Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / tcg / tcg-op-gvec.c
blobbb88943f79cfb635f574a1a7cd390c4301a6b3e2
1 /*
2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-temp-internal.h"
23 #include "tcg/tcg-op-common.h"
24 #include "tcg/tcg-op-gvec-common.h"
25 #include "tcg/tcg-gvec-desc.h"
27 #define MAX_UNROLL 4
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
40 uint32_t max_align;
42 switch (oprsz) {
43 case 8:
44 case 16:
45 case 32:
46 tcg_debug_assert(oprsz <= maxsz);
47 break;
48 default:
49 tcg_debug_assert(oprsz == maxsz);
50 break;
52 tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS));
54 max_align = maxsz >= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz & max_align) == 0);
56 tcg_debug_assert((ofs & max_align) == 0);
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
62 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
68 check_overlap_2(d, a, s);
69 check_overlap_2(d, b, s);
70 check_overlap_2(a, b, s);
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
75 uint32_t c, uint32_t s)
77 check_overlap_2(d, a, s);
78 check_overlap_2(d, b, s);
79 check_overlap_2(d, c, s);
80 check_overlap_2(a, b, s);
81 check_overlap_2(a, c, s);
82 check_overlap_2(b, c, s);
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
88 uint32_t desc = 0;
90 check_size_align(oprsz, maxsz, 0);
91 tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS));
93 oprsz = (oprsz / 8) - 1;
94 maxsz = (maxsz / 8) - 1;
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
101 if (oprsz == maxsz) {
102 oprsz = 2;
105 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
106 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
107 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
109 return desc;
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
114 uint32_t oprsz, uint32_t maxsz, int32_t data,
115 gen_helper_gvec_2 *fn)
117 TCGv_ptr a0, a1;
118 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
120 a0 = tcg_temp_ebb_new_ptr();
121 a1 = tcg_temp_ebb_new_ptr();
123 tcg_gen_addi_ptr(a0, tcg_env, dofs);
124 tcg_gen_addi_ptr(a1, tcg_env, aofs);
126 fn(a0, a1, desc);
128 tcg_temp_free_ptr(a0);
129 tcg_temp_free_ptr(a1);
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
135 uint32_t oprsz, uint32_t maxsz, int32_t data,
136 gen_helper_gvec_2i *fn)
138 TCGv_ptr a0, a1;
139 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
141 a0 = tcg_temp_ebb_new_ptr();
142 a1 = tcg_temp_ebb_new_ptr();
144 tcg_gen_addi_ptr(a0, tcg_env, dofs);
145 tcg_gen_addi_ptr(a1, tcg_env, aofs);
147 fn(a0, a1, c, desc);
149 tcg_temp_free_ptr(a0);
150 tcg_temp_free_ptr(a1);
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
155 uint32_t oprsz, uint32_t maxsz, int32_t data,
156 gen_helper_gvec_3 *fn)
158 TCGv_ptr a0, a1, a2;
159 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
161 a0 = tcg_temp_ebb_new_ptr();
162 a1 = tcg_temp_ebb_new_ptr();
163 a2 = tcg_temp_ebb_new_ptr();
165 tcg_gen_addi_ptr(a0, tcg_env, dofs);
166 tcg_gen_addi_ptr(a1, tcg_env, aofs);
167 tcg_gen_addi_ptr(a2, tcg_env, bofs);
169 fn(a0, a1, a2, desc);
171 tcg_temp_free_ptr(a0);
172 tcg_temp_free_ptr(a1);
173 tcg_temp_free_ptr(a2);
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
178 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
179 int32_t data, gen_helper_gvec_4 *fn)
181 TCGv_ptr a0, a1, a2, a3;
182 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
184 a0 = tcg_temp_ebb_new_ptr();
185 a1 = tcg_temp_ebb_new_ptr();
186 a2 = tcg_temp_ebb_new_ptr();
187 a3 = tcg_temp_ebb_new_ptr();
189 tcg_gen_addi_ptr(a0, tcg_env, dofs);
190 tcg_gen_addi_ptr(a1, tcg_env, aofs);
191 tcg_gen_addi_ptr(a2, tcg_env, bofs);
192 tcg_gen_addi_ptr(a3, tcg_env, cofs);
194 fn(a0, a1, a2, a3, desc);
196 tcg_temp_free_ptr(a0);
197 tcg_temp_free_ptr(a1);
198 tcg_temp_free_ptr(a2);
199 tcg_temp_free_ptr(a3);
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
204 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
205 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
207 TCGv_ptr a0, a1, a2, a3, a4;
208 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
210 a0 = tcg_temp_ebb_new_ptr();
211 a1 = tcg_temp_ebb_new_ptr();
212 a2 = tcg_temp_ebb_new_ptr();
213 a3 = tcg_temp_ebb_new_ptr();
214 a4 = tcg_temp_ebb_new_ptr();
216 tcg_gen_addi_ptr(a0, tcg_env, dofs);
217 tcg_gen_addi_ptr(a1, tcg_env, aofs);
218 tcg_gen_addi_ptr(a2, tcg_env, bofs);
219 tcg_gen_addi_ptr(a3, tcg_env, cofs);
220 tcg_gen_addi_ptr(a4, tcg_env, xofs);
222 fn(a0, a1, a2, a3, a4, desc);
224 tcg_temp_free_ptr(a0);
225 tcg_temp_free_ptr(a1);
226 tcg_temp_free_ptr(a2);
227 tcg_temp_free_ptr(a3);
228 tcg_temp_free_ptr(a4);
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
234 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
235 int32_t data, gen_helper_gvec_2_ptr *fn)
237 TCGv_ptr a0, a1;
238 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
240 a0 = tcg_temp_ebb_new_ptr();
241 a1 = tcg_temp_ebb_new_ptr();
243 tcg_gen_addi_ptr(a0, tcg_env, dofs);
244 tcg_gen_addi_ptr(a1, tcg_env, aofs);
246 fn(a0, a1, ptr, desc);
248 tcg_temp_free_ptr(a0);
249 tcg_temp_free_ptr(a1);
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
255 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
256 int32_t data, gen_helper_gvec_3_ptr *fn)
258 TCGv_ptr a0, a1, a2;
259 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
261 a0 = tcg_temp_ebb_new_ptr();
262 a1 = tcg_temp_ebb_new_ptr();
263 a2 = tcg_temp_ebb_new_ptr();
265 tcg_gen_addi_ptr(a0, tcg_env, dofs);
266 tcg_gen_addi_ptr(a1, tcg_env, aofs);
267 tcg_gen_addi_ptr(a2, tcg_env, bofs);
269 fn(a0, a1, a2, ptr, desc);
271 tcg_temp_free_ptr(a0);
272 tcg_temp_free_ptr(a1);
273 tcg_temp_free_ptr(a2);
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
279 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
280 uint32_t maxsz, int32_t data,
281 gen_helper_gvec_4_ptr *fn)
283 TCGv_ptr a0, a1, a2, a3;
284 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
286 a0 = tcg_temp_ebb_new_ptr();
287 a1 = tcg_temp_ebb_new_ptr();
288 a2 = tcg_temp_ebb_new_ptr();
289 a3 = tcg_temp_ebb_new_ptr();
291 tcg_gen_addi_ptr(a0, tcg_env, dofs);
292 tcg_gen_addi_ptr(a1, tcg_env, aofs);
293 tcg_gen_addi_ptr(a2, tcg_env, bofs);
294 tcg_gen_addi_ptr(a3, tcg_env, cofs);
296 fn(a0, a1, a2, a3, ptr, desc);
298 tcg_temp_free_ptr(a0);
299 tcg_temp_free_ptr(a1);
300 tcg_temp_free_ptr(a2);
301 tcg_temp_free_ptr(a3);
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
307 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
308 uint32_t oprsz, uint32_t maxsz, int32_t data,
309 gen_helper_gvec_5_ptr *fn)
311 TCGv_ptr a0, a1, a2, a3, a4;
312 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
314 a0 = tcg_temp_ebb_new_ptr();
315 a1 = tcg_temp_ebb_new_ptr();
316 a2 = tcg_temp_ebb_new_ptr();
317 a3 = tcg_temp_ebb_new_ptr();
318 a4 = tcg_temp_ebb_new_ptr();
320 tcg_gen_addi_ptr(a0, tcg_env, dofs);
321 tcg_gen_addi_ptr(a1, tcg_env, aofs);
322 tcg_gen_addi_ptr(a2, tcg_env, bofs);
323 tcg_gen_addi_ptr(a3, tcg_env, cofs);
324 tcg_gen_addi_ptr(a4, tcg_env, eofs);
326 fn(a0, a1, a2, a3, a4, ptr, desc);
328 tcg_temp_free_ptr(a0);
329 tcg_temp_free_ptr(a1);
330 tcg_temp_free_ptr(a2);
331 tcg_temp_free_ptr(a3);
332 tcg_temp_free_ptr(a4);
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
339 uint32_t q, r;
341 if (oprsz < lnsz) {
342 return false;
345 q = oprsz / lnsz;
346 r = oprsz % lnsz;
347 tcg_debug_assert((r & 7) == 0);
349 if (lnsz < 16) {
350 /* For sizes below 16, accept no remainder. */
351 if (r != 0) {
352 return false;
354 } else {
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
363 q += ctpop32(r);
366 return q <= MAX_UNROLL;
369 static void expand_clr(uint32_t dofs, uint32_t maxsz);
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const)(unsigned vece, uint64_t c)
374 switch (vece) {
375 case MO_8:
376 return 0x0101010101010101ull * (uint8_t)c;
377 case MO_16:
378 return 0x0001000100010001ull * (uint16_t)c;
379 case MO_32:
380 return 0x0000000100000001ull * (uint32_t)c;
381 case MO_64:
382 return c;
383 default:
384 g_assert_not_reached();
388 /* Duplicate IN into OUT as per VECE. */
389 void tcg_gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
391 switch (vece) {
392 case MO_8:
393 tcg_gen_ext8u_i32(out, in);
394 tcg_gen_muli_i32(out, out, 0x01010101);
395 break;
396 case MO_16:
397 tcg_gen_deposit_i32(out, in, in, 16, 16);
398 break;
399 case MO_32:
400 tcg_gen_mov_i32(out, in);
401 break;
402 default:
403 g_assert_not_reached();
407 void tcg_gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
409 switch (vece) {
410 case MO_8:
411 tcg_gen_ext8u_i64(out, in);
412 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
413 break;
414 case MO_16:
415 tcg_gen_ext16u_i64(out, in);
416 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
417 break;
418 case MO_32:
419 tcg_gen_deposit_i64(out, in, in, 32, 32);
420 break;
421 case MO_64:
422 tcg_gen_mov_i64(out, in);
423 break;
424 default:
425 g_assert_not_reached();
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
435 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
436 uint32_t size, bool prefer_i64)
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
446 if (TCG_TARGET_HAS_v256 &&
447 check_size_impl(size, 32) &&
448 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
449 (!(size & 16) ||
450 (TCG_TARGET_HAS_v128 &&
451 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
452 (!(size & 8) ||
453 (TCG_TARGET_HAS_v64 &&
454 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
455 return TCG_TYPE_V256;
457 if (TCG_TARGET_HAS_v128 &&
458 check_size_impl(size, 16) &&
459 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
460 (!(size & 8) ||
461 (TCG_TARGET_HAS_v64 &&
462 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
463 return TCG_TYPE_V128;
465 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
466 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
467 return TCG_TYPE_V64;
469 return 0;
472 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
473 uint32_t maxsz, TCGv_vec t_vec)
475 uint32_t i = 0;
477 tcg_debug_assert(oprsz >= 8);
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
484 if (dofs & 8) {
485 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V64);
486 i += 8;
489 switch (type) {
490 case TCG_TYPE_V256:
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
496 for (; i + 32 <= oprsz; i += 32) {
497 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V256);
499 /* fallthru */
500 case TCG_TYPE_V128:
501 for (; i + 16 <= oprsz; i += 16) {
502 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V128);
504 break;
505 case TCG_TYPE_V64:
506 for (; i < oprsz; i += 8) {
507 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V64);
509 break;
510 default:
511 g_assert_not_reached();
514 if (oprsz < maxsz) {
515 expand_clr(dofs + oprsz, maxsz - oprsz);
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
523 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
524 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
525 uint64_t in_c)
527 TCGType type;
528 TCGv_i64 t_64;
529 TCGv_i32 t_32, t_desc;
530 TCGv_ptr t_ptr;
531 uint32_t i;
533 assert(vece <= (in_32 ? MO_32 : MO_64));
534 assert(in_32 == NULL || in_64 == NULL);
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32 == NULL && in_64 == NULL) {
538 in_c = dup_const(vece, in_c);
539 if (in_c == 0) {
540 oprsz = maxsz;
541 vece = MO_8;
542 } else if (in_c == dup_const(MO_8, in_c)) {
543 vece = MO_8;
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
550 type = choose_vector_type(NULL, vece, oprsz,
551 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
552 && (in_64 == NULL || vece == MO_64)));
553 if (type != 0) {
554 TCGv_vec t_vec = tcg_temp_new_vec(type);
556 if (in_32) {
557 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
558 } else if (in_64) {
559 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
560 } else {
561 tcg_gen_dupi_vec(vece, t_vec, in_c);
563 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
564 return;
567 /* Otherwise, inline with an integer type, unless "large". */
568 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
569 t_64 = NULL;
570 t_32 = NULL;
572 if (in_32) {
573 /* We are given a 32-bit variable input. For a 64-bit host,
574 use a 64-bit operation unless the 32-bit operation would
575 be simple enough. */
576 if (TCG_TARGET_REG_BITS == 64
577 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
578 t_64 = tcg_temp_ebb_new_i64();
579 tcg_gen_extu_i32_i64(t_64, in_32);
580 tcg_gen_dup_i64(vece, t_64, t_64);
581 } else {
582 t_32 = tcg_temp_ebb_new_i32();
583 tcg_gen_dup_i32(vece, t_32, in_32);
585 } else if (in_64) {
586 /* We are given a 64-bit variable input. */
587 t_64 = tcg_temp_ebb_new_i64();
588 tcg_gen_dup_i64(vece, t_64, in_64);
589 } else {
590 /* We are given a constant input. */
591 /* For 64-bit hosts, use 64-bit constants for "simple" constants
592 or when we'd need too many 32-bit stores, or when a 64-bit
593 constant is really required. */
594 if (vece == MO_64
595 || (TCG_TARGET_REG_BITS == 64
596 && (in_c == 0 || in_c == -1
597 || !check_size_impl(oprsz, 4)))) {
598 t_64 = tcg_constant_i64(in_c);
599 } else {
600 t_32 = tcg_constant_i32(in_c);
604 /* Implement inline if we picked an implementation size above. */
605 if (t_32) {
606 for (i = 0; i < oprsz; i += 4) {
607 tcg_gen_st_i32(t_32, tcg_env, dofs + i);
609 tcg_temp_free_i32(t_32);
610 goto done;
612 if (t_64) {
613 for (i = 0; i < oprsz; i += 8) {
614 tcg_gen_st_i64(t_64, tcg_env, dofs + i);
616 tcg_temp_free_i64(t_64);
617 goto done;
621 /* Otherwise implement out of line. */
622 t_ptr = tcg_temp_ebb_new_ptr();
623 tcg_gen_addi_ptr(t_ptr, tcg_env, dofs);
626 * This may be expand_clr for the tail of an operation, e.g.
627 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
628 * wrt simd_desc and will assert. Simply pass all replicated byte
629 * stores through to memset.
631 if (oprsz == maxsz && vece == MO_8) {
632 TCGv_ptr t_size = tcg_constant_ptr(oprsz);
633 TCGv_i32 t_val;
635 if (in_32) {
636 t_val = in_32;
637 } else if (in_64) {
638 t_val = tcg_temp_ebb_new_i32();
639 tcg_gen_extrl_i64_i32(t_val, in_64);
640 } else {
641 t_val = tcg_constant_i32(in_c);
643 gen_helper_memset(t_ptr, t_ptr, t_val, t_size);
645 if (in_64) {
646 tcg_temp_free_i32(t_val);
648 tcg_temp_free_ptr(t_ptr);
649 return;
652 t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0));
654 if (vece == MO_64) {
655 if (in_64) {
656 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
657 } else {
658 t_64 = tcg_constant_i64(in_c);
659 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
661 } else {
662 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
663 static dup_fn * const fns[3] = {
664 gen_helper_gvec_dup8,
665 gen_helper_gvec_dup16,
666 gen_helper_gvec_dup32
669 if (in_32) {
670 fns[vece](t_ptr, t_desc, in_32);
671 } else if (in_64) {
672 t_32 = tcg_temp_ebb_new_i32();
673 tcg_gen_extrl_i64_i32(t_32, in_64);
674 fns[vece](t_ptr, t_desc, t_32);
675 tcg_temp_free_i32(t_32);
676 } else {
677 if (vece == MO_8) {
678 in_c &= 0xff;
679 } else if (vece == MO_16) {
680 in_c &= 0xffff;
682 t_32 = tcg_constant_i32(in_c);
683 fns[vece](t_ptr, t_desc, t_32);
687 tcg_temp_free_ptr(t_ptr);
688 return;
690 done:
691 if (oprsz < maxsz) {
692 expand_clr(dofs + oprsz, maxsz - oprsz);
696 /* Likewise, but with zero. */
697 static void expand_clr(uint32_t dofs, uint32_t maxsz)
699 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
702 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
703 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
704 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
706 TCGv_i32 t0 = tcg_temp_new_i32();
707 TCGv_i32 t1 = tcg_temp_new_i32();
708 uint32_t i;
710 for (i = 0; i < oprsz; i += 4) {
711 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
712 if (load_dest) {
713 tcg_gen_ld_i32(t1, tcg_env, dofs + i);
715 fni(t1, t0);
716 tcg_gen_st_i32(t1, tcg_env, dofs + i);
718 tcg_temp_free_i32(t0);
719 tcg_temp_free_i32(t1);
722 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
723 int32_t c, bool load_dest,
724 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
726 TCGv_i32 t0 = tcg_temp_new_i32();
727 TCGv_i32 t1 = tcg_temp_new_i32();
728 uint32_t i;
730 for (i = 0; i < oprsz; i += 4) {
731 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
732 if (load_dest) {
733 tcg_gen_ld_i32(t1, tcg_env, dofs + i);
735 fni(t1, t0, c);
736 tcg_gen_st_i32(t1, tcg_env, dofs + i);
738 tcg_temp_free_i32(t0);
739 tcg_temp_free_i32(t1);
742 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
743 TCGv_i32 c, bool scalar_first,
744 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
746 TCGv_i32 t0 = tcg_temp_new_i32();
747 TCGv_i32 t1 = tcg_temp_new_i32();
748 uint32_t i;
750 for (i = 0; i < oprsz; i += 4) {
751 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
752 if (scalar_first) {
753 fni(t1, c, t0);
754 } else {
755 fni(t1, t0, c);
757 tcg_gen_st_i32(t1, tcg_env, dofs + i);
759 tcg_temp_free_i32(t0);
760 tcg_temp_free_i32(t1);
763 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
764 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
765 uint32_t bofs, uint32_t oprsz, bool load_dest,
766 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
768 TCGv_i32 t0 = tcg_temp_new_i32();
769 TCGv_i32 t1 = tcg_temp_new_i32();
770 TCGv_i32 t2 = tcg_temp_new_i32();
771 uint32_t i;
773 for (i = 0; i < oprsz; i += 4) {
774 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
775 tcg_gen_ld_i32(t1, tcg_env, bofs + i);
776 if (load_dest) {
777 tcg_gen_ld_i32(t2, tcg_env, dofs + i);
779 fni(t2, t0, t1);
780 tcg_gen_st_i32(t2, tcg_env, dofs + i);
782 tcg_temp_free_i32(t2);
783 tcg_temp_free_i32(t1);
784 tcg_temp_free_i32(t0);
787 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
788 uint32_t oprsz, int32_t c, bool load_dest,
789 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
791 TCGv_i32 t0 = tcg_temp_new_i32();
792 TCGv_i32 t1 = tcg_temp_new_i32();
793 TCGv_i32 t2 = tcg_temp_new_i32();
794 uint32_t i;
796 for (i = 0; i < oprsz; i += 4) {
797 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
798 tcg_gen_ld_i32(t1, tcg_env, bofs + i);
799 if (load_dest) {
800 tcg_gen_ld_i32(t2, tcg_env, dofs + i);
802 fni(t2, t0, t1, c);
803 tcg_gen_st_i32(t2, tcg_env, dofs + i);
805 tcg_temp_free_i32(t0);
806 tcg_temp_free_i32(t1);
807 tcg_temp_free_i32(t2);
810 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
811 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
812 uint32_t cofs, uint32_t oprsz, bool write_aofs,
813 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
815 TCGv_i32 t0 = tcg_temp_new_i32();
816 TCGv_i32 t1 = tcg_temp_new_i32();
817 TCGv_i32 t2 = tcg_temp_new_i32();
818 TCGv_i32 t3 = tcg_temp_new_i32();
819 uint32_t i;
821 for (i = 0; i < oprsz; i += 4) {
822 tcg_gen_ld_i32(t1, tcg_env, aofs + i);
823 tcg_gen_ld_i32(t2, tcg_env, bofs + i);
824 tcg_gen_ld_i32(t3, tcg_env, cofs + i);
825 fni(t0, t1, t2, t3);
826 tcg_gen_st_i32(t0, tcg_env, dofs + i);
827 if (write_aofs) {
828 tcg_gen_st_i32(t1, tcg_env, aofs + i);
831 tcg_temp_free_i32(t3);
832 tcg_temp_free_i32(t2);
833 tcg_temp_free_i32(t1);
834 tcg_temp_free_i32(t0);
837 static void expand_4i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
838 uint32_t cofs, uint32_t oprsz, int32_t c,
839 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32,
840 int32_t))
842 TCGv_i32 t0 = tcg_temp_new_i32();
843 TCGv_i32 t1 = tcg_temp_new_i32();
844 TCGv_i32 t2 = tcg_temp_new_i32();
845 TCGv_i32 t3 = tcg_temp_new_i32();
846 uint32_t i;
848 for (i = 0; i < oprsz; i += 4) {
849 tcg_gen_ld_i32(t1, tcg_env, aofs + i);
850 tcg_gen_ld_i32(t2, tcg_env, bofs + i);
851 tcg_gen_ld_i32(t3, tcg_env, cofs + i);
852 fni(t0, t1, t2, t3, c);
853 tcg_gen_st_i32(t0, tcg_env, dofs + i);
855 tcg_temp_free_i32(t3);
856 tcg_temp_free_i32(t2);
857 tcg_temp_free_i32(t1);
858 tcg_temp_free_i32(t0);
861 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
862 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
863 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
865 TCGv_i64 t0 = tcg_temp_new_i64();
866 TCGv_i64 t1 = tcg_temp_new_i64();
867 uint32_t i;
869 for (i = 0; i < oprsz; i += 8) {
870 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
871 if (load_dest) {
872 tcg_gen_ld_i64(t1, tcg_env, dofs + i);
874 fni(t1, t0);
875 tcg_gen_st_i64(t1, tcg_env, dofs + i);
877 tcg_temp_free_i64(t0);
878 tcg_temp_free_i64(t1);
881 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
882 int64_t c, bool load_dest,
883 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
885 TCGv_i64 t0 = tcg_temp_new_i64();
886 TCGv_i64 t1 = tcg_temp_new_i64();
887 uint32_t i;
889 for (i = 0; i < oprsz; i += 8) {
890 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
891 if (load_dest) {
892 tcg_gen_ld_i64(t1, tcg_env, dofs + i);
894 fni(t1, t0, c);
895 tcg_gen_st_i64(t1, tcg_env, dofs + i);
897 tcg_temp_free_i64(t0);
898 tcg_temp_free_i64(t1);
901 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
902 TCGv_i64 c, bool scalar_first,
903 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
905 TCGv_i64 t0 = tcg_temp_new_i64();
906 TCGv_i64 t1 = tcg_temp_new_i64();
907 uint32_t i;
909 for (i = 0; i < oprsz; i += 8) {
910 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
911 if (scalar_first) {
912 fni(t1, c, t0);
913 } else {
914 fni(t1, t0, c);
916 tcg_gen_st_i64(t1, tcg_env, dofs + i);
918 tcg_temp_free_i64(t0);
919 tcg_temp_free_i64(t1);
922 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
923 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
924 uint32_t bofs, uint32_t oprsz, bool load_dest,
925 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
927 TCGv_i64 t0 = tcg_temp_new_i64();
928 TCGv_i64 t1 = tcg_temp_new_i64();
929 TCGv_i64 t2 = tcg_temp_new_i64();
930 uint32_t i;
932 for (i = 0; i < oprsz; i += 8) {
933 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
934 tcg_gen_ld_i64(t1, tcg_env, bofs + i);
935 if (load_dest) {
936 tcg_gen_ld_i64(t2, tcg_env, dofs + i);
938 fni(t2, t0, t1);
939 tcg_gen_st_i64(t2, tcg_env, dofs + i);
941 tcg_temp_free_i64(t2);
942 tcg_temp_free_i64(t1);
943 tcg_temp_free_i64(t0);
946 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
947 uint32_t oprsz, int64_t c, bool load_dest,
948 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
950 TCGv_i64 t0 = tcg_temp_new_i64();
951 TCGv_i64 t1 = tcg_temp_new_i64();
952 TCGv_i64 t2 = tcg_temp_new_i64();
953 uint32_t i;
955 for (i = 0; i < oprsz; i += 8) {
956 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
957 tcg_gen_ld_i64(t1, tcg_env, bofs + i);
958 if (load_dest) {
959 tcg_gen_ld_i64(t2, tcg_env, dofs + i);
961 fni(t2, t0, t1, c);
962 tcg_gen_st_i64(t2, tcg_env, dofs + i);
964 tcg_temp_free_i64(t0);
965 tcg_temp_free_i64(t1);
966 tcg_temp_free_i64(t2);
969 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
970 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
971 uint32_t cofs, uint32_t oprsz, bool write_aofs,
972 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
974 TCGv_i64 t0 = tcg_temp_new_i64();
975 TCGv_i64 t1 = tcg_temp_new_i64();
976 TCGv_i64 t2 = tcg_temp_new_i64();
977 TCGv_i64 t3 = tcg_temp_new_i64();
978 uint32_t i;
980 for (i = 0; i < oprsz; i += 8) {
981 tcg_gen_ld_i64(t1, tcg_env, aofs + i);
982 tcg_gen_ld_i64(t2, tcg_env, bofs + i);
983 tcg_gen_ld_i64(t3, tcg_env, cofs + i);
984 fni(t0, t1, t2, t3);
985 tcg_gen_st_i64(t0, tcg_env, dofs + i);
986 if (write_aofs) {
987 tcg_gen_st_i64(t1, tcg_env, aofs + i);
990 tcg_temp_free_i64(t3);
991 tcg_temp_free_i64(t2);
992 tcg_temp_free_i64(t1);
993 tcg_temp_free_i64(t0);
996 static void expand_4i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
997 uint32_t cofs, uint32_t oprsz, int64_t c,
998 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64,
999 int64_t))
1001 TCGv_i64 t0 = tcg_temp_new_i64();
1002 TCGv_i64 t1 = tcg_temp_new_i64();
1003 TCGv_i64 t2 = tcg_temp_new_i64();
1004 TCGv_i64 t3 = tcg_temp_new_i64();
1005 uint32_t i;
1007 for (i = 0; i < oprsz; i += 8) {
1008 tcg_gen_ld_i64(t1, tcg_env, aofs + i);
1009 tcg_gen_ld_i64(t2, tcg_env, bofs + i);
1010 tcg_gen_ld_i64(t3, tcg_env, cofs + i);
1011 fni(t0, t1, t2, t3, c);
1012 tcg_gen_st_i64(t0, tcg_env, dofs + i);
1014 tcg_temp_free_i64(t3);
1015 tcg_temp_free_i64(t2);
1016 tcg_temp_free_i64(t1);
1017 tcg_temp_free_i64(t0);
1020 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
1021 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1022 uint32_t oprsz, uint32_t tysz, TCGType type,
1023 bool load_dest,
1024 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
1026 for (uint32_t i = 0; i < oprsz; i += tysz) {
1027 TCGv_vec t0 = tcg_temp_new_vec(type);
1028 TCGv_vec t1 = tcg_temp_new_vec(type);
1030 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1031 if (load_dest) {
1032 tcg_gen_ld_vec(t1, tcg_env, dofs + i);
1034 fni(vece, t1, t0);
1035 tcg_gen_st_vec(t1, tcg_env, dofs + i);
1039 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
1040 using host vectors. */
1041 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1042 uint32_t oprsz, uint32_t tysz, TCGType type,
1043 int64_t c, bool load_dest,
1044 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
1046 for (uint32_t i = 0; i < oprsz; i += tysz) {
1047 TCGv_vec t0 = tcg_temp_new_vec(type);
1048 TCGv_vec t1 = tcg_temp_new_vec(type);
1050 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1051 if (load_dest) {
1052 tcg_gen_ld_vec(t1, tcg_env, dofs + i);
1054 fni(vece, t1, t0, c);
1055 tcg_gen_st_vec(t1, tcg_env, dofs + i);
1059 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1060 uint32_t oprsz, uint32_t tysz, TCGType type,
1061 TCGv_vec c, bool scalar_first,
1062 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1064 for (uint32_t i = 0; i < oprsz; i += tysz) {
1065 TCGv_vec t0 = tcg_temp_new_vec(type);
1066 TCGv_vec t1 = tcg_temp_new_vec(type);
1068 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1069 if (scalar_first) {
1070 fni(vece, t1, c, t0);
1071 } else {
1072 fni(vece, t1, t0, c);
1074 tcg_gen_st_vec(t1, tcg_env, dofs + i);
1078 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1079 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1080 uint32_t bofs, uint32_t oprsz,
1081 uint32_t tysz, TCGType type, bool load_dest,
1082 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1084 for (uint32_t i = 0; i < oprsz; i += tysz) {
1085 TCGv_vec t0 = tcg_temp_new_vec(type);
1086 TCGv_vec t1 = tcg_temp_new_vec(type);
1087 TCGv_vec t2 = tcg_temp_new_vec(type);
1089 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1090 tcg_gen_ld_vec(t1, tcg_env, bofs + i);
1091 if (load_dest) {
1092 tcg_gen_ld_vec(t2, tcg_env, dofs + i);
1094 fni(vece, t2, t0, t1);
1095 tcg_gen_st_vec(t2, tcg_env, dofs + i);
1100 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1101 * using host vectors.
1103 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1104 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1105 TCGType type, int64_t c, bool load_dest,
1106 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1107 int64_t))
1109 for (uint32_t i = 0; i < oprsz; i += tysz) {
1110 TCGv_vec t0 = tcg_temp_new_vec(type);
1111 TCGv_vec t1 = tcg_temp_new_vec(type);
1112 TCGv_vec t2 = tcg_temp_new_vec(type);
1114 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1115 tcg_gen_ld_vec(t1, tcg_env, bofs + i);
1116 if (load_dest) {
1117 tcg_gen_ld_vec(t2, tcg_env, dofs + i);
1119 fni(vece, t2, t0, t1, c);
1120 tcg_gen_st_vec(t2, tcg_env, dofs + i);
1124 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1125 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1126 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1127 uint32_t tysz, TCGType type, bool write_aofs,
1128 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1129 TCGv_vec, TCGv_vec))
1131 for (uint32_t i = 0; i < oprsz; i += tysz) {
1132 TCGv_vec t0 = tcg_temp_new_vec(type);
1133 TCGv_vec t1 = tcg_temp_new_vec(type);
1134 TCGv_vec t2 = tcg_temp_new_vec(type);
1135 TCGv_vec t3 = tcg_temp_new_vec(type);
1137 tcg_gen_ld_vec(t1, tcg_env, aofs + i);
1138 tcg_gen_ld_vec(t2, tcg_env, bofs + i);
1139 tcg_gen_ld_vec(t3, tcg_env, cofs + i);
1140 fni(vece, t0, t1, t2, t3);
1141 tcg_gen_st_vec(t0, tcg_env, dofs + i);
1142 if (write_aofs) {
1143 tcg_gen_st_vec(t1, tcg_env, aofs + i);
1149 * Expand OPSZ bytes worth of four-vector operands and an immediate operand
1150 * using host vectors.
1152 static void expand_4i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1153 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1154 uint32_t tysz, TCGType type, int64_t c,
1155 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1156 TCGv_vec, TCGv_vec, int64_t))
1158 for (uint32_t i = 0; i < oprsz; i += tysz) {
1159 TCGv_vec t0 = tcg_temp_new_vec(type);
1160 TCGv_vec t1 = tcg_temp_new_vec(type);
1161 TCGv_vec t2 = tcg_temp_new_vec(type);
1162 TCGv_vec t3 = tcg_temp_new_vec(type);
1164 tcg_gen_ld_vec(t1, tcg_env, aofs + i);
1165 tcg_gen_ld_vec(t2, tcg_env, bofs + i);
1166 tcg_gen_ld_vec(t3, tcg_env, cofs + i);
1167 fni(vece, t0, t1, t2, t3, c);
1168 tcg_gen_st_vec(t0, tcg_env, dofs + i);
1172 /* Expand a vector two-operand operation. */
1173 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1174 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1176 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1177 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1178 TCGType type;
1179 uint32_t some;
1181 check_size_align(oprsz, maxsz, dofs | aofs);
1182 check_overlap_2(dofs, aofs, maxsz);
1184 type = 0;
1185 if (g->fniv) {
1186 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1188 switch (type) {
1189 case TCG_TYPE_V256:
1190 /* Recall that ARM SVE allows vector sizes that are not a
1191 * power of 2, but always a multiple of 16. The intent is
1192 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1194 some = QEMU_ALIGN_DOWN(oprsz, 32);
1195 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1196 g->load_dest, g->fniv);
1197 if (some == oprsz) {
1198 break;
1200 dofs += some;
1201 aofs += some;
1202 oprsz -= some;
1203 maxsz -= some;
1204 /* fallthru */
1205 case TCG_TYPE_V128:
1206 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1207 g->load_dest, g->fniv);
1208 break;
1209 case TCG_TYPE_V64:
1210 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1211 g->load_dest, g->fniv);
1212 break;
1214 case 0:
1215 if (g->fni8 && check_size_impl(oprsz, 8)) {
1216 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1217 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1218 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1219 } else {
1220 assert(g->fno != NULL);
1221 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1222 oprsz = maxsz;
1224 break;
1226 default:
1227 g_assert_not_reached();
1229 tcg_swap_vecop_list(hold_list);
1231 if (oprsz < maxsz) {
1232 expand_clr(dofs + oprsz, maxsz - oprsz);
1236 /* Expand a vector operation with two vectors and an immediate. */
1237 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1238 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1240 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1241 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1242 TCGType type;
1243 uint32_t some;
1245 check_size_align(oprsz, maxsz, dofs | aofs);
1246 check_overlap_2(dofs, aofs, maxsz);
1248 type = 0;
1249 if (g->fniv) {
1250 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1252 switch (type) {
1253 case TCG_TYPE_V256:
1254 /* Recall that ARM SVE allows vector sizes that are not a
1255 * power of 2, but always a multiple of 16. The intent is
1256 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1258 some = QEMU_ALIGN_DOWN(oprsz, 32);
1259 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1260 c, g->load_dest, g->fniv);
1261 if (some == oprsz) {
1262 break;
1264 dofs += some;
1265 aofs += some;
1266 oprsz -= some;
1267 maxsz -= some;
1268 /* fallthru */
1269 case TCG_TYPE_V128:
1270 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1271 c, g->load_dest, g->fniv);
1272 break;
1273 case TCG_TYPE_V64:
1274 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1275 c, g->load_dest, g->fniv);
1276 break;
1278 case 0:
1279 if (g->fni8 && check_size_impl(oprsz, 8)) {
1280 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1281 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1282 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1283 } else {
1284 if (g->fno) {
1285 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1286 } else {
1287 TCGv_i64 tcg_c = tcg_constant_i64(c);
1288 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1289 maxsz, c, g->fnoi);
1291 oprsz = maxsz;
1293 break;
1295 default:
1296 g_assert_not_reached();
1298 tcg_swap_vecop_list(hold_list);
1300 if (oprsz < maxsz) {
1301 expand_clr(dofs + oprsz, maxsz - oprsz);
1305 /* Expand a vector operation with two vectors and a scalar. */
1306 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1307 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1309 TCGType type;
1311 check_size_align(oprsz, maxsz, dofs | aofs);
1312 check_overlap_2(dofs, aofs, maxsz);
1314 type = 0;
1315 if (g->fniv) {
1316 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1318 if (type != 0) {
1319 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1320 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1321 TCGv_vec t_vec = tcg_temp_new_vec(type);
1322 uint32_t some;
1324 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1326 switch (type) {
1327 case TCG_TYPE_V256:
1328 /* Recall that ARM SVE allows vector sizes that are not a
1329 * power of 2, but always a multiple of 16. The intent is
1330 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1332 some = QEMU_ALIGN_DOWN(oprsz, 32);
1333 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1334 t_vec, g->scalar_first, g->fniv);
1335 if (some == oprsz) {
1336 break;
1338 dofs += some;
1339 aofs += some;
1340 oprsz -= some;
1341 maxsz -= some;
1342 /* fallthru */
1344 case TCG_TYPE_V128:
1345 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1346 t_vec, g->scalar_first, g->fniv);
1347 break;
1349 case TCG_TYPE_V64:
1350 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1351 t_vec, g->scalar_first, g->fniv);
1352 break;
1354 default:
1355 g_assert_not_reached();
1357 tcg_temp_free_vec(t_vec);
1358 tcg_swap_vecop_list(hold_list);
1359 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1360 TCGv_i64 t64 = tcg_temp_new_i64();
1362 tcg_gen_dup_i64(g->vece, t64, c);
1363 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1364 tcg_temp_free_i64(t64);
1365 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1366 TCGv_i32 t32 = tcg_temp_new_i32();
1368 tcg_gen_extrl_i64_i32(t32, c);
1369 tcg_gen_dup_i32(g->vece, t32, t32);
1370 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1371 tcg_temp_free_i32(t32);
1372 } else {
1373 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1374 return;
1377 if (oprsz < maxsz) {
1378 expand_clr(dofs + oprsz, maxsz - oprsz);
1382 /* Expand a vector three-operand operation. */
1383 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1384 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1386 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1387 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1388 TCGType type;
1389 uint32_t some;
1391 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1392 check_overlap_3(dofs, aofs, bofs, maxsz);
1394 type = 0;
1395 if (g->fniv) {
1396 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1398 switch (type) {
1399 case TCG_TYPE_V256:
1400 /* Recall that ARM SVE allows vector sizes that are not a
1401 * power of 2, but always a multiple of 16. The intent is
1402 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1404 some = QEMU_ALIGN_DOWN(oprsz, 32);
1405 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1406 g->load_dest, g->fniv);
1407 if (some == oprsz) {
1408 break;
1410 dofs += some;
1411 aofs += some;
1412 bofs += some;
1413 oprsz -= some;
1414 maxsz -= some;
1415 /* fallthru */
1416 case TCG_TYPE_V128:
1417 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1418 g->load_dest, g->fniv);
1419 break;
1420 case TCG_TYPE_V64:
1421 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1422 g->load_dest, g->fniv);
1423 break;
1425 case 0:
1426 if (g->fni8 && check_size_impl(oprsz, 8)) {
1427 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1428 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1429 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1430 } else {
1431 assert(g->fno != NULL);
1432 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1433 maxsz, g->data, g->fno);
1434 oprsz = maxsz;
1436 break;
1438 default:
1439 g_assert_not_reached();
1441 tcg_swap_vecop_list(hold_list);
1443 if (oprsz < maxsz) {
1444 expand_clr(dofs + oprsz, maxsz - oprsz);
1448 /* Expand a vector operation with three vectors and an immediate. */
1449 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1450 uint32_t oprsz, uint32_t maxsz, int64_t c,
1451 const GVecGen3i *g)
1453 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1454 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1455 TCGType type;
1456 uint32_t some;
1458 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1459 check_overlap_3(dofs, aofs, bofs, maxsz);
1461 type = 0;
1462 if (g->fniv) {
1463 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1465 switch (type) {
1466 case TCG_TYPE_V256:
1468 * Recall that ARM SVE allows vector sizes that are not a
1469 * power of 2, but always a multiple of 16. The intent is
1470 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1472 some = QEMU_ALIGN_DOWN(oprsz, 32);
1473 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1474 c, g->load_dest, g->fniv);
1475 if (some == oprsz) {
1476 break;
1478 dofs += some;
1479 aofs += some;
1480 bofs += some;
1481 oprsz -= some;
1482 maxsz -= some;
1483 /* fallthru */
1484 case TCG_TYPE_V128:
1485 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1486 c, g->load_dest, g->fniv);
1487 break;
1488 case TCG_TYPE_V64:
1489 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1490 c, g->load_dest, g->fniv);
1491 break;
1493 case 0:
1494 if (g->fni8 && check_size_impl(oprsz, 8)) {
1495 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1496 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1497 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1498 } else {
1499 assert(g->fno != NULL);
1500 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1501 oprsz = maxsz;
1503 break;
1505 default:
1506 g_assert_not_reached();
1508 tcg_swap_vecop_list(hold_list);
1510 if (oprsz < maxsz) {
1511 expand_clr(dofs + oprsz, maxsz - oprsz);
1515 /* Expand a vector four-operand operation. */
1516 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1517 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1519 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1520 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1521 TCGType type;
1522 uint32_t some;
1524 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1525 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1527 type = 0;
1528 if (g->fniv) {
1529 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1531 switch (type) {
1532 case TCG_TYPE_V256:
1533 /* Recall that ARM SVE allows vector sizes that are not a
1534 * power of 2, but always a multiple of 16. The intent is
1535 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1537 some = QEMU_ALIGN_DOWN(oprsz, 32);
1538 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1539 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1540 if (some == oprsz) {
1541 break;
1543 dofs += some;
1544 aofs += some;
1545 bofs += some;
1546 cofs += some;
1547 oprsz -= some;
1548 maxsz -= some;
1549 /* fallthru */
1550 case TCG_TYPE_V128:
1551 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1552 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1553 break;
1554 case TCG_TYPE_V64:
1555 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1556 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1557 break;
1559 case 0:
1560 if (g->fni8 && check_size_impl(oprsz, 8)) {
1561 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1562 g->write_aofs, g->fni8);
1563 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1564 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1565 g->write_aofs, g->fni4);
1566 } else {
1567 assert(g->fno != NULL);
1568 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1569 oprsz, maxsz, g->data, g->fno);
1570 oprsz = maxsz;
1572 break;
1574 default:
1575 g_assert_not_reached();
1577 tcg_swap_vecop_list(hold_list);
1579 if (oprsz < maxsz) {
1580 expand_clr(dofs + oprsz, maxsz - oprsz);
1584 /* Expand a vector four-operand operation. */
1585 void tcg_gen_gvec_4i(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1586 uint32_t oprsz, uint32_t maxsz, int64_t c,
1587 const GVecGen4i *g)
1589 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1590 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1591 TCGType type;
1592 uint32_t some;
1594 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1595 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1597 type = 0;
1598 if (g->fniv) {
1599 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1601 switch (type) {
1602 case TCG_TYPE_V256:
1604 * Recall that ARM SVE allows vector sizes that are not a
1605 * power of 2, but always a multiple of 16. The intent is
1606 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1608 some = QEMU_ALIGN_DOWN(oprsz, 32);
1609 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, some,
1610 32, TCG_TYPE_V256, c, g->fniv);
1611 if (some == oprsz) {
1612 break;
1614 dofs += some;
1615 aofs += some;
1616 bofs += some;
1617 cofs += some;
1618 oprsz -= some;
1619 maxsz -= some;
1620 /* fallthru */
1621 case TCG_TYPE_V128:
1622 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1623 16, TCG_TYPE_V128, c, g->fniv);
1624 break;
1625 case TCG_TYPE_V64:
1626 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1627 8, TCG_TYPE_V64, c, g->fniv);
1628 break;
1630 case 0:
1631 if (g->fni8 && check_size_impl(oprsz, 8)) {
1632 expand_4i_i64(dofs, aofs, bofs, cofs, oprsz, c, g->fni8);
1633 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1634 expand_4i_i32(dofs, aofs, bofs, cofs, oprsz, c, g->fni4);
1635 } else {
1636 assert(g->fno != NULL);
1637 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1638 oprsz, maxsz, c, g->fno);
1639 oprsz = maxsz;
1641 break;
1643 default:
1644 g_assert_not_reached();
1646 tcg_swap_vecop_list(hold_list);
1648 if (oprsz < maxsz) {
1649 expand_clr(dofs + oprsz, maxsz - oprsz);
1654 * Expand specific vector operations.
1657 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1659 tcg_gen_mov_vec(a, b);
1662 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1663 uint32_t oprsz, uint32_t maxsz)
1665 static const GVecGen2 g = {
1666 .fni8 = tcg_gen_mov_i64,
1667 .fniv = vec_mov2,
1668 .fno = gen_helper_gvec_mov,
1669 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1671 if (dofs != aofs) {
1672 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1673 } else {
1674 check_size_align(oprsz, maxsz, dofs);
1675 if (oprsz < maxsz) {
1676 expand_clr(dofs + oprsz, maxsz - oprsz);
1681 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1682 uint32_t maxsz, TCGv_i32 in)
1684 check_size_align(oprsz, maxsz, dofs);
1685 tcg_debug_assert(vece <= MO_32);
1686 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1689 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1690 uint32_t maxsz, TCGv_i64 in)
1692 check_size_align(oprsz, maxsz, dofs);
1693 tcg_debug_assert(vece <= MO_64);
1694 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1697 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1698 uint32_t oprsz, uint32_t maxsz)
1700 check_size_align(oprsz, maxsz, dofs);
1701 if (vece <= MO_64) {
1702 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1703 if (type != 0) {
1704 TCGv_vec t_vec = tcg_temp_new_vec(type);
1705 tcg_gen_dup_mem_vec(vece, t_vec, tcg_env, aofs);
1706 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1707 } else if (vece <= MO_32) {
1708 TCGv_i32 in = tcg_temp_ebb_new_i32();
1709 switch (vece) {
1710 case MO_8:
1711 tcg_gen_ld8u_i32(in, tcg_env, aofs);
1712 break;
1713 case MO_16:
1714 tcg_gen_ld16u_i32(in, tcg_env, aofs);
1715 break;
1716 default:
1717 tcg_gen_ld_i32(in, tcg_env, aofs);
1718 break;
1720 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1721 tcg_temp_free_i32(in);
1722 } else {
1723 TCGv_i64 in = tcg_temp_ebb_new_i64();
1724 tcg_gen_ld_i64(in, tcg_env, aofs);
1725 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1726 tcg_temp_free_i64(in);
1728 } else if (vece == 4) {
1729 /* 128-bit duplicate. */
1730 int i;
1732 tcg_debug_assert(oprsz >= 16);
1733 if (TCG_TARGET_HAS_v128) {
1734 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1736 tcg_gen_ld_vec(in, tcg_env, aofs);
1737 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1738 tcg_gen_st_vec(in, tcg_env, dofs + i);
1740 } else {
1741 TCGv_i64 in0 = tcg_temp_ebb_new_i64();
1742 TCGv_i64 in1 = tcg_temp_ebb_new_i64();
1744 tcg_gen_ld_i64(in0, tcg_env, aofs);
1745 tcg_gen_ld_i64(in1, tcg_env, aofs + 8);
1746 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1747 tcg_gen_st_i64(in0, tcg_env, dofs + i);
1748 tcg_gen_st_i64(in1, tcg_env, dofs + i + 8);
1750 tcg_temp_free_i64(in0);
1751 tcg_temp_free_i64(in1);
1753 if (oprsz < maxsz) {
1754 expand_clr(dofs + oprsz, maxsz - oprsz);
1756 } else if (vece == 5) {
1757 /* 256-bit duplicate. */
1758 int i;
1760 tcg_debug_assert(oprsz >= 32);
1761 tcg_debug_assert(oprsz % 32 == 0);
1762 if (TCG_TARGET_HAS_v256) {
1763 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256);
1765 tcg_gen_ld_vec(in, tcg_env, aofs);
1766 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1767 tcg_gen_st_vec(in, tcg_env, dofs + i);
1769 } else if (TCG_TARGET_HAS_v128) {
1770 TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128);
1771 TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128);
1773 tcg_gen_ld_vec(in0, tcg_env, aofs);
1774 tcg_gen_ld_vec(in1, tcg_env, aofs + 16);
1775 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1776 tcg_gen_st_vec(in0, tcg_env, dofs + i);
1777 tcg_gen_st_vec(in1, tcg_env, dofs + i + 16);
1779 } else {
1780 TCGv_i64 in[4];
1781 int j;
1783 for (j = 0; j < 4; ++j) {
1784 in[j] = tcg_temp_ebb_new_i64();
1785 tcg_gen_ld_i64(in[j], tcg_env, aofs + j * 8);
1787 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1788 for (j = 0; j < 4; ++j) {
1789 tcg_gen_st_i64(in[j], tcg_env, dofs + i + j * 8);
1792 for (j = 0; j < 4; ++j) {
1793 tcg_temp_free_i64(in[j]);
1796 if (oprsz < maxsz) {
1797 expand_clr(dofs + oprsz, maxsz - oprsz);
1799 } else {
1800 g_assert_not_reached();
1804 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1805 uint32_t maxsz, uint64_t x)
1807 check_size_align(oprsz, maxsz, dofs);
1808 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1811 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1812 uint32_t oprsz, uint32_t maxsz)
1814 static const GVecGen2 g = {
1815 .fni8 = tcg_gen_not_i64,
1816 .fniv = tcg_gen_not_vec,
1817 .fno = gen_helper_gvec_not,
1818 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1820 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1823 /* Perform a vector addition using normal addition and a mask. The mask
1824 should be the sign bit of each lane. This 6-operation form is more
1825 efficient than separate additions when there are 4 or more lanes in
1826 the 64-bit operation. */
1827 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1829 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
1830 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
1831 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
1833 tcg_gen_andc_i64(t1, a, m);
1834 tcg_gen_andc_i64(t2, b, m);
1835 tcg_gen_xor_i64(t3, a, b);
1836 tcg_gen_add_i64(d, t1, t2);
1837 tcg_gen_and_i64(t3, t3, m);
1838 tcg_gen_xor_i64(d, d, t3);
1840 tcg_temp_free_i64(t1);
1841 tcg_temp_free_i64(t2);
1842 tcg_temp_free_i64(t3);
1845 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1847 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
1848 gen_addv_mask(d, a, b, m);
1851 void tcg_gen_vec_add8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1853 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
1854 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
1855 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
1856 TCGv_i32 t3 = tcg_temp_ebb_new_i32();
1858 tcg_gen_andc_i32(t1, a, m);
1859 tcg_gen_andc_i32(t2, b, m);
1860 tcg_gen_xor_i32(t3, a, b);
1861 tcg_gen_add_i32(d, t1, t2);
1862 tcg_gen_and_i32(t3, t3, m);
1863 tcg_gen_xor_i32(d, d, t3);
1865 tcg_temp_free_i32(t1);
1866 tcg_temp_free_i32(t2);
1867 tcg_temp_free_i32(t3);
1870 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1872 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
1873 gen_addv_mask(d, a, b, m);
1876 void tcg_gen_vec_add16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1878 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
1879 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
1881 tcg_gen_andi_i32(t1, a, ~0xffff);
1882 tcg_gen_add_i32(t2, a, b);
1883 tcg_gen_add_i32(t1, t1, b);
1884 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
1886 tcg_temp_free_i32(t1);
1887 tcg_temp_free_i32(t2);
1890 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1892 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
1893 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
1895 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1896 tcg_gen_add_i64(t2, a, b);
1897 tcg_gen_add_i64(t1, t1, b);
1898 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1900 tcg_temp_free_i64(t1);
1901 tcg_temp_free_i64(t2);
1904 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1906 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1907 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1909 static const GVecGen3 g[4] = {
1910 { .fni8 = tcg_gen_vec_add8_i64,
1911 .fniv = tcg_gen_add_vec,
1912 .fno = gen_helper_gvec_add8,
1913 .opt_opc = vecop_list_add,
1914 .vece = MO_8 },
1915 { .fni8 = tcg_gen_vec_add16_i64,
1916 .fniv = tcg_gen_add_vec,
1917 .fno = gen_helper_gvec_add16,
1918 .opt_opc = vecop_list_add,
1919 .vece = MO_16 },
1920 { .fni4 = tcg_gen_add_i32,
1921 .fniv = tcg_gen_add_vec,
1922 .fno = gen_helper_gvec_add32,
1923 .opt_opc = vecop_list_add,
1924 .vece = MO_32 },
1925 { .fni8 = tcg_gen_add_i64,
1926 .fniv = tcg_gen_add_vec,
1927 .fno = gen_helper_gvec_add64,
1928 .opt_opc = vecop_list_add,
1929 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1930 .vece = MO_64 },
1933 tcg_debug_assert(vece <= MO_64);
1934 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1937 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1938 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1940 static const GVecGen2s g[4] = {
1941 { .fni8 = tcg_gen_vec_add8_i64,
1942 .fniv = tcg_gen_add_vec,
1943 .fno = gen_helper_gvec_adds8,
1944 .opt_opc = vecop_list_add,
1945 .vece = MO_8 },
1946 { .fni8 = tcg_gen_vec_add16_i64,
1947 .fniv = tcg_gen_add_vec,
1948 .fno = gen_helper_gvec_adds16,
1949 .opt_opc = vecop_list_add,
1950 .vece = MO_16 },
1951 { .fni4 = tcg_gen_add_i32,
1952 .fniv = tcg_gen_add_vec,
1953 .fno = gen_helper_gvec_adds32,
1954 .opt_opc = vecop_list_add,
1955 .vece = MO_32 },
1956 { .fni8 = tcg_gen_add_i64,
1957 .fniv = tcg_gen_add_vec,
1958 .fno = gen_helper_gvec_adds64,
1959 .opt_opc = vecop_list_add,
1960 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1961 .vece = MO_64 },
1964 tcg_debug_assert(vece <= MO_64);
1965 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1968 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1969 int64_t c, uint32_t oprsz, uint32_t maxsz)
1971 TCGv_i64 tmp = tcg_constant_i64(c);
1972 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1975 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1977 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1978 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1980 static const GVecGen2s g[4] = {
1981 { .fni8 = tcg_gen_vec_sub8_i64,
1982 .fniv = tcg_gen_sub_vec,
1983 .fno = gen_helper_gvec_subs8,
1984 .opt_opc = vecop_list_sub,
1985 .vece = MO_8 },
1986 { .fni8 = tcg_gen_vec_sub16_i64,
1987 .fniv = tcg_gen_sub_vec,
1988 .fno = gen_helper_gvec_subs16,
1989 .opt_opc = vecop_list_sub,
1990 .vece = MO_16 },
1991 { .fni4 = tcg_gen_sub_i32,
1992 .fniv = tcg_gen_sub_vec,
1993 .fno = gen_helper_gvec_subs32,
1994 .opt_opc = vecop_list_sub,
1995 .vece = MO_32 },
1996 { .fni8 = tcg_gen_sub_i64,
1997 .fniv = tcg_gen_sub_vec,
1998 .fno = gen_helper_gvec_subs64,
1999 .opt_opc = vecop_list_sub,
2000 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2001 .vece = MO_64 },
2004 tcg_debug_assert(vece <= MO_64);
2005 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2008 /* Perform a vector subtraction using normal subtraction and a mask.
2009 Compare gen_addv_mask above. */
2010 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
2012 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2013 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2014 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
2016 tcg_gen_or_i64(t1, a, m);
2017 tcg_gen_andc_i64(t2, b, m);
2018 tcg_gen_eqv_i64(t3, a, b);
2019 tcg_gen_sub_i64(d, t1, t2);
2020 tcg_gen_and_i64(t3, t3, m);
2021 tcg_gen_xor_i64(d, d, t3);
2023 tcg_temp_free_i64(t1);
2024 tcg_temp_free_i64(t2);
2025 tcg_temp_free_i64(t3);
2028 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2030 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2031 gen_subv_mask(d, a, b, m);
2034 void tcg_gen_vec_sub8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2036 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
2037 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
2038 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
2039 TCGv_i32 t3 = tcg_temp_ebb_new_i32();
2041 tcg_gen_or_i32(t1, a, m);
2042 tcg_gen_andc_i32(t2, b, m);
2043 tcg_gen_eqv_i32(t3, a, b);
2044 tcg_gen_sub_i32(d, t1, t2);
2045 tcg_gen_and_i32(t3, t3, m);
2046 tcg_gen_xor_i32(d, d, t3);
2048 tcg_temp_free_i32(t1);
2049 tcg_temp_free_i32(t2);
2050 tcg_temp_free_i32(t3);
2053 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2055 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2056 gen_subv_mask(d, a, b, m);
2059 void tcg_gen_vec_sub16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2061 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
2062 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
2064 tcg_gen_andi_i32(t1, b, ~0xffff);
2065 tcg_gen_sub_i32(t2, a, b);
2066 tcg_gen_sub_i32(t1, a, t1);
2067 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
2069 tcg_temp_free_i32(t1);
2070 tcg_temp_free_i32(t2);
2073 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2075 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2076 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2078 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2079 tcg_gen_sub_i64(t2, a, b);
2080 tcg_gen_sub_i64(t1, a, t1);
2081 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2083 tcg_temp_free_i64(t1);
2084 tcg_temp_free_i64(t2);
2087 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
2088 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2090 static const GVecGen3 g[4] = {
2091 { .fni8 = tcg_gen_vec_sub8_i64,
2092 .fniv = tcg_gen_sub_vec,
2093 .fno = gen_helper_gvec_sub8,
2094 .opt_opc = vecop_list_sub,
2095 .vece = MO_8 },
2096 { .fni8 = tcg_gen_vec_sub16_i64,
2097 .fniv = tcg_gen_sub_vec,
2098 .fno = gen_helper_gvec_sub16,
2099 .opt_opc = vecop_list_sub,
2100 .vece = MO_16 },
2101 { .fni4 = tcg_gen_sub_i32,
2102 .fniv = tcg_gen_sub_vec,
2103 .fno = gen_helper_gvec_sub32,
2104 .opt_opc = vecop_list_sub,
2105 .vece = MO_32 },
2106 { .fni8 = tcg_gen_sub_i64,
2107 .fniv = tcg_gen_sub_vec,
2108 .fno = gen_helper_gvec_sub64,
2109 .opt_opc = vecop_list_sub,
2110 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2111 .vece = MO_64 },
2114 tcg_debug_assert(vece <= MO_64);
2115 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2118 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
2120 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
2121 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2123 static const GVecGen3 g[4] = {
2124 { .fniv = tcg_gen_mul_vec,
2125 .fno = gen_helper_gvec_mul8,
2126 .opt_opc = vecop_list_mul,
2127 .vece = MO_8 },
2128 { .fniv = tcg_gen_mul_vec,
2129 .fno = gen_helper_gvec_mul16,
2130 .opt_opc = vecop_list_mul,
2131 .vece = MO_16 },
2132 { .fni4 = tcg_gen_mul_i32,
2133 .fniv = tcg_gen_mul_vec,
2134 .fno = gen_helper_gvec_mul32,
2135 .opt_opc = vecop_list_mul,
2136 .vece = MO_32 },
2137 { .fni8 = tcg_gen_mul_i64,
2138 .fniv = tcg_gen_mul_vec,
2139 .fno = gen_helper_gvec_mul64,
2140 .opt_opc = vecop_list_mul,
2141 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2142 .vece = MO_64 },
2145 tcg_debug_assert(vece <= MO_64);
2146 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2149 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
2150 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2152 static const GVecGen2s g[4] = {
2153 { .fniv = tcg_gen_mul_vec,
2154 .fno = gen_helper_gvec_muls8,
2155 .opt_opc = vecop_list_mul,
2156 .vece = MO_8 },
2157 { .fniv = tcg_gen_mul_vec,
2158 .fno = gen_helper_gvec_muls16,
2159 .opt_opc = vecop_list_mul,
2160 .vece = MO_16 },
2161 { .fni4 = tcg_gen_mul_i32,
2162 .fniv = tcg_gen_mul_vec,
2163 .fno = gen_helper_gvec_muls32,
2164 .opt_opc = vecop_list_mul,
2165 .vece = MO_32 },
2166 { .fni8 = tcg_gen_mul_i64,
2167 .fniv = tcg_gen_mul_vec,
2168 .fno = gen_helper_gvec_muls64,
2169 .opt_opc = vecop_list_mul,
2170 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2171 .vece = MO_64 },
2174 tcg_debug_assert(vece <= MO_64);
2175 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2178 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
2179 int64_t c, uint32_t oprsz, uint32_t maxsz)
2181 TCGv_i64 tmp = tcg_constant_i64(c);
2182 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
2185 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2186 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2188 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
2189 static const GVecGen3 g[4] = {
2190 { .fniv = tcg_gen_ssadd_vec,
2191 .fno = gen_helper_gvec_ssadd8,
2192 .opt_opc = vecop_list,
2193 .vece = MO_8 },
2194 { .fniv = tcg_gen_ssadd_vec,
2195 .fno = gen_helper_gvec_ssadd16,
2196 .opt_opc = vecop_list,
2197 .vece = MO_16 },
2198 { .fniv = tcg_gen_ssadd_vec,
2199 .fno = gen_helper_gvec_ssadd32,
2200 .opt_opc = vecop_list,
2201 .vece = MO_32 },
2202 { .fniv = tcg_gen_ssadd_vec,
2203 .fno = gen_helper_gvec_ssadd64,
2204 .opt_opc = vecop_list,
2205 .vece = MO_64 },
2207 tcg_debug_assert(vece <= MO_64);
2208 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2211 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
2212 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2214 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
2215 static const GVecGen3 g[4] = {
2216 { .fniv = tcg_gen_sssub_vec,
2217 .fno = gen_helper_gvec_sssub8,
2218 .opt_opc = vecop_list,
2219 .vece = MO_8 },
2220 { .fniv = tcg_gen_sssub_vec,
2221 .fno = gen_helper_gvec_sssub16,
2222 .opt_opc = vecop_list,
2223 .vece = MO_16 },
2224 { .fniv = tcg_gen_sssub_vec,
2225 .fno = gen_helper_gvec_sssub32,
2226 .opt_opc = vecop_list,
2227 .vece = MO_32 },
2228 { .fniv = tcg_gen_sssub_vec,
2229 .fno = gen_helper_gvec_sssub64,
2230 .opt_opc = vecop_list,
2231 .vece = MO_64 },
2233 tcg_debug_assert(vece <= MO_64);
2234 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2237 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2239 TCGv_i32 max = tcg_constant_i32(-1);
2240 tcg_gen_add_i32(d, a, b);
2241 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
2244 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2246 TCGv_i64 max = tcg_constant_i64(-1);
2247 tcg_gen_add_i64(d, a, b);
2248 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
2251 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2252 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2254 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2255 static const GVecGen3 g[4] = {
2256 { .fniv = tcg_gen_usadd_vec,
2257 .fno = gen_helper_gvec_usadd8,
2258 .opt_opc = vecop_list,
2259 .vece = MO_8 },
2260 { .fniv = tcg_gen_usadd_vec,
2261 .fno = gen_helper_gvec_usadd16,
2262 .opt_opc = vecop_list,
2263 .vece = MO_16 },
2264 { .fni4 = tcg_gen_usadd_i32,
2265 .fniv = tcg_gen_usadd_vec,
2266 .fno = gen_helper_gvec_usadd32,
2267 .opt_opc = vecop_list,
2268 .vece = MO_32 },
2269 { .fni8 = tcg_gen_usadd_i64,
2270 .fniv = tcg_gen_usadd_vec,
2271 .fno = gen_helper_gvec_usadd64,
2272 .opt_opc = vecop_list,
2273 .vece = MO_64 }
2275 tcg_debug_assert(vece <= MO_64);
2276 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2279 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2281 TCGv_i32 min = tcg_constant_i32(0);
2282 tcg_gen_sub_i32(d, a, b);
2283 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2286 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2288 TCGv_i64 min = tcg_constant_i64(0);
2289 tcg_gen_sub_i64(d, a, b);
2290 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2293 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2294 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2296 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2297 static const GVecGen3 g[4] = {
2298 { .fniv = tcg_gen_ussub_vec,
2299 .fno = gen_helper_gvec_ussub8,
2300 .opt_opc = vecop_list,
2301 .vece = MO_8 },
2302 { .fniv = tcg_gen_ussub_vec,
2303 .fno = gen_helper_gvec_ussub16,
2304 .opt_opc = vecop_list,
2305 .vece = MO_16 },
2306 { .fni4 = tcg_gen_ussub_i32,
2307 .fniv = tcg_gen_ussub_vec,
2308 .fno = gen_helper_gvec_ussub32,
2309 .opt_opc = vecop_list,
2310 .vece = MO_32 },
2311 { .fni8 = tcg_gen_ussub_i64,
2312 .fniv = tcg_gen_ussub_vec,
2313 .fno = gen_helper_gvec_ussub64,
2314 .opt_opc = vecop_list,
2315 .vece = MO_64 }
2317 tcg_debug_assert(vece <= MO_64);
2318 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2321 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2322 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2324 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2325 static const GVecGen3 g[4] = {
2326 { .fniv = tcg_gen_smin_vec,
2327 .fno = gen_helper_gvec_smin8,
2328 .opt_opc = vecop_list,
2329 .vece = MO_8 },
2330 { .fniv = tcg_gen_smin_vec,
2331 .fno = gen_helper_gvec_smin16,
2332 .opt_opc = vecop_list,
2333 .vece = MO_16 },
2334 { .fni4 = tcg_gen_smin_i32,
2335 .fniv = tcg_gen_smin_vec,
2336 .fno = gen_helper_gvec_smin32,
2337 .opt_opc = vecop_list,
2338 .vece = MO_32 },
2339 { .fni8 = tcg_gen_smin_i64,
2340 .fniv = tcg_gen_smin_vec,
2341 .fno = gen_helper_gvec_smin64,
2342 .opt_opc = vecop_list,
2343 .vece = MO_64 }
2345 tcg_debug_assert(vece <= MO_64);
2346 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2349 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2350 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2352 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2353 static const GVecGen3 g[4] = {
2354 { .fniv = tcg_gen_umin_vec,
2355 .fno = gen_helper_gvec_umin8,
2356 .opt_opc = vecop_list,
2357 .vece = MO_8 },
2358 { .fniv = tcg_gen_umin_vec,
2359 .fno = gen_helper_gvec_umin16,
2360 .opt_opc = vecop_list,
2361 .vece = MO_16 },
2362 { .fni4 = tcg_gen_umin_i32,
2363 .fniv = tcg_gen_umin_vec,
2364 .fno = gen_helper_gvec_umin32,
2365 .opt_opc = vecop_list,
2366 .vece = MO_32 },
2367 { .fni8 = tcg_gen_umin_i64,
2368 .fniv = tcg_gen_umin_vec,
2369 .fno = gen_helper_gvec_umin64,
2370 .opt_opc = vecop_list,
2371 .vece = MO_64 }
2373 tcg_debug_assert(vece <= MO_64);
2374 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2377 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2378 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2380 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2381 static const GVecGen3 g[4] = {
2382 { .fniv = tcg_gen_smax_vec,
2383 .fno = gen_helper_gvec_smax8,
2384 .opt_opc = vecop_list,
2385 .vece = MO_8 },
2386 { .fniv = tcg_gen_smax_vec,
2387 .fno = gen_helper_gvec_smax16,
2388 .opt_opc = vecop_list,
2389 .vece = MO_16 },
2390 { .fni4 = tcg_gen_smax_i32,
2391 .fniv = tcg_gen_smax_vec,
2392 .fno = gen_helper_gvec_smax32,
2393 .opt_opc = vecop_list,
2394 .vece = MO_32 },
2395 { .fni8 = tcg_gen_smax_i64,
2396 .fniv = tcg_gen_smax_vec,
2397 .fno = gen_helper_gvec_smax64,
2398 .opt_opc = vecop_list,
2399 .vece = MO_64 }
2401 tcg_debug_assert(vece <= MO_64);
2402 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2405 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2406 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2408 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2409 static const GVecGen3 g[4] = {
2410 { .fniv = tcg_gen_umax_vec,
2411 .fno = gen_helper_gvec_umax8,
2412 .opt_opc = vecop_list,
2413 .vece = MO_8 },
2414 { .fniv = tcg_gen_umax_vec,
2415 .fno = gen_helper_gvec_umax16,
2416 .opt_opc = vecop_list,
2417 .vece = MO_16 },
2418 { .fni4 = tcg_gen_umax_i32,
2419 .fniv = tcg_gen_umax_vec,
2420 .fno = gen_helper_gvec_umax32,
2421 .opt_opc = vecop_list,
2422 .vece = MO_32 },
2423 { .fni8 = tcg_gen_umax_i64,
2424 .fniv = tcg_gen_umax_vec,
2425 .fno = gen_helper_gvec_umax64,
2426 .opt_opc = vecop_list,
2427 .vece = MO_64 }
2429 tcg_debug_assert(vece <= MO_64);
2430 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2433 /* Perform a vector negation using normal negation and a mask.
2434 Compare gen_subv_mask above. */
2435 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2437 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2438 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
2440 tcg_gen_andc_i64(t3, m, b);
2441 tcg_gen_andc_i64(t2, b, m);
2442 tcg_gen_sub_i64(d, m, t2);
2443 tcg_gen_xor_i64(d, d, t3);
2445 tcg_temp_free_i64(t2);
2446 tcg_temp_free_i64(t3);
2449 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2451 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2452 gen_negv_mask(d, b, m);
2455 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2457 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2458 gen_negv_mask(d, b, m);
2461 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2463 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2464 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2466 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2467 tcg_gen_neg_i64(t2, b);
2468 tcg_gen_neg_i64(t1, t1);
2469 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2471 tcg_temp_free_i64(t1);
2472 tcg_temp_free_i64(t2);
2475 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2476 uint32_t oprsz, uint32_t maxsz)
2478 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2479 static const GVecGen2 g[4] = {
2480 { .fni8 = tcg_gen_vec_neg8_i64,
2481 .fniv = tcg_gen_neg_vec,
2482 .fno = gen_helper_gvec_neg8,
2483 .opt_opc = vecop_list,
2484 .vece = MO_8 },
2485 { .fni8 = tcg_gen_vec_neg16_i64,
2486 .fniv = tcg_gen_neg_vec,
2487 .fno = gen_helper_gvec_neg16,
2488 .opt_opc = vecop_list,
2489 .vece = MO_16 },
2490 { .fni4 = tcg_gen_neg_i32,
2491 .fniv = tcg_gen_neg_vec,
2492 .fno = gen_helper_gvec_neg32,
2493 .opt_opc = vecop_list,
2494 .vece = MO_32 },
2495 { .fni8 = tcg_gen_neg_i64,
2496 .fniv = tcg_gen_neg_vec,
2497 .fno = gen_helper_gvec_neg64,
2498 .opt_opc = vecop_list,
2499 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2500 .vece = MO_64 },
2503 tcg_debug_assert(vece <= MO_64);
2504 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2507 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2509 TCGv_i64 t = tcg_temp_ebb_new_i64();
2510 int nbit = 8 << vece;
2512 /* Create -1 for each negative element. */
2513 tcg_gen_shri_i64(t, b, nbit - 1);
2514 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2515 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2518 * Invert (via xor -1) and add one.
2519 * Because of the ordering the msb is cleared,
2520 * so we never have carry into the next element.
2522 tcg_gen_xor_i64(d, b, t);
2523 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2524 tcg_gen_add_i64(d, d, t);
2526 tcg_temp_free_i64(t);
2529 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2531 gen_absv_mask(d, b, MO_8);
2534 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2536 gen_absv_mask(d, b, MO_16);
2539 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2540 uint32_t oprsz, uint32_t maxsz)
2542 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2543 static const GVecGen2 g[4] = {
2544 { .fni8 = tcg_gen_vec_abs8_i64,
2545 .fniv = tcg_gen_abs_vec,
2546 .fno = gen_helper_gvec_abs8,
2547 .opt_opc = vecop_list,
2548 .vece = MO_8 },
2549 { .fni8 = tcg_gen_vec_abs16_i64,
2550 .fniv = tcg_gen_abs_vec,
2551 .fno = gen_helper_gvec_abs16,
2552 .opt_opc = vecop_list,
2553 .vece = MO_16 },
2554 { .fni4 = tcg_gen_abs_i32,
2555 .fniv = tcg_gen_abs_vec,
2556 .fno = gen_helper_gvec_abs32,
2557 .opt_opc = vecop_list,
2558 .vece = MO_32 },
2559 { .fni8 = tcg_gen_abs_i64,
2560 .fniv = tcg_gen_abs_vec,
2561 .fno = gen_helper_gvec_abs64,
2562 .opt_opc = vecop_list,
2563 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2564 .vece = MO_64 },
2567 tcg_debug_assert(vece <= MO_64);
2568 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2571 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2572 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2574 static const GVecGen3 g = {
2575 .fni8 = tcg_gen_and_i64,
2576 .fniv = tcg_gen_and_vec,
2577 .fno = gen_helper_gvec_and,
2578 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2581 if (aofs == bofs) {
2582 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2583 } else {
2584 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2588 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2589 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2591 static const GVecGen3 g = {
2592 .fni8 = tcg_gen_or_i64,
2593 .fniv = tcg_gen_or_vec,
2594 .fno = gen_helper_gvec_or,
2595 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2598 if (aofs == bofs) {
2599 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2600 } else {
2601 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2605 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2606 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2608 static const GVecGen3 g = {
2609 .fni8 = tcg_gen_xor_i64,
2610 .fniv = tcg_gen_xor_vec,
2611 .fno = gen_helper_gvec_xor,
2612 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2615 if (aofs == bofs) {
2616 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2617 } else {
2618 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2622 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2623 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2625 static const GVecGen3 g = {
2626 .fni8 = tcg_gen_andc_i64,
2627 .fniv = tcg_gen_andc_vec,
2628 .fno = gen_helper_gvec_andc,
2629 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2632 if (aofs == bofs) {
2633 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2634 } else {
2635 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2639 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2640 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2642 static const GVecGen3 g = {
2643 .fni8 = tcg_gen_orc_i64,
2644 .fniv = tcg_gen_orc_vec,
2645 .fno = gen_helper_gvec_orc,
2646 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2649 if (aofs == bofs) {
2650 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2651 } else {
2652 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2656 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2657 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2659 static const GVecGen3 g = {
2660 .fni8 = tcg_gen_nand_i64,
2661 .fniv = tcg_gen_nand_vec,
2662 .fno = gen_helper_gvec_nand,
2663 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2666 if (aofs == bofs) {
2667 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2668 } else {
2669 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2673 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2674 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2676 static const GVecGen3 g = {
2677 .fni8 = tcg_gen_nor_i64,
2678 .fniv = tcg_gen_nor_vec,
2679 .fno = gen_helper_gvec_nor,
2680 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2683 if (aofs == bofs) {
2684 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2685 } else {
2686 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2690 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2691 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2693 static const GVecGen3 g = {
2694 .fni8 = tcg_gen_eqv_i64,
2695 .fniv = tcg_gen_eqv_vec,
2696 .fno = gen_helper_gvec_eqv,
2697 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2700 if (aofs == bofs) {
2701 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2702 } else {
2703 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2707 static const GVecGen2s gop_ands = {
2708 .fni8 = tcg_gen_and_i64,
2709 .fniv = tcg_gen_and_vec,
2710 .fno = gen_helper_gvec_ands,
2711 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2712 .vece = MO_64
2715 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2716 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2718 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2719 tcg_gen_dup_i64(vece, tmp, c);
2720 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2721 tcg_temp_free_i64(tmp);
2724 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2725 int64_t c, uint32_t oprsz, uint32_t maxsz)
2727 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2728 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2731 void tcg_gen_gvec_andcs(unsigned vece, uint32_t dofs, uint32_t aofs,
2732 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2734 static GVecGen2s g = {
2735 .fni8 = tcg_gen_andc_i64,
2736 .fniv = tcg_gen_andc_vec,
2737 .fno = gen_helper_gvec_andcs,
2738 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2739 .vece = MO_64
2742 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2743 tcg_gen_dup_i64(vece, tmp, c);
2744 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &g);
2745 tcg_temp_free_i64(tmp);
2748 static const GVecGen2s gop_xors = {
2749 .fni8 = tcg_gen_xor_i64,
2750 .fniv = tcg_gen_xor_vec,
2751 .fno = gen_helper_gvec_xors,
2752 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2753 .vece = MO_64
2756 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2757 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2759 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2760 tcg_gen_dup_i64(vece, tmp, c);
2761 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2762 tcg_temp_free_i64(tmp);
2765 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2766 int64_t c, uint32_t oprsz, uint32_t maxsz)
2768 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2769 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2772 static const GVecGen2s gop_ors = {
2773 .fni8 = tcg_gen_or_i64,
2774 .fniv = tcg_gen_or_vec,
2775 .fno = gen_helper_gvec_ors,
2776 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2777 .vece = MO_64
2780 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2781 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2783 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2784 tcg_gen_dup_i64(vece, tmp, c);
2785 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2786 tcg_temp_free_i64(tmp);
2789 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2790 int64_t c, uint32_t oprsz, uint32_t maxsz)
2792 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2793 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2796 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2798 uint64_t mask = dup_const(MO_8, 0xff << c);
2799 tcg_gen_shli_i64(d, a, c);
2800 tcg_gen_andi_i64(d, d, mask);
2803 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2805 uint64_t mask = dup_const(MO_16, 0xffff << c);
2806 tcg_gen_shli_i64(d, a, c);
2807 tcg_gen_andi_i64(d, d, mask);
2810 void tcg_gen_vec_shl8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2812 uint32_t mask = dup_const(MO_8, 0xff << c);
2813 tcg_gen_shli_i32(d, a, c);
2814 tcg_gen_andi_i32(d, d, mask);
2817 void tcg_gen_vec_shl16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2819 uint32_t mask = dup_const(MO_16, 0xffff << c);
2820 tcg_gen_shli_i32(d, a, c);
2821 tcg_gen_andi_i32(d, d, mask);
2824 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2825 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2827 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2828 static const GVecGen2i g[4] = {
2829 { .fni8 = tcg_gen_vec_shl8i_i64,
2830 .fniv = tcg_gen_shli_vec,
2831 .fno = gen_helper_gvec_shl8i,
2832 .opt_opc = vecop_list,
2833 .vece = MO_8 },
2834 { .fni8 = tcg_gen_vec_shl16i_i64,
2835 .fniv = tcg_gen_shli_vec,
2836 .fno = gen_helper_gvec_shl16i,
2837 .opt_opc = vecop_list,
2838 .vece = MO_16 },
2839 { .fni4 = tcg_gen_shli_i32,
2840 .fniv = tcg_gen_shli_vec,
2841 .fno = gen_helper_gvec_shl32i,
2842 .opt_opc = vecop_list,
2843 .vece = MO_32 },
2844 { .fni8 = tcg_gen_shli_i64,
2845 .fniv = tcg_gen_shli_vec,
2846 .fno = gen_helper_gvec_shl64i,
2847 .opt_opc = vecop_list,
2848 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2849 .vece = MO_64 },
2852 tcg_debug_assert(vece <= MO_64);
2853 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2854 if (shift == 0) {
2855 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2856 } else {
2857 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2861 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2863 uint64_t mask = dup_const(MO_8, 0xff >> c);
2864 tcg_gen_shri_i64(d, a, c);
2865 tcg_gen_andi_i64(d, d, mask);
2868 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2870 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2871 tcg_gen_shri_i64(d, a, c);
2872 tcg_gen_andi_i64(d, d, mask);
2875 void tcg_gen_vec_shr8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2877 uint32_t mask = dup_const(MO_8, 0xff >> c);
2878 tcg_gen_shri_i32(d, a, c);
2879 tcg_gen_andi_i32(d, d, mask);
2882 void tcg_gen_vec_shr16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2884 uint32_t mask = dup_const(MO_16, 0xffff >> c);
2885 tcg_gen_shri_i32(d, a, c);
2886 tcg_gen_andi_i32(d, d, mask);
2889 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2890 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2892 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2893 static const GVecGen2i g[4] = {
2894 { .fni8 = tcg_gen_vec_shr8i_i64,
2895 .fniv = tcg_gen_shri_vec,
2896 .fno = gen_helper_gvec_shr8i,
2897 .opt_opc = vecop_list,
2898 .vece = MO_8 },
2899 { .fni8 = tcg_gen_vec_shr16i_i64,
2900 .fniv = tcg_gen_shri_vec,
2901 .fno = gen_helper_gvec_shr16i,
2902 .opt_opc = vecop_list,
2903 .vece = MO_16 },
2904 { .fni4 = tcg_gen_shri_i32,
2905 .fniv = tcg_gen_shri_vec,
2906 .fno = gen_helper_gvec_shr32i,
2907 .opt_opc = vecop_list,
2908 .vece = MO_32 },
2909 { .fni8 = tcg_gen_shri_i64,
2910 .fniv = tcg_gen_shri_vec,
2911 .fno = gen_helper_gvec_shr64i,
2912 .opt_opc = vecop_list,
2913 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2914 .vece = MO_64 },
2917 tcg_debug_assert(vece <= MO_64);
2918 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2919 if (shift == 0) {
2920 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2921 } else {
2922 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2926 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2928 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2929 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2930 TCGv_i64 s = tcg_temp_ebb_new_i64();
2932 tcg_gen_shri_i64(d, a, c);
2933 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2934 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2935 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2936 tcg_gen_or_i64(d, d, s); /* include sign extension */
2937 tcg_temp_free_i64(s);
2940 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2942 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2943 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2944 TCGv_i64 s = tcg_temp_ebb_new_i64();
2946 tcg_gen_shri_i64(d, a, c);
2947 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2948 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2949 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2950 tcg_gen_or_i64(d, d, s); /* include sign extension */
2951 tcg_temp_free_i64(s);
2954 void tcg_gen_vec_sar8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2956 uint32_t s_mask = dup_const(MO_8, 0x80 >> c);
2957 uint32_t c_mask = dup_const(MO_8, 0xff >> c);
2958 TCGv_i32 s = tcg_temp_ebb_new_i32();
2960 tcg_gen_shri_i32(d, a, c);
2961 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2962 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2963 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2964 tcg_gen_or_i32(d, d, s); /* include sign extension */
2965 tcg_temp_free_i32(s);
2968 void tcg_gen_vec_sar16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2970 uint32_t s_mask = dup_const(MO_16, 0x8000 >> c);
2971 uint32_t c_mask = dup_const(MO_16, 0xffff >> c);
2972 TCGv_i32 s = tcg_temp_ebb_new_i32();
2974 tcg_gen_shri_i32(d, a, c);
2975 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2976 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2977 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2978 tcg_gen_or_i32(d, d, s); /* include sign extension */
2979 tcg_temp_free_i32(s);
2982 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2983 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2985 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
2986 static const GVecGen2i g[4] = {
2987 { .fni8 = tcg_gen_vec_sar8i_i64,
2988 .fniv = tcg_gen_sari_vec,
2989 .fno = gen_helper_gvec_sar8i,
2990 .opt_opc = vecop_list,
2991 .vece = MO_8 },
2992 { .fni8 = tcg_gen_vec_sar16i_i64,
2993 .fniv = tcg_gen_sari_vec,
2994 .fno = gen_helper_gvec_sar16i,
2995 .opt_opc = vecop_list,
2996 .vece = MO_16 },
2997 { .fni4 = tcg_gen_sari_i32,
2998 .fniv = tcg_gen_sari_vec,
2999 .fno = gen_helper_gvec_sar32i,
3000 .opt_opc = vecop_list,
3001 .vece = MO_32 },
3002 { .fni8 = tcg_gen_sari_i64,
3003 .fniv = tcg_gen_sari_vec,
3004 .fno = gen_helper_gvec_sar64i,
3005 .opt_opc = vecop_list,
3006 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3007 .vece = MO_64 },
3010 tcg_debug_assert(vece <= MO_64);
3011 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3012 if (shift == 0) {
3013 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3014 } else {
3015 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3019 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3021 uint64_t mask = dup_const(MO_8, 0xff << c);
3023 tcg_gen_shli_i64(d, a, c);
3024 tcg_gen_shri_i64(a, a, 8 - c);
3025 tcg_gen_andi_i64(d, d, mask);
3026 tcg_gen_andi_i64(a, a, ~mask);
3027 tcg_gen_or_i64(d, d, a);
3030 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3032 uint64_t mask = dup_const(MO_16, 0xffff << c);
3034 tcg_gen_shli_i64(d, a, c);
3035 tcg_gen_shri_i64(a, a, 16 - c);
3036 tcg_gen_andi_i64(d, d, mask);
3037 tcg_gen_andi_i64(a, a, ~mask);
3038 tcg_gen_or_i64(d, d, a);
3041 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
3042 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3044 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
3045 static const GVecGen2i g[4] = {
3046 { .fni8 = tcg_gen_vec_rotl8i_i64,
3047 .fniv = tcg_gen_rotli_vec,
3048 .fno = gen_helper_gvec_rotl8i,
3049 .opt_opc = vecop_list,
3050 .vece = MO_8 },
3051 { .fni8 = tcg_gen_vec_rotl16i_i64,
3052 .fniv = tcg_gen_rotli_vec,
3053 .fno = gen_helper_gvec_rotl16i,
3054 .opt_opc = vecop_list,
3055 .vece = MO_16 },
3056 { .fni4 = tcg_gen_rotli_i32,
3057 .fniv = tcg_gen_rotli_vec,
3058 .fno = gen_helper_gvec_rotl32i,
3059 .opt_opc = vecop_list,
3060 .vece = MO_32 },
3061 { .fni8 = tcg_gen_rotli_i64,
3062 .fniv = tcg_gen_rotli_vec,
3063 .fno = gen_helper_gvec_rotl64i,
3064 .opt_opc = vecop_list,
3065 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3066 .vece = MO_64 },
3069 tcg_debug_assert(vece <= MO_64);
3070 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3071 if (shift == 0) {
3072 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3073 } else {
3074 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3078 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
3079 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3081 tcg_debug_assert(vece <= MO_64);
3082 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3083 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
3084 oprsz, maxsz);
3088 * Specialized generation vector shifts by a non-constant scalar.
3091 typedef struct {
3092 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
3093 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
3094 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
3095 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
3096 gen_helper_gvec_2 *fno[4];
3097 TCGOpcode s_list[2];
3098 TCGOpcode v_list[2];
3099 } GVecGen2sh;
3101 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3102 uint32_t oprsz, uint32_t tysz, TCGType type,
3103 TCGv_i32 shift,
3104 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
3106 for (uint32_t i = 0; i < oprsz; i += tysz) {
3107 TCGv_vec t0 = tcg_temp_new_vec(type);
3108 TCGv_vec t1 = tcg_temp_new_vec(type);
3110 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
3111 fni(vece, t1, t0, shift);
3112 tcg_gen_st_vec(t1, tcg_env, dofs + i);
3116 static void
3117 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
3118 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
3120 TCGType type;
3121 uint32_t some;
3123 check_size_align(oprsz, maxsz, dofs | aofs);
3124 check_overlap_2(dofs, aofs, maxsz);
3126 /* If the backend has a scalar expansion, great. */
3127 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
3128 if (type) {
3129 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3130 switch (type) {
3131 case TCG_TYPE_V256:
3132 some = QEMU_ALIGN_DOWN(oprsz, 32);
3133 expand_2sh_vec(vece, dofs, aofs, some, 32,
3134 TCG_TYPE_V256, shift, g->fniv_s);
3135 if (some == oprsz) {
3136 break;
3138 dofs += some;
3139 aofs += some;
3140 oprsz -= some;
3141 maxsz -= some;
3142 /* fallthru */
3143 case TCG_TYPE_V128:
3144 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
3145 TCG_TYPE_V128, shift, g->fniv_s);
3146 break;
3147 case TCG_TYPE_V64:
3148 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
3149 TCG_TYPE_V64, shift, g->fniv_s);
3150 break;
3151 default:
3152 g_assert_not_reached();
3154 tcg_swap_vecop_list(hold_list);
3155 goto clear_tail;
3158 /* If the backend supports variable vector shifts, also cool. */
3159 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
3160 if (type) {
3161 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3162 TCGv_vec v_shift = tcg_temp_new_vec(type);
3164 if (vece == MO_64) {
3165 TCGv_i64 sh64 = tcg_temp_ebb_new_i64();
3166 tcg_gen_extu_i32_i64(sh64, shift);
3167 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
3168 tcg_temp_free_i64(sh64);
3169 } else {
3170 tcg_gen_dup_i32_vec(vece, v_shift, shift);
3173 switch (type) {
3174 case TCG_TYPE_V256:
3175 some = QEMU_ALIGN_DOWN(oprsz, 32);
3176 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
3177 v_shift, false, g->fniv_v);
3178 if (some == oprsz) {
3179 break;
3181 dofs += some;
3182 aofs += some;
3183 oprsz -= some;
3184 maxsz -= some;
3185 /* fallthru */
3186 case TCG_TYPE_V128:
3187 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
3188 v_shift, false, g->fniv_v);
3189 break;
3190 case TCG_TYPE_V64:
3191 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
3192 v_shift, false, g->fniv_v);
3193 break;
3194 default:
3195 g_assert_not_reached();
3197 tcg_temp_free_vec(v_shift);
3198 tcg_swap_vecop_list(hold_list);
3199 goto clear_tail;
3202 /* Otherwise fall back to integral... */
3203 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3204 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
3205 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3206 TCGv_i64 sh64 = tcg_temp_ebb_new_i64();
3207 tcg_gen_extu_i32_i64(sh64, shift);
3208 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
3209 tcg_temp_free_i64(sh64);
3210 } else {
3211 TCGv_ptr a0 = tcg_temp_ebb_new_ptr();
3212 TCGv_ptr a1 = tcg_temp_ebb_new_ptr();
3213 TCGv_i32 desc = tcg_temp_ebb_new_i32();
3215 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
3216 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
3217 tcg_gen_addi_ptr(a0, tcg_env, dofs);
3218 tcg_gen_addi_ptr(a1, tcg_env, aofs);
3220 g->fno[vece](a0, a1, desc);
3222 tcg_temp_free_ptr(a0);
3223 tcg_temp_free_ptr(a1);
3224 tcg_temp_free_i32(desc);
3225 return;
3228 clear_tail:
3229 if (oprsz < maxsz) {
3230 expand_clr(dofs + oprsz, maxsz - oprsz);
3234 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
3235 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3237 static const GVecGen2sh g = {
3238 .fni4 = tcg_gen_shl_i32,
3239 .fni8 = tcg_gen_shl_i64,
3240 .fniv_s = tcg_gen_shls_vec,
3241 .fniv_v = tcg_gen_shlv_vec,
3242 .fno = {
3243 gen_helper_gvec_shl8i,
3244 gen_helper_gvec_shl16i,
3245 gen_helper_gvec_shl32i,
3246 gen_helper_gvec_shl64i,
3248 .s_list = { INDEX_op_shls_vec, 0 },
3249 .v_list = { INDEX_op_shlv_vec, 0 },
3252 tcg_debug_assert(vece <= MO_64);
3253 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3256 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3257 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3259 static const GVecGen2sh g = {
3260 .fni4 = tcg_gen_shr_i32,
3261 .fni8 = tcg_gen_shr_i64,
3262 .fniv_s = tcg_gen_shrs_vec,
3263 .fniv_v = tcg_gen_shrv_vec,
3264 .fno = {
3265 gen_helper_gvec_shr8i,
3266 gen_helper_gvec_shr16i,
3267 gen_helper_gvec_shr32i,
3268 gen_helper_gvec_shr64i,
3270 .s_list = { INDEX_op_shrs_vec, 0 },
3271 .v_list = { INDEX_op_shrv_vec, 0 },
3274 tcg_debug_assert(vece <= MO_64);
3275 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3278 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
3279 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3281 static const GVecGen2sh g = {
3282 .fni4 = tcg_gen_sar_i32,
3283 .fni8 = tcg_gen_sar_i64,
3284 .fniv_s = tcg_gen_sars_vec,
3285 .fniv_v = tcg_gen_sarv_vec,
3286 .fno = {
3287 gen_helper_gvec_sar8i,
3288 gen_helper_gvec_sar16i,
3289 gen_helper_gvec_sar32i,
3290 gen_helper_gvec_sar64i,
3292 .s_list = { INDEX_op_sars_vec, 0 },
3293 .v_list = { INDEX_op_sarv_vec, 0 },
3296 tcg_debug_assert(vece <= MO_64);
3297 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3300 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
3301 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3303 static const GVecGen2sh g = {
3304 .fni4 = tcg_gen_rotl_i32,
3305 .fni8 = tcg_gen_rotl_i64,
3306 .fniv_s = tcg_gen_rotls_vec,
3307 .fniv_v = tcg_gen_rotlv_vec,
3308 .fno = {
3309 gen_helper_gvec_rotl8i,
3310 gen_helper_gvec_rotl16i,
3311 gen_helper_gvec_rotl32i,
3312 gen_helper_gvec_rotl64i,
3314 .s_list = { INDEX_op_rotls_vec, 0 },
3315 .v_list = { INDEX_op_rotlv_vec, 0 },
3318 tcg_debug_assert(vece <= MO_64);
3319 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3322 void tcg_gen_gvec_rotrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3323 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3325 TCGv_i32 tmp = tcg_temp_ebb_new_i32();
3327 tcg_gen_neg_i32(tmp, shift);
3328 tcg_gen_andi_i32(tmp, tmp, (8 << vece) - 1);
3329 tcg_gen_gvec_rotls(vece, dofs, aofs, tmp, oprsz, maxsz);
3330 tcg_temp_free_i32(tmp);
3334 * Expand D = A << (B % element bits)
3336 * Unlike scalar shifts, where it is easy for the target front end
3337 * to include the modulo as part of the expansion. If the target
3338 * naturally includes the modulo as part of the operation, great!
3339 * If the target has some other behaviour from out-of-range shifts,
3340 * then it could not use this function anyway, and would need to
3341 * do it's own expansion with custom functions.
3343 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3344 TCGv_vec a, TCGv_vec b)
3346 TCGv_vec t = tcg_temp_new_vec_matching(d);
3347 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3349 tcg_gen_and_vec(vece, t, b, m);
3350 tcg_gen_shlv_vec(vece, d, a, t);
3351 tcg_temp_free_vec(t);
3354 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3356 TCGv_i32 t = tcg_temp_ebb_new_i32();
3358 tcg_gen_andi_i32(t, b, 31);
3359 tcg_gen_shl_i32(d, a, t);
3360 tcg_temp_free_i32(t);
3363 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3365 TCGv_i64 t = tcg_temp_ebb_new_i64();
3367 tcg_gen_andi_i64(t, b, 63);
3368 tcg_gen_shl_i64(d, a, t);
3369 tcg_temp_free_i64(t);
3372 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3373 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3375 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3376 static const GVecGen3 g[4] = {
3377 { .fniv = tcg_gen_shlv_mod_vec,
3378 .fno = gen_helper_gvec_shl8v,
3379 .opt_opc = vecop_list,
3380 .vece = MO_8 },
3381 { .fniv = tcg_gen_shlv_mod_vec,
3382 .fno = gen_helper_gvec_shl16v,
3383 .opt_opc = vecop_list,
3384 .vece = MO_16 },
3385 { .fni4 = tcg_gen_shl_mod_i32,
3386 .fniv = tcg_gen_shlv_mod_vec,
3387 .fno = gen_helper_gvec_shl32v,
3388 .opt_opc = vecop_list,
3389 .vece = MO_32 },
3390 { .fni8 = tcg_gen_shl_mod_i64,
3391 .fniv = tcg_gen_shlv_mod_vec,
3392 .fno = gen_helper_gvec_shl64v,
3393 .opt_opc = vecop_list,
3394 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3395 .vece = MO_64 },
3398 tcg_debug_assert(vece <= MO_64);
3399 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3403 * Similarly for logical right shifts.
3406 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3407 TCGv_vec a, TCGv_vec b)
3409 TCGv_vec t = tcg_temp_new_vec_matching(d);
3410 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3412 tcg_gen_and_vec(vece, t, b, m);
3413 tcg_gen_shrv_vec(vece, d, a, t);
3414 tcg_temp_free_vec(t);
3417 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3419 TCGv_i32 t = tcg_temp_ebb_new_i32();
3421 tcg_gen_andi_i32(t, b, 31);
3422 tcg_gen_shr_i32(d, a, t);
3423 tcg_temp_free_i32(t);
3426 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3428 TCGv_i64 t = tcg_temp_ebb_new_i64();
3430 tcg_gen_andi_i64(t, b, 63);
3431 tcg_gen_shr_i64(d, a, t);
3432 tcg_temp_free_i64(t);
3435 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3436 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3438 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3439 static const GVecGen3 g[4] = {
3440 { .fniv = tcg_gen_shrv_mod_vec,
3441 .fno = gen_helper_gvec_shr8v,
3442 .opt_opc = vecop_list,
3443 .vece = MO_8 },
3444 { .fniv = tcg_gen_shrv_mod_vec,
3445 .fno = gen_helper_gvec_shr16v,
3446 .opt_opc = vecop_list,
3447 .vece = MO_16 },
3448 { .fni4 = tcg_gen_shr_mod_i32,
3449 .fniv = tcg_gen_shrv_mod_vec,
3450 .fno = gen_helper_gvec_shr32v,
3451 .opt_opc = vecop_list,
3452 .vece = MO_32 },
3453 { .fni8 = tcg_gen_shr_mod_i64,
3454 .fniv = tcg_gen_shrv_mod_vec,
3455 .fno = gen_helper_gvec_shr64v,
3456 .opt_opc = vecop_list,
3457 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3458 .vece = MO_64 },
3461 tcg_debug_assert(vece <= MO_64);
3462 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3466 * Similarly for arithmetic right shifts.
3469 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3470 TCGv_vec a, TCGv_vec b)
3472 TCGv_vec t = tcg_temp_new_vec_matching(d);
3473 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3475 tcg_gen_and_vec(vece, t, b, m);
3476 tcg_gen_sarv_vec(vece, d, a, t);
3477 tcg_temp_free_vec(t);
3480 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3482 TCGv_i32 t = tcg_temp_ebb_new_i32();
3484 tcg_gen_andi_i32(t, b, 31);
3485 tcg_gen_sar_i32(d, a, t);
3486 tcg_temp_free_i32(t);
3489 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3491 TCGv_i64 t = tcg_temp_ebb_new_i64();
3493 tcg_gen_andi_i64(t, b, 63);
3494 tcg_gen_sar_i64(d, a, t);
3495 tcg_temp_free_i64(t);
3498 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3499 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3501 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3502 static const GVecGen3 g[4] = {
3503 { .fniv = tcg_gen_sarv_mod_vec,
3504 .fno = gen_helper_gvec_sar8v,
3505 .opt_opc = vecop_list,
3506 .vece = MO_8 },
3507 { .fniv = tcg_gen_sarv_mod_vec,
3508 .fno = gen_helper_gvec_sar16v,
3509 .opt_opc = vecop_list,
3510 .vece = MO_16 },
3511 { .fni4 = tcg_gen_sar_mod_i32,
3512 .fniv = tcg_gen_sarv_mod_vec,
3513 .fno = gen_helper_gvec_sar32v,
3514 .opt_opc = vecop_list,
3515 .vece = MO_32 },
3516 { .fni8 = tcg_gen_sar_mod_i64,
3517 .fniv = tcg_gen_sarv_mod_vec,
3518 .fno = gen_helper_gvec_sar64v,
3519 .opt_opc = vecop_list,
3520 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3521 .vece = MO_64 },
3524 tcg_debug_assert(vece <= MO_64);
3525 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3529 * Similarly for rotates.
3532 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
3533 TCGv_vec a, TCGv_vec b)
3535 TCGv_vec t = tcg_temp_new_vec_matching(d);
3536 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3538 tcg_gen_and_vec(vece, t, b, m);
3539 tcg_gen_rotlv_vec(vece, d, a, t);
3540 tcg_temp_free_vec(t);
3543 static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3545 TCGv_i32 t = tcg_temp_ebb_new_i32();
3547 tcg_gen_andi_i32(t, b, 31);
3548 tcg_gen_rotl_i32(d, a, t);
3549 tcg_temp_free_i32(t);
3552 static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3554 TCGv_i64 t = tcg_temp_ebb_new_i64();
3556 tcg_gen_andi_i64(t, b, 63);
3557 tcg_gen_rotl_i64(d, a, t);
3558 tcg_temp_free_i64(t);
3561 void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3562 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3564 static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 };
3565 static const GVecGen3 g[4] = {
3566 { .fniv = tcg_gen_rotlv_mod_vec,
3567 .fno = gen_helper_gvec_rotl8v,
3568 .opt_opc = vecop_list,
3569 .vece = MO_8 },
3570 { .fniv = tcg_gen_rotlv_mod_vec,
3571 .fno = gen_helper_gvec_rotl16v,
3572 .opt_opc = vecop_list,
3573 .vece = MO_16 },
3574 { .fni4 = tcg_gen_rotl_mod_i32,
3575 .fniv = tcg_gen_rotlv_mod_vec,
3576 .fno = gen_helper_gvec_rotl32v,
3577 .opt_opc = vecop_list,
3578 .vece = MO_32 },
3579 { .fni8 = tcg_gen_rotl_mod_i64,
3580 .fniv = tcg_gen_rotlv_mod_vec,
3581 .fno = gen_helper_gvec_rotl64v,
3582 .opt_opc = vecop_list,
3583 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3584 .vece = MO_64 },
3587 tcg_debug_assert(vece <= MO_64);
3588 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3591 static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d,
3592 TCGv_vec a, TCGv_vec b)
3594 TCGv_vec t = tcg_temp_new_vec_matching(d);
3595 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3597 tcg_gen_and_vec(vece, t, b, m);
3598 tcg_gen_rotrv_vec(vece, d, a, t);
3599 tcg_temp_free_vec(t);
3602 static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3604 TCGv_i32 t = tcg_temp_ebb_new_i32();
3606 tcg_gen_andi_i32(t, b, 31);
3607 tcg_gen_rotr_i32(d, a, t);
3608 tcg_temp_free_i32(t);
3611 static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3613 TCGv_i64 t = tcg_temp_ebb_new_i64();
3615 tcg_gen_andi_i64(t, b, 63);
3616 tcg_gen_rotr_i64(d, a, t);
3617 tcg_temp_free_i64(t);
3620 void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3621 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3623 static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 };
3624 static const GVecGen3 g[4] = {
3625 { .fniv = tcg_gen_rotrv_mod_vec,
3626 .fno = gen_helper_gvec_rotr8v,
3627 .opt_opc = vecop_list,
3628 .vece = MO_8 },
3629 { .fniv = tcg_gen_rotrv_mod_vec,
3630 .fno = gen_helper_gvec_rotr16v,
3631 .opt_opc = vecop_list,
3632 .vece = MO_16 },
3633 { .fni4 = tcg_gen_rotr_mod_i32,
3634 .fniv = tcg_gen_rotrv_mod_vec,
3635 .fno = gen_helper_gvec_rotr32v,
3636 .opt_opc = vecop_list,
3637 .vece = MO_32 },
3638 { .fni8 = tcg_gen_rotr_mod_i64,
3639 .fniv = tcg_gen_rotrv_mod_vec,
3640 .fno = gen_helper_gvec_rotr64v,
3641 .opt_opc = vecop_list,
3642 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3643 .vece = MO_64 },
3646 tcg_debug_assert(vece <= MO_64);
3647 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3650 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3651 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3652 uint32_t oprsz, TCGCond cond)
3654 TCGv_i32 t0 = tcg_temp_ebb_new_i32();
3655 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
3656 uint32_t i;
3658 for (i = 0; i < oprsz; i += 4) {
3659 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
3660 tcg_gen_ld_i32(t1, tcg_env, bofs + i);
3661 tcg_gen_negsetcond_i32(cond, t0, t0, t1);
3662 tcg_gen_st_i32(t0, tcg_env, dofs + i);
3664 tcg_temp_free_i32(t1);
3665 tcg_temp_free_i32(t0);
3668 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3669 uint32_t oprsz, TCGCond cond)
3671 TCGv_i64 t0 = tcg_temp_ebb_new_i64();
3672 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
3673 uint32_t i;
3675 for (i = 0; i < oprsz; i += 8) {
3676 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
3677 tcg_gen_ld_i64(t1, tcg_env, bofs + i);
3678 tcg_gen_negsetcond_i64(cond, t0, t0, t1);
3679 tcg_gen_st_i64(t0, tcg_env, dofs + i);
3681 tcg_temp_free_i64(t1);
3682 tcg_temp_free_i64(t0);
3685 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3686 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3687 TCGType type, TCGCond cond)
3689 for (uint32_t i = 0; i < oprsz; i += tysz) {
3690 TCGv_vec t0 = tcg_temp_new_vec(type);
3691 TCGv_vec t1 = tcg_temp_new_vec(type);
3692 TCGv_vec t2 = tcg_temp_new_vec(type);
3694 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
3695 tcg_gen_ld_vec(t1, tcg_env, bofs + i);
3696 tcg_gen_cmp_vec(cond, vece, t2, t0, t1);
3697 tcg_gen_st_vec(t2, tcg_env, dofs + i);
3701 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3702 uint32_t aofs, uint32_t bofs,
3703 uint32_t oprsz, uint32_t maxsz)
3705 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3706 static gen_helper_gvec_3 * const eq_fn[4] = {
3707 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3708 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3710 static gen_helper_gvec_3 * const ne_fn[4] = {
3711 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3712 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3714 static gen_helper_gvec_3 * const lt_fn[4] = {
3715 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3716 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3718 static gen_helper_gvec_3 * const le_fn[4] = {
3719 gen_helper_gvec_le8, gen_helper_gvec_le16,
3720 gen_helper_gvec_le32, gen_helper_gvec_le64
3722 static gen_helper_gvec_3 * const ltu_fn[4] = {
3723 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3724 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3726 static gen_helper_gvec_3 * const leu_fn[4] = {
3727 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3728 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3730 static gen_helper_gvec_3 * const * const fns[16] = {
3731 [TCG_COND_EQ] = eq_fn,
3732 [TCG_COND_NE] = ne_fn,
3733 [TCG_COND_LT] = lt_fn,
3734 [TCG_COND_LE] = le_fn,
3735 [TCG_COND_LTU] = ltu_fn,
3736 [TCG_COND_LEU] = leu_fn,
3739 const TCGOpcode *hold_list;
3740 TCGType type;
3741 uint32_t some;
3743 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3744 check_overlap_3(dofs, aofs, bofs, maxsz);
3746 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3747 do_dup(MO_8, dofs, oprsz, maxsz,
3748 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3749 return;
3753 * Implement inline with a vector type, if possible.
3754 * Prefer integer when 64-bit host and 64-bit comparison.
3756 hold_list = tcg_swap_vecop_list(cmp_list);
3757 type = choose_vector_type(cmp_list, vece, oprsz,
3758 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3759 switch (type) {
3760 case TCG_TYPE_V256:
3761 /* Recall that ARM SVE allows vector sizes that are not a
3762 * power of 2, but always a multiple of 16. The intent is
3763 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3765 some = QEMU_ALIGN_DOWN(oprsz, 32);
3766 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3767 if (some == oprsz) {
3768 break;
3770 dofs += some;
3771 aofs += some;
3772 bofs += some;
3773 oprsz -= some;
3774 maxsz -= some;
3775 /* fallthru */
3776 case TCG_TYPE_V128:
3777 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3778 break;
3779 case TCG_TYPE_V64:
3780 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3781 break;
3783 case 0:
3784 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3785 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3786 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3787 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3788 } else {
3789 gen_helper_gvec_3 * const *fn = fns[cond];
3791 if (fn == NULL) {
3792 uint32_t tmp;
3793 tmp = aofs, aofs = bofs, bofs = tmp;
3794 cond = tcg_swap_cond(cond);
3795 fn = fns[cond];
3796 assert(fn != NULL);
3798 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3799 oprsz = maxsz;
3801 break;
3803 default:
3804 g_assert_not_reached();
3806 tcg_swap_vecop_list(hold_list);
3808 if (oprsz < maxsz) {
3809 expand_clr(dofs + oprsz, maxsz - oprsz);
3813 static void expand_cmps_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3814 uint32_t oprsz, uint32_t tysz, TCGType type,
3815 TCGCond cond, TCGv_vec c)
3817 TCGv_vec t0 = tcg_temp_new_vec(type);
3818 TCGv_vec t1 = tcg_temp_new_vec(type);
3819 uint32_t i;
3821 for (i = 0; i < oprsz; i += tysz) {
3822 tcg_gen_ld_vec(t1, tcg_env, aofs + i);
3823 tcg_gen_cmp_vec(cond, vece, t0, t1, c);
3824 tcg_gen_st_vec(t0, tcg_env, dofs + i);
3828 void tcg_gen_gvec_cmps(TCGCond cond, unsigned vece, uint32_t dofs,
3829 uint32_t aofs, TCGv_i64 c,
3830 uint32_t oprsz, uint32_t maxsz)
3832 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3833 static gen_helper_gvec_2i * const eq_fn[4] = {
3834 gen_helper_gvec_eqs8, gen_helper_gvec_eqs16,
3835 gen_helper_gvec_eqs32, gen_helper_gvec_eqs64
3837 static gen_helper_gvec_2i * const lt_fn[4] = {
3838 gen_helper_gvec_lts8, gen_helper_gvec_lts16,
3839 gen_helper_gvec_lts32, gen_helper_gvec_lts64
3841 static gen_helper_gvec_2i * const le_fn[4] = {
3842 gen_helper_gvec_les8, gen_helper_gvec_les16,
3843 gen_helper_gvec_les32, gen_helper_gvec_les64
3845 static gen_helper_gvec_2i * const ltu_fn[4] = {
3846 gen_helper_gvec_ltus8, gen_helper_gvec_ltus16,
3847 gen_helper_gvec_ltus32, gen_helper_gvec_ltus64
3849 static gen_helper_gvec_2i * const leu_fn[4] = {
3850 gen_helper_gvec_leus8, gen_helper_gvec_leus16,
3851 gen_helper_gvec_leus32, gen_helper_gvec_leus64
3853 static gen_helper_gvec_2i * const * const fns[16] = {
3854 [TCG_COND_EQ] = eq_fn,
3855 [TCG_COND_LT] = lt_fn,
3856 [TCG_COND_LE] = le_fn,
3857 [TCG_COND_LTU] = ltu_fn,
3858 [TCG_COND_LEU] = leu_fn,
3861 TCGType type;
3863 check_size_align(oprsz, maxsz, dofs | aofs);
3864 check_overlap_2(dofs, aofs, maxsz);
3866 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3867 do_dup(MO_8, dofs, oprsz, maxsz,
3868 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3869 return;
3873 * Implement inline with a vector type, if possible.
3874 * Prefer integer when 64-bit host and 64-bit comparison.
3876 type = choose_vector_type(cmp_list, vece, oprsz,
3877 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3878 if (type != 0) {
3879 const TCGOpcode *hold_list = tcg_swap_vecop_list(cmp_list);
3880 TCGv_vec t_vec = tcg_temp_new_vec(type);
3881 uint32_t some;
3883 tcg_gen_dup_i64_vec(vece, t_vec, c);
3884 switch (type) {
3885 case TCG_TYPE_V256:
3886 some = QEMU_ALIGN_DOWN(oprsz, 32);
3887 expand_cmps_vec(vece, dofs, aofs, some, 32,
3888 TCG_TYPE_V256, cond, t_vec);
3889 aofs += some;
3890 dofs += some;
3891 oprsz -= some;
3892 maxsz -= some;
3893 /* fallthru */
3895 case TCG_TYPE_V128:
3896 some = QEMU_ALIGN_DOWN(oprsz, 16);
3897 expand_cmps_vec(vece, dofs, aofs, some, 16,
3898 TCG_TYPE_V128, cond, t_vec);
3899 break;
3901 case TCG_TYPE_V64:
3902 some = QEMU_ALIGN_DOWN(oprsz, 8);
3903 expand_cmps_vec(vece, dofs, aofs, some, 8,
3904 TCG_TYPE_V64, cond, t_vec);
3905 break;
3907 default:
3908 g_assert_not_reached();
3910 tcg_temp_free_vec(t_vec);
3911 tcg_swap_vecop_list(hold_list);
3912 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3913 TCGv_i64 t0 = tcg_temp_ebb_new_i64();
3914 uint32_t i;
3916 for (i = 0; i < oprsz; i += 8) {
3917 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
3918 tcg_gen_negsetcond_i64(cond, t0, t0, c);
3919 tcg_gen_st_i64(t0, tcg_env, dofs + i);
3921 tcg_temp_free_i64(t0);
3922 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3923 TCGv_i32 t0 = tcg_temp_ebb_new_i32();
3924 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
3925 uint32_t i;
3927 tcg_gen_extrl_i64_i32(t1, c);
3928 for (i = 0; i < oprsz; i += 8) {
3929 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
3930 tcg_gen_negsetcond_i32(cond, t0, t0, t1);
3931 tcg_gen_st_i32(t0, tcg_env, dofs + i);
3933 tcg_temp_free_i32(t0);
3934 tcg_temp_free_i32(t1);
3935 } else {
3936 gen_helper_gvec_2i * const *fn = fns[cond];
3937 bool inv = false;
3939 if (fn == NULL) {
3940 cond = tcg_invert_cond(cond);
3941 fn = fns[cond];
3942 assert(fn != NULL);
3943 inv = true;
3945 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, inv, fn[vece]);
3946 return;
3949 if (oprsz < maxsz) {
3950 expand_clr(dofs + oprsz, maxsz - oprsz);
3954 void tcg_gen_gvec_cmpi(TCGCond cond, unsigned vece, uint32_t dofs,
3955 uint32_t aofs, int64_t c,
3956 uint32_t oprsz, uint32_t maxsz)
3958 TCGv_i64 tmp = tcg_constant_i64(c);
3959 tcg_gen_gvec_cmps(cond, vece, dofs, aofs, tmp, oprsz, maxsz);
3962 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
3964 TCGv_i64 t = tcg_temp_ebb_new_i64();
3966 tcg_gen_and_i64(t, b, a);
3967 tcg_gen_andc_i64(d, c, a);
3968 tcg_gen_or_i64(d, d, t);
3969 tcg_temp_free_i64(t);
3972 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
3973 uint32_t bofs, uint32_t cofs,
3974 uint32_t oprsz, uint32_t maxsz)
3976 static const GVecGen4 g = {
3977 .fni8 = tcg_gen_bitsel_i64,
3978 .fniv = tcg_gen_bitsel_vec,
3979 .fno = gen_helper_gvec_bitsel,
3982 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);