Merge pull request #50 from lemonsqueeze/can_countercap
[pachi.git] / uct / uct.c
blobf9ce8e9d6b8a0d5b51401168b0bfbf10c916fdfa
1 #include <assert.h>
2 #include <math.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <time.h>
8 #define DEBUG
10 #include "debug.h"
11 #include "board.h"
12 #include "gtp.h"
13 #include "chat.h"
14 #include "move.h"
15 #include "mq.h"
16 #include "joseki/base.h"
17 #include "playout.h"
18 #include "playout/moggy.h"
19 #include "playout/light.h"
20 #include "tactics/util.h"
21 #include "timeinfo.h"
22 #include "uct/dynkomi.h"
23 #include "uct/internal.h"
24 #include "uct/plugins.h"
25 #include "uct/prior.h"
26 #include "uct/search.h"
27 #include "uct/slave.h"
28 #include "uct/tree.h"
29 #include "uct/uct.h"
30 #include "uct/walk.h"
31 #include "dcnn.h"
33 struct uct_policy *policy_ucb1_init(struct uct *u, char *arg);
34 struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg, struct board *board);
35 static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color);
37 /* Maximal simulation length. */
38 #define MC_GAMELEN MAX_GAMELEN
41 static void
42 setup_state(struct uct *u, struct board *b, enum stone color)
44 u->t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0,
45 u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, u->stats_hbits);
46 if (u->initial_extra_komi)
47 u->t->extra_komi = u->initial_extra_komi;
48 if (u->force_seed)
49 fast_srandom(u->force_seed);
50 if (UDEBUGL(3))
51 fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed());
52 if (!u->no_tbook && b->moves == 0) {
53 if (color == S_BLACK) {
54 tree_load(u->t, b);
55 } else if (DEBUGL(0)) {
56 fprintf(stderr, "Warning: First move appears to be white\n");
61 static void
62 reset_state(struct uct *u)
64 assert(u->t);
65 tree_done(u->t); u->t = NULL;
68 static void
69 setup_dynkomi(struct uct *u, struct board *b, enum stone to_play)
71 if (u->t->use_extra_komi && !u->pondering && u->dynkomi->permove)
72 u->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, u->t);
73 else if (!u->t->use_extra_komi)
74 u->t->extra_komi = 0;
77 void
78 uct_prepare_move(struct uct *u, struct board *b, enum stone color)
80 if (u->t) {
81 /* Verify that we have sane state. */
82 assert(b->es == u);
83 assert(u->t && b->moves);
84 if (color != stone_other(u->t->root_color)) {
85 fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n",
86 color, u->t->root_color);
87 exit(1);
89 uct_htable_reset(u->t);
91 } else {
92 /* We need fresh state. */
93 b->es = u;
94 setup_state(u, b, color);
97 u->ownermap.playouts = 0;
98 memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0]));
99 u->played_own = u->played_all = 0;
102 static void
103 dead_group_list(struct uct *u, struct board *b, struct move_queue *mq, float thres)
105 enum gj_state gs_array[board_size2(b)];
106 struct group_judgement gj = { .thres = thres, .gs = gs_array };
107 board_ownermap_judge_groups(b, &u->ownermap, &gj);
108 groups_of_status(b, &gj, GS_DEAD, mq);
111 bool
112 uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive)
114 /* Make sure enough playouts are simulated to get a reasonable dead group list. */
115 while (u->ownermap.playouts < GJ_MINGAMES)
116 uct_playout(u, b, color, u->t);
118 struct move_queue mq = { .moves = 0 };
119 dead_group_list(u, b, &mq, GJ_THRES);
120 if (pass_all_alive) {
121 for (unsigned int i = 0; i < mq.moves; i++) {
122 if (board_at(b, mq.move[i]) == stone_other(color)) {
123 return false; // We need to remove opponent dead groups first.
126 mq.moves = 0; // our dead stones are alive when pass_all_alive is true
128 if (u->allow_losing_pass) {
129 foreach_point(b) {
130 if (board_at(b, c) == S_OFFBOARD)
131 continue;
132 if (board_ownermap_judge_point(&u->ownermap, c, GJ_THRES) == PJ_UNKNOWN) {
133 if (UDEBUGL(3))
134 fprintf(stderr, "uct_pass_is_safe fails at %s[%d]\n", coord2sstr(c, b), c);
135 return false; // Unclear point, clarify first.
137 } foreach_point_end;
138 return true;
140 return pass_is_safe(b, color, &mq);
143 static void
144 uct_board_print(struct engine *e, struct board *b, FILE *f)
146 struct uct *u = b->es;
147 board_print_ownermap(b, f, (u ? &u->ownermap : NULL));
150 static float
151 uct_owner_map(struct engine *e, struct board *b, coord_t c)
153 struct uct *u = b->es;
154 return board_ownermap_estimate_point(&u->ownermap, c);
157 static char *
158 uct_notify_play(struct engine *e, struct board *b, struct move *m, char *enginearg)
160 struct uct *u = e->data;
161 if (!u->t) {
162 /* No state, create one - this is probably game beginning
163 * and we need to load the opening tbook right now. */
164 uct_prepare_move(u, b, m->color);
165 assert(u->t);
168 /* Stop pondering, required by tree_promote_at() */
169 uct_pondering_stop(u);
170 if (UDEBUGL(2) && u->slave)
171 tree_dump(u->t, u->dumpthres);
173 if (is_resign(m->coord)) {
174 /* Reset state. */
175 reset_state(u);
176 return NULL;
179 /* Promote node of the appropriate move to the tree root. */
180 assert(u->t->root);
181 if (u->t->untrustworthy_tree | !tree_promote_at(u->t, b, m->coord)) {
182 if (UDEBUGL(3)) {
183 if (u->t->untrustworthy_tree)
184 fprintf(stderr, "Not promoting move node in untrustworthy tree.\n");
185 else
186 fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n");
188 /* Preserve dynamic komi information, though, that is important. */
189 u->initial_extra_komi = u->t->extra_komi;
190 reset_state(u);
191 return NULL;
194 /* If we are a slave in a distributed engine, start pondering once
195 * we know which move we actually played. See uct_genmove() about
196 * the check for pass. */
197 if (u->pondering_opt && u->slave && m->color == u->my_color && !is_pass(m->coord))
198 uct_pondering_start(u, b, u->t, stone_other(m->color));
200 return NULL;
203 static char *
204 uct_undo(struct engine *e, struct board *b)
206 struct uct *u = e->data;
208 if (!u->t) return NULL;
209 uct_pondering_stop(u);
210 u->initial_extra_komi = u->t->extra_komi;
211 reset_state(u);
212 return NULL;
215 static char *
216 uct_result(struct engine *e, struct board *b)
218 struct uct *u = e->data;
219 static char reply[1024];
221 if (!u->t)
222 return NULL;
223 enum stone color = u->t->root_color;
224 struct tree_node *n = u->t->root;
225 snprintf(reply, 1024, "%s %s %d %.2f %.1f",
226 stone2str(color), coord2sstr(node_coord(n), b),
227 n->u.playouts, tree_node_get_value(u->t, -1, n->u.value),
228 u->t->use_extra_komi ? u->t->extra_komi : 0);
229 return reply;
232 static char *
233 uct_chat(struct engine *e, struct board *b, bool opponent, char *from, char *cmd)
235 struct uct *u = e->data;
237 if (!u->t)
238 return generic_chat(b, opponent, from, cmd, S_NONE, pass, 0, 1, u->threads, 0.0, 0.0);
240 struct tree_node *n = u->t->root;
241 double winrate = tree_node_get_value(u->t, -1, n->u.value);
242 double extra_komi = u->t->use_extra_komi && fabs(u->t->extra_komi) >= 0.5 ? u->t->extra_komi : 0;
244 return generic_chat(b, opponent, from, cmd, u->t->root_color, node_coord(n), n->u.playouts, 1,
245 u->threads, winrate, extra_komi);
248 static void
249 print_dead_groups(struct uct *u, struct board *b, struct move_queue *mq)
251 fprintf(stderr, "dead groups (playing %s)\n", (u->my_color ? stone2str(u->my_color) : "???"));
252 if (!mq->moves)
253 fprintf(stderr, " none\n");
254 for (unsigned int i = 0; i < mq->moves; i++) {
255 fprintf(stderr, " ");
256 foreach_in_group(b, mq->move[i]) {
257 fprintf(stderr, "%s ", coord2sstr(c, b));
258 } foreach_in_group_end;
259 fprintf(stderr, "\n");
263 static void
264 print_extra_dead_group(struct board *b, group_t g, int found)
266 if (!found)
267 fprintf(stderr, "also adding\n");
268 fprintf(stderr, " ");
269 foreach_in_group(b, g) {
270 fprintf(stderr, "%s ", coord2sstr(c, b));
271 } foreach_in_group_end;
272 fprintf(stderr, "\n");
275 static void
276 uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq)
278 struct uct *u = e->data;
279 bool unknown_color = !u->my_color;
281 /* This means the game is probably over, no use pondering on. */
282 uct_pondering_stop(u);
284 if (u->pass_all_alive)
285 return; // no dead groups
287 /* Create mock state */
288 if (u->t) reset_state(u);
289 // We need S_BLACK here, but don't clobber u->my_color with uct_genmove_setup() !
290 uct_prepare_move(u, b, S_BLACK);
292 /* Make sure the ownermap is well-seeded. */
293 while (u->ownermap.playouts < GJ_MINGAMES)
294 uct_playout(u, b, S_BLACK, u->t);
295 /* Show the ownermap: */
296 if (DEBUGL(2))
297 board_print_ownermap(b, stderr, &u->ownermap);
299 struct move_queue relaxed; relaxed.moves = 0;
300 dead_group_list(u, b, mq, GJ_THRES); // Strict
301 dead_group_list(u, b, &relaxed, 0.55); // Relaxed
302 if (DEBUGL(2)) print_dead_groups(u, b, mq);
304 /* Add own unclear dead groups if it doesn't change the outcome
305 * and spare opponent a genmove_cleanup phase... */
306 if (!unknown_color) {
307 int found = 0;
308 bool result = pass_is_safe(b, u->my_color, mq);
309 for (unsigned int i = 0; i < relaxed.moves; i++) {
310 group_t g = relaxed.move[i];
311 if (board_at(b, g) != u->my_color || mq_has(mq, g))
312 continue;
314 struct move_queue tmp; memcpy(&tmp, mq, sizeof(tmp));
315 mq_add(&tmp, g, 0);
316 if (result == pass_is_safe(b, u->my_color, &tmp)) {
317 mq_add(mq, g, 0);
318 if (DEBUGL(2)) print_extra_dead_group(b, g, found++);
323 /* Clean up the mock state in case we will receive
324 * a genmove; we could get a non-alternating-move
325 * error from uct_prepare_move() in that case otherwise. */
326 reset_state(u);
329 static void
330 uct_stop(struct engine *e)
332 /* This is called on game over notification. However, an undo
333 * and game resume can follow, so don't panic yet and just
334 * relax and stop thinking so that we don't waste CPU. */
335 struct uct *u = e->data;
336 uct_pondering_stop(u);
339 static void
340 uct_done(struct engine *e)
342 /* This is called on engine reset, especially when clear_board
343 * is received and new game should begin. */
344 free(e->comment);
346 struct uct *u = e->data;
347 uct_pondering_stop(u);
348 if (u->t) reset_state(u);
349 if (u->dynkomi) u->dynkomi->done(u->dynkomi);
350 free(u->ownermap.map);
352 if (u->policy) u->policy->done(u->policy);
353 if (u->random_policy) u->random_policy->done(u->random_policy);
354 playout_policy_done(u->playout);
355 uct_prior_done(u->prior);
356 joseki_done(u->jdict);
357 pluginset_done(u->plugins);
362 /* Run time-limited MCTS search on foreground. */
363 static int
364 uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color, struct tree *t, bool print_progress)
366 struct uct_search_state s;
367 uct_search_start(u, b, color, t, ti, &s);
368 if (UDEBUGL(2) && s.base_playouts > 0)
369 fprintf(stderr, "<pre-simulated %d games>\n", s.base_playouts);
371 /* The search tree is ctx->t. This is currently == . It is important
372 * to reference ctx->t directly since the
373 * thread manager will swap the tree pointer asynchronously. */
375 /* Now, just periodically poll the search tree. */
376 /* Note that in case of TD_GAMES, threads will not wait for
377 * the uct_search_check_stop() signalization. */
378 while (1) {
379 time_sleep(TREE_BUSYWAIT_INTERVAL);
380 /* TREE_BUSYWAIT_INTERVAL should never be less than desired time, or the
381 * time control is broken. But if it happens to be less, we still search
382 * at least 100ms otherwise the move is completely random. */
384 int i = uct_search_games(&s);
385 /* Print notifications etc. */
386 uct_search_progress(u, b, color, t, ti, &s, i);
387 /* Check if we should stop the search. */
388 if (uct_search_check_stop(u, b, color, t, ti, &s, i))
389 break;
392 struct uct_thread_ctx *ctx = uct_search_stop();
393 if (UDEBUGL(2)) tree_dump(t, u->dumpthres);
394 if (UDEBUGL(2))
395 fprintf(stderr, "(avg score %f/%d; dynkomi's %f/%d value %f/%d)\n",
396 t->avg_score.value, t->avg_score.playouts,
397 u->dynkomi->score.value, u->dynkomi->score.playouts,
398 u->dynkomi->value.value, u->dynkomi->value.playouts);
399 if (print_progress)
400 uct_progress_status(u, t, color, ctx->games, NULL);
402 if (u->debug_after.playouts > 0) {
403 /* Now, start an additional run of playouts, single threaded. */
404 struct time_info debug_ti = {
405 .period = TT_MOVE,
406 .dim = TD_GAMES,
408 debug_ti.len.games = t->root->u.playouts + u->debug_after.playouts;
410 board_print_ownermap(b, stderr, &u->ownermap);
411 fprintf(stderr, "--8<-- UCT debug post-run begin (%d:%d) --8<--\n", u->debug_after.level, u->debug_after.playouts);
413 int debug_level_save = debug_level;
414 int u_debug_level_save = u->debug_level;
415 int p_debug_level_save = u->playout->debug_level;
416 debug_level = u->debug_after.level;
417 u->debug_level = u->debug_after.level;
418 u->playout->debug_level = u->debug_after.level;
419 uct_halt = false;
421 uct_playouts(u, b, color, t, &debug_ti);
422 tree_dump(t, u->dumpthres);
424 uct_halt = true;
425 debug_level = debug_level_save;
426 u->debug_level = u_debug_level_save;
427 u->playout->debug_level = p_debug_level_save;
429 fprintf(stderr, "--8<-- UCT debug post-run finished --8<--\n");
432 u->played_own += ctx->games;
433 return ctx->games;
436 /* Start pondering background with @color to play. */
437 static void
438 uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color)
440 if (UDEBUGL(1))
441 fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color)));
442 u->pondering = true;
444 /* We need a local board copy to ponder upon. */
445 struct board *b = malloc2(sizeof(*b)); board_copy(b, b0);
447 /* *b0 did not have the genmove'd move played yet. */
448 struct move m = { node_coord(t->root), t->root_color };
449 int res = board_play(b, &m);
450 assert(res >= 0);
451 setup_dynkomi(u, b, stone_other(m.color));
453 /* Start MCTS manager thread "headless". */
454 static struct uct_search_state s;
455 uct_search_start(u, b, color, t, NULL, &s);
458 /* uct_search_stop() frontend for the pondering (non-genmove) mode, and
459 * to stop the background search for a slave in the distributed engine. */
460 void
461 uct_pondering_stop(struct uct *u)
463 if (!thread_manager_running)
464 return;
466 /* Stop the thread manager. */
467 struct uct_thread_ctx *ctx = uct_search_stop();
468 if (UDEBUGL(1)) {
469 if (u->pondering) fprintf(stderr, "(pondering) ");
470 uct_progress_status(u, ctx->t, ctx->color, ctx->games, NULL);
472 if (u->pondering) {
473 free(ctx->b);
474 u->pondering = false;
479 void
480 uct_genmove_setup(struct uct *u, struct board *b, enum stone color)
482 if (b->superko_violation) {
483 fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
484 fprintf(stderr, "Maybe you play with situational instead of positional superko?\n");
485 fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n");
486 fprintf(stderr, "some moves valid under this ruleset because of this.\n");
487 b->superko_violation = false;
490 uct_prepare_move(u, b, color);
492 assert(u->t);
493 u->my_color = color;
495 /* How to decide whether to use dynkomi in this game? Since we use
496 * pondering, it's not simple "who-to-play" matter. Decide based on
497 * the last genmove issued. */
498 u->t->use_extra_komi = !!(u->dynkomi_mask & color);
499 setup_dynkomi(u, b, color);
501 if (b->rules == RULES_JAPANESE)
502 u->territory_scoring = true;
504 /* Make pessimistic assumption about komi for Japanese rules to
505 * avoid losing by 0.5 when winning by 0.5 with Chinese rules.
506 * The rules usually give the same winner if the integer part of komi
507 * is odd so we adjust the komi only if it is even (for a board of
508 * odd size). We are not trying to get an exact evaluation for rare
509 * cases of seki. For details see http://home.snafu.de/jasiek/parity.html */
510 if (u->territory_scoring && (((int)floor(b->komi) + board_size(b)) & 1)) {
511 b->komi += (color == S_BLACK ? 1.0 : -1.0);
512 if (UDEBUGL(0))
513 fprintf(stderr, "Setting komi to %.1f assuming Japanese rules\n",
514 b->komi);
518 static void
519 uct_live_gfx_hook(struct engine *e)
521 struct uct *u = e->data;
522 /* Hack: Override reportfreq to get decent update rates in GoGui */
523 u->reportfreq = 1000;
526 /* Kindof like uct_genmove() but just find the best candidates */
527 static void
528 uct_best_moves(struct engine *e, struct board *b, enum stone color)
530 struct time_info ti = { .period = TT_NULL };
531 double start_time = time_now();
532 struct uct *u = e->data;
533 uct_pondering_stop(u);
534 if (u->t)
535 reset_state(u);
536 uct_genmove_setup(u, b, color);
538 /* Start the Monte Carlo Tree Search! */
539 int base_playouts = u->t->root->u.playouts;
540 int played_games = uct_search(u, b, &ti, color, u->t, false);
542 coord_t best_coord;
543 uct_search_result(u, b, color, u->pass_all_alive, played_games, base_playouts, &best_coord);
545 if (UDEBUGL(2)) {
546 double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
547 fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
548 time, (int)(played_games/time), (int)(played_games/time/u->threads));
551 uct_progress_status(u, u->t, color, played_games, &best_coord);
552 reset_state(u);
555 static coord_t *
556 uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
558 double start_time = time_now();
559 struct uct *u = e->data;
560 u->pass_all_alive |= pass_all_alive;
561 uct_pondering_stop(u);
563 if (using_dcnn(b)) {
564 // dcnn hack: reset state to make dcnn priors kick in.
565 // FIXME this makes pondering useless when using dcnn ...
566 if (u->t) {
567 u->initial_extra_komi = u->t->extra_komi;
568 reset_state(u);
572 uct_genmove_setup(u, b, color);
574 /* Start the Monte Carlo Tree Search! */
575 int base_playouts = u->t->root->u.playouts;
576 int played_games = uct_search(u, b, ti, color, u->t, false);
578 coord_t best_coord;
579 struct tree_node *best;
580 best = uct_search_result(u, b, color, u->pass_all_alive, played_games, base_playouts, &best_coord);
582 if (UDEBUGL(2)) {
583 double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
584 fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
585 time, (int)(played_games/time), (int)(played_games/time/u->threads));
588 uct_progress_status(u, u->t, color, played_games, &best_coord);
590 if (!best) {
591 /* Pass or resign. */
592 if (is_pass(best_coord))
593 u->initial_extra_komi = u->t->extra_komi;
594 reset_state(u);
595 return coord_copy(best_coord);
598 if (!u->t->untrustworthy_tree) {
599 tree_promote_node(u->t, &best);
600 } else {
601 /* Throw away an untrustworthy tree. */
602 /* Preserve dynamic komi information, though, that is important. */
603 u->initial_extra_komi = u->t->extra_komi;
604 reset_state(u);
607 /* After a pass, pondering is harmful for two reasons:
608 * (i) We might keep pondering even when the game is over.
609 * Of course this is the case for opponent resign as well.
610 * (ii) More importantly, the ownermap will get skewed since
611 * the UCT will start cutting off any playouts. */
612 if (u->pondering_opt && u->t && !is_pass(node_coord(best))) {
613 uct_pondering_start(u, b, u->t, stone_other(color));
615 return coord_copy(best_coord);
619 bool
620 uct_gentbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color)
622 struct uct *u = e->data;
623 if (!u->t) uct_prepare_move(u, b, color);
624 assert(u->t);
626 if (ti->dim == TD_GAMES) {
627 /* Don't count in games that already went into the tbook. */
628 ti->len.games += u->t->root->u.playouts;
630 uct_search(u, b, ti, color, u->t, true);
632 assert(ti->dim == TD_GAMES);
633 tree_save(u->t, b, ti->len.games / 100);
635 return true;
638 void
639 uct_dumptbook(struct engine *e, struct board *b, enum stone color)
641 struct uct *u = e->data;
642 struct tree *t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0,
643 u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, 0);
644 tree_load(t, b);
645 tree_dump(t, 0);
646 tree_done(t);
650 floating_t
651 uct_evaluate_one(struct engine *e, struct board *b, struct time_info *ti, coord_t c, enum stone color)
653 struct uct *u = e->data;
655 struct board b2;
656 board_copy(&b2, b);
657 struct move m = { c, color };
658 int res = board_play(&b2, &m);
659 if (res < 0)
660 return NAN;
661 color = stone_other(color);
663 if (u->t) reset_state(u);
664 uct_prepare_move(u, &b2, color);
665 assert(u->t);
667 floating_t bestval;
668 uct_search(u, &b2, ti, color, u->t, true);
669 struct tree_node *best = u->policy->choose(u->policy, u->t->root, &b2, color, resign);
670 if (!best) {
671 bestval = NAN; // the opponent has no reply!
672 } else {
673 bestval = tree_node_get_value(u->t, 1, best->u.value);
676 reset_state(u); // clean our junk
678 return isnan(bestval) ? NAN : 1.0f - bestval;
681 void
682 uct_evaluate(struct engine *e, struct board *b, struct time_info *ti, floating_t *vals, enum stone color)
684 for (int i = 0; i < b->flen; i++) {
685 if (is_pass(b->f[i]))
686 vals[i] = NAN;
687 else
688 vals[i] = uct_evaluate_one(e, b, ti, b->f[i], color);
693 struct uct *
694 uct_state_init(char *arg, struct board *b)
696 struct uct *u = calloc2(1, sizeof(struct uct));
697 bool pat_setup = false;
699 u->debug_level = debug_level;
700 u->reportfreq = 10000;
701 u->gamelen = MC_GAMELEN;
702 u->resign_threshold = 0.2;
703 u->sure_win_threshold = 0.95;
704 u->mercymin = 0;
705 u->significant_threshold = 50;
706 u->expand_p = 8;
707 u->dumpthres = 0.01;
708 u->playout_amaf = true;
709 u->amaf_prior = false;
710 u->max_tree_size = 1408ULL * 1048576;
711 u->fast_alloc = true;
712 u->pruning_threshold = 0;
714 u->threads = 1;
715 u->thread_model = TM_TREEVL;
716 u->virtual_loss = 1;
718 u->pondering_opt = true;
720 u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
721 u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
722 u->bestr_ratio = 0.02;
723 // 2.5 is clearly too much, but seems to compensate well for overly stern time allocations.
724 // TODO: Further tuning and experiments with better time allocation schemes.
725 u->best2_ratio = 2.5;
726 // Higher values of max_maintime_ratio sometimes cause severe time trouble in tournaments
727 // It might be necessary to reduce it to 1.5 on large board, but more tuning is needed.
728 u->max_maintime_ratio = 2.0;
730 u->val_scale = 0; u->val_points = 40;
731 u->dynkomi_interval = 1000;
732 u->dynkomi_mask = S_BLACK | S_WHITE;
734 u->tenuki_d = 4;
735 u->local_tree_aging = 80;
736 u->local_tree_depth_decay = 1.5;
737 u->local_tree_eval = LTE_ROOT;
738 u->local_tree_neival = true;
740 u->max_slaves = -1;
741 u->slave_index = -1;
742 u->stats_delay = 0.01; // 10 ms
743 u->shared_levels = 1;
745 u->plugins = pluginset_init(b);
747 u->jdict = joseki_load(b->size);
749 if (arg) {
750 char *optspec, *next = arg;
751 while (*next) {
752 optspec = next;
753 next += strcspn(next, ",");
754 if (*next) { *next++ = 0; } else { *next = 0; }
756 char *optname = optspec;
757 char *optval = strchr(optspec, '=');
758 if (optval) *optval++ = 0;
760 /** Basic options */
762 if (!strcasecmp(optname, "debug")) {
763 if (optval)
764 u->debug_level = atoi(optval);
765 else
766 u->debug_level++;
767 } else if (!strcasecmp(optname, "reporting") && optval) {
768 /* The format of output for detailed progress
769 * information (such as current best move and
770 * its value, etc.). */
771 if (!strcasecmp(optval, "text")) {
772 /* Plaintext traditional output. */
773 u->reporting = UR_TEXT;
774 } else if (!strcasecmp(optval, "json")) {
775 /* JSON output. Implies debug=0. */
776 u->reporting = UR_JSON;
777 u->debug_level = 0;
778 } else if (!strcasecmp(optval, "jsonbig")) {
779 /* JSON output, but much more detailed.
780 * Implies debug=0. */
781 u->reporting = UR_JSON_BIG;
782 u->debug_level = 0;
783 } else {
784 fprintf(stderr, "UCT: Invalid reporting format %s\n", optval);
785 exit(1);
787 } else if (!strcasecmp(optname, "reportfreq") && optval) {
788 /* The progress information line will be shown
789 * every <reportfreq> simulations. */
790 u->reportfreq = atoi(optval);
791 } else if (!strcasecmp(optname, "dumpthres") && optval) {
792 /* When dumping the UCT tree on output, include
793 * nodes with at least this many playouts.
794 * (A fraction of the total # of playouts at the
795 * tree root.) */
796 /* Use 0 to list all nodes with at least one
797 * simulation, and -1 to list _all_ nodes. */
798 u->dumpthres = atof(optval);
799 } else if (!strcasecmp(optname, "resign_threshold") && optval) {
800 /* Resign when this ratio of games is lost
801 * after GJ_MINGAMES sample is taken. */
802 u->resign_threshold = atof(optval);
803 } else if (!strcasecmp(optname, "sure_win_threshold") && optval) {
804 /* Stop reading when this ratio of games is won
805 * after PLAYOUT_EARLY_BREAK_MIN sample is
806 * taken. (Prevents stupid time losses,
807 * friendly to human opponents.) */
808 u->sure_win_threshold = atof(optval);
809 } else if (!strcasecmp(optname, "force_seed") && optval) {
810 /* Set RNG seed at the tree setup. */
811 u->force_seed = atoi(optval);
812 } else if (!strcasecmp(optname, "no_tbook")) {
813 /* Disable UCT opening tbook. */
814 u->no_tbook = true;
815 } else if (!strcasecmp(optname, "pass_all_alive")) {
816 /* Whether to consider passing only after all
817 * dead groups were removed from the board;
818 * this is like all genmoves are in fact
819 * kgs-genmove_cleanup. */
820 u->pass_all_alive = !optval || atoi(optval);
821 } else if (!strcasecmp(optname, "allow_losing_pass")) {
822 /* Whether to consider passing in a clear
823 * but losing situation, to be scored as a loss
824 * for us. */
825 u->allow_losing_pass = !optval || atoi(optval);
826 } else if (!strcasecmp(optname, "territory_scoring")) {
827 /* Use territory scoring (default is area scoring).
828 * An explicit kgs-rules command overrides this. */
829 u->territory_scoring = !optval || atoi(optval);
830 } else if (!strcasecmp(optname, "stones_only")) {
831 /* Do not count eyes. Nice to teach go to kids.
832 * http://strasbourg.jeudego.org/regle_strasbourgeoise.htm */
833 b->rules = RULES_STONES_ONLY;
834 u->pass_all_alive = true;
835 } else if (!strcasecmp(optname, "debug_after")) {
836 /* debug_after=9:1000 will make Pachi think under
837 * the normal conditions, but at the point when
838 * a move is to be chosen, the tree is dumped and
839 * another 1000 simulations are run single-threaded
840 * with debug level 9, allowing inspection of Pachi's
841 * behavior after it has thought a lot. */
842 if (optval) {
843 u->debug_after.level = atoi(optval);
844 char *playouts = strchr(optval, ':');
845 if (playouts)
846 u->debug_after.playouts = atoi(playouts+1);
847 else
848 u->debug_after.playouts = 1000;
849 } else {
850 u->debug_after.level = 9;
851 u->debug_after.playouts = 1000;
853 } else if (!strcasecmp(optname, "banner") && optval) {
854 /* Additional banner string. This must come as the
855 * last engine parameter. You can use '+' instead
856 * of ' ' if you are wrestling with kgsGtp. */
857 if (*next) *--next = ',';
858 u->banner = strdup(optval);
859 for (char *b = u->banner; *b; b++) {
860 if (*b == '+') *b = ' ';
862 break;
863 } else if (!strcasecmp(optname, "plugin") && optval) {
864 /* Load an external plugin; filename goes before the colon,
865 * extra arguments after the colon. */
866 char *pluginarg = strchr(optval, ':');
867 if (pluginarg)
868 *pluginarg++ = 0;
869 plugin_load(u->plugins, optval, pluginarg);
871 /** UCT behavior and policies */
873 } else if ((!strcasecmp(optname, "policy")
874 /* Node selection policy. ucb1amaf is the
875 * default policy implementing RAVE, while
876 * ucb1 is the simple exploration/exploitation
877 * policy. Policies can take further extra
878 * options. */
879 || !strcasecmp(optname, "random_policy")) && optval) {
880 /* A policy to be used randomly with small
881 * chance instead of the default policy. */
882 char *policyarg = strchr(optval, ':');
883 struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy;
884 if (policyarg)
885 *policyarg++ = 0;
886 if (!strcasecmp(optval, "ucb1")) {
887 *p = policy_ucb1_init(u, policyarg);
888 } else if (!strcasecmp(optval, "ucb1amaf")) {
889 *p = policy_ucb1amaf_init(u, policyarg, b);
890 } else {
891 fprintf(stderr, "UCT: Invalid tree policy %s\n", optval);
892 exit(1);
894 } else if (!strcasecmp(optname, "playout") && optval) {
895 /* Random simulation (playout) policy.
896 * moggy is the default policy with large
897 * amount of domain-specific knowledge and
898 * heuristics. light is a simple uniformly
899 * random move selection policy. */
900 char *playoutarg = strchr(optval, ':');
901 if (playoutarg)
902 *playoutarg++ = 0;
903 if (!strcasecmp(optval, "moggy")) {
904 u->playout = playout_moggy_init(playoutarg, b, u->jdict);
905 } else if (!strcasecmp(optval, "light")) {
906 u->playout = playout_light_init(playoutarg, b);
907 } else {
908 fprintf(stderr, "UCT: Invalid playout policy %s\n", optval);
909 exit(1);
911 } else if (!strcasecmp(optname, "prior") && optval) {
912 /* Node priors policy. When expanding a node,
913 * it will seed node values heuristically
914 * (most importantly, based on playout policy
915 * opinion, but also with regard to other
916 * things). See uct/prior.c for details.
917 * Use prior=eqex=0 to disable priors. */
918 u->prior = uct_prior_init(optval, b, u);
919 } else if (!strcasecmp(optname, "mercy") && optval) {
920 /* Minimal difference of black/white captures
921 * to stop playout - "Mercy Rule". Speeds up
922 * hopeless playouts at the expense of some
923 * accuracy. */
924 u->mercymin = atoi(optval);
925 } else if (!strcasecmp(optname, "gamelen") && optval) {
926 /* Maximum length of single simulation
927 * in moves. */
928 u->gamelen = atoi(optval);
929 } else if (!strcasecmp(optname, "expand_p") && optval) {
930 /* Expand UCT nodes after it has been
931 * visited this many times. */
932 u->expand_p = atoi(optval);
933 } else if (!strcasecmp(optname, "random_policy_chance") && optval) {
934 /* If specified (N), with probability 1/N, random_policy policy
935 * descend is used instead of main policy descend; useful
936 * if specified policy (e.g. UCB1AMAF) can make unduly biased
937 * choices sometimes, you can fall back to e.g.
938 * random_policy=UCB1. */
939 u->random_policy_chance = atoi(optval);
941 /** General AMAF behavior */
942 /* (Only relevant if the policy supports AMAF.
943 * More variables can be tuned as policy
944 * parameters.) */
946 } else if (!strcasecmp(optname, "playout_amaf")) {
947 /* Whether to include random playout moves in
948 * AMAF as well. (Otherwise, only tree moves
949 * are included in AMAF. Of course makes sense
950 * only in connection with an AMAF policy.) */
951 /* with-without: 55.5% (+-4.1) */
952 if (optval && *optval == '0')
953 u->playout_amaf = false;
954 else
955 u->playout_amaf = true;
956 } else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) {
957 /* Keep only first N% of playout stage AMAF
958 * information. */
959 u->playout_amaf_cutoff = atoi(optval);
960 } else if (!strcasecmp(optname, "amaf_prior") && optval) {
961 /* In node policy, consider prior values
962 * part of the real result term or part
963 * of the AMAF term? */
964 u->amaf_prior = atoi(optval);
966 /** Performance and memory management */
968 } else if (!strcasecmp(optname, "threads") && optval) {
969 /* By default, Pachi will run with only single
970 * tree search thread! */
971 u->threads = atoi(optval);
972 } else if (!strcasecmp(optname, "thread_model") && optval) {
973 if (!strcasecmp(optval, "tree")) {
974 /* Tree parallelization - all threads
975 * grind on the same tree. */
976 u->thread_model = TM_TREE;
977 u->virtual_loss = 0;
978 } else if (!strcasecmp(optval, "treevl")) {
979 /* Tree parallelization, but also
980 * with virtual losses - this discou-
981 * rages most threads choosing the
982 * same tree branches to read. */
983 u->thread_model = TM_TREEVL;
984 } else {
985 fprintf(stderr, "UCT: Invalid thread model %s\n", optval);
986 exit(1);
988 } else if (!strcasecmp(optname, "virtual_loss") && optval) {
989 /* Number of virtual losses added before evaluating a node. */
990 u->virtual_loss = atoi(optval);
991 } else if (!strcasecmp(optname, "pondering")) {
992 /* Keep searching even during opponent's turn. */
993 u->pondering_opt = !optval || atoi(optval);
994 } else if (!strcasecmp(optname, "max_tree_size") && optval) {
995 /* Maximum amount of memory [MiB] consumed by the move tree.
996 * For fast_alloc it includes the temp tree used for pruning.
997 * Default is 3072 (3 GiB). */
998 u->max_tree_size = atol(optval) * 1048576;
999 } else if (!strcasecmp(optname, "fast_alloc")) {
1000 u->fast_alloc = !optval || atoi(optval);
1001 } else if (!strcasecmp(optname, "pruning_threshold") && optval) {
1002 /* Force pruning at beginning of a move if the tree consumes
1003 * more than this [MiB]. Default is 10% of max_tree_size.
1004 * Increase to reduce pruning time overhead if memory is plentiful.
1005 * This option is meaningful only for fast_alloc. */
1006 u->pruning_threshold = atol(optval) * 1048576;
1008 /** Time control */
1010 } else if (!strcasecmp(optname, "best2_ratio") && optval) {
1011 /* If set, prolong simulating while
1012 * first_best/second_best playouts ratio
1013 * is less than best2_ratio. */
1014 u->best2_ratio = atof(optval);
1015 } else if (!strcasecmp(optname, "bestr_ratio") && optval) {
1016 /* If set, prolong simulating while
1017 * best,best_best_child values delta
1018 * is more than bestr_ratio. */
1019 u->bestr_ratio = atof(optval);
1020 } else if (!strcasecmp(optname, "max_maintime_ratio") && optval) {
1021 /* If set and while not in byoyomi, prolong simulating no more than
1022 * max_maintime_ratio times the normal desired thinking time. */
1023 u->max_maintime_ratio = atof(optval);
1024 } else if (!strcasecmp(optname, "fuseki_end") && optval) {
1025 /* At the very beginning it's not worth thinking
1026 * too long because the playout evaluations are
1027 * very noisy. So gradually increase the thinking
1028 * time up to maximum when fuseki_end percent
1029 * of the board has been played.
1030 * This only applies if we are not in byoyomi. */
1031 u->fuseki_end = atoi(optval);
1032 } else if (!strcasecmp(optname, "yose_start") && optval) {
1033 /* When yose_start percent of the board has been
1034 * played, or if we are in byoyomi, stop spending
1035 * more time and spread the remaining time
1036 * uniformly.
1037 * Between fuseki_end and yose_start, we spend
1038 * a constant proportion of the remaining time
1039 * on each move. (yose_start should actually
1040 * be much earlier than when real yose start,
1041 * but "yose" is a good short name to convey
1042 * the idea.) */
1043 u->yose_start = atoi(optval);
1045 /** Dynamic komi */
1047 } else if (!strcasecmp(optname, "dynkomi") && optval) {
1048 /* Dynamic komi approach; there are multiple
1049 * ways to adjust komi dynamically throughout
1050 * play. We currently support two: */
1051 char *dynkomiarg = strchr(optval, ':');
1052 if (dynkomiarg)
1053 *dynkomiarg++ = 0;
1054 if (!strcasecmp(optval, "none")) {
1055 u->dynkomi = uct_dynkomi_init_none(u, dynkomiarg, b);
1056 } else if (!strcasecmp(optval, "linear")) {
1057 /* You should set dynkomi_mask=1 or a very low
1058 * handicap_value for white. */
1059 u->dynkomi = uct_dynkomi_init_linear(u, dynkomiarg, b);
1060 } else if (!strcasecmp(optval, "adaptive")) {
1061 /* There are many more knobs to
1062 * crank - see uct/dynkomi.c. */
1063 u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomiarg, b);
1064 } else {
1065 fprintf(stderr, "UCT: Invalid dynkomi mode %s\n", optval);
1066 exit(1);
1068 } else if (!strcasecmp(optname, "dynkomi_mask") && optval) {
1069 /* Bitmask of colors the player must be
1070 * for dynkomi be applied; the default dynkomi_mask=3 allows
1071 * dynkomi even in games where Pachi is white. */
1072 u->dynkomi_mask = atoi(optval);
1073 } else if (!strcasecmp(optname, "dynkomi_interval") && optval) {
1074 /* If non-zero, re-adjust dynamic komi
1075 * throughout a single genmove reading,
1076 * roughly every N simulations. */
1077 /* XXX: Does not work with tree
1078 * parallelization. */
1079 u->dynkomi_interval = atoi(optval);
1080 } else if (!strcasecmp(optname, "extra_komi") && optval) {
1081 /* Initial dynamic komi settings. This
1082 * is useful for the adaptive dynkomi
1083 * policy as the value to start with
1084 * (this is NOT kept fixed) in case
1085 * there is not enough time in the search
1086 * to adjust the value properly (e.g. the
1087 * game was interrupted). */
1088 u->initial_extra_komi = atof(optval);
1090 /** Node value result scaling */
1092 } else if (!strcasecmp(optname, "val_scale") && optval) {
1093 /* How much of the game result value should be
1094 * influenced by win size. Zero means it isn't. */
1095 u->val_scale = atof(optval);
1096 } else if (!strcasecmp(optname, "val_points") && optval) {
1097 /* Maximum size of win to be scaled into game
1098 * result value. Zero means boardsize^2. */
1099 u->val_points = atoi(optval) * 2; // result values are doubled
1100 } else if (!strcasecmp(optname, "val_extra")) {
1101 /* If false, the score coefficient will be simply
1102 * added to the value, instead of scaling the result
1103 * coefficient because of it. */
1104 u->val_extra = !optval || atoi(optval);
1105 } else if (!strcasecmp(optname, "val_byavg")) {
1106 /* If true, the score included in the value will
1107 * be relative to average score in the current
1108 * search episode inst. of jigo. */
1109 u->val_byavg = !optval || atoi(optval);
1110 } else if (!strcasecmp(optname, "val_bytemp")) {
1111 /* If true, the value scaling coefficient
1112 * is different based on value extremity
1113 * (dist. from 0.5), linear between
1114 * val_bytemp_min, val_scale. */
1115 u->val_bytemp = !optval || atoi(optval);
1116 } else if (!strcasecmp(optname, "val_bytemp_min") && optval) {
1117 /* Minimum val_scale in case of val_bytemp. */
1118 u->val_bytemp_min = atof(optval);
1120 /** Local trees */
1121 /* (Purely experimental. Does not work - yet!) */
1123 } else if (!strcasecmp(optname, "local_tree")) {
1124 /* Whether to bias exploration by local tree values. */
1125 u->local_tree = !optval || atoi(optval);
1126 } else if (!strcasecmp(optname, "tenuki_d") && optval) {
1127 /* Tenuki distance at which to break the local tree. */
1128 u->tenuki_d = atoi(optval);
1129 if (u->tenuki_d > TREE_NODE_D_MAX + 1) {
1130 fprintf(stderr, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX + 1);
1131 exit(1);
1133 } else if (!strcasecmp(optname, "local_tree_aging") && optval) {
1134 /* How much to reduce local tree values between moves. */
1135 u->local_tree_aging = atof(optval);
1136 } else if (!strcasecmp(optname, "local_tree_depth_decay") && optval) {
1137 /* With value x>0, during the descent the node
1138 * contributes 1/x^depth playouts in
1139 * the local tree. I.e., with x>1, nodes more
1140 * distant from local situation contribute more
1141 * than nodes near the root. */
1142 u->local_tree_depth_decay = atof(optval);
1143 } else if (!strcasecmp(optname, "local_tree_allseq")) {
1144 /* If disabled, only complete sequences are stored
1145 * in the local tree. If this is on, also
1146 * subsequences starting at each move are stored. */
1147 u->local_tree_allseq = !optval || atoi(optval);
1148 } else if (!strcasecmp(optname, "local_tree_neival")) {
1149 /* If disabled, local node value is not
1150 * computed just based on terminal status
1151 * of the coordinate, but also its neighbors. */
1152 u->local_tree_neival = !optval || atoi(optval);
1153 } else if (!strcasecmp(optname, "local_tree_eval")) {
1154 /* How is the value inserted in the local tree
1155 * determined. */
1156 if (!strcasecmp(optval, "root"))
1157 /* All moves within a tree branch are
1158 * considered wrt. their merit
1159 * reaching tachtical goal of making
1160 * the first move in the branch
1161 * survive. */
1162 u->local_tree_eval = LTE_ROOT;
1163 else if (!strcasecmp(optval, "each"))
1164 /* Each move is considered wrt.
1165 * its own survival. */
1166 u->local_tree_eval = LTE_EACH;
1167 else if (!strcasecmp(optval, "total"))
1168 /* The tactical goal is the survival
1169 * of all the moves of my color and
1170 * non-survival of all the opponent
1171 * moves. Local values (and their
1172 * inverses) are averaged. */
1173 u->local_tree_eval = LTE_TOTAL;
1174 else {
1175 fprintf(stderr, "uct: unknown local_tree_eval %s\n", optval);
1176 exit(1);
1178 } else if (!strcasecmp(optname, "local_tree_rootchoose")) {
1179 /* If disabled, only moves within the local
1180 * tree branch are considered; the values
1181 * of the branch roots (i.e. root children)
1182 * are ignored. This may make sense together
1183 * with eval!=each, we consider only moves
1184 * that influence the goal, not the "rating"
1185 * of the goal itself. (The real solution
1186 * will be probably using criticality to pick
1187 * local tree branches.) */
1188 u->local_tree_rootchoose = !optval || atoi(optval);
1190 /** Other heuristics */
1191 } else if (!strcasecmp(optname, "patterns")) {
1192 /* Load pattern database. Various modules
1193 * (priors, policies etc.) may make use
1194 * of this database. They will request
1195 * it automatically in that case, but you
1196 * can use this option to tweak the pattern
1197 * parameters. */
1198 patterns_init(&u->pat, optval, false, true);
1199 u->want_pat = pat_setup = true;
1200 } else if (!strcasecmp(optname, "significant_threshold") && optval) {
1201 /* Some heuristics (XXX: none in mainline) rely
1202 * on the knowledge of the last "significant"
1203 * node in the descent. Such a node is
1204 * considered reasonably trustworthy to carry
1205 * some meaningful information in the values
1206 * of the node and its children. */
1207 u->significant_threshold = atoi(optval);
1209 /** Distributed engine slaves setup */
1211 } else if (!strcasecmp(optname, "slave")) {
1212 /* Act as slave for the distributed engine. */
1213 u->slave = !optval || atoi(optval);
1214 } else if (!strcasecmp(optname, "slave_index") && optval) {
1215 /* Optional index if per-slave behavior is desired.
1216 * Must be given as index/max */
1217 u->slave_index = atoi(optval);
1218 char *p = strchr(optval, '/');
1219 if (p) u->max_slaves = atoi(++p);
1220 } else if (!strcasecmp(optname, "shared_nodes") && optval) {
1221 /* Share at most shared_nodes between master and slave at each genmoves.
1222 * Must use the same value in master and slaves. */
1223 u->shared_nodes = atoi(optval);
1224 } else if (!strcasecmp(optname, "shared_levels") && optval) {
1225 /* Share only nodes of level <= shared_levels. */
1226 u->shared_levels = atoi(optval);
1227 } else if (!strcasecmp(optname, "stats_hbits") && optval) {
1228 /* Set hash table size to 2^stats_hbits for the shared stats. */
1229 u->stats_hbits = atoi(optval);
1230 } else if (!strcasecmp(optname, "stats_delay") && optval) {
1231 /* How long to wait in slave for initial stats to build up before
1232 * replying to the genmoves command (in ms) */
1233 u->stats_delay = 0.001 * atof(optval);
1235 /** Presets */
1237 } else if (!strcasecmp(optname, "maximize_score")) {
1238 /* A combination of settings that will make
1239 * Pachi try to maximize his points (instead
1240 * of playing slack yose) or minimize his loss
1241 * (and proceed to counting even when losing). */
1242 /* Please note that this preset might be
1243 * somewhat weaker than normal Pachi, and the
1244 * score maximization is approximate; point size
1245 * of win/loss still should not be used to judge
1246 * strength of Pachi or the opponent. */
1247 /* See README for some further notes. */
1248 if (!optval || atoi(optval)) {
1249 /* Allow scoring a lost game. */
1250 u->allow_losing_pass = true;
1251 /* Make Pachi keep his calm when losing
1252 * and/or maintain winning marging. */
1253 /* Do not play games that are losing
1254 * by too much. */
1255 /* XXX: komi_ratchet_age=40000 is necessary
1256 * with losing_komi_ratchet, but 40000
1257 * is somewhat arbitrary value. */
1258 char dynkomi_args[] = "losing_komi_ratchet:komi_ratchet_age=60000:no_komi_at_game_end=0:max_losing_komi=30";
1259 u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomi_args, b);
1260 /* XXX: Values arbitrary so far. */
1261 /* XXX: Also, is bytemp sensible when
1262 * combined with dynamic komi?! */
1263 u->val_scale = 0.01;
1264 u->val_bytemp = true;
1265 u->val_bytemp_min = 0.001;
1266 u->val_byavg = true;
1269 } else {
1270 fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname);
1271 exit(1);
1276 if (!u->policy)
1277 u->policy = policy_ucb1amaf_init(u, NULL, b);
1279 if (!!u->random_policy_chance ^ !!u->random_policy) {
1280 fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n");
1281 exit(1);
1284 if (!u->local_tree) {
1285 /* No ltree aging. */
1286 u->local_tree_aging = 1.0f;
1289 if (u->fast_alloc) {
1290 if (u->pruning_threshold < u->max_tree_size / 10)
1291 u->pruning_threshold = u->max_tree_size / 10;
1292 if (u->pruning_threshold > u->max_tree_size / 2)
1293 u->pruning_threshold = u->max_tree_size / 2;
1295 /* Limit pruning temp space to 20% of memory. Beyond this we discard
1296 * the nodes and recompute them at the next move if necessary. */
1297 u->max_pruned_size = u->max_tree_size / 5;
1298 u->max_tree_size -= u->max_pruned_size;
1299 } else {
1300 /* Reserve 5% memory in case the background free() are slower
1301 * than the concurrent allocations. */
1302 u->max_tree_size -= u->max_tree_size / 20;
1305 if (!u->prior)
1306 u->prior = uct_prior_init(NULL, b, u);
1308 if (!u->playout)
1309 u->playout = playout_moggy_init(NULL, b, u->jdict);
1310 if (!u->playout->debug_level)
1311 u->playout->debug_level = u->debug_level;
1313 if (u->want_pat && !pat_setup)
1314 patterns_init(&u->pat, NULL, false, true);
1315 dcnn_init();
1317 u->ownermap.map = malloc2(board_size2(b) * sizeof(u->ownermap.map[0]));
1319 if (u->slave) {
1320 if (!u->stats_hbits) u->stats_hbits = DEFAULT_STATS_HBITS;
1321 if (!u->shared_nodes) u->shared_nodes = DEFAULT_SHARED_NODES;
1322 assert(u->shared_levels * board_bits2(b) <= 8 * (int)sizeof(path_t));
1325 if (!u->dynkomi)
1326 u->dynkomi = board_small(b) ? uct_dynkomi_init_none(u, NULL, b)
1327 : uct_dynkomi_init_linear(u, NULL, b);
1329 /* Some things remain uninitialized for now - the opening tbook
1330 * is not loaded and the tree not set up. */
1331 /* This will be initialized in setup_state() at the first move
1332 * received/requested. This is because right now we are not aware
1333 * about any komi or handicap setup and such. */
1335 return u;
1338 struct engine *
1339 engine_uct_init(char *arg, struct board *b)
1341 struct uct *u = uct_state_init(arg, b);
1342 struct engine *e = calloc2(1, sizeof(struct engine));
1343 e->name = "UCT";
1344 e->board_print = uct_board_print;
1345 e->notify_play = uct_notify_play;
1346 e->chat = uct_chat;
1347 e->undo = uct_undo;
1348 e->result = uct_result;
1349 e->genmove = uct_genmove;
1350 e->genmoves = uct_genmoves;
1351 e->evaluate = uct_evaluate;
1352 e->dead_group_list = uct_dead_group_list;
1353 e->stop = uct_stop;
1354 e->done = uct_done;
1355 e->owner_map = uct_owner_map;
1356 e->best_moves = uct_best_moves;
1357 e->live_gfx_hook = uct_live_gfx_hook;
1358 e->data = u;
1359 if (u->slave)
1360 e->notify = uct_notify;
1362 const char banner[] = "If you believe you have won but I am still playing, "
1363 "please help me understand by capturing all dead stones. "
1364 "Anyone can send me 'winrate' in private chat to get my assessment of the position.";
1365 if (!u->banner) u->banner = "";
1366 e->comment = malloc2(sizeof(banner) + strlen(u->banner) + 1);
1367 sprintf(e->comment, "%s %s", banner, u->banner);
1369 return e;