uct_pass_is_safe: only require us to capture dead opponents
[pachi.git] / uct / uct.c
blob467081bbbde6e9ecdae20f7c94e72ae70f242f85
1 #include <assert.h>
2 #include <math.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <time.h>
8 #define DEBUG
10 #include "debug.h"
11 #include "board.h"
12 #include "gtp.h"
13 #include "move.h"
14 #include "mq.h"
15 #include "joseki/base.h"
16 #include "playout.h"
17 #include "playout/moggy.h"
18 #include "playout/light.h"
19 #include "tactics/util.h"
20 #include "timeinfo.h"
21 #include "uct/dynkomi.h"
22 #include "uct/internal.h"
23 #include "uct/plugins.h"
24 #include "uct/prior.h"
25 #include "uct/search.h"
26 #include "uct/slave.h"
27 #include "uct/tree.h"
28 #include "uct/uct.h"
29 #include "uct/walk.h"
31 struct uct_policy *policy_ucb1_init(struct uct *u, char *arg);
32 struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg, struct board *board);
33 static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color);
35 /* Maximal simulation length. */
36 #define MC_GAMELEN MAX_GAMELEN
39 static void
40 setup_state(struct uct *u, struct board *b, enum stone color)
42 u->t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0,
43 u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, u->stats_hbits);
44 if (u->force_seed)
45 fast_srandom(u->force_seed);
46 if (UDEBUGL(3))
47 fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed());
48 if (!u->no_tbook && b->moves == 0) {
49 assert(color == S_BLACK);
50 tree_load(u->t, b);
54 static void
55 reset_state(struct uct *u)
57 assert(u->t);
58 tree_done(u->t); u->t = NULL;
61 static void
62 setup_dynkomi(struct uct *u, struct board *b, enum stone to_play)
64 if (u->t->use_extra_komi && !u->pondering && u->dynkomi->permove)
65 u->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, u->t);
66 else if (!u->t->use_extra_komi)
67 u->t->extra_komi = 0;
70 void
71 uct_prepare_move(struct uct *u, struct board *b, enum stone color)
73 if (u->t) {
74 /* Verify that we have sane state. */
75 assert(b->es == u);
76 assert(u->t && b->moves);
77 if (color != stone_other(u->t->root_color)) {
78 fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n",
79 color, u->t->root_color);
80 exit(1);
82 uct_htable_reset(u->t);
84 } else {
85 /* We need fresh state. */
86 b->es = u;
87 setup_state(u, b, color);
90 u->ownermap.playouts = 0;
91 memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0]));
92 u->played_own = u->played_all = 0;
95 static void
96 dead_group_list(struct uct *u, struct board *b, struct move_queue *mq)
98 enum gj_state gs_array[board_size2(b)];
99 struct group_judgement gj = { .thres = GJ_THRES, .gs = gs_array };
100 board_ownermap_judge_groups(b, &u->ownermap, &gj);
101 groups_of_status(b, &gj, GS_DEAD, mq);
104 bool
105 uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive)
107 /* Make sure enough playouts are simulated to get a reasonable dead group list. */
108 while (u->ownermap.playouts < GJ_MINGAMES)
109 uct_playout(u, b, color, u->t);
111 struct move_queue mq = { .moves = 0 };
112 dead_group_list(u, b, &mq);
113 if (pass_all_alive) {
114 for (unsigned int i = 0; i < mq.moves; i++) {
115 if (board_at(b, mq.move[i]) == stone_other(color)) {
116 return false; // We need to remove opponent dead groups first.
119 mq.moves = 0; // our dead stones are alive when pass_all_alive is true
121 return pass_is_safe(b, color, &mq);
124 static char *
125 uct_printhook_ownermap(struct board *board, coord_t c, char *s, char *end)
127 struct uct *u = board->es;
128 if (!u) {
129 strcat(s, ". ");
130 return s + 2;
132 const char chr[] = ":XO,"; // dame, black, white, unclear
133 const char chm[] = ":xo,";
134 char ch = chr[board_ownermap_judge_point(&u->ownermap, c, GJ_THRES)];
135 if (ch == ',') { // less precise estimate then?
136 ch = chm[board_ownermap_judge_point(&u->ownermap, c, 0.67)];
138 s += snprintf(s, end - s, "%c ", ch);
139 return s;
142 static char *
143 uct_notify_play(struct engine *e, struct board *b, struct move *m, char *enginearg)
145 struct uct *u = e->data;
146 if (!u->t) {
147 /* No state, create one - this is probably game beginning
148 * and we need to load the opening tbook right now. */
149 uct_prepare_move(u, b, m->color);
150 assert(u->t);
153 /* Stop pondering, required by tree_promote_at() */
154 uct_pondering_stop(u);
155 if (UDEBUGL(2) && u->slave)
156 tree_dump(u->t, u->dumpthres);
158 if (is_resign(m->coord)) {
159 /* Reset state. */
160 reset_state(u);
161 return NULL;
164 /* Promote node of the appropriate move to the tree root. */
165 assert(u->t->root);
166 if (!tree_promote_at(u->t, b, m->coord)) {
167 if (UDEBUGL(3))
168 fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n");
169 reset_state(u);
170 return NULL;
173 /* If we are a slave in a distributed engine, start pondering once
174 * we know which move we actually played. See uct_genmove() about
175 * the check for pass. */
176 if (u->pondering_opt && u->slave && m->color == u->my_color && !is_pass(m->coord))
177 uct_pondering_start(u, b, u->t, stone_other(m->color));
179 return NULL;
182 static char *
183 uct_undo(struct engine *e, struct board *b)
185 struct uct *u = e->data;
187 if (!u->t) return NULL;
188 uct_pondering_stop(u);
189 reset_state(u);
190 return NULL;
193 static char *
194 uct_result(struct engine *e, struct board *b)
196 struct uct *u = e->data;
197 static char reply[1024];
199 if (!u->t)
200 return NULL;
201 enum stone color = u->t->root_color;
202 struct tree_node *n = u->t->root;
203 snprintf(reply, 1024, "%s %s %d %.2f %.1f",
204 stone2str(color), coord2sstr(node_coord(n), b),
205 n->u.playouts, tree_node_get_value(u->t, -1, n->u.value),
206 u->t->use_extra_komi ? u->t->extra_komi : 0);
207 return reply;
210 static char *
211 uct_chat(struct engine *e, struct board *b, char *cmd)
213 struct uct *u = e->data;
214 static char reply[1024];
216 cmd += strspn(cmd, " \n\t");
217 if (!strncasecmp(cmd, "winrate", 7)) {
218 if (!u->t)
219 return "no game context (yet?)";
220 enum stone color = u->t->root_color;
221 struct tree_node *n = u->t->root;
222 snprintf(reply, 1024, "In %d playouts at %d threads, %s %s can win with %.2f%% probability",
223 n->u.playouts, u->threads, stone2str(color), coord2sstr(node_coord(n), b),
224 tree_node_get_value(u->t, -1, n->u.value) * 100);
225 if (u->t->use_extra_komi && abs(u->t->extra_komi) >= 0.5) {
226 sprintf(reply + strlen(reply), ", while self-imposing extra komi %.1f",
227 u->t->extra_komi);
229 strcat(reply, ".");
230 return reply;
232 return NULL;
235 static void
236 uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq)
238 struct uct *u = e->data;
240 /* This means the game is probably over, no use pondering on. */
241 uct_pondering_stop(u);
243 if (u->pass_all_alive)
244 return; // no dead groups
246 bool mock_state = false;
248 if (!u->t) {
249 /* No state, but we cannot just back out - we might
250 * have passed earlier, only assuming some stones are
251 * dead, and then re-connected, only to lose counting
252 * when all stones are assumed alive. */
253 uct_prepare_move(u, b, S_BLACK); assert(u->t);
254 mock_state = true;
256 /* Make sure the ownermap is well-seeded. */
257 while (u->ownermap.playouts < GJ_MINGAMES)
258 uct_playout(u, b, S_BLACK, u->t);
259 /* Show the ownermap: */
260 if (DEBUGL(2))
261 board_print_custom(b, stderr, uct_printhook_ownermap);
263 dead_group_list(u, b, mq);
265 if (mock_state) {
266 /* Clean up the mock state in case we will receive
267 * a genmove; we could get a non-alternating-move
268 * error from uct_prepare_move() in that case otherwise. */
269 reset_state(u);
273 static void
274 playout_policy_done(struct playout_policy *p)
276 if (p->done) p->done(p);
277 if (p->data) free(p->data);
278 free(p);
281 static void
282 uct_done(struct engine *e)
284 /* This is called on engine reset, especially when clear_board
285 * is received and new game should begin. */
286 struct uct *u = e->data;
287 uct_pondering_stop(u);
288 if (u->t) reset_state(u);
289 free(u->ownermap.map);
291 free(u->policy);
292 free(u->random_policy);
293 playout_policy_done(u->playout);
294 uct_prior_done(u->prior);
295 joseki_done(u->jdict);
296 pluginset_done(u->plugins);
301 /* Run time-limited MCTS search on foreground. */
302 static int
303 uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color, struct tree *t)
305 struct uct_search_state s;
306 uct_search_start(u, b, color, t, ti, &s);
307 if (UDEBUGL(2) && s.base_playouts > 0)
308 fprintf(stderr, "<pre-simulated %d games>\n", s.base_playouts);
310 /* The search tree is ctx->t. This is currently == . It is important
311 * to reference ctx->t directly since the
312 * thread manager will swap the tree pointer asynchronously. */
314 /* Now, just periodically poll the search tree. */
315 /* Note that in case of TD_GAMES, threads will not wait for
316 * the uct_search_check_stop() signalization. */
317 while (1) {
318 time_sleep(TREE_BUSYWAIT_INTERVAL);
319 /* TREE_BUSYWAIT_INTERVAL should never be less than desired time, or the
320 * time control is broken. But if it happens to be less, we still search
321 * at least 100ms otherwise the move is completely random. */
323 int i = uct_search_games(&s);
324 /* Print notifications etc. */
325 uct_search_progress(u, b, color, t, ti, &s, i);
326 /* Check if we should stop the search. */
327 if (uct_search_check_stop(u, b, color, t, ti, &s, i))
328 break;
331 struct uct_thread_ctx *ctx = uct_search_stop();
332 if (UDEBUGL(2)) tree_dump(t, u->dumpthres);
333 if (UDEBUGL(2))
334 fprintf(stderr, "(avg score %f/%d; dynkomi's %f/%d value %f/%d)\n",
335 t->avg_score.value, t->avg_score.playouts,
336 u->dynkomi->score.value, u->dynkomi->score.playouts,
337 u->dynkomi->value.value, u->dynkomi->value.playouts);
338 uct_progress_status(u, t, color, ctx->games, true);
340 u->played_own += ctx->games;
341 return ctx->games;
344 /* Start pondering background with @color to play. */
345 static void
346 uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color)
348 if (UDEBUGL(1))
349 fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color)));
350 u->pondering = true;
352 /* We need a local board copy to ponder upon. */
353 struct board *b = malloc2(sizeof(*b)); board_copy(b, b0);
355 /* *b0 did not have the genmove'd move played yet. */
356 struct move m = { node_coord(t->root), t->root_color };
357 int res = board_play(b, &m);
358 assert(res >= 0);
359 setup_dynkomi(u, b, stone_other(m.color));
361 /* Start MCTS manager thread "headless". */
362 static struct uct_search_state s;
363 uct_search_start(u, b, color, t, NULL, &s);
366 /* uct_search_stop() frontend for the pondering (non-genmove) mode, and
367 * to stop the background search for a slave in the distributed engine. */
368 void
369 uct_pondering_stop(struct uct *u)
371 if (!thread_manager_running)
372 return;
374 /* Stop the thread manager. */
375 struct uct_thread_ctx *ctx = uct_search_stop();
376 if (UDEBUGL(1)) {
377 if (u->pondering) fprintf(stderr, "(pondering) ");
378 uct_progress_status(u, ctx->t, ctx->color, ctx->games, true);
380 if (u->pondering) {
381 free(ctx->b);
382 u->pondering = false;
387 void
388 uct_genmove_setup(struct uct *u, struct board *b, enum stone color)
390 if (b->superko_violation) {
391 fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
392 fprintf(stderr, "Maybe you play with situational instead of positional superko?\n");
393 fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n");
394 fprintf(stderr, "some moves valid under this ruleset because of this.\n");
395 b->superko_violation = false;
398 uct_prepare_move(u, b, color);
400 assert(u->t);
401 u->my_color = color;
403 /* How to decide whether to use dynkomi in this game? Since we use
404 * pondering, it's not simple "who-to-play" matter. Decide based on
405 * the last genmove issued. */
406 u->t->use_extra_komi = !!(u->dynkomi_mask & color);
407 setup_dynkomi(u, b, color);
409 if (b->rules == RULES_JAPANESE)
410 u->territory_scoring = true;
412 /* Make pessimistic assumption about komi for Japanese rules to
413 * avoid losing by 0.5 when winning by 0.5 with Chinese rules.
414 * The rules usually give the same winner if the integer part of komi
415 * is odd so we adjust the komi only if it is even (for a board of
416 * odd size). We are not trying to get an exact evaluation for rare
417 * cases of seki. For details see http://home.snafu.de/jasiek/parity.html */
418 if (u->territory_scoring && (((int)floor(b->komi) + board_size(b)) & 1)) {
419 b->komi += (color == S_BLACK ? 1.0 : -1.0);
420 if (UDEBUGL(0))
421 fprintf(stderr, "Setting komi to %.1f assuming Japanese rules\n",
422 b->komi);
426 static coord_t *
427 uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
429 double start_time = time_now();
430 struct uct *u = e->data;
431 u->pass_all_alive |= pass_all_alive;
432 uct_pondering_stop(u);
433 uct_genmove_setup(u, b, color);
435 /* Start the Monte Carlo Tree Search! */
436 int base_playouts = u->t->root->u.playouts;
437 int played_games = uct_search(u, b, ti, color, u->t);
439 coord_t best_coord;
440 struct tree_node *best;
441 best = uct_search_result(u, b, color, u->pass_all_alive, played_games, base_playouts, &best_coord);
443 if (UDEBUGL(2)) {
444 double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
445 fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
446 time, (int)(played_games/time), (int)(played_games/time/u->threads));
449 if (!best) {
450 /* Pass or resign. */
451 reset_state(u);
452 return coord_copy(best_coord);
454 tree_promote_node(u->t, &best);
456 /* After a pass, pondering is harmful for two reasons:
457 * (i) We might keep pondering even when the game is over.
458 * Of course this is the case for opponent resign as well.
459 * (ii) More importantly, the ownermap will get skewed since
460 * the UCT will start cutting off any playouts. */
461 if (u->pondering_opt && !is_pass(node_coord(best))) {
462 uct_pondering_start(u, b, u->t, stone_other(color));
464 return coord_copy(best_coord);
468 bool
469 uct_gentbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color)
471 struct uct *u = e->data;
472 if (!u->t) uct_prepare_move(u, b, color);
473 assert(u->t);
475 if (ti->dim == TD_GAMES) {
476 /* Don't count in games that already went into the tbook. */
477 ti->len.games += u->t->root->u.playouts;
479 uct_search(u, b, ti, color, u->t);
481 assert(ti->dim == TD_GAMES);
482 tree_save(u->t, b, ti->len.games / 100);
484 return true;
487 void
488 uct_dumptbook(struct engine *e, struct board *b, enum stone color)
490 struct uct *u = e->data;
491 struct tree *t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0,
492 u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, 0);
493 tree_load(t, b);
494 tree_dump(t, 0);
495 tree_done(t);
499 floating_t
500 uct_evaluate_one(struct engine *e, struct board *b, struct time_info *ti, coord_t c, enum stone color)
502 struct uct *u = e->data;
504 struct board b2;
505 board_copy(&b2, b);
506 struct move m = { c, color };
507 int res = board_play(&b2, &m);
508 if (res < 0)
509 return NAN;
510 color = stone_other(color);
512 if (u->t) reset_state(u);
513 uct_prepare_move(u, &b2, color);
514 assert(u->t);
516 floating_t bestval;
517 uct_search(u, &b2, ti, color, u->t);
518 struct tree_node *best = u->policy->choose(u->policy, u->t->root, &b2, color, resign);
519 if (!best) {
520 bestval = NAN; // the opponent has no reply!
521 } else {
522 bestval = tree_node_get_value(u->t, 1, best->u.value);
525 reset_state(u); // clean our junk
527 return isnan(bestval) ? NAN : 1.0f - bestval;
530 void
531 uct_evaluate(struct engine *e, struct board *b, struct time_info *ti, floating_t *vals, enum stone color)
533 for (int i = 0; i < b->flen; i++) {
534 if (is_pass(b->f[i]))
535 vals[i] = NAN;
536 else
537 vals[i] = uct_evaluate_one(e, b, ti, b->f[i], color);
542 struct uct *
543 uct_state_init(char *arg, struct board *b)
545 struct uct *u = calloc2(1, sizeof(struct uct));
546 bool pat_setup = false;
548 u->debug_level = debug_level;
549 u->reportfreq = 10000;
550 u->gamelen = MC_GAMELEN;
551 u->resign_threshold = 0.2;
552 u->sure_win_threshold = 0.9;
553 u->mercymin = 0;
554 u->significant_threshold = 50;
555 u->expand_p = 8;
556 u->dumpthres = 1000;
557 u->playout_amaf = true;
558 u->amaf_prior = false;
559 u->max_tree_size = 1408ULL * 1048576;
560 u->fast_alloc = true;
561 u->pruning_threshold = 0;
563 u->threads = 1;
564 u->thread_model = TM_TREEVL;
565 u->virtual_loss = 1;
567 u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
568 u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
569 u->bestr_ratio = 0.02;
570 // 2.5 is clearly too much, but seems to compensate well for overly stern time allocations.
571 // TODO: Further tuning and experiments with better time allocation schemes.
572 u->best2_ratio = 2.5;
573 u->max_maintime_ratio = 3.0;
575 u->val_scale = 0; u->val_points = 40;
576 u->dynkomi_interval = 1000;
577 u->dynkomi_mask = S_BLACK | S_WHITE;
579 u->tenuki_d = 4;
580 u->local_tree_aging = 80;
581 u->local_tree_depth_decay = 1.5;
582 u->local_tree_eval = LTE_ROOT;
583 u->local_tree_neival = true;
585 u->max_slaves = -1;
586 u->slave_index = -1;
587 u->stats_delay = 0.01; // 10 ms
589 u->plugins = pluginset_init(b);
591 u->jdict = joseki_load(b->size);
593 if (arg) {
594 char *optspec, *next = arg;
595 while (*next) {
596 optspec = next;
597 next += strcspn(next, ",");
598 if (*next) { *next++ = 0; } else { *next = 0; }
600 char *optname = optspec;
601 char *optval = strchr(optspec, '=');
602 if (optval) *optval++ = 0;
604 /** Basic options */
606 if (!strcasecmp(optname, "debug")) {
607 if (optval)
608 u->debug_level = atoi(optval);
609 else
610 u->debug_level++;
611 } else if (!strcasecmp(optname, "reporting") && optval) {
612 /* The format of output for detailed progress
613 * information (such as current best move and
614 * its value, etc.). */
615 if (!strcasecmp(optval, "text")) {
616 /* Plaintext traditional output. */
617 u->reporting = UR_TEXT;
618 } else if (!strcasecmp(optval, "json")) {
619 /* JSON output. Implies debug=0. */
620 u->reporting = UR_JSON;
621 u->debug_level = 0;
622 } else if (!strcasecmp(optval, "jsonbig")) {
623 /* JSON output, but much more detailed.
624 * Implies debug=0. */
625 u->reporting = UR_JSON_BIG;
626 u->debug_level = 0;
627 } else {
628 fprintf(stderr, "UCT: Invalid reporting format %s\n", optval);
629 exit(1);
631 } else if (!strcasecmp(optname, "reportfreq") && optval) {
632 /* The progress information line will be shown
633 * every <reportfreq> simulations. */
634 u->reportfreq = atoi(optval);
635 } else if (!strcasecmp(optname, "dumpthres") && optval) {
636 /* When dumping the UCT tree on output, include
637 * nodes with at least this many playouts.
638 * (This value is re-scaled "intelligently"
639 * in case of very large trees.) */
640 u->dumpthres = atoi(optval);
641 } else if (!strcasecmp(optname, "resign_threshold") && optval) {
642 /* Resign when this ratio of games is lost
643 * after GJ_MINGAMES sample is taken. */
644 u->resign_threshold = atof(optval);
645 } else if (!strcasecmp(optname, "sure_win_threshold") && optval) {
646 /* Stop reading when this ratio of games is won
647 * after PLAYOUT_EARLY_BREAK_MIN sample is
648 * taken. (Prevents stupid time losses,
649 * friendly to human opponents.) */
650 u->sure_win_threshold = atof(optval);
651 } else if (!strcasecmp(optname, "force_seed") && optval) {
652 /* Set RNG seed at the tree setup. */
653 u->force_seed = atoi(optval);
654 } else if (!strcasecmp(optname, "no_tbook")) {
655 /* Disable UCT opening tbook. */
656 u->no_tbook = true;
657 } else if (!strcasecmp(optname, "pass_all_alive")) {
658 /* Whether to consider passing only after all
659 * dead groups were removed from the board;
660 * this is like all genmoves are in fact
661 * kgs-genmove_cleanup. */
662 u->pass_all_alive = !optval || atoi(optval);
663 } else if (!strcasecmp(optname, "territory_scoring")) {
664 /* Use territory scoring (default is area scoring).
665 * An explicit kgs-rules command overrides this. */
666 u->territory_scoring = !optval || atoi(optval);
667 } else if (!strcasecmp(optname, "stones_only")) {
668 /* Do not count eyes. Nice to teach go to kids.
669 * http://strasbourg.jeudego.org/regle_strasbourgeoise.htm */
670 b->rules = RULES_STONES_ONLY;
671 u->pass_all_alive = true;
672 } else if (!strcasecmp(optname, "banner") && optval) {
673 /* Additional banner string. This must come as the
674 * last engine parameter. */
675 if (*next) *--next = ',';
676 u->banner = strdup(optval);
677 break;
678 } else if (!strcasecmp(optname, "plugin") && optval) {
679 /* Load an external plugin; filename goes before the colon,
680 * extra arguments after the colon. */
681 char *pluginarg = strchr(optval, ':');
682 if (pluginarg)
683 *pluginarg++ = 0;
684 plugin_load(u->plugins, optval, pluginarg);
686 /** UCT behavior and policies */
688 } else if ((!strcasecmp(optname, "policy")
689 /* Node selection policy. ucb1amaf is the
690 * default policy implementing RAVE, while
691 * ucb1 is the simple exploration/exploitation
692 * policy. Policies can take further extra
693 * options. */
694 || !strcasecmp(optname, "random_policy")) && optval) {
695 /* A policy to be used randomly with small
696 * chance instead of the default policy. */
697 char *policyarg = strchr(optval, ':');
698 struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy;
699 if (policyarg)
700 *policyarg++ = 0;
701 if (!strcasecmp(optval, "ucb1")) {
702 *p = policy_ucb1_init(u, policyarg);
703 } else if (!strcasecmp(optval, "ucb1amaf")) {
704 *p = policy_ucb1amaf_init(u, policyarg, b);
705 } else {
706 fprintf(stderr, "UCT: Invalid tree policy %s\n", optval);
707 exit(1);
709 } else if (!strcasecmp(optname, "playout") && optval) {
710 /* Random simulation (playout) policy.
711 * moggy is the default policy with large
712 * amount of domain-specific knowledge and
713 * heuristics. light is a simple uniformly
714 * random move selection policy. */
715 char *playoutarg = strchr(optval, ':');
716 if (playoutarg)
717 *playoutarg++ = 0;
718 if (!strcasecmp(optval, "moggy")) {
719 u->playout = playout_moggy_init(playoutarg, b, u->jdict);
720 } else if (!strcasecmp(optval, "light")) {
721 u->playout = playout_light_init(playoutarg, b);
722 } else {
723 fprintf(stderr, "UCT: Invalid playout policy %s\n", optval);
724 exit(1);
726 } else if (!strcasecmp(optname, "prior") && optval) {
727 /* Node priors policy. When expanding a node,
728 * it will seed node values heuristically
729 * (most importantly, based on playout policy
730 * opinion, but also with regard to other
731 * things). See uct/prior.c for details.
732 * Use prior=eqex=0 to disable priors. */
733 u->prior = uct_prior_init(optval, b, u);
734 } else if (!strcasecmp(optname, "mercy") && optval) {
735 /* Minimal difference of black/white captures
736 * to stop playout - "Mercy Rule". Speeds up
737 * hopeless playouts at the expense of some
738 * accuracy. */
739 u->mercymin = atoi(optval);
740 } else if (!strcasecmp(optname, "gamelen") && optval) {
741 /* Maximum length of single simulation
742 * in moves. */
743 u->gamelen = atoi(optval);
744 } else if (!strcasecmp(optname, "expand_p") && optval) {
745 /* Expand UCT nodes after it has been
746 * visited this many times. */
747 u->expand_p = atoi(optval);
748 } else if (!strcasecmp(optname, "random_policy_chance") && optval) {
749 /* If specified (N), with probability 1/N, random_policy policy
750 * descend is used instead of main policy descend; useful
751 * if specified policy (e.g. UCB1AMAF) can make unduly biased
752 * choices sometimes, you can fall back to e.g.
753 * random_policy=UCB1. */
754 u->random_policy_chance = atoi(optval);
756 /** General AMAF behavior */
757 /* (Only relevant if the policy supports AMAF.
758 * More variables can be tuned as policy
759 * parameters.) */
761 } else if (!strcasecmp(optname, "playout_amaf")) {
762 /* Whether to include random playout moves in
763 * AMAF as well. (Otherwise, only tree moves
764 * are included in AMAF. Of course makes sense
765 * only in connection with an AMAF policy.) */
766 /* with-without: 55.5% (+-4.1) */
767 if (optval && *optval == '0')
768 u->playout_amaf = false;
769 else
770 u->playout_amaf = true;
771 } else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) {
772 /* Keep only first N% of playout stage AMAF
773 * information. */
774 u->playout_amaf_cutoff = atoi(optval);
775 } else if (!strcasecmp(optname, "amaf_prior") && optval) {
776 /* In node policy, consider prior values
777 * part of the real result term or part
778 * of the AMAF term? */
779 u->amaf_prior = atoi(optval);
781 /** Performance and memory management */
783 } else if (!strcasecmp(optname, "threads") && optval) {
784 /* By default, Pachi will run with only single
785 * tree search thread! */
786 u->threads = atoi(optval);
787 } else if (!strcasecmp(optname, "thread_model") && optval) {
788 if (!strcasecmp(optval, "tree")) {
789 /* Tree parallelization - all threads
790 * grind on the same tree. */
791 u->thread_model = TM_TREE;
792 u->virtual_loss = 0;
793 } else if (!strcasecmp(optval, "treevl")) {
794 /* Tree parallelization, but also
795 * with virtual losses - this discou-
796 * rages most threads choosing the
797 * same tree branches to read. */
798 u->thread_model = TM_TREEVL;
799 } else {
800 fprintf(stderr, "UCT: Invalid thread model %s\n", optval);
801 exit(1);
803 } else if (!strcasecmp(optname, "virtual_loss")) {
804 /* Number of virtual losses added before evaluating a node. */
805 u->virtual_loss = !optval || atoi(optval);
806 } else if (!strcasecmp(optname, "pondering")) {
807 /* Keep searching even during opponent's turn. */
808 u->pondering_opt = !optval || atoi(optval);
809 } else if (!strcasecmp(optname, "max_tree_size") && optval) {
810 /* Maximum amount of memory [MiB] consumed by the move tree.
811 * For fast_alloc it includes the temp tree used for pruning.
812 * Default is 3072 (3 GiB). */
813 u->max_tree_size = atol(optval) * 1048576;
814 } else if (!strcasecmp(optname, "fast_alloc")) {
815 u->fast_alloc = !optval || atoi(optval);
816 } else if (!strcasecmp(optname, "pruning_threshold") && optval) {
817 /* Force pruning at beginning of a move if the tree consumes
818 * more than this [MiB]. Default is 10% of max_tree_size.
819 * Increase to reduce pruning time overhead if memory is plentiful.
820 * This option is meaningful only for fast_alloc. */
821 u->pruning_threshold = atol(optval) * 1048576;
823 /** Time control */
825 } else if (!strcasecmp(optname, "best2_ratio") && optval) {
826 /* If set, prolong simulating while
827 * first_best/second_best playouts ratio
828 * is less than best2_ratio. */
829 u->best2_ratio = atof(optval);
830 } else if (!strcasecmp(optname, "bestr_ratio") && optval) {
831 /* If set, prolong simulating while
832 * best,best_best_child values delta
833 * is more than bestr_ratio. */
834 u->bestr_ratio = atof(optval);
835 } else if (!strcasecmp(optname, "max_maintime_ratio") && optval) {
836 /* If set and while not in byoyomi, prolong simulating no more than
837 * max_maintime_ratio times the normal desired thinking time. */
838 u->max_maintime_ratio = atof(optval);
839 } else if (!strcasecmp(optname, "fuseki_end") && optval) {
840 /* At the very beginning it's not worth thinking
841 * too long because the playout evaluations are
842 * very noisy. So gradually increase the thinking
843 * time up to maximum when fuseki_end percent
844 * of the board has been played.
845 * This only applies if we are not in byoyomi. */
846 u->fuseki_end = atoi(optval);
847 } else if (!strcasecmp(optname, "yose_start") && optval) {
848 /* When yose_start percent of the board has been
849 * played, or if we are in byoyomi, stop spending
850 * more time and spread the remaining time
851 * uniformly.
852 * Between fuseki_end and yose_start, we spend
853 * a constant proportion of the remaining time
854 * on each move. (yose_start should actually
855 * be much earlier than when real yose start,
856 * but "yose" is a good short name to convey
857 * the idea.) */
858 u->yose_start = atoi(optval);
860 /** Dynamic komi */
862 } else if (!strcasecmp(optname, "dynkomi") && optval) {
863 /* Dynamic komi approach; there are multiple
864 * ways to adjust komi dynamically throughout
865 * play. We currently support two: */
866 char *dynkomiarg = strchr(optval, ':');
867 if (dynkomiarg)
868 *dynkomiarg++ = 0;
869 if (!strcasecmp(optval, "none")) {
870 u->dynkomi = uct_dynkomi_init_none(u, dynkomiarg, b);
871 } else if (!strcasecmp(optval, "linear")) {
872 /* You should set dynkomi_mask=1 or a very low
873 * handicap_value for white. */
874 u->dynkomi = uct_dynkomi_init_linear(u, dynkomiarg, b);
875 } else if (!strcasecmp(optval, "adaptive")) {
876 /* There are many more knobs to
877 * crank - see uct/dynkomi.c. */
878 u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomiarg, b);
879 } else {
880 fprintf(stderr, "UCT: Invalid dynkomi mode %s\n", optval);
881 exit(1);
883 } else if (!strcasecmp(optname, "dynkomi_mask") && optval) {
884 /* Bitmask of colors the player must be
885 * for dynkomi be applied; the default dynkomi_mask=3 allows
886 * dynkomi even in games where Pachi is white. */
887 u->dynkomi_mask = atoi(optval);
888 } else if (!strcasecmp(optname, "dynkomi_interval") && optval) {
889 /* If non-zero, re-adjust dynamic komi
890 * throughout a single genmove reading,
891 * roughly every N simulations. */
892 /* XXX: Does not work with tree
893 * parallelization. */
894 u->dynkomi_interval = atoi(optval);
896 /** Node value result scaling */
898 } else if (!strcasecmp(optname, "val_scale") && optval) {
899 /* How much of the game result value should be
900 * influenced by win size. Zero means it isn't. */
901 u->val_scale = atof(optval);
902 } else if (!strcasecmp(optname, "val_points") && optval) {
903 /* Maximum size of win to be scaled into game
904 * result value. Zero means boardsize^2. */
905 u->val_points = atoi(optval) * 2; // result values are doubled
906 } else if (!strcasecmp(optname, "val_extra")) {
907 /* If false, the score coefficient will be simply
908 * added to the value, instead of scaling the result
909 * coefficient because of it. */
910 u->val_extra = !optval || atoi(optval);
912 /** Local trees */
913 /* (Purely experimental. Does not work - yet!) */
915 } else if (!strcasecmp(optname, "local_tree")) {
916 /* Whether to bias exploration by local tree values. */
917 u->local_tree = !optval || atoi(optval);
918 } else if (!strcasecmp(optname, "tenuki_d") && optval) {
919 /* Tenuki distance at which to break the local tree. */
920 u->tenuki_d = atoi(optval);
921 if (u->tenuki_d > TREE_NODE_D_MAX + 1) {
922 fprintf(stderr, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX + 1);
923 exit(1);
925 } else if (!strcasecmp(optname, "local_tree_aging") && optval) {
926 /* How much to reduce local tree values between moves. */
927 u->local_tree_aging = atof(optval);
928 } else if (!strcasecmp(optname, "local_tree_depth_decay") && optval) {
929 /* With value x>0, during the descent the node
930 * contributes 1/x^depth playouts in
931 * the local tree. I.e., with x>1, nodes more
932 * distant from local situation contribute more
933 * than nodes near the root. */
934 u->local_tree_depth_decay = atof(optval);
935 } else if (!strcasecmp(optname, "local_tree_allseq")) {
936 /* If disabled, only complete sequences are stored
937 * in the local tree. If this is on, also
938 * subsequences starting at each move are stored. */
939 u->local_tree_allseq = !optval || atoi(optval);
940 } else if (!strcasecmp(optname, "local_tree_neival")) {
941 /* If disabled, local node value is not
942 * computed just based on terminal status
943 * of the coordinate, but also its neighbors. */
944 u->local_tree_neival = !optval || atoi(optval);
945 } else if (!strcasecmp(optname, "local_tree_eval")) {
946 /* How is the value inserted in the local tree
947 * determined. */
948 if (!strcasecmp(optval, "root"))
949 /* All moves within a tree branch are
950 * considered wrt. their merit
951 * reaching tachtical goal of making
952 * the first move in the branch
953 * survive. */
954 u->local_tree_eval = LTE_ROOT;
955 else if (!strcasecmp(optval, "each"))
956 /* Each move is considered wrt.
957 * its own survival. */
958 u->local_tree_eval = LTE_EACH;
959 else if (!strcasecmp(optval, "total"))
960 /* The tactical goal is the survival
961 * of all the moves of my color and
962 * non-survival of all the opponent
963 * moves. Local values (and their
964 * inverses) are averaged. */
965 u->local_tree_eval = LTE_TOTAL;
966 else {
967 fprintf(stderr, "uct: unknown local_tree_eval %s\n", optval);
968 exit(1);
970 } else if (!strcasecmp(optname, "local_tree_rootchoose")) {
971 /* If disabled, only moves within the local
972 * tree branch are considered; the values
973 * of the branch roots (i.e. root children)
974 * are ignored. This may make sense together
975 * with eval!=each, we consider only moves
976 * that influence the goal, not the "rating"
977 * of the goal itself. (The real solution
978 * will be probably using criticality to pick
979 * local tree branches.) */
980 u->local_tree_rootchoose = !optval || atoi(optval);
982 /** Other heuristics */
983 } else if (!strcasecmp(optname, "patterns")) {
984 /* Load pattern database. Various modules
985 * (priors, policies etc.) may make use
986 * of this database. They will request
987 * it automatically in that case, but you
988 * can use this option to tweak the pattern
989 * parameters. */
990 patterns_init(&u->pat, optval, false, true);
991 u->want_pat = pat_setup = true;
992 } else if (!strcasecmp(optname, "significant_threshold") && optval) {
993 /* Some heuristics (XXX: none in mainline) rely
994 * on the knowledge of the last "significant"
995 * node in the descent. Such a node is
996 * considered reasonably trustworthy to carry
997 * some meaningful information in the values
998 * of the node and its children. */
999 u->significant_threshold = atoi(optval);
1001 /** Distributed engine slaves setup */
1003 } else if (!strcasecmp(optname, "slave")) {
1004 /* Act as slave for the distributed engine. */
1005 u->slave = !optval || atoi(optval);
1006 } else if (!strcasecmp(optname, "slave_index") && optval) {
1007 /* Optional index if per-slave behavior is desired.
1008 * Must be given as index/max */
1009 u->slave_index = atoi(optval);
1010 char *p = strchr(optval, '/');
1011 if (p) u->max_slaves = atoi(++p);
1012 } else if (!strcasecmp(optname, "shared_nodes") && optval) {
1013 /* Share at most shared_nodes between master and slave at each genmoves.
1014 * Must use the same value in master and slaves. */
1015 u->shared_nodes = atoi(optval);
1016 } else if (!strcasecmp(optname, "shared_levels") && optval) {
1017 /* Share only nodes of level <= shared_levels. */
1018 u->shared_levels = atoi(optval);
1019 } else if (!strcasecmp(optname, "stats_hbits") && optval) {
1020 /* Set hash table size to 2^stats_hbits for the shared stats. */
1021 u->stats_hbits = atoi(optval);
1022 } else if (!strcasecmp(optname, "stats_delay") && optval) {
1023 /* How long to wait in slave for initial stats to build up before
1024 * replying to the genmoves command (in ms) */
1025 u->stats_delay = 0.001 * atof(optval);
1027 } else {
1028 fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname);
1029 exit(1);
1034 if (!u->policy)
1035 u->policy = policy_ucb1amaf_init(u, NULL, b);
1037 if (!!u->random_policy_chance ^ !!u->random_policy) {
1038 fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n");
1039 exit(1);
1042 if (!u->local_tree) {
1043 /* No ltree aging. */
1044 u->local_tree_aging = 1.0f;
1047 if (u->fast_alloc) {
1048 if (u->pruning_threshold < u->max_tree_size / 10)
1049 u->pruning_threshold = u->max_tree_size / 10;
1050 if (u->pruning_threshold > u->max_tree_size / 2)
1051 u->pruning_threshold = u->max_tree_size / 2;
1053 /* Limit pruning temp space to 20% of memory. Beyond this we discard
1054 * the nodes and recompute them at the next move if necessary. */
1055 u->max_pruned_size = u->max_tree_size / 5;
1056 u->max_tree_size -= u->max_pruned_size;
1057 } else {
1058 /* Reserve 5% memory in case the background free() are slower
1059 * than the concurrent allocations. */
1060 u->max_tree_size -= u->max_tree_size / 20;
1063 if (!u->prior)
1064 u->prior = uct_prior_init(NULL, b, u);
1066 if (!u->playout)
1067 u->playout = playout_moggy_init(NULL, b, u->jdict);
1068 if (!u->playout->debug_level)
1069 u->playout->debug_level = u->debug_level;
1071 if (u->want_pat && !pat_setup)
1072 patterns_init(&u->pat, NULL, false, true);
1074 u->ownermap.map = malloc2(board_size2(b) * sizeof(u->ownermap.map[0]));
1076 if (u->slave) {
1077 if (!u->stats_hbits) u->stats_hbits = DEFAULT_STATS_HBITS;
1078 if (!u->shared_nodes) u->shared_nodes = DEFAULT_SHARED_NODES;
1079 assert(u->shared_levels * board_bits2(b) <= 8 * (int)sizeof(path_t));
1082 if (!u->dynkomi)
1083 u->dynkomi = uct_dynkomi_init_linear(u, NULL, b);
1085 /* Some things remain uninitialized for now - the opening tbook
1086 * is not loaded and the tree not set up. */
1087 /* This will be initialized in setup_state() at the first move
1088 * received/requested. This is because right now we are not aware
1089 * about any komi or handicap setup and such. */
1091 return u;
1094 struct engine *
1095 engine_uct_init(char *arg, struct board *b)
1097 struct uct *u = uct_state_init(arg, b);
1098 struct engine *e = calloc2(1, sizeof(struct engine));
1099 e->name = "UCT";
1100 e->printhook = uct_printhook_ownermap;
1101 e->notify_play = uct_notify_play;
1102 e->chat = uct_chat;
1103 e->undo = uct_undo;
1104 e->result = uct_result;
1105 e->genmove = uct_genmove;
1106 e->genmoves = uct_genmoves;
1107 e->evaluate = uct_evaluate;
1108 e->dead_group_list = uct_dead_group_list;
1109 e->done = uct_done;
1110 e->data = u;
1111 if (u->slave)
1112 e->notify = uct_notify;
1114 const char banner[] = "If you believe you have won but I am still playing, "
1115 "please help me understand by capturing all dead stones. "
1116 "Anyone can send me 'winrate' in private chat to get my assessment of the position.";
1117 if (!u->banner) u->banner = "";
1118 e->comment = malloc2(sizeof(banner) + strlen(u->banner) + 1);
1119 sprintf(e->comment, "%s %s", banner, u->banner);
1121 return e;