cortex_a: allow physical memory access through AHB-AP again
[openocd.git] / src / target / cortex_a.c
blob27a8a9b9c10e66947bdb7b84ea4fbe171ea90c86
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex R4 support *
22 * *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 * *
41 * Cortex-A8(tm) TRM, ARM DDI 0344H *
42 * Cortex-A9(tm) TRM, ARM DDI 0407F *
43 * Cortex-A4(tm) TRM, ARM DDI 0363E *
44 * Cortex-A15(tm)TRM, ARM DDI 0438C *
45 * *
46 ***************************************************************************/
48 #ifdef HAVE_CONFIG_H
49 #include "config.h"
50 #endif
52 #include "breakpoints.h"
53 #include "cortex_a.h"
54 #include "register.h"
55 #include "target_request.h"
56 #include "target_type.h"
57 #include "arm_opcodes.h"
58 #include <helper/time_support.h>
60 static int cortex_a_poll(struct target *target);
61 static int cortex_a_debug_entry(struct target *target);
62 static int cortex_a_restore_context(struct target *target, bool bpwp);
63 static int cortex_a_set_breakpoint(struct target *target,
64 struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_context_breakpoint(struct target *target,
66 struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_hybrid_breakpoint(struct target *target,
68 struct breakpoint *breakpoint);
69 static int cortex_a_unset_breakpoint(struct target *target,
70 struct breakpoint *breakpoint);
71 static int cortex_a_dap_read_coreregister_u32(struct target *target,
72 uint32_t *value, int regnum);
73 static int cortex_a_dap_write_coreregister_u32(struct target *target,
74 uint32_t value, int regnum);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_mmu_modify(struct target *target, int enable);
77 static int cortex_a_virt2phys(struct target *target,
78 uint32_t virt, uint32_t *phys);
79 static int cortex_a_read_apb_ab_memory(struct target *target,
80 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
83 /* restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target *target)
86 int retval = ERROR_OK;
87 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
88 struct armv7a_common *armv7a = target_to_armv7a(target);
90 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
91 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
92 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93 retval = armv7a->arm.mcr(target, 15,
94 0, 0, /* op1, op2 */
95 1, 0, /* CRn, CRm */
96 cortex_a->cp15_control_reg);
98 return retval;
102 * Set up ARM core for memory access.
103 * If !phys_access, switch to SVC mode and make sure MMU is on
104 * If phys_access, switch off mmu
106 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
108 struct armv7a_common *armv7a = target_to_armv7a(target);
109 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
110 int mmu_enabled = 0;
112 if (phys_access == 0) {
113 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
114 cortex_a_mmu(target, &mmu_enabled);
115 if (mmu_enabled)
116 cortex_a_mmu_modify(target, 1);
117 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
118 /* overwrite DACR to all-manager */
119 armv7a->arm.mcr(target, 15,
120 0, 0, 3, 0,
121 0xFFFFFFFF);
123 } else {
124 cortex_a_mmu(target, &mmu_enabled);
125 if (mmu_enabled)
126 cortex_a_mmu_modify(target, 0);
128 return ERROR_OK;
132 * Restore ARM core after memory access.
133 * If !phys_access, switch to previous mode
134 * If phys_access, restore MMU setting
136 static int cortex_a_post_memaccess(struct target *target, int phys_access)
138 struct armv7a_common *armv7a = target_to_armv7a(target);
139 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
141 if (phys_access == 0) {
142 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
143 /* restore */
144 armv7a->arm.mcr(target, 15,
145 0, 0, 3, 0,
146 cortex_a->cp15_dacr_reg);
148 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
149 } else {
150 int mmu_enabled = 0;
151 cortex_a_mmu(target, &mmu_enabled);
152 if (mmu_enabled)
153 cortex_a_mmu_modify(target, 1);
155 return ERROR_OK;
159 /* modify cp15_control_reg in order to enable or disable mmu for :
160 * - virt2phys address conversion
161 * - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target *target, int enable)
164 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
165 struct armv7a_common *armv7a = target_to_armv7a(target);
166 int retval = ERROR_OK;
167 int need_write = 0;
169 if (enable) {
170 /* if mmu enabled at target stop and mmu not enable */
171 if (!(cortex_a->cp15_control_reg & 0x1U)) {
172 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
173 return ERROR_FAIL;
175 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
176 cortex_a->cp15_control_reg_curr |= 0x1U;
177 need_write = 1;
179 } else {
180 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
181 cortex_a->cp15_control_reg_curr &= ~0x1U;
182 need_write = 1;
186 if (need_write) {
187 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
188 enable ? "enable mmu" : "disable mmu",
189 cortex_a->cp15_control_reg_curr);
191 retval = armv7a->arm.mcr(target, 15,
192 0, 0, /* op1, op2 */
193 1, 0, /* CRn, CRm */
194 cortex_a->cp15_control_reg_curr);
196 return retval;
200 * Cortex-A Basic debug access, very low level assumes state is saved
202 static int cortex_a8_init_debug_access(struct target *target)
204 struct armv7a_common *armv7a = target_to_armv7a(target);
205 int retval;
207 LOG_DEBUG(" ");
209 /* Unlocking the debug registers for modification
210 * The debugport might be uninitialised so try twice */
211 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
212 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
213 if (retval != ERROR_OK) {
214 /* try again */
215 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
216 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
217 if (retval == ERROR_OK)
218 LOG_USER(
219 "Locking debug access failed on first, but succeeded on second try.");
222 return retval;
226 * Cortex-A Basic debug access, very low level assumes state is saved
228 static int cortex_a_init_debug_access(struct target *target)
230 struct armv7a_common *armv7a = target_to_armv7a(target);
231 int retval;
232 uint32_t dbg_osreg;
233 uint32_t cortex_part_num;
234 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
236 LOG_DEBUG(" ");
237 cortex_part_num = (cortex_a->cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >>
238 CORTEX_A_MIDR_PARTNUM_SHIFT;
240 switch (cortex_part_num) {
241 case CORTEX_A7_PARTNUM:
242 case CORTEX_A15_PARTNUM:
243 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
244 armv7a->debug_base + CPUDBG_OSLSR,
245 &dbg_osreg);
246 if (retval != ERROR_OK)
247 return retval;
249 LOG_DEBUG("DBGOSLSR 0x%" PRIx32, dbg_osreg);
251 if (dbg_osreg & CPUDBG_OSLAR_LK_MASK)
252 /* Unlocking the DEBUG OS registers for modification */
253 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
254 armv7a->debug_base + CPUDBG_OSLAR,
256 break;
258 case CORTEX_A5_PARTNUM:
259 case CORTEX_A8_PARTNUM:
260 case CORTEX_A9_PARTNUM:
261 default:
262 retval = cortex_a8_init_debug_access(target);
265 if (retval != ERROR_OK)
266 return retval;
267 /* Clear Sticky Power Down status Bit in PRSR to enable access to
268 the registers in the Core Power Domain */
269 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
270 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
271 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
273 if (retval != ERROR_OK)
274 return retval;
276 /* Disable cacheline fills and force cache write-through in debug state */
277 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
278 armv7a->debug_base + CPUDBG_DSCCR, 0);
279 if (retval != ERROR_OK)
280 return retval;
282 /* Disable TLB lookup and refill/eviction in debug state */
283 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
284 armv7a->debug_base + CPUDBG_DSMCR, 0);
285 if (retval != ERROR_OK)
286 return retval;
288 /* Enabling of instruction execution in debug mode is done in debug_entry code */
290 /* Resync breakpoint registers */
292 /* Since this is likely called from init or reset, update target state information*/
293 return cortex_a_poll(target);
296 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
298 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
299 * Writes final value of DSCR into *dscr. Pass force to force always
300 * reading DSCR at least once. */
301 struct armv7a_common *armv7a = target_to_armv7a(target);
302 int64_t then = timeval_ms();
303 while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
304 force = false;
305 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
306 armv7a->debug_base + CPUDBG_DSCR, dscr);
307 if (retval != ERROR_OK) {
308 LOG_ERROR("Could not read DSCR register");
309 return retval;
311 if (timeval_ms() > then + 1000) {
312 LOG_ERROR("Timeout waiting for InstrCompl=1");
313 return ERROR_FAIL;
316 return ERROR_OK;
319 /* To reduce needless round-trips, pass in a pointer to the current
320 * DSCR value. Initialize it to zero if you just need to know the
321 * value on return from this function; or DSCR_INSTR_COMP if you
322 * happen to know that no instruction is pending.
324 static int cortex_a_exec_opcode(struct target *target,
325 uint32_t opcode, uint32_t *dscr_p)
327 uint32_t dscr;
328 int retval;
329 struct armv7a_common *armv7a = target_to_armv7a(target);
331 dscr = dscr_p ? *dscr_p : 0;
333 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
335 /* Wait for InstrCompl bit to be set */
336 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
337 if (retval != ERROR_OK)
338 return retval;
340 retval = mem_ap_write_u32(armv7a->debug_ap,
341 armv7a->debug_base + CPUDBG_ITR, opcode);
342 if (retval != ERROR_OK)
343 return retval;
345 int64_t then = timeval_ms();
346 do {
347 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
348 armv7a->debug_base + CPUDBG_DSCR, &dscr);
349 if (retval != ERROR_OK) {
350 LOG_ERROR("Could not read DSCR register");
351 return retval;
353 if (timeval_ms() > then + 1000) {
354 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
355 return ERROR_FAIL;
357 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
359 if (dscr_p)
360 *dscr_p = dscr;
362 return retval;
365 /**************************************************************************
366 Read core register with very few exec_opcode, fast but needs work_area.
367 This can cause problems with MMU active.
368 **************************************************************************/
369 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
370 uint32_t *regfile)
372 int retval = ERROR_OK;
373 struct armv7a_common *armv7a = target_to_armv7a(target);
375 retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
376 if (retval != ERROR_OK)
377 return retval;
378 retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
379 if (retval != ERROR_OK)
380 return retval;
381 retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
382 if (retval != ERROR_OK)
383 return retval;
385 retval = mem_ap_read_buf(armv7a->memory_ap,
386 (uint8_t *)(&regfile[1]), 4, 15, address);
388 return retval;
391 static int cortex_a_dap_read_coreregister_u32(struct target *target,
392 uint32_t *value, int regnum)
394 int retval = ERROR_OK;
395 uint8_t reg = regnum&0xFF;
396 uint32_t dscr = 0;
397 struct armv7a_common *armv7a = target_to_armv7a(target);
399 if (reg > 17)
400 return retval;
402 if (reg < 15) {
403 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
404 retval = cortex_a_exec_opcode(target,
405 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
406 &dscr);
407 if (retval != ERROR_OK)
408 return retval;
409 } else if (reg == 15) {
410 /* "MOV r0, r15"; then move r0 to DCCTX */
411 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
412 if (retval != ERROR_OK)
413 return retval;
414 retval = cortex_a_exec_opcode(target,
415 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
416 &dscr);
417 if (retval != ERROR_OK)
418 return retval;
419 } else {
420 /* "MRS r0, CPSR" or "MRS r0, SPSR"
421 * then move r0 to DCCTX
423 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
424 if (retval != ERROR_OK)
425 return retval;
426 retval = cortex_a_exec_opcode(target,
427 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
428 &dscr);
429 if (retval != ERROR_OK)
430 return retval;
433 /* Wait for DTRRXfull then read DTRRTX */
434 int64_t then = timeval_ms();
435 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
436 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
437 armv7a->debug_base + CPUDBG_DSCR, &dscr);
438 if (retval != ERROR_OK)
439 return retval;
440 if (timeval_ms() > then + 1000) {
441 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
442 return ERROR_FAIL;
446 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
447 armv7a->debug_base + CPUDBG_DTRTX, value);
448 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
450 return retval;
453 static int cortex_a_dap_write_coreregister_u32(struct target *target,
454 uint32_t value, int regnum)
456 int retval = ERROR_OK;
457 uint8_t Rd = regnum&0xFF;
458 uint32_t dscr;
459 struct armv7a_common *armv7a = target_to_armv7a(target);
461 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
463 /* Check that DCCRX is not full */
464 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
465 armv7a->debug_base + CPUDBG_DSCR, &dscr);
466 if (retval != ERROR_OK)
467 return retval;
468 if (dscr & DSCR_DTR_RX_FULL) {
469 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
470 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
471 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
472 &dscr);
473 if (retval != ERROR_OK)
474 return retval;
477 if (Rd > 17)
478 return retval;
480 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
481 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
482 retval = mem_ap_write_u32(armv7a->debug_ap,
483 armv7a->debug_base + CPUDBG_DTRRX, value);
484 if (retval != ERROR_OK)
485 return retval;
487 if (Rd < 15) {
488 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
489 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
490 &dscr);
492 if (retval != ERROR_OK)
493 return retval;
494 } else if (Rd == 15) {
495 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
496 * then "mov r15, r0"
498 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
499 &dscr);
500 if (retval != ERROR_OK)
501 return retval;
502 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
503 if (retval != ERROR_OK)
504 return retval;
505 } else {
506 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
507 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
509 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
510 &dscr);
511 if (retval != ERROR_OK)
512 return retval;
513 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
514 &dscr);
515 if (retval != ERROR_OK)
516 return retval;
518 /* "Prefetch flush" after modifying execution status in CPSR */
519 if (Rd == 16) {
520 retval = cortex_a_exec_opcode(target,
521 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
522 &dscr);
523 if (retval != ERROR_OK)
524 return retval;
528 return retval;
531 /* Write to memory mapped registers directly with no cache or mmu handling */
532 static int cortex_a_dap_write_memap_register_u32(struct target *target,
533 uint32_t address,
534 uint32_t value)
536 int retval;
537 struct armv7a_common *armv7a = target_to_armv7a(target);
539 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
541 return retval;
545 * Cortex-A implementation of Debug Programmer's Model
547 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
548 * so there's no need to poll for it before executing an instruction.
550 * NOTE that in several of these cases the "stall" mode might be useful.
551 * It'd let us queue a few operations together... prepare/finish might
552 * be the places to enable/disable that mode.
555 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
557 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
560 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
562 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
563 return mem_ap_write_u32(a->armv7a_common.debug_ap,
564 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
567 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
568 uint32_t *dscr_p)
570 uint32_t dscr = DSCR_INSTR_COMP;
571 int retval;
573 if (dscr_p)
574 dscr = *dscr_p;
576 /* Wait for DTRRXfull */
577 int64_t then = timeval_ms();
578 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
579 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
580 a->armv7a_common.debug_base + CPUDBG_DSCR,
581 &dscr);
582 if (retval != ERROR_OK)
583 return retval;
584 if (timeval_ms() > then + 1000) {
585 LOG_ERROR("Timeout waiting for read dcc");
586 return ERROR_FAIL;
590 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
591 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
592 if (retval != ERROR_OK)
593 return retval;
594 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
596 if (dscr_p)
597 *dscr_p = dscr;
599 return retval;
602 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
604 struct cortex_a_common *a = dpm_to_a(dpm);
605 uint32_t dscr;
606 int retval;
608 /* set up invariant: INSTR_COMP is set after ever DPM operation */
609 int64_t then = timeval_ms();
610 for (;; ) {
611 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
612 a->armv7a_common.debug_base + CPUDBG_DSCR,
613 &dscr);
614 if (retval != ERROR_OK)
615 return retval;
616 if ((dscr & DSCR_INSTR_COMP) != 0)
617 break;
618 if (timeval_ms() > then + 1000) {
619 LOG_ERROR("Timeout waiting for dpm prepare");
620 return ERROR_FAIL;
624 /* this "should never happen" ... */
625 if (dscr & DSCR_DTR_RX_FULL) {
626 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
627 /* Clear DCCRX */
628 retval = cortex_a_exec_opcode(
629 a->armv7a_common.arm.target,
630 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
631 &dscr);
632 if (retval != ERROR_OK)
633 return retval;
636 return retval;
639 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
641 /* REVISIT what could be done here? */
642 return ERROR_OK;
645 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
646 uint32_t opcode, uint32_t data)
648 struct cortex_a_common *a = dpm_to_a(dpm);
649 int retval;
650 uint32_t dscr = DSCR_INSTR_COMP;
652 retval = cortex_a_write_dcc(a, data);
653 if (retval != ERROR_OK)
654 return retval;
656 return cortex_a_exec_opcode(
657 a->armv7a_common.arm.target,
658 opcode,
659 &dscr);
662 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
663 uint32_t opcode, uint32_t data)
665 struct cortex_a_common *a = dpm_to_a(dpm);
666 uint32_t dscr = DSCR_INSTR_COMP;
667 int retval;
669 retval = cortex_a_write_dcc(a, data);
670 if (retval != ERROR_OK)
671 return retval;
673 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
674 retval = cortex_a_exec_opcode(
675 a->armv7a_common.arm.target,
676 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
677 &dscr);
678 if (retval != ERROR_OK)
679 return retval;
681 /* then the opcode, taking data from R0 */
682 retval = cortex_a_exec_opcode(
683 a->armv7a_common.arm.target,
684 opcode,
685 &dscr);
687 return retval;
690 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
692 struct target *target = dpm->arm->target;
693 uint32_t dscr = DSCR_INSTR_COMP;
695 /* "Prefetch flush" after modifying execution status in CPSR */
696 return cortex_a_exec_opcode(target,
697 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
698 &dscr);
701 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
702 uint32_t opcode, uint32_t *data)
704 struct cortex_a_common *a = dpm_to_a(dpm);
705 int retval;
706 uint32_t dscr = DSCR_INSTR_COMP;
708 /* the opcode, writing data to DCC */
709 retval = cortex_a_exec_opcode(
710 a->armv7a_common.arm.target,
711 opcode,
712 &dscr);
713 if (retval != ERROR_OK)
714 return retval;
716 return cortex_a_read_dcc(a, data, &dscr);
720 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
721 uint32_t opcode, uint32_t *data)
723 struct cortex_a_common *a = dpm_to_a(dpm);
724 uint32_t dscr = DSCR_INSTR_COMP;
725 int retval;
727 /* the opcode, writing data to R0 */
728 retval = cortex_a_exec_opcode(
729 a->armv7a_common.arm.target,
730 opcode,
731 &dscr);
732 if (retval != ERROR_OK)
733 return retval;
735 /* write R0 to DCC */
736 retval = cortex_a_exec_opcode(
737 a->armv7a_common.arm.target,
738 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
739 &dscr);
740 if (retval != ERROR_OK)
741 return retval;
743 return cortex_a_read_dcc(a, data, &dscr);
746 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
747 uint32_t addr, uint32_t control)
749 struct cortex_a_common *a = dpm_to_a(dpm);
750 uint32_t vr = a->armv7a_common.debug_base;
751 uint32_t cr = a->armv7a_common.debug_base;
752 int retval;
754 switch (index_t) {
755 case 0 ... 15: /* breakpoints */
756 vr += CPUDBG_BVR_BASE;
757 cr += CPUDBG_BCR_BASE;
758 break;
759 case 16 ... 31: /* watchpoints */
760 vr += CPUDBG_WVR_BASE;
761 cr += CPUDBG_WCR_BASE;
762 index_t -= 16;
763 break;
764 default:
765 return ERROR_FAIL;
767 vr += 4 * index_t;
768 cr += 4 * index_t;
770 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
771 (unsigned) vr, (unsigned) cr);
773 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
774 vr, addr);
775 if (retval != ERROR_OK)
776 return retval;
777 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
778 cr, control);
779 return retval;
782 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
784 struct cortex_a_common *a = dpm_to_a(dpm);
785 uint32_t cr;
787 switch (index_t) {
788 case 0 ... 15:
789 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
790 break;
791 case 16 ... 31:
792 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
793 index_t -= 16;
794 break;
795 default:
796 return ERROR_FAIL;
798 cr += 4 * index_t;
800 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
802 /* clear control register */
803 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
806 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
808 struct arm_dpm *dpm = &a->armv7a_common.dpm;
809 int retval;
811 dpm->arm = &a->armv7a_common.arm;
812 dpm->didr = didr;
814 dpm->prepare = cortex_a_dpm_prepare;
815 dpm->finish = cortex_a_dpm_finish;
817 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
818 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
819 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
821 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
822 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
824 dpm->bpwp_enable = cortex_a_bpwp_enable;
825 dpm->bpwp_disable = cortex_a_bpwp_disable;
827 retval = arm_dpm_setup(dpm);
828 if (retval == ERROR_OK)
829 retval = arm_dpm_initialize(dpm);
831 return retval;
833 static struct target *get_cortex_a(struct target *target, int32_t coreid)
835 struct target_list *head;
836 struct target *curr;
838 head = target->head;
839 while (head != (struct target_list *)NULL) {
840 curr = head->target;
841 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
842 return curr;
843 head = head->next;
845 return target;
847 static int cortex_a_halt(struct target *target);
849 static int cortex_a_halt_smp(struct target *target)
851 int retval = 0;
852 struct target_list *head;
853 struct target *curr;
854 head = target->head;
855 while (head != (struct target_list *)NULL) {
856 curr = head->target;
857 if ((curr != target) && (curr->state != TARGET_HALTED))
858 retval += cortex_a_halt(curr);
859 head = head->next;
861 return retval;
864 static int update_halt_gdb(struct target *target)
866 int retval = 0;
867 if (target->gdb_service && target->gdb_service->core[0] == -1) {
868 target->gdb_service->target = target;
869 target->gdb_service->core[0] = target->coreid;
870 retval += cortex_a_halt_smp(target);
872 return retval;
876 * Cortex-A Run control
879 static int cortex_a_poll(struct target *target)
881 int retval = ERROR_OK;
882 uint32_t dscr;
883 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
884 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
885 enum target_state prev_target_state = target->state;
886 /* toggle to another core is done by gdb as follow */
887 /* maint packet J core_id */
888 /* continue */
889 /* the next polling trigger an halt event sent to gdb */
890 if ((target->state == TARGET_HALTED) && (target->smp) &&
891 (target->gdb_service) &&
892 (target->gdb_service->target == NULL)) {
893 target->gdb_service->target =
894 get_cortex_a(target, target->gdb_service->core[1]);
895 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
896 return retval;
898 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
899 armv7a->debug_base + CPUDBG_DSCR, &dscr);
900 if (retval != ERROR_OK)
901 return retval;
902 cortex_a->cpudbg_dscr = dscr;
904 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
905 if (prev_target_state != TARGET_HALTED) {
906 /* We have a halting debug event */
907 LOG_DEBUG("Target halted");
908 target->state = TARGET_HALTED;
909 if ((prev_target_state == TARGET_RUNNING)
910 || (prev_target_state == TARGET_UNKNOWN)
911 || (prev_target_state == TARGET_RESET)) {
912 retval = cortex_a_debug_entry(target);
913 if (retval != ERROR_OK)
914 return retval;
915 if (target->smp) {
916 retval = update_halt_gdb(target);
917 if (retval != ERROR_OK)
918 return retval;
920 target_call_event_callbacks(target,
921 TARGET_EVENT_HALTED);
923 if (prev_target_state == TARGET_DEBUG_RUNNING) {
924 LOG_DEBUG(" ");
926 retval = cortex_a_debug_entry(target);
927 if (retval != ERROR_OK)
928 return retval;
929 if (target->smp) {
930 retval = update_halt_gdb(target);
931 if (retval != ERROR_OK)
932 return retval;
935 target_call_event_callbacks(target,
936 TARGET_EVENT_DEBUG_HALTED);
939 } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
940 target->state = TARGET_RUNNING;
941 else {
942 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
943 target->state = TARGET_UNKNOWN;
946 return retval;
949 static int cortex_a_halt(struct target *target)
951 int retval = ERROR_OK;
952 uint32_t dscr;
953 struct armv7a_common *armv7a = target_to_armv7a(target);
956 * Tell the core to be halted by writing DRCR with 0x1
957 * and then wait for the core to be halted.
959 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
960 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
961 if (retval != ERROR_OK)
962 return retval;
965 * enter halting debug mode
967 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
968 armv7a->debug_base + CPUDBG_DSCR, &dscr);
969 if (retval != ERROR_OK)
970 return retval;
972 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
973 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
974 if (retval != ERROR_OK)
975 return retval;
977 int64_t then = timeval_ms();
978 for (;; ) {
979 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
980 armv7a->debug_base + CPUDBG_DSCR, &dscr);
981 if (retval != ERROR_OK)
982 return retval;
983 if ((dscr & DSCR_CORE_HALTED) != 0)
984 break;
985 if (timeval_ms() > then + 1000) {
986 LOG_ERROR("Timeout waiting for halt");
987 return ERROR_FAIL;
991 target->debug_reason = DBG_REASON_DBGRQ;
993 return ERROR_OK;
996 static int cortex_a_internal_restore(struct target *target, int current,
997 uint32_t *address, int handle_breakpoints, int debug_execution)
999 struct armv7a_common *armv7a = target_to_armv7a(target);
1000 struct arm *arm = &armv7a->arm;
1001 int retval;
1002 uint32_t resume_pc;
1004 if (!debug_execution)
1005 target_free_all_working_areas(target);
1007 #if 0
1008 if (debug_execution) {
1009 /* Disable interrupts */
1010 /* We disable interrupts in the PRIMASK register instead of
1011 * masking with C_MASKINTS,
1012 * This is probably the same issue as Cortex-M3 Errata 377493:
1013 * C_MASKINTS in parallel with disabled interrupts can cause
1014 * local faults to not be taken. */
1015 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
1016 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
1017 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
1019 /* Make sure we are in Thumb mode */
1020 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
1021 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
1022 32) | (1 << 24));
1023 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
1024 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
1026 #endif
1028 /* current = 1: continue on current pc, otherwise continue at <address> */
1029 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
1030 if (!current)
1031 resume_pc = *address;
1032 else
1033 *address = resume_pc;
1035 /* Make sure that the Armv7 gdb thumb fixups does not
1036 * kill the return address
1038 switch (arm->core_state) {
1039 case ARM_STATE_ARM:
1040 resume_pc &= 0xFFFFFFFC;
1041 break;
1042 case ARM_STATE_THUMB:
1043 case ARM_STATE_THUMB_EE:
1044 /* When the return address is loaded into PC
1045 * bit 0 must be 1 to stay in Thumb state
1047 resume_pc |= 0x1;
1048 break;
1049 case ARM_STATE_JAZELLE:
1050 LOG_ERROR("How do I resume into Jazelle state??");
1051 return ERROR_FAIL;
1053 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1054 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1055 arm->pc->dirty = 1;
1056 arm->pc->valid = 1;
1058 /* restore dpm_mode at system halt */
1059 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1060 /* called it now before restoring context because it uses cpu
1061 * register r0 for restoring cp15 control register */
1062 retval = cortex_a_restore_cp15_control_reg(target);
1063 if (retval != ERROR_OK)
1064 return retval;
1065 retval = cortex_a_restore_context(target, handle_breakpoints);
1066 if (retval != ERROR_OK)
1067 return retval;
1068 target->debug_reason = DBG_REASON_NOTHALTED;
1069 target->state = TARGET_RUNNING;
1071 /* registers are now invalid */
1072 register_cache_invalidate(arm->core_cache);
1074 #if 0
1075 /* the front-end may request us not to handle breakpoints */
1076 if (handle_breakpoints) {
1077 /* Single step past breakpoint at current address */
1078 breakpoint = breakpoint_find(target, resume_pc);
1079 if (breakpoint) {
1080 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1081 cortex_m3_unset_breakpoint(target, breakpoint);
1082 cortex_m3_single_step_core(target);
1083 cortex_m3_set_breakpoint(target, breakpoint);
1087 #endif
1088 return retval;
1091 static int cortex_a_internal_restart(struct target *target)
1093 struct armv7a_common *armv7a = target_to_armv7a(target);
1094 struct arm *arm = &armv7a->arm;
1095 int retval;
1096 uint32_t dscr;
1098 * * Restart core and wait for it to be started. Clear ITRen and sticky
1099 * * exception flags: see ARMv7 ARM, C5.9.
1101 * REVISIT: for single stepping, we probably want to
1102 * disable IRQs by default, with optional override...
1105 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1106 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1107 if (retval != ERROR_OK)
1108 return retval;
1110 if ((dscr & DSCR_INSTR_COMP) == 0)
1111 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1113 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1114 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1115 if (retval != ERROR_OK)
1116 return retval;
1118 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1119 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1120 DRCR_CLEAR_EXCEPTIONS);
1121 if (retval != ERROR_OK)
1122 return retval;
1124 int64_t then = timeval_ms();
1125 for (;; ) {
1126 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1127 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1128 if (retval != ERROR_OK)
1129 return retval;
1130 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1131 break;
1132 if (timeval_ms() > then + 1000) {
1133 LOG_ERROR("Timeout waiting for resume");
1134 return ERROR_FAIL;
1138 target->debug_reason = DBG_REASON_NOTHALTED;
1139 target->state = TARGET_RUNNING;
1141 /* registers are now invalid */
1142 register_cache_invalidate(arm->core_cache);
1144 return ERROR_OK;
1147 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1149 int retval = 0;
1150 struct target_list *head;
1151 struct target *curr;
1152 uint32_t address;
1153 head = target->head;
1154 while (head != (struct target_list *)NULL) {
1155 curr = head->target;
1156 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1157 /* resume current address , not in step mode */
1158 retval += cortex_a_internal_restore(curr, 1, &address,
1159 handle_breakpoints, 0);
1160 retval += cortex_a_internal_restart(curr);
1162 head = head->next;
1165 return retval;
1168 static int cortex_a_resume(struct target *target, int current,
1169 uint32_t address, int handle_breakpoints, int debug_execution)
1171 int retval = 0;
1172 /* dummy resume for smp toggle in order to reduce gdb impact */
1173 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1174 /* simulate a start and halt of target */
1175 target->gdb_service->target = NULL;
1176 target->gdb_service->core[0] = target->gdb_service->core[1];
1177 /* fake resume at next poll we play the target core[1], see poll*/
1178 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1179 return 0;
1181 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1182 if (target->smp) {
1183 target->gdb_service->core[0] = -1;
1184 retval = cortex_a_restore_smp(target, handle_breakpoints);
1185 if (retval != ERROR_OK)
1186 return retval;
1188 cortex_a_internal_restart(target);
1190 if (!debug_execution) {
1191 target->state = TARGET_RUNNING;
1192 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1193 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1194 } else {
1195 target->state = TARGET_DEBUG_RUNNING;
1196 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1197 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1200 return ERROR_OK;
1203 static int cortex_a_debug_entry(struct target *target)
1205 int i;
1206 uint32_t regfile[16], cpsr, dscr;
1207 int retval = ERROR_OK;
1208 struct working_area *regfile_working_area = NULL;
1209 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1210 struct armv7a_common *armv7a = target_to_armv7a(target);
1211 struct arm *arm = &armv7a->arm;
1212 struct reg *reg;
1214 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1216 /* REVISIT surely we should not re-read DSCR !! */
1217 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1218 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1219 if (retval != ERROR_OK)
1220 return retval;
1222 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1223 * imprecise data aborts get discarded by issuing a Data
1224 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1227 /* Enable the ITR execution once we are in debug mode */
1228 dscr |= DSCR_ITR_EN;
1229 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1230 armv7a->debug_base + CPUDBG_DSCR, dscr);
1231 if (retval != ERROR_OK)
1232 return retval;
1234 /* Examine debug reason */
1235 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1237 /* save address of instruction that triggered the watchpoint? */
1238 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1239 uint32_t wfar;
1241 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1242 armv7a->debug_base + CPUDBG_WFAR,
1243 &wfar);
1244 if (retval != ERROR_OK)
1245 return retval;
1246 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1249 /* REVISIT fast_reg_read is never set ... */
1251 /* Examine target state and mode */
1252 if (cortex_a->fast_reg_read)
1253 target_alloc_working_area(target, 64, &regfile_working_area);
1255 /* First load register acessible through core debug port*/
1256 if (!regfile_working_area)
1257 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1258 else {
1259 retval = cortex_a_read_regs_through_mem(target,
1260 regfile_working_area->address, regfile);
1262 target_free_working_area(target, regfile_working_area);
1263 if (retval != ERROR_OK)
1264 return retval;
1266 /* read Current PSR */
1267 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1268 /* store current cpsr */
1269 if (retval != ERROR_OK)
1270 return retval;
1272 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1274 arm_set_cpsr(arm, cpsr);
1276 /* update cache */
1277 for (i = 0; i <= ARM_PC; i++) {
1278 reg = arm_reg_current(arm, i);
1280 buf_set_u32(reg->value, 0, 32, regfile[i]);
1281 reg->valid = 1;
1282 reg->dirty = 0;
1285 /* Fixup PC Resume Address */
1286 if (cpsr & (1 << 5)) {
1287 /* T bit set for Thumb or ThumbEE state */
1288 regfile[ARM_PC] -= 4;
1289 } else {
1290 /* ARM state */
1291 regfile[ARM_PC] -= 8;
1294 reg = arm->pc;
1295 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1296 reg->dirty = reg->valid;
1299 #if 0
1300 /* TODO, Move this */
1301 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1302 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1303 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1305 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1306 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1308 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1309 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1310 #endif
1312 /* Are we in an exception handler */
1313 /* armv4_5->exception_number = 0; */
1314 if (armv7a->post_debug_entry) {
1315 retval = armv7a->post_debug_entry(target);
1316 if (retval != ERROR_OK)
1317 return retval;
1320 return retval;
1323 static int cortex_a_post_debug_entry(struct target *target)
1325 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1326 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1327 int retval;
1329 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1330 retval = armv7a->arm.mrc(target, 15,
1331 0, 0, /* op1, op2 */
1332 1, 0, /* CRn, CRm */
1333 &cortex_a->cp15_control_reg);
1334 if (retval != ERROR_OK)
1335 return retval;
1336 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1337 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1339 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1340 armv7a_identify_cache(target);
1342 if (armv7a->is_armv7r) {
1343 armv7a->armv7a_mmu.mmu_enabled = 0;
1344 } else {
1345 armv7a->armv7a_mmu.mmu_enabled =
1346 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1348 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1349 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1350 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1351 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1352 cortex_a->curr_mode = armv7a->arm.core_mode;
1354 /* switch to SVC mode to read DACR */
1355 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1356 armv7a->arm.mrc(target, 15,
1357 0, 0, 3, 0,
1358 &cortex_a->cp15_dacr_reg);
1360 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1361 cortex_a->cp15_dacr_reg);
1363 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1364 return ERROR_OK;
1367 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1369 struct armv7a_common *armv7a = target_to_armv7a(target);
1370 uint32_t dscr;
1372 /* Read DSCR */
1373 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1374 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1375 if (ERROR_OK != retval)
1376 return retval;
1378 /* clear bitfield */
1379 dscr &= ~bit_mask;
1380 /* put new value */
1381 dscr |= value & bit_mask;
1383 /* write new DSCR */
1384 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1385 armv7a->debug_base + CPUDBG_DSCR, dscr);
1386 return retval;
1389 static int cortex_a_step(struct target *target, int current, uint32_t address,
1390 int handle_breakpoints)
1392 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1393 struct armv7a_common *armv7a = target_to_armv7a(target);
1394 struct arm *arm = &armv7a->arm;
1395 struct breakpoint *breakpoint = NULL;
1396 struct breakpoint stepbreakpoint;
1397 struct reg *r;
1398 int retval;
1400 if (target->state != TARGET_HALTED) {
1401 LOG_WARNING("target not halted");
1402 return ERROR_TARGET_NOT_HALTED;
1405 /* current = 1: continue on current pc, otherwise continue at <address> */
1406 r = arm->pc;
1407 if (!current)
1408 buf_set_u32(r->value, 0, 32, address);
1409 else
1410 address = buf_get_u32(r->value, 0, 32);
1412 /* The front-end may request us not to handle breakpoints.
1413 * But since Cortex-A uses breakpoint for single step,
1414 * we MUST handle breakpoints.
1416 handle_breakpoints = 1;
1417 if (handle_breakpoints) {
1418 breakpoint = breakpoint_find(target, address);
1419 if (breakpoint)
1420 cortex_a_unset_breakpoint(target, breakpoint);
1423 /* Setup single step breakpoint */
1424 stepbreakpoint.address = address;
1425 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1426 ? 2 : 4;
1427 stepbreakpoint.type = BKPT_HARD;
1428 stepbreakpoint.set = 0;
1430 /* Disable interrupts during single step if requested */
1431 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1432 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1433 if (ERROR_OK != retval)
1434 return retval;
1437 /* Break on IVA mismatch */
1438 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1440 target->debug_reason = DBG_REASON_SINGLESTEP;
1442 retval = cortex_a_resume(target, 1, address, 0, 0);
1443 if (retval != ERROR_OK)
1444 return retval;
1446 int64_t then = timeval_ms();
1447 while (target->state != TARGET_HALTED) {
1448 retval = cortex_a_poll(target);
1449 if (retval != ERROR_OK)
1450 return retval;
1451 if (timeval_ms() > then + 1000) {
1452 LOG_ERROR("timeout waiting for target halt");
1453 return ERROR_FAIL;
1457 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1459 /* Re-enable interrupts if they were disabled */
1460 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1461 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1462 if (ERROR_OK != retval)
1463 return retval;
1467 target->debug_reason = DBG_REASON_BREAKPOINT;
1469 if (breakpoint)
1470 cortex_a_set_breakpoint(target, breakpoint, 0);
1472 if (target->state != TARGET_HALTED)
1473 LOG_DEBUG("target stepped");
1475 return ERROR_OK;
1478 static int cortex_a_restore_context(struct target *target, bool bpwp)
1480 struct armv7a_common *armv7a = target_to_armv7a(target);
1482 LOG_DEBUG(" ");
1484 if (armv7a->pre_restore_context)
1485 armv7a->pre_restore_context(target);
1487 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1491 * Cortex-A Breakpoint and watchpoint functions
1494 /* Setup hardware Breakpoint Register Pair */
1495 static int cortex_a_set_breakpoint(struct target *target,
1496 struct breakpoint *breakpoint, uint8_t matchmode)
1498 int retval;
1499 int brp_i = 0;
1500 uint32_t control;
1501 uint8_t byte_addr_select = 0x0F;
1502 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1503 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1504 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1506 if (breakpoint->set) {
1507 LOG_WARNING("breakpoint already set");
1508 return ERROR_OK;
1511 if (breakpoint->type == BKPT_HARD) {
1512 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1513 brp_i++;
1514 if (brp_i >= cortex_a->brp_num) {
1515 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1516 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1518 breakpoint->set = brp_i + 1;
1519 if (breakpoint->length == 2)
1520 byte_addr_select = (3 << (breakpoint->address & 0x02));
1521 control = ((matchmode & 0x7) << 20)
1522 | (byte_addr_select << 5)
1523 | (3 << 1) | 1;
1524 brp_list[brp_i].used = 1;
1525 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1526 brp_list[brp_i].control = control;
1527 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1528 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1529 brp_list[brp_i].value);
1530 if (retval != ERROR_OK)
1531 return retval;
1532 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1533 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1534 brp_list[brp_i].control);
1535 if (retval != ERROR_OK)
1536 return retval;
1537 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1538 brp_list[brp_i].control,
1539 brp_list[brp_i].value);
1540 } else if (breakpoint->type == BKPT_SOFT) {
1541 uint8_t code[4];
1542 if (breakpoint->length == 2)
1543 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1544 else
1545 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1546 retval = target_read_memory(target,
1547 breakpoint->address & 0xFFFFFFFE,
1548 breakpoint->length, 1,
1549 breakpoint->orig_instr);
1550 if (retval != ERROR_OK)
1551 return retval;
1553 /* make sure data cache is cleaned & invalidated down to PoC */
1554 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1555 armv7a_cache_flush_virt(target, breakpoint->address,
1556 breakpoint->length);
1559 retval = target_write_memory(target,
1560 breakpoint->address & 0xFFFFFFFE,
1561 breakpoint->length, 1, code);
1562 if (retval != ERROR_OK)
1563 return retval;
1565 /* update i-cache at breakpoint location */
1566 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1567 breakpoint->length);
1568 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1569 breakpoint->length);
1571 breakpoint->set = 0x11; /* Any nice value but 0 */
1574 return ERROR_OK;
1577 static int cortex_a_set_context_breakpoint(struct target *target,
1578 struct breakpoint *breakpoint, uint8_t matchmode)
1580 int retval = ERROR_FAIL;
1581 int brp_i = 0;
1582 uint32_t control;
1583 uint8_t byte_addr_select = 0x0F;
1584 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1585 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1586 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1588 if (breakpoint->set) {
1589 LOG_WARNING("breakpoint already set");
1590 return retval;
1592 /*check available context BRPs*/
1593 while ((brp_list[brp_i].used ||
1594 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1595 brp_i++;
1597 if (brp_i >= cortex_a->brp_num) {
1598 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1599 return ERROR_FAIL;
1602 breakpoint->set = brp_i + 1;
1603 control = ((matchmode & 0x7) << 20)
1604 | (byte_addr_select << 5)
1605 | (3 << 1) | 1;
1606 brp_list[brp_i].used = 1;
1607 brp_list[brp_i].value = (breakpoint->asid);
1608 brp_list[brp_i].control = control;
1609 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1610 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1611 brp_list[brp_i].value);
1612 if (retval != ERROR_OK)
1613 return retval;
1614 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1615 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1616 brp_list[brp_i].control);
1617 if (retval != ERROR_OK)
1618 return retval;
1619 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1620 brp_list[brp_i].control,
1621 brp_list[brp_i].value);
1622 return ERROR_OK;
1626 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1628 int retval = ERROR_FAIL;
1629 int brp_1 = 0; /* holds the contextID pair */
1630 int brp_2 = 0; /* holds the IVA pair */
1631 uint32_t control_CTX, control_IVA;
1632 uint8_t CTX_byte_addr_select = 0x0F;
1633 uint8_t IVA_byte_addr_select = 0x0F;
1634 uint8_t CTX_machmode = 0x03;
1635 uint8_t IVA_machmode = 0x01;
1636 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1637 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1638 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1640 if (breakpoint->set) {
1641 LOG_WARNING("breakpoint already set");
1642 return retval;
1644 /*check available context BRPs*/
1645 while ((brp_list[brp_1].used ||
1646 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1647 brp_1++;
1649 printf("brp(CTX) found num: %d\n", brp_1);
1650 if (brp_1 >= cortex_a->brp_num) {
1651 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1652 return ERROR_FAIL;
1655 while ((brp_list[brp_2].used ||
1656 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1657 brp_2++;
1659 printf("brp(IVA) found num: %d\n", brp_2);
1660 if (brp_2 >= cortex_a->brp_num) {
1661 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1662 return ERROR_FAIL;
1665 breakpoint->set = brp_1 + 1;
1666 breakpoint->linked_BRP = brp_2;
1667 control_CTX = ((CTX_machmode & 0x7) << 20)
1668 | (brp_2 << 16)
1669 | (0 << 14)
1670 | (CTX_byte_addr_select << 5)
1671 | (3 << 1) | 1;
1672 brp_list[brp_1].used = 1;
1673 brp_list[brp_1].value = (breakpoint->asid);
1674 brp_list[brp_1].control = control_CTX;
1675 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1676 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1677 brp_list[brp_1].value);
1678 if (retval != ERROR_OK)
1679 return retval;
1680 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1681 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1682 brp_list[brp_1].control);
1683 if (retval != ERROR_OK)
1684 return retval;
1686 control_IVA = ((IVA_machmode & 0x7) << 20)
1687 | (brp_1 << 16)
1688 | (IVA_byte_addr_select << 5)
1689 | (3 << 1) | 1;
1690 brp_list[brp_2].used = 1;
1691 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1692 brp_list[brp_2].control = control_IVA;
1693 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1694 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1695 brp_list[brp_2].value);
1696 if (retval != ERROR_OK)
1697 return retval;
1698 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1699 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1700 brp_list[brp_2].control);
1701 if (retval != ERROR_OK)
1702 return retval;
1704 return ERROR_OK;
1707 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1709 int retval;
1710 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1711 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1712 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1714 if (!breakpoint->set) {
1715 LOG_WARNING("breakpoint not set");
1716 return ERROR_OK;
1719 if (breakpoint->type == BKPT_HARD) {
1720 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1721 int brp_i = breakpoint->set - 1;
1722 int brp_j = breakpoint->linked_BRP;
1723 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1724 LOG_DEBUG("Invalid BRP number in breakpoint");
1725 return ERROR_OK;
1727 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1728 brp_list[brp_i].control, brp_list[brp_i].value);
1729 brp_list[brp_i].used = 0;
1730 brp_list[brp_i].value = 0;
1731 brp_list[brp_i].control = 0;
1732 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1733 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1734 brp_list[brp_i].control);
1735 if (retval != ERROR_OK)
1736 return retval;
1737 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1738 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1739 brp_list[brp_i].value);
1740 if (retval != ERROR_OK)
1741 return retval;
1742 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1743 LOG_DEBUG("Invalid BRP number in breakpoint");
1744 return ERROR_OK;
1746 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1747 brp_list[brp_j].control, brp_list[brp_j].value);
1748 brp_list[brp_j].used = 0;
1749 brp_list[brp_j].value = 0;
1750 brp_list[brp_j].control = 0;
1751 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1752 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1753 brp_list[brp_j].control);
1754 if (retval != ERROR_OK)
1755 return retval;
1756 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1757 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1758 brp_list[brp_j].value);
1759 if (retval != ERROR_OK)
1760 return retval;
1761 breakpoint->linked_BRP = 0;
1762 breakpoint->set = 0;
1763 return ERROR_OK;
1765 } else {
1766 int brp_i = breakpoint->set - 1;
1767 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1768 LOG_DEBUG("Invalid BRP number in breakpoint");
1769 return ERROR_OK;
1771 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1772 brp_list[brp_i].control, brp_list[brp_i].value);
1773 brp_list[brp_i].used = 0;
1774 brp_list[brp_i].value = 0;
1775 brp_list[brp_i].control = 0;
1776 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1777 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1778 brp_list[brp_i].control);
1779 if (retval != ERROR_OK)
1780 return retval;
1781 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1782 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1783 brp_list[brp_i].value);
1784 if (retval != ERROR_OK)
1785 return retval;
1786 breakpoint->set = 0;
1787 return ERROR_OK;
1789 } else {
1791 /* make sure data cache is cleaned & invalidated down to PoC */
1792 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1793 armv7a_cache_flush_virt(target, breakpoint->address,
1794 breakpoint->length);
1797 /* restore original instruction (kept in target endianness) */
1798 if (breakpoint->length == 4) {
1799 retval = target_write_memory(target,
1800 breakpoint->address & 0xFFFFFFFE,
1801 4, 1, breakpoint->orig_instr);
1802 if (retval != ERROR_OK)
1803 return retval;
1804 } else {
1805 retval = target_write_memory(target,
1806 breakpoint->address & 0xFFFFFFFE,
1807 2, 1, breakpoint->orig_instr);
1808 if (retval != ERROR_OK)
1809 return retval;
1812 /* update i-cache at breakpoint location */
1813 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1814 breakpoint->length);
1815 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1816 breakpoint->length);
1818 breakpoint->set = 0;
1820 return ERROR_OK;
1823 static int cortex_a_add_breakpoint(struct target *target,
1824 struct breakpoint *breakpoint)
1826 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1828 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1829 LOG_INFO("no hardware breakpoint available");
1830 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1833 if (breakpoint->type == BKPT_HARD)
1834 cortex_a->brp_num_available--;
1836 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1839 static int cortex_a_add_context_breakpoint(struct target *target,
1840 struct breakpoint *breakpoint)
1842 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1844 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1845 LOG_INFO("no hardware breakpoint available");
1846 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1849 if (breakpoint->type == BKPT_HARD)
1850 cortex_a->brp_num_available--;
1852 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1855 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1856 struct breakpoint *breakpoint)
1858 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1860 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1861 LOG_INFO("no hardware breakpoint available");
1862 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1865 if (breakpoint->type == BKPT_HARD)
1866 cortex_a->brp_num_available--;
1868 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1872 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1874 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1876 #if 0
1877 /* It is perfectly possible to remove breakpoints while the target is running */
1878 if (target->state != TARGET_HALTED) {
1879 LOG_WARNING("target not halted");
1880 return ERROR_TARGET_NOT_HALTED;
1882 #endif
1884 if (breakpoint->set) {
1885 cortex_a_unset_breakpoint(target, breakpoint);
1886 if (breakpoint->type == BKPT_HARD)
1887 cortex_a->brp_num_available++;
1891 return ERROR_OK;
1895 * Cortex-A Reset functions
1898 static int cortex_a_assert_reset(struct target *target)
1900 struct armv7a_common *armv7a = target_to_armv7a(target);
1902 LOG_DEBUG(" ");
1904 /* FIXME when halt is requested, make it work somehow... */
1906 /* Issue some kind of warm reset. */
1907 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1908 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1909 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1910 /* REVISIT handle "pulls" cases, if there's
1911 * hardware that needs them to work.
1913 jtag_add_reset(0, 1);
1914 } else {
1915 LOG_ERROR("%s: how to reset?", target_name(target));
1916 return ERROR_FAIL;
1919 /* registers are now invalid */
1920 register_cache_invalidate(armv7a->arm.core_cache);
1922 target->state = TARGET_RESET;
1924 return ERROR_OK;
1927 static int cortex_a_deassert_reset(struct target *target)
1929 int retval;
1931 LOG_DEBUG(" ");
1933 /* be certain SRST is off */
1934 jtag_add_reset(0, 0);
1936 retval = cortex_a_poll(target);
1937 if (retval != ERROR_OK)
1938 return retval;
1940 if (target->reset_halt) {
1941 if (target->state != TARGET_HALTED) {
1942 LOG_WARNING("%s: ran after reset and before halt ...",
1943 target_name(target));
1944 retval = target_halt(target);
1945 if (retval != ERROR_OK)
1946 return retval;
1950 return ERROR_OK;
1953 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1955 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1956 * New desired mode must be in mode. Current value of DSCR must be in
1957 * *dscr, which is updated with new value.
1959 * This function elides actually sending the mode-change over the debug
1960 * interface if the mode is already set as desired.
1962 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1963 if (new_dscr != *dscr) {
1964 struct armv7a_common *armv7a = target_to_armv7a(target);
1965 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1966 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1967 if (retval == ERROR_OK)
1968 *dscr = new_dscr;
1969 return retval;
1970 } else {
1971 return ERROR_OK;
1975 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1976 uint32_t value, uint32_t *dscr)
1978 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1979 struct armv7a_common *armv7a = target_to_armv7a(target);
1980 int64_t then = timeval_ms();
1981 int retval;
1983 while ((*dscr & mask) != value) {
1984 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1985 armv7a->debug_base + CPUDBG_DSCR, dscr);
1986 if (retval != ERROR_OK)
1987 return retval;
1988 if (timeval_ms() > then + 1000) {
1989 LOG_ERROR("timeout waiting for DSCR bit change");
1990 return ERROR_FAIL;
1993 return ERROR_OK;
1996 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1997 uint32_t *data, uint32_t *dscr)
1999 int retval;
2000 struct armv7a_common *armv7a = target_to_armv7a(target);
2002 /* Move from coprocessor to R0. */
2003 retval = cortex_a_exec_opcode(target, opcode, dscr);
2004 if (retval != ERROR_OK)
2005 return retval;
2007 /* Move from R0 to DTRTX. */
2008 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
2009 if (retval != ERROR_OK)
2010 return retval;
2012 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2013 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2014 * must also check TXfull_l). Most of the time this will be free
2015 * because TXfull_l will be set immediately and cached in dscr. */
2016 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2017 DSCR_DTRTX_FULL_LATCHED, dscr);
2018 if (retval != ERROR_OK)
2019 return retval;
2021 /* Read the value transferred to DTRTX. */
2022 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2023 armv7a->debug_base + CPUDBG_DTRTX, data);
2024 if (retval != ERROR_OK)
2025 return retval;
2027 return ERROR_OK;
2030 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2031 uint32_t *dfsr, uint32_t *dscr)
2033 int retval;
2035 if (dfar) {
2036 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2037 if (retval != ERROR_OK)
2038 return retval;
2041 if (dfsr) {
2042 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2043 if (retval != ERROR_OK)
2044 return retval;
2047 return ERROR_OK;
2050 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2051 uint32_t data, uint32_t *dscr)
2053 int retval;
2054 struct armv7a_common *armv7a = target_to_armv7a(target);
2056 /* Write the value into DTRRX. */
2057 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2058 armv7a->debug_base + CPUDBG_DTRRX, data);
2059 if (retval != ERROR_OK)
2060 return retval;
2062 /* Move from DTRRX to R0. */
2063 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2064 if (retval != ERROR_OK)
2065 return retval;
2067 /* Move from R0 to coprocessor. */
2068 retval = cortex_a_exec_opcode(target, opcode, dscr);
2069 if (retval != ERROR_OK)
2070 return retval;
2072 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2073 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2074 * check RXfull_l). Most of the time this will be free because RXfull_l
2075 * will be cleared immediately and cached in dscr. */
2076 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2077 if (retval != ERROR_OK)
2078 return retval;
2080 return ERROR_OK;
2083 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2084 uint32_t dfsr, uint32_t *dscr)
2086 int retval;
2088 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2089 if (retval != ERROR_OK)
2090 return retval;
2092 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2093 if (retval != ERROR_OK)
2094 return retval;
2096 return ERROR_OK;
2099 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2101 uint32_t status, upper4;
2103 if (dfsr & (1 << 9)) {
2104 /* LPAE format. */
2105 status = dfsr & 0x3f;
2106 upper4 = status >> 2;
2107 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2108 return ERROR_TARGET_TRANSLATION_FAULT;
2109 else if (status == 33)
2110 return ERROR_TARGET_UNALIGNED_ACCESS;
2111 else
2112 return ERROR_TARGET_DATA_ABORT;
2113 } else {
2114 /* Normal format. */
2115 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2116 if (status == 1)
2117 return ERROR_TARGET_UNALIGNED_ACCESS;
2118 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2119 status == 9 || status == 11 || status == 13 || status == 15)
2120 return ERROR_TARGET_TRANSLATION_FAULT;
2121 else
2122 return ERROR_TARGET_DATA_ABORT;
2126 static int cortex_a_write_apb_ab_memory_slow(struct target *target,
2127 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2129 /* Writes count objects of size size from *buffer. Old value of DSCR must
2130 * be in *dscr; updated to new value. This is slow because it works for
2131 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2132 * the address is aligned, cortex_a_write_apb_ab_memory_fast should be
2133 * preferred.
2134 * Preconditions:
2135 * - Address is in R0.
2136 * - R0 is marked dirty.
2138 struct armv7a_common *armv7a = target_to_armv7a(target);
2139 struct arm *arm = &armv7a->arm;
2140 int retval;
2142 /* Mark register R1 as dirty, to use for transferring data. */
2143 arm_reg_current(arm, 1)->dirty = true;
2145 /* Switch to non-blocking mode if not already in that mode. */
2146 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2147 if (retval != ERROR_OK)
2148 return retval;
2150 /* Go through the objects. */
2151 while (count) {
2152 /* Write the value to store into DTRRX. */
2153 uint32_t data, opcode;
2154 if (size == 1)
2155 data = *buffer;
2156 else if (size == 2)
2157 data = target_buffer_get_u16(target, buffer);
2158 else
2159 data = target_buffer_get_u32(target, buffer);
2160 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2161 armv7a->debug_base + CPUDBG_DTRRX, data);
2162 if (retval != ERROR_OK)
2163 return retval;
2165 /* Transfer the value from DTRRX to R1. */
2166 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2167 if (retval != ERROR_OK)
2168 return retval;
2170 /* Write the value transferred to R1 into memory. */
2171 if (size == 1)
2172 opcode = ARMV4_5_STRB_IP(1, 0);
2173 else if (size == 2)
2174 opcode = ARMV4_5_STRH_IP(1, 0);
2175 else
2176 opcode = ARMV4_5_STRW_IP(1, 0);
2177 retval = cortex_a_exec_opcode(target, opcode, dscr);
2178 if (retval != ERROR_OK)
2179 return retval;
2181 /* Check for faults and return early. */
2182 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2183 return ERROR_OK; /* A data fault is not considered a system failure. */
2185 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2186 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2187 * must also check RXfull_l). Most of the time this will be free
2188 * because RXfull_l will be cleared immediately and cached in dscr. */
2189 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2190 if (retval != ERROR_OK)
2191 return retval;
2193 /* Advance. */
2194 buffer += size;
2195 --count;
2198 return ERROR_OK;
2201 static int cortex_a_write_apb_ab_memory_fast(struct target *target,
2202 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2204 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2205 * in *dscr; updated to new value. This is fast but only works for
2206 * word-sized objects at aligned addresses.
2207 * Preconditions:
2208 * - Address is in R0 and must be a multiple of 4.
2209 * - R0 is marked dirty.
2211 struct armv7a_common *armv7a = target_to_armv7a(target);
2212 int retval;
2214 /* Switch to fast mode if not already in that mode. */
2215 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2216 if (retval != ERROR_OK)
2217 return retval;
2219 /* Latch STC instruction. */
2220 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2221 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2222 if (retval != ERROR_OK)
2223 return retval;
2225 /* Transfer all the data and issue all the instructions. */
2226 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2227 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2230 static int cortex_a_write_apb_ab_memory(struct target *target,
2231 uint32_t address, uint32_t size,
2232 uint32_t count, const uint8_t *buffer)
2234 /* Write memory through APB-AP. */
2235 int retval, final_retval;
2236 struct armv7a_common *armv7a = target_to_armv7a(target);
2237 struct arm *arm = &armv7a->arm;
2238 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2240 LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2241 address, size, count);
2242 if (target->state != TARGET_HALTED) {
2243 LOG_WARNING("target not halted");
2244 return ERROR_TARGET_NOT_HALTED;
2247 if (!count)
2248 return ERROR_OK;
2250 /* Clear any abort. */
2251 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2252 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2253 if (retval != ERROR_OK)
2254 return retval;
2256 /* Read DSCR. */
2257 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2258 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2259 if (retval != ERROR_OK)
2260 return retval;
2262 /* Switch to non-blocking mode if not already in that mode. */
2263 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2264 if (retval != ERROR_OK)
2265 goto out;
2267 /* Mark R0 as dirty. */
2268 arm_reg_current(arm, 0)->dirty = true;
2270 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2271 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2272 if (retval != ERROR_OK)
2273 goto out;
2275 /* Get the memory address into R0. */
2276 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2277 armv7a->debug_base + CPUDBG_DTRRX, address);
2278 if (retval != ERROR_OK)
2279 goto out;
2280 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2281 if (retval != ERROR_OK)
2282 goto out;
2284 if (size == 4 && (address % 4) == 0) {
2285 /* We are doing a word-aligned transfer, so use fast mode. */
2286 retval = cortex_a_write_apb_ab_memory_fast(target, count, buffer, &dscr);
2287 } else {
2288 /* Use slow path. */
2289 retval = cortex_a_write_apb_ab_memory_slow(target, size, count, buffer, &dscr);
2292 out:
2293 final_retval = retval;
2295 /* Switch to non-blocking mode if not already in that mode. */
2296 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2297 if (final_retval == ERROR_OK)
2298 final_retval = retval;
2300 /* Wait for last issued instruction to complete. */
2301 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2302 if (final_retval == ERROR_OK)
2303 final_retval = retval;
2305 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2306 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2307 * check RXfull_l). Most of the time this will be free because RXfull_l
2308 * will be cleared immediately and cached in dscr. However, don't do this
2309 * if there is fault, because then the instruction might not have completed
2310 * successfully. */
2311 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2312 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2313 if (retval != ERROR_OK)
2314 return retval;
2317 /* If there were any sticky abort flags, clear them. */
2318 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2319 fault_dscr = dscr;
2320 mem_ap_write_atomic_u32(armv7a->debug_ap,
2321 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2322 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2323 } else {
2324 fault_dscr = 0;
2327 /* Handle synchronous data faults. */
2328 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2329 if (final_retval == ERROR_OK) {
2330 /* Final return value will reflect cause of fault. */
2331 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2332 if (retval == ERROR_OK) {
2333 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2334 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2335 } else
2336 final_retval = retval;
2338 /* Fault destroyed DFAR/DFSR; restore them. */
2339 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2340 if (retval != ERROR_OK)
2341 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2344 /* Handle asynchronous data faults. */
2345 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2346 if (final_retval == ERROR_OK)
2347 /* No other error has been recorded so far, so keep this one. */
2348 final_retval = ERROR_TARGET_DATA_ABORT;
2351 /* If the DCC is nonempty, clear it. */
2352 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2353 uint32_t dummy;
2354 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2355 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2356 if (final_retval == ERROR_OK)
2357 final_retval = retval;
2359 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2360 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2361 if (final_retval == ERROR_OK)
2362 final_retval = retval;
2365 /* Done. */
2366 return final_retval;
2369 static int cortex_a_read_apb_ab_memory_slow(struct target *target,
2370 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2372 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2373 * in *dscr; updated to new value. This is slow because it works for
2374 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2375 * the address is aligned, cortex_a_read_apb_ab_memory_fast should be
2376 * preferred.
2377 * Preconditions:
2378 * - Address is in R0.
2379 * - R0 is marked dirty.
2381 struct armv7a_common *armv7a = target_to_armv7a(target);
2382 struct arm *arm = &armv7a->arm;
2383 int retval;
2385 /* Mark register R1 as dirty, to use for transferring data. */
2386 arm_reg_current(arm, 1)->dirty = true;
2388 /* Switch to non-blocking mode if not already in that mode. */
2389 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2390 if (retval != ERROR_OK)
2391 return retval;
2393 /* Go through the objects. */
2394 while (count) {
2395 /* Issue a load of the appropriate size to R1. */
2396 uint32_t opcode, data;
2397 if (size == 1)
2398 opcode = ARMV4_5_LDRB_IP(1, 0);
2399 else if (size == 2)
2400 opcode = ARMV4_5_LDRH_IP(1, 0);
2401 else
2402 opcode = ARMV4_5_LDRW_IP(1, 0);
2403 retval = cortex_a_exec_opcode(target, opcode, dscr);
2404 if (retval != ERROR_OK)
2405 return retval;
2407 /* Issue a write of R1 to DTRTX. */
2408 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2409 if (retval != ERROR_OK)
2410 return retval;
2412 /* Check for faults and return early. */
2413 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2414 return ERROR_OK; /* A data fault is not considered a system failure. */
2416 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2417 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2418 * must also check TXfull_l). Most of the time this will be free
2419 * because TXfull_l will be set immediately and cached in dscr. */
2420 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2421 DSCR_DTRTX_FULL_LATCHED, dscr);
2422 if (retval != ERROR_OK)
2423 return retval;
2425 /* Read the value transferred to DTRTX into the buffer. */
2426 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2427 armv7a->debug_base + CPUDBG_DTRTX, &data);
2428 if (retval != ERROR_OK)
2429 return retval;
2430 if (size == 1)
2431 *buffer = (uint8_t) data;
2432 else if (size == 2)
2433 target_buffer_set_u16(target, buffer, (uint16_t) data);
2434 else
2435 target_buffer_set_u32(target, buffer, data);
2437 /* Advance. */
2438 buffer += size;
2439 --count;
2442 return ERROR_OK;
2445 static int cortex_a_read_apb_ab_memory_fast(struct target *target,
2446 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2448 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2449 * *dscr; updated to new value. This is fast but only works for word-sized
2450 * objects at aligned addresses.
2451 * Preconditions:
2452 * - Address is in R0 and must be a multiple of 4.
2453 * - R0 is marked dirty.
2455 struct armv7a_common *armv7a = target_to_armv7a(target);
2456 uint32_t u32;
2457 int retval;
2459 /* Switch to non-blocking mode if not already in that mode. */
2460 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2461 if (retval != ERROR_OK)
2462 return retval;
2464 /* Issue the LDC instruction via a write to ITR. */
2465 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2466 if (retval != ERROR_OK)
2467 return retval;
2469 count--;
2471 if (count > 0) {
2472 /* Switch to fast mode if not already in that mode. */
2473 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2474 if (retval != ERROR_OK)
2475 return retval;
2477 /* Latch LDC instruction. */
2478 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2479 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2480 if (retval != ERROR_OK)
2481 return retval;
2483 /* Read the value transferred to DTRTX into the buffer. Due to fast
2484 * mode rules, this blocks until the instruction finishes executing and
2485 * then reissues the read instruction to read the next word from
2486 * memory. The last read of DTRTX in this call reads the second-to-last
2487 * word from memory and issues the read instruction for the last word.
2489 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2490 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2491 if (retval != ERROR_OK)
2492 return retval;
2494 /* Advance. */
2495 buffer += count * 4;
2498 /* Wait for last issued instruction to complete. */
2499 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2500 if (retval != ERROR_OK)
2501 return retval;
2503 /* Switch to non-blocking mode if not already in that mode. */
2504 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2505 if (retval != ERROR_OK)
2506 return retval;
2508 /* Check for faults and return early. */
2509 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2510 return ERROR_OK; /* A data fault is not considered a system failure. */
2512 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2513 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2514 * check TXfull_l). Most of the time this will be free because TXfull_l
2515 * will be set immediately and cached in dscr. */
2516 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2517 DSCR_DTRTX_FULL_LATCHED, dscr);
2518 if (retval != ERROR_OK)
2519 return retval;
2521 /* Read the value transferred to DTRTX into the buffer. This is the last
2522 * word. */
2523 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2524 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2525 if (retval != ERROR_OK)
2526 return retval;
2527 target_buffer_set_u32(target, buffer, u32);
2529 return ERROR_OK;
2532 static int cortex_a_read_apb_ab_memory(struct target *target,
2533 uint32_t address, uint32_t size,
2534 uint32_t count, uint8_t *buffer)
2536 /* Read memory through APB-AP. */
2537 int retval, final_retval;
2538 struct armv7a_common *armv7a = target_to_armv7a(target);
2539 struct arm *arm = &armv7a->arm;
2540 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2542 LOG_DEBUG("Reading APB-AP memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2543 address, size, count);
2544 if (target->state != TARGET_HALTED) {
2545 LOG_WARNING("target not halted");
2546 return ERROR_TARGET_NOT_HALTED;
2549 if (!count)
2550 return ERROR_OK;
2552 /* Clear any abort. */
2553 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2554 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2555 if (retval != ERROR_OK)
2556 return retval;
2558 /* Read DSCR */
2559 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2560 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2561 if (retval != ERROR_OK)
2562 return retval;
2564 /* Switch to non-blocking mode if not already in that mode. */
2565 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2566 if (retval != ERROR_OK)
2567 goto out;
2569 /* Mark R0 as dirty. */
2570 arm_reg_current(arm, 0)->dirty = true;
2572 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2573 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2574 if (retval != ERROR_OK)
2575 goto out;
2577 /* Get the memory address into R0. */
2578 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2579 armv7a->debug_base + CPUDBG_DTRRX, address);
2580 if (retval != ERROR_OK)
2581 goto out;
2582 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2583 if (retval != ERROR_OK)
2584 goto out;
2586 if (size == 4 && (address % 4) == 0) {
2587 /* We are doing a word-aligned transfer, so use fast mode. */
2588 retval = cortex_a_read_apb_ab_memory_fast(target, count, buffer, &dscr);
2589 } else {
2590 /* Use slow path. */
2591 retval = cortex_a_read_apb_ab_memory_slow(target, size, count, buffer, &dscr);
2594 out:
2595 final_retval = retval;
2597 /* Switch to non-blocking mode if not already in that mode. */
2598 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2599 if (final_retval == ERROR_OK)
2600 final_retval = retval;
2602 /* Wait for last issued instruction to complete. */
2603 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2604 if (final_retval == ERROR_OK)
2605 final_retval = retval;
2607 /* If there were any sticky abort flags, clear them. */
2608 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2609 fault_dscr = dscr;
2610 mem_ap_write_atomic_u32(armv7a->debug_ap,
2611 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2612 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2613 } else {
2614 fault_dscr = 0;
2617 /* Handle synchronous data faults. */
2618 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2619 if (final_retval == ERROR_OK) {
2620 /* Final return value will reflect cause of fault. */
2621 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2622 if (retval == ERROR_OK) {
2623 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2624 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2625 } else
2626 final_retval = retval;
2628 /* Fault destroyed DFAR/DFSR; restore them. */
2629 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2630 if (retval != ERROR_OK)
2631 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2634 /* Handle asynchronous data faults. */
2635 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2636 if (final_retval == ERROR_OK)
2637 /* No other error has been recorded so far, so keep this one. */
2638 final_retval = ERROR_TARGET_DATA_ABORT;
2641 /* If the DCC is nonempty, clear it. */
2642 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2643 uint32_t dummy;
2644 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2645 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2646 if (final_retval == ERROR_OK)
2647 final_retval = retval;
2649 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2650 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2651 if (final_retval == ERROR_OK)
2652 final_retval = retval;
2655 /* Done. */
2656 return final_retval;
2661 * Cortex-A Memory access
2663 * This is same Cortex M3 but we must also use the correct
2664 * ap number for every access.
2667 static int cortex_a_read_phys_memory(struct target *target,
2668 uint32_t address, uint32_t size,
2669 uint32_t count, uint8_t *buffer)
2671 struct armv7a_common *armv7a = target_to_armv7a(target);
2672 struct adiv5_dap *swjdp = armv7a->arm.dap;
2673 uint8_t apsel = swjdp->apsel;
2674 int retval;
2676 if (!count || !buffer)
2677 return ERROR_COMMAND_SYNTAX_ERROR;
2679 LOG_DEBUG("Reading memory at real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32,
2680 address, size, count);
2682 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2683 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2685 /* read memory through APB-AP */
2686 cortex_a_prep_memaccess(target, 1);
2687 retval = cortex_a_read_apb_ab_memory(target, address, size, count, buffer);
2688 cortex_a_post_memaccess(target, 1);
2690 return retval;
2693 static int cortex_a_read_memory(struct target *target, uint32_t address,
2694 uint32_t size, uint32_t count, uint8_t *buffer)
2696 int retval;
2698 /* cortex_a handles unaligned memory access */
2699 LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2700 size, count);
2702 cortex_a_prep_memaccess(target, 0);
2703 retval = cortex_a_read_apb_ab_memory(target, address, size, count, buffer);
2704 cortex_a_post_memaccess(target, 0);
2706 return retval;
2709 static int cortex_a_read_memory_ahb(struct target *target, uint32_t address,
2710 uint32_t size, uint32_t count, uint8_t *buffer)
2712 int mmu_enabled = 0;
2713 uint32_t virt, phys;
2714 int retval;
2715 struct armv7a_common *armv7a = target_to_armv7a(target);
2716 struct adiv5_dap *swjdp = armv7a->arm.dap;
2717 uint8_t apsel = swjdp->apsel;
2719 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2720 return target_read_memory(target, address, size, count, buffer);
2722 /* cortex_a handles unaligned memory access */
2723 LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2724 size, count);
2726 /* determine if MMU was enabled on target stop */
2727 if (!armv7a->is_armv7r) {
2728 retval = cortex_a_mmu(target, &mmu_enabled);
2729 if (retval != ERROR_OK)
2730 return retval;
2733 if (mmu_enabled) {
2734 virt = address;
2735 retval = cortex_a_virt2phys(target, virt, &phys);
2736 if (retval != ERROR_OK)
2737 return retval;
2739 LOG_DEBUG("Reading at virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2740 virt, phys);
2741 address = phys;
2744 if (!count || !buffer)
2745 return ERROR_COMMAND_SYNTAX_ERROR;
2747 retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2749 return retval;
2752 static int cortex_a_write_phys_memory(struct target *target,
2753 uint32_t address, uint32_t size,
2754 uint32_t count, const uint8_t *buffer)
2756 struct armv7a_common *armv7a = target_to_armv7a(target);
2757 struct adiv5_dap *swjdp = armv7a->arm.dap;
2758 uint8_t apsel = swjdp->apsel;
2759 int retval;
2761 if (!count || !buffer)
2762 return ERROR_COMMAND_SYNTAX_ERROR;
2764 LOG_DEBUG("Writing memory to real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2765 size, count);
2767 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2768 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2770 /* write memory through APB-AP */
2771 cortex_a_prep_memaccess(target, 1);
2772 retval = cortex_a_write_apb_ab_memory(target, address, size, count, buffer);
2773 cortex_a_post_memaccess(target, 1);
2775 return retval;
2778 static int cortex_a_write_memory(struct target *target, uint32_t address,
2779 uint32_t size, uint32_t count, const uint8_t *buffer)
2781 int retval;
2783 /* cortex_a handles unaligned memory access */
2784 LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2785 size, count);
2787 /* memory writes bypass the caches, must flush before writing */
2788 armv7a_cache_auto_flush_on_write(target, address, size * count);
2790 cortex_a_prep_memaccess(target, 0);
2791 retval = cortex_a_write_apb_ab_memory(target, address, size, count, buffer);
2792 cortex_a_post_memaccess(target, 0);
2793 return retval;
2796 static int cortex_a_write_memory_ahb(struct target *target, uint32_t address,
2797 uint32_t size, uint32_t count, const uint8_t *buffer)
2799 int mmu_enabled = 0;
2800 uint32_t virt, phys;
2801 int retval;
2802 struct armv7a_common *armv7a = target_to_armv7a(target);
2803 struct adiv5_dap *swjdp = armv7a->arm.dap;
2804 uint8_t apsel = swjdp->apsel;
2806 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2807 return target_write_memory(target, address, size, count, buffer);
2809 /* cortex_a handles unaligned memory access */
2810 LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2811 size, count);
2813 /* determine if MMU was enabled on target stop */
2814 if (!armv7a->is_armv7r) {
2815 retval = cortex_a_mmu(target, &mmu_enabled);
2816 if (retval != ERROR_OK)
2817 return retval;
2820 if (mmu_enabled) {
2821 virt = address;
2822 retval = cortex_a_virt2phys(target, virt, &phys);
2823 if (retval != ERROR_OK)
2824 return retval;
2826 LOG_DEBUG("Writing to virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2827 virt,
2828 phys);
2829 address = phys;
2832 if (!count || !buffer)
2833 return ERROR_COMMAND_SYNTAX_ERROR;
2835 retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2837 return retval;
2840 static int cortex_a_read_buffer(struct target *target, uint32_t address,
2841 uint32_t count, uint8_t *buffer)
2843 uint32_t size;
2845 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2846 * will have something to do with the size we leave to it. */
2847 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2848 if (address & size) {
2849 int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2850 if (retval != ERROR_OK)
2851 return retval;
2852 address += size;
2853 count -= size;
2854 buffer += size;
2858 /* Read the data with as large access size as possible. */
2859 for (; size > 0; size /= 2) {
2860 uint32_t aligned = count - count % size;
2861 if (aligned > 0) {
2862 int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2863 if (retval != ERROR_OK)
2864 return retval;
2865 address += aligned;
2866 count -= aligned;
2867 buffer += aligned;
2871 return ERROR_OK;
2874 static int cortex_a_write_buffer(struct target *target, uint32_t address,
2875 uint32_t count, const uint8_t *buffer)
2877 uint32_t size;
2879 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2880 * will have something to do with the size we leave to it. */
2881 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2882 if (address & size) {
2883 int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2884 if (retval != ERROR_OK)
2885 return retval;
2886 address += size;
2887 count -= size;
2888 buffer += size;
2892 /* Write the data with as large access size as possible. */
2893 for (; size > 0; size /= 2) {
2894 uint32_t aligned = count - count % size;
2895 if (aligned > 0) {
2896 int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2897 if (retval != ERROR_OK)
2898 return retval;
2899 address += aligned;
2900 count -= aligned;
2901 buffer += aligned;
2905 return ERROR_OK;
2908 static int cortex_a_handle_target_request(void *priv)
2910 struct target *target = priv;
2911 struct armv7a_common *armv7a = target_to_armv7a(target);
2912 int retval;
2914 if (!target_was_examined(target))
2915 return ERROR_OK;
2916 if (!target->dbg_msg_enabled)
2917 return ERROR_OK;
2919 if (target->state == TARGET_RUNNING) {
2920 uint32_t request;
2921 uint32_t dscr;
2922 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2923 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2925 /* check if we have data */
2926 int64_t then = timeval_ms();
2927 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2928 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2929 armv7a->debug_base + CPUDBG_DTRTX, &request);
2930 if (retval == ERROR_OK) {
2931 target_request(target, request);
2932 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2933 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2935 if (timeval_ms() > then + 1000) {
2936 LOG_ERROR("Timeout waiting for dtr tx full");
2937 return ERROR_FAIL;
2942 return ERROR_OK;
2946 * Cortex-A target information and configuration
2949 static int cortex_a_examine_first(struct target *target)
2951 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2952 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2953 struct adiv5_dap *swjdp = armv7a->arm.dap;
2954 int i;
2955 int retval = ERROR_OK;
2956 uint32_t didr, ctypr, ttypr, cpuid, dbg_osreg;
2958 retval = dap_dp_init(swjdp);
2959 if (retval != ERROR_OK) {
2960 LOG_ERROR("Could not initialize the debug port");
2961 return retval;
2964 /* Search for the APB-AB - it is needed for access to debug registers */
2965 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2966 if (retval != ERROR_OK) {
2967 LOG_ERROR("Could not find APB-AP for debug access");
2968 return retval;
2971 retval = mem_ap_init(armv7a->debug_ap);
2972 if (retval != ERROR_OK) {
2973 LOG_ERROR("Could not initialize the APB-AP");
2974 return retval;
2977 armv7a->debug_ap->memaccess_tck = 80;
2979 /* Search for the AHB-AB.
2980 * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2981 * can access system memory. */
2982 armv7a->memory_ap_available = false;
2983 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2984 if (retval == ERROR_OK) {
2985 retval = mem_ap_init(armv7a->memory_ap);
2986 if (retval == ERROR_OK)
2987 armv7a->memory_ap_available = true;
2988 else
2989 LOG_WARNING("Could not initialize AHB-AP for memory access - using APB-AP");
2990 } else {
2991 /* AHB-AP not found - use APB-AP */
2992 LOG_DEBUG("Could not find AHB-AP - using APB-AP for memory access");
2995 if (!target->dbgbase_set) {
2996 uint32_t dbgbase;
2997 /* Get ROM Table base */
2998 uint32_t apid;
2999 int32_t coreidx = target->coreid;
3000 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
3001 target->cmd_name);
3002 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
3003 if (retval != ERROR_OK)
3004 return retval;
3005 /* Lookup 0x15 -- Processor DAP */
3006 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
3007 &armv7a->debug_base, &coreidx);
3008 if (retval != ERROR_OK) {
3009 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
3010 target->cmd_name);
3011 return retval;
3013 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
3014 target->coreid, armv7a->debug_base);
3015 } else
3016 armv7a->debug_base = target->dbgbase;
3018 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3019 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3020 if (retval != ERROR_OK)
3021 return retval;
3023 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3024 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3025 if (retval != ERROR_OK) {
3026 LOG_DEBUG("Examine %s failed", "CPUID");
3027 return retval;
3030 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3031 armv7a->debug_base + CPUDBG_CTYPR, &ctypr);
3032 if (retval != ERROR_OK) {
3033 LOG_DEBUG("Examine %s failed", "CTYPR");
3034 return retval;
3037 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3038 armv7a->debug_base + CPUDBG_TTYPR, &ttypr);
3039 if (retval != ERROR_OK) {
3040 LOG_DEBUG("Examine %s failed", "TTYPR");
3041 return retval;
3044 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3045 armv7a->debug_base + CPUDBG_DIDR, &didr);
3046 if (retval != ERROR_OK) {
3047 LOG_DEBUG("Examine %s failed", "DIDR");
3048 return retval;
3051 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3052 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
3053 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
3054 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3056 cortex_a->cpuid = cpuid;
3057 cortex_a->ctypr = ctypr;
3058 cortex_a->ttypr = ttypr;
3059 cortex_a->didr = didr;
3061 /* Unlocking the debug registers */
3062 if ((cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >> CORTEX_A_MIDR_PARTNUM_SHIFT ==
3063 CORTEX_A15_PARTNUM) {
3065 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3066 armv7a->debug_base + CPUDBG_OSLAR,
3069 if (retval != ERROR_OK)
3070 return retval;
3073 /* Unlocking the debug registers */
3074 if ((cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >> CORTEX_A_MIDR_PARTNUM_SHIFT ==
3075 CORTEX_A7_PARTNUM) {
3077 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3078 armv7a->debug_base + CPUDBG_OSLAR,
3081 if (retval != ERROR_OK)
3082 return retval;
3085 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3086 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3088 if (retval != ERROR_OK)
3089 return retval;
3091 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
3093 armv7a->arm.core_type = ARM_MODE_MON;
3095 /* Avoid recreating the registers cache */
3096 if (!target_was_examined(target)) {
3097 retval = cortex_a_dpm_setup(cortex_a, didr);
3098 if (retval != ERROR_OK)
3099 return retval;
3102 /* Setup Breakpoint Register Pairs */
3103 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3104 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3105 cortex_a->brp_num_available = cortex_a->brp_num;
3106 free(cortex_a->brp_list);
3107 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3108 /* cortex_a->brb_enabled = ????; */
3109 for (i = 0; i < cortex_a->brp_num; i++) {
3110 cortex_a->brp_list[i].used = 0;
3111 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3112 cortex_a->brp_list[i].type = BRP_NORMAL;
3113 else
3114 cortex_a->brp_list[i].type = BRP_CONTEXT;
3115 cortex_a->brp_list[i].value = 0;
3116 cortex_a->brp_list[i].control = 0;
3117 cortex_a->brp_list[i].BRPn = i;
3120 LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3122 /* select debug_ap as default */
3123 swjdp->apsel = armv7a->debug_ap->ap_num;
3125 target_set_examined(target);
3126 return ERROR_OK;
3129 static int cortex_a_examine(struct target *target)
3131 int retval = ERROR_OK;
3133 /* Reestablish communication after target reset */
3134 retval = cortex_a_examine_first(target);
3136 /* Configure core debug access */
3137 if (retval == ERROR_OK)
3138 retval = cortex_a_init_debug_access(target);
3140 return retval;
3144 * Cortex-A target creation and initialization
3147 static int cortex_a_init_target(struct command_context *cmd_ctx,
3148 struct target *target)
3150 /* examine_first() does a bunch of this */
3151 return ERROR_OK;
3154 static int cortex_a_init_arch_info(struct target *target,
3155 struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3157 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3159 /* Setup struct cortex_a_common */
3160 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3162 /* tap has no dap initialized */
3163 if (!tap->dap) {
3164 tap->dap = dap_init();
3166 /* Leave (only) generic DAP stuff for debugport_init() */
3167 tap->dap->tap = tap;
3170 armv7a->arm.dap = tap->dap;
3172 cortex_a->fast_reg_read = 0;
3174 /* register arch-specific functions */
3175 armv7a->examine_debug_reason = NULL;
3177 armv7a->post_debug_entry = cortex_a_post_debug_entry;
3179 armv7a->pre_restore_context = NULL;
3181 armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3184 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3186 /* REVISIT v7a setup should be in a v7a-specific routine */
3187 armv7a_init_arch_info(target, armv7a);
3188 target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3190 return ERROR_OK;
3193 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3195 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3197 cortex_a->armv7a_common.is_armv7r = false;
3199 return cortex_a_init_arch_info(target, cortex_a, target->tap);
3202 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3204 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3206 cortex_a->armv7a_common.is_armv7r = true;
3208 return cortex_a_init_arch_info(target, cortex_a, target->tap);
3211 static void cortex_a_deinit_target(struct target *target)
3213 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3214 struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3216 free(cortex_a->brp_list);
3217 free(dpm->dbp);
3218 free(dpm->dwp);
3219 free(cortex_a);
3222 static int cortex_a_mmu(struct target *target, int *enabled)
3224 struct armv7a_common *armv7a = target_to_armv7a(target);
3226 if (target->state != TARGET_HALTED) {
3227 LOG_ERROR("%s: target not halted", __func__);
3228 return ERROR_TARGET_INVALID;
3231 if (armv7a->is_armv7r)
3232 *enabled = 0;
3233 else
3234 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3236 return ERROR_OK;
3239 static int cortex_a_virt2phys(struct target *target,
3240 uint32_t virt, uint32_t *phys)
3242 int retval = ERROR_FAIL;
3243 struct armv7a_common *armv7a = target_to_armv7a(target);
3244 struct adiv5_dap *swjdp = armv7a->arm.dap;
3245 uint8_t apsel = swjdp->apsel;
3246 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3247 uint32_t ret;
3248 retval = armv7a_mmu_translate_va(target,
3249 virt, &ret);
3250 if (retval != ERROR_OK)
3251 goto done;
3252 *phys = ret;
3253 } else {/* use this method if armv7a->memory_ap not selected
3254 * mmu must be enable in order to get a correct translation */
3255 retval = cortex_a_mmu_modify(target, 1);
3256 if (retval != ERROR_OK)
3257 goto done;
3258 retval = armv7a_mmu_translate_va_pa(target, virt, phys, 1);
3260 done:
3261 return retval;
3264 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3266 struct target *target = get_current_target(CMD_CTX);
3267 struct armv7a_common *armv7a = target_to_armv7a(target);
3269 return armv7a_handle_cache_info_command(CMD_CTX,
3270 &armv7a->armv7a_mmu.armv7a_cache);
3274 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3276 struct target *target = get_current_target(CMD_CTX);
3277 if (!target_was_examined(target)) {
3278 LOG_ERROR("target not examined yet");
3279 return ERROR_FAIL;
3282 return cortex_a_init_debug_access(target);
3284 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3286 struct target *target = get_current_target(CMD_CTX);
3287 /* check target is an smp target */
3288 struct target_list *head;
3289 struct target *curr;
3290 head = target->head;
3291 target->smp = 0;
3292 if (head != (struct target_list *)NULL) {
3293 while (head != (struct target_list *)NULL) {
3294 curr = head->target;
3295 curr->smp = 0;
3296 head = head->next;
3298 /* fixes the target display to the debugger */
3299 target->gdb_service->target = target;
3301 return ERROR_OK;
3304 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3306 struct target *target = get_current_target(CMD_CTX);
3307 struct target_list *head;
3308 struct target *curr;
3309 head = target->head;
3310 if (head != (struct target_list *)NULL) {
3311 target->smp = 1;
3312 while (head != (struct target_list *)NULL) {
3313 curr = head->target;
3314 curr->smp = 1;
3315 head = head->next;
3318 return ERROR_OK;
3321 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3323 struct target *target = get_current_target(CMD_CTX);
3324 int retval = ERROR_OK;
3325 struct target_list *head;
3326 head = target->head;
3327 if (head != (struct target_list *)NULL) {
3328 if (CMD_ARGC == 1) {
3329 int coreid = 0;
3330 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3331 if (ERROR_OK != retval)
3332 return retval;
3333 target->gdb_service->core[1] = coreid;
3336 command_print(CMD_CTX, "gdb coreid %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3337 , target->gdb_service->core[1]);
3339 return ERROR_OK;
3342 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3344 struct target *target = get_current_target(CMD_CTX);
3345 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3347 static const Jim_Nvp nvp_maskisr_modes[] = {
3348 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3349 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3350 { .name = NULL, .value = -1 },
3352 const Jim_Nvp *n;
3354 if (CMD_ARGC > 0) {
3355 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3356 if (n->name == NULL) {
3357 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3358 return ERROR_COMMAND_SYNTAX_ERROR;
3361 cortex_a->isrmasking_mode = n->value;
3364 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3365 command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3367 return ERROR_OK;
3370 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3372 struct target *target = get_current_target(CMD_CTX);
3373 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3375 static const Jim_Nvp nvp_dacrfixup_modes[] = {
3376 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3377 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3378 { .name = NULL, .value = -1 },
3380 const Jim_Nvp *n;
3382 if (CMD_ARGC > 0) {
3383 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3384 if (n->name == NULL)
3385 return ERROR_COMMAND_SYNTAX_ERROR;
3386 cortex_a->dacrfixup_mode = n->value;
3390 n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3391 command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3393 return ERROR_OK;
3396 static const struct command_registration cortex_a_exec_command_handlers[] = {
3398 .name = "cache_info",
3399 .handler = cortex_a_handle_cache_info_command,
3400 .mode = COMMAND_EXEC,
3401 .help = "display information about target caches",
3402 .usage = "",
3405 .name = "dbginit",
3406 .handler = cortex_a_handle_dbginit_command,
3407 .mode = COMMAND_EXEC,
3408 .help = "Initialize core debug",
3409 .usage = "",
3411 { .name = "smp_off",
3412 .handler = cortex_a_handle_smp_off_command,
3413 .mode = COMMAND_EXEC,
3414 .help = "Stop smp handling",
3415 .usage = "",},
3417 .name = "smp_on",
3418 .handler = cortex_a_handle_smp_on_command,
3419 .mode = COMMAND_EXEC,
3420 .help = "Restart smp handling",
3421 .usage = "",
3424 .name = "smp_gdb",
3425 .handler = cortex_a_handle_smp_gdb_command,
3426 .mode = COMMAND_EXEC,
3427 .help = "display/fix current core played to gdb",
3428 .usage = "",
3431 .name = "maskisr",
3432 .handler = handle_cortex_a_mask_interrupts_command,
3433 .mode = COMMAND_ANY,
3434 .help = "mask cortex_a interrupts",
3435 .usage = "['on'|'off']",
3438 .name = "dacrfixup",
3439 .handler = handle_cortex_a_dacrfixup_command,
3440 .mode = COMMAND_EXEC,
3441 .help = "set domain access control (DACR) to all-manager "
3442 "on memory access",
3443 .usage = "['on'|'off']",
3446 COMMAND_REGISTRATION_DONE
3448 static const struct command_registration cortex_a_command_handlers[] = {
3450 .chain = arm_command_handlers,
3453 .chain = armv7a_command_handlers,
3456 .name = "cortex_a",
3457 .mode = COMMAND_ANY,
3458 .help = "Cortex-A command group",
3459 .usage = "",
3460 .chain = cortex_a_exec_command_handlers,
3462 COMMAND_REGISTRATION_DONE
3465 struct target_type cortexa_target = {
3466 .name = "cortex_a",
3467 .deprecated_name = "cortex_a8",
3469 .poll = cortex_a_poll,
3470 .arch_state = armv7a_arch_state,
3472 .halt = cortex_a_halt,
3473 .resume = cortex_a_resume,
3474 .step = cortex_a_step,
3476 .assert_reset = cortex_a_assert_reset,
3477 .deassert_reset = cortex_a_deassert_reset,
3479 /* REVISIT allow exporting VFP3 registers ... */
3480 .get_gdb_reg_list = arm_get_gdb_reg_list,
3482 .read_memory = cortex_a_read_memory,
3483 .write_memory = cortex_a_write_memory,
3485 .read_buffer = cortex_a_read_buffer,
3486 .write_buffer = cortex_a_write_buffer,
3488 .checksum_memory = arm_checksum_memory,
3489 .blank_check_memory = arm_blank_check_memory,
3491 .run_algorithm = armv4_5_run_algorithm,
3493 .add_breakpoint = cortex_a_add_breakpoint,
3494 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3495 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3496 .remove_breakpoint = cortex_a_remove_breakpoint,
3497 .add_watchpoint = NULL,
3498 .remove_watchpoint = NULL,
3500 .commands = cortex_a_command_handlers,
3501 .target_create = cortex_a_target_create,
3502 .init_target = cortex_a_init_target,
3503 .examine = cortex_a_examine,
3504 .deinit_target = cortex_a_deinit_target,
3506 .read_phys_memory = cortex_a_read_phys_memory,
3507 .write_phys_memory = cortex_a_write_phys_memory,
3508 .mmu = cortex_a_mmu,
3509 .virt2phys = cortex_a_virt2phys,
3512 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3514 .name = "cache_info",
3515 .handler = cortex_a_handle_cache_info_command,
3516 .mode = COMMAND_EXEC,
3517 .help = "display information about target caches",
3518 .usage = "",
3521 .name = "dbginit",
3522 .handler = cortex_a_handle_dbginit_command,
3523 .mode = COMMAND_EXEC,
3524 .help = "Initialize core debug",
3525 .usage = "",
3528 .name = "maskisr",
3529 .handler = handle_cortex_a_mask_interrupts_command,
3530 .mode = COMMAND_EXEC,
3531 .help = "mask cortex_r4 interrupts",
3532 .usage = "['on'|'off']",
3535 COMMAND_REGISTRATION_DONE
3537 static const struct command_registration cortex_r4_command_handlers[] = {
3539 .chain = arm_command_handlers,
3542 .chain = armv7a_command_handlers,
3545 .name = "cortex_r4",
3546 .mode = COMMAND_ANY,
3547 .help = "Cortex-R4 command group",
3548 .usage = "",
3549 .chain = cortex_r4_exec_command_handlers,
3551 COMMAND_REGISTRATION_DONE
3554 struct target_type cortexr4_target = {
3555 .name = "cortex_r4",
3557 .poll = cortex_a_poll,
3558 .arch_state = armv7a_arch_state,
3560 .halt = cortex_a_halt,
3561 .resume = cortex_a_resume,
3562 .step = cortex_a_step,
3564 .assert_reset = cortex_a_assert_reset,
3565 .deassert_reset = cortex_a_deassert_reset,
3567 /* REVISIT allow exporting VFP3 registers ... */
3568 .get_gdb_reg_list = arm_get_gdb_reg_list,
3570 .read_memory = cortex_a_read_memory,
3571 .write_memory = cortex_a_write_memory,
3573 .checksum_memory = arm_checksum_memory,
3574 .blank_check_memory = arm_blank_check_memory,
3576 .run_algorithm = armv4_5_run_algorithm,
3578 .add_breakpoint = cortex_a_add_breakpoint,
3579 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3580 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3581 .remove_breakpoint = cortex_a_remove_breakpoint,
3582 .add_watchpoint = NULL,
3583 .remove_watchpoint = NULL,
3585 .commands = cortex_r4_command_handlers,
3586 .target_create = cortex_r4_target_create,
3587 .init_target = cortex_a_init_target,
3588 .examine = cortex_a_examine,
3589 .deinit_target = cortex_a_deinit_target,