[PATCH] rewrite of initializer handling
[smatch.git] / evaluate.c
blobb0c67a1fd462743e61f75f5b29d5e854c5f6b5e5
1 /*
2 * sparse/evaluate.c
4 * Copyright (C) 2003 Transmeta Corp.
5 * 2003-2004 Linus Torvalds
7 * Licensed under the Open Software License version 1.1
9 * Evaluate constant expressions.
11 #include <stdlib.h>
12 #include <stdarg.h>
13 #include <stddef.h>
14 #include <stdio.h>
15 #include <string.h>
16 #include <ctype.h>
17 #include <unistd.h>
18 #include <fcntl.h>
19 #include <limits.h>
21 #include "lib.h"
22 #include "allocate.h"
23 #include "parse.h"
24 #include "token.h"
25 #include "symbol.h"
26 #include "target.h"
27 #include "expression.h"
29 struct symbol *current_fn;
31 static struct symbol *degenerate(struct expression *expr);
32 static struct symbol *evaluate_symbol(struct symbol *sym);
34 static struct symbol *evaluate_symbol_expression(struct expression *expr)
36 struct expression *addr;
37 struct symbol *sym = expr->symbol;
38 struct symbol *base_type;
40 if (!sym) {
41 expression_error(expr, "undefined identifier '%s'", show_ident(expr->symbol_name));
42 return NULL;
45 examine_symbol_type(sym);
47 base_type = get_base_type(sym);
48 if (!base_type) {
49 expression_error(expr, "identifier '%s' has no type", show_ident(expr->symbol_name));
50 return NULL;
53 addr = alloc_expression(expr->pos, EXPR_SYMBOL);
54 addr->symbol = sym;
55 addr->symbol_name = expr->symbol_name;
56 addr->ctype = &lazy_ptr_ctype; /* Lazy evaluation: we need to do a proper job if somebody does &sym */
57 expr->type = EXPR_PREOP;
58 expr->op = '*';
59 expr->unop = addr;
61 /* The type of a symbol is the symbol itself! */
62 expr->ctype = sym;
63 return sym;
66 static struct symbol *evaluate_string(struct expression *expr)
68 struct symbol *sym = alloc_symbol(expr->pos, SYM_NODE);
69 struct symbol *array = alloc_symbol(expr->pos, SYM_ARRAY);
70 struct expression *addr = alloc_expression(expr->pos, EXPR_SYMBOL);
71 struct expression *initstr = alloc_expression(expr->pos, EXPR_STRING);
72 unsigned int length = expr->string->length;
74 sym->array_size = alloc_const_expression(expr->pos, length);
75 sym->bit_size = bits_in_char * length;
76 sym->ctype.alignment = 1;
77 sym->string = 1;
78 sym->ctype.modifiers = MOD_STATIC;
79 sym->ctype.base_type = array;
80 sym->initializer = initstr;
82 initstr->ctype = sym;
83 initstr->string = expr->string;
85 array->array_size = sym->array_size;
86 array->bit_size = bits_in_char * length;
87 array->ctype.alignment = 1;
88 array->ctype.modifiers = MOD_STATIC;
89 array->ctype.base_type = &char_ctype;
91 addr->symbol = sym;
92 addr->ctype = &lazy_ptr_ctype;
94 expr->type = EXPR_PREOP;
95 expr->op = '*';
96 expr->unop = addr;
97 expr->ctype = sym;
98 return sym;
101 static inline struct symbol *integer_promotion(struct symbol *type)
103 struct symbol *orig_type = type;
104 unsigned long mod = type->ctype.modifiers;
105 int width;
107 if (type->type == SYM_NODE)
108 type = type->ctype.base_type;
109 if (type->type == SYM_ENUM)
110 type = type->ctype.base_type;
111 width = type->bit_size;
114 * Bitfields always promote to the base type,
115 * even if the bitfield might be bigger than
116 * an "int".
118 if (type->type == SYM_BITFIELD) {
119 type = type->ctype.base_type;
120 orig_type = type;
122 mod = type->ctype.modifiers;
123 if (width < bits_in_int)
124 return &int_ctype;
126 /* If char/short has as many bits as int, it still gets "promoted" */
127 if (mod & (MOD_CHAR | MOD_SHORT)) {
128 if (mod & MOD_UNSIGNED)
129 return &uint_ctype;
130 return &int_ctype;
132 return orig_type;
136 * integer part of usual arithmetic conversions:
137 * integer promotions are applied
138 * if left and right are identical, we are done
139 * if signedness is the same, convert one with lower rank
140 * unless unsigned argument has rank lower than signed one, convert the
141 * signed one.
142 * if signed argument is bigger than unsigned one, convert the unsigned.
143 * otherwise, convert signed.
145 * Leaving aside the integer promotions, that is equivalent to
146 * if identical, don't convert
147 * if left is bigger than right, convert right
148 * if right is bigger than left, convert right
149 * otherwise, if signedness is the same, convert one with lower rank
150 * otherwise convert the signed one.
152 static struct symbol *bigger_int_type(struct symbol *left, struct symbol *right)
154 unsigned long lmod, rmod;
156 left = integer_promotion(left);
157 right = integer_promotion(right);
159 if (left == right)
160 goto left;
162 if (left->bit_size > right->bit_size)
163 goto left;
165 if (right->bit_size > left->bit_size)
166 goto right;
168 lmod = left->ctype.modifiers;
169 rmod = right->ctype.modifiers;
170 if ((lmod ^ rmod) & MOD_UNSIGNED) {
171 if (lmod & MOD_UNSIGNED)
172 goto left;
173 } else if ((lmod & ~rmod) & (MOD_LONG | MOD_LONGLONG))
174 goto left;
175 right:
176 left = right;
177 left:
178 return left;
181 static int same_cast_type(struct symbol *orig, struct symbol *new)
183 return orig->bit_size == new->bit_size && orig->bit_offset == new->bit_offset;
186 static struct symbol *base_type(struct symbol *node, unsigned long *modp, unsigned long *asp)
188 unsigned long mod, as;
190 mod = 0; as = 0;
191 while (node) {
192 mod |= node->ctype.modifiers;
193 as |= node->ctype.as;
194 if (node->type == SYM_NODE) {
195 node = node->ctype.base_type;
196 continue;
198 break;
200 *modp = mod & ~MOD_IGNORE;
201 *asp = as;
202 return node;
205 static int is_same_type(struct expression *expr, struct symbol *new)
207 struct symbol *old = expr->ctype;
208 unsigned long oldmod, newmod, oldas, newas;
210 old = base_type(old, &oldmod, &oldas);
211 new = base_type(new, &newmod, &newas);
213 /* Same base type, same address space? */
214 if (old == new && oldas == newas) {
215 unsigned long difmod;
217 /* Check the modifier bits. */
218 difmod = (oldmod ^ newmod) & ~MOD_NOCAST;
220 /* Exact same type? */
221 if (!difmod)
222 return 1;
225 * Not the same type, but differs only in "const".
226 * Don't warn about MOD_NOCAST.
228 if (difmod == MOD_CONST)
229 return 0;
231 if ((oldmod | newmod) & MOD_NOCAST) {
232 const char *tofrom = "to/from";
233 if (!(newmod & MOD_NOCAST))
234 tofrom = "from";
235 if (!(oldmod & MOD_NOCAST))
236 tofrom = "to";
237 warning(expr->pos, "implicit cast %s nocast type", tofrom);
239 return 0;
242 static void
243 warn_for_different_enum_types (struct position pos,
244 struct symbol *typea,
245 struct symbol *typeb)
247 if (!Wenum_mismatch)
248 return;
249 if (typea->type == SYM_NODE)
250 typea = typea->ctype.base_type;
251 if (typeb->type == SYM_NODE)
252 typeb = typeb->ctype.base_type;
254 if (typea == typeb)
255 return;
257 if (typea->type == SYM_ENUM && typeb->type == SYM_ENUM) {
258 warning(pos, "mixing different enum types");
259 info(pos, " %s versus", show_typename(typea));
260 info(pos, " %s", show_typename(typeb));
265 * This gets called for implicit casts in assignments and
266 * integer promotion. We often want to try to move the
267 * cast down, because the ops involved may have been
268 * implicitly cast up, and we can get rid of the casts
269 * early.
271 static struct expression * cast_to(struct expression *old, struct symbol *type)
273 struct expression *expr;
275 warn_for_different_enum_types (old->pos, old->ctype, type);
277 if (is_same_type(old, type))
278 return old;
281 * See if we can simplify the op. Move the cast down.
283 switch (old->type) {
284 case EXPR_PREOP:
285 if (old->ctype->bit_size < type->bit_size)
286 break;
287 if (old->op == '~') {
288 old->ctype = type;
289 old->unop = cast_to(old->unop, type);
290 return old;
292 break;
294 case EXPR_IMPLIED_CAST:
295 warn_for_different_enum_types(old->pos, old->ctype, type);
297 if (old->ctype->bit_size >= type->bit_size) {
298 struct expression *orig = old->cast_expression;
299 if (same_cast_type(orig->ctype, type))
300 return orig;
301 if (old->ctype->bit_offset == type->bit_offset) {
302 old->ctype = type;
303 old->cast_type = type;
304 return old;
307 break;
309 default:
310 /* nothing */;
313 expr = alloc_expression(old->pos, EXPR_IMPLIED_CAST);
314 expr->ctype = type;
315 expr->cast_type = type;
316 expr->cast_expression = old;
317 return expr;
320 static int is_type_type(struct symbol *type)
322 return (type->ctype.modifiers & MOD_TYPE) != 0;
325 int is_ptr_type(struct symbol *type)
327 if (type->type == SYM_NODE)
328 type = type->ctype.base_type;
329 return type->type == SYM_PTR || type->type == SYM_ARRAY || type->type == SYM_FN;
332 static inline int is_float_type(struct symbol *type)
334 if (type->type == SYM_NODE)
335 type = type->ctype.base_type;
336 return type->ctype.base_type == &fp_type;
339 static inline int is_byte_type(struct symbol *type)
341 return type->bit_size == bits_in_char && type->type != SYM_BITFIELD;
344 enum {
345 TYPE_NUM = 1,
346 TYPE_BITFIELD = 2,
347 TYPE_RESTRICT = 4,
348 TYPE_FLOAT = 8,
349 TYPE_PTR = 16,
350 TYPE_COMPOUND = 32,
351 TYPE_FOULED = 64,
354 static inline int classify_type(struct symbol *type, struct symbol **base)
356 static int type_class[SYM_BAD + 1] = {
357 [SYM_PTR] = TYPE_PTR,
358 [SYM_FN] = TYPE_PTR,
359 [SYM_ARRAY] = TYPE_PTR | TYPE_COMPOUND,
360 [SYM_STRUCT] = TYPE_COMPOUND,
361 [SYM_UNION] = TYPE_COMPOUND,
362 [SYM_BITFIELD] = TYPE_NUM | TYPE_BITFIELD,
363 [SYM_RESTRICT] = TYPE_NUM | TYPE_RESTRICT,
364 [SYM_FOULED] = TYPE_NUM | TYPE_RESTRICT | TYPE_FOULED,
366 if (type->type == SYM_NODE)
367 type = type->ctype.base_type;
368 if (type->type == SYM_ENUM)
369 type = type->ctype.base_type;
370 *base = type;
371 if (type->type == SYM_BASETYPE) {
372 if (type->ctype.base_type == &int_type)
373 return TYPE_NUM;
374 if (type->ctype.base_type == &fp_type)
375 return TYPE_NUM | TYPE_FLOAT;
377 return type_class[type->type];
380 static inline int is_string_type(struct symbol *type)
382 if (type->type == SYM_NODE)
383 type = type->ctype.base_type;
384 return type->type == SYM_ARRAY && is_byte_type(type->ctype.base_type);
387 static struct symbol *bad_expr_type(struct expression *expr)
389 sparse_error(expr->pos, "incompatible types for operation (%s)", show_special(expr->op));
390 switch (expr->type) {
391 case EXPR_BINOP:
392 case EXPR_COMPARE:
393 info(expr->pos, " left side has type %s", show_typename(expr->left->ctype));
394 info(expr->pos, " right side has type %s", show_typename(expr->right->ctype));
395 break;
396 case EXPR_PREOP:
397 case EXPR_POSTOP:
398 info(expr->pos, " argument has type %s", show_typename(expr->unop->ctype));
399 break;
400 default:
401 break;
404 return expr->ctype = &bad_ctype;
407 static int restricted_value(struct expression *v, struct symbol *type)
409 if (v->type != EXPR_VALUE)
410 return 1;
411 if (v->value != 0)
412 return 1;
413 return 0;
416 static int restricted_binop(int op, struct symbol *type)
418 switch (op) {
419 case '&':
420 case '=':
421 case SPECIAL_AND_ASSIGN:
422 case SPECIAL_OR_ASSIGN:
423 case SPECIAL_XOR_ASSIGN:
424 return 1; /* unfoul */
425 case '|':
426 case '^':
427 case '?':
428 return 2; /* keep fouled */
429 case SPECIAL_EQUAL:
430 case SPECIAL_NOTEQUAL:
431 return 3; /* warn if fouled */
432 default:
433 return 0; /* warn */
437 static int restricted_unop(int op, struct symbol **type)
439 if (op == '~') {
440 if ((*type)->bit_size < bits_in_int)
441 *type = befoul(*type);
442 return 0;
443 } if (op == '+')
444 return 0;
445 return 1;
448 static struct symbol *restricted_binop_type(int op,
449 struct expression *left,
450 struct expression *right,
451 int lclass, int rclass,
452 struct symbol *ltype,
453 struct symbol *rtype)
455 struct symbol *ctype = NULL;
456 if (lclass & TYPE_RESTRICT) {
457 if (rclass & TYPE_RESTRICT) {
458 if (ltype == rtype) {
459 ctype = ltype;
460 } else if (lclass & TYPE_FOULED) {
461 if (ltype->ctype.base_type == rtype)
462 ctype = ltype;
463 } else if (rclass & TYPE_FOULED) {
464 if (rtype->ctype.base_type == ltype)
465 ctype = rtype;
467 } else {
468 if (!restricted_value(right, ltype))
469 ctype = ltype;
471 } else if (!restricted_value(left, rtype))
472 ctype = rtype;
474 if (ctype) {
475 switch (restricted_binop(op, ctype)) {
476 case 1:
477 if ((lclass ^ rclass) & TYPE_FOULED)
478 ctype = ctype->ctype.base_type;
479 break;
480 case 3:
481 if (!(lclass & rclass & TYPE_FOULED))
482 break;
483 case 0:
484 ctype = NULL;
485 default:
486 break;
490 return ctype;
493 static struct symbol *usual_conversions(int op,
494 struct expression **left,
495 struct expression **right,
496 int lclass, int rclass,
497 struct symbol *ltype,
498 struct symbol *rtype)
500 struct symbol *ctype;
502 warn_for_different_enum_types((*right)->pos, (*left)->ctype, (*right)->ctype);
504 if ((lclass | rclass) & TYPE_RESTRICT)
505 goto Restr;
507 Normal:
508 if (!(lclass & TYPE_FLOAT)) {
509 if (!(rclass & TYPE_FLOAT))
510 ctype = bigger_int_type(ltype, rtype);
511 else
512 ctype = rtype;
513 } else if (rclass & TYPE_FLOAT) {
514 unsigned long lmod = ltype->ctype.modifiers;
515 unsigned long rmod = rtype->ctype.modifiers;
516 if (rmod & ~lmod & (MOD_LONG | MOD_LONGLONG))
517 ctype = rtype;
518 else
519 ctype = ltype;
520 } else
521 ctype = ltype;
523 Convert:
524 *left = cast_to(*left, ctype);
525 *right = cast_to(*right, ctype);
526 return ctype;
528 Restr:
529 ctype = restricted_binop_type(op, *left, *right,
530 lclass, rclass, ltype, rtype);
531 if (ctype)
532 goto Convert;
534 if (lclass & TYPE_RESTRICT) {
535 warning((*left)->pos, "restricted degrades to integer");
536 ltype = ltype->ctype.base_type;
537 if (is_restricted_type(ltype)) /* was fouled */
538 ltype = ltype->ctype.base_type;
540 if (rclass & TYPE_RESTRICT) {
541 warning((*right)->pos, "restricted degrades to integer");
542 rtype = rtype->ctype.base_type;
543 if (is_restricted_type(rtype)) /* was fouled */
544 rtype = rtype->ctype.base_type;
546 goto Normal;
549 static struct symbol *evaluate_arith(struct expression *expr, int float_ok)
551 struct symbol *ltype, *rtype;
552 int lclass = classify_type(expr->left->ctype, &ltype);
553 int rclass = classify_type(expr->right->ctype, &rtype);
554 struct symbol *ctype;
556 if (!(lclass & rclass & TYPE_NUM))
557 goto Bad;
559 if (!float_ok && (lclass | rclass) & TYPE_FLOAT)
560 goto Bad;
562 ctype = usual_conversions(expr->op, &expr->left, &expr->right,
563 lclass, rclass, ltype, rtype);
564 expr->ctype = ctype;
565 return ctype;
567 Bad:
568 return bad_expr_type(expr);
571 static inline int lvalue_expression(struct expression *expr)
573 return expr->type == EXPR_PREOP && expr->op == '*';
576 static int ptr_object_size(struct symbol *ptr_type)
578 if (ptr_type->type == SYM_NODE)
579 ptr_type = ptr_type->ctype.base_type;
580 if (ptr_type->type == SYM_PTR)
581 ptr_type = get_base_type(ptr_type);
582 return ptr_type->bit_size;
585 static inline int want_int(struct expression **expr, struct symbol **ctype)
587 int class = classify_type((*expr)->ctype, ctype);
589 if (!(class & TYPE_NUM))
590 return 0;
591 if (!(class & TYPE_RESTRICT))
592 return 1;
593 warning((*expr)->pos, "restricted degrades to integer");
594 if (class & TYPE_FOULED) /* unfoul it first */
595 (*ctype) = (*ctype)->ctype.base_type;
596 (*ctype) = (*ctype)->ctype.base_type; /* get to arithmetic type */
597 *expr = cast_to(*expr, *ctype);
598 return 1;
601 static struct symbol *evaluate_ptr_add(struct expression *expr, struct symbol *ctype, struct expression **ip)
603 struct expression *i = *ip;
604 struct symbol *ptr_type = ctype, *itype;
605 int bit_size;
607 if (ptr_type->type == SYM_NODE)
608 ptr_type = ptr_type->ctype.base_type;
610 if (!want_int(&i, &itype))
611 return bad_expr_type(expr);
613 examine_symbol_type(ctype);
615 if (!ctype->ctype.base_type) {
616 expression_error(expr, "missing type information");
617 return NULL;
620 /* Get the size of whatever the pointer points to */
621 bit_size = ptr_object_size(ctype);
623 if (bit_size > bits_in_char) {
624 int multiply = bit_size >> 3;
625 struct expression *val = alloc_expression(expr->pos, EXPR_VALUE);
627 if (i->type == EXPR_VALUE) {
628 val->value = i->value * multiply;
629 val->ctype = size_t_ctype;
630 *ip = val;
631 } else {
632 struct expression *mul = alloc_expression(expr->pos, EXPR_BINOP);
634 val->ctype = size_t_ctype;
635 val->value = bit_size >> 3;
637 mul->op = '*';
638 mul->ctype = size_t_ctype;
639 mul->left = i;
640 mul->right = val;
642 *ip = mul;
646 expr->ctype = ctype;
647 return ctype;
650 static struct symbol *evaluate_add(struct expression *expr)
652 struct expression *left = expr->left, *right = expr->right;
653 struct symbol *ltype = left->ctype, *rtype = right->ctype;
655 if (is_ptr_type(ltype))
656 return evaluate_ptr_add(expr, degenerate(left), &expr->right);
658 if (is_ptr_type(rtype))
659 return evaluate_ptr_add(expr, degenerate(right), &expr->left);
661 return evaluate_arith(expr, 1);
664 const char * type_difference(struct symbol *target, struct symbol *source,
665 unsigned long target_mod_ignore, unsigned long source_mod_ignore)
667 for (;;) {
668 unsigned long mod1, mod2, diff;
669 unsigned long as1, as2;
670 int type1, type2;
671 struct symbol *base1, *base2;
673 if (target == source)
674 break;
675 if (!target || !source)
676 return "different types";
678 * Peel of per-node information.
679 * FIXME! Check alignment and context too here!
681 mod1 = target->ctype.modifiers;
682 as1 = target->ctype.as;
683 mod2 = source->ctype.modifiers;
684 as2 = source->ctype.as;
685 if (target->type == SYM_NODE) {
686 target = target->ctype.base_type;
687 if (!target)
688 return "bad types";
689 if (target->type == SYM_PTR) {
690 mod1 = 0;
691 as1 = 0;
693 mod1 |= target->ctype.modifiers;
694 as1 |= target->ctype.as;
696 if (source->type == SYM_NODE) {
697 source = source->ctype.base_type;
698 if (!source)
699 return "bad types";
700 if (source->type == SYM_PTR) {
701 mod2 = 0;
702 as2 = 0;
704 mod2 |= source->ctype.modifiers;
705 as2 |= source->ctype.as;
707 if (target->type == SYM_ENUM) {
708 target = target->ctype.base_type;
709 if (!target)
710 return "bad types";
712 if (source->type == SYM_ENUM) {
713 source = source->ctype.base_type;
714 if (!source)
715 return "bad types";
718 if (target == source)
719 break;
720 if (!target || !source)
721 return "different types";
723 type1 = target->type;
724 base1 = target->ctype.base_type;
726 type2 = source->type;
727 base2 = source->ctype.base_type;
730 * Pointers to functions compare as the function itself
732 if (type1 == SYM_PTR && base1) {
733 base1 = examine_symbol_type(base1);
734 switch (base1->type) {
735 case SYM_FN:
736 type1 = SYM_FN;
737 target = base1;
738 base1 = base1->ctype.base_type;
739 default:
740 /* nothing */;
743 if (type2 == SYM_PTR && base2) {
744 base2 = examine_symbol_type(base2);
745 switch (base2->type) {
746 case SYM_FN:
747 type2 = SYM_FN;
748 source = base2;
749 base2 = base2->ctype.base_type;
750 default:
751 /* nothing */;
755 /* Arrays degenerate to pointers for type comparisons */
756 type1 = (type1 == SYM_ARRAY) ? SYM_PTR : type1;
757 type2 = (type2 == SYM_ARRAY) ? SYM_PTR : type2;
759 if (type1 != type2 || type1 == SYM_RESTRICT)
760 return "different base types";
762 /* Must be same address space to be comparable */
763 if (Waddress_space && as1 != as2)
764 return "different address spaces";
766 /* Ignore differences in storage types or addressability */
767 diff = (mod1 ^ mod2) & ~MOD_IGNORE;
768 diff &= (mod1 & ~target_mod_ignore) | (mod2 & ~source_mod_ignore);
769 if (diff) {
770 if (diff & MOD_SIZE)
771 return "different type sizes";
772 if (diff & ~MOD_SIGNEDNESS)
773 return "different modifiers";
775 /* Differs in signedness only.. */
776 if (Wtypesign) {
778 * Warn if both are explicitly signed ("unsigned" is obviously
779 * always explicit, and since we know one of them has to be
780 * unsigned, we check if the signed one was explicit).
782 if ((mod1 | mod2) & MOD_EXPLICITLY_SIGNED)
783 return "different explicit signedness";
786 * "char" matches both "unsigned char" and "signed char",
787 * so if the explicit test didn't trigger, then we should
788 * not warn about a char.
790 if (!(mod1 & MOD_CHAR))
791 return "different signedness";
795 if (type1 == SYM_FN) {
796 int i;
797 struct symbol *arg1, *arg2;
798 if (base1->variadic != base2->variadic)
799 return "incompatible variadic arguments";
800 PREPARE_PTR_LIST(target->arguments, arg1);
801 PREPARE_PTR_LIST(source->arguments, arg2);
802 i = 1;
803 for (;;) {
804 const char *diffstr;
805 diffstr = type_difference(arg1, arg2, 0, 0);
806 if (diffstr) {
807 static char argdiff[80];
808 sprintf(argdiff, "incompatible argument %d (%s)", i, diffstr);
809 return argdiff;
811 if (!arg1)
812 break;
813 NEXT_PTR_LIST(arg1);
814 NEXT_PTR_LIST(arg2);
815 i++;
817 FINISH_PTR_LIST(arg2);
818 FINISH_PTR_LIST(arg1);
821 target = base1;
822 source = base2;
824 return NULL;
827 static int is_null_ptr(struct expression *expr)
829 if (expr->type != EXPR_VALUE || expr->value)
830 return 0;
831 if (Wnon_pointer_null && !is_ptr_type(expr->ctype))
832 warning(expr->pos, "Using plain integer as NULL pointer");
833 return 1;
836 static struct symbol *common_ptr_type(struct expression *l, struct expression *r)
838 /* NULL expression? Just return the type of the "other side" */
839 if (is_null_ptr(r))
840 return l->ctype;
841 if (is_null_ptr(l))
842 return r->ctype;
843 return NULL;
847 * Ignore differences in "volatile" and "const"ness when
848 * subtracting pointers
850 #define MOD_IGN (MOD_VOLATILE | MOD_CONST)
852 static struct symbol *evaluate_ptr_sub(struct expression *expr, struct expression *l, struct expression **rp)
854 const char *typediff;
855 struct symbol *ctype;
856 struct symbol *ltype, *rtype;
857 struct expression *r = *rp;
859 ltype = degenerate(l);
860 rtype = degenerate(r);
863 * If it is an integer subtract: the ptr add case will do the
864 * right thing.
866 if (!is_ptr_type(rtype))
867 return evaluate_ptr_add(expr, degenerate(l), rp);
869 ctype = ltype;
870 typediff = type_difference(ltype, rtype, ~MOD_SIZE, ~MOD_SIZE);
871 if (typediff) {
872 ctype = common_ptr_type(l, r);
873 if (!ctype) {
874 expression_error(expr, "subtraction of different types can't work (%s)", typediff);
875 return NULL;
878 examine_symbol_type(ctype);
880 /* Figure out the base type we point to */
881 if (ctype->type == SYM_NODE)
882 ctype = ctype->ctype.base_type;
883 if (ctype->type != SYM_PTR && ctype->type != SYM_ARRAY) {
884 expression_error(expr, "subtraction of functions? Share your drugs");
885 return NULL;
887 ctype = get_base_type(ctype);
889 expr->ctype = ssize_t_ctype;
890 if (ctype->bit_size > bits_in_char) {
891 struct expression *sub = alloc_expression(expr->pos, EXPR_BINOP);
892 struct expression *div = expr;
893 struct expression *val = alloc_expression(expr->pos, EXPR_VALUE);
894 unsigned long value = ctype->bit_size >> 3;
896 val->ctype = size_t_ctype;
897 val->value = value;
899 if (value & (value-1)) {
900 if (Wptr_subtraction_blows)
901 warning(expr->pos, "potentially expensive pointer subtraction");
904 sub->op = '-';
905 sub->ctype = ssize_t_ctype;
906 sub->left = l;
907 sub->right = r;
909 div->op = '/';
910 div->left = sub;
911 div->right = val;
914 return ssize_t_ctype;
917 static struct symbol *evaluate_sub(struct expression *expr)
919 struct expression *left = expr->left;
920 struct symbol *ltype = left->ctype;
922 if (is_ptr_type(ltype))
923 return evaluate_ptr_sub(expr, left, &expr->right);
925 return evaluate_arith(expr, 1);
928 #define is_safe_type(type) ((type)->ctype.modifiers & MOD_SAFE)
930 static struct symbol *evaluate_conditional(struct expression *expr, int iterator)
932 struct symbol *ctype;
934 if (!expr)
935 return NULL;
937 if (!iterator && expr->type == EXPR_ASSIGNMENT && expr->op == '=')
938 warning(expr->pos, "assignment expression in conditional");
940 ctype = evaluate_expression(expr);
941 if (ctype) {
942 if (is_safe_type(ctype))
943 warning(expr->pos, "testing a 'safe expression'");
946 return ctype;
949 static struct symbol *evaluate_logical(struct expression *expr)
951 if (!evaluate_conditional(expr->left, 0))
952 return NULL;
953 if (!evaluate_conditional(expr->right, 0))
954 return NULL;
956 expr->ctype = &bool_ctype;
957 return &bool_ctype;
960 static struct symbol *evaluate_shift(struct expression *expr)
962 struct symbol *ltype, *rtype;
964 if (want_int(&expr->left, &ltype) && want_int(&expr->right, &rtype)) {
965 struct symbol *ctype = integer_promotion(ltype);
966 expr->left = cast_to(expr->left, ctype);
967 expr->ctype = ctype;
968 ctype = integer_promotion(rtype);
969 expr->right = cast_to(expr->right, ctype);
970 return expr->ctype;
972 return bad_expr_type(expr);
975 static struct symbol *evaluate_binop(struct expression *expr)
977 switch (expr->op) {
978 // addition can take ptr+int, fp and int
979 case '+':
980 return evaluate_add(expr);
982 // subtraction can take ptr-ptr, fp and int
983 case '-':
984 return evaluate_sub(expr);
986 // Arithmetic operations can take fp and int
987 case '*': case '/':
988 return evaluate_arith(expr, 1);
990 // shifts do integer promotions, but that's it.
991 case SPECIAL_LEFTSHIFT: case SPECIAL_RIGHTSHIFT:
992 return evaluate_shift(expr);
994 // The rest are integer operations
995 // '%', '&', '^', '|'
996 default:
997 return evaluate_arith(expr, 0);
1001 static struct symbol *evaluate_comma(struct expression *expr)
1003 expr->ctype = expr->right->ctype;
1004 return expr->ctype;
1007 static int modify_for_unsigned(int op)
1009 if (op == '<')
1010 op = SPECIAL_UNSIGNED_LT;
1011 else if (op == '>')
1012 op = SPECIAL_UNSIGNED_GT;
1013 else if (op == SPECIAL_LTE)
1014 op = SPECIAL_UNSIGNED_LTE;
1015 else if (op == SPECIAL_GTE)
1016 op = SPECIAL_UNSIGNED_GTE;
1017 return op;
1020 static struct symbol *evaluate_compare(struct expression *expr)
1022 struct expression *left = expr->left, *right = expr->right;
1023 struct symbol *ltype = left->ctype, *rtype = right->ctype;
1024 struct symbol *ctype;
1026 /* Type types? */
1027 if (is_type_type(ltype) && is_type_type(rtype))
1028 goto OK;
1030 if (is_safe_type(ltype) || is_safe_type(rtype))
1031 warning(expr->pos, "testing a 'safe expression'");
1033 /* Pointer types? */
1034 if (is_ptr_type(ltype) || is_ptr_type(rtype)) {
1035 // FIXME! Check the types for compatibility
1036 expr->op = modify_for_unsigned(expr->op);
1037 goto OK;
1040 ctype = evaluate_arith(expr, 1);
1041 if (ctype) {
1042 if (ctype->ctype.modifiers & MOD_UNSIGNED)
1043 expr->op = modify_for_unsigned(expr->op);
1046 expr->ctype = &bool_ctype;
1047 return &bool_ctype;
1051 * FIXME!! This should do casts, array degeneration etc..
1053 static struct symbol *compatible_ptr_type(struct expression *left, struct expression *right)
1055 struct symbol *ltype = left->ctype, *rtype = right->ctype;
1057 if (ltype->type == SYM_NODE)
1058 ltype = ltype->ctype.base_type;
1060 if (rtype->type == SYM_NODE)
1061 rtype = rtype->ctype.base_type;
1063 if (ltype->type == SYM_PTR) {
1064 if (is_null_ptr(right) || rtype->ctype.base_type == &void_ctype)
1065 return ltype;
1068 if (rtype->type == SYM_PTR) {
1069 if (is_null_ptr(left) || ltype->ctype.base_type == &void_ctype)
1070 return rtype;
1072 return NULL;
1076 * NOTE! The degenerate case of "x ? : y", where we don't
1077 * have a true case, this will possibly promote "x" to the
1078 * same type as "y", and thus _change_ the conditional
1079 * test in the expression. But since promotion is "safe"
1080 * for testing, that's OK.
1082 static struct symbol *evaluate_conditional_expression(struct expression *expr)
1084 struct expression **true;
1085 struct symbol *ctype, *ltype, *rtype;
1086 int lclass, rclass;
1087 const char * typediff;
1089 if (!evaluate_conditional(expr->conditional, 0))
1090 return NULL;
1091 if (!evaluate_expression(expr->cond_false))
1092 return NULL;
1094 ctype = degenerate(expr->conditional);
1095 rtype = degenerate(expr->cond_false);
1097 true = &expr->conditional;
1098 ltype = ctype;
1099 if (expr->cond_true) {
1100 if (!evaluate_expression(expr->cond_true))
1101 return NULL;
1102 ltype = degenerate(expr->cond_true);
1103 true = &expr->cond_true;
1106 lclass = classify_type(ltype, &ltype);
1107 rclass = classify_type(rtype, &rtype);
1108 if (lclass & rclass & TYPE_NUM) {
1109 ctype = usual_conversions('?', true, &expr->cond_false,
1110 lclass, rclass, ltype, rtype);
1111 goto out;
1113 ctype = compatible_ptr_type(*true, expr->cond_false);
1114 if (ctype)
1115 goto out;
1116 ctype = ltype;
1117 typediff = type_difference(ltype, rtype, MOD_IGN, MOD_IGN);
1118 if (!typediff)
1119 goto out;
1120 expression_error(expr, "incompatible types in conditional expression (%s)", typediff);
1121 return NULL;
1123 out:
1124 expr->ctype = ctype;
1125 return ctype;
1128 /* FP assignments can not do modulo or bit operations */
1129 static int compatible_float_op(int op)
1131 return op == '=' ||
1132 op == SPECIAL_ADD_ASSIGN ||
1133 op == SPECIAL_SUB_ASSIGN ||
1134 op == SPECIAL_MUL_ASSIGN ||
1135 op == SPECIAL_DIV_ASSIGN;
1138 static int compatible_assignment_types(struct expression *expr, struct symbol *target,
1139 struct expression **rp, struct symbol *source, const char *where, int op)
1141 const char *typediff;
1142 struct symbol *t, *s;
1143 int target_as;
1144 int tclass = classify_type(target, &t);
1145 int sclass = classify_type(source, &s);
1147 if (tclass & sclass & TYPE_NUM) {
1148 if (tclass & TYPE_FLOAT && !compatible_float_op(op)) {
1149 expression_error(expr, "invalid assignment");
1150 return 0;
1152 if (tclass & TYPE_RESTRICT) {
1153 if (!restricted_binop(op, target)) {
1154 expression_error(expr, "bad restricted assignment");
1155 return 0;
1157 /* allowed assignments unfoul */
1158 if (sclass & TYPE_FOULED && s->ctype.base_type == t)
1159 goto Cast;
1160 if (!restricted_value(*rp, target))
1161 return 1;
1162 } else if (!(sclass & TYPE_RESTRICT))
1163 goto Cast;
1164 } else if (tclass & TYPE_PTR) {
1165 if (op == SPECIAL_ADD_ASSIGN || op == SPECIAL_SUB_ASSIGN) {
1166 evaluate_ptr_add(expr, target, rp);
1167 return 1;
1169 if (op != '=') {
1170 expression_error(expr, "invalid pointer assignment");
1171 return 0;
1173 } else if (op != '=') {
1174 expression_error(expr, "invalid assignment");
1175 return 0;
1178 /* It's OK if the target is more volatile or const than the source */
1179 typediff = type_difference(target, source, MOD_VOLATILE | MOD_CONST, 0);
1180 if (!typediff)
1181 return 1;
1183 /* Pointer destination? */
1184 if (tclass & TYPE_PTR) {
1185 struct expression *right = *rp;
1186 int source_as;
1188 // NULL pointer is always OK
1189 if (is_null_ptr(right))
1190 goto Cast;
1192 /* "void *" matches anything as long as the address space is OK */
1193 target_as = t->ctype.as | target->ctype.as;
1194 source_as = s->ctype.as | source->ctype.as;
1195 if (source_as == target_as && (s->type == SYM_PTR || s->type == SYM_ARRAY)) {
1196 s = get_base_type(s);
1197 t = get_base_type(t);
1198 if (s == &void_ctype || t == &void_ctype)
1199 goto Cast;
1203 warning(expr->pos, "incorrect type in %s (%s)", where, typediff);
1204 info(expr->pos, " expected %s", show_typename(target));
1205 info(expr->pos, " got %s", show_typename(source));
1206 *rp = cast_to(*rp, target);
1207 return 0;
1208 Cast:
1209 *rp = cast_to(*rp, target);
1210 return 1;
1213 static void mark_assigned(struct expression *expr)
1215 struct symbol *sym;
1217 if (!expr)
1218 return;
1219 switch (expr->type) {
1220 case EXPR_SYMBOL:
1221 sym = expr->symbol;
1222 if (!sym)
1223 return;
1224 if (sym->type != SYM_NODE)
1225 return;
1226 sym->ctype.modifiers |= MOD_ASSIGNED;
1227 return;
1229 case EXPR_BINOP:
1230 mark_assigned(expr->left);
1231 mark_assigned(expr->right);
1232 return;
1233 case EXPR_CAST:
1234 mark_assigned(expr->cast_expression);
1235 return;
1236 case EXPR_SLICE:
1237 mark_assigned(expr->base);
1238 return;
1239 default:
1240 /* Hmm? */
1241 return;
1245 static void evaluate_assign_to(struct expression *left, struct symbol *type)
1247 if (type->ctype.modifiers & MOD_CONST)
1248 expression_error(left, "assignment to const expression");
1250 /* We know left is an lvalue, so it's a "preop-*" */
1251 mark_assigned(left->unop);
1254 static struct symbol *evaluate_assignment(struct expression *expr)
1256 struct expression *left = expr->left, *right = expr->right;
1257 struct expression *where = expr;
1258 struct symbol *ltype, *rtype;
1260 if (!lvalue_expression(left)) {
1261 expression_error(expr, "not an lvalue");
1262 return NULL;
1265 ltype = left->ctype;
1267 rtype = degenerate(right);
1269 if (!compatible_assignment_types(where, ltype, &where->right, rtype, "assignment", expr->op))
1270 return NULL;
1272 evaluate_assign_to(left, ltype);
1274 expr->ctype = ltype;
1275 return ltype;
1278 static void examine_fn_arguments(struct symbol *fn)
1280 struct symbol *s;
1282 FOR_EACH_PTR(fn->arguments, s) {
1283 struct symbol *arg = evaluate_symbol(s);
1284 /* Array/function arguments silently degenerate into pointers */
1285 if (arg) {
1286 struct symbol *ptr;
1287 switch(arg->type) {
1288 case SYM_ARRAY:
1289 case SYM_FN:
1290 ptr = alloc_symbol(s->pos, SYM_PTR);
1291 if (arg->type == SYM_ARRAY)
1292 ptr->ctype = arg->ctype;
1293 else
1294 ptr->ctype.base_type = arg;
1295 ptr->ctype.as |= s->ctype.as;
1296 ptr->ctype.modifiers |= s->ctype.modifiers & MOD_PTRINHERIT;
1298 s->ctype.base_type = ptr;
1299 s->ctype.as = 0;
1300 s->ctype.modifiers &= ~MOD_PTRINHERIT;
1301 s->bit_size = 0;
1302 s->examined = 0;
1303 examine_symbol_type(s);
1304 break;
1305 default:
1306 /* nothing */
1307 break;
1310 } END_FOR_EACH_PTR(s);
1313 static struct symbol *convert_to_as_mod(struct symbol *sym, int as, int mod)
1315 /* Take the modifiers of the pointer, and apply them to the member */
1316 mod |= sym->ctype.modifiers;
1317 if (sym->ctype.as != as || sym->ctype.modifiers != mod) {
1318 struct symbol *newsym = alloc_symbol(sym->pos, SYM_NODE);
1319 *newsym = *sym;
1320 newsym->ctype.as = as;
1321 newsym->ctype.modifiers = mod;
1322 sym = newsym;
1324 return sym;
1327 static struct symbol *create_pointer(struct expression *expr, struct symbol *sym, int degenerate)
1329 struct symbol *node = alloc_symbol(expr->pos, SYM_NODE);
1330 struct symbol *ptr = alloc_symbol(expr->pos, SYM_PTR);
1332 node->ctype.base_type = ptr;
1333 ptr->bit_size = bits_in_pointer;
1334 ptr->ctype.alignment = pointer_alignment;
1336 node->bit_size = bits_in_pointer;
1337 node->ctype.alignment = pointer_alignment;
1339 access_symbol(sym);
1340 if (sym->ctype.modifiers & MOD_REGISTER) {
1341 warning(expr->pos, "taking address of 'register' variable '%s'", show_ident(sym->ident));
1342 sym->ctype.modifiers &= ~MOD_REGISTER;
1344 if (sym->type == SYM_NODE) {
1345 ptr->ctype.as |= sym->ctype.as;
1346 ptr->ctype.modifiers |= sym->ctype.modifiers & MOD_PTRINHERIT;
1347 sym = sym->ctype.base_type;
1349 if (degenerate && sym->type == SYM_ARRAY) {
1350 ptr->ctype.as |= sym->ctype.as;
1351 ptr->ctype.modifiers |= sym->ctype.modifiers & MOD_PTRINHERIT;
1352 sym = sym->ctype.base_type;
1354 ptr->ctype.base_type = sym;
1356 return node;
1359 /* Arrays degenerate into pointers on pointer arithmetic */
1360 static struct symbol *degenerate(struct expression *expr)
1362 struct symbol *ctype, *base;
1364 if (!expr)
1365 return NULL;
1366 ctype = expr->ctype;
1367 if (!ctype)
1368 return NULL;
1369 base = examine_symbol_type(ctype);
1370 if (ctype->type == SYM_NODE)
1371 base = ctype->ctype.base_type;
1373 * Arrays degenerate into pointers to the entries, while
1374 * functions degenerate into pointers to themselves.
1375 * If array was part of non-lvalue compound, we create a copy
1376 * of that compound first and then act as if we were dealing with
1377 * the corresponding field in there.
1379 switch (base->type) {
1380 case SYM_ARRAY:
1381 if (expr->type == EXPR_SLICE) {
1382 struct symbol *a = alloc_symbol(expr->pos, SYM_NODE);
1383 struct expression *e0, *e1, *e2, *e3, *e4;
1385 a->ctype.base_type = expr->base->ctype;
1386 a->bit_size = expr->base->ctype->bit_size;
1387 a->array_size = expr->base->ctype->array_size;
1389 e0 = alloc_expression(expr->pos, EXPR_SYMBOL);
1390 e0->symbol = a;
1391 e0->ctype = &lazy_ptr_ctype;
1393 e1 = alloc_expression(expr->pos, EXPR_PREOP);
1394 e1->unop = e0;
1395 e1->op = '*';
1396 e1->ctype = expr->base->ctype; /* XXX */
1398 e2 = alloc_expression(expr->pos, EXPR_ASSIGNMENT);
1399 e2->left = e1;
1400 e2->right = expr->base;
1401 e2->op = '=';
1402 e2->ctype = expr->base->ctype;
1404 if (expr->r_bitpos) {
1405 e3 = alloc_expression(expr->pos, EXPR_BINOP);
1406 e3->op = '+';
1407 e3->left = e0;
1408 e3->right = alloc_const_expression(expr->pos,
1409 expr->r_bitpos >> 3);
1410 e3->ctype = &lazy_ptr_ctype;
1411 } else {
1412 e3 = e0;
1415 e4 = alloc_expression(expr->pos, EXPR_COMMA);
1416 e4->left = e2;
1417 e4->right = e3;
1418 e4->ctype = &lazy_ptr_ctype;
1420 expr->unop = e4;
1421 expr->type = EXPR_PREOP;
1422 expr->op = '*';
1424 case SYM_FN:
1425 if (expr->op != '*' || expr->type != EXPR_PREOP) {
1426 expression_error(expr, "strange non-value function or array");
1427 return &bad_ctype;
1429 *expr = *expr->unop;
1430 ctype = create_pointer(expr, ctype, 1);
1431 expr->ctype = ctype;
1432 default:
1433 /* nothing */;
1435 return ctype;
1438 static struct symbol *evaluate_addressof(struct expression *expr)
1440 struct expression *op = expr->unop;
1441 struct symbol *ctype;
1443 if (op->op != '*' || op->type != EXPR_PREOP) {
1444 expression_error(expr, "not addressable");
1445 return NULL;
1447 ctype = op->ctype;
1448 *expr = *op->unop;
1450 if (expr->type == EXPR_SYMBOL) {
1451 struct symbol *sym = expr->symbol;
1452 sym->ctype.modifiers |= MOD_ADDRESSABLE;
1456 * symbol expression evaluation is lazy about the type
1457 * of the sub-expression, so we may have to generate
1458 * the type here if so..
1460 if (expr->ctype == &lazy_ptr_ctype) {
1461 ctype = create_pointer(expr, ctype, 0);
1462 expr->ctype = ctype;
1464 return expr->ctype;
1468 static struct symbol *evaluate_dereference(struct expression *expr)
1470 struct expression *op = expr->unop;
1471 struct symbol *ctype = op->ctype, *node, *target;
1473 /* Simplify: *&(expr) => (expr) */
1474 if (op->type == EXPR_PREOP && op->op == '&') {
1475 *expr = *op->unop;
1476 return expr->ctype;
1479 /* Dereferencing a node drops all the node information. */
1480 if (ctype->type == SYM_NODE)
1481 ctype = ctype->ctype.base_type;
1483 node = alloc_symbol(expr->pos, SYM_NODE);
1484 target = ctype->ctype.base_type;
1486 switch (ctype->type) {
1487 default:
1488 expression_error(expr, "cannot dereference this type");
1489 return NULL;
1490 case SYM_PTR:
1491 node->ctype.modifiers = target->ctype.modifiers & MOD_SPECIFIER;
1492 merge_type(node, ctype);
1493 break;
1495 case SYM_ARRAY:
1496 if (!lvalue_expression(op)) {
1497 expression_error(op, "non-lvalue array??");
1498 return NULL;
1501 /* Do the implied "addressof" on the array */
1502 *op = *op->unop;
1505 * When an array is dereferenced, we need to pick
1506 * up the attributes of the original node too..
1508 merge_type(node, op->ctype);
1509 merge_type(node, ctype);
1510 break;
1513 node->bit_size = target->bit_size;
1514 node->array_size = target->array_size;
1516 expr->ctype = node;
1517 return node;
1521 * Unary post-ops: x++ and x--
1523 static struct symbol *evaluate_postop(struct expression *expr)
1525 struct expression *op = expr->unop;
1526 struct symbol *ctype = op->ctype;
1528 if (!lvalue_expression(expr->unop)) {
1529 expression_error(expr, "need lvalue expression for ++/--");
1530 return NULL;
1532 if (is_restricted_type(ctype) && restricted_unop(expr->op, &ctype)) {
1533 expression_error(expr, "bad operation on restricted");
1534 return NULL;
1535 } else if (is_fouled_type(ctype) && restricted_unop(expr->op, &ctype)) {
1536 expression_error(expr, "bad operation on restricted");
1537 return NULL;
1540 evaluate_assign_to(op, ctype);
1542 expr->ctype = ctype;
1543 expr->op_value = 1;
1544 if (is_ptr_type(ctype))
1545 expr->op_value = ptr_object_size(ctype) >> 3;
1547 return ctype;
1550 static struct symbol *evaluate_sign(struct expression *expr)
1552 struct symbol *ctype = expr->unop->ctype;
1553 if (is_int_type(ctype)) {
1554 struct symbol *rtype = rtype = integer_promotion(ctype);
1555 expr->unop = cast_to(expr->unop, rtype);
1556 ctype = rtype;
1557 } else if (is_float_type(ctype) && expr->op != '~') {
1558 /* no conversions needed */
1559 } else if (is_restricted_type(ctype) && !restricted_unop(expr->op, &ctype)) {
1560 /* no conversions needed */
1561 } else if (is_fouled_type(ctype) && !restricted_unop(expr->op, &ctype)) {
1562 /* no conversions needed */
1563 } else {
1564 return bad_expr_type(expr);
1566 if (expr->op == '+')
1567 *expr = *expr->unop;
1568 expr->ctype = ctype;
1569 return ctype;
1572 static struct symbol *evaluate_preop(struct expression *expr)
1574 struct symbol *ctype = expr->unop->ctype;
1576 switch (expr->op) {
1577 case '(':
1578 *expr = *expr->unop;
1579 return ctype;
1581 case '+':
1582 case '-':
1583 case '~':
1584 return evaluate_sign(expr);
1586 case '*':
1587 return evaluate_dereference(expr);
1589 case '&':
1590 return evaluate_addressof(expr);
1592 case SPECIAL_INCREMENT:
1593 case SPECIAL_DECREMENT:
1595 * From a type evaluation standpoint the preops are
1596 * the same as the postops
1598 return evaluate_postop(expr);
1600 case '!':
1601 if (is_safe_type(ctype))
1602 warning(expr->pos, "testing a 'safe expression'");
1603 if (is_float_type(ctype)) {
1604 struct expression *arg = expr->unop;
1605 expr->type = EXPR_BINOP;
1606 expr->op = SPECIAL_EQUAL;
1607 expr->left = arg;
1608 expr->right = alloc_expression(expr->pos, EXPR_FVALUE);
1609 expr->right->ctype = ctype;
1610 expr->right->fvalue = 0;
1611 } else if (is_fouled_type(ctype)) {
1612 warning(expr->pos, "restricted degrades to integer");
1614 ctype = &bool_ctype;
1615 break;
1617 default:
1618 break;
1620 expr->ctype = ctype;
1621 return &bool_ctype;
1624 static struct symbol *find_identifier(struct ident *ident, struct symbol_list *_list, int *offset)
1626 struct ptr_list *head = (struct ptr_list *)_list;
1627 struct ptr_list *list = head;
1629 if (!head)
1630 return NULL;
1631 do {
1632 int i;
1633 for (i = 0; i < list->nr; i++) {
1634 struct symbol *sym = (struct symbol *) list->list[i];
1635 if (sym->ident) {
1636 if (sym->ident != ident)
1637 continue;
1638 *offset = sym->offset;
1639 return sym;
1640 } else {
1641 struct symbol *ctype = sym->ctype.base_type;
1642 struct symbol *sub;
1643 if (!ctype)
1644 continue;
1645 if (ctype->type != SYM_UNION && ctype->type != SYM_STRUCT)
1646 continue;
1647 sub = find_identifier(ident, ctype->symbol_list, offset);
1648 if (!sub)
1649 continue;
1650 *offset += sym->offset;
1651 return sub;
1654 } while ((list = list->next) != head);
1655 return NULL;
1658 static struct expression *evaluate_offset(struct expression *expr, unsigned long offset)
1660 struct expression *add;
1663 * Create a new add-expression
1665 * NOTE! Even if we just add zero, we need a new node
1666 * for the member pointer, since it has a different
1667 * type than the original pointer. We could make that
1668 * be just a cast, but the fact is, a node is a node,
1669 * so we might as well just do the "add zero" here.
1671 add = alloc_expression(expr->pos, EXPR_BINOP);
1672 add->op = '+';
1673 add->left = expr;
1674 add->right = alloc_expression(expr->pos, EXPR_VALUE);
1675 add->right->ctype = &int_ctype;
1676 add->right->value = offset;
1679 * The ctype of the pointer will be lazily evaluated if
1680 * we ever take the address of this member dereference..
1682 add->ctype = &lazy_ptr_ctype;
1683 return add;
1686 /* structure/union dereference */
1687 static struct symbol *evaluate_member_dereference(struct expression *expr)
1689 int offset;
1690 struct symbol *ctype, *member;
1691 struct expression *deref = expr->deref, *add;
1692 struct ident *ident = expr->member;
1693 unsigned int mod;
1694 int address_space;
1696 if (!evaluate_expression(deref))
1697 return NULL;
1698 if (!ident) {
1699 expression_error(expr, "bad member name");
1700 return NULL;
1703 ctype = deref->ctype;
1704 address_space = ctype->ctype.as;
1705 mod = ctype->ctype.modifiers;
1706 if (ctype->type == SYM_NODE) {
1707 ctype = ctype->ctype.base_type;
1708 address_space |= ctype->ctype.as;
1709 mod |= ctype->ctype.modifiers;
1711 if (!ctype || (ctype->type != SYM_STRUCT && ctype->type != SYM_UNION)) {
1712 expression_error(expr, "expected structure or union");
1713 return NULL;
1715 examine_symbol_type(ctype);
1716 offset = 0;
1717 member = find_identifier(ident, ctype->symbol_list, &offset);
1718 if (!member) {
1719 const char *type = ctype->type == SYM_STRUCT ? "struct" : "union";
1720 const char *name = "<unnamed>";
1721 int namelen = 9;
1722 if (ctype->ident) {
1723 name = ctype->ident->name;
1724 namelen = ctype->ident->len;
1726 if (ctype->symbol_list)
1727 expression_error(expr, "no member '%s' in %s %.*s",
1728 show_ident(ident), type, namelen, name);
1729 else
1730 expression_error(expr, "using member '%s' in "
1731 "incomplete %s %.*s", show_ident(ident),
1732 type, namelen, name);
1733 return NULL;
1737 * The member needs to take on the address space and modifiers of
1738 * the "parent" type.
1740 member = convert_to_as_mod(member, address_space, mod);
1741 ctype = get_base_type(member);
1743 if (!lvalue_expression(deref)) {
1744 if (deref->type != EXPR_SLICE) {
1745 expr->base = deref;
1746 expr->r_bitpos = 0;
1747 } else {
1748 expr->base = deref->base;
1749 expr->r_bitpos = deref->r_bitpos;
1751 expr->r_bitpos += offset << 3;
1752 expr->type = EXPR_SLICE;
1753 expr->r_nrbits = member->bit_size;
1754 expr->r_bitpos += member->bit_offset;
1755 expr->ctype = member;
1756 return member;
1759 deref = deref->unop;
1760 expr->deref = deref;
1762 add = evaluate_offset(deref, offset);
1763 expr->type = EXPR_PREOP;
1764 expr->op = '*';
1765 expr->unop = add;
1767 expr->ctype = member;
1768 return member;
1771 static int is_promoted(struct expression *expr)
1773 while (1) {
1774 switch (expr->type) {
1775 case EXPR_BINOP:
1776 case EXPR_SELECT:
1777 case EXPR_CONDITIONAL:
1778 return 1;
1779 case EXPR_COMMA:
1780 expr = expr->right;
1781 continue;
1782 case EXPR_PREOP:
1783 switch (expr->op) {
1784 case '(':
1785 expr = expr->unop;
1786 continue;
1787 case '+':
1788 case '-':
1789 case '~':
1790 return 1;
1791 default:
1792 return 0;
1794 default:
1795 return 0;
1801 static struct symbol *evaluate_cast(struct expression *);
1803 static struct symbol *evaluate_type_information(struct expression *expr)
1805 struct symbol *sym = expr->cast_type;
1806 if (!sym) {
1807 sym = evaluate_expression(expr->cast_expression);
1808 if (!sym)
1809 return NULL;
1811 * Expressions of restricted types will possibly get
1812 * promoted - check that here
1814 if (is_restricted_type(sym)) {
1815 if (sym->bit_size < bits_in_int && is_promoted(expr))
1816 sym = &int_ctype;
1817 } else if (is_fouled_type(sym)) {
1818 sym = &int_ctype;
1821 examine_symbol_type(sym);
1822 if (is_bitfield_type(sym)) {
1823 expression_error(expr, "trying to examine bitfield type");
1824 return NULL;
1826 return sym;
1829 static struct symbol *evaluate_sizeof(struct expression *expr)
1831 struct symbol *type;
1832 int size;
1834 type = evaluate_type_information(expr);
1835 if (!type)
1836 return NULL;
1838 size = type->bit_size;
1839 if ((size < 0) || (size & 7))
1840 expression_error(expr, "cannot size expression");
1841 expr->type = EXPR_VALUE;
1842 expr->value = size >> 3;
1843 expr->ctype = size_t_ctype;
1844 return size_t_ctype;
1847 static struct symbol *evaluate_ptrsizeof(struct expression *expr)
1849 struct symbol *type;
1850 int size;
1852 type = evaluate_type_information(expr);
1853 if (!type)
1854 return NULL;
1856 if (type->type == SYM_NODE)
1857 type = type->ctype.base_type;
1858 if (!type)
1859 return NULL;
1860 switch (type->type) {
1861 case SYM_ARRAY:
1862 break;
1863 case SYM_PTR:
1864 type = get_base_type(type);
1865 if (type)
1866 break;
1867 default:
1868 expression_error(expr, "expected pointer expression");
1869 return NULL;
1871 size = type->bit_size;
1872 if (size & 7)
1873 size = 0;
1874 expr->type = EXPR_VALUE;
1875 expr->value = size >> 3;
1876 expr->ctype = size_t_ctype;
1877 return size_t_ctype;
1880 static struct symbol *evaluate_alignof(struct expression *expr)
1882 struct symbol *type;
1884 type = evaluate_type_information(expr);
1885 if (!type)
1886 return NULL;
1888 expr->type = EXPR_VALUE;
1889 expr->value = type->ctype.alignment;
1890 expr->ctype = size_t_ctype;
1891 return size_t_ctype;
1894 static int evaluate_arguments(struct symbol *f, struct symbol *fn, struct expression_list *head)
1896 struct expression *expr;
1897 struct symbol_list *argument_types = fn->arguments;
1898 struct symbol *argtype;
1899 int i = 1;
1901 PREPARE_PTR_LIST(argument_types, argtype);
1902 FOR_EACH_PTR (head, expr) {
1903 struct expression **p = THIS_ADDRESS(expr);
1904 struct symbol *ctype, *target;
1905 ctype = evaluate_expression(expr);
1907 if (!ctype)
1908 return 0;
1910 ctype = degenerate(expr);
1912 target = argtype;
1913 if (!target && ctype->bit_size < bits_in_int)
1914 target = &int_ctype;
1915 if (target) {
1916 static char where[30];
1917 examine_symbol_type(target);
1918 sprintf(where, "argument %d", i);
1919 compatible_assignment_types(expr, target, p, ctype, where, '=');
1922 i++;
1923 NEXT_PTR_LIST(argtype);
1924 } END_FOR_EACH_PTR(expr);
1925 FINISH_PTR_LIST(argtype);
1926 return 1;
1929 static struct symbol *find_struct_ident(struct symbol *ctype, struct ident *ident)
1931 struct symbol *sym;
1933 FOR_EACH_PTR(ctype->symbol_list, sym) {
1934 if (sym->ident == ident)
1935 return sym;
1936 } END_FOR_EACH_PTR(sym);
1937 return NULL;
1940 static void convert_index(struct expression *e)
1942 struct expression *child = e->idx_expression;
1943 unsigned from = e->idx_from;
1944 unsigned to = e->idx_to + 1;
1945 e->type = EXPR_POS;
1946 e->init_offset = from * (e->ctype->bit_size>>3);
1947 e->init_nr = to - from;
1948 e->init_expr = child;
1951 static void convert_ident(struct expression *e)
1953 struct expression *child = e->ident_expression;
1954 struct symbol *sym = e->field;
1955 e->type = EXPR_POS;
1956 e->init_offset = sym->offset;
1957 e->init_nr = 1;
1958 e->init_expr = child;
1961 static void convert_designators(struct expression *e)
1963 while (e) {
1964 if (e->type == EXPR_INDEX)
1965 convert_index(e);
1966 else if (e->type == EXPR_IDENTIFIER)
1967 convert_ident(e);
1968 else
1969 break;
1970 e = e->init_expr;
1974 static void excess(struct expression *e, const char *s)
1976 warning(e->pos, "excessive elements in %s initializer", s);
1980 * implicit designator for the first element
1982 static struct expression *first_subobject(struct symbol *ctype, int class,
1983 struct expression **v)
1985 struct expression *e = *v, *new;
1987 if (ctype->type == SYM_NODE)
1988 ctype = ctype->ctype.base_type;
1990 if (class & TYPE_PTR) { /* array */
1991 if (!ctype->bit_size)
1992 return NULL;
1993 new = alloc_expression(e->pos, EXPR_INDEX);
1994 new->idx_expression = e;
1995 new->ctype = ctype->ctype.base_type;
1996 } else {
1997 struct symbol *field, *p;
1998 PREPARE_PTR_LIST(ctype->symbol_list, p);
1999 while (p && !p->ident && is_bitfield_type(p))
2000 NEXT_PTR_LIST(p);
2001 field = p;
2002 FINISH_PTR_LIST(p);
2003 if (!field)
2004 return NULL;
2005 new = alloc_expression(e->pos, EXPR_IDENTIFIER);
2006 new->ident_expression = e;
2007 new->field = new->ctype = field;
2009 *v = new;
2010 return new;
2014 * sanity-check explicit designators; return the innermost one or NULL
2015 * in case of error. Assign types.
2017 static struct expression *check_designators(struct expression *e,
2018 struct symbol *ctype)
2020 struct expression *last = NULL;
2021 const char *err;
2022 while (1) {
2023 if (ctype->type == SYM_NODE)
2024 ctype = ctype->ctype.base_type;
2025 if (e->type == EXPR_INDEX) {
2026 struct symbol *type;
2027 if (ctype->type != SYM_ARRAY) {
2028 err = "array index in non-array";
2029 break;
2031 type = ctype->ctype.base_type;
2032 if (ctype->bit_size >= 0 && type->bit_size >= 0) {
2033 unsigned offset = e->idx_to * type->bit_size;
2034 if (offset >= ctype->bit_size) {
2035 err = "index out of bounds in";
2036 break;
2039 e->ctype = ctype = type;
2040 ctype = type;
2041 last = e;
2042 e = e->idx_expression;
2043 } else if (e->type == EXPR_IDENTIFIER) {
2044 if (ctype->type != SYM_STRUCT && ctype->type != SYM_UNION) {
2045 err = "field name not in struct or union";
2046 break;
2048 ctype = find_struct_ident(ctype, e->expr_ident);
2049 if (!ctype) {
2050 err = "unknown field name in";
2051 break;
2053 e->field = e->ctype = ctype;
2054 last = e;
2055 e = e->ident_expression;
2056 } else if (e->type == EXPR_POS) {
2057 err = "internal front-end error: EXPR_POS in";
2058 break;
2059 } else
2060 return last;
2062 expression_error(e, "%s initializer", err);
2063 return NULL;
2067 * choose the next subobject to initialize.
2069 * Get designators for next element, switch old ones to EXPR_POS.
2070 * Return the resulting expression or NULL if we'd run out of subobjects.
2071 * The innermost designator is returned in *v. Designators in old
2072 * are assumed to be already sanity-checked.
2074 static struct expression *next_designators(struct expression *old,
2075 struct symbol *ctype,
2076 struct expression *e, struct expression **v)
2078 struct expression *new = NULL;
2080 if (!old)
2081 return NULL;
2082 if (old->type == EXPR_INDEX) {
2083 struct expression *copy;
2084 unsigned n;
2086 copy = next_designators(old->idx_expression,
2087 old->ctype, e, v);
2088 if (!copy) {
2089 n = old->idx_to + 1;
2090 if (n * old->ctype->bit_size == ctype->bit_size) {
2091 convert_index(old);
2092 return NULL;
2094 copy = e;
2095 *v = new = alloc_expression(e->pos, EXPR_INDEX);
2096 } else {
2097 n = old->idx_to;
2098 new = alloc_expression(e->pos, EXPR_INDEX);
2101 new->idx_from = new->idx_to = n;
2102 new->idx_expression = copy;
2103 new->ctype = old->ctype;
2104 convert_index(old);
2105 } else if (old->type == EXPR_IDENTIFIER) {
2106 struct expression *copy;
2107 struct symbol *field;
2109 copy = next_designators(old->ident_expression,
2110 old->ctype, e, v);
2111 if (!copy) {
2112 field = old->field->next_subobject;
2113 if (!field) {
2114 convert_ident(old);
2115 return NULL;
2117 copy = e;
2118 *v = new = alloc_expression(e->pos, EXPR_IDENTIFIER);
2119 } else {
2120 field = old->field;
2121 new = alloc_expression(e->pos, EXPR_IDENTIFIER);
2124 new->field = field;
2125 new->expr_ident = field->ident;
2126 new->ident_expression = copy;
2127 new->ctype = field;
2128 convert_ident(old);
2130 return new;
2133 static int handle_simple_initializer(struct expression **ep, int nested,
2134 int class, struct symbol *ctype);
2137 * deal with traversing subobjects [6.7.8(17,18,20)]
2139 static void handle_list_initializer(struct expression *expr,
2140 int class, struct symbol *ctype)
2142 struct expression *e, *last = NULL, *top = NULL, *next;
2143 int jumped = 0;
2145 FOR_EACH_PTR(expr->expr_list, e) {
2146 struct expression **v;
2147 struct symbol *type;
2148 int lclass;
2150 if (e->type != EXPR_INDEX && e->type != EXPR_IDENTIFIER) {
2151 if (!top) {
2152 top = e;
2153 last = first_subobject(ctype, class, &top);
2154 } else {
2155 last = next_designators(last, ctype, e, &top);
2157 if (!last) {
2158 excess(e, class & TYPE_PTR ? "array" :
2159 "struct or union");
2160 DELETE_CURRENT_PTR(e);
2161 continue;
2163 if (jumped) {
2164 warning(e->pos, "advancing past deep designator");
2165 jumped = 0;
2167 REPLACE_CURRENT_PTR(e, last);
2168 } else {
2169 next = check_designators(e, ctype);
2170 if (!next) {
2171 DELETE_CURRENT_PTR(e);
2172 continue;
2174 top = next;
2175 /* deeper than one designator? */
2176 jumped = top != e;
2177 convert_designators(last);
2178 last = e;
2181 found:
2182 lclass = classify_type(top->ctype, &type);
2183 if (top->type == EXPR_INDEX)
2184 v = &top->idx_expression;
2185 else
2186 v = &top->ident_expression;
2188 if (handle_simple_initializer(v, 1, lclass, top->ctype))
2189 continue;
2191 if (!(lclass & TYPE_COMPOUND)) {
2192 warning(e->pos, "bogus scalar initializer");
2193 DELETE_CURRENT_PTR(e);
2194 continue;
2197 next = first_subobject(type, lclass, v);
2198 if (next) {
2199 warning(e->pos, "missing braces around initializer");
2200 top = next;
2201 goto found;
2204 DELETE_CURRENT_PTR(e);
2205 excess(e, lclass & TYPE_PTR ? "array" : "struct or union");
2207 } END_FOR_EACH_PTR(e);
2209 convert_designators(last);
2210 expr->ctype = ctype;
2213 static int is_string_literal(struct expression **v)
2215 struct expression *e = *v;
2216 while (e->type == EXPR_PREOP && e->op == '(')
2217 e = e->unop;
2218 if (e->type != EXPR_STRING)
2219 return 0;
2220 if (e != *v && Wparen_string)
2221 warning(e->pos,
2222 "array initialized from parenthesized string constant");
2223 *v = e;
2224 return 1;
2228 * We want a normal expression, possibly in one layer of braces. Warn
2229 * if the latter happens inside a list (it's legal, but likely to be
2230 * an effect of screwup). In case of anything not legal, we are definitely
2231 * having an effect of screwup, so just fail and let the caller warn.
2233 static struct expression *handle_scalar(struct expression *e, int nested)
2235 struct expression *v = NULL, *p;
2236 int count = 0;
2238 /* normal case */
2239 if (e->type != EXPR_INITIALIZER)
2240 return e;
2242 FOR_EACH_PTR(e->expr_list, p) {
2243 if (!v)
2244 v = p;
2245 count++;
2246 } END_FOR_EACH_PTR(p);
2247 if (count != 1)
2248 return NULL;
2249 switch(v->type) {
2250 case EXPR_INITIALIZER:
2251 case EXPR_INDEX:
2252 case EXPR_IDENTIFIER:
2253 return NULL;
2254 default:
2255 break;
2257 if (nested)
2258 warning(e->pos, "braces around scalar initializer");
2259 return v;
2263 * deal with the cases that don't care about subobjects:
2264 * scalar <- assignment expression, possibly in braces [6.7.8(11)]
2265 * character array <- string literal, possibly in braces [6.7.8(14)]
2266 * struct or union <- assignment expression of compatible type [6.7.8(13)]
2267 * compound type <- initializer list in braces [6.7.8(16)]
2268 * The last one punts to handle_list_initializer() which, in turn will call
2269 * us for individual elements of the list.
2271 * We do not handle 6.7.8(15) (wide char array <- wide string literal) for
2272 * the lack of support of wide char stuff in general.
2274 * One note: we need to take care not to evaluate a string literal until
2275 * we know that we *will* handle it right here. Otherwise we would screw
2276 * the cases like struct { struct {char s[10]; ...} ...} initialized with
2277 * { "string", ...} - we need to preserve that string literal recognizable
2278 * until we dig into the inner struct.
2280 static int handle_simple_initializer(struct expression **ep, int nested,
2281 int class, struct symbol *ctype)
2283 int is_string = is_string_type(ctype);
2284 struct expression *e = *ep, *p;
2285 struct symbol *type;
2287 /* scalar */
2288 if (!(class & TYPE_COMPOUND)) {
2289 e = handle_scalar(e, nested);
2290 if (!e)
2291 return 0;
2292 *ep = e;
2293 type = evaluate_expression(e);
2294 if (!e->ctype)
2295 return 1;
2296 compatible_assignment_types(e, ctype, ep, degenerate(e),
2297 "initializer", '=');
2298 return 1;
2302 * sublist; either a string, or we dig in; the latter will deal with
2303 * pathologies, so we don't need anything fancy here.
2305 if (e->type == EXPR_INITIALIZER) {
2306 if (is_string) {
2307 struct expression *v = NULL;
2308 int count = 0;
2310 FOR_EACH_PTR(e->expr_list, p) {
2311 if (!v)
2312 v = p;
2313 count++;
2314 } END_FOR_EACH_PTR(p);
2315 if (count == 1 && is_string_literal(&v)) {
2316 *ep = e = v;
2317 goto String;
2320 handle_list_initializer(e, class, ctype);
2321 return 1;
2324 /* string */
2325 if (is_string_literal(&e)) {
2326 /* either we are doing array of char, or we'll have to dig in */
2327 if (is_string) {
2328 *ep = e;
2329 goto String;
2331 return 0;
2333 /* struct or union can be initialized by compatible */
2334 if (class != TYPE_COMPOUND)
2335 return 0;
2336 type = evaluate_expression(e);
2337 if (!type)
2338 return 0;
2339 if (ctype->type == SYM_NODE)
2340 ctype = ctype->ctype.base_type;
2341 if (type->type == SYM_NODE)
2342 type = type->ctype.base_type;
2343 if (ctype == type)
2344 return 1;
2345 return 0;
2347 String:
2348 p = alloc_expression(e->pos, EXPR_STRING);
2349 *p = *e;
2350 type = evaluate_expression(p);
2351 if (ctype->bit_size != -1 &&
2352 ctype->bit_size + bits_in_char < type->bit_size) {
2353 warning(e->pos,
2354 "too long initializer-string for array of char");
2356 *ep = p;
2357 return 1;
2360 static void evaluate_initializer(struct symbol *ctype, struct expression **ep)
2362 struct symbol *type;
2363 int class = classify_type(ctype, &type);
2364 if (!handle_simple_initializer(ep, 0, class, ctype))
2365 expression_error(*ep, "invalid initializer");
2368 static int get_as(struct symbol *sym)
2370 int as;
2371 unsigned long mod;
2373 if (!sym)
2374 return 0;
2375 as = sym->ctype.as;
2376 mod = sym->ctype.modifiers;
2377 if (sym->type == SYM_NODE) {
2378 sym = sym->ctype.base_type;
2379 as |= sym->ctype.as;
2380 mod |= sym->ctype.modifiers;
2384 * At least for now, allow casting to a "unsigned long".
2385 * That's how we do things like pointer arithmetic and
2386 * store pointers to registers.
2388 if (sym == &ulong_ctype)
2389 return -1;
2391 if (sym && sym->type == SYM_PTR) {
2392 sym = get_base_type(sym);
2393 as |= sym->ctype.as;
2394 mod |= sym->ctype.modifiers;
2396 if (mod & MOD_FORCE)
2397 return -1;
2398 return as;
2401 static void cast_to_as(struct expression *e, int as)
2403 struct expression *v = e->cast_expression;
2404 struct symbol *type = v->ctype;
2406 if (!Wcast_to_address_space)
2407 return;
2409 if (v->type != EXPR_VALUE || v->value)
2410 goto out;
2412 /* cast from constant 0 to pointer is OK */
2413 if (is_int_type(type))
2414 return;
2416 if (type->type == SYM_NODE)
2417 type = type->ctype.base_type;
2419 if (type->type == SYM_PTR && type->ctype.base_type == &void_ctype)
2420 return;
2422 out:
2423 warning(e->pos, "cast adds address space to expression (<asn:%d>)", as);
2426 static struct symbol *evaluate_cast(struct expression *expr)
2428 struct expression *target = expr->cast_expression;
2429 struct symbol *ctype = examine_symbol_type(expr->cast_type);
2430 struct symbol *t1, *t2;
2431 int class1, class2;
2432 int as1, as2;
2434 if (!target)
2435 return NULL;
2437 expr->ctype = ctype;
2438 expr->cast_type = ctype;
2441 * Special case: a cast can be followed by an
2442 * initializer, in which case we need to pass
2443 * the type value down to that initializer rather
2444 * than trying to evaluate it as an expression
2446 * A more complex case is when the initializer is
2447 * dereferenced as part of a post-fix expression.
2448 * We need to produce an expression that can be dereferenced.
2450 if (target->type == EXPR_INITIALIZER) {
2451 struct symbol *sym = expr->cast_type;
2452 struct expression *addr = alloc_expression(expr->pos, EXPR_SYMBOL);
2454 sym->initializer = expr->cast_expression;
2455 evaluate_symbol(sym);
2457 addr->ctype = &lazy_ptr_ctype; /* Lazy eval */
2458 addr->symbol = sym;
2460 expr->type = EXPR_PREOP;
2461 expr->op = '*';
2462 expr->unop = addr;
2463 expr->ctype = sym;
2465 return sym;
2468 evaluate_expression(target);
2469 degenerate(target);
2471 class1 = classify_type(ctype, &t1);
2473 * You can always throw a value away by casting to
2474 * "void" - that's an implicit "force". Note that
2475 * the same is _not_ true of "void *".
2477 if (t1 == &void_ctype)
2478 goto out;
2480 if (class1 & TYPE_COMPOUND)
2481 warning(expr->pos, "cast to non-scalar");
2483 t2 = target->ctype;
2484 if (!t2) {
2485 expression_error(expr, "cast from unknown type");
2486 goto out;
2488 class2 = classify_type(t2, &t2);
2490 if (class2 & TYPE_COMPOUND)
2491 warning(expr->pos, "cast from non-scalar");
2493 /* allowed cast unfouls */
2494 if (class2 & TYPE_FOULED)
2495 t2 = t2->ctype.base_type;
2497 if (!(ctype->ctype.modifiers & MOD_FORCE) && t1 != t2) {
2498 if (class1 & TYPE_RESTRICT)
2499 warning(expr->pos, "cast to restricted type");
2500 if (class2 & TYPE_RESTRICT)
2501 warning(expr->pos, "cast from restricted type");
2504 as1 = get_as(ctype);
2505 as2 = get_as(target->ctype);
2506 if (!as1 && as2 > 0)
2507 warning(expr->pos, "cast removes address space of expression");
2508 if (as1 > 0 && as2 > 0 && as1 != as2)
2509 warning(expr->pos, "cast between address spaces (<asn:%d>-><asn:%d>)", as2, as1);
2510 if (as1 > 0 && !as2)
2511 cast_to_as(expr, as1);
2514 * Casts of constant values are special: they
2515 * can be NULL, and thus need to be simplified
2516 * early.
2518 if (target->type == EXPR_VALUE)
2519 cast_value(expr, ctype, target, target->ctype);
2521 out:
2522 return ctype;
2526 * Evaluate a call expression with a symbol. This
2527 * should expand inline functions, and evaluate
2528 * builtins.
2530 static int evaluate_symbol_call(struct expression *expr)
2532 struct expression *fn = expr->fn;
2533 struct symbol *ctype = fn->ctype;
2535 if (fn->type != EXPR_PREOP)
2536 return 0;
2538 if (ctype->op && ctype->op->evaluate)
2539 return ctype->op->evaluate(expr);
2541 if (ctype->ctype.modifiers & MOD_INLINE) {
2542 int ret;
2543 struct symbol *curr = current_fn;
2544 current_fn = ctype->ctype.base_type;
2546 ret = inline_function(expr, ctype);
2548 /* restore the old function */
2549 current_fn = curr;
2550 return ret;
2553 return 0;
2556 static struct symbol *evaluate_call(struct expression *expr)
2558 int args, fnargs;
2559 struct symbol *ctype, *sym;
2560 struct expression *fn = expr->fn;
2561 struct expression_list *arglist = expr->args;
2563 if (!evaluate_expression(fn))
2564 return NULL;
2565 sym = ctype = fn->ctype;
2566 if (ctype->type == SYM_NODE)
2567 ctype = ctype->ctype.base_type;
2568 if (ctype->type == SYM_PTR || ctype->type == SYM_ARRAY)
2569 ctype = get_base_type(ctype);
2571 examine_fn_arguments(ctype);
2572 if (sym->type == SYM_NODE && fn->type == EXPR_PREOP &&
2573 sym->op && sym->op->args) {
2574 if (!sym->op->args(expr))
2575 return NULL;
2576 } else {
2577 if (!evaluate_arguments(sym, ctype, arglist))
2578 return NULL;
2579 if (ctype->type != SYM_FN) {
2580 expression_error(expr, "not a function %s",
2581 show_ident(sym->ident));
2582 return NULL;
2584 args = expression_list_size(expr->args);
2585 fnargs = symbol_list_size(ctype->arguments);
2586 if (args < fnargs)
2587 expression_error(expr,
2588 "not enough arguments for function %s",
2589 show_ident(sym->ident));
2590 if (args > fnargs && !ctype->variadic)
2591 expression_error(expr,
2592 "too many arguments for function %s",
2593 show_ident(sym->ident));
2595 if (sym->type == SYM_NODE) {
2596 if (evaluate_symbol_call(expr))
2597 return expr->ctype;
2599 expr->ctype = ctype->ctype.base_type;
2600 return expr->ctype;
2603 struct symbol *evaluate_expression(struct expression *expr)
2605 if (!expr)
2606 return NULL;
2607 if (expr->ctype)
2608 return expr->ctype;
2610 switch (expr->type) {
2611 case EXPR_VALUE:
2612 case EXPR_FVALUE:
2613 expression_error(expr, "value expression without a type");
2614 return NULL;
2615 case EXPR_STRING:
2616 return evaluate_string(expr);
2617 case EXPR_SYMBOL:
2618 return evaluate_symbol_expression(expr);
2619 case EXPR_BINOP:
2620 if (!evaluate_expression(expr->left))
2621 return NULL;
2622 if (!evaluate_expression(expr->right))
2623 return NULL;
2624 return evaluate_binop(expr);
2625 case EXPR_LOGICAL:
2626 return evaluate_logical(expr);
2627 case EXPR_COMMA:
2628 evaluate_expression(expr->left);
2629 if (!evaluate_expression(expr->right))
2630 return NULL;
2631 return evaluate_comma(expr);
2632 case EXPR_COMPARE:
2633 if (!evaluate_expression(expr->left))
2634 return NULL;
2635 if (!evaluate_expression(expr->right))
2636 return NULL;
2637 return evaluate_compare(expr);
2638 case EXPR_ASSIGNMENT:
2639 if (!evaluate_expression(expr->left))
2640 return NULL;
2641 if (!evaluate_expression(expr->right))
2642 return NULL;
2643 return evaluate_assignment(expr);
2644 case EXPR_PREOP:
2645 if (!evaluate_expression(expr->unop))
2646 return NULL;
2647 return evaluate_preop(expr);
2648 case EXPR_POSTOP:
2649 if (!evaluate_expression(expr->unop))
2650 return NULL;
2651 return evaluate_postop(expr);
2652 case EXPR_CAST:
2653 case EXPR_IMPLIED_CAST:
2654 return evaluate_cast(expr);
2655 case EXPR_SIZEOF:
2656 return evaluate_sizeof(expr);
2657 case EXPR_PTRSIZEOF:
2658 return evaluate_ptrsizeof(expr);
2659 case EXPR_ALIGNOF:
2660 return evaluate_alignof(expr);
2661 case EXPR_DEREF:
2662 return evaluate_member_dereference(expr);
2663 case EXPR_CALL:
2664 return evaluate_call(expr);
2665 case EXPR_SELECT:
2666 case EXPR_CONDITIONAL:
2667 return evaluate_conditional_expression(expr);
2668 case EXPR_STATEMENT:
2669 expr->ctype = evaluate_statement(expr->statement);
2670 return expr->ctype;
2672 case EXPR_LABEL:
2673 expr->ctype = &ptr_ctype;
2674 return &ptr_ctype;
2676 case EXPR_TYPE:
2677 /* Evaluate the type of the symbol .. */
2678 evaluate_symbol(expr->symbol);
2679 /* .. but the type of the _expression_ is a "type" */
2680 expr->ctype = &type_ctype;
2681 return &type_ctype;
2683 /* These can not exist as stand-alone expressions */
2684 case EXPR_INITIALIZER:
2685 case EXPR_IDENTIFIER:
2686 case EXPR_INDEX:
2687 case EXPR_POS:
2688 expression_error(expr, "internal front-end error: initializer in expression");
2689 return NULL;
2690 case EXPR_SLICE:
2691 expression_error(expr, "internal front-end error: SLICE re-evaluated");
2692 return NULL;
2694 return NULL;
2697 static void check_duplicates(struct symbol *sym)
2699 int declared = 0;
2700 struct symbol *next = sym;
2702 while ((next = next->same_symbol) != NULL) {
2703 const char *typediff;
2704 evaluate_symbol(next);
2705 declared++;
2706 typediff = type_difference(sym, next, 0, 0);
2707 if (typediff) {
2708 sparse_error(sym->pos, "symbol '%s' redeclared with different type (originally declared at %s:%d) - %s",
2709 show_ident(sym->ident),
2710 stream_name(next->pos.stream), next->pos.line, typediff);
2711 return;
2714 if (!declared) {
2715 unsigned long mod = sym->ctype.modifiers;
2716 if (mod & (MOD_STATIC | MOD_REGISTER))
2717 return;
2718 if (!(mod & MOD_TOPLEVEL))
2719 return;
2720 if (!Wdecl)
2721 return;
2722 if (sym->ident == &main_ident)
2723 return;
2724 warning(sym->pos, "symbol '%s' was not declared. Should it be static?", show_ident(sym->ident));
2728 static struct symbol *evaluate_symbol(struct symbol *sym)
2730 struct symbol *base_type;
2732 if (!sym)
2733 return sym;
2734 if (sym->evaluated)
2735 return sym;
2736 sym->evaluated = 1;
2738 sym = examine_symbol_type(sym);
2739 base_type = get_base_type(sym);
2740 if (!base_type)
2741 return NULL;
2743 /* Evaluate the initializers */
2744 if (sym->initializer)
2745 evaluate_initializer(sym, &sym->initializer);
2747 /* And finally, evaluate the body of the symbol too */
2748 if (base_type->type == SYM_FN) {
2749 struct symbol *curr = current_fn;
2751 current_fn = base_type;
2753 examine_fn_arguments(base_type);
2754 if (!base_type->stmt && base_type->inline_stmt)
2755 uninline(sym);
2756 if (base_type->stmt)
2757 evaluate_statement(base_type->stmt);
2759 current_fn = curr;
2762 return base_type;
2765 void evaluate_symbol_list(struct symbol_list *list)
2767 struct symbol *sym;
2769 FOR_EACH_PTR(list, sym) {
2770 evaluate_symbol(sym);
2771 check_duplicates(sym);
2772 } END_FOR_EACH_PTR(sym);
2775 static struct symbol *evaluate_return_expression(struct statement *stmt)
2777 struct expression *expr = stmt->expression;
2778 struct symbol *ctype, *fntype;
2780 evaluate_expression(expr);
2781 ctype = degenerate(expr);
2782 fntype = current_fn->ctype.base_type;
2783 if (!fntype || fntype == &void_ctype) {
2784 if (expr && ctype != &void_ctype)
2785 expression_error(expr, "return expression in %s function", fntype?"void":"typeless");
2786 return NULL;
2789 if (!expr) {
2790 sparse_error(stmt->pos, "return with no return value");
2791 return NULL;
2793 if (!ctype)
2794 return NULL;
2795 compatible_assignment_types(expr, fntype, &stmt->expression, ctype, "return expression", '=');
2796 return NULL;
2799 static void evaluate_if_statement(struct statement *stmt)
2801 if (!stmt->if_conditional)
2802 return;
2804 evaluate_conditional(stmt->if_conditional, 0);
2805 evaluate_statement(stmt->if_true);
2806 evaluate_statement(stmt->if_false);
2809 static void evaluate_iterator(struct statement *stmt)
2811 evaluate_conditional(stmt->iterator_pre_condition, 1);
2812 evaluate_conditional(stmt->iterator_post_condition,1);
2813 evaluate_statement(stmt->iterator_pre_statement);
2814 evaluate_statement(stmt->iterator_statement);
2815 evaluate_statement(stmt->iterator_post_statement);
2818 static void verify_output_constraint(struct expression *expr, const char *constraint)
2820 switch (*constraint) {
2821 case '=': /* Assignment */
2822 case '+': /* Update */
2823 break;
2824 default:
2825 expression_error(expr, "output constraint is not an assignment constraint (\"%s\")", constraint);
2829 static void verify_input_constraint(struct expression *expr, const char *constraint)
2831 switch (*constraint) {
2832 case '=': /* Assignment */
2833 case '+': /* Update */
2834 expression_error(expr, "input constraint with assignment (\"%s\")", constraint);
2838 static void evaluate_asm_statement(struct statement *stmt)
2840 struct expression *expr;
2841 int state;
2843 expr = stmt->asm_string;
2844 if (!expr || expr->type != EXPR_STRING) {
2845 sparse_error(stmt->pos, "need constant string for inline asm");
2846 return;
2849 state = 0;
2850 FOR_EACH_PTR(stmt->asm_outputs, expr) {
2851 struct ident *ident;
2853 switch (state) {
2854 case 0: /* Identifier */
2855 state = 1;
2856 ident = (struct ident *)expr;
2857 continue;
2859 case 1: /* Constraint */
2860 state = 2;
2861 if (!expr || expr->type != EXPR_STRING) {
2862 sparse_error(expr ? expr->pos : stmt->pos, "asm output constraint is not a string");
2863 *THIS_ADDRESS(expr) = NULL;
2864 continue;
2866 verify_output_constraint(expr, expr->string->data);
2867 continue;
2869 case 2: /* Expression */
2870 state = 0;
2871 if (!evaluate_expression(expr))
2872 return;
2873 if (!lvalue_expression(expr))
2874 warning(expr->pos, "asm output is not an lvalue");
2875 evaluate_assign_to(expr, expr->ctype);
2876 continue;
2878 } END_FOR_EACH_PTR(expr);
2880 state = 0;
2881 FOR_EACH_PTR(stmt->asm_inputs, expr) {
2882 struct ident *ident;
2884 switch (state) {
2885 case 0: /* Identifier */
2886 state = 1;
2887 ident = (struct ident *)expr;
2888 continue;
2890 case 1: /* Constraint */
2891 state = 2;
2892 if (!expr || expr->type != EXPR_STRING) {
2893 sparse_error(expr ? expr->pos : stmt->pos, "asm input constraint is not a string");
2894 *THIS_ADDRESS(expr) = NULL;
2895 continue;
2897 verify_input_constraint(expr, expr->string->data);
2898 continue;
2900 case 2: /* Expression */
2901 state = 0;
2902 if (!evaluate_expression(expr))
2903 return;
2904 continue;
2906 } END_FOR_EACH_PTR(expr);
2908 FOR_EACH_PTR(stmt->asm_clobbers, expr) {
2909 if (!expr) {
2910 sparse_error(stmt->pos, "bad asm output");
2911 return;
2913 if (expr->type == EXPR_STRING)
2914 continue;
2915 expression_error(expr, "asm clobber is not a string");
2916 } END_FOR_EACH_PTR(expr);
2919 static void evaluate_case_statement(struct statement *stmt)
2921 evaluate_expression(stmt->case_expression);
2922 evaluate_expression(stmt->case_to);
2923 evaluate_statement(stmt->case_statement);
2926 static void check_case_type(struct expression *switch_expr,
2927 struct expression *case_expr,
2928 struct expression **enumcase)
2930 struct symbol *switch_type, *case_type;
2931 int sclass, cclass;
2933 if (!case_expr)
2934 return;
2936 switch_type = switch_expr->ctype;
2937 case_type = evaluate_expression(case_expr);
2939 if (!switch_type || !case_type)
2940 goto Bad;
2941 if (enumcase) {
2942 if (*enumcase)
2943 warn_for_different_enum_types(case_expr->pos, case_type, (*enumcase)->ctype);
2944 else if (is_enum_type(case_type))
2945 *enumcase = case_expr;
2948 sclass = classify_type(switch_type, &switch_type);
2949 cclass = classify_type(case_type, &case_type);
2951 /* both should be arithmetic */
2952 if (!(sclass & cclass & TYPE_NUM))
2953 goto Bad;
2955 /* neither should be floating */
2956 if ((sclass | cclass) & TYPE_FLOAT)
2957 goto Bad;
2959 /* if neither is restricted, we are OK */
2960 if (!((sclass | cclass) & TYPE_RESTRICT))
2961 return;
2963 if (!restricted_binop_type(SPECIAL_EQUAL, case_expr, switch_expr,
2964 cclass, sclass, case_type, switch_type))
2965 warning(case_expr->pos, "restricted degrades to integer");
2967 return;
2969 Bad:
2970 expression_error(case_expr, "incompatible types for 'case' statement");
2973 static void evaluate_switch_statement(struct statement *stmt)
2975 struct symbol *sym;
2976 struct expression *enumcase = NULL;
2977 struct expression **enumcase_holder = &enumcase;
2978 struct expression *sel = stmt->switch_expression;
2980 evaluate_expression(sel);
2981 evaluate_statement(stmt->switch_statement);
2982 if (!sel)
2983 return;
2984 if (sel->ctype && is_enum_type(sel->ctype))
2985 enumcase_holder = NULL; /* Only check cases against switch */
2987 FOR_EACH_PTR(stmt->switch_case->symbol_list, sym) {
2988 struct statement *case_stmt = sym->stmt;
2989 check_case_type(sel, case_stmt->case_expression, enumcase_holder);
2990 check_case_type(sel, case_stmt->case_to, enumcase_holder);
2991 } END_FOR_EACH_PTR(sym);
2994 struct symbol *evaluate_statement(struct statement *stmt)
2996 if (!stmt)
2997 return NULL;
2999 switch (stmt->type) {
3000 case STMT_DECLARATION: {
3001 struct symbol *s;
3002 FOR_EACH_PTR(stmt->declaration, s) {
3003 evaluate_symbol(s);
3004 } END_FOR_EACH_PTR(s);
3005 return NULL;
3008 case STMT_RETURN:
3009 return evaluate_return_expression(stmt);
3011 case STMT_EXPRESSION:
3012 if (!evaluate_expression(stmt->expression))
3013 return NULL;
3014 return degenerate(stmt->expression);
3016 case STMT_COMPOUND: {
3017 struct statement *s;
3018 struct symbol *type = NULL;
3020 /* Evaluate the return symbol in the compound statement */
3021 evaluate_symbol(stmt->ret);
3024 * Then, evaluate each statement, making the type of the
3025 * compound statement be the type of the last statement
3027 type = evaluate_statement(stmt->args);
3028 FOR_EACH_PTR(stmt->stmts, s) {
3029 type = evaluate_statement(s);
3030 } END_FOR_EACH_PTR(s);
3031 if (!type)
3032 type = &void_ctype;
3033 return type;
3035 case STMT_IF:
3036 evaluate_if_statement(stmt);
3037 return NULL;
3038 case STMT_ITERATOR:
3039 evaluate_iterator(stmt);
3040 return NULL;
3041 case STMT_SWITCH:
3042 evaluate_switch_statement(stmt);
3043 return NULL;
3044 case STMT_CASE:
3045 evaluate_case_statement(stmt);
3046 return NULL;
3047 case STMT_LABEL:
3048 return evaluate_statement(stmt->label_statement);
3049 case STMT_GOTO:
3050 evaluate_expression(stmt->goto_expression);
3051 return NULL;
3052 case STMT_NONE:
3053 break;
3054 case STMT_ASM:
3055 evaluate_asm_statement(stmt);
3056 return NULL;
3057 case STMT_CONTEXT:
3058 evaluate_expression(stmt->expression);
3059 return NULL;
3060 case STMT_RANGE:
3061 evaluate_expression(stmt->range_expression);
3062 evaluate_expression(stmt->range_low);
3063 evaluate_expression(stmt->range_high);
3064 return NULL;
3066 return NULL;