
1460 * Move the async itxs for a specified object to commit into sync lists.
1462 static void
1463 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1465 uint64_t otxg, txg;
1466 itx_async_node_t *ian;
1467 avl_tree_t *t;
1468 avl_index_t where;
1470 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1471 otxg = ZILTEST_TXG;
1472 else
1473 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1476 * This is inherently racy, since there is nothing to prevent
1477 * the last synced txg from changing.
1479 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1480 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1482 mutex_enter(&itxg->itxg_lock);
1483 if (itxg->itxg_txg != txg) {
1484 mutex_exit(&itxg->itxg_lock);
1485 continue;
1489 * If a foid is specified then find that node and append its
1490 * list. Otherwise walk the tree appending all the lists
1491 * to the sync list. We add to the end rather than the
1492 * beginning to ensure the create has happened.
1494 t = &itxg->itxg_itxs->i_async_tree;
1495 if (foid != 0) {
1496 ian = avl_find(t, &foid, &where);
1497 if (ian != NULL) {
1498 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1499 &ian->ia_list);
1501 } else {
1502 void *cookie = NULL;
1504 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1505 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1506 &ian->ia_list);
1507 list_destroy(&ian->ia_list);
1508 kmem_free(ian, sizeof (itx_async_node_t));
1511 mutex_exit(&itxg->itxg_lock);
1515 static void
1516 zil_commit_writer(zilog_t *zilog)
1518 uint64_t txg;
1519 itx_t *itx;
1520 lwb_t *lwb;
1521 spa_t *spa = zilog->zl_spa;
1522 int error = 0;
1524 ASSERT(zilog->zl_root_zio == NULL);
1526 mutex_exit(&zilog->zl_lock);
1528 zil_get_commit_list(zilog);
1531 * Return if there's nothing to commit before we dirty the fs by
1532 * calling zil_create().
1534 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1535 mutex_enter(&zilog->zl_lock);
1536 return;
1539 if (zilog->zl_suspend) {
1540 lwb = NULL;
1541 } else {
1542 lwb = list_tail(&zilog->zl_lwb_list);
1543 if (lwb == NULL)
1544 lwb = zil_create(zilog);
1547 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1548 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1549 txg = itx->itx_lr.lrc_txg;
1550 ASSERT3U(txg, !=, 0);
1553 * This is inherently racy and may result in us writing
1554 * out a log block for a txg that was just synced. This is
1555 * ok since we'll end cleaning up that log block the next
1556 * time we call zil_sync().
1558 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1559 lwb = zil_lwb_commit(zilog, itx, lwb);
1560 list_remove(&zilog->zl_itx_commit_list, itx);
1561 kmem_free(itx, offsetof(itx_t, itx_lr)
1562 + itx->itx_lr.lrc_reclen);
1564 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1566 /* write the last block out */
1567 if (lwb != NULL && lwb->lwb_zio != NULL)
1568 lwb = zil_lwb_write_start(zilog, lwb);
1570 zilog->zl_cur_used = 0;
1573 * Wait if necessary for the log blocks to be on stable storage.
1575 if (zilog->zl_root_zio) {
1576 error = zio_wait(zilog->zl_root_zio);
1577 zilog->zl_root_zio = NULL;
1578 zil_flush_vdevs(zilog);
1581 if (error || lwb == NULL)
1582 txg_wait_synced(zilog->zl_dmu_pool, 0);
1584 mutex_enter(&zilog->zl_lock);
1587 * Remember the highest committed log sequence number for ztest.
1588 * We only update this value when all the log writes succeeded,
1589 * because ztest wants to ASSERT that it got the whole log chain.
1591 if (error == 0 && lwb != NULL)
1592 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1596 * Commit zfs transactions to stable storage.
1597 * If foid is 0 push out all transactions, otherwise push only those
1598 * for that object or might reference that object.
1600 * itxs are committed in batches. In a heavily stressed zil there will be
1601 * a commit writer thread who is writing out a bunch of itxs to the log
1602 * for a set of committing threads (cthreads) in the same batch as the writer.
1603 * Those cthreads are all waiting on the same cv for that batch.
1605 * There will also be a different and growing batch of threads that are
1606 * waiting to commit (qthreads). When the committing batch completes
1607 * a transition occurs such that the cthreads exit and the qthreads become
1608 * cthreads. One of the new cthreads becomes the writer thread for the
1609 * batch. Any new threads arriving become new qthreads.
1611 * Only 2 condition variables are needed and there's no transition
1612 * between the two cvs needed. They just flip-flop between qthreads
1613 * and cthreads.
1615 * Using this scheme we can efficiently wakeup up only those threads
1616 * that have been committed.
1618 void
1619 zil_commit(zilog_t *zilog, uint64_t foid)
1621 uint64_t mybatch;
1623 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1624 return;
1626 /* move the async itxs for the foid to the sync queues */
1627 zil_async_to_sync(zilog, foid);
1629 mutex_enter(&zilog->zl_lock);
1630 mybatch = zilog->zl_next_batch;
1631 while (zilog->zl_writer) {
1632 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1633 if (mybatch <= zilog->zl_com_batch) {
1634 mutex_exit(&zilog->zl_lock);
1635 return;
1639 zilog->zl_next_batch++;
1640 zilog->zl_writer = B_TRUE;
1641 zil_commit_writer(zilog);
1642 zilog->zl_com_batch = mybatch;
1643 zilog->zl_writer = B_FALSE;
1644 mutex_exit(&zilog->zl_lock);
1646 /* wake up one thread to become the next writer */
1647 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1649 /* wake up all threads waiting for this batch to be committed */
1650 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1654 * Called in syncing context to free committed log blocks and update log header.
1656 void
1657 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1659 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1660 uint64_t txg = dmu_tx_get_txg(tx);
1661 spa_t *spa = zilog->zl_spa;
1662 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1663 lwb_t *lwb;
1666 * We don't zero out zl_destroy_txg, so make sure we don't try
1667 * to destroy it twice.
1669 if (spa_sync_pass(spa) != 1)
1670 return;
1672 mutex_enter(&zilog->zl_lock);
1674 ASSERT(zilog->zl_stop_sync == 0);
1676 if (*replayed_seq != 0) {
1677 ASSERT(zh->zh_replay_seq < *replayed_seq);
1678 zh->zh_replay_seq = *replayed_seq;
1679 *replayed_seq = 0;
1682 if (zilog->zl_destroy_txg == txg) {
1683 blkptr_t blk = zh->zh_log;
1685 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1687 bzero(zh, sizeof (zil_header_t));
1688 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1690 if (zilog->zl_keep_first) {
1692 * If this block was part of log chain that couldn't
1693 * be claimed because a device was missing during
1694 * zil_claim(), but that device later returns,
1695 * then this block could erroneously appear valid.
1696 * To guard against this, assign a new GUID to the new
1697 * log chain so it doesn't matter what blk points to.
1699 zil_init_log_chain(zilog, &blk);
1700 zh->zh_log = blk;
1704 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1705 zh->zh_log = lwb->lwb_blk;
1706 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1707 break;
1708 list_remove(&zilog->zl_lwb_list, lwb);
1709 zio_free_zil(spa, txg, &lwb->lwb_blk);
1710 kmem_cache_free(zil_lwb_cache, lwb);
1713 * If we don't have anything left in the lwb list then
1714 * we've had an allocation failure and we need to zero
1715 * out the zil_header blkptr so that we don't end
1716 * up freeing the same block twice.
1718 if (list_head(&zilog->zl_lwb_list) == NULL)
1719 BP_ZERO(&zh->zh_log);
1721 mutex_exit(&zilog->zl_lock);
1724 void
1725 zil_init(void)
1727 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1728 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1731 void
1732 zil_fini(void)
1734 kmem_cache_destroy(zil_lwb_cache);
1737 void
1738 zil_set_sync(zilog_t *zilog, uint64_t sync)
1740 zilog->zl_sync = sync;
1743 void
1744 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1746 zilog->zl_logbias = logbias;
1749 zilog_t *
1750 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1752 zilog_t *zilog;
1754 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1756 zilog->zl_header = zh_phys;
1757 zilog->zl_os = os;
1758 zilog->zl_spa = dmu_objset_spa(os);
1759 zilog->zl_dmu_pool = dmu_objset_pool(os);
1760 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1761 zilog->zl_logbias = dmu_objset_logbias(os);
1762 zilog->zl_sync = dmu_objset_syncprop(os);
1763 zilog->zl_next_batch = 1;
1765 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1767 for (int i = 0; i < TXG_SIZE; i++) {
1768 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1769 MUTEX_DEFAULT, NULL);
1772 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1773 offsetof(lwb_t, lwb_node));
1775 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1776 offsetof(itx_t, itx_node));
1778 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1780 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1781 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1783 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1784 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1785 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1786 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1788 return (zilog);
1791 void
1792 zil_free(zilog_t *zilog)
1794 zilog->zl_stop_sync = 1;
1796 ASSERT0(zilog->zl_suspend);
1797 ASSERT0(zilog->zl_suspending);
1799 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1800 list_destroy(&zilog->zl_lwb_list);
1802 avl_destroy(&zilog->zl_vdev_tree);
1803 mutex_destroy(&zilog->zl_vdev_lock);
1805 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1806 list_destroy(&zilog->zl_itx_commit_list);
1808 for (int i = 0; i < TXG_SIZE; i++) {
1810 * It's possible for an itx to be generated that doesn't dirty
1811 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1812 * callback to remove the entry. We remove those here.
1814 * Also free up the ziltest itxs.
1816 if (zilog->zl_itxg[i].itxg_itxs)
1817 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1818 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1821 mutex_destroy(&zilog->zl_lock);
1823 cv_destroy(&zilog->zl_cv_writer);
1824 cv_destroy(&zilog->zl_cv_suspend);
1825 cv_destroy(&zilog->zl_cv_batch[0]);
1826 cv_destroy(&zilog->zl_cv_batch[1]);
1828 kmem_free(zilog, sizeof (zilog_t));
1832 * Open an intent log.
1834 zilog_t *
1835 zil_open(objset_t *os, zil_get_data_t *get_data)
1837 zilog_t *zilog = dmu_objset_zil(os);
1839 ASSERT(zilog->zl_get_data == NULL);
1840 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1842 zilog->zl_get_data = get_data;
1844 return (zilog);
1848 * Close an intent log.
1850 void
1851 zil_close(zilog_t *zilog)
1853 lwb_t *lwb;
1854 uint64_t txg = 0;
1856 zil_commit(zilog, 0); /* commit all itx */
1859 * The lwb_max_txg for the stubby lwb will reflect the last activity
1860 * for the zil. After a txg_wait_synced() on the txg we know all the
1861 * callbacks have occurred that may clean the zil. Only then can we
1862 * destroy the zl_clean_taskq.
1864 mutex_enter(&zilog->zl_lock);
1865 lwb = list_tail(&zilog->zl_lwb_list);
1866 if (lwb != NULL)
1867 txg = lwb->lwb_max_txg;
1868 mutex_exit(&zilog->zl_lock);
1869 if (txg)
1870 txg_wait_synced(zilog->zl_dmu_pool, txg);
1872 if (zilog_is_dirty(zilog))
1873 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1874 VERIFY(!zilog_is_dirty(zilog));
1876 zilog->zl_get_data = NULL;
1879 * We should have only one LWB left on the list; remove it now.
1881 mutex_enter(&zilog->zl_lock);
1882 lwb = list_head(&zilog->zl_lwb_list);
1883 if (lwb != NULL) {
1884 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1885 list_remove(&zilog->zl_lwb_list, lwb);
1886 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1887 kmem_cache_free(zil_lwb_cache, lwb);
1889 mutex_exit(&zilog->zl_lock);
1892 static char *suspend_tag = "zil suspending";
1895 * Suspend an intent log. While in suspended mode, we still honor
1896 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1897 * On old version pools, we suspend the log briefly when taking a
1898 * snapshot so that it will have an empty intent log.
1900 * Long holds are not really intended to be used the way we do here --
1901 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
1902 * could fail. Therefore we take pains to only put a long hold if it is
1903 * actually necessary. Fortunately, it will only be necessary if the
1904 * objset is currently mounted (or the ZVOL equivalent). In that case it
1905 * will already have a long hold, so we are not really making things any worse.
1907 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1908 * zvol_state_t), and use their mechanism to prevent their hold from being
1909 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
1910 * very little gain.
1912 * if cookiep == NULL, this does both the suspend & resume.
1913 * Otherwise, it returns with the dataset "long held", and the cookie
1914 * should be passed into zil_resume().
1917 zil_suspend(const char *osname, void **cookiep)
1919 objset_t *os;
1920 zilog_t *zilog;
1921 const zil_header_t *zh;
1922 int error;
1924 error = dmu_objset_hold(osname, suspend_tag, &os);
1925 if (error != 0)
1926 return (error);
1927 zilog = dmu_objset_zil(os);
1929 mutex_enter(&zilog->zl_lock);
1930 zh = zilog->zl_header;
1932 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
1933 mutex_exit(&zilog->zl_lock);
1934 dmu_objset_rele(os, suspend_tag);
1935 return (SET_ERROR(EBUSY));
1939 * Don't put a long hold in the cases where we can avoid it. This
1940 * is when there is no cookie so we are doing a suspend & resume
1941 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1942 * for the suspend because it's already suspended, or there's no ZIL.
1944 if (cookiep == NULL && !zilog->zl_suspending &&
1945 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1946 mutex_exit(&zilog->zl_lock);
1947 dmu_objset_rele(os, suspend_tag);
1948 return (0);
1951 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1952 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1954 zilog->zl_suspend++;
1956 if (zilog->zl_suspend > 1) {
1958 * Someone else is already suspending it.
1959 * Just wait for them to finish.
1962 while (zilog->zl_suspending)
1963 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1964 mutex_exit(&zilog->zl_lock);
1966 if (cookiep == NULL)
1967 zil_resume(os);
1968 else
1969 *cookiep = os;
1970 return (0);
1974 * If there is no pointer to an on-disk block, this ZIL must not
1975 * be active (e.g. filesystem not mounted), so there's nothing
1976 * to clean up.
1978 if (BP_IS_HOLE(&zh->zh_log)) {
1979 ASSERT(cookiep != NULL); /* fast path already handled */
1981 *cookiep = os;
1982 mutex_exit(&zilog->zl_lock);
1983 return (0);
1986 zilog->zl_suspending = B_TRUE;
1987 mutex_exit(&zilog->zl_lock);
1989 zil_commit(zilog, 0);
1991 zil_destroy(zilog, B_FALSE);
1993 mutex_enter(&zilog->zl_lock);
1994 zilog->zl_suspending = B_FALSE;
1995 cv_broadcast(&zilog->zl_cv_suspend);
1996 mutex_exit(&zilog->zl_lock);
1998 if (cookiep == NULL)
1999 zil_resume(os);
2000 else
2001 *cookiep = os;
2002 return (0);
2005 void
2006 zil_resume(void *cookie)
2008 objset_t *os = cookie;
2009 zilog_t *zilog = dmu_objset_zil(os);
2011 mutex_enter(&zilog->zl_lock);
2012 ASSERT(zilog->zl_suspend != 0);
2013 zilog->zl_suspend--;
2014 mutex_exit(&zilog->zl_lock);
2015 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2016 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2019 typedef struct zil_replay_arg {
2020 zil_replay_func_t **zr_replay;
2021 void *zr_arg;
2022 boolean_t zr_byteswap;
2023 char *zr_lr;
2024 } zil_replay_arg_t;
2026 static int
2027 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2029 char name[ZFS_MAX_DATASET_NAME_LEN];
2031 zilog->zl_replaying_seq--; /* didn't actually replay this one */
2033 dmu_objset_name(zilog->zl_os, name);
2035 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2036 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2037 (u_longlong_t)lr->lrc_seq,
2038 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2039 (lr->lrc_txtype & TX_CI) ? "CI" : "");
2041 return (error);
2044 static int
2045 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2047 zil_replay_arg_t *zr = zra;
2048 const zil_header_t *zh = zilog->zl_header;
2049 uint64_t reclen = lr->lrc_reclen;
2050 uint64_t txtype = lr->lrc_txtype;
2051 int error = 0;
2053 zilog->zl_replaying_seq = lr->lrc_seq;
2055 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
2056 return (0);
2058 if (lr->lrc_txg < claim_txg) /* already committed */
2059 return (0);
2061 /* Strip case-insensitive bit, still present in log record */
2062 txtype &= ~TX_CI;
2064 if (txtype == 0 || txtype >= TX_MAX_TYPE)
2065 return (zil_replay_error(zilog, lr, EINVAL));
2068 * If this record type can be logged out of order, the object
2069 * (lr_foid) may no longer exist. That's legitimate, not an error.
2071 if (TX_OOO(txtype)) {
2072 error = dmu_object_info(zilog->zl_os,
2073 ((lr_ooo_t *)lr)->lr_foid, NULL);
2074 if (error == ENOENT || error == EEXIST)
2075 return (0);
2079 * Make a copy of the data so we can revise and extend it.
2081 bcopy(lr, zr->zr_lr, reclen);
2084 * If this is a TX_WRITE with a blkptr, suck in the data.
2086 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2087 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2088 zr->zr_lr + reclen);
2089 if (error != 0)
2090 return (zil_replay_error(zilog, lr, error));
2094 * The log block containing this lr may have been byteswapped
2095 * so that we can easily examine common fields like lrc_txtype.
2096 * However, the log is a mix of different record types, and only the
2097 * replay vectors know how to byteswap their records. Therefore, if
2098 * the lr was byteswapped, undo it before invoking the replay vector.
2100 if (zr->zr_byteswap)
2101 byteswap_uint64_array(zr->zr_lr, reclen);
2104 * We must now do two things atomically: replay this log record,
2105 * and update the log header sequence number to reflect the fact that
2106 * we did so. At the end of each replay function the sequence number
2107 * is updated if we are in replay mode.
2109 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2110 if (error != 0) {
2112 * The DMU's dnode layer doesn't see removes until the txg
2113 * commits, so a subsequent claim can spuriously fail with
2114 * EEXIST. So if we receive any error we try syncing out
2115 * any removes then retry the transaction. Note that we
2116 * specify B_FALSE for byteswap now, so we don't do it twice.
2118 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2119 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2120 if (error != 0)
2121 return (zil_replay_error(zilog, lr, error));
2123 return (0);
2126 /* ARGSUSED */
2127 static int
2128 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2130 zilog->zl_replay_blks++;
2132 return (0);
2136 * If this dataset has a non-empty intent log, replay it and destroy it.
2138 void
2139 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2141 zilog_t *zilog = dmu_objset_zil(os);
2142 const zil_header_t *zh = zilog->zl_header;
2143 zil_replay_arg_t zr;
2145 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2146 zil_destroy(zilog, B_TRUE);
2147 return;
2150 zr.zr_replay = replay_func;
2151 zr.zr_arg = arg;
2152 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2153 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2156 * Wait for in-progress removes to sync before starting replay.
2158 txg_wait_synced(zilog->zl_dmu_pool, 0);
2160 zilog->zl_replay = B_TRUE;
2161 zilog->zl_replay_time = ddi_get_lbolt();
2162 ASSERT(zilog->zl_replay_blks == 0);
2163 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2164 zh->zh_claim_txg);
2165 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2167 zil_destroy(zilog, B_FALSE);
2168 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2169 zilog->zl_replay = B_FALSE;
2172 boolean_t
2173 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2175 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2176 return (B_TRUE);
2178 if (zilog->zl_replay) {
2179 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2180 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2181 zilog->zl_replaying_seq;
2182 return (B_TRUE);
2185 return (B_FALSE);
2188 /* ARGSUSED */
2190 zil_vdev_offline(const char *osname, void *arg)
2192 int error;
2194 error = zil_suspend(osname, NULL);
2195 if (error != 0)
2196 return (SET_ERROR(EEXIST));
2197 return (0);