flash Kinetis: Implement flash protection setting
[openocd.git] / src / flash / nor / kinetis.c
blobd02918b493cf82cfe58f4101c19818b734ac1f0d
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * Copyright (C) 2013 Nemui Trinomius *
12 * nemuisan_kawausogasuki@live.jp *
13 * *
14 * Copyright (C) 2015 Tomas Vanek *
15 * vanekt@fbl.cz *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
29 ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/armv7m.h>
42 #include <target/cortex_m.h>
45 * Implementation Notes
47 * The persistent memories in the Kinetis chip families K10 through
48 * K70 are all manipulated with the Flash Memory Module. Some
49 * variants call this module the FTFE, others call it the FTFL. To
50 * indicate that both are considered here, we use FTFX.
52 * Within the module, according to the chip variant, the persistent
53 * memory is divided into what Freescale terms Program Flash, FlexNVM,
54 * and FlexRAM. All chip variants have Program Flash. Some chip
55 * variants also have FlexNVM and FlexRAM, which always appear
56 * together.
58 * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
59 * each block to a separate bank. Each block size varies by chip and
60 * may be determined by the read-only SIM_FCFG1 register. The sector
61 * size within each bank/block varies by chip, and may be 1, 2 or 4k.
62 * The sector size may be different for flash and FlexNVM.
64 * The first half of the flash (1 or 2 blocks) is always Program Flash
65 * and always starts at address 0x00000000. The "PFLSH" flag, bit 23
66 * of the read-only SIM_FCFG2 register, determines whether the second
67 * half of the flash is also Program Flash or FlexNVM+FlexRAM. When
68 * PFLSH is set, the second from the first half. When PFLSH is clear,
69 * the second half of flash is FlexNVM and always starts at address
70 * 0x10000000. FlexRAM, which is also present when PFLSH is clear,
71 * always starts at address 0x14000000.
73 * The Flash Memory Module provides a register set where flash
74 * commands are loaded to perform flash operations like erase and
75 * program. Different commands are available depending on whether
76 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
77 * the commands used are quite consistent between flash blocks, the
78 * parameters they accept differ according to the flash sector size.
82 /* Addressess */
83 #define FCF_ADDRESS 0x00000400
84 #define FCF_FPROT 0x8
85 #define FCF_FSEC 0xc
86 #define FCF_FOPT 0xd
87 #define FCF_FDPROT 0xf
88 #define FCF_SIZE 0x10
90 #define FLEXRAM 0x14000000
92 #define FMC_PFB01CR 0x4001f004
93 #define FTFx_FSTAT 0x40020000
94 #define FTFx_FCNFG 0x40020001
95 #define FTFx_FCCOB3 0x40020004
96 #define FTFx_FPROT3 0x40020010
97 #define FTFx_FDPROT 0x40020017
98 #define SIM_SDID 0x40048024
99 #define SIM_SOPT1 0x40047000
100 #define SIM_FCFG1 0x4004804c
101 #define SIM_FCFG2 0x40048050
102 #define WDOG_STCTRH 0x40052000
103 #define SMC_PMCTRL 0x4007E001
104 #define SMC_PMSTAT 0x4007E003
106 /* Values */
107 #define PM_STAT_RUN 0x01
108 #define PM_STAT_VLPR 0x04
109 #define PM_CTRL_RUNM_RUN 0x00
111 /* Commands */
112 #define FTFx_CMD_BLOCKSTAT 0x00
113 #define FTFx_CMD_SECTSTAT 0x01
114 #define FTFx_CMD_LWORDPROG 0x06
115 #define FTFx_CMD_SECTERASE 0x09
116 #define FTFx_CMD_SECTWRITE 0x0b
117 #define FTFx_CMD_MASSERASE 0x44
118 #define FTFx_CMD_PGMPART 0x80
119 #define FTFx_CMD_SETFLEXRAM 0x81
121 /* The older Kinetis K series uses the following SDID layout :
122 * Bit 31-16 : 0
123 * Bit 15-12 : REVID
124 * Bit 11-7 : DIEID
125 * Bit 6-4 : FAMID
126 * Bit 3-0 : PINID
128 * The newer Kinetis series uses the following SDID layout :
129 * Bit 31-28 : FAMID
130 * Bit 27-24 : SUBFAMID
131 * Bit 23-20 : SERIESID
132 * Bit 19-16 : SRAMSIZE
133 * Bit 15-12 : REVID
134 * Bit 6-4 : Reserved (0)
135 * Bit 3-0 : PINID
137 * We assume that if bits 31-16 are 0 then it's an older
138 * K-series MCU.
141 #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
142 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
144 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
146 #define KINETIS_SDID_DIEID_MASK 0x00000F80
148 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
149 #define KINETIS_SDID_DIEID_K22FN256 0x00000A80
150 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80
151 #define KINETIS_SDID_DIEID_K24FN256 0x00000700
153 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
155 /* We can't rely solely on the FAMID field to determine the MCU
156 * type since some FAMID values identify multiple MCUs with
157 * different flash sector sizes (K20 and K22 for instance).
158 * Therefore we combine it with the DIEID bits which may possibly
159 * break if Freescale bumps the DIEID for a particular MCU. */
160 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
161 #define KINETIS_K_SDID_K10_M50 0x00000000
162 #define KINETIS_K_SDID_K10_M72 0x00000080
163 #define KINETIS_K_SDID_K10_M100 0x00000100
164 #define KINETIS_K_SDID_K10_M120 0x00000180
165 #define KINETIS_K_SDID_K11 0x00000220
166 #define KINETIS_K_SDID_K12 0x00000200
167 #define KINETIS_K_SDID_K20_M50 0x00000010
168 #define KINETIS_K_SDID_K20_M72 0x00000090
169 #define KINETIS_K_SDID_K20_M100 0x00000110
170 #define KINETIS_K_SDID_K20_M120 0x00000190
171 #define KINETIS_K_SDID_K21_M50 0x00000230
172 #define KINETIS_K_SDID_K21_M120 0x00000330
173 #define KINETIS_K_SDID_K22_M50 0x00000210
174 #define KINETIS_K_SDID_K22_M120 0x00000310
175 #define KINETIS_K_SDID_K30_M72 0x000000A0
176 #define KINETIS_K_SDID_K30_M100 0x00000120
177 #define KINETIS_K_SDID_K40_M72 0x000000B0
178 #define KINETIS_K_SDID_K40_M100 0x00000130
179 #define KINETIS_K_SDID_K50_M72 0x000000E0
180 #define KINETIS_K_SDID_K51_M72 0x000000F0
181 #define KINETIS_K_SDID_K53 0x00000170
182 #define KINETIS_K_SDID_K60_M100 0x00000140
183 #define KINETIS_K_SDID_K60_M150 0x000001C0
184 #define KINETIS_K_SDID_K70_M150 0x000001D0
186 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
187 #define KINETIS_SDID_SERIESID_K 0x00000000
188 #define KINETIS_SDID_SERIESID_KL 0x00100000
189 #define KINETIS_SDID_SERIESID_KW 0x00500000
190 #define KINETIS_SDID_SERIESID_KV 0x00600000
192 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
193 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000
194 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000
195 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000
196 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000
197 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000
198 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000
199 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000
201 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000
202 #define KINETIS_SDID_FAMILYID_K0X 0x00000000
203 #define KINETIS_SDID_FAMILYID_K1X 0x10000000
204 #define KINETIS_SDID_FAMILYID_K2X 0x20000000
205 #define KINETIS_SDID_FAMILYID_K3X 0x30000000
206 #define KINETIS_SDID_FAMILYID_K4X 0x40000000
207 #define KINETIS_SDID_FAMILYID_K6X 0x60000000
208 #define KINETIS_SDID_FAMILYID_K7X 0x70000000
210 struct kinetis_flash_bank {
211 bool probed;
212 uint32_t sector_size;
213 uint32_t max_flash_prog_size;
214 uint32_t protection_size;
215 uint32_t prog_base; /* base address for FTFx operations */
216 /* same as bank->base for pflash, differs for FlexNVM */
217 uint32_t protection_block; /* number of first protection block in this bank */
219 uint32_t sim_sdid;
220 uint32_t sim_fcfg1;
221 uint32_t sim_fcfg2;
223 enum {
224 FC_AUTO = 0,
225 FC_PFLASH,
226 FC_FLEX_NVM,
227 FC_FLEX_RAM,
228 } flash_class;
230 enum {
231 FS_PROGRAM_SECTOR = 1,
232 FS_PROGRAM_LONGWORD = 2,
233 FS_PROGRAM_PHRASE = 4, /* Unsupported */
234 FS_INVALIDATE_CACHE = 8,
235 } flash_support;
238 #define MDM_AP 1
240 #define MDM_REG_STAT 0x00
241 #define MDM_REG_CTRL 0x04
242 #define MDM_REG_ID 0xfc
244 #define MDM_STAT_FMEACK (1<<0)
245 #define MDM_STAT_FREADY (1<<1)
246 #define MDM_STAT_SYSSEC (1<<2)
247 #define MDM_STAT_SYSRES (1<<3)
248 #define MDM_STAT_FMEEN (1<<5)
249 #define MDM_STAT_BACKDOOREN (1<<6)
250 #define MDM_STAT_LPEN (1<<7)
251 #define MDM_STAT_VLPEN (1<<8)
252 #define MDM_STAT_LLSMODEXIT (1<<9)
253 #define MDM_STAT_VLLSXMODEXIT (1<<10)
254 #define MDM_STAT_CORE_HALTED (1<<16)
255 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
256 #define MDM_STAT_CORESLEEPING (1<<18)
258 #define MDM_CTRL_FMEIP (1<<0)
259 #define MDM_CTRL_DBG_DIS (1<<1)
260 #define MDM_CTRL_DBG_REQ (1<<2)
261 #define MDM_CTRL_SYS_RES_REQ (1<<3)
262 #define MDM_CTRL_CORE_HOLD_RES (1<<4)
263 #define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
264 #define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
265 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
267 #define MDM_ACCESS_TIMEOUT 500 /* msec */
270 static bool allow_fcf_writes;
271 static uint8_t fcf_fopt = 0xff;
274 struct flash_driver kinetis_flash;
275 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
276 uint32_t offset, uint32_t count);
277 static int kinetis_auto_probe(struct flash_bank *bank);
280 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
282 int retval;
283 LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
285 retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
286 if (retval != ERROR_OK) {
287 LOG_DEBUG("MDM: failed to queue a write request");
288 return retval;
291 retval = dap_run(dap);
292 if (retval != ERROR_OK) {
293 LOG_DEBUG("MDM: dap_run failed");
294 return retval;
298 return ERROR_OK;
301 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
303 int retval;
305 retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
306 if (retval != ERROR_OK) {
307 LOG_DEBUG("MDM: failed to queue a read request");
308 return retval;
311 retval = dap_run(dap);
312 if (retval != ERROR_OK) {
313 LOG_DEBUG("MDM: dap_run failed");
314 return retval;
317 LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
318 return ERROR_OK;
321 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
322 uint32_t mask, uint32_t value, uint32_t timeout_ms)
324 uint32_t val;
325 int retval;
326 int64_t ms_timeout = timeval_ms() + timeout_ms;
328 do {
329 retval = kinetis_mdm_read_register(dap, reg, &val);
330 if (retval != ERROR_OK || (val & mask) == value)
331 return retval;
333 alive_sleep(1);
334 } while (timeval_ms() < ms_timeout);
336 LOG_DEBUG("MDM: polling timed out");
337 return ERROR_FAIL;
341 * This command can be used to break a watchdog reset loop when
342 * connecting to an unsecured target. Unlike other commands, halt will
343 * automatically retry as it does not know how far into the boot process
344 * it is when the command is called.
346 COMMAND_HANDLER(kinetis_mdm_halt)
348 struct target *target = get_current_target(CMD_CTX);
349 struct cortex_m_common *cortex_m = target_to_cm(target);
350 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
351 int retval;
352 int tries = 0;
353 uint32_t stat;
354 int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
356 if (!dap) {
357 LOG_ERROR("Cannot perform halt with a high-level adapter");
358 return ERROR_FAIL;
361 while (true) {
362 tries++;
364 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
366 alive_sleep(1);
368 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
369 if (retval != ERROR_OK) {
370 LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
371 continue;
374 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
375 * reset with flash ready and without security
377 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
378 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
379 break;
381 if (timeval_ms() >= ms_timeout) {
382 LOG_ERROR("MDM: halt timed out");
383 return ERROR_FAIL;
387 LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
389 target_poll(target);
390 /* enable polling in case kinetis_check_flash_security_status disabled it */
391 jtag_poll_set_enabled(true);
393 alive_sleep(100);
395 target->reset_halt = true;
396 target->type->assert_reset(target);
398 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
399 if (retval != ERROR_OK) {
400 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
401 return retval;
404 target->type->deassert_reset(target);
406 return ERROR_OK;
409 COMMAND_HANDLER(kinetis_mdm_reset)
411 struct target *target = get_current_target(CMD_CTX);
412 struct cortex_m_common *cortex_m = target_to_cm(target);
413 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
414 int retval;
416 if (!dap) {
417 LOG_ERROR("Cannot perform reset with a high-level adapter");
418 return ERROR_FAIL;
421 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
422 if (retval != ERROR_OK) {
423 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
424 return retval;
427 retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
428 if (retval != ERROR_OK) {
429 LOG_ERROR("MDM: failed to assert reset");
430 return retval;
433 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
434 if (retval != ERROR_OK) {
435 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
436 return retval;
439 return ERROR_OK;
443 * This function implements the procedure to mass erase the flash via
444 * SWD/JTAG on Kinetis K and L series of devices as it is described in
445 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
446 * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
447 * the core remains halted after this function completes as suggested
448 * by the application note.
450 COMMAND_HANDLER(kinetis_mdm_mass_erase)
452 struct target *target = get_current_target(CMD_CTX);
453 struct cortex_m_common *cortex_m = target_to_cm(target);
454 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
456 if (!dap) {
457 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
458 return ERROR_FAIL;
461 int retval;
464 * ... Power on the processor, or if power has already been
465 * applied, assert the RESET pin to reset the processor. For
466 * devices that do not have a RESET pin, write the System
467 * Reset Request bit in the MDM-AP control register after
468 * establishing communication...
471 /* assert SRST if configured */
472 bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
473 if (has_srst)
474 adapter_assert_reset();
476 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
477 if (retval != ERROR_OK && !has_srst) {
478 LOG_ERROR("MDM: failed to assert reset");
479 goto deassert_reset_and_exit;
483 * ... Read the MDM-AP status register repeatedly and wait for
484 * stable conditions suitable for mass erase:
485 * - mass erase is enabled
486 * - flash is ready
487 * - reset is finished
489 * Mass erase is started as soon as all conditions are met in 32
490 * subsequent status reads.
492 * In case of not stable conditions (RESET/WDOG loop in secured device)
493 * the user is asked for manual pressing of RESET button
494 * as a last resort.
496 int cnt_mass_erase_disabled = 0;
497 int cnt_ready = 0;
498 int64_t ms_start = timeval_ms();
499 bool man_reset_requested = false;
501 do {
502 uint32_t stat = 0;
503 int64_t ms_elapsed = timeval_ms() - ms_start;
505 if (!man_reset_requested && ms_elapsed > 100) {
506 LOG_INFO("MDM: Press RESET button now if possible.");
507 man_reset_requested = true;
510 if (ms_elapsed > 3000) {
511 LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
512 LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
513 LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
514 goto deassert_reset_and_exit;
516 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
517 if (retval != ERROR_OK) {
518 cnt_ready = 0;
519 continue;
522 if (!(stat & MDM_STAT_FMEEN)) {
523 cnt_ready = 0;
524 cnt_mass_erase_disabled++;
525 if (cnt_mass_erase_disabled > 10) {
526 LOG_ERROR("MDM: mass erase is disabled");
527 goto deassert_reset_and_exit;
529 continue;
532 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
533 cnt_ready++;
534 else
535 cnt_ready = 0;
537 } while (cnt_ready < 32);
540 * ... Write the MDM-AP control register to set the Flash Mass
541 * Erase in Progress bit. This will start the mass erase
542 * process...
544 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
545 if (retval != ERROR_OK) {
546 LOG_ERROR("MDM: failed to start mass erase");
547 goto deassert_reset_and_exit;
551 * ... Read the MDM-AP control register until the Flash Mass
552 * Erase in Progress bit clears...
553 * Data sheed defines erase time <3.6 sec/512kB flash block.
554 * The biggest device has 4 pflash blocks => timeout 16 sec.
556 retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
557 if (retval != ERROR_OK) {
558 LOG_ERROR("MDM: mass erase timeout");
559 goto deassert_reset_and_exit;
562 target_poll(target);
563 /* enable polling in case kinetis_check_flash_security_status disabled it */
564 jtag_poll_set_enabled(true);
566 alive_sleep(100);
568 target->reset_halt = true;
569 target->type->assert_reset(target);
572 * ... Negate the RESET signal or clear the System Reset Request
573 * bit in the MDM-AP control register.
575 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
576 if (retval != ERROR_OK)
577 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
579 target->type->deassert_reset(target);
581 return retval;
583 deassert_reset_and_exit:
584 kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
585 if (has_srst)
586 adapter_deassert_reset();
587 return retval;
590 static const uint32_t kinetis_known_mdm_ids[] = {
591 0x001C0000, /* Kinetis-K Series */
592 0x001C0020, /* Kinetis-L/M/V/E Series */
596 * This function implements the procedure to connect to
597 * SWD/JTAG on Kinetis K and L series of devices as it is described in
598 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
599 * and L-series MCUs" Section 4.1.1
601 COMMAND_HANDLER(kinetis_check_flash_security_status)
603 struct target *target = get_current_target(CMD_CTX);
604 struct cortex_m_common *cortex_m = target_to_cm(target);
605 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
607 if (!dap) {
608 LOG_WARNING("Cannot check flash security status with a high-level adapter");
609 return ERROR_OK;
612 uint32_t val;
613 int retval;
616 * ... The MDM-AP ID register can be read to verify that the
617 * connection is working correctly...
619 retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
620 if (retval != ERROR_OK) {
621 LOG_ERROR("MDM: failed to read ID register");
622 return ERROR_OK;
625 if (val == 0)
626 return ERROR_OK;
628 bool found = false;
629 for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
630 if (val == kinetis_known_mdm_ids[i]) {
631 found = true;
632 break;
636 if (!found)
637 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
640 * ... Read the System Security bit to determine if security is enabled.
641 * If System Security = 0, then proceed. If System Security = 1, then
642 * communication with the internals of the processor, including the
643 * flash, will not be possible without issuing a mass erase command or
644 * unsecuring the part through other means (backdoor key unlock)...
646 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
647 if (retval != ERROR_OK) {
648 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
649 return ERROR_OK;
653 * System Security bit is also active for short time during reset.
654 * If a MCU has blank flash and runs in RESET/WDOG loop,
655 * System Security bit is active most of time!
656 * We should observe Flash Ready bit and read status several times
657 * to avoid false detection of secured MCU
659 int secured_score = 0, flash_not_ready_score = 0;
661 if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
662 uint32_t stats[32];
663 int i;
665 for (i = 0; i < 32; i++) {
666 stats[i] = MDM_STAT_FREADY;
667 dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
669 retval = dap_run(dap);
670 if (retval != ERROR_OK) {
671 LOG_DEBUG("MDM: dap_run failed when validating secured state");
672 return ERROR_OK;
674 for (i = 0; i < 32; i++) {
675 if (stats[i] & MDM_STAT_SYSSEC)
676 secured_score++;
677 if (!(stats[i] & MDM_STAT_FREADY))
678 flash_not_ready_score++;
682 if (flash_not_ready_score <= 8 && secured_score > 24) {
683 jtag_poll_set_enabled(false);
685 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
686 LOG_WARNING("**** ****");
687 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
688 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
689 LOG_WARNING("**** interface will NOT work. In order to restore its ****");
690 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
691 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
692 LOG_WARNING("**** ****");
693 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
695 } else if (flash_not_ready_score > 24) {
696 jtag_poll_set_enabled(false);
697 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
698 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
699 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
700 LOG_WARNING("**** and configured, use 'reset halt' ****");
701 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
702 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
704 } else {
705 LOG_INFO("MDM: Chip is unsecured. Continuing.");
706 jtag_poll_set_enabled(true);
709 return ERROR_OK;
712 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
714 struct kinetis_flash_bank *bank_info;
716 if (CMD_ARGC < 6)
717 return ERROR_COMMAND_SYNTAX_ERROR;
719 LOG_INFO("add flash_bank kinetis %s", bank->name);
721 bank_info = malloc(sizeof(struct kinetis_flash_bank));
723 memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
725 bank->driver_priv = bank_info;
727 return ERROR_OK;
730 /* Disable the watchdog on Kinetis devices */
731 int kinetis_disable_wdog(struct target *target, uint32_t sim_sdid)
733 struct working_area *wdog_algorithm;
734 struct armv7m_algorithm armv7m_info;
735 uint16_t wdog;
736 int retval;
738 static const uint8_t kinetis_unlock_wdog_code[] = {
739 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
742 /* Decide whether the connected device needs watchdog disabling.
743 * Disable for all Kx and KVx devices, return if it is a KLx */
745 if ((sim_sdid & KINETIS_SDID_SERIESID_MASK) == KINETIS_SDID_SERIESID_KL)
746 return ERROR_OK;
748 /* The connected device requires watchdog disabling. */
749 retval = target_read_u16(target, WDOG_STCTRH, &wdog);
750 if (retval != ERROR_OK)
751 return retval;
753 if ((wdog & 0x1) == 0) {
754 /* watchdog already disabled */
755 return ERROR_OK;
757 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%x)", wdog);
759 if (target->state != TARGET_HALTED) {
760 LOG_ERROR("Target not halted");
761 return ERROR_TARGET_NOT_HALTED;
764 retval = target_alloc_working_area(target, sizeof(kinetis_unlock_wdog_code), &wdog_algorithm);
765 if (retval != ERROR_OK)
766 return retval;
768 retval = target_write_buffer(target, wdog_algorithm->address,
769 sizeof(kinetis_unlock_wdog_code), (uint8_t *)kinetis_unlock_wdog_code);
770 if (retval != ERROR_OK) {
771 target_free_working_area(target, wdog_algorithm);
772 return retval;
775 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
776 armv7m_info.core_mode = ARM_MODE_THREAD;
778 retval = target_run_algorithm(target, 0, NULL, 0, NULL, wdog_algorithm->address,
779 wdog_algorithm->address + (sizeof(kinetis_unlock_wdog_code) - 2),
780 10000, &armv7m_info);
782 if (retval != ERROR_OK)
783 LOG_ERROR("error executing kinetis wdog unlock algorithm");
785 retval = target_read_u16(target, WDOG_STCTRH, &wdog);
786 if (retval != ERROR_OK)
787 return retval;
788 LOG_INFO("WDOG_STCTRLH = 0x%x", wdog);
790 target_free_working_area(target, wdog_algorithm);
792 return retval;
795 COMMAND_HANDLER(kinetis_disable_wdog_handler)
797 int result;
798 uint32_t sim_sdid;
799 struct target *target = get_current_target(CMD_CTX);
801 if (CMD_ARGC > 0)
802 return ERROR_COMMAND_SYNTAX_ERROR;
804 result = target_read_u32(target, SIM_SDID, &sim_sdid);
805 if (result != ERROR_OK) {
806 LOG_ERROR("Failed to read SIMSDID");
807 return result;
810 result = kinetis_disable_wdog(target, sim_sdid);
811 return result;
815 static int kinetis_ftfx_decode_error(uint8_t fstat)
817 if (fstat & 0x20) {
818 LOG_ERROR("Flash operation failed, illegal command");
819 return ERROR_FLASH_OPER_UNSUPPORTED;
821 } else if (fstat & 0x10)
822 LOG_ERROR("Flash operation failed, protection violated");
824 else if (fstat & 0x40)
825 LOG_ERROR("Flash operation failed, read collision");
827 else if (fstat & 0x80)
828 return ERROR_OK;
830 else
831 LOG_ERROR("Flash operation timed out");
833 return ERROR_FLASH_OPERATION_FAILED;
837 static int kinetis_ftfx_prepare(struct target *target)
839 int result, i;
840 uint8_t fstat;
842 /* wait until busy */
843 for (i = 0; i < 50; i++) {
844 result = target_read_u8(target, FTFx_FSTAT, &fstat);
845 if (result != ERROR_OK)
846 return result;
848 if (fstat & 0x80)
849 break;
852 if ((fstat & 0x80) == 0) {
853 LOG_ERROR("Flash controller is busy");
854 return ERROR_FLASH_OPERATION_FAILED;
856 if (fstat != 0x80) {
857 /* reset error flags */
858 result = target_write_u8(target, FTFx_FSTAT, 0x70);
860 return result;
863 /* Kinetis Program-LongWord Microcodes */
864 static const uint8_t kinetis_flash_write_code[] = {
865 /* Params:
866 * r0 - workarea buffer
867 * r1 - target address
868 * r2 - wordcount
869 * Clobbered:
870 * r4 - tmp
871 * r5 - tmp
872 * r6 - tmp
873 * r7 - tmp
876 /* .L1: */
877 /* for(register uint32_t i=0;i<wcount;i++){ */
878 0x04, 0x1C, /* mov r4, r0 */
879 0x00, 0x23, /* mov r3, #0 */
880 /* .L2: */
881 0x0E, 0x1A, /* sub r6, r1, r0 */
882 0xA6, 0x19, /* add r6, r4, r6 */
883 0x93, 0x42, /* cmp r3, r2 */
884 0x16, 0xD0, /* beq .L9 */
885 /* .L5: */
886 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
887 0x0B, 0x4D, /* ldr r5, .L10 */
888 0x2F, 0x78, /* ldrb r7, [r5] */
889 0x7F, 0xB2, /* sxtb r7, r7 */
890 0x00, 0x2F, /* cmp r7, #0 */
891 0xFA, 0xDA, /* bge .L5 */
892 /* FTFx_FSTAT = FTFA_FSTAT_ACCERR_MASK|FTFA_FSTAT_FPVIOL_MASK|FTFA_FSTAT_RDCO */
893 0x70, 0x27, /* mov r7, #112 */
894 0x2F, 0x70, /* strb r7, [r5] */
895 /* FTFx_FCCOB3 = faddr; */
896 0x09, 0x4F, /* ldr r7, .L10+4 */
897 0x3E, 0x60, /* str r6, [r7] */
898 0x06, 0x27, /* mov r7, #6 */
899 /* FTFx_FCCOB0 = 0x06; */
900 0x08, 0x4E, /* ldr r6, .L10+8 */
901 0x37, 0x70, /* strb r7, [r6] */
902 /* FTFx_FCCOB7 = *pLW; */
903 0x80, 0xCC, /* ldmia r4!, {r7} */
904 0x08, 0x4E, /* ldr r6, .L10+12 */
905 0x37, 0x60, /* str r7, [r6] */
906 /* FTFx_FSTAT = FTFA_FSTAT_CCIF_MASK; */
907 0x80, 0x27, /* mov r7, #128 */
908 0x2F, 0x70, /* strb r7, [r5] */
909 /* .L4: */
910 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
911 0x2E, 0x78, /* ldrb r6, [r5] */
912 0x77, 0xB2, /* sxtb r7, r6 */
913 0x00, 0x2F, /* cmp r7, #0 */
914 0xFB, 0xDA, /* bge .L4 */
915 0x01, 0x33, /* add r3, r3, #1 */
916 0xE4, 0xE7, /* b .L2 */
917 /* .L9: */
918 0x00, 0xBE, /* bkpt #0 */
919 /* .L10: */
920 0x00, 0x00, 0x02, 0x40, /* .word 1073872896 */
921 0x04, 0x00, 0x02, 0x40, /* .word 1073872900 */
922 0x07, 0x00, 0x02, 0x40, /* .word 1073872903 */
923 0x08, 0x00, 0x02, 0x40, /* .word 1073872904 */
926 /* Program LongWord Block Write */
927 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
928 uint32_t offset, uint32_t wcount)
930 struct target *target = bank->target;
931 uint32_t buffer_size = 2048; /* Default minimum value */
932 struct working_area *write_algorithm;
933 struct working_area *source;
934 struct kinetis_flash_bank *kinfo = bank->driver_priv;
935 uint32_t address = kinfo->prog_base + offset;
936 struct reg_param reg_params[3];
937 struct armv7m_algorithm armv7m_info;
938 int retval = ERROR_OK;
940 /* Params:
941 * r0 - workarea buffer
942 * r1 - target address
943 * r2 - wordcount
944 * Clobbered:
945 * r4 - tmp
946 * r5 - tmp
947 * r6 - tmp
948 * r7 - tmp
951 /* Increase buffer_size if needed */
952 if (buffer_size < (target->working_area_size/2))
953 buffer_size = (target->working_area_size/2);
955 /* allocate working area with flash programming code */
956 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
957 &write_algorithm) != ERROR_OK) {
958 LOG_WARNING("no working area available, can't do block memory writes");
959 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
962 retval = target_write_buffer(target, write_algorithm->address,
963 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
964 if (retval != ERROR_OK)
965 return retval;
967 /* memory buffer */
968 while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
969 buffer_size /= 4;
970 if (buffer_size <= 256) {
971 /* free working area, write algorithm already allocated */
972 target_free_working_area(target, write_algorithm);
974 LOG_WARNING("No large enough working area available, can't do block memory writes");
975 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
979 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
980 armv7m_info.core_mode = ARM_MODE_THREAD;
982 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* *pLW (*buffer) */
983 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* faddr */
984 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* number of words to program */
986 /* write code buffer and use Flash programming code within kinetis */
987 /* Set breakpoint to 0 with time-out of 1000 ms */
988 while (wcount > 0) {
989 uint32_t thisrun_count = (wcount > (buffer_size / 4)) ? (buffer_size / 4) : wcount;
991 retval = target_write_buffer(target, source->address, thisrun_count * 4, buffer);
992 if (retval != ERROR_OK)
993 break;
995 buf_set_u32(reg_params[0].value, 0, 32, source->address);
996 buf_set_u32(reg_params[1].value, 0, 32, address);
997 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
999 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1000 write_algorithm->address, 0, 100000, &armv7m_info);
1001 if (retval != ERROR_OK) {
1002 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1003 retval = ERROR_FLASH_OPERATION_FAILED;
1004 break;
1007 buffer += thisrun_count * 4;
1008 address += thisrun_count * 4;
1009 wcount -= thisrun_count;
1012 target_free_working_area(target, source);
1013 target_free_working_area(target, write_algorithm);
1015 destroy_reg_param(&reg_params[0]);
1016 destroy_reg_param(&reg_params[1]);
1017 destroy_reg_param(&reg_params[2]);
1019 return retval;
1022 static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
1024 int i;
1026 if (allow_fcf_writes) {
1027 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1028 return ERROR_FAIL;
1031 if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1032 LOG_ERROR("No protection possible for current bank!");
1033 return ERROR_FLASH_BANK_INVALID;
1036 for (i = first; i < bank->num_prot_blocks && i <= last; i++)
1037 bank->prot_blocks[i].is_protected = set;
1039 LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1040 LOG_INFO("Do not issue 'flash info' command until protection is written,");
1041 LOG_INFO("doing so would re-read protection status from MCU.");
1043 return ERROR_OK;
1046 static int kinetis_protect_check(struct flash_bank *bank)
1048 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1049 int result;
1050 int i, b;
1051 uint32_t fprot;
1053 if (kinfo->flash_class == FC_PFLASH) {
1055 /* read protection register */
1056 result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
1057 if (result != ERROR_OK)
1058 return result;
1060 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1062 } else if (kinfo->flash_class == FC_FLEX_NVM) {
1063 uint8_t fdprot;
1065 /* read protection register */
1066 result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
1067 if (result != ERROR_OK)
1068 return result;
1070 fprot = fdprot;
1072 } else {
1073 LOG_ERROR("Protection checks for FlexRAM not supported");
1074 return ERROR_FLASH_BANK_INVALID;
1077 b = kinfo->protection_block;
1078 for (i = 0; i < bank->num_prot_blocks; i++) {
1079 if ((fprot >> b) & 1)
1080 bank->prot_blocks[i].is_protected = 0;
1081 else
1082 bank->prot_blocks[i].is_protected = 1;
1084 b++;
1087 return ERROR_OK;
1091 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1093 uint32_t fprot = 0xffffffff;
1094 uint8_t fsec = 0xfe; /* set MCU unsecure */
1095 uint8_t fdprot = 0xff;
1096 int i;
1097 uint32_t pflash_bit;
1098 uint8_t dflash_bit;
1099 struct flash_bank *bank_iter;
1100 struct kinetis_flash_bank *kinfo;
1102 memset(fcf, 0xff, FCF_SIZE);
1104 pflash_bit = 1;
1105 dflash_bit = 1;
1107 /* iterate over all kinetis banks */
1108 /* current bank is bank 0, it contains FCF */
1109 for (bank_iter = bank; bank_iter; bank_iter = bank_iter->next) {
1110 if (bank_iter->driver != &kinetis_flash
1111 || bank_iter->target != bank->target)
1112 continue;
1114 kinetis_auto_probe(bank_iter);
1116 kinfo = bank->driver_priv;
1117 if (!kinfo)
1118 continue;
1120 if (kinfo->flash_class == FC_PFLASH) {
1121 for (i = 0; i < bank_iter->num_prot_blocks; i++) {
1122 if (bank_iter->prot_blocks[i].is_protected == 1)
1123 fprot &= ~pflash_bit;
1125 pflash_bit <<= 1;
1128 } else if (kinfo->flash_class == FC_FLEX_NVM) {
1129 for (i = 0; i < bank_iter->num_prot_blocks; i++) {
1130 if (bank_iter->prot_blocks[i].is_protected == 1)
1131 fdprot &= ~dflash_bit;
1133 dflash_bit <<= 1;
1139 target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1140 fcf[FCF_FSEC] = fsec;
1141 fcf[FCF_FOPT] = fcf_fopt;
1142 fcf[FCF_FDPROT] = fdprot;
1143 return ERROR_OK;
1146 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1147 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1148 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1149 uint8_t *ftfx_fstat)
1151 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1152 fccob7, fccob6, fccob5, fccob4,
1153 fccobb, fccoba, fccob9, fccob8};
1154 int result;
1155 uint8_t fstat;
1156 int64_t ms_timeout = timeval_ms() + 250;
1158 result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
1159 if (result != ERROR_OK)
1160 return result;
1162 /* start command */
1163 result = target_write_u8(target, FTFx_FSTAT, 0x80);
1164 if (result != ERROR_OK)
1165 return result;
1167 /* wait for done */
1168 do {
1169 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1171 if (result != ERROR_OK)
1172 return result;
1174 if (fstat & 0x80)
1175 break;
1177 } while (timeval_ms() < ms_timeout);
1179 if (ftfx_fstat)
1180 *ftfx_fstat = fstat;
1182 if ((fstat & 0xf0) != 0x80) {
1183 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1184 fstat, command[3], command[2], command[1], command[0],
1185 command[7], command[6], command[5], command[4],
1186 command[11], command[10], command[9], command[8]);
1188 return kinetis_ftfx_decode_error(fstat);
1191 return ERROR_OK;
1195 static int kinetis_check_run_mode(struct target *target)
1197 int result, i;
1198 uint8_t pmctrl, pmstat;
1200 if (target->state != TARGET_HALTED) {
1201 LOG_ERROR("Target not halted");
1202 return ERROR_TARGET_NOT_HALTED;
1205 result = target_read_u8(target, SMC_PMSTAT, &pmstat);
1206 if (result != ERROR_OK)
1207 return result;
1209 if (pmstat == PM_STAT_RUN)
1210 return ERROR_OK;
1212 if (pmstat == PM_STAT_VLPR) {
1213 /* It is safe to switch from VLPR to RUN mode without changing clock */
1214 LOG_INFO("Switching from VLPR to RUN mode.");
1215 pmctrl = PM_CTRL_RUNM_RUN;
1216 result = target_write_u8(target, SMC_PMCTRL, pmctrl);
1217 if (result != ERROR_OK)
1218 return result;
1220 for (i = 100; i; i--) {
1221 result = target_read_u8(target, SMC_PMSTAT, &pmstat);
1222 if (result != ERROR_OK)
1223 return result;
1225 if (pmstat == PM_STAT_RUN)
1226 return ERROR_OK;
1230 LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1231 LOG_ERROR("Issue a 'reset init' command.");
1232 return ERROR_TARGET_NOT_HALTED;
1236 static void kinetis_invalidate_flash_cache(struct flash_bank *bank)
1238 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1239 uint8_t pfb01cr_byte2 = 0xf0;
1241 if (!(kinfo->flash_support & FS_INVALIDATE_CACHE))
1242 return;
1244 target_write_memory(bank->target, FMC_PFB01CR + 2, 1, 1, &pfb01cr_byte2);
1245 return;
1249 static int kinetis_erase(struct flash_bank *bank, int first, int last)
1251 int result, i;
1252 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1254 result = kinetis_check_run_mode(bank->target);
1255 if (result != ERROR_OK)
1256 return result;
1258 /* reset error flags */
1259 result = kinetis_ftfx_prepare(bank->target);
1260 if (result != ERROR_OK)
1261 return result;
1263 if ((first > bank->num_sectors) || (last > bank->num_sectors))
1264 return ERROR_FLASH_OPERATION_FAILED;
1267 * FIXME: TODO: use the 'Erase Flash Block' command if the
1268 * requested erase is PFlash or NVM and encompasses the entire
1269 * block. Should be quicker.
1271 for (i = first; i <= last; i++) {
1272 /* set command and sector address */
1273 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, kinfo->prog_base + bank->sectors[i].offset,
1274 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1276 if (result != ERROR_OK) {
1277 LOG_WARNING("erase sector %d failed", i);
1278 return ERROR_FLASH_OPERATION_FAILED;
1281 bank->sectors[i].is_erased = 1;
1283 if (bank->base == 0
1284 && bank->sectors[i].offset <= FCF_ADDRESS
1285 && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1286 if (allow_fcf_writes) {
1287 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1288 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1289 } else {
1290 uint8_t fcf_buffer[FCF_SIZE];
1292 kinetis_fill_fcf(bank, fcf_buffer);
1293 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1294 if (result != ERROR_OK)
1295 LOG_WARNING("Flash Configuration Field write failed");
1296 bank->sectors[i].is_erased = 0;
1301 kinetis_invalidate_flash_cache(bank);
1303 return ERROR_OK;
1306 static int kinetis_make_ram_ready(struct target *target)
1308 int result;
1309 uint8_t ftfx_fcnfg;
1311 /* check if ram ready */
1312 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1313 if (result != ERROR_OK)
1314 return result;
1316 if (ftfx_fcnfg & (1 << 1))
1317 return ERROR_OK; /* ram ready */
1319 /* make flex ram available */
1320 result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
1321 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1322 if (result != ERROR_OK)
1323 return ERROR_FLASH_OPERATION_FAILED;
1325 /* check again */
1326 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1327 if (result != ERROR_OK)
1328 return result;
1330 if (ftfx_fcnfg & (1 << 1))
1331 return ERROR_OK; /* ram ready */
1333 return ERROR_FLASH_OPERATION_FAILED;
1337 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1338 uint32_t offset, uint32_t count)
1340 int result;
1341 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1342 uint8_t *buffer_aligned = NULL;
1344 * Kinetis uses different terms for the granularity of
1345 * sector writes, e.g. "phrase" or "128 bits". We use
1346 * the generic term "chunk". The largest possible
1347 * Kinetis "chunk" is 16 bytes (128 bits).
1349 uint32_t prog_section_chunk_bytes = kinfo->sector_size >> 8;
1350 uint32_t prog_size_bytes = kinfo->max_flash_prog_size;
1352 while (count > 0) {
1353 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1354 uint32_t align_begin = offset % prog_section_chunk_bytes;
1355 uint32_t align_end;
1356 uint32_t size_aligned;
1357 uint16_t chunk_count;
1358 uint8_t ftfx_fstat;
1360 if (size > count)
1361 size = count;
1363 align_end = (align_begin + size) % prog_section_chunk_bytes;
1364 if (align_end)
1365 align_end = prog_section_chunk_bytes - align_end;
1367 size_aligned = align_begin + size + align_end;
1368 chunk_count = size_aligned / prog_section_chunk_bytes;
1370 if (size != size_aligned) {
1371 /* aligned section: the first, the last or the only */
1372 if (!buffer_aligned)
1373 buffer_aligned = malloc(prog_size_bytes);
1375 memset(buffer_aligned, 0xff, size_aligned);
1376 memcpy(buffer_aligned + align_begin, buffer, size);
1378 result = target_write_memory(bank->target, FLEXRAM,
1379 4, size_aligned / 4, buffer_aligned);
1381 LOG_DEBUG("section @ %08" PRIx32 " aligned begin %" PRIu32 ", end %" PRIu32,
1382 bank->base + offset, align_begin, align_end);
1383 } else
1384 result = target_write_memory(bank->target, FLEXRAM,
1385 4, size_aligned / 4, buffer);
1387 LOG_DEBUG("write section @ %08" PRIx32 " with length %" PRIu32 " bytes",
1388 bank->base + offset, size);
1390 if (result != ERROR_OK) {
1391 LOG_ERROR("target_write_memory failed");
1392 break;
1395 /* execute section-write command */
1396 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE,
1397 kinfo->prog_base + offset - align_begin,
1398 chunk_count>>8, chunk_count, 0, 0,
1399 0, 0, 0, 0, &ftfx_fstat);
1401 if (result != ERROR_OK) {
1402 LOG_ERROR("Error writing section at %08" PRIx32, bank->base + offset);
1403 break;
1406 if (ftfx_fstat & 0x01)
1407 LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset);
1409 buffer += size;
1410 offset += size;
1411 count -= size;
1414 free(buffer_aligned);
1415 return result;
1419 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1420 uint32_t offset, uint32_t count)
1422 int result, fallback = 0;
1423 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1425 if (!(kinfo->flash_support & FS_PROGRAM_SECTOR)) {
1426 /* fallback to longword write */
1427 fallback = 1;
1428 LOG_WARNING("This device supports Program Longword execution only.");
1429 } else {
1430 result = kinetis_make_ram_ready(bank->target);
1431 if (result != ERROR_OK) {
1432 fallback = 1;
1433 LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1437 LOG_DEBUG("flash write @08%" PRIx32, bank->base + offset);
1439 if (fallback == 0) {
1440 /* program section command */
1441 kinetis_write_sections(bank, buffer, offset, count);
1443 else if (kinfo->flash_support & FS_PROGRAM_LONGWORD) {
1444 /* program longword command, not supported in FTFE */
1445 uint8_t *new_buffer = NULL;
1447 /* check word alignment */
1448 if (offset & 0x3) {
1449 LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1450 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1453 if (count & 0x3) {
1454 uint32_t old_count = count;
1455 count = (old_count | 3) + 1;
1456 new_buffer = malloc(count);
1457 if (new_buffer == NULL) {
1458 LOG_ERROR("odd number of bytes to write and no memory "
1459 "for padding buffer");
1460 return ERROR_FAIL;
1462 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1463 "and padding with 0xff", old_count, count);
1464 memset(new_buffer + old_count, 0xff, count - old_count);
1465 buffer = memcpy(new_buffer, buffer, old_count);
1468 uint32_t words_remaining = count / 4;
1470 kinetis_disable_wdog(bank->target, kinfo->sim_sdid);
1472 /* try using a block write */
1473 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1475 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1476 /* if block write failed (no sufficient working area),
1477 * we use normal (slow) single word accesses */
1478 LOG_WARNING("couldn't use block writes, falling back to single "
1479 "memory accesses");
1481 while (words_remaining) {
1482 uint8_t ftfx_fstat;
1484 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1486 result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, kinfo->prog_base + offset,
1487 buffer[3], buffer[2], buffer[1], buffer[0],
1488 0, 0, 0, 0, &ftfx_fstat);
1490 if (result != ERROR_OK) {
1491 LOG_ERROR("Error writing longword at %08" PRIx32, bank->base + offset);
1492 break;
1495 if (ftfx_fstat & 0x01)
1496 LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset);
1498 buffer += 4;
1499 offset += 4;
1500 words_remaining--;
1503 free(new_buffer);
1504 } else {
1505 LOG_ERROR("Flash write strategy not implemented");
1506 return ERROR_FLASH_OPERATION_FAILED;
1509 kinetis_invalidate_flash_cache(bank);
1510 return result;
1514 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1515 uint32_t offset, uint32_t count)
1517 int result;
1518 bool set_fcf = false;
1519 int sect = 0;
1521 result = kinetis_check_run_mode(bank->target);
1522 if (result != ERROR_OK)
1523 return result;
1525 /* reset error flags */
1526 result = kinetis_ftfx_prepare(bank->target);
1527 if (result != ERROR_OK)
1528 return result;
1530 if (bank->base == 0 && !allow_fcf_writes) {
1531 if (bank->sectors[1].offset <= FCF_ADDRESS)
1532 sect = 1; /* 1kb sector, FCF in 2nd sector */
1534 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1535 && offset + count > bank->sectors[sect].offset)
1536 set_fcf = true; /* write to any part of sector with FCF */
1539 if (set_fcf) {
1540 uint8_t fcf_buffer[FCF_SIZE];
1541 uint8_t fcf_current[FCF_SIZE];
1543 kinetis_fill_fcf(bank, fcf_buffer);
1545 if (offset < FCF_ADDRESS) {
1546 /* write part preceding FCF */
1547 result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
1548 if (result != ERROR_OK)
1549 return result;
1552 result = target_read_memory(bank->target, FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
1553 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
1554 set_fcf = false;
1556 if (set_fcf) {
1557 /* write FCF if differs from flash - eliminate multiple writes */
1558 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1559 if (result != ERROR_OK)
1560 return result;
1563 LOG_WARNING("Flash Configuration Field written.");
1564 LOG_WARNING("Reset or power off the device to make settings effective.");
1566 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
1567 uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
1568 /* write part after FCF */
1569 result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
1571 return result;
1573 } else
1574 /* no FCF fiddling, normal write */
1575 return kinetis_write_inner(bank, buffer, offset, count);
1579 static int kinetis_probe(struct flash_bank *bank)
1581 int result, i;
1582 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
1583 uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
1584 uint32_t nvm_size = 0, pf_size = 0, df_size = 0, ee_size = 0;
1585 unsigned num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0, first_nvm_bank = 0,
1586 pflash_sector_size_bytes = 0, nvm_sector_size_bytes = 0;
1587 struct target *target = bank->target;
1588 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1590 kinfo->probed = false;
1592 result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid);
1593 if (result != ERROR_OK)
1594 return result;
1596 if ((kinfo->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
1597 /* older K-series MCU */
1598 uint32_t mcu_type = kinfo->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
1600 switch (mcu_type) {
1601 case KINETIS_K_SDID_K10_M50:
1602 case KINETIS_K_SDID_K20_M50:
1603 /* 1kB sectors */
1604 pflash_sector_size_bytes = 1<<10;
1605 nvm_sector_size_bytes = 1<<10;
1606 num_blocks = 2;
1607 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1608 break;
1609 case KINETIS_K_SDID_K10_M72:
1610 case KINETIS_K_SDID_K20_M72:
1611 case KINETIS_K_SDID_K30_M72:
1612 case KINETIS_K_SDID_K30_M100:
1613 case KINETIS_K_SDID_K40_M72:
1614 case KINETIS_K_SDID_K40_M100:
1615 case KINETIS_K_SDID_K50_M72:
1616 /* 2kB sectors, 1kB FlexNVM sectors */
1617 pflash_sector_size_bytes = 2<<10;
1618 nvm_sector_size_bytes = 1<<10;
1619 num_blocks = 2;
1620 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1621 kinfo->max_flash_prog_size = 1<<10;
1622 break;
1623 case KINETIS_K_SDID_K10_M100:
1624 case KINETIS_K_SDID_K20_M100:
1625 case KINETIS_K_SDID_K11:
1626 case KINETIS_K_SDID_K12:
1627 case KINETIS_K_SDID_K21_M50:
1628 case KINETIS_K_SDID_K22_M50:
1629 case KINETIS_K_SDID_K51_M72:
1630 case KINETIS_K_SDID_K53:
1631 case KINETIS_K_SDID_K60_M100:
1632 /* 2kB sectors */
1633 pflash_sector_size_bytes = 2<<10;
1634 nvm_sector_size_bytes = 2<<10;
1635 num_blocks = 2;
1636 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1637 break;
1638 case KINETIS_K_SDID_K21_M120:
1639 case KINETIS_K_SDID_K22_M120:
1640 /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
1641 pflash_sector_size_bytes = 4<<10;
1642 kinfo->max_flash_prog_size = 1<<10;
1643 nvm_sector_size_bytes = 4<<10;
1644 num_blocks = 2;
1645 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1646 break;
1647 case KINETIS_K_SDID_K10_M120:
1648 case KINETIS_K_SDID_K20_M120:
1649 case KINETIS_K_SDID_K60_M150:
1650 case KINETIS_K_SDID_K70_M150:
1651 /* 4kB sectors */
1652 pflash_sector_size_bytes = 4<<10;
1653 nvm_sector_size_bytes = 4<<10;
1654 num_blocks = 4;
1655 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1656 break;
1657 default:
1658 LOG_ERROR("Unsupported K-family FAMID");
1660 } else {
1661 /* Newer K-series or KL series MCU */
1662 switch (kinfo->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
1663 case KINETIS_SDID_SERIESID_K:
1664 switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
1665 case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
1666 /* K02FN64, K02FN128: FTFA, 2kB sectors */
1667 pflash_sector_size_bytes = 2<<10;
1668 num_blocks = 1;
1669 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1670 break;
1672 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
1673 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
1674 uint32_t sopt1;
1675 result = target_read_u32(target, SIM_SOPT1, &sopt1);
1676 if (result != ERROR_OK)
1677 return result;
1679 if (((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
1680 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
1681 /* MK24FN1M */
1682 pflash_sector_size_bytes = 4<<10;
1683 num_blocks = 2;
1684 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1685 kinfo->max_flash_prog_size = 1<<10;
1686 break;
1688 if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
1689 || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
1690 || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
1691 /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
1692 pflash_sector_size_bytes = 2<<10;
1693 /* autodetect 1 or 2 blocks */
1694 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1695 break;
1697 LOG_ERROR("Unsupported Kinetis K22 DIEID");
1698 break;
1700 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
1701 pflash_sector_size_bytes = 4<<10;
1702 if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
1703 /* K24FN256 - smaller pflash with FTFA */
1704 num_blocks = 1;
1705 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1706 break;
1708 /* K24FN1M without errata 7534 */
1709 num_blocks = 2;
1710 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1711 kinfo->max_flash_prog_size = 1<<10;
1712 break;
1714 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
1715 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
1716 /* K63FN1M0 */
1717 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
1718 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
1719 /* K64FN1M0, K64FX512 */
1720 pflash_sector_size_bytes = 4<<10;
1721 nvm_sector_size_bytes = 4<<10;
1722 kinfo->max_flash_prog_size = 1<<10;
1723 num_blocks = 2;
1724 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1725 break;
1727 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
1728 /* K26FN2M0 */
1729 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
1730 /* K66FN2M0, K66FX1M0 */
1731 pflash_sector_size_bytes = 4<<10;
1732 nvm_sector_size_bytes = 4<<10;
1733 kinfo->max_flash_prog_size = 1<<10;
1734 num_blocks = 4;
1735 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1736 break;
1737 default:
1738 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
1740 break;
1742 case KINETIS_SDID_SERIESID_KL:
1743 /* KL-series */
1744 pflash_sector_size_bytes = 1<<10;
1745 nvm_sector_size_bytes = 1<<10;
1746 /* autodetect 1 or 2 blocks */
1747 kinfo->flash_support = FS_PROGRAM_LONGWORD;
1748 break;
1750 case KINETIS_SDID_SERIESID_KV:
1751 /* KV-series */
1752 switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
1753 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
1754 /* KV10: FTFA, 1kB sectors */
1755 pflash_sector_size_bytes = 1<<10;
1756 num_blocks = 1;
1757 kinfo->flash_support = FS_PROGRAM_LONGWORD;
1758 break;
1760 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
1761 /* KV11: FTFA, 2kB sectors */
1762 pflash_sector_size_bytes = 2<<10;
1763 num_blocks = 1;
1764 kinfo->flash_support = FS_PROGRAM_LONGWORD;
1765 break;
1767 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
1768 /* KV30: FTFA, 2kB sectors, 1 block */
1769 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
1770 /* KV31: FTFA, 2kB sectors, 2 blocks */
1771 pflash_sector_size_bytes = 2<<10;
1772 /* autodetect 1 or 2 blocks */
1773 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1774 break;
1776 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
1777 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
1778 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
1779 /* KV4x: FTFA, 4kB sectors */
1780 pflash_sector_size_bytes = 4<<10;
1781 num_blocks = 1;
1782 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1783 break;
1785 default:
1786 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
1788 break;
1790 default:
1791 LOG_ERROR("Unsupported K-series");
1795 if (pflash_sector_size_bytes == 0) {
1796 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, kinfo->sim_sdid);
1797 return ERROR_FLASH_OPER_UNSUPPORTED;
1800 result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1);
1801 if (result != ERROR_OK)
1802 return result;
1804 result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2);
1805 if (result != ERROR_OK)
1806 return result;
1808 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid,
1809 kinfo->sim_fcfg1, kinfo->sim_fcfg2);
1811 fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
1812 fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
1813 fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
1814 fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f);
1816 fcfg2_pflsh = (uint8_t)((kinfo->sim_fcfg2 >> 23) & 0x01);
1817 fcfg2_maxaddr0 = (uint8_t)((kinfo->sim_fcfg2 >> 24) & 0x7f);
1818 fcfg2_maxaddr1 = (uint8_t)((kinfo->sim_fcfg2 >> 16) & 0x7f);
1820 if (num_blocks == 0)
1821 num_blocks = fcfg2_maxaddr1 ? 2 : 1;
1822 else if (fcfg2_maxaddr1 == 0 && num_blocks >= 2) {
1823 num_blocks = 1;
1824 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
1825 } else if (fcfg2_maxaddr1 != 0 && num_blocks == 1) {
1826 num_blocks = 2;
1827 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
1830 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
1831 if (!fcfg2_pflsh) {
1832 switch (fcfg1_nvmsize) {
1833 case 0x03:
1834 case 0x05:
1835 case 0x07:
1836 case 0x09:
1837 case 0x0b:
1838 nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
1839 break;
1840 case 0x0f:
1841 if (pflash_sector_size_bytes >= 4<<10)
1842 nvm_size = 512<<10;
1843 else
1844 /* K20_100 */
1845 nvm_size = 256<<10;
1846 break;
1847 default:
1848 nvm_size = 0;
1849 break;
1852 switch (fcfg1_eesize) {
1853 case 0x00:
1854 case 0x01:
1855 case 0x02:
1856 case 0x03:
1857 case 0x04:
1858 case 0x05:
1859 case 0x06:
1860 case 0x07:
1861 case 0x08:
1862 case 0x09:
1863 ee_size = (16 << (10 - fcfg1_eesize));
1864 break;
1865 default:
1866 ee_size = 0;
1867 break;
1870 switch (fcfg1_depart) {
1871 case 0x01:
1872 case 0x02:
1873 case 0x03:
1874 case 0x04:
1875 case 0x05:
1876 case 0x06:
1877 df_size = nvm_size - (4096 << fcfg1_depart);
1878 break;
1879 case 0x08:
1880 df_size = 0;
1881 break;
1882 case 0x09:
1883 case 0x0a:
1884 case 0x0b:
1885 case 0x0c:
1886 case 0x0d:
1887 df_size = 4096 << (fcfg1_depart & 0x7);
1888 break;
1889 default:
1890 df_size = nvm_size;
1891 break;
1895 switch (fcfg1_pfsize) {
1896 case 0x03:
1897 case 0x05:
1898 case 0x07:
1899 case 0x09:
1900 case 0x0b:
1901 case 0x0d:
1902 pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
1903 break;
1904 case 0x0f:
1905 /* a peculiar case: Freescale states different sizes for 0xf
1906 * K02P64M100SFARM 128 KB ... duplicate of code 0x7
1907 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9
1908 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb
1909 * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
1910 * K26P169M180SF5RM 2048 KB ... the only unique value
1911 * fcfg2_maxaddr0 seems to be the only clue to pf_size
1912 * Checking fcfg2_maxaddr0 later in this routine is pointless then
1914 if (fcfg2_pflsh)
1915 pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks;
1916 else
1917 pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks / 2;
1918 if (pf_size != 2048<<10)
1919 LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", pf_size>>10);
1921 break;
1922 default:
1923 pf_size = 0;
1924 break;
1927 LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d",
1928 nvm_size, pf_size, ee_size, fcfg2_pflsh);
1930 num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
1931 first_nvm_bank = num_pflash_blocks;
1932 num_nvm_blocks = num_blocks - num_pflash_blocks;
1934 LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
1935 num_blocks, num_pflash_blocks, num_nvm_blocks);
1937 LOG_INFO("Probing flash info for bank %d", bank->bank_number);
1939 if ((unsigned)bank->bank_number < num_pflash_blocks) {
1940 /* pflash, banks start at address zero */
1941 kinfo->flash_class = FC_PFLASH;
1942 bank->size = (pf_size / num_pflash_blocks);
1943 bank->base = 0x00000000 + bank->size * bank->bank_number;
1944 kinfo->prog_base = bank->base;
1945 kinfo->sector_size = pflash_sector_size_bytes;
1946 /* pflash is divided into 32 protection areas for
1947 * parts with more than 32K of PFlash. For parts with
1948 * less the protection unit is set to 1024 bytes */
1949 kinfo->protection_size = MAX(pf_size / 32, 1024);
1950 bank->num_prot_blocks = 32 / num_pflash_blocks;
1951 kinfo->protection_block = bank->num_prot_blocks * bank->bank_number;
1953 } else if ((unsigned)bank->bank_number < num_blocks) {
1954 /* nvm, banks start at address 0x10000000 */
1955 unsigned nvm_ord = bank->bank_number - first_nvm_bank;
1956 uint32_t limit;
1958 kinfo->flash_class = FC_FLEX_NVM;
1959 bank->size = (nvm_size / num_nvm_blocks);
1960 bank->base = 0x10000000 + bank->size * nvm_ord;
1961 kinfo->prog_base = 0x00800000 + bank->size * nvm_ord;
1962 kinfo->sector_size = nvm_sector_size_bytes;
1963 if (df_size == 0) {
1964 kinfo->protection_size = 0;
1965 } else {
1966 for (i = df_size; ~i & 1; i >>= 1)
1968 if (i == 1)
1969 kinfo->protection_size = df_size / 8; /* data flash size = 2^^n */
1970 else
1971 kinfo->protection_size = nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
1973 bank->num_prot_blocks = 8 / num_nvm_blocks;
1974 kinfo->protection_block = bank->num_prot_blocks * nvm_ord;
1976 /* EEPROM backup part of FlexNVM is not accessible, use df_size as a limit */
1977 if (df_size > bank->size * nvm_ord)
1978 limit = df_size - bank->size * nvm_ord;
1979 else
1980 limit = 0;
1982 if (bank->size > limit) {
1983 bank->size = limit;
1984 LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup",
1985 bank->bank_number, limit);
1988 } else if ((unsigned)bank->bank_number == num_blocks) {
1989 LOG_ERROR("FlexRAM support not yet implemented");
1990 return ERROR_FLASH_OPER_UNSUPPORTED;
1991 } else {
1992 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
1993 bank->bank_number, num_blocks);
1994 return ERROR_FLASH_BANK_INVALID;
1997 if (bank->bank_number == 0 && ((uint32_t)fcfg2_maxaddr0 << 13) != bank->size)
1998 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
1999 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2000 if (fcfg2_pflsh) {
2001 if (bank->bank_number == 1 && ((uint32_t)fcfg2_maxaddr1 << 13) != bank->size)
2002 LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2003 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2004 } else {
2005 if ((unsigned)bank->bank_number == first_nvm_bank
2006 && ((uint32_t)fcfg2_maxaddr1 << 13) != df_size)
2007 LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2008 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2011 if (bank->sectors) {
2012 free(bank->sectors);
2013 bank->sectors = NULL;
2015 if (bank->prot_blocks) {
2016 free(bank->prot_blocks);
2017 bank->prot_blocks = NULL;
2020 if (kinfo->sector_size == 0) {
2021 LOG_ERROR("Unknown sector size for bank %d", bank->bank_number);
2022 return ERROR_FLASH_BANK_INVALID;
2025 if (kinfo->flash_support & FS_PROGRAM_SECTOR
2026 && kinfo->max_flash_prog_size == 0) {
2027 kinfo->max_flash_prog_size = kinfo->sector_size;
2028 /* Program section size is equal to sector size by default */
2031 bank->num_sectors = bank->size / kinfo->sector_size;
2033 if (bank->num_sectors > 0) {
2034 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2035 bank->sectors = alloc_block_array(0, kinfo->sector_size, bank->num_sectors);
2036 if (!bank->sectors)
2037 return ERROR_FAIL;
2039 bank->prot_blocks = alloc_block_array(0, kinfo->protection_size, bank->num_prot_blocks);
2040 if (!bank->prot_blocks)
2041 return ERROR_FAIL;
2043 } else {
2044 bank->num_prot_blocks = 0;
2047 kinfo->probed = true;
2049 return ERROR_OK;
2052 static int kinetis_auto_probe(struct flash_bank *bank)
2054 struct kinetis_flash_bank *kinfo = bank->driver_priv;
2056 if (kinfo && kinfo->probed)
2057 return ERROR_OK;
2059 return kinetis_probe(bank);
2062 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
2064 const char *bank_class_names[] = {
2065 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2068 struct kinetis_flash_bank *kinfo = bank->driver_priv;
2070 (void) snprintf(buf, buf_size,
2071 "%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
2072 bank->driver->name, bank_class_names[kinfo->flash_class],
2073 bank->name, bank->base);
2075 return ERROR_OK;
2078 static int kinetis_blank_check(struct flash_bank *bank)
2080 struct kinetis_flash_bank *kinfo = bank->driver_priv;
2081 int result;
2083 /* suprisingly blank check does not work in VLPR and HSRUN modes */
2084 result = kinetis_check_run_mode(bank->target);
2085 if (result != ERROR_OK)
2086 return result;
2088 /* reset error flags */
2089 result = kinetis_ftfx_prepare(bank->target);
2090 if (result != ERROR_OK)
2091 return result;
2093 if (kinfo->flash_class == FC_PFLASH || kinfo->flash_class == FC_FLEX_NVM) {
2094 bool block_dirty = false;
2095 uint8_t ftfx_fstat;
2097 if (kinfo->flash_class == FC_FLEX_NVM) {
2098 uint8_t fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f);
2099 /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2100 if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2101 block_dirty = true;
2104 if (!block_dirty) {
2105 /* check if whole bank is blank */
2106 result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, kinfo->prog_base,
2107 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2109 if (result != ERROR_OK || (ftfx_fstat & 0x01))
2110 block_dirty = true;
2113 if (block_dirty) {
2114 /* the whole bank is not erased, check sector-by-sector */
2115 int i;
2116 for (i = 0; i < bank->num_sectors; i++) {
2117 /* normal margin */
2118 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
2119 kinfo->prog_base + bank->sectors[i].offset,
2120 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2122 if (result == ERROR_OK) {
2123 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2124 } else {
2125 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
2126 bank->sectors[i].is_erased = -1;
2129 } else {
2130 /* the whole bank is erased, update all sectors */
2131 int i;
2132 for (i = 0; i < bank->num_sectors; i++)
2133 bank->sectors[i].is_erased = 1;
2135 } else {
2136 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2137 return ERROR_FLASH_OPERATION_FAILED;
2140 return ERROR_OK;
2144 COMMAND_HANDLER(kinetis_nvm_partition)
2146 int result, i;
2147 unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2148 enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2149 bool enable;
2150 uint8_t load_flex_ram = 1;
2151 uint8_t ee_size_code = 0x3f;
2152 uint8_t flex_nvm_partition_code = 0;
2153 uint8_t ee_split = 3;
2154 struct target *target = get_current_target(CMD_CTX);
2155 struct flash_bank *bank;
2156 struct kinetis_flash_bank *kinfo;
2157 uint32_t sim_fcfg1;
2159 if (CMD_ARGC >= 2) {
2160 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2161 sz_type = DF_SIZE;
2162 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2163 sz_type = EEBKP_SIZE;
2165 par = strtoul(CMD_ARGV[1], NULL, 10);
2166 while (par >> (log2 + 3))
2167 log2++;
2169 switch (sz_type) {
2170 case SHOW_INFO:
2171 result = target_read_u32(target, SIM_FCFG1, &sim_fcfg1);
2172 if (result != ERROR_OK)
2173 return result;
2175 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2176 switch (flex_nvm_partition_code) {
2177 case 0:
2178 command_print(CMD_CTX, "No EEPROM backup, data flash only");
2179 break;
2180 case 1:
2181 case 2:
2182 case 3:
2183 case 4:
2184 case 5:
2185 case 6:
2186 command_print(CMD_CTX, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2187 break;
2188 case 8:
2189 command_print(CMD_CTX, "No data flash, EEPROM backup only");
2190 break;
2191 case 0x9:
2192 case 0xA:
2193 case 0xB:
2194 case 0xC:
2195 case 0xD:
2196 case 0xE:
2197 command_print(CMD_CTX, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2198 break;
2199 case 0xf:
2200 command_print(CMD_CTX, "No EEPROM backup, data flash only (DEPART not set)");
2201 break;
2202 default:
2203 command_print(CMD_CTX, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2205 return ERROR_OK;
2207 case DF_SIZE:
2208 flex_nvm_partition_code = 0x8 | log2;
2209 break;
2211 case EEBKP_SIZE:
2212 flex_nvm_partition_code = log2;
2213 break;
2216 if (CMD_ARGC == 3)
2217 ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
2218 else if (CMD_ARGC >= 4) {
2219 ee1 = strtoul(CMD_ARGV[2], NULL, 10);
2220 ee2 = strtoul(CMD_ARGV[3], NULL, 10);
2223 enable = ee1 + ee2 > 0;
2224 if (enable) {
2225 for (log2 = 2; ; log2++) {
2226 if (ee1 + ee2 == (16u << 10) >> log2)
2227 break;
2228 if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2229 LOG_ERROR("Unsupported EEPROM size");
2230 return ERROR_FLASH_OPERATION_FAILED;
2234 if (ee1 * 3 == ee2)
2235 ee_split = 1;
2236 else if (ee1 * 7 == ee2)
2237 ee_split = 0;
2238 else if (ee1 != ee2) {
2239 LOG_ERROR("Unsupported EEPROM sizes ratio");
2240 return ERROR_FLASH_OPERATION_FAILED;
2243 ee_size_code = log2 | ee_split << 4;
2246 if (CMD_ARGC >= 5)
2247 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
2248 if (enable)
2249 load_flex_ram = 0;
2251 LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
2252 flex_nvm_partition_code, ee_size_code);
2254 result = kinetis_check_run_mode(target);
2255 if (result != ERROR_OK)
2256 return result;
2258 /* reset error flags */
2259 result = kinetis_ftfx_prepare(target);
2260 if (result != ERROR_OK)
2261 return result;
2263 result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
2264 ee_size_code, flex_nvm_partition_code, 0, 0,
2265 0, 0, 0, 0, NULL);
2266 if (result != ERROR_OK)
2267 return result;
2269 command_print(CMD_CTX, "FlexNVM partition set. Please reset MCU.");
2271 for (i = 1; i < 4; i++) {
2272 bank = get_flash_bank_by_num_noprobe(i);
2273 if (bank == NULL)
2274 break;
2276 kinfo = bank->driver_priv;
2277 if (kinfo && kinfo->flash_class == FC_FLEX_NVM)
2278 kinfo->probed = false; /* re-probe before next use */
2281 command_print(CMD_CTX, "FlexNVM banks will be re-probed to set new data flash size.");
2282 return ERROR_OK;
2285 COMMAND_HANDLER(kinetis_fcf_source_handler)
2287 if (CMD_ARGC > 1)
2288 return ERROR_COMMAND_SYNTAX_ERROR;
2290 if (CMD_ARGC == 1) {
2291 if (strcmp(CMD_ARGV[0], "write") == 0)
2292 allow_fcf_writes = true;
2293 else if (strcmp(CMD_ARGV[0], "protection") == 0)
2294 allow_fcf_writes = false;
2295 else
2296 return ERROR_COMMAND_SYNTAX_ERROR;
2299 if (allow_fcf_writes) {
2300 command_print(CMD_CTX, "Arbitrary Flash Configuration Field writes enabled.");
2301 command_print(CMD_CTX, "Protection info writes to FCF disabled.");
2302 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
2303 } else {
2304 command_print(CMD_CTX, "Protection info writes to Flash Configuration Field enabled.");
2305 command_print(CMD_CTX, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
2308 return ERROR_OK;
2311 COMMAND_HANDLER(kinetis_fopt_handler)
2313 if (CMD_ARGC > 1)
2314 return ERROR_COMMAND_SYNTAX_ERROR;
2316 if (CMD_ARGC == 1)
2317 fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0);
2318 else
2319 command_print(CMD_CTX, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
2321 return ERROR_OK;
2325 static const struct command_registration kinetis_security_command_handlers[] = {
2327 .name = "check_security",
2328 .mode = COMMAND_EXEC,
2329 .help = "Check status of device security lock",
2330 .usage = "",
2331 .handler = kinetis_check_flash_security_status,
2334 .name = "halt",
2335 .mode = COMMAND_EXEC,
2336 .help = "Issue a halt via the MDM-AP",
2337 .usage = "",
2338 .handler = kinetis_mdm_halt,
2341 .name = "mass_erase",
2342 .mode = COMMAND_EXEC,
2343 .help = "Issue a complete flash erase via the MDM-AP",
2344 .usage = "",
2345 .handler = kinetis_mdm_mass_erase,
2347 { .name = "reset",
2348 .mode = COMMAND_EXEC,
2349 .help = "Issue a reset via the MDM-AP",
2350 .usage = "",
2351 .handler = kinetis_mdm_reset,
2353 COMMAND_REGISTRATION_DONE
2356 static const struct command_registration kinetis_exec_command_handlers[] = {
2358 .name = "mdm",
2359 .mode = COMMAND_ANY,
2360 .help = "MDM-AP command group",
2361 .usage = "",
2362 .chain = kinetis_security_command_handlers,
2365 .name = "disable_wdog",
2366 .mode = COMMAND_EXEC,
2367 .help = "Disable the watchdog timer",
2368 .usage = "",
2369 .handler = kinetis_disable_wdog_handler,
2372 .name = "nvm_partition",
2373 .mode = COMMAND_EXEC,
2374 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
2375 " set two EEPROM sizes in bytes and FlexRAM loading during reset",
2376 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
2377 .handler = kinetis_nvm_partition,
2380 .name = "fcf_source",
2381 .mode = COMMAND_EXEC,
2382 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
2383 " Mode 'protection' is safe from unwanted locking of the device.",
2384 .usage = "['protection'|'write']",
2385 .handler = kinetis_fcf_source_handler,
2388 .name = "fopt",
2389 .mode = COMMAND_EXEC,
2390 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
2391 .usage = "[num]",
2392 .handler = kinetis_fopt_handler,
2394 COMMAND_REGISTRATION_DONE
2397 static const struct command_registration kinetis_command_handler[] = {
2399 .name = "kinetis",
2400 .mode = COMMAND_ANY,
2401 .help = "Kinetis flash controller commands",
2402 .usage = "",
2403 .chain = kinetis_exec_command_handlers,
2405 COMMAND_REGISTRATION_DONE
2410 struct flash_driver kinetis_flash = {
2411 .name = "kinetis",
2412 .commands = kinetis_command_handler,
2413 .flash_bank_command = kinetis_flash_bank_command,
2414 .erase = kinetis_erase,
2415 .protect = kinetis_protect,
2416 .write = kinetis_write,
2417 .read = default_flash_read,
2418 .probe = kinetis_probe,
2419 .auto_probe = kinetis_auto_probe,
2420 .erase_check = kinetis_blank_check,
2421 .protect_check = kinetis_protect_check,
2422 .info = kinetis_info,