memory: unify loops to sync dirty log bitmap
[qemu/ar7.git] / tcg / tcg-op-gvec.c
blobbfe44bba8184943f1ad0cf9b9d5848420ffd8788
1 /*
2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "tcg.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "tcg-gvec-desc.h"
27 #define MAX_UNROLL 4
29 /* Verify vector size and alignment rules. OFS should be the OR of all
30 of the operand offsets so that we can check them all at once. */
31 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
33 uint32_t opr_align = oprsz >= 16 ? 15 : 7;
34 uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
35 tcg_debug_assert(oprsz > 0);
36 tcg_debug_assert(oprsz <= maxsz);
37 tcg_debug_assert((oprsz & opr_align) == 0);
38 tcg_debug_assert((maxsz & max_align) == 0);
39 tcg_debug_assert((ofs & max_align) == 0);
42 /* Verify vector overlap rules for two operands. */
43 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
45 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
48 /* Verify vector overlap rules for three operands. */
49 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
51 check_overlap_2(d, a, s);
52 check_overlap_2(d, b, s);
53 check_overlap_2(a, b, s);
56 /* Verify vector overlap rules for four operands. */
57 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
58 uint32_t c, uint32_t s)
60 check_overlap_2(d, a, s);
61 check_overlap_2(d, b, s);
62 check_overlap_2(d, c, s);
63 check_overlap_2(a, b, s);
64 check_overlap_2(a, c, s);
65 check_overlap_2(b, c, s);
68 /* Create a descriptor from components. */
69 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
71 uint32_t desc = 0;
73 assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
74 assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
75 assert(data == sextract32(data, 0, SIMD_DATA_BITS));
77 oprsz = (oprsz / 8) - 1;
78 maxsz = (maxsz / 8) - 1;
79 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
80 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
81 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
83 return desc;
86 /* Generate a call to a gvec-style helper with two vector operands. */
87 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
88 uint32_t oprsz, uint32_t maxsz, int32_t data,
89 gen_helper_gvec_2 *fn)
91 TCGv_ptr a0, a1;
92 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
94 a0 = tcg_temp_new_ptr();
95 a1 = tcg_temp_new_ptr();
97 tcg_gen_addi_ptr(a0, cpu_env, dofs);
98 tcg_gen_addi_ptr(a1, cpu_env, aofs);
100 fn(a0, a1, desc);
102 tcg_temp_free_ptr(a0);
103 tcg_temp_free_ptr(a1);
104 tcg_temp_free_i32(desc);
107 /* Generate a call to a gvec-style helper with two vector operands
108 and one scalar operand. */
109 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
110 uint32_t oprsz, uint32_t maxsz, int32_t data,
111 gen_helper_gvec_2i *fn)
113 TCGv_ptr a0, a1;
114 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
116 a0 = tcg_temp_new_ptr();
117 a1 = tcg_temp_new_ptr();
119 tcg_gen_addi_ptr(a0, cpu_env, dofs);
120 tcg_gen_addi_ptr(a1, cpu_env, aofs);
122 fn(a0, a1, c, desc);
124 tcg_temp_free_ptr(a0);
125 tcg_temp_free_ptr(a1);
126 tcg_temp_free_i32(desc);
129 /* Generate a call to a gvec-style helper with three vector operands. */
130 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
131 uint32_t oprsz, uint32_t maxsz, int32_t data,
132 gen_helper_gvec_3 *fn)
134 TCGv_ptr a0, a1, a2;
135 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
137 a0 = tcg_temp_new_ptr();
138 a1 = tcg_temp_new_ptr();
139 a2 = tcg_temp_new_ptr();
141 tcg_gen_addi_ptr(a0, cpu_env, dofs);
142 tcg_gen_addi_ptr(a1, cpu_env, aofs);
143 tcg_gen_addi_ptr(a2, cpu_env, bofs);
145 fn(a0, a1, a2, desc);
147 tcg_temp_free_ptr(a0);
148 tcg_temp_free_ptr(a1);
149 tcg_temp_free_ptr(a2);
150 tcg_temp_free_i32(desc);
153 /* Generate a call to a gvec-style helper with four vector operands. */
154 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
155 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
156 int32_t data, gen_helper_gvec_4 *fn)
158 TCGv_ptr a0, a1, a2, a3;
159 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
161 a0 = tcg_temp_new_ptr();
162 a1 = tcg_temp_new_ptr();
163 a2 = tcg_temp_new_ptr();
164 a3 = tcg_temp_new_ptr();
166 tcg_gen_addi_ptr(a0, cpu_env, dofs);
167 tcg_gen_addi_ptr(a1, cpu_env, aofs);
168 tcg_gen_addi_ptr(a2, cpu_env, bofs);
169 tcg_gen_addi_ptr(a3, cpu_env, cofs);
171 fn(a0, a1, a2, a3, desc);
173 tcg_temp_free_ptr(a0);
174 tcg_temp_free_ptr(a1);
175 tcg_temp_free_ptr(a2);
176 tcg_temp_free_ptr(a3);
177 tcg_temp_free_i32(desc);
180 /* Generate a call to a gvec-style helper with five vector operands. */
181 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
182 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
183 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
185 TCGv_ptr a0, a1, a2, a3, a4;
186 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
188 a0 = tcg_temp_new_ptr();
189 a1 = tcg_temp_new_ptr();
190 a2 = tcg_temp_new_ptr();
191 a3 = tcg_temp_new_ptr();
192 a4 = tcg_temp_new_ptr();
194 tcg_gen_addi_ptr(a0, cpu_env, dofs);
195 tcg_gen_addi_ptr(a1, cpu_env, aofs);
196 tcg_gen_addi_ptr(a2, cpu_env, bofs);
197 tcg_gen_addi_ptr(a3, cpu_env, cofs);
198 tcg_gen_addi_ptr(a4, cpu_env, xofs);
200 fn(a0, a1, a2, a3, a4, desc);
202 tcg_temp_free_ptr(a0);
203 tcg_temp_free_ptr(a1);
204 tcg_temp_free_ptr(a2);
205 tcg_temp_free_ptr(a3);
206 tcg_temp_free_ptr(a4);
207 tcg_temp_free_i32(desc);
210 /* Generate a call to a gvec-style helper with three vector operands
211 and an extra pointer operand. */
212 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
213 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
214 int32_t data, gen_helper_gvec_2_ptr *fn)
216 TCGv_ptr a0, a1;
217 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
219 a0 = tcg_temp_new_ptr();
220 a1 = tcg_temp_new_ptr();
222 tcg_gen_addi_ptr(a0, cpu_env, dofs);
223 tcg_gen_addi_ptr(a1, cpu_env, aofs);
225 fn(a0, a1, ptr, desc);
227 tcg_temp_free_ptr(a0);
228 tcg_temp_free_ptr(a1);
229 tcg_temp_free_i32(desc);
232 /* Generate a call to a gvec-style helper with three vector operands
233 and an extra pointer operand. */
234 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
235 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
236 int32_t data, gen_helper_gvec_3_ptr *fn)
238 TCGv_ptr a0, a1, a2;
239 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
241 a0 = tcg_temp_new_ptr();
242 a1 = tcg_temp_new_ptr();
243 a2 = tcg_temp_new_ptr();
245 tcg_gen_addi_ptr(a0, cpu_env, dofs);
246 tcg_gen_addi_ptr(a1, cpu_env, aofs);
247 tcg_gen_addi_ptr(a2, cpu_env, bofs);
249 fn(a0, a1, a2, ptr, desc);
251 tcg_temp_free_ptr(a0);
252 tcg_temp_free_ptr(a1);
253 tcg_temp_free_ptr(a2);
254 tcg_temp_free_i32(desc);
257 /* Generate a call to a gvec-style helper with four vector operands
258 and an extra pointer operand. */
259 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
260 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
261 uint32_t maxsz, int32_t data,
262 gen_helper_gvec_4_ptr *fn)
264 TCGv_ptr a0, a1, a2, a3;
265 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
267 a0 = tcg_temp_new_ptr();
268 a1 = tcg_temp_new_ptr();
269 a2 = tcg_temp_new_ptr();
270 a3 = tcg_temp_new_ptr();
272 tcg_gen_addi_ptr(a0, cpu_env, dofs);
273 tcg_gen_addi_ptr(a1, cpu_env, aofs);
274 tcg_gen_addi_ptr(a2, cpu_env, bofs);
275 tcg_gen_addi_ptr(a3, cpu_env, cofs);
277 fn(a0, a1, a2, a3, ptr, desc);
279 tcg_temp_free_ptr(a0);
280 tcg_temp_free_ptr(a1);
281 tcg_temp_free_ptr(a2);
282 tcg_temp_free_ptr(a3);
283 tcg_temp_free_i32(desc);
286 /* Return true if we want to implement something of OPRSZ bytes
287 in units of LNSZ. This limits the expansion of inline code. */
288 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
290 uint32_t lnct = oprsz / lnsz;
291 return lnct >= 1 && lnct <= MAX_UNROLL;
294 static void expand_clr(uint32_t dofs, uint32_t maxsz);
296 /* Duplicate C as per VECE. */
297 uint64_t (dup_const)(unsigned vece, uint64_t c)
299 switch (vece) {
300 case MO_8:
301 return 0x0101010101010101ull * (uint8_t)c;
302 case MO_16:
303 return 0x0001000100010001ull * (uint16_t)c;
304 case MO_32:
305 return 0x0000000100000001ull * (uint32_t)c;
306 case MO_64:
307 return c;
308 default:
309 g_assert_not_reached();
313 /* Duplicate IN into OUT as per VECE. */
314 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
316 switch (vece) {
317 case MO_8:
318 tcg_gen_ext8u_i32(out, in);
319 tcg_gen_muli_i32(out, out, 0x01010101);
320 break;
321 case MO_16:
322 tcg_gen_deposit_i32(out, in, in, 16, 16);
323 break;
324 case MO_32:
325 tcg_gen_mov_i32(out, in);
326 break;
327 default:
328 g_assert_not_reached();
332 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
334 switch (vece) {
335 case MO_8:
336 tcg_gen_ext8u_i64(out, in);
337 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
338 break;
339 case MO_16:
340 tcg_gen_ext16u_i64(out, in);
341 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
342 break;
343 case MO_32:
344 tcg_gen_deposit_i64(out, in, in, 32, 32);
345 break;
346 case MO_64:
347 tcg_gen_mov_i64(out, in);
348 break;
349 default:
350 g_assert_not_reached();
354 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
355 * Only one of IN_32 or IN_64 may be set;
356 * IN_C is used if IN_32 and IN_64 are unset.
358 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
359 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
360 uint64_t in_c)
362 TCGType type;
363 TCGv_i64 t_64;
364 TCGv_i32 t_32, t_desc;
365 TCGv_ptr t_ptr;
366 uint32_t i;
368 assert(vece <= (in_32 ? MO_32 : MO_64));
369 assert(in_32 == NULL || in_64 == NULL);
371 /* If we're storing 0, expand oprsz to maxsz. */
372 if (in_32 == NULL && in_64 == NULL) {
373 in_c = dup_const(vece, in_c);
374 if (in_c == 0) {
375 oprsz = maxsz;
379 type = 0;
380 if (TCG_TARGET_HAS_v256 && check_size_impl(oprsz, 32)) {
381 type = TCG_TYPE_V256;
382 } else if (TCG_TARGET_HAS_v128 && check_size_impl(oprsz, 16)) {
383 type = TCG_TYPE_V128;
384 } else if (TCG_TARGET_HAS_v64 && check_size_impl(oprsz, 8)
385 /* Prefer integer when 64-bit host and no variable dup. */
386 && !(TCG_TARGET_REG_BITS == 64 && in_32 == NULL
387 && (in_64 == NULL || vece == MO_64))) {
388 type = TCG_TYPE_V64;
391 /* Implement inline with a vector type, if possible. */
392 if (type != 0) {
393 TCGv_vec t_vec = tcg_temp_new_vec(type);
395 if (in_32) {
396 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
397 } else if (in_64) {
398 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
399 } else {
400 switch (vece) {
401 case MO_8:
402 tcg_gen_dup8i_vec(t_vec, in_c);
403 break;
404 case MO_16:
405 tcg_gen_dup16i_vec(t_vec, in_c);
406 break;
407 case MO_32:
408 tcg_gen_dup32i_vec(t_vec, in_c);
409 break;
410 default:
411 tcg_gen_dup64i_vec(t_vec, in_c);
412 break;
416 i = 0;
417 if (TCG_TARGET_HAS_v256) {
418 for (; i + 32 <= oprsz; i += 32) {
419 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
422 if (TCG_TARGET_HAS_v128) {
423 for (; i + 16 <= oprsz; i += 16) {
424 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
427 if (TCG_TARGET_HAS_v64) {
428 for (; i < oprsz; i += 8) {
429 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
432 tcg_temp_free_vec(t_vec);
433 goto done;
436 /* Otherwise, inline with an integer type, unless "large". */
437 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
438 t_64 = NULL;
439 t_32 = NULL;
441 if (in_32) {
442 /* We are given a 32-bit variable input. For a 64-bit host,
443 use a 64-bit operation unless the 32-bit operation would
444 be simple enough. */
445 if (TCG_TARGET_REG_BITS == 64
446 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
447 t_64 = tcg_temp_new_i64();
448 tcg_gen_extu_i32_i64(t_64, in_32);
449 gen_dup_i64(vece, t_64, t_64);
450 } else {
451 t_32 = tcg_temp_new_i32();
452 gen_dup_i32(vece, t_32, in_32);
454 } else if (in_64) {
455 /* We are given a 64-bit variable input. */
456 t_64 = tcg_temp_new_i64();
457 gen_dup_i64(vece, t_64, in_64);
458 } else {
459 /* We are given a constant input. */
460 /* For 64-bit hosts, use 64-bit constants for "simple" constants
461 or when we'd need too many 32-bit stores, or when a 64-bit
462 constant is really required. */
463 if (vece == MO_64
464 || (TCG_TARGET_REG_BITS == 64
465 && (in_c == 0 || in_c == -1
466 || !check_size_impl(oprsz, 4)))) {
467 t_64 = tcg_const_i64(in_c);
468 } else {
469 t_32 = tcg_const_i32(in_c);
473 /* Implement inline if we picked an implementation size above. */
474 if (t_32) {
475 for (i = 0; i < oprsz; i += 4) {
476 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
478 tcg_temp_free_i32(t_32);
479 goto done;
481 if (t_64) {
482 for (i = 0; i < oprsz; i += 8) {
483 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
485 tcg_temp_free_i64(t_64);
486 goto done;
490 /* Otherwise implement out of line. */
491 t_ptr = tcg_temp_new_ptr();
492 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
493 t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0));
495 if (vece == MO_64) {
496 if (in_64) {
497 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
498 } else {
499 t_64 = tcg_const_i64(in_c);
500 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
501 tcg_temp_free_i64(t_64);
503 } else {
504 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
505 static dup_fn * const fns[3] = {
506 gen_helper_gvec_dup8,
507 gen_helper_gvec_dup16,
508 gen_helper_gvec_dup32
511 if (in_32) {
512 fns[vece](t_ptr, t_desc, in_32);
513 } else {
514 t_32 = tcg_temp_new_i32();
515 if (in_64) {
516 tcg_gen_extrl_i64_i32(t_32, in_64);
517 } else if (vece == MO_8) {
518 tcg_gen_movi_i32(t_32, in_c & 0xff);
519 } else if (vece == MO_16) {
520 tcg_gen_movi_i32(t_32, in_c & 0xffff);
521 } else {
522 tcg_gen_movi_i32(t_32, in_c);
524 fns[vece](t_ptr, t_desc, t_32);
525 tcg_temp_free_i32(t_32);
529 tcg_temp_free_ptr(t_ptr);
530 tcg_temp_free_i32(t_desc);
531 return;
533 done:
534 if (oprsz < maxsz) {
535 expand_clr(dofs + oprsz, maxsz - oprsz);
539 /* Likewise, but with zero. */
540 static void expand_clr(uint32_t dofs, uint32_t maxsz)
542 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
545 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
546 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
547 void (*fni)(TCGv_i32, TCGv_i32))
549 TCGv_i32 t0 = tcg_temp_new_i32();
550 uint32_t i;
552 for (i = 0; i < oprsz; i += 4) {
553 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
554 fni(t0, t0);
555 tcg_gen_st_i32(t0, cpu_env, dofs + i);
557 tcg_temp_free_i32(t0);
560 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
561 int32_t c, bool load_dest,
562 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
564 TCGv_i32 t0 = tcg_temp_new_i32();
565 TCGv_i32 t1 = tcg_temp_new_i32();
566 uint32_t i;
568 for (i = 0; i < oprsz; i += 4) {
569 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
570 if (load_dest) {
571 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
573 fni(t1, t0, c);
574 tcg_gen_st_i32(t1, cpu_env, dofs + i);
576 tcg_temp_free_i32(t0);
577 tcg_temp_free_i32(t1);
580 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
581 TCGv_i32 c, bool scalar_first,
582 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
584 TCGv_i32 t0 = tcg_temp_new_i32();
585 TCGv_i32 t1 = tcg_temp_new_i32();
586 uint32_t i;
588 for (i = 0; i < oprsz; i += 4) {
589 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
590 if (scalar_first) {
591 fni(t1, c, t0);
592 } else {
593 fni(t1, t0, c);
595 tcg_gen_st_i32(t1, cpu_env, dofs + i);
597 tcg_temp_free_i32(t0);
598 tcg_temp_free_i32(t1);
601 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
602 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
603 uint32_t bofs, uint32_t oprsz, bool load_dest,
604 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
606 TCGv_i32 t0 = tcg_temp_new_i32();
607 TCGv_i32 t1 = tcg_temp_new_i32();
608 TCGv_i32 t2 = tcg_temp_new_i32();
609 uint32_t i;
611 for (i = 0; i < oprsz; i += 4) {
612 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
613 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
614 if (load_dest) {
615 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
617 fni(t2, t0, t1);
618 tcg_gen_st_i32(t2, cpu_env, dofs + i);
620 tcg_temp_free_i32(t2);
621 tcg_temp_free_i32(t1);
622 tcg_temp_free_i32(t0);
625 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
626 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
627 uint32_t cofs, uint32_t oprsz,
628 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
630 TCGv_i32 t0 = tcg_temp_new_i32();
631 TCGv_i32 t1 = tcg_temp_new_i32();
632 TCGv_i32 t2 = tcg_temp_new_i32();
633 TCGv_i32 t3 = tcg_temp_new_i32();
634 uint32_t i;
636 for (i = 0; i < oprsz; i += 4) {
637 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
638 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
639 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
640 fni(t0, t1, t2, t3);
641 tcg_gen_st_i32(t0, cpu_env, dofs + i);
643 tcg_temp_free_i32(t3);
644 tcg_temp_free_i32(t2);
645 tcg_temp_free_i32(t1);
646 tcg_temp_free_i32(t0);
649 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
650 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
651 void (*fni)(TCGv_i64, TCGv_i64))
653 TCGv_i64 t0 = tcg_temp_new_i64();
654 uint32_t i;
656 for (i = 0; i < oprsz; i += 8) {
657 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
658 fni(t0, t0);
659 tcg_gen_st_i64(t0, cpu_env, dofs + i);
661 tcg_temp_free_i64(t0);
664 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
665 int64_t c, bool load_dest,
666 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
668 TCGv_i64 t0 = tcg_temp_new_i64();
669 TCGv_i64 t1 = tcg_temp_new_i64();
670 uint32_t i;
672 for (i = 0; i < oprsz; i += 8) {
673 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
674 if (load_dest) {
675 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
677 fni(t1, t0, c);
678 tcg_gen_st_i64(t1, cpu_env, dofs + i);
680 tcg_temp_free_i64(t0);
681 tcg_temp_free_i64(t1);
684 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
685 TCGv_i64 c, bool scalar_first,
686 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
688 TCGv_i64 t0 = tcg_temp_new_i64();
689 TCGv_i64 t1 = tcg_temp_new_i64();
690 uint32_t i;
692 for (i = 0; i < oprsz; i += 8) {
693 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
694 if (scalar_first) {
695 fni(t1, c, t0);
696 } else {
697 fni(t1, t0, c);
699 tcg_gen_st_i64(t1, cpu_env, dofs + i);
701 tcg_temp_free_i64(t0);
702 tcg_temp_free_i64(t1);
705 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
706 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
707 uint32_t bofs, uint32_t oprsz, bool load_dest,
708 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
710 TCGv_i64 t0 = tcg_temp_new_i64();
711 TCGv_i64 t1 = tcg_temp_new_i64();
712 TCGv_i64 t2 = tcg_temp_new_i64();
713 uint32_t i;
715 for (i = 0; i < oprsz; i += 8) {
716 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
717 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
718 if (load_dest) {
719 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
721 fni(t2, t0, t1);
722 tcg_gen_st_i64(t2, cpu_env, dofs + i);
724 tcg_temp_free_i64(t2);
725 tcg_temp_free_i64(t1);
726 tcg_temp_free_i64(t0);
729 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
730 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
731 uint32_t cofs, uint32_t oprsz,
732 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
734 TCGv_i64 t0 = tcg_temp_new_i64();
735 TCGv_i64 t1 = tcg_temp_new_i64();
736 TCGv_i64 t2 = tcg_temp_new_i64();
737 TCGv_i64 t3 = tcg_temp_new_i64();
738 uint32_t i;
740 for (i = 0; i < oprsz; i += 8) {
741 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
742 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
743 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
744 fni(t0, t1, t2, t3);
745 tcg_gen_st_i64(t0, cpu_env, dofs + i);
747 tcg_temp_free_i64(t3);
748 tcg_temp_free_i64(t2);
749 tcg_temp_free_i64(t1);
750 tcg_temp_free_i64(t0);
753 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
754 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
755 uint32_t oprsz, uint32_t tysz, TCGType type,
756 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
758 TCGv_vec t0 = tcg_temp_new_vec(type);
759 uint32_t i;
761 for (i = 0; i < oprsz; i += tysz) {
762 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
763 fni(vece, t0, t0);
764 tcg_gen_st_vec(t0, cpu_env, dofs + i);
766 tcg_temp_free_vec(t0);
769 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
770 using host vectors. */
771 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
772 uint32_t oprsz, uint32_t tysz, TCGType type,
773 int64_t c, bool load_dest,
774 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
776 TCGv_vec t0 = tcg_temp_new_vec(type);
777 TCGv_vec t1 = tcg_temp_new_vec(type);
778 uint32_t i;
780 for (i = 0; i < oprsz; i += tysz) {
781 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
782 if (load_dest) {
783 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
785 fni(vece, t1, t0, c);
786 tcg_gen_st_vec(t1, cpu_env, dofs + i);
788 tcg_temp_free_vec(t0);
789 tcg_temp_free_vec(t1);
792 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
793 uint32_t oprsz, uint32_t tysz, TCGType type,
794 TCGv_vec c, bool scalar_first,
795 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
797 TCGv_vec t0 = tcg_temp_new_vec(type);
798 TCGv_vec t1 = tcg_temp_new_vec(type);
799 uint32_t i;
801 for (i = 0; i < oprsz; i += tysz) {
802 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
803 if (scalar_first) {
804 fni(vece, t1, c, t0);
805 } else {
806 fni(vece, t1, t0, c);
808 tcg_gen_st_vec(t1, cpu_env, dofs + i);
810 tcg_temp_free_vec(t0);
811 tcg_temp_free_vec(t1);
814 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
815 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
816 uint32_t bofs, uint32_t oprsz,
817 uint32_t tysz, TCGType type, bool load_dest,
818 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
820 TCGv_vec t0 = tcg_temp_new_vec(type);
821 TCGv_vec t1 = tcg_temp_new_vec(type);
822 TCGv_vec t2 = tcg_temp_new_vec(type);
823 uint32_t i;
825 for (i = 0; i < oprsz; i += tysz) {
826 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
827 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
828 if (load_dest) {
829 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
831 fni(vece, t2, t0, t1);
832 tcg_gen_st_vec(t2, cpu_env, dofs + i);
834 tcg_temp_free_vec(t2);
835 tcg_temp_free_vec(t1);
836 tcg_temp_free_vec(t0);
839 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
840 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
841 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
842 uint32_t tysz, TCGType type,
843 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
844 TCGv_vec, TCGv_vec))
846 TCGv_vec t0 = tcg_temp_new_vec(type);
847 TCGv_vec t1 = tcg_temp_new_vec(type);
848 TCGv_vec t2 = tcg_temp_new_vec(type);
849 TCGv_vec t3 = tcg_temp_new_vec(type);
850 uint32_t i;
852 for (i = 0; i < oprsz; i += tysz) {
853 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
854 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
855 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
856 fni(vece, t0, t1, t2, t3);
857 tcg_gen_st_vec(t0, cpu_env, dofs + i);
859 tcg_temp_free_vec(t3);
860 tcg_temp_free_vec(t2);
861 tcg_temp_free_vec(t1);
862 tcg_temp_free_vec(t0);
865 /* Expand a vector two-operand operation. */
866 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
867 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
869 check_size_align(oprsz, maxsz, dofs | aofs);
870 check_overlap_2(dofs, aofs, maxsz);
872 /* Recall that ARM SVE allows vector sizes that are not a power of 2.
873 Expand with successively smaller host vector sizes. The intent is
874 that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
875 /* ??? For maxsz > oprsz, the host may be able to use an opr-sized
876 operation, zeroing the balance of the register. We can then
877 use a max-sized store to implement the clearing without an extra
878 store operation. This is true for aarch64 and x86_64 hosts. */
880 if (TCG_TARGET_HAS_v256 && g->fniv && check_size_impl(oprsz, 32)
881 && (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V256, g->vece))) {
882 uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
883 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, g->fniv);
884 if (some == oprsz) {
885 goto done;
887 dofs += some;
888 aofs += some;
889 oprsz -= some;
890 maxsz -= some;
893 if (TCG_TARGET_HAS_v128 && g->fniv && check_size_impl(oprsz, 16)
894 && (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V128, g->vece))) {
895 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, g->fniv);
896 } else if (TCG_TARGET_HAS_v64 && !g->prefer_i64
897 && g->fniv && check_size_impl(oprsz, 8)
898 && (!g->opc
899 || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V64, g->vece))) {
900 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, g->fniv);
901 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
902 expand_2_i64(dofs, aofs, oprsz, g->fni8);
903 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
904 expand_2_i32(dofs, aofs, oprsz, g->fni4);
905 } else {
906 assert(g->fno != NULL);
907 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
908 return;
911 done:
912 if (oprsz < maxsz) {
913 expand_clr(dofs + oprsz, maxsz - oprsz);
917 /* Expand a vector operation with two vectors and an immediate. */
918 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
919 uint32_t maxsz, int64_t c, const GVecGen2i *g)
921 check_size_align(oprsz, maxsz, dofs | aofs);
922 check_overlap_2(dofs, aofs, maxsz);
924 /* Recall that ARM SVE allows vector sizes that are not a power of 2.
925 Expand with successively smaller host vector sizes. The intent is
926 that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
928 if (TCG_TARGET_HAS_v256 && g->fniv && check_size_impl(oprsz, 32)
929 && (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V256, g->vece))) {
930 uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
931 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
932 c, g->load_dest, g->fniv);
933 if (some == oprsz) {
934 goto done;
936 dofs += some;
937 aofs += some;
938 oprsz -= some;
939 maxsz -= some;
942 if (TCG_TARGET_HAS_v128 && g->fniv && check_size_impl(oprsz, 16)
943 && (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V128, g->vece))) {
944 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
945 c, g->load_dest, g->fniv);
946 } else if (TCG_TARGET_HAS_v64 && !g->prefer_i64
947 && g->fniv && check_size_impl(oprsz, 8)
948 && (!g->opc
949 || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V64, g->vece))) {
950 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
951 c, g->load_dest, g->fniv);
952 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
953 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
954 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
955 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
956 } else {
957 if (g->fno) {
958 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
959 } else {
960 TCGv_i64 tcg_c = tcg_const_i64(c);
961 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz, maxsz, c, g->fnoi);
962 tcg_temp_free_i64(tcg_c);
964 return;
967 done:
968 if (oprsz < maxsz) {
969 expand_clr(dofs + oprsz, maxsz - oprsz);
973 /* Expand a vector operation with two vectors and a scalar. */
974 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
975 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
977 TCGType type;
979 check_size_align(oprsz, maxsz, dofs | aofs);
980 check_overlap_2(dofs, aofs, maxsz);
982 type = 0;
983 if (g->fniv) {
984 if (TCG_TARGET_HAS_v256 && check_size_impl(oprsz, 32)) {
985 type = TCG_TYPE_V256;
986 } else if (TCG_TARGET_HAS_v128 && check_size_impl(oprsz, 16)) {
987 type = TCG_TYPE_V128;
988 } else if (TCG_TARGET_HAS_v64 && !g->prefer_i64
989 && check_size_impl(oprsz, 8)) {
990 type = TCG_TYPE_V64;
993 if (type != 0) {
994 TCGv_vec t_vec = tcg_temp_new_vec(type);
996 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
998 /* Recall that ARM SVE allows vector sizes that are not a power of 2.
999 Expand with successively smaller host vector sizes. The intent is
1000 that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
1001 switch (type) {
1002 case TCG_TYPE_V256:
1004 uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
1005 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1006 t_vec, g->scalar_first, g->fniv);
1007 if (some == oprsz) {
1008 break;
1010 dofs += some;
1011 aofs += some;
1012 oprsz -= some;
1013 maxsz -= some;
1015 /* fallthru */
1017 case TCG_TYPE_V128:
1018 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1019 t_vec, g->scalar_first, g->fniv);
1020 break;
1022 case TCG_TYPE_V64:
1023 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1024 t_vec, g->scalar_first, g->fniv);
1025 break;
1027 default:
1028 g_assert_not_reached();
1030 tcg_temp_free_vec(t_vec);
1031 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1032 TCGv_i64 t64 = tcg_temp_new_i64();
1034 gen_dup_i64(g->vece, t64, c);
1035 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1036 tcg_temp_free_i64(t64);
1037 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1038 TCGv_i32 t32 = tcg_temp_new_i32();
1040 tcg_gen_extrl_i64_i32(t32, c);
1041 gen_dup_i32(g->vece, t32, t32);
1042 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1043 tcg_temp_free_i32(t32);
1044 } else {
1045 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1046 return;
1049 if (oprsz < maxsz) {
1050 expand_clr(dofs + oprsz, maxsz - oprsz);
1054 /* Expand a vector three-operand operation. */
1055 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1056 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1058 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1059 check_overlap_3(dofs, aofs, bofs, maxsz);
1061 /* Recall that ARM SVE allows vector sizes that are not a power of 2.
1062 Expand with successively smaller host vector sizes. The intent is
1063 that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
1065 if (TCG_TARGET_HAS_v256 && g->fniv && check_size_impl(oprsz, 32)
1066 && (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V256, g->vece))) {
1067 uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
1068 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1069 g->load_dest, g->fniv);
1070 if (some == oprsz) {
1071 goto done;
1073 dofs += some;
1074 aofs += some;
1075 bofs += some;
1076 oprsz -= some;
1077 maxsz -= some;
1080 if (TCG_TARGET_HAS_v128 && g->fniv && check_size_impl(oprsz, 16)
1081 && (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V128, g->vece))) {
1082 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1083 g->load_dest, g->fniv);
1084 } else if (TCG_TARGET_HAS_v64 && !g->prefer_i64
1085 && g->fniv && check_size_impl(oprsz, 8)
1086 && (!g->opc
1087 || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V64, g->vece))) {
1088 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1089 g->load_dest, g->fniv);
1090 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1091 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1092 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1093 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1094 } else {
1095 assert(g->fno != NULL);
1096 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, g->data, g->fno);
1099 done:
1100 if (oprsz < maxsz) {
1101 expand_clr(dofs + oprsz, maxsz - oprsz);
1105 /* Expand a vector four-operand operation. */
1106 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1107 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1109 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1110 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1112 /* Recall that ARM SVE allows vector sizes that are not a power of 2.
1113 Expand with successively smaller host vector sizes. The intent is
1114 that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
1116 if (TCG_TARGET_HAS_v256 && g->fniv && check_size_impl(oprsz, 32)
1117 && (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V256, g->vece))) {
1118 uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
1119 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1120 32, TCG_TYPE_V256, g->fniv);
1121 if (some == oprsz) {
1122 goto done;
1124 dofs += some;
1125 aofs += some;
1126 bofs += some;
1127 cofs += some;
1128 oprsz -= some;
1129 maxsz -= some;
1132 if (TCG_TARGET_HAS_v128 && g->fniv && check_size_impl(oprsz, 16)
1133 && (!g->opc || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V128, g->vece))) {
1134 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1135 16, TCG_TYPE_V128, g->fniv);
1136 } else if (TCG_TARGET_HAS_v64 && !g->prefer_i64
1137 && g->fniv && check_size_impl(oprsz, 8)
1138 && (!g->opc
1139 || tcg_can_emit_vec_op(g->opc, TCG_TYPE_V64, g->vece))) {
1140 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1141 8, TCG_TYPE_V64, g->fniv);
1142 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1143 expand_4_i64(dofs, aofs, bofs, cofs, oprsz, g->fni8);
1144 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1145 expand_4_i32(dofs, aofs, bofs, cofs, oprsz, g->fni4);
1146 } else {
1147 assert(g->fno != NULL);
1148 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1149 oprsz, maxsz, g->data, g->fno);
1150 return;
1153 done:
1154 if (oprsz < maxsz) {
1155 expand_clr(dofs + oprsz, maxsz - oprsz);
1160 * Expand specific vector operations.
1163 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1165 tcg_gen_mov_vec(a, b);
1168 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1169 uint32_t oprsz, uint32_t maxsz)
1171 static const GVecGen2 g = {
1172 .fni8 = tcg_gen_mov_i64,
1173 .fniv = vec_mov2,
1174 .fno = gen_helper_gvec_mov,
1175 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1177 if (dofs != aofs) {
1178 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1179 } else {
1180 check_size_align(oprsz, maxsz, dofs);
1181 if (oprsz < maxsz) {
1182 expand_clr(dofs + oprsz, maxsz - oprsz);
1187 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1188 uint32_t maxsz, TCGv_i32 in)
1190 check_size_align(oprsz, maxsz, dofs);
1191 tcg_debug_assert(vece <= MO_32);
1192 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1195 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1196 uint32_t maxsz, TCGv_i64 in)
1198 check_size_align(oprsz, maxsz, dofs);
1199 tcg_debug_assert(vece <= MO_64);
1200 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1203 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1204 uint32_t oprsz, uint32_t maxsz)
1206 if (vece <= MO_32) {
1207 TCGv_i32 in = tcg_temp_new_i32();
1208 switch (vece) {
1209 case MO_8:
1210 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1211 break;
1212 case MO_16:
1213 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1214 break;
1215 case MO_32:
1216 tcg_gen_ld_i32(in, cpu_env, aofs);
1217 break;
1219 tcg_gen_gvec_dup_i32(vece, dofs, oprsz, maxsz, in);
1220 tcg_temp_free_i32(in);
1221 } else if (vece == MO_64) {
1222 TCGv_i64 in = tcg_temp_new_i64();
1223 tcg_gen_ld_i64(in, cpu_env, aofs);
1224 tcg_gen_gvec_dup_i64(MO_64, dofs, oprsz, maxsz, in);
1225 tcg_temp_free_i64(in);
1226 } else {
1227 /* 128-bit duplicate. */
1228 /* ??? Dup to 256-bit vector. */
1229 int i;
1231 tcg_debug_assert(vece == 4);
1232 tcg_debug_assert(oprsz >= 16);
1233 if (TCG_TARGET_HAS_v128) {
1234 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1236 tcg_gen_ld_vec(in, cpu_env, aofs);
1237 for (i = 0; i < oprsz; i += 16) {
1238 tcg_gen_st_vec(in, cpu_env, dofs + i);
1240 tcg_temp_free_vec(in);
1241 } else {
1242 TCGv_i64 in0 = tcg_temp_new_i64();
1243 TCGv_i64 in1 = tcg_temp_new_i64();
1245 tcg_gen_ld_i64(in0, cpu_env, aofs);
1246 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1247 for (i = 0; i < oprsz; i += 16) {
1248 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1249 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1251 tcg_temp_free_i64(in0);
1252 tcg_temp_free_i64(in1);
1257 void tcg_gen_gvec_dup64i(uint32_t dofs, uint32_t oprsz,
1258 uint32_t maxsz, uint64_t x)
1260 check_size_align(oprsz, maxsz, dofs);
1261 do_dup(MO_64, dofs, oprsz, maxsz, NULL, NULL, x);
1264 void tcg_gen_gvec_dup32i(uint32_t dofs, uint32_t oprsz,
1265 uint32_t maxsz, uint32_t x)
1267 check_size_align(oprsz, maxsz, dofs);
1268 do_dup(MO_32, dofs, oprsz, maxsz, NULL, NULL, x);
1271 void tcg_gen_gvec_dup16i(uint32_t dofs, uint32_t oprsz,
1272 uint32_t maxsz, uint16_t x)
1274 check_size_align(oprsz, maxsz, dofs);
1275 do_dup(MO_16, dofs, oprsz, maxsz, NULL, NULL, x);
1278 void tcg_gen_gvec_dup8i(uint32_t dofs, uint32_t oprsz,
1279 uint32_t maxsz, uint8_t x)
1281 check_size_align(oprsz, maxsz, dofs);
1282 do_dup(MO_8, dofs, oprsz, maxsz, NULL, NULL, x);
1285 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1286 uint32_t oprsz, uint32_t maxsz)
1288 static const GVecGen2 g = {
1289 .fni8 = tcg_gen_not_i64,
1290 .fniv = tcg_gen_not_vec,
1291 .fno = gen_helper_gvec_not,
1292 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1294 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1297 /* Perform a vector addition using normal addition and a mask. The mask
1298 should be the sign bit of each lane. This 6-operation form is more
1299 efficient than separate additions when there are 4 or more lanes in
1300 the 64-bit operation. */
1301 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1303 TCGv_i64 t1 = tcg_temp_new_i64();
1304 TCGv_i64 t2 = tcg_temp_new_i64();
1305 TCGv_i64 t3 = tcg_temp_new_i64();
1307 tcg_gen_andc_i64(t1, a, m);
1308 tcg_gen_andc_i64(t2, b, m);
1309 tcg_gen_xor_i64(t3, a, b);
1310 tcg_gen_add_i64(d, t1, t2);
1311 tcg_gen_and_i64(t3, t3, m);
1312 tcg_gen_xor_i64(d, d, t3);
1314 tcg_temp_free_i64(t1);
1315 tcg_temp_free_i64(t2);
1316 tcg_temp_free_i64(t3);
1319 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1321 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1322 gen_addv_mask(d, a, b, m);
1323 tcg_temp_free_i64(m);
1326 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1328 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1329 gen_addv_mask(d, a, b, m);
1330 tcg_temp_free_i64(m);
1333 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1335 TCGv_i64 t1 = tcg_temp_new_i64();
1336 TCGv_i64 t2 = tcg_temp_new_i64();
1338 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1339 tcg_gen_add_i64(t2, a, b);
1340 tcg_gen_add_i64(t1, t1, b);
1341 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1343 tcg_temp_free_i64(t1);
1344 tcg_temp_free_i64(t2);
1347 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1348 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1350 static const GVecGen3 g[4] = {
1351 { .fni8 = tcg_gen_vec_add8_i64,
1352 .fniv = tcg_gen_add_vec,
1353 .fno = gen_helper_gvec_add8,
1354 .opc = INDEX_op_add_vec,
1355 .vece = MO_8 },
1356 { .fni8 = tcg_gen_vec_add16_i64,
1357 .fniv = tcg_gen_add_vec,
1358 .fno = gen_helper_gvec_add16,
1359 .opc = INDEX_op_add_vec,
1360 .vece = MO_16 },
1361 { .fni4 = tcg_gen_add_i32,
1362 .fniv = tcg_gen_add_vec,
1363 .fno = gen_helper_gvec_add32,
1364 .opc = INDEX_op_add_vec,
1365 .vece = MO_32 },
1366 { .fni8 = tcg_gen_add_i64,
1367 .fniv = tcg_gen_add_vec,
1368 .fno = gen_helper_gvec_add64,
1369 .opc = INDEX_op_add_vec,
1370 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1371 .vece = MO_64 },
1374 tcg_debug_assert(vece <= MO_64);
1375 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1378 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1379 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1381 static const GVecGen2s g[4] = {
1382 { .fni8 = tcg_gen_vec_add8_i64,
1383 .fniv = tcg_gen_add_vec,
1384 .fno = gen_helper_gvec_adds8,
1385 .opc = INDEX_op_add_vec,
1386 .vece = MO_8 },
1387 { .fni8 = tcg_gen_vec_add16_i64,
1388 .fniv = tcg_gen_add_vec,
1389 .fno = gen_helper_gvec_adds16,
1390 .opc = INDEX_op_add_vec,
1391 .vece = MO_16 },
1392 { .fni4 = tcg_gen_add_i32,
1393 .fniv = tcg_gen_add_vec,
1394 .fno = gen_helper_gvec_adds32,
1395 .opc = INDEX_op_add_vec,
1396 .vece = MO_32 },
1397 { .fni8 = tcg_gen_add_i64,
1398 .fniv = tcg_gen_add_vec,
1399 .fno = gen_helper_gvec_adds64,
1400 .opc = INDEX_op_add_vec,
1401 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1402 .vece = MO_64 },
1405 tcg_debug_assert(vece <= MO_64);
1406 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1409 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1410 int64_t c, uint32_t oprsz, uint32_t maxsz)
1412 TCGv_i64 tmp = tcg_const_i64(c);
1413 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1414 tcg_temp_free_i64(tmp);
1417 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1418 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1420 static const GVecGen2s g[4] = {
1421 { .fni8 = tcg_gen_vec_sub8_i64,
1422 .fniv = tcg_gen_sub_vec,
1423 .fno = gen_helper_gvec_subs8,
1424 .opc = INDEX_op_sub_vec,
1425 .vece = MO_8 },
1426 { .fni8 = tcg_gen_vec_sub16_i64,
1427 .fniv = tcg_gen_sub_vec,
1428 .fno = gen_helper_gvec_subs16,
1429 .opc = INDEX_op_sub_vec,
1430 .vece = MO_16 },
1431 { .fni4 = tcg_gen_sub_i32,
1432 .fniv = tcg_gen_sub_vec,
1433 .fno = gen_helper_gvec_subs32,
1434 .opc = INDEX_op_sub_vec,
1435 .vece = MO_32 },
1436 { .fni8 = tcg_gen_sub_i64,
1437 .fniv = tcg_gen_sub_vec,
1438 .fno = gen_helper_gvec_subs64,
1439 .opc = INDEX_op_sub_vec,
1440 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1441 .vece = MO_64 },
1444 tcg_debug_assert(vece <= MO_64);
1445 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1448 /* Perform a vector subtraction using normal subtraction and a mask.
1449 Compare gen_addv_mask above. */
1450 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1452 TCGv_i64 t1 = tcg_temp_new_i64();
1453 TCGv_i64 t2 = tcg_temp_new_i64();
1454 TCGv_i64 t3 = tcg_temp_new_i64();
1456 tcg_gen_or_i64(t1, a, m);
1457 tcg_gen_andc_i64(t2, b, m);
1458 tcg_gen_eqv_i64(t3, a, b);
1459 tcg_gen_sub_i64(d, t1, t2);
1460 tcg_gen_and_i64(t3, t3, m);
1461 tcg_gen_xor_i64(d, d, t3);
1463 tcg_temp_free_i64(t1);
1464 tcg_temp_free_i64(t2);
1465 tcg_temp_free_i64(t3);
1468 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1470 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1471 gen_subv_mask(d, a, b, m);
1472 tcg_temp_free_i64(m);
1475 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1477 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1478 gen_subv_mask(d, a, b, m);
1479 tcg_temp_free_i64(m);
1482 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1484 TCGv_i64 t1 = tcg_temp_new_i64();
1485 TCGv_i64 t2 = tcg_temp_new_i64();
1487 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1488 tcg_gen_sub_i64(t2, a, b);
1489 tcg_gen_sub_i64(t1, a, t1);
1490 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1492 tcg_temp_free_i64(t1);
1493 tcg_temp_free_i64(t2);
1496 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1497 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1499 static const GVecGen3 g[4] = {
1500 { .fni8 = tcg_gen_vec_sub8_i64,
1501 .fniv = tcg_gen_sub_vec,
1502 .fno = gen_helper_gvec_sub8,
1503 .opc = INDEX_op_sub_vec,
1504 .vece = MO_8 },
1505 { .fni8 = tcg_gen_vec_sub16_i64,
1506 .fniv = tcg_gen_sub_vec,
1507 .fno = gen_helper_gvec_sub16,
1508 .opc = INDEX_op_sub_vec,
1509 .vece = MO_16 },
1510 { .fni4 = tcg_gen_sub_i32,
1511 .fniv = tcg_gen_sub_vec,
1512 .fno = gen_helper_gvec_sub32,
1513 .opc = INDEX_op_sub_vec,
1514 .vece = MO_32 },
1515 { .fni8 = tcg_gen_sub_i64,
1516 .fniv = tcg_gen_sub_vec,
1517 .fno = gen_helper_gvec_sub64,
1518 .opc = INDEX_op_sub_vec,
1519 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1520 .vece = MO_64 },
1523 tcg_debug_assert(vece <= MO_64);
1524 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1527 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1528 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1530 static const GVecGen3 g[4] = {
1531 { .fniv = tcg_gen_mul_vec,
1532 .fno = gen_helper_gvec_mul8,
1533 .opc = INDEX_op_mul_vec,
1534 .vece = MO_8 },
1535 { .fniv = tcg_gen_mul_vec,
1536 .fno = gen_helper_gvec_mul16,
1537 .opc = INDEX_op_mul_vec,
1538 .vece = MO_16 },
1539 { .fni4 = tcg_gen_mul_i32,
1540 .fniv = tcg_gen_mul_vec,
1541 .fno = gen_helper_gvec_mul32,
1542 .opc = INDEX_op_mul_vec,
1543 .vece = MO_32 },
1544 { .fni8 = tcg_gen_mul_i64,
1545 .fniv = tcg_gen_mul_vec,
1546 .fno = gen_helper_gvec_mul64,
1547 .opc = INDEX_op_mul_vec,
1548 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1549 .vece = MO_64 },
1552 tcg_debug_assert(vece <= MO_64);
1553 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1556 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1557 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1559 static const GVecGen2s g[4] = {
1560 { .fniv = tcg_gen_mul_vec,
1561 .fno = gen_helper_gvec_muls8,
1562 .opc = INDEX_op_mul_vec,
1563 .vece = MO_8 },
1564 { .fniv = tcg_gen_mul_vec,
1565 .fno = gen_helper_gvec_muls16,
1566 .opc = INDEX_op_mul_vec,
1567 .vece = MO_16 },
1568 { .fni4 = tcg_gen_mul_i32,
1569 .fniv = tcg_gen_mul_vec,
1570 .fno = gen_helper_gvec_muls32,
1571 .opc = INDEX_op_mul_vec,
1572 .vece = MO_32 },
1573 { .fni8 = tcg_gen_mul_i64,
1574 .fniv = tcg_gen_mul_vec,
1575 .fno = gen_helper_gvec_muls64,
1576 .opc = INDEX_op_mul_vec,
1577 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1578 .vece = MO_64 },
1581 tcg_debug_assert(vece <= MO_64);
1582 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1585 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
1586 int64_t c, uint32_t oprsz, uint32_t maxsz)
1588 TCGv_i64 tmp = tcg_const_i64(c);
1589 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
1590 tcg_temp_free_i64(tmp);
1593 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1594 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1596 static const GVecGen3 g[4] = {
1597 { .fno = gen_helper_gvec_ssadd8, .vece = MO_8 },
1598 { .fno = gen_helper_gvec_ssadd16, .vece = MO_16 },
1599 { .fno = gen_helper_gvec_ssadd32, .vece = MO_32 },
1600 { .fno = gen_helper_gvec_ssadd64, .vece = MO_64 }
1602 tcg_debug_assert(vece <= MO_64);
1603 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1606 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
1607 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1609 static const GVecGen3 g[4] = {
1610 { .fno = gen_helper_gvec_sssub8, .vece = MO_8 },
1611 { .fno = gen_helper_gvec_sssub16, .vece = MO_16 },
1612 { .fno = gen_helper_gvec_sssub32, .vece = MO_32 },
1613 { .fno = gen_helper_gvec_sssub64, .vece = MO_64 }
1615 tcg_debug_assert(vece <= MO_64);
1616 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1619 static void tcg_gen_vec_usadd32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1621 TCGv_i32 max = tcg_const_i32(-1);
1622 tcg_gen_add_i32(d, a, b);
1623 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
1624 tcg_temp_free_i32(max);
1627 static void tcg_gen_vec_usadd32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1629 TCGv_i64 max = tcg_const_i64(-1);
1630 tcg_gen_add_i64(d, a, b);
1631 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
1632 tcg_temp_free_i64(max);
1635 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1636 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1638 static const GVecGen3 g[4] = {
1639 { .fno = gen_helper_gvec_usadd8, .vece = MO_8 },
1640 { .fno = gen_helper_gvec_usadd16, .vece = MO_16 },
1641 { .fni4 = tcg_gen_vec_usadd32_i32,
1642 .fno = gen_helper_gvec_usadd32,
1643 .vece = MO_32 },
1644 { .fni8 = tcg_gen_vec_usadd32_i64,
1645 .fno = gen_helper_gvec_usadd64,
1646 .vece = MO_64 }
1648 tcg_debug_assert(vece <= MO_64);
1649 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1652 static void tcg_gen_vec_ussub32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1654 TCGv_i32 min = tcg_const_i32(0);
1655 tcg_gen_sub_i32(d, a, b);
1656 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
1657 tcg_temp_free_i32(min);
1660 static void tcg_gen_vec_ussub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1662 TCGv_i64 min = tcg_const_i64(0);
1663 tcg_gen_sub_i64(d, a, b);
1664 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
1665 tcg_temp_free_i64(min);
1668 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
1669 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1671 static const GVecGen3 g[4] = {
1672 { .fno = gen_helper_gvec_ussub8, .vece = MO_8 },
1673 { .fno = gen_helper_gvec_ussub16, .vece = MO_16 },
1674 { .fni4 = tcg_gen_vec_ussub32_i32,
1675 .fno = gen_helper_gvec_ussub32,
1676 .vece = MO_32 },
1677 { .fni8 = tcg_gen_vec_ussub32_i64,
1678 .fno = gen_helper_gvec_ussub64,
1679 .vece = MO_64 }
1681 tcg_debug_assert(vece <= MO_64);
1682 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1685 /* Perform a vector negation using normal negation and a mask.
1686 Compare gen_subv_mask above. */
1687 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
1689 TCGv_i64 t2 = tcg_temp_new_i64();
1690 TCGv_i64 t3 = tcg_temp_new_i64();
1692 tcg_gen_andc_i64(t3, m, b);
1693 tcg_gen_andc_i64(t2, b, m);
1694 tcg_gen_sub_i64(d, m, t2);
1695 tcg_gen_xor_i64(d, d, t3);
1697 tcg_temp_free_i64(t2);
1698 tcg_temp_free_i64(t3);
1701 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
1703 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1704 gen_negv_mask(d, b, m);
1705 tcg_temp_free_i64(m);
1708 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
1710 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1711 gen_negv_mask(d, b, m);
1712 tcg_temp_free_i64(m);
1715 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
1717 TCGv_i64 t1 = tcg_temp_new_i64();
1718 TCGv_i64 t2 = tcg_temp_new_i64();
1720 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1721 tcg_gen_neg_i64(t2, b);
1722 tcg_gen_neg_i64(t1, t1);
1723 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1725 tcg_temp_free_i64(t1);
1726 tcg_temp_free_i64(t2);
1729 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
1730 uint32_t oprsz, uint32_t maxsz)
1732 static const GVecGen2 g[4] = {
1733 { .fni8 = tcg_gen_vec_neg8_i64,
1734 .fniv = tcg_gen_neg_vec,
1735 .fno = gen_helper_gvec_neg8,
1736 .opc = INDEX_op_neg_vec,
1737 .vece = MO_8 },
1738 { .fni8 = tcg_gen_vec_neg16_i64,
1739 .fniv = tcg_gen_neg_vec,
1740 .fno = gen_helper_gvec_neg16,
1741 .opc = INDEX_op_neg_vec,
1742 .vece = MO_16 },
1743 { .fni4 = tcg_gen_neg_i32,
1744 .fniv = tcg_gen_neg_vec,
1745 .fno = gen_helper_gvec_neg32,
1746 .opc = INDEX_op_neg_vec,
1747 .vece = MO_32 },
1748 { .fni8 = tcg_gen_neg_i64,
1749 .fniv = tcg_gen_neg_vec,
1750 .fno = gen_helper_gvec_neg64,
1751 .opc = INDEX_op_neg_vec,
1752 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1753 .vece = MO_64 },
1756 tcg_debug_assert(vece <= MO_64);
1757 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
1760 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
1761 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1763 static const GVecGen3 g = {
1764 .fni8 = tcg_gen_and_i64,
1765 .fniv = tcg_gen_and_vec,
1766 .fno = gen_helper_gvec_and,
1767 .opc = INDEX_op_and_vec,
1768 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1770 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1773 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
1774 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1776 static const GVecGen3 g = {
1777 .fni8 = tcg_gen_or_i64,
1778 .fniv = tcg_gen_or_vec,
1779 .fno = gen_helper_gvec_or,
1780 .opc = INDEX_op_or_vec,
1781 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1783 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1786 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
1787 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1789 static const GVecGen3 g = {
1790 .fni8 = tcg_gen_xor_i64,
1791 .fniv = tcg_gen_xor_vec,
1792 .fno = gen_helper_gvec_xor,
1793 .opc = INDEX_op_xor_vec,
1794 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1796 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1799 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
1800 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1802 static const GVecGen3 g = {
1803 .fni8 = tcg_gen_andc_i64,
1804 .fniv = tcg_gen_andc_vec,
1805 .fno = gen_helper_gvec_andc,
1806 .opc = INDEX_op_andc_vec,
1807 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1809 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1812 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
1813 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1815 static const GVecGen3 g = {
1816 .fni8 = tcg_gen_orc_i64,
1817 .fniv = tcg_gen_orc_vec,
1818 .fno = gen_helper_gvec_orc,
1819 .opc = INDEX_op_orc_vec,
1820 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1822 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1825 static const GVecGen2s gop_ands = {
1826 .fni8 = tcg_gen_and_i64,
1827 .fniv = tcg_gen_and_vec,
1828 .fno = gen_helper_gvec_ands,
1829 .opc = INDEX_op_and_vec,
1830 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1831 .vece = MO_64
1834 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
1835 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1837 TCGv_i64 tmp = tcg_temp_new_i64();
1838 gen_dup_i64(vece, tmp, c);
1839 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
1840 tcg_temp_free_i64(tmp);
1843 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
1844 int64_t c, uint32_t oprsz, uint32_t maxsz)
1846 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
1847 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
1848 tcg_temp_free_i64(tmp);
1851 static const GVecGen2s gop_xors = {
1852 .fni8 = tcg_gen_xor_i64,
1853 .fniv = tcg_gen_xor_vec,
1854 .fno = gen_helper_gvec_xors,
1855 .opc = INDEX_op_xor_vec,
1856 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1857 .vece = MO_64
1860 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
1861 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1863 TCGv_i64 tmp = tcg_temp_new_i64();
1864 gen_dup_i64(vece, tmp, c);
1865 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
1866 tcg_temp_free_i64(tmp);
1869 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
1870 int64_t c, uint32_t oprsz, uint32_t maxsz)
1872 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
1873 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
1874 tcg_temp_free_i64(tmp);
1877 static const GVecGen2s gop_ors = {
1878 .fni8 = tcg_gen_or_i64,
1879 .fniv = tcg_gen_or_vec,
1880 .fno = gen_helper_gvec_ors,
1881 .opc = INDEX_op_or_vec,
1882 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1883 .vece = MO_64
1886 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
1887 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1889 TCGv_i64 tmp = tcg_temp_new_i64();
1890 gen_dup_i64(vece, tmp, c);
1891 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
1892 tcg_temp_free_i64(tmp);
1895 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
1896 int64_t c, uint32_t oprsz, uint32_t maxsz)
1898 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
1899 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
1900 tcg_temp_free_i64(tmp);
1903 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
1905 uint64_t mask = dup_const(MO_8, 0xff << c);
1906 tcg_gen_shli_i64(d, a, c);
1907 tcg_gen_andi_i64(d, d, mask);
1910 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
1912 uint64_t mask = dup_const(MO_16, 0xffff << c);
1913 tcg_gen_shli_i64(d, a, c);
1914 tcg_gen_andi_i64(d, d, mask);
1917 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
1918 int64_t shift, uint32_t oprsz, uint32_t maxsz)
1920 static const GVecGen2i g[4] = {
1921 { .fni8 = tcg_gen_vec_shl8i_i64,
1922 .fniv = tcg_gen_shli_vec,
1923 .fno = gen_helper_gvec_shl8i,
1924 .opc = INDEX_op_shli_vec,
1925 .vece = MO_8 },
1926 { .fni8 = tcg_gen_vec_shl16i_i64,
1927 .fniv = tcg_gen_shli_vec,
1928 .fno = gen_helper_gvec_shl16i,
1929 .opc = INDEX_op_shli_vec,
1930 .vece = MO_16 },
1931 { .fni4 = tcg_gen_shli_i32,
1932 .fniv = tcg_gen_shli_vec,
1933 .fno = gen_helper_gvec_shl32i,
1934 .opc = INDEX_op_shli_vec,
1935 .vece = MO_32 },
1936 { .fni8 = tcg_gen_shli_i64,
1937 .fniv = tcg_gen_shli_vec,
1938 .fno = gen_helper_gvec_shl64i,
1939 .opc = INDEX_op_shli_vec,
1940 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1941 .vece = MO_64 },
1944 tcg_debug_assert(vece <= MO_64);
1945 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
1946 if (shift == 0) {
1947 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
1948 } else {
1949 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
1953 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
1955 uint64_t mask = dup_const(MO_8, 0xff >> c);
1956 tcg_gen_shri_i64(d, a, c);
1957 tcg_gen_andi_i64(d, d, mask);
1960 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
1962 uint64_t mask = dup_const(MO_16, 0xffff >> c);
1963 tcg_gen_shri_i64(d, a, c);
1964 tcg_gen_andi_i64(d, d, mask);
1967 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
1968 int64_t shift, uint32_t oprsz, uint32_t maxsz)
1970 static const GVecGen2i g[4] = {
1971 { .fni8 = tcg_gen_vec_shr8i_i64,
1972 .fniv = tcg_gen_shri_vec,
1973 .fno = gen_helper_gvec_shr8i,
1974 .opc = INDEX_op_shri_vec,
1975 .vece = MO_8 },
1976 { .fni8 = tcg_gen_vec_shr16i_i64,
1977 .fniv = tcg_gen_shri_vec,
1978 .fno = gen_helper_gvec_shr16i,
1979 .opc = INDEX_op_shri_vec,
1980 .vece = MO_16 },
1981 { .fni4 = tcg_gen_shri_i32,
1982 .fniv = tcg_gen_shri_vec,
1983 .fno = gen_helper_gvec_shr32i,
1984 .opc = INDEX_op_shri_vec,
1985 .vece = MO_32 },
1986 { .fni8 = tcg_gen_shri_i64,
1987 .fniv = tcg_gen_shri_vec,
1988 .fno = gen_helper_gvec_shr64i,
1989 .opc = INDEX_op_shri_vec,
1990 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1991 .vece = MO_64 },
1994 tcg_debug_assert(vece <= MO_64);
1995 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
1996 if (shift == 0) {
1997 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
1998 } else {
1999 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2003 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2005 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2006 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2007 TCGv_i64 s = tcg_temp_new_i64();
2009 tcg_gen_shri_i64(d, a, c);
2010 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2011 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2012 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2013 tcg_gen_or_i64(d, d, s); /* include sign extension */
2014 tcg_temp_free_i64(s);
2017 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2019 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2020 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2021 TCGv_i64 s = tcg_temp_new_i64();
2023 tcg_gen_shri_i64(d, a, c);
2024 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2025 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2026 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2027 tcg_gen_or_i64(d, d, s); /* include sign extension */
2028 tcg_temp_free_i64(s);
2031 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2032 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2034 static const GVecGen2i g[4] = {
2035 { .fni8 = tcg_gen_vec_sar8i_i64,
2036 .fniv = tcg_gen_sari_vec,
2037 .fno = gen_helper_gvec_sar8i,
2038 .opc = INDEX_op_sari_vec,
2039 .vece = MO_8 },
2040 { .fni8 = tcg_gen_vec_sar16i_i64,
2041 .fniv = tcg_gen_sari_vec,
2042 .fno = gen_helper_gvec_sar16i,
2043 .opc = INDEX_op_sari_vec,
2044 .vece = MO_16 },
2045 { .fni4 = tcg_gen_sari_i32,
2046 .fniv = tcg_gen_sari_vec,
2047 .fno = gen_helper_gvec_sar32i,
2048 .opc = INDEX_op_sari_vec,
2049 .vece = MO_32 },
2050 { .fni8 = tcg_gen_sari_i64,
2051 .fniv = tcg_gen_sari_vec,
2052 .fno = gen_helper_gvec_sar64i,
2053 .opc = INDEX_op_sari_vec,
2054 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2055 .vece = MO_64 },
2058 tcg_debug_assert(vece <= MO_64);
2059 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2060 if (shift == 0) {
2061 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2062 } else {
2063 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2067 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
2068 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
2069 uint32_t oprsz, TCGCond cond)
2071 TCGv_i32 t0 = tcg_temp_new_i32();
2072 TCGv_i32 t1 = tcg_temp_new_i32();
2073 uint32_t i;
2075 for (i = 0; i < oprsz; i += 4) {
2076 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
2077 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
2078 tcg_gen_setcond_i32(cond, t0, t0, t1);
2079 tcg_gen_neg_i32(t0, t0);
2080 tcg_gen_st_i32(t0, cpu_env, dofs + i);
2082 tcg_temp_free_i32(t1);
2083 tcg_temp_free_i32(t0);
2086 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
2087 uint32_t oprsz, TCGCond cond)
2089 TCGv_i64 t0 = tcg_temp_new_i64();
2090 TCGv_i64 t1 = tcg_temp_new_i64();
2091 uint32_t i;
2093 for (i = 0; i < oprsz; i += 8) {
2094 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
2095 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
2096 tcg_gen_setcond_i64(cond, t0, t0, t1);
2097 tcg_gen_neg_i64(t0, t0);
2098 tcg_gen_st_i64(t0, cpu_env, dofs + i);
2100 tcg_temp_free_i64(t1);
2101 tcg_temp_free_i64(t0);
2104 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2105 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
2106 TCGType type, TCGCond cond)
2108 TCGv_vec t0 = tcg_temp_new_vec(type);
2109 TCGv_vec t1 = tcg_temp_new_vec(type);
2110 uint32_t i;
2112 for (i = 0; i < oprsz; i += tysz) {
2113 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2114 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
2115 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
2116 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2118 tcg_temp_free_vec(t1);
2119 tcg_temp_free_vec(t0);
2122 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
2123 uint32_t aofs, uint32_t bofs,
2124 uint32_t oprsz, uint32_t maxsz)
2126 static gen_helper_gvec_3 * const eq_fn[4] = {
2127 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
2128 gen_helper_gvec_eq32, gen_helper_gvec_eq64
2130 static gen_helper_gvec_3 * const ne_fn[4] = {
2131 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
2132 gen_helper_gvec_ne32, gen_helper_gvec_ne64
2134 static gen_helper_gvec_3 * const lt_fn[4] = {
2135 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
2136 gen_helper_gvec_lt32, gen_helper_gvec_lt64
2138 static gen_helper_gvec_3 * const le_fn[4] = {
2139 gen_helper_gvec_le8, gen_helper_gvec_le16,
2140 gen_helper_gvec_le32, gen_helper_gvec_le64
2142 static gen_helper_gvec_3 * const ltu_fn[4] = {
2143 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
2144 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
2146 static gen_helper_gvec_3 * const leu_fn[4] = {
2147 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
2148 gen_helper_gvec_leu32, gen_helper_gvec_leu64
2150 static gen_helper_gvec_3 * const * const fns[16] = {
2151 [TCG_COND_EQ] = eq_fn,
2152 [TCG_COND_NE] = ne_fn,
2153 [TCG_COND_LT] = lt_fn,
2154 [TCG_COND_LE] = le_fn,
2155 [TCG_COND_LTU] = ltu_fn,
2156 [TCG_COND_LEU] = leu_fn,
2159 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
2160 check_overlap_3(dofs, aofs, bofs, maxsz);
2162 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
2163 do_dup(MO_8, dofs, oprsz, maxsz,
2164 NULL, NULL, -(cond == TCG_COND_ALWAYS));
2165 return;
2168 /* Recall that ARM SVE allows vector sizes that are not a power of 2.
2169 Expand with successively smaller host vector sizes. The intent is
2170 that e.g. oprsz == 80 would be expanded with 2x32 + 1x16. */
2172 if (TCG_TARGET_HAS_v256 && check_size_impl(oprsz, 32)
2173 && tcg_can_emit_vec_op(INDEX_op_cmp_vec, TCG_TYPE_V256, vece)) {
2174 uint32_t some = QEMU_ALIGN_DOWN(oprsz, 32);
2175 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
2176 if (some == oprsz) {
2177 goto done;
2179 dofs += some;
2180 aofs += some;
2181 bofs += some;
2182 oprsz -= some;
2183 maxsz -= some;
2186 if (TCG_TARGET_HAS_v128 && check_size_impl(oprsz, 16)
2187 && tcg_can_emit_vec_op(INDEX_op_cmp_vec, TCG_TYPE_V128, vece)) {
2188 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
2189 } else if (TCG_TARGET_HAS_v64
2190 && check_size_impl(oprsz, 8)
2191 && (TCG_TARGET_REG_BITS == 32 || vece != MO_64)
2192 && tcg_can_emit_vec_op(INDEX_op_cmp_vec, TCG_TYPE_V64, vece)) {
2193 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
2194 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2195 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
2196 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2197 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
2198 } else {
2199 gen_helper_gvec_3 * const *fn = fns[cond];
2201 if (fn == NULL) {
2202 uint32_t tmp;
2203 tmp = aofs, aofs = bofs, bofs = tmp;
2204 cond = tcg_swap_cond(cond);
2205 fn = fns[cond];
2206 assert(fn != NULL);
2208 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
2209 return;
2212 done:
2213 if (oprsz < maxsz) {
2214 expand_clr(dofs + oprsz, maxsz - oprsz);