ipdbg: fix double free of virtual-ir data
[openocd.git] / src / flash / nor / kinetis.c
blobe8074e35bbffa9873f788ff11195876047256d1d
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2011 by Mathias Kuester *
5 * kesmtp@freenet.de *
6 * *
7 * Copyright (C) 2011 sleep(5) ltd *
8 * tomas@sleepfive.com *
9 * *
10 * Copyright (C) 2012 by Christopher D. Kilgour *
11 * techie at whiterocker.com *
12 * *
13 * Copyright (C) 2013 Nemui Trinomius *
14 * nemuisan_kawausogasuki@live.jp *
15 * *
16 * Copyright (C) 2015 Tomas Vanek *
17 * vanekt@fbl.cz *
18 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "jtag/interface.h"
25 #include "imp.h"
26 #include <helper/binarybuffer.h>
27 #include <helper/time_support.h>
28 #include <target/target_type.h>
29 #include <target/algorithm.h>
30 #include <target/arm_adi_v5.h>
31 #include <target/armv7m.h>
32 #include <target/cortex_m.h>
35 * Implementation Notes
37 * The persistent memories in the Kinetis chip families K10 through
38 * K70 are all manipulated with the Flash Memory Module. Some
39 * variants call this module the FTFE, others call it the FTFL. To
40 * indicate that both are considered here, we use FTFX.
42 * Within the module, according to the chip variant, the persistent
43 * memory is divided into what Freescale terms Program Flash, FlexNVM,
44 * and FlexRAM. All chip variants have Program Flash. Some chip
45 * variants also have FlexNVM and FlexRAM, which always appear
46 * together.
48 * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
49 * each block to a separate bank. Each block size varies by chip and
50 * may be determined by the read-only SIM_FCFG1 register. The sector
51 * size within each bank/block varies by chip, and may be 1, 2 or 4k.
52 * The sector size may be different for flash and FlexNVM.
54 * The first half of the flash (1 or 2 blocks) is always Program Flash
55 * and always starts at address 0x00000000. The "PFLSH" flag, bit 23
56 * of the read-only SIM_FCFG2 register, determines whether the second
57 * half of the flash is also Program Flash or FlexNVM+FlexRAM. When
58 * PFLSH is set, the second from the first half. When PFLSH is clear,
59 * the second half of flash is FlexNVM and always starts at address
60 * 0x10000000. FlexRAM, which is also present when PFLSH is clear,
61 * always starts at address 0x14000000.
63 * The Flash Memory Module provides a register set where flash
64 * commands are loaded to perform flash operations like erase and
65 * program. Different commands are available depending on whether
66 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
67 * the commands used are quite consistent between flash blocks, the
68 * parameters they accept differ according to the flash sector size.
72 /* Addresses */
73 #define FCF_ADDRESS 0x00000400
74 #define FCF_FPROT 0x8
75 #define FCF_FSEC 0xc
76 #define FCF_FOPT 0xd
77 #define FCF_FDPROT 0xf
78 #define FCF_SIZE 0x10
80 #define FLEXRAM 0x14000000
82 #define MSCM_OCMDR0 0x40001400
83 #define MSCM_OCMDR1 0x40001404
84 #define FMC_PFB01CR 0x4001f004
85 #define FTFX_FSTAT 0x40020000
86 #define FTFX_FCNFG 0x40020001
87 #define FTFX_FCCOB3 0x40020004
88 #define FTFX_FPROT3 0x40020010
89 #define FTFX_FDPROT 0x40020017
90 #define SIM_BASE 0x40047000
91 #define SIM_BASE_KL28 0x40074000
92 #define SIM_COPC 0x40048100
93 /* SIM_COPC does not exist on devices with changed SIM_BASE */
94 #define WDOG_BASE 0x40052000
95 #define WDOG32_KE1X 0x40052000
96 #define WDOG32_KL28 0x40076000
97 #define SMC_PMCTRL 0x4007E001
98 #define SMC_PMSTAT 0x4007E003
99 #define SMC32_PMCTRL 0x4007E00C
100 #define SMC32_PMSTAT 0x4007E014
101 #define PMC_REGSC 0x4007D002
102 #define MC_PMCTRL 0x4007E003
103 #define MCM_PLACR 0xF000300C
105 /* Offsets */
106 #define SIM_SOPT1_OFFSET 0x0000
107 #define SIM_SDID_OFFSET 0x1024
108 #define SIM_FCFG1_OFFSET 0x104c
109 #define SIM_FCFG2_OFFSET 0x1050
111 #define WDOG_STCTRLH_OFFSET 0
112 #define WDOG32_CS_OFFSET 0
114 /* Values */
115 #define PM_STAT_RUN 0x01
116 #define PM_STAT_VLPR 0x04
117 #define PM_CTRL_RUNM_RUN 0x00
119 /* Commands */
120 #define FTFX_CMD_BLOCKSTAT 0x00
121 #define FTFX_CMD_SECTSTAT 0x01
122 #define FTFX_CMD_LWORDPROG 0x06
123 #define FTFX_CMD_SECTERASE 0x09
124 #define FTFX_CMD_SECTWRITE 0x0b
125 #define FTFX_CMD_MASSERASE 0x44
126 #define FTFX_CMD_PGMPART 0x80
127 #define FTFX_CMD_SETFLEXRAM 0x81
129 /* The older Kinetis K series uses the following SDID layout :
130 * Bit 31-16 : 0
131 * Bit 15-12 : REVID
132 * Bit 11-7 : DIEID
133 * Bit 6-4 : FAMID
134 * Bit 3-0 : PINID
136 * The newer Kinetis series uses the following SDID layout :
137 * Bit 31-28 : FAMID
138 * Bit 27-24 : SUBFAMID
139 * Bit 23-20 : SERIESID
140 * Bit 19-16 : SRAMSIZE
141 * Bit 15-12 : REVID
142 * Bit 6-4 : Reserved (0)
143 * Bit 3-0 : PINID
145 * We assume that if bits 31-16 are 0 then it's an older
146 * K-series MCU.
149 #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
150 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
152 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
154 #define KINETIS_SDID_DIEID_MASK 0x00000F80
156 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
157 #define KINETIS_SDID_DIEID_K22FN256 0x00000A80
158 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80
159 #define KINETIS_SDID_DIEID_K24FN256 0x00000700
161 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
163 /* We can't rely solely on the FAMID field to determine the MCU
164 * type since some FAMID values identify multiple MCUs with
165 * different flash sector sizes (K20 and K22 for instance).
166 * Therefore we combine it with the DIEID bits which may possibly
167 * break if Freescale bumps the DIEID for a particular MCU. */
168 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
169 #define KINETIS_K_SDID_K10_M50 0x00000000
170 #define KINETIS_K_SDID_K10_M72 0x00000080
171 #define KINETIS_K_SDID_K10_M100 0x00000100
172 #define KINETIS_K_SDID_K10_M120 0x00000180
173 #define KINETIS_K_SDID_K11 0x00000220
174 #define KINETIS_K_SDID_K12 0x00000200
175 #define KINETIS_K_SDID_K20_M50 0x00000010
176 #define KINETIS_K_SDID_K20_M72 0x00000090
177 #define KINETIS_K_SDID_K20_M100 0x00000110
178 #define KINETIS_K_SDID_K20_M120 0x00000190
179 #define KINETIS_K_SDID_K21_M50 0x00000230
180 #define KINETIS_K_SDID_K21_M120 0x00000330
181 #define KINETIS_K_SDID_K22_M50 0x00000210
182 #define KINETIS_K_SDID_K22_M120 0x00000310
183 #define KINETIS_K_SDID_K30_M72 0x000000A0
184 #define KINETIS_K_SDID_K30_M100 0x00000120
185 #define KINETIS_K_SDID_K40_M72 0x000000B0
186 #define KINETIS_K_SDID_K40_M100 0x00000130
187 #define KINETIS_K_SDID_K50_M72 0x000000E0
188 #define KINETIS_K_SDID_K51_M72 0x000000F0
189 #define KINETIS_K_SDID_K53 0x00000170
190 #define KINETIS_K_SDID_K60_M100 0x00000140
191 #define KINETIS_K_SDID_K60_M150 0x000001C0
192 #define KINETIS_K_SDID_K70_M150 0x000001D0
194 #define KINETIS_K_REVID_MASK 0x0000F000
195 #define KINETIS_K_REVID_SHIFT 12
197 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
198 #define KINETIS_SDID_SERIESID_K 0x00000000
199 #define KINETIS_SDID_SERIESID_KL 0x00100000
200 #define KINETIS_SDID_SERIESID_KE 0x00200000
201 #define KINETIS_SDID_SERIESID_KW 0x00500000
202 #define KINETIS_SDID_SERIESID_KV 0x00600000
204 #define KINETIS_SDID_SUBFAMID_SHIFT 24
205 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
206 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000
207 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000
208 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000
209 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000
210 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000
211 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000
212 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000
213 #define KINETIS_SDID_SUBFAMID_KX7 0x07000000
214 #define KINETIS_SDID_SUBFAMID_KX8 0x08000000
216 #define KINETIS_SDID_FAMILYID_SHIFT 28
217 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000
218 #define KINETIS_SDID_FAMILYID_K0X 0x00000000
219 #define KINETIS_SDID_FAMILYID_K1X 0x10000000
220 #define KINETIS_SDID_FAMILYID_K2X 0x20000000
221 #define KINETIS_SDID_FAMILYID_K3X 0x30000000
222 #define KINETIS_SDID_FAMILYID_K4X 0x40000000
223 #define KINETIS_SDID_FAMILYID_K5X 0x50000000
224 #define KINETIS_SDID_FAMILYID_K6X 0x60000000
225 #define KINETIS_SDID_FAMILYID_K7X 0x70000000
226 #define KINETIS_SDID_FAMILYID_K8X 0x80000000
227 #define KINETIS_SDID_FAMILYID_KL8X 0x90000000
229 /* The field originally named DIEID has new name/meaning on KE1x */
230 #define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK
231 #define KINETIS_SDID_PROJECTID_KE1XF 0x00000080
232 #define KINETIS_SDID_PROJECTID_KE1XZ 0x00000100
234 /* The S32K series uses a different, incompatible SDID layout :
235 * Bit 31-28 : GENERATION
236 * Bit 27-24 : SUBSERIES
237 * Bit 23-20 : DERIVATE
238 * Bit 19-16 : RAMSIZE
239 * Bit 15-12 : REVID
240 * Bit 11-8 : PACKAGE
241 * Bit 7-0 : FEATURES
244 #define KINETIS_SDID_S32K_SERIES_MASK 0xFF000000 /* GENERATION + SUBSERIES */
245 #define KINETIS_SDID_S32K_SERIES_K11X 0x11000000
246 #define KINETIS_SDID_S32K_SERIES_K14X 0x14000000
248 #define KINETIS_SDID_S32K_DERIVATE_MASK 0x00F00000
249 #define KINETIS_SDID_S32K_DERIVATE_KXX2 0x00200000
250 #define KINETIS_SDID_S32K_DERIVATE_KXX3 0x00300000
251 #define KINETIS_SDID_S32K_DERIVATE_KXX4 0x00400000
252 #define KINETIS_SDID_S32K_DERIVATE_KXX5 0x00500000
253 #define KINETIS_SDID_S32K_DERIVATE_KXX6 0x00600000
254 #define KINETIS_SDID_S32K_DERIVATE_KXX8 0x00800000
256 struct kinetis_flash_bank {
257 struct kinetis_chip *k_chip;
258 bool probed;
259 unsigned bank_number; /* bank number in particular chip */
260 struct flash_bank *bank;
262 uint32_t sector_size;
263 uint32_t protection_size;
264 uint32_t prog_base; /* base address for FTFx operations */
265 /* usually same as bank->base for pflash, differs for FlexNVM */
266 uint32_t protection_block; /* number of first protection block in this bank */
268 enum {
269 FC_AUTO = 0,
270 FC_PFLASH,
271 FC_FLEX_NVM,
272 FC_FLEX_RAM,
273 } flash_class;
276 #define KINETIS_MAX_BANKS 4u
278 struct kinetis_chip {
279 struct target *target;
280 bool probed;
282 uint32_t sim_sdid;
283 uint32_t sim_fcfg1;
284 uint32_t sim_fcfg2;
285 uint32_t fcfg2_maxaddr0_shifted;
286 uint32_t fcfg2_maxaddr1_shifted;
288 unsigned num_pflash_blocks, num_nvm_blocks;
289 unsigned pflash_sector_size, nvm_sector_size;
290 unsigned max_flash_prog_size;
292 uint32_t pflash_base;
293 uint32_t pflash_size;
294 uint32_t nvm_base;
295 uint32_t nvm_size; /* whole FlexNVM */
296 uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
298 uint32_t progr_accel_ram;
299 uint32_t sim_base;
301 enum {
302 CT_KINETIS = 0,
303 CT_S32K,
304 } chip_type;
306 enum {
307 FS_PROGRAM_SECTOR = 1,
308 FS_PROGRAM_LONGWORD = 2,
309 FS_PROGRAM_PHRASE = 4, /* Unsupported */
311 FS_NO_CMD_BLOCKSTAT = 0x40,
312 FS_WIDTH_256BIT = 0x80,
313 FS_ECC = 0x100,
314 } flash_support;
316 enum {
317 KINETIS_CACHE_NONE,
318 KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */
319 KINETIS_CACHE_L, /* invalidate using MCM->PLACR */
320 KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */
321 KINETIS_CACHE_MSCM2, /* devices like S32K, invalidate MSCM->OCMDR0 and MSCM->OCMDR1 */
322 } cache_type;
324 enum {
325 KINETIS_WDOG_NONE,
326 KINETIS_WDOG_K,
327 KINETIS_WDOG_COP,
328 KINETIS_WDOG32_KE1X,
329 KINETIS_WDOG32_KL28,
330 } watchdog_type;
332 enum {
333 KINETIS_SMC,
334 KINETIS_SMC32,
335 KINETIS_MC,
336 } sysmodectrlr_type;
338 char name[40];
340 unsigned num_banks;
341 struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
344 struct kinetis_type {
345 uint32_t sdid;
346 char *name;
349 static const struct kinetis_type kinetis_types_old[] = {
350 { KINETIS_K_SDID_K10_M50, "MK10D%s5" },
351 { KINETIS_K_SDID_K10_M72, "MK10D%s7" },
352 { KINETIS_K_SDID_K10_M100, "MK10D%s10" },
353 { KINETIS_K_SDID_K10_M120, "MK10F%s12" },
354 { KINETIS_K_SDID_K11, "MK11D%s5" },
355 { KINETIS_K_SDID_K12, "MK12D%s5" },
357 { KINETIS_K_SDID_K20_M50, "MK20D%s5" },
358 { KINETIS_K_SDID_K20_M72, "MK20D%s7" },
359 { KINETIS_K_SDID_K20_M100, "MK20D%s10" },
360 { KINETIS_K_SDID_K20_M120, "MK20F%s12" },
361 { KINETIS_K_SDID_K21_M50, "MK21D%s5" },
362 { KINETIS_K_SDID_K21_M120, "MK21F%s12" },
363 { KINETIS_K_SDID_K22_M50, "MK22D%s5" },
364 { KINETIS_K_SDID_K22_M120, "MK22F%s12" },
366 { KINETIS_K_SDID_K30_M72, "MK30D%s7" },
367 { KINETIS_K_SDID_K30_M100, "MK30D%s10" },
369 { KINETIS_K_SDID_K40_M72, "MK40D%s7" },
370 { KINETIS_K_SDID_K40_M100, "MK40D%s10" },
372 { KINETIS_K_SDID_K50_M72, "MK50D%s7" },
373 { KINETIS_K_SDID_K51_M72, "MK51D%s7" },
374 { KINETIS_K_SDID_K53, "MK53D%s10" },
376 { KINETIS_K_SDID_K60_M100, "MK60D%s10" },
377 { KINETIS_K_SDID_K60_M150, "MK60F%s15" },
379 { KINETIS_K_SDID_K70_M150, "MK70F%s15" },
383 #define MDM_AP 1
385 #define MDM_REG_STAT 0x00
386 #define MDM_REG_CTRL 0x04
387 #define MDM_REG_ID 0xfc
389 #define MDM_STAT_FMEACK (1<<0)
390 #define MDM_STAT_FREADY (1<<1)
391 #define MDM_STAT_SYSSEC (1<<2)
392 #define MDM_STAT_SYSRES (1<<3)
393 #define MDM_STAT_FMEEN (1<<5)
394 #define MDM_STAT_BACKDOOREN (1<<6)
395 #define MDM_STAT_LPEN (1<<7)
396 #define MDM_STAT_VLPEN (1<<8)
397 #define MDM_STAT_LLSMODEXIT (1<<9)
398 #define MDM_STAT_VLLSXMODEXIT (1<<10)
399 #define MDM_STAT_CORE_HALTED (1<<16)
400 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
401 #define MDM_STAT_CORESLEEPING (1<<18)
403 #define MDM_CTRL_FMEIP (1<<0)
404 #define MDM_CTRL_DBG_DIS (1<<1)
405 #define MDM_CTRL_DBG_REQ (1<<2)
406 #define MDM_CTRL_SYS_RES_REQ (1<<3)
407 #define MDM_CTRL_CORE_HOLD_RES (1<<4)
408 #define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
409 #define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
410 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
412 #define MDM_ACCESS_TIMEOUT 500 /* msec */
415 static bool allow_fcf_writes;
416 static uint8_t fcf_fopt = 0xff;
417 static bool create_banks;
420 const struct flash_driver kinetis_flash;
421 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
422 uint32_t offset, uint32_t count);
423 static int kinetis_probe_chip(struct kinetis_chip *k_chip);
424 static int kinetis_probe_chip_s32k(struct kinetis_chip *k_chip);
425 static int kinetis_auto_probe(struct flash_bank *bank);
428 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
430 LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
432 struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
433 if (!ap) {
434 LOG_DEBUG("MDM: failed to get AP");
435 return ERROR_FAIL;
438 int retval = dap_queue_ap_write(ap, reg, value);
439 if (retval != ERROR_OK) {
440 LOG_DEBUG("MDM: failed to queue a write request");
441 dap_put_ap(ap);
442 return retval;
445 retval = dap_run(dap);
446 dap_put_ap(ap);
447 if (retval != ERROR_OK) {
448 LOG_DEBUG("MDM: dap_run failed");
449 return retval;
453 return ERROR_OK;
456 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
458 struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
459 if (!ap) {
460 LOG_DEBUG("MDM: failed to get AP");
461 return ERROR_FAIL;
464 int retval = dap_queue_ap_read(ap, reg, result);
465 if (retval != ERROR_OK) {
466 LOG_DEBUG("MDM: failed to queue a read request");
467 dap_put_ap(ap);
468 return retval;
471 retval = dap_run(dap);
472 dap_put_ap(ap);
473 if (retval != ERROR_OK) {
474 LOG_DEBUG("MDM: dap_run failed");
475 return retval;
478 LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
479 return ERROR_OK;
482 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
483 uint32_t mask, uint32_t value, uint32_t timeout_ms)
485 uint32_t val;
486 int retval;
487 int64_t ms_timeout = timeval_ms() + timeout_ms;
489 do {
490 retval = kinetis_mdm_read_register(dap, reg, &val);
491 if (retval != ERROR_OK || (val & mask) == value)
492 return retval;
494 alive_sleep(1);
495 } while (timeval_ms() < ms_timeout);
497 LOG_DEBUG("MDM: polling timed out");
498 return ERROR_FAIL;
502 * This command can be used to break a watchdog reset loop when
503 * connecting to an unsecured target. Unlike other commands, halt will
504 * automatically retry as it does not know how far into the boot process
505 * it is when the command is called.
507 COMMAND_HANDLER(kinetis_mdm_halt)
509 struct target *target = get_current_target(CMD_CTX);
510 struct cortex_m_common *cortex_m = target_to_cm(target);
511 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
512 int retval;
513 int tries = 0;
514 uint32_t stat;
515 int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
517 if (!dap) {
518 LOG_ERROR("Cannot perform halt with a high-level adapter");
519 return ERROR_FAIL;
522 while (true) {
523 tries++;
525 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
527 alive_sleep(1);
529 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
530 if (retval != ERROR_OK) {
531 LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
532 continue;
535 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
536 * reset with flash ready and without security
538 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
539 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
540 break;
542 if (timeval_ms() >= ms_timeout) {
543 LOG_ERROR("MDM: halt timed out");
544 return ERROR_FAIL;
548 LOG_DEBUG("MDM: halt succeeded after %d attempts.", tries);
550 target_poll(target);
551 /* enable polling in case kinetis_check_flash_security_status disabled it */
552 jtag_poll_set_enabled(true);
554 alive_sleep(100);
556 target->reset_halt = true;
557 target->type->assert_reset(target);
559 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
560 if (retval != ERROR_OK) {
561 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
562 return retval;
565 target->type->deassert_reset(target);
567 return ERROR_OK;
570 COMMAND_HANDLER(kinetis_mdm_reset)
572 struct target *target = get_current_target(CMD_CTX);
573 struct cortex_m_common *cortex_m = target_to_cm(target);
574 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
575 int retval;
577 if (!dap) {
578 LOG_ERROR("Cannot perform reset with a high-level adapter");
579 return ERROR_FAIL;
582 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
583 if (retval != ERROR_OK) {
584 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
585 return retval;
588 retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
589 if (retval != ERROR_OK) {
590 LOG_ERROR("MDM: failed to assert reset");
591 return retval;
594 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
595 if (retval != ERROR_OK) {
596 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
597 return retval;
600 return ERROR_OK;
604 * This function implements the procedure to mass erase the flash via
605 * SWD/JTAG on Kinetis K and L series of devices as it is described in
606 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
607 * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
608 * the core remains halted after this function completes as suggested
609 * by the application note.
611 COMMAND_HANDLER(kinetis_mdm_mass_erase)
613 struct target *target = get_current_target(CMD_CTX);
614 struct cortex_m_common *cortex_m = target_to_cm(target);
615 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
617 if (!dap) {
618 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
619 return ERROR_FAIL;
622 int retval;
625 * ... Power on the processor, or if power has already been
626 * applied, assert the RESET pin to reset the processor. For
627 * devices that do not have a RESET pin, write the System
628 * Reset Request bit in the MDM-AP control register after
629 * establishing communication...
632 /* assert SRST if configured */
633 bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
634 if (has_srst)
635 adapter_assert_reset();
637 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
638 if (retval != ERROR_OK && !has_srst) {
639 LOG_ERROR("MDM: failed to assert reset");
640 goto deassert_reset_and_exit;
644 * ... Read the MDM-AP status register repeatedly and wait for
645 * stable conditions suitable for mass erase:
646 * - mass erase is enabled
647 * - flash is ready
648 * - reset is finished
650 * Mass erase is started as soon as all conditions are met in 32
651 * subsequent status reads.
653 * In case of not stable conditions (RESET/WDOG loop in secured device)
654 * the user is asked for manual pressing of RESET button
655 * as a last resort.
657 int cnt_mass_erase_disabled = 0;
658 int cnt_ready = 0;
659 int64_t ms_start = timeval_ms();
660 bool man_reset_requested = false;
662 do {
663 uint32_t stat = 0;
664 int64_t ms_elapsed = timeval_ms() - ms_start;
666 if (!man_reset_requested && ms_elapsed > 100) {
667 LOG_INFO("MDM: Press RESET button now if possible.");
668 man_reset_requested = true;
671 if (ms_elapsed > 3000) {
672 LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
673 LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
674 LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
675 goto deassert_reset_and_exit;
677 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
678 if (retval != ERROR_OK) {
679 cnt_ready = 0;
680 continue;
683 if (!(stat & MDM_STAT_FMEEN)) {
684 cnt_ready = 0;
685 cnt_mass_erase_disabled++;
686 if (cnt_mass_erase_disabled > 10) {
687 LOG_ERROR("MDM: mass erase is disabled");
688 goto deassert_reset_and_exit;
690 continue;
693 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
694 cnt_ready++;
695 else
696 cnt_ready = 0;
698 } while (cnt_ready < 32);
701 * ... Write the MDM-AP control register to set the Flash Mass
702 * Erase in Progress bit. This will start the mass erase
703 * process...
705 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
706 if (retval != ERROR_OK) {
707 LOG_ERROR("MDM: failed to start mass erase");
708 goto deassert_reset_and_exit;
712 * ... Read the MDM-AP control register until the Flash Mass
713 * Erase in Progress bit clears...
714 * Data sheed defines erase time <3.6 sec/512kB flash block.
715 * The biggest device has 4 pflash blocks => timeout 16 sec.
717 retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
718 if (retval != ERROR_OK) {
719 LOG_ERROR("MDM: mass erase timeout");
720 goto deassert_reset_and_exit;
723 target_poll(target);
724 /* enable polling in case kinetis_check_flash_security_status disabled it */
725 jtag_poll_set_enabled(true);
727 alive_sleep(100);
729 target->reset_halt = true;
730 target->type->assert_reset(target);
733 * ... Negate the RESET signal or clear the System Reset Request
734 * bit in the MDM-AP control register.
736 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
737 if (retval != ERROR_OK)
738 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
740 target->type->deassert_reset(target);
742 return retval;
744 deassert_reset_and_exit:
745 kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
746 if (has_srst)
747 adapter_deassert_reset();
748 return retval;
751 static const uint32_t kinetis_known_mdm_ids[] = {
752 0x001C0000, /* Kinetis-K Series */
753 0x001C0020, /* Kinetis-L/M/V/E Series */
754 0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */
758 * This function implements the procedure to connect to
759 * SWD/JTAG on Kinetis K and L series of devices as it is described in
760 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
761 * and L-series MCUs" Section 4.1.1
763 COMMAND_HANDLER(kinetis_check_flash_security_status)
765 struct target *target = get_current_target(CMD_CTX);
766 struct cortex_m_common *cortex_m = target_to_cm(target);
767 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
769 if (!dap) {
770 LOG_WARNING("Cannot check flash security status with a high-level adapter");
771 return ERROR_OK;
774 if (!dap->ops)
775 return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
777 uint32_t val;
778 int retval;
781 * ... The MDM-AP ID register can be read to verify that the
782 * connection is working correctly...
784 retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
785 if (retval != ERROR_OK) {
786 LOG_ERROR("MDM: failed to read ID register");
787 return ERROR_OK;
790 if (val == 0)
791 return ERROR_OK; /* dap not yet initialised */
793 bool found = false;
794 for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
795 if (val == kinetis_known_mdm_ids[i]) {
796 found = true;
797 break;
801 if (!found)
802 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
805 * ... Read the System Security bit to determine if security is enabled.
806 * If System Security = 0, then proceed. If System Security = 1, then
807 * communication with the internals of the processor, including the
808 * flash, will not be possible without issuing a mass erase command or
809 * unsecuring the part through other means (backdoor key unlock)...
811 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
812 if (retval != ERROR_OK) {
813 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
814 return ERROR_OK;
818 * System Security bit is also active for short time during reset.
819 * If a MCU has blank flash and runs in RESET/WDOG loop,
820 * System Security bit is active most of time!
821 * We should observe Flash Ready bit and read status several times
822 * to avoid false detection of secured MCU
824 int secured_score = 0, flash_not_ready_score = 0;
826 if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
827 uint32_t stats[32];
828 struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
829 if (!ap) {
830 LOG_ERROR("MDM: failed to get AP");
831 return ERROR_OK;
834 for (unsigned int i = 0; i < 32; i++) {
835 stats[i] = MDM_STAT_FREADY;
836 dap_queue_ap_read(ap, MDM_REG_STAT, &stats[i]);
838 retval = dap_run(dap);
839 dap_put_ap(ap);
840 if (retval != ERROR_OK) {
841 LOG_DEBUG("MDM: dap_run failed when validating secured state");
842 return ERROR_OK;
844 for (unsigned int i = 0; i < 32; i++) {
845 if (stats[i] & MDM_STAT_SYSSEC)
846 secured_score++;
847 if (!(stats[i] & MDM_STAT_FREADY))
848 flash_not_ready_score++;
852 if (flash_not_ready_score <= 8 && secured_score > 24) {
853 jtag_poll_set_enabled(false);
855 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
856 LOG_WARNING("**** ****");
857 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
858 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
859 LOG_WARNING("**** interface will NOT work. In order to restore its ****");
860 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
861 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
862 LOG_WARNING("**** ****");
863 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
865 } else if (flash_not_ready_score > 24) {
866 jtag_poll_set_enabled(false);
867 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
868 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
869 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
870 LOG_WARNING("**** and configured, use 'reset halt' ****");
871 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
872 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
874 } else {
875 LOG_INFO("MDM: Chip is unsecured. Continuing.");
876 jtag_poll_set_enabled(true);
879 return ERROR_OK;
883 static struct kinetis_chip *kinetis_get_chip(struct target *target)
885 struct flash_bank *bank_iter;
886 struct kinetis_flash_bank *k_bank;
888 /* iterate over all kinetis banks */
889 for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
890 if (bank_iter->driver != &kinetis_flash
891 || bank_iter->target != target)
892 continue;
894 k_bank = bank_iter->driver_priv;
895 if (!k_bank)
896 continue;
898 if (k_bank->k_chip)
899 return k_bank->k_chip;
901 return NULL;
904 static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
906 for (int i = 0; i < argc; i++) {
907 if (strcmp(argv[i], "-sim-base") == 0) {
908 if (i + 1 < argc)
909 k_chip->sim_base = strtoul(argv[++i], NULL, 0);
910 } else if (strcmp(argv[i], "-s32k") == 0) {
911 k_chip->chip_type = CT_S32K;
912 } else
913 LOG_ERROR("Unsupported flash bank option %s", argv[i]);
915 return ERROR_OK;
918 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
920 struct target *target = bank->target;
921 struct kinetis_chip *k_chip;
922 struct kinetis_flash_bank *k_bank;
923 int retval;
925 if (CMD_ARGC < 6)
926 return ERROR_COMMAND_SYNTAX_ERROR;
928 LOG_INFO("add flash_bank kinetis %s", bank->name);
930 k_chip = kinetis_get_chip(target);
932 if (!k_chip) {
933 k_chip = calloc(sizeof(struct kinetis_chip), 1);
934 if (!k_chip) {
935 LOG_ERROR("No memory");
936 return ERROR_FAIL;
939 k_chip->target = target;
941 /* only the first defined bank can define chip options */
942 retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
943 if (retval != ERROR_OK)
944 return retval;
947 if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
948 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
949 return ERROR_FAIL;
952 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
953 k_bank->k_chip = k_chip;
954 k_bank->bank_number = k_chip->num_banks;
955 k_bank->bank = bank;
956 k_chip->num_banks++;
958 return ERROR_OK;
962 static void kinetis_free_driver_priv(struct flash_bank *bank)
964 struct kinetis_flash_bank *k_bank = bank->driver_priv;
965 if (!k_bank)
966 return;
968 struct kinetis_chip *k_chip = k_bank->k_chip;
969 if (!k_chip)
970 return;
972 k_chip->num_banks--;
973 if (k_chip->num_banks == 0)
974 free(k_chip);
978 static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
980 unsigned num_blocks;
981 struct kinetis_flash_bank *k_bank;
982 struct flash_bank *bank;
983 char base_name[69], name[87], num[11];
984 char *class, *p;
986 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
987 if (num_blocks > KINETIS_MAX_BANKS) {
988 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
989 return ERROR_FAIL;
992 bank = k_chip->banks[0].bank;
993 if (bank && bank->name) {
994 strncpy(base_name, bank->name, sizeof(base_name) - 1);
995 base_name[sizeof(base_name) - 1] = '\0';
996 p = strstr(base_name, ".pflash");
997 if (p) {
998 *p = '\0';
999 if (k_chip->num_pflash_blocks > 1) {
1000 /* rename first bank if numbering is needed */
1001 snprintf(name, sizeof(name), "%s.pflash0", base_name);
1002 free(bank->name);
1003 bank->name = strdup(name);
1006 } else {
1007 strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
1008 base_name[sizeof(base_name) - 1] = '\0';
1009 p = strstr(base_name, ".cpu");
1010 if (p)
1011 *p = '\0';
1014 for (unsigned int bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
1015 k_bank = &(k_chip->banks[bank_idx]);
1016 bank = k_bank->bank;
1018 if (bank)
1019 continue;
1021 num[0] = '\0';
1023 if (bank_idx < k_chip->num_pflash_blocks) {
1024 class = "pflash";
1025 if (k_chip->num_pflash_blocks > 1)
1026 snprintf(num, sizeof(num), "%u", bank_idx);
1027 } else {
1028 class = "flexnvm";
1029 if (k_chip->num_nvm_blocks > 1)
1030 snprintf(num, sizeof(num), "%u",
1031 bank_idx - k_chip->num_pflash_blocks);
1034 bank = calloc(sizeof(struct flash_bank), 1);
1035 if (!bank)
1036 return ERROR_FAIL;
1038 bank->target = k_chip->target;
1039 bank->driver = &kinetis_flash;
1040 bank->default_padded_value = bank->erased_value = 0xff;
1042 snprintf(name, sizeof(name), "%s.%s%s",
1043 base_name, class, num);
1044 bank->name = strdup(name);
1046 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
1047 k_bank->k_chip = k_chip;
1048 k_bank->bank_number = bank_idx;
1049 k_bank->bank = bank;
1050 if (k_chip->num_banks <= bank_idx)
1051 k_chip->num_banks = bank_idx + 1;
1053 flash_bank_add(bank);
1055 return ERROR_OK;
1059 static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
1061 struct working_area *wdog_algorithm;
1062 struct armv7m_algorithm armv7m_info;
1063 struct reg_param reg_params[1];
1064 int retval;
1066 if (target->state != TARGET_HALTED) {
1067 LOG_ERROR("Target not halted");
1068 return ERROR_TARGET_NOT_HALTED;
1071 retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
1072 if (retval != ERROR_OK)
1073 return retval;
1075 retval = target_write_buffer(target, wdog_algorithm->address,
1076 code_size, code);
1077 if (retval == ERROR_OK) {
1078 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1079 armv7m_info.core_mode = ARM_MODE_THREAD;
1081 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1082 buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
1084 retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
1085 wdog_algorithm->address,
1086 wdog_algorithm->address + code_size - 2,
1087 500, &armv7m_info);
1089 destroy_reg_param(&reg_params[0]);
1091 if (retval != ERROR_OK)
1092 LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
1095 target_free_working_area(target, wdog_algorithm);
1097 return retval;
1100 /* Disable the watchdog on Kinetis devices
1101 * Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
1103 static int kinetis_disable_wdog_kx(struct target *target)
1105 const uint32_t wdog_base = WDOG_BASE;
1106 uint16_t wdog;
1107 int retval;
1109 static const uint8_t kinetis_unlock_wdog_code[] = {
1110 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
1113 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1114 if (retval != ERROR_OK)
1115 return retval;
1117 if ((wdog & 0x1) == 0) {
1118 /* watchdog already disabled */
1119 return ERROR_OK;
1121 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
1123 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1124 if (retval != ERROR_OK)
1125 return retval;
1127 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1128 if (retval != ERROR_OK)
1129 return retval;
1131 LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
1132 return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
1135 static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
1137 uint32_t wdog_cs;
1138 int retval;
1140 static const uint8_t kinetis_unlock_wdog_code[] = {
1141 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
1144 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1145 if (retval != ERROR_OK)
1146 return retval;
1148 if ((wdog_cs & 0x80) == 0)
1149 return ERROR_OK; /* watchdog already disabled */
1151 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
1153 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1154 if (retval != ERROR_OK)
1155 return retval;
1157 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1158 if (retval != ERROR_OK)
1159 return retval;
1161 if ((wdog_cs & 0x80) == 0)
1162 return ERROR_OK; /* watchdog disabled successfully */
1164 LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
1165 return ERROR_FAIL;
1168 static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
1170 struct target *target = k_chip->target;
1171 uint8_t sim_copc;
1172 int retval;
1174 if (!k_chip->probed) {
1175 switch (k_chip->chip_type) {
1176 case CT_S32K:
1177 retval = kinetis_probe_chip_s32k(k_chip);
1178 break;
1179 default:
1180 retval = kinetis_probe_chip(k_chip);
1182 if (retval != ERROR_OK)
1183 return retval;
1186 switch (k_chip->watchdog_type) {
1187 case KINETIS_WDOG_K:
1188 return kinetis_disable_wdog_kx(target);
1190 case KINETIS_WDOG_COP:
1191 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1192 if (retval != ERROR_OK)
1193 return retval;
1195 if ((sim_copc & 0xc) == 0)
1196 return ERROR_OK; /* watchdog already disabled */
1198 LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
1199 retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
1200 if (retval != ERROR_OK)
1201 return retval;
1203 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1204 if (retval != ERROR_OK)
1205 return retval;
1207 if ((sim_copc & 0xc) == 0)
1208 return ERROR_OK; /* watchdog disabled successfully */
1210 LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
1211 return ERROR_FAIL;
1213 case KINETIS_WDOG32_KE1X:
1214 return kinetis_disable_wdog32(target, WDOG32_KE1X);
1216 case KINETIS_WDOG32_KL28:
1217 return kinetis_disable_wdog32(target, WDOG32_KL28);
1219 default:
1220 return ERROR_OK;
1224 COMMAND_HANDLER(kinetis_disable_wdog_handler)
1226 int result;
1227 struct target *target = get_current_target(CMD_CTX);
1228 struct kinetis_chip *k_chip = kinetis_get_chip(target);
1230 if (!k_chip)
1231 return ERROR_FAIL;
1233 if (CMD_ARGC > 0)
1234 return ERROR_COMMAND_SYNTAX_ERROR;
1236 result = kinetis_disable_wdog(k_chip);
1237 return result;
1241 static int kinetis_ftfx_decode_error(uint8_t fstat)
1243 if (fstat & 0x20) {
1244 LOG_ERROR("Flash operation failed, illegal command");
1245 return ERROR_FLASH_OPER_UNSUPPORTED;
1247 } else if (fstat & 0x10)
1248 LOG_ERROR("Flash operation failed, protection violated");
1250 else if (fstat & 0x40)
1251 LOG_ERROR("Flash operation failed, read collision");
1253 else if (fstat & 0x80)
1254 return ERROR_OK;
1256 else
1257 LOG_ERROR("Flash operation timed out");
1259 return ERROR_FLASH_OPERATION_FAILED;
1262 static int kinetis_ftfx_clear_error(struct target *target)
1264 /* reset error flags */
1265 return target_write_u8(target, FTFX_FSTAT, 0x70);
1269 static int kinetis_ftfx_prepare(struct target *target)
1271 int result;
1272 uint8_t fstat;
1274 /* wait until busy */
1275 for (unsigned int i = 0; i < 50; i++) {
1276 result = target_read_u8(target, FTFX_FSTAT, &fstat);
1277 if (result != ERROR_OK)
1278 return result;
1280 if (fstat & 0x80)
1281 break;
1284 if ((fstat & 0x80) == 0) {
1285 LOG_ERROR("Flash controller is busy");
1286 return ERROR_FLASH_OPERATION_FAILED;
1288 if (fstat != 0x80) {
1289 /* reset error flags */
1290 result = kinetis_ftfx_clear_error(target);
1292 return result;
1295 /* Kinetis Program-LongWord Microcodes */
1296 static const uint8_t kinetis_flash_write_code[] = {
1297 #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
1300 /* Program LongWord Block Write */
1301 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
1302 uint32_t offset, uint32_t wcount)
1304 struct target *target = bank->target;
1305 uint32_t buffer_size;
1306 struct working_area *write_algorithm;
1307 struct working_area *source;
1308 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1309 uint32_t address = k_bank->prog_base + offset;
1310 uint32_t end_address;
1311 struct reg_param reg_params[5];
1312 struct armv7m_algorithm armv7m_info;
1313 int retval;
1314 uint8_t fstat;
1316 /* allocate working area with flash programming code */
1317 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
1318 &write_algorithm) != ERROR_OK) {
1319 LOG_WARNING("no working area available, can't do block memory writes");
1320 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1323 retval = target_write_buffer(target, write_algorithm->address,
1324 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
1325 if (retval != ERROR_OK)
1326 return retval;
1328 /* memory buffer, size *must* be multiple of word */
1329 buffer_size = target_get_working_area_avail(target) & ~(sizeof(uint32_t) - 1);
1330 if (buffer_size < 256) {
1331 LOG_WARNING("large enough working area not available, can't do block memory writes");
1332 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1333 } else if (buffer_size > 16384) {
1334 /* probably won't benefit from more than 16k ... */
1335 buffer_size = 16384;
1338 if (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
1339 LOG_ERROR("allocating working area failed");
1340 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1343 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1344 armv7m_info.core_mode = ARM_MODE_THREAD;
1346 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
1347 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
1348 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1349 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1350 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1352 buf_set_u32(reg_params[0].value, 0, 32, address);
1353 buf_set_u32(reg_params[1].value, 0, 32, wcount);
1354 buf_set_u32(reg_params[2].value, 0, 32, source->address);
1355 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
1356 buf_set_u32(reg_params[4].value, 0, 32, FTFX_FSTAT);
1358 retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
1359 0, NULL,
1360 5, reg_params,
1361 source->address, source->size,
1362 write_algorithm->address, 0,
1363 &armv7m_info);
1365 if (retval == ERROR_FLASH_OPERATION_FAILED) {
1366 end_address = buf_get_u32(reg_params[0].value, 0, 32);
1368 LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
1370 retval = target_read_u8(target, FTFX_FSTAT, &fstat);
1371 if (retval == ERROR_OK) {
1372 retval = kinetis_ftfx_decode_error(fstat);
1374 /* reset error flags */
1375 target_write_u8(target, FTFX_FSTAT, 0x70);
1377 } else if (retval != ERROR_OK)
1378 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1380 target_free_working_area(target, source);
1381 target_free_working_area(target, write_algorithm);
1383 destroy_reg_param(&reg_params[0]);
1384 destroy_reg_param(&reg_params[1]);
1385 destroy_reg_param(&reg_params[2]);
1386 destroy_reg_param(&reg_params[3]);
1387 destroy_reg_param(&reg_params[4]);
1389 return retval;
1392 static int kinetis_protect(struct flash_bank *bank, int set, unsigned int first,
1393 unsigned int last)
1395 if (allow_fcf_writes) {
1396 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1397 return ERROR_FAIL;
1400 if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1401 LOG_ERROR("No protection possible for current bank!");
1402 return ERROR_FLASH_BANK_INVALID;
1405 for (unsigned int i = first; i < bank->num_prot_blocks && i <= last; i++)
1406 bank->prot_blocks[i].is_protected = set;
1408 LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1409 LOG_INFO("Do not issue 'flash info' command until protection is written,");
1410 LOG_INFO("doing so would re-read protection status from MCU.");
1412 return ERROR_OK;
1415 static int kinetis_protect_check(struct flash_bank *bank)
1417 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1418 int result;
1419 int b;
1420 uint32_t fprot;
1422 if (k_bank->flash_class == FC_PFLASH) {
1424 /* read protection register */
1425 result = target_read_u32(bank->target, FTFX_FPROT3, &fprot);
1426 if (result != ERROR_OK)
1427 return result;
1429 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1431 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1432 uint8_t fdprot;
1434 /* read protection register */
1435 result = target_read_u8(bank->target, FTFX_FDPROT, &fdprot);
1436 if (result != ERROR_OK)
1437 return result;
1439 fprot = fdprot;
1441 } else {
1442 LOG_ERROR("Protection checks for FlexRAM not supported");
1443 return ERROR_FLASH_BANK_INVALID;
1446 b = k_bank->protection_block;
1447 for (unsigned int i = 0; i < bank->num_prot_blocks; i++) {
1448 if ((fprot >> b) & 1)
1449 bank->prot_blocks[i].is_protected = 0;
1450 else
1451 bank->prot_blocks[i].is_protected = 1;
1453 b++;
1456 return ERROR_OK;
1460 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1462 uint32_t fprot = 0xffffffff;
1463 uint8_t fsec = 0xfe; /* set MCU unsecure */
1464 uint8_t fdprot = 0xff;
1465 unsigned num_blocks;
1466 uint32_t pflash_bit;
1467 uint8_t dflash_bit;
1468 struct flash_bank *bank_iter;
1469 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1470 struct kinetis_chip *k_chip = k_bank->k_chip;
1472 memset(fcf, 0xff, FCF_SIZE);
1474 pflash_bit = 1;
1475 dflash_bit = 1;
1477 /* iterate over all kinetis banks */
1478 /* current bank is bank 0, it contains FCF */
1479 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
1480 for (unsigned int bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
1481 k_bank = &(k_chip->banks[bank_idx]);
1482 bank_iter = k_bank->bank;
1484 if (!bank_iter) {
1485 LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplete", bank_idx);
1486 continue;
1489 kinetis_auto_probe(bank_iter);
1491 assert(bank_iter->prot_blocks);
1493 if (k_bank->flash_class == FC_PFLASH) {
1494 for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1495 if (bank_iter->prot_blocks[i].is_protected == 1)
1496 fprot &= ~pflash_bit;
1498 pflash_bit <<= 1;
1501 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1502 for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1503 if (bank_iter->prot_blocks[i].is_protected == 1)
1504 fdprot &= ~dflash_bit;
1506 dflash_bit <<= 1;
1512 target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1513 fcf[FCF_FSEC] = fsec;
1514 fcf[FCF_FOPT] = fcf_fopt;
1515 fcf[FCF_FDPROT] = fdprot;
1516 return ERROR_OK;
1519 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1520 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1521 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1522 uint8_t *ftfx_fstat)
1524 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1525 fccob7, fccob6, fccob5, fccob4,
1526 fccobb, fccoba, fccob9, fccob8};
1527 int result;
1528 uint8_t fstat;
1529 int64_t ms_timeout = timeval_ms() + 250;
1531 result = target_write_memory(target, FTFX_FCCOB3, 4, 3, command);
1532 if (result != ERROR_OK)
1533 return result;
1535 /* start command */
1536 result = target_write_u8(target, FTFX_FSTAT, 0x80);
1537 if (result != ERROR_OK)
1538 return result;
1540 /* wait for done */
1541 do {
1542 result = target_read_u8(target, FTFX_FSTAT, &fstat);
1544 if (result != ERROR_OK)
1545 return result;
1547 if (fstat & 0x80)
1548 break;
1550 } while (timeval_ms() < ms_timeout);
1552 if (ftfx_fstat)
1553 *ftfx_fstat = fstat;
1555 if ((fstat & 0xf0) != 0x80) {
1556 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1557 fstat, command[3], command[2], command[1], command[0],
1558 command[7], command[6], command[5], command[4],
1559 command[11], command[10], command[9], command[8]);
1561 return kinetis_ftfx_decode_error(fstat);
1564 return ERROR_OK;
1568 static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
1570 int result;
1571 uint32_t stat32;
1572 struct target *target = k_chip->target;
1574 switch (k_chip->sysmodectrlr_type) {
1575 case KINETIS_SMC:
1576 result = target_read_u8(target, SMC_PMSTAT, pmstat);
1577 return result;
1579 case KINETIS_SMC32:
1580 result = target_read_u32(target, SMC32_PMSTAT, &stat32);
1581 if (result == ERROR_OK)
1582 *pmstat = stat32 & 0xff;
1583 return result;
1585 case KINETIS_MC:
1586 /* emulate SMC by reading PMC_REGSC bit 3 (VLPRS) */
1587 result = target_read_u8(target, PMC_REGSC, pmstat);
1588 if (result == ERROR_OK) {
1589 if (*pmstat & 0x08)
1590 *pmstat = PM_STAT_VLPR;
1591 else
1592 *pmstat = PM_STAT_RUN;
1594 return result;
1596 return ERROR_FAIL;
1599 static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
1601 int result;
1602 uint8_t pmstat;
1603 struct target *target;
1605 if (!k_chip) {
1606 LOG_ERROR("Chip not probed.");
1607 return ERROR_FAIL;
1609 target = k_chip->target;
1611 if (target->state != TARGET_HALTED) {
1612 LOG_ERROR("Target not halted");
1613 return ERROR_TARGET_NOT_HALTED;
1616 result = kinetis_read_pmstat(k_chip, &pmstat);
1617 if (result != ERROR_OK)
1618 return result;
1620 if (pmstat == PM_STAT_RUN)
1621 return ERROR_OK;
1623 if (pmstat == PM_STAT_VLPR) {
1624 /* It is safe to switch from VLPR to RUN mode without changing clock */
1625 LOG_INFO("Switching from VLPR to RUN mode.");
1627 switch (k_chip->sysmodectrlr_type) {
1628 case KINETIS_SMC:
1629 result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
1630 break;
1632 case KINETIS_SMC32:
1633 result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
1634 break;
1636 case KINETIS_MC:
1637 result = target_write_u32(target, MC_PMCTRL, PM_CTRL_RUNM_RUN);
1638 break;
1640 if (result != ERROR_OK)
1641 return result;
1643 for (unsigned int i = 100; i > 0; i--) {
1644 result = kinetis_read_pmstat(k_chip, &pmstat);
1645 if (result != ERROR_OK)
1646 return result;
1648 if (pmstat == PM_STAT_RUN)
1649 return ERROR_OK;
1653 LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1654 LOG_ERROR("Issue a 'reset init' command.");
1655 return ERROR_TARGET_NOT_HALTED;
1659 static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
1661 struct target *target = k_chip->target;
1663 switch (k_chip->cache_type) {
1664 case KINETIS_CACHE_K:
1665 target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
1666 /* Set CINV_WAY bits - request invalidate of all cache ways */
1667 /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
1668 break;
1670 case KINETIS_CACHE_L:
1671 target_write_u8(target, MCM_PLACR + 1, 0x04);
1672 /* set bit CFCC - Clear Flash Controller Cache */
1673 break;
1675 case KINETIS_CACHE_MSCM:
1676 target_write_u32(target, MSCM_OCMDR0, 0x30);
1677 /* disable data prefetch and flash speculate */
1678 break;
1680 case KINETIS_CACHE_MSCM2:
1681 target_write_u32(target, MSCM_OCMDR0, 0x30);
1682 target_write_u32(target, MSCM_OCMDR1, 0x30);
1683 /* disable data prefetch and flash speculate */
1684 break;
1686 default:
1687 break;
1692 static int kinetis_erase(struct flash_bank *bank, unsigned int first,
1693 unsigned int last)
1695 int result;
1696 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1697 struct kinetis_chip *k_chip = k_bank->k_chip;
1699 result = kinetis_check_run_mode(k_chip);
1700 if (result != ERROR_OK)
1701 return result;
1703 /* reset error flags */
1704 result = kinetis_ftfx_prepare(bank->target);
1705 if (result != ERROR_OK)
1706 return result;
1708 if ((first > bank->num_sectors) || (last > bank->num_sectors))
1709 return ERROR_FLASH_OPERATION_FAILED;
1712 * FIXME: TODO: use the 'Erase Flash Block' command if the
1713 * requested erase is PFlash or NVM and encompasses the entire
1714 * block. Should be quicker.
1716 for (unsigned int i = first; i <= last; i++) {
1717 /* set command and sector address */
1718 result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
1719 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1721 if (result != ERROR_OK) {
1722 LOG_WARNING("erase sector %u failed", i);
1723 return ERROR_FLASH_OPERATION_FAILED;
1726 if (k_bank->prog_base == 0
1727 && bank->sectors[i].offset <= FCF_ADDRESS
1728 && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1729 if (allow_fcf_writes) {
1730 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1731 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1732 } else {
1733 uint8_t fcf_buffer[FCF_SIZE];
1735 kinetis_fill_fcf(bank, fcf_buffer);
1736 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1737 if (result != ERROR_OK)
1738 LOG_WARNING("Flash Configuration Field write failed");
1739 else
1740 LOG_DEBUG("Generated FCF written");
1745 kinetis_invalidate_flash_cache(k_bank->k_chip);
1747 return ERROR_OK;
1750 static int kinetis_make_ram_ready(struct target *target)
1752 int result;
1753 uint8_t ftfx_fcnfg;
1755 /* check if ram ready */
1756 result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
1757 if (result != ERROR_OK)
1758 return result;
1760 if (ftfx_fcnfg & (1 << 1))
1761 return ERROR_OK; /* ram ready */
1763 /* make flex ram available */
1764 result = kinetis_ftfx_command(target, FTFX_CMD_SETFLEXRAM, 0x00ff0000,
1765 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1766 if (result != ERROR_OK)
1767 return ERROR_FLASH_OPERATION_FAILED;
1769 /* check again */
1770 result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
1771 if (result != ERROR_OK)
1772 return result;
1774 if (ftfx_fcnfg & (1 << 1))
1775 return ERROR_OK; /* ram ready */
1777 return ERROR_FLASH_OPERATION_FAILED;
1781 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1782 uint32_t offset, uint32_t count)
1784 int result = ERROR_OK;
1785 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1786 struct kinetis_chip *k_chip = k_bank->k_chip;
1787 uint8_t *buffer_aligned = NULL;
1789 * Kinetis uses different terms for the granularity of
1790 * sector writes, e.g. "phrase" or "128 bits". We use
1791 * the generic term "chunk". The largest possible
1792 * Kinetis "chunk" is 16 bytes (128 bits).
1794 uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
1795 uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
1797 while (count > 0) {
1798 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1799 uint32_t align_begin = offset % prog_section_chunk_bytes;
1800 uint32_t align_end;
1801 uint32_t size_aligned;
1802 uint16_t chunk_count;
1803 uint8_t ftfx_fstat;
1805 if (size > count)
1806 size = count;
1808 align_end = (align_begin + size) % prog_section_chunk_bytes;
1809 if (align_end)
1810 align_end = prog_section_chunk_bytes - align_end;
1812 size_aligned = align_begin + size + align_end;
1813 chunk_count = size_aligned / prog_section_chunk_bytes;
1815 if (size != size_aligned) {
1816 /* aligned section: the first, the last or the only */
1817 if (!buffer_aligned)
1818 buffer_aligned = malloc(prog_size_bytes);
1820 memset(buffer_aligned, 0xff, size_aligned);
1821 memcpy(buffer_aligned + align_begin, buffer, size);
1823 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1824 4, size_aligned / 4, buffer_aligned);
1826 LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
1827 ", end %" PRIu32,
1828 bank->base + offset, align_begin, align_end);
1829 } else
1830 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1831 4, size_aligned / 4, buffer);
1833 LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
1834 " bytes",
1835 bank->base + offset, size);
1837 if (result != ERROR_OK) {
1838 LOG_ERROR("target_write_memory failed");
1839 break;
1842 /* execute section-write command */
1843 result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTWRITE,
1844 k_bank->prog_base + offset - align_begin,
1845 chunk_count>>8, chunk_count, 0, 0,
1846 0, 0, 0, 0, &ftfx_fstat);
1848 if (result != ERROR_OK) {
1849 LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
1850 bank->base + offset);
1851 break;
1854 if (ftfx_fstat & 0x01) {
1855 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1856 bank->base + offset);
1857 if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
1858 && (k_chip->flash_support & FS_WIDTH_256BIT)) {
1859 LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
1860 LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
1861 LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
1862 LOG_ERROR("or set 'kinetis fcf_source write'");
1866 buffer += size;
1867 offset += size;
1868 count -= size;
1870 keep_alive();
1873 free(buffer_aligned);
1874 return result;
1878 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1879 uint32_t offset, uint32_t count)
1881 int result;
1882 bool fallback = false;
1883 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1884 struct kinetis_chip *k_chip = k_bank->k_chip;
1886 if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
1887 /* fallback to longword write */
1888 fallback = true;
1889 LOG_INFO("This device supports Program Longword execution only.");
1890 } else {
1891 result = kinetis_make_ram_ready(bank->target);
1892 if (result != ERROR_OK) {
1893 fallback = true;
1894 LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1898 LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
1900 if (!fallback) {
1901 /* program section command */
1902 kinetis_write_sections(bank, buffer, offset, count);
1903 } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
1904 /* program longword command, not supported in FTFE */
1905 uint8_t *new_buffer = NULL;
1907 /* check word alignment */
1908 if (offset & 0x3) {
1909 LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1910 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1913 if (count & 0x3) {
1914 uint32_t old_count = count;
1915 count = (old_count | 3) + 1;
1916 new_buffer = malloc(count);
1917 if (!new_buffer) {
1918 LOG_ERROR("odd number of bytes to write and no memory "
1919 "for padding buffer");
1920 return ERROR_FAIL;
1922 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1923 "and padding with 0xff", old_count, count);
1924 memset(new_buffer + old_count, 0xff, count - old_count);
1925 buffer = memcpy(new_buffer, buffer, old_count);
1928 uint32_t words_remaining = count / 4;
1930 kinetis_disable_wdog(k_chip);
1932 /* try using a block write */
1933 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1935 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1936 /* if block write failed (no sufficient working area),
1937 * we use normal (slow) single word accesses */
1938 LOG_WARNING("couldn't use block writes, falling back to single "
1939 "memory accesses");
1941 while (words_remaining) {
1942 uint8_t ftfx_fstat;
1944 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1946 result = kinetis_ftfx_command(bank->target, FTFX_CMD_LWORDPROG, k_bank->prog_base + offset,
1947 buffer[3], buffer[2], buffer[1], buffer[0],
1948 0, 0, 0, 0, &ftfx_fstat);
1950 if (result != ERROR_OK) {
1951 LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
1952 bank->base + offset);
1953 break;
1956 if (ftfx_fstat & 0x01)
1957 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1958 bank->base + offset);
1960 buffer += 4;
1961 offset += 4;
1962 words_remaining--;
1964 keep_alive();
1967 free(new_buffer);
1968 } else {
1969 LOG_ERROR("Flash write strategy not implemented");
1970 return ERROR_FLASH_OPERATION_FAILED;
1973 kinetis_invalidate_flash_cache(k_chip);
1974 return result;
1978 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1979 uint32_t offset, uint32_t count)
1981 int result;
1982 bool set_fcf = false;
1983 bool fcf_in_data_valid = false;
1984 bool fcf_differs = false;
1985 int sect = 0;
1986 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1987 struct kinetis_chip *k_chip = k_bank->k_chip;
1988 uint8_t fcf_buffer[FCF_SIZE];
1989 uint8_t fcf_current[FCF_SIZE];
1990 uint8_t fcf_in_data[FCF_SIZE];
1992 result = kinetis_check_run_mode(k_chip);
1993 if (result != ERROR_OK)
1994 return result;
1996 /* reset error flags */
1997 result = kinetis_ftfx_prepare(bank->target);
1998 if (result != ERROR_OK)
1999 return result;
2001 if (k_bank->prog_base == 0 && !allow_fcf_writes) {
2002 if (bank->sectors[1].offset <= FCF_ADDRESS)
2003 sect = 1; /* 1kb sector, FCF in 2nd sector */
2005 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
2006 && offset + count > bank->sectors[sect].offset)
2007 set_fcf = true; /* write to any part of sector with FCF */
2010 if (set_fcf) {
2011 kinetis_fill_fcf(bank, fcf_buffer);
2013 fcf_in_data_valid = offset <= FCF_ADDRESS
2014 && offset + count >= FCF_ADDRESS + FCF_SIZE;
2015 if (fcf_in_data_valid) {
2016 memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
2017 if (memcmp(fcf_in_data, fcf_buffer, 8)) {
2018 fcf_differs = true;
2019 LOG_INFO("Setting of backdoor key is not supported in mode 'kinetis fcf_source protection'.");
2021 if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer + FCF_FPROT, 4)) {
2022 fcf_differs = true;
2023 LOG_INFO("Flash protection requested in the programmed file differs from current setting.");
2025 if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
2026 fcf_differs = true;
2027 LOG_INFO("Data flash protection requested in the programmed file differs from current setting.");
2029 if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
2030 fcf_in_data_valid = false;
2031 LOG_INFO("Device security requested in the programmed file! Write denied.");
2032 } else if (fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
2033 fcf_differs = true;
2034 LOG_INFO("Strange unsecure mode 0x%02" PRIx8
2035 " requested in the programmed file, set FSEC = 0x%02" PRIx8
2036 " in the startup code!",
2037 fcf_in_data[FCF_FSEC], fcf_buffer[FCF_FSEC]);
2039 if (fcf_in_data[FCF_FOPT] != fcf_buffer[FCF_FOPT]) {
2040 fcf_differs = true;
2041 LOG_INFO("FOPT requested in the programmed file differs from current setting, set 'kinetis fopt 0x%02"
2042 PRIx8 "'.", fcf_in_data[FCF_FOPT]);
2045 /* If the device has ECC flash, then we cannot re-program FCF */
2046 if (fcf_differs) {
2047 if (k_chip->flash_support & FS_ECC) {
2048 fcf_in_data_valid = false;
2049 LOG_INFO("Cannot re-program FCF. Expect verify errors at FCF (0x400-0x40f).");
2050 } else {
2051 LOG_INFO("Trying to re-program FCF.");
2052 if (!(k_chip->flash_support & FS_PROGRAM_LONGWORD))
2053 LOG_INFO("Flash re-programming may fail on this device!");
2059 if (set_fcf && !fcf_in_data_valid) {
2060 if (offset < FCF_ADDRESS) {
2061 /* write part preceding FCF */
2062 result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
2063 if (result != ERROR_OK)
2064 return result;
2067 result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
2068 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
2069 set_fcf = false;
2071 if (set_fcf) {
2072 /* write FCF if differs from flash - eliminate multiple writes */
2073 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
2074 if (result != ERROR_OK)
2075 return result;
2078 LOG_WARNING("Flash Configuration Field written.");
2079 LOG_WARNING("Reset or power off the device to make settings effective.");
2081 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
2082 uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
2083 /* write part after FCF */
2084 result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
2086 return result;
2088 } else {
2089 /* no FCF fiddling, normal write */
2090 return kinetis_write_inner(bank, buffer, offset, count);
2095 static int kinetis_probe_chip_s32k(struct kinetis_chip *k_chip)
2097 int result;
2098 uint8_t fcfg1_eesize, fcfg1_depart;
2099 uint32_t ee_size = 0;
2100 uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
2101 unsigned int generation = 0, subseries = 0, derivate = 0;
2103 struct target *target = k_chip->target;
2104 k_chip->probed = false;
2105 k_chip->pflash_sector_size = 0;
2106 k_chip->pflash_base = 0;
2107 k_chip->nvm_base = 0x10000000;
2108 k_chip->progr_accel_ram = FLEXRAM;
2109 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2110 k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
2112 if (k_chip->sim_base == 0)
2113 k_chip->sim_base = SIM_BASE;
2115 result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2116 if (result != ERROR_OK)
2117 return result;
2119 generation = (k_chip->sim_sdid) >> 28 & 0x0f;
2120 subseries = (k_chip->sim_sdid) >> 24 & 0x0f;
2121 derivate = (k_chip->sim_sdid) >> 20 & 0x0f;
2123 switch (k_chip->sim_sdid & KINETIS_SDID_S32K_SERIES_MASK) {
2124 case KINETIS_SDID_S32K_SERIES_K11X:
2125 k_chip->cache_type = KINETIS_CACHE_L;
2126 k_chip->num_pflash_blocks = 1;
2127 k_chip->num_nvm_blocks = 1;
2128 /* Non-interleaved */
2129 k_chip->max_flash_prog_size = 512;
2131 switch (k_chip->sim_sdid & KINETIS_SDID_S32K_DERIVATE_MASK) {
2132 case KINETIS_SDID_S32K_DERIVATE_KXX6:
2133 /* S32K116 CPU 48Mhz Flash 128KB RAM 17KB+2KB */
2134 /* Non-Interleaved */
2135 k_chip->pflash_size = 128 << 10;
2136 k_chip->pflash_sector_size = 2 << 10;
2137 /* Non-Interleaved */
2138 k_chip->nvm_size = 32 << 10;
2139 k_chip->nvm_sector_size = 2 << 10;
2140 break;
2141 case KINETIS_SDID_S32K_DERIVATE_KXX8:
2142 /* S32K118 CPU 80Mhz Flash 256KB+32KB RAM 32KB+4KB */
2143 /* Non-Interleaved */
2144 k_chip->pflash_size = 256 << 10;
2145 k_chip->pflash_sector_size = 2 << 10;
2146 /* Non-Interleaved */
2147 k_chip->nvm_size = 32 << 10;
2148 k_chip->nvm_sector_size = 2 << 10;
2149 break;
2151 break;
2153 case KINETIS_SDID_S32K_SERIES_K14X:
2154 k_chip->cache_type = KINETIS_CACHE_MSCM2;
2155 k_chip->num_pflash_blocks = 1;
2156 k_chip->num_nvm_blocks = 1;
2157 /* Non-interleaved */
2158 k_chip->max_flash_prog_size = 512;
2159 switch (k_chip->sim_sdid & KINETIS_SDID_S32K_DERIVATE_MASK) {
2160 case KINETIS_SDID_S32K_DERIVATE_KXX2:
2161 case KINETIS_SDID_S32K_DERIVATE_KXX3:
2162 /* S32K142/S32K142W CPU 80Mhz Flash 256KB+64KB RAM 32KB+4KB */
2163 /* Non-Interleaved */
2164 k_chip->pflash_size = 256 << 10;
2165 k_chip->pflash_sector_size = 2 << 10;
2166 /* Non-Interleaved */
2167 k_chip->nvm_size = 64 << 10;
2168 k_chip->nvm_sector_size = 2 << 10;
2169 break;
2170 case KINETIS_SDID_S32K_DERIVATE_KXX4:
2171 case KINETIS_SDID_S32K_DERIVATE_KXX5:
2172 /* S32K144/S32K144W CPU 80Mhz Flash 512KB+64KB RAM 64KB+4KB */
2173 /* Interleaved */
2174 k_chip->pflash_size = 512 << 10;
2175 k_chip->pflash_sector_size = 4 << 10;
2176 /* Non-Interleaved */
2177 k_chip->nvm_size = 64 << 10;
2178 k_chip->nvm_sector_size = 2 << 10;
2179 break;
2180 case KINETIS_SDID_S32K_DERIVATE_KXX6:
2181 /* S32K146 CPU 80Mhz Flash 1024KB+64KB RAM 128KB+4KB */
2182 /* Interleaved */
2183 k_chip->pflash_size = 1024 << 10;
2184 k_chip->pflash_sector_size = 4 << 10;
2185 k_chip->num_pflash_blocks = 2;
2186 /* Non-Interleaved */
2187 k_chip->nvm_size = 64 << 10;
2188 k_chip->nvm_sector_size = 2 << 10;
2189 break;
2190 case KINETIS_SDID_S32K_DERIVATE_KXX8:
2191 /* S32K148 CPU 80Mhz Flash 1536KB+512KB RAM 256KB+4KB */
2192 /* Interleaved */
2193 k_chip->pflash_size = 1536 << 10;
2194 k_chip->pflash_sector_size = 4 << 10;
2195 k_chip->num_pflash_blocks = 3;
2196 /* Interleaved */
2197 k_chip->nvm_size = 512 << 10;
2198 k_chip->nvm_sector_size = 4 << 10;
2199 /* Interleaved */
2200 k_chip->max_flash_prog_size = 1 << 10;
2201 break;
2203 break;
2205 default:
2206 LOG_ERROR("Unsupported S32K1xx-series");
2209 if (k_chip->pflash_sector_size == 0) {
2210 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2211 return ERROR_FLASH_OPER_UNSUPPORTED;
2214 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
2215 if (result != ERROR_OK)
2216 return result;
2217 k_chip->sim_fcfg2 = 0; /* S32K1xx does not implement FCFG2 register. */
2219 fcfg1_depart = (k_chip->sim_fcfg1 >> 12) & 0x0f;
2220 fcfg1_eesize = (k_chip->sim_fcfg1 >> 16) & 0x0f;
2221 if (fcfg1_eesize <= 9)
2222 ee_size = (16 << (10 - fcfg1_eesize));
2223 if ((fcfg1_depart & 0x8) == 0) {
2224 /* Binary 0xxx values encode the amount reserved for EEPROM emulation. */
2225 if (fcfg1_depart)
2226 k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2227 else
2228 k_chip->dflash_size = k_chip->nvm_size;
2229 } else {
2230 /* Binary 1xxx valued encode the DFlash size. */
2231 if (fcfg1_depart & 0x7)
2232 k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2233 else
2234 k_chip->dflash_size = 0;
2237 snprintf(k_chip->name, sizeof(k_chip->name), "S32K%u%u%u",
2238 generation, subseries, derivate);
2240 pflash_size_k = k_chip->pflash_size / 1024;
2241 dflash_size_k = k_chip->dflash_size / 1024;
2243 LOG_INFO("%s detected: %u flash blocks", k_chip->name, k_chip->num_pflash_blocks + k_chip->num_nvm_blocks);
2244 LOG_INFO("%u PFlash banks: %" PRIu32 " KiB total", k_chip->num_pflash_blocks, pflash_size_k);
2246 nvm_size_k = k_chip->nvm_size / 1024;
2248 if (k_chip->num_nvm_blocks) {
2249 LOG_INFO("%u FlexNVM banks: %" PRIu32 " KiB total, %" PRIu32 " KiB available as data flash, %"
2250 PRIu32 " bytes FlexRAM",
2251 k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2254 k_chip->probed = true;
2256 if (create_banks)
2257 kinetis_create_missing_banks(k_chip);
2259 return ERROR_OK;
2263 static int kinetis_probe_chip(struct kinetis_chip *k_chip)
2265 int result;
2266 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
2267 uint8_t fcfg2_pflsh;
2268 uint32_t ee_size = 0;
2269 uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
2270 uint32_t pflash_size_m;
2271 unsigned num_blocks = 0;
2272 unsigned maxaddr_shift = 13;
2273 struct target *target = k_chip->target;
2275 unsigned familyid = 0, subfamid = 0;
2276 unsigned cpu_mhz = 120;
2277 bool use_nvm_marking = false;
2278 char flash_marking[12], nvm_marking[2];
2279 char name[40];
2281 k_chip->probed = false;
2282 k_chip->pflash_sector_size = 0;
2283 k_chip->pflash_base = 0;
2284 k_chip->nvm_base = 0x10000000;
2285 k_chip->progr_accel_ram = FLEXRAM;
2287 name[0] = '\0';
2289 if (k_chip->sim_base)
2290 result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2291 else {
2292 result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2293 if (result == ERROR_OK)
2294 k_chip->sim_base = SIM_BASE;
2295 else {
2296 result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2297 if (result == ERROR_OK)
2298 k_chip->sim_base = SIM_BASE_KL28;
2301 if (result != ERROR_OK)
2302 return result;
2304 if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
2305 /* older K-series MCU */
2306 uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
2307 k_chip->cache_type = KINETIS_CACHE_K;
2308 k_chip->watchdog_type = KINETIS_WDOG_K;
2310 switch (mcu_type) {
2311 case KINETIS_K_SDID_K10_M50:
2312 case KINETIS_K_SDID_K20_M50:
2313 /* 1kB sectors */
2314 k_chip->pflash_sector_size = 1<<10;
2315 k_chip->nvm_sector_size = 1<<10;
2316 num_blocks = 2;
2317 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2318 break;
2319 case KINETIS_K_SDID_K10_M72:
2320 case KINETIS_K_SDID_K20_M72:
2321 case KINETIS_K_SDID_K30_M72:
2322 case KINETIS_K_SDID_K30_M100:
2323 case KINETIS_K_SDID_K40_M72:
2324 case KINETIS_K_SDID_K40_M100:
2325 case KINETIS_K_SDID_K50_M72:
2326 /* 2kB sectors, 1kB FlexNVM sectors */
2327 k_chip->pflash_sector_size = 2<<10;
2328 k_chip->nvm_sector_size = 1<<10;
2329 num_blocks = 2;
2330 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2331 k_chip->max_flash_prog_size = 1<<10;
2332 break;
2333 case KINETIS_K_SDID_K10_M100:
2334 case KINETIS_K_SDID_K20_M100:
2335 case KINETIS_K_SDID_K11:
2336 case KINETIS_K_SDID_K12:
2337 case KINETIS_K_SDID_K21_M50:
2338 case KINETIS_K_SDID_K22_M50:
2339 case KINETIS_K_SDID_K51_M72:
2340 case KINETIS_K_SDID_K53:
2341 case KINETIS_K_SDID_K60_M100:
2342 /* 2kB sectors */
2343 k_chip->pflash_sector_size = 2<<10;
2344 k_chip->nvm_sector_size = 2<<10;
2345 num_blocks = 2;
2346 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2347 break;
2348 case KINETIS_K_SDID_K21_M120:
2349 case KINETIS_K_SDID_K22_M120:
2350 /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
2351 k_chip->pflash_sector_size = 4<<10;
2352 k_chip->max_flash_prog_size = 1<<10;
2353 k_chip->nvm_sector_size = 4<<10;
2354 num_blocks = 2;
2355 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2356 break;
2357 case KINETIS_K_SDID_K10_M120:
2358 case KINETIS_K_SDID_K20_M120:
2359 case KINETIS_K_SDID_K60_M150:
2360 case KINETIS_K_SDID_K70_M150:
2361 /* 4kB sectors */
2362 k_chip->pflash_sector_size = 4<<10;
2363 k_chip->nvm_sector_size = 4<<10;
2364 num_blocks = 4;
2365 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2366 break;
2367 default:
2368 LOG_ERROR("Unsupported K-family FAMID");
2371 for (size_t idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
2372 if (kinetis_types_old[idx].sdid == mcu_type) {
2373 strcpy(name, kinetis_types_old[idx].name);
2374 use_nvm_marking = true;
2375 break;
2379 /* first revision of some devices has no SMC */
2380 switch (mcu_type) {
2381 case KINETIS_K_SDID_K10_M100:
2382 case KINETIS_K_SDID_K20_M100:
2383 case KINETIS_K_SDID_K30_M100:
2384 case KINETIS_K_SDID_K40_M100:
2385 case KINETIS_K_SDID_K60_M100:
2387 uint32_t revid = (k_chip->sim_sdid & KINETIS_K_REVID_MASK) >> KINETIS_K_REVID_SHIFT;
2388 /* highest bit set corresponds to rev 2.x */
2389 if (revid <= 7) {
2390 k_chip->sysmodectrlr_type = KINETIS_MC;
2391 strcat(name, " Rev 1.x");
2394 break;
2397 } else {
2398 /* Newer K-series or KL series MCU */
2399 familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
2400 subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
2402 switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
2403 case KINETIS_SDID_SERIESID_K:
2404 use_nvm_marking = true;
2405 k_chip->cache_type = KINETIS_CACHE_K;
2406 k_chip->watchdog_type = KINETIS_WDOG_K;
2408 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2409 case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
2410 /* K02FN64, K02FN128: FTFA, 2kB sectors */
2411 k_chip->pflash_sector_size = 2<<10;
2412 num_blocks = 1;
2413 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2414 cpu_mhz = 100;
2415 break;
2417 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
2418 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
2419 uint32_t sopt1;
2420 result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
2421 if (result != ERROR_OK)
2422 return result;
2424 if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
2425 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
2426 /* MK24FN1M */
2427 k_chip->pflash_sector_size = 4<<10;
2428 num_blocks = 2;
2429 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2430 k_chip->max_flash_prog_size = 1<<10;
2431 subfamid = 4; /* errata 1N83J fix */
2432 break;
2434 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
2435 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
2436 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
2437 /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
2438 k_chip->pflash_sector_size = 2<<10;
2439 /* autodetect 1 or 2 blocks */
2440 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2441 break;
2443 LOG_ERROR("Unsupported Kinetis K22 DIEID");
2444 break;
2446 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
2447 k_chip->pflash_sector_size = 4<<10;
2448 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
2449 /* K24FN256 - smaller pflash with FTFA */
2450 num_blocks = 1;
2451 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2452 break;
2454 /* K24FN1M without errata 7534 */
2455 num_blocks = 2;
2456 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2457 k_chip->max_flash_prog_size = 1<<10;
2458 break;
2460 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
2461 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
2462 subfamid += 2; /* errata 7534 fix */
2463 /* fallthrough */
2464 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
2465 /* K63FN1M0 */
2466 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
2467 /* K64FN1M0, K64FX512 */
2468 k_chip->pflash_sector_size = 4<<10;
2469 k_chip->nvm_sector_size = 4<<10;
2470 k_chip->max_flash_prog_size = 1<<10;
2471 num_blocks = 2;
2472 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2473 break;
2475 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
2476 /* K26FN2M0 */
2477 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
2478 /* K66FN2M0, K66FX1M0 */
2479 k_chip->pflash_sector_size = 4<<10;
2480 k_chip->nvm_sector_size = 4<<10;
2481 k_chip->max_flash_prog_size = 1<<10;
2482 num_blocks = 4;
2483 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2484 cpu_mhz = 180;
2485 break;
2487 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
2488 /* K27FN2M0 */
2489 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2490 /* K28FN2M0 */
2491 k_chip->pflash_sector_size = 4<<10;
2492 k_chip->max_flash_prog_size = 1<<10;
2493 num_blocks = 4;
2494 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2495 cpu_mhz = 150;
2496 break;
2498 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
2499 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
2500 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
2501 /* K80FN256, K81FN256, K82FN256 */
2502 k_chip->pflash_sector_size = 4<<10;
2503 num_blocks = 1;
2504 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2505 cpu_mhz = 150;
2506 break;
2508 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
2509 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
2510 /* KL81Z128, KL82Z128 */
2511 k_chip->pflash_sector_size = 2<<10;
2512 num_blocks = 1;
2513 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2514 k_chip->cache_type = KINETIS_CACHE_L;
2516 use_nvm_marking = false;
2517 snprintf(name, sizeof(name), "MKL8%uZ%%s7",
2518 subfamid);
2519 break;
2521 default:
2522 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
2525 if (name[0] == '\0')
2526 snprintf(name, sizeof(name), "MK%u%uF%%s%u",
2527 familyid, subfamid, cpu_mhz / 10);
2528 break;
2530 case KINETIS_SDID_SERIESID_KL:
2531 /* KL-series */
2532 k_chip->pflash_sector_size = 1<<10;
2533 k_chip->nvm_sector_size = 1<<10;
2534 /* autodetect 1 or 2 blocks */
2535 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2536 k_chip->cache_type = KINETIS_CACHE_L;
2537 k_chip->watchdog_type = KINETIS_WDOG_COP;
2539 cpu_mhz = 48;
2540 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2541 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
2542 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
2543 subfamid = 7;
2544 break;
2546 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2547 cpu_mhz = 72;
2548 k_chip->pflash_sector_size = 2<<10;
2549 num_blocks = 2;
2550 k_chip->watchdog_type = KINETIS_WDOG32_KL28;
2551 k_chip->sysmodectrlr_type = KINETIS_SMC32;
2552 break;
2555 snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
2556 familyid, subfamid, cpu_mhz / 10);
2557 break;
2559 case KINETIS_SDID_SERIESID_KW:
2560 /* Newer KW-series (all KW series except KW2xD, KW01Z) */
2561 cpu_mhz = 48;
2562 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2563 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
2564 /* KW40Z */
2565 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2566 /* KW30Z */
2567 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
2568 /* KW20Z */
2569 /* FTFA, 1kB sectors */
2570 k_chip->pflash_sector_size = 1<<10;
2571 k_chip->nvm_sector_size = 1<<10;
2572 /* autodetect 1 or 2 blocks */
2573 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2574 k_chip->cache_type = KINETIS_CACHE_L;
2575 k_chip->watchdog_type = KINETIS_WDOG_COP;
2576 break;
2577 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
2578 /* KW41Z */
2579 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2580 /* KW31Z */
2581 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
2582 /* KW21Z */
2583 /* FTFA, 2kB sectors */
2584 k_chip->pflash_sector_size = 2<<10;
2585 k_chip->nvm_sector_size = 2<<10;
2586 /* autodetect 1 or 2 blocks */
2587 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2588 k_chip->cache_type = KINETIS_CACHE_L;
2589 k_chip->watchdog_type = KINETIS_WDOG_COP;
2590 break;
2591 default:
2592 LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
2594 snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
2595 familyid, subfamid, cpu_mhz / 10);
2596 break;
2598 case KINETIS_SDID_SERIESID_KV:
2599 /* KV-series */
2600 k_chip->watchdog_type = KINETIS_WDOG_K;
2601 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2602 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
2603 /* KV10: FTFA, 1kB sectors */
2604 k_chip->pflash_sector_size = 1<<10;
2605 num_blocks = 1;
2606 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2607 k_chip->cache_type = KINETIS_CACHE_L;
2608 strcpy(name, "MKV10Z%s7");
2609 break;
2611 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
2612 /* KV11: FTFA, 2kB sectors */
2613 k_chip->pflash_sector_size = 2<<10;
2614 num_blocks = 1;
2615 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2616 k_chip->cache_type = KINETIS_CACHE_L;
2617 strcpy(name, "MKV11Z%s7");
2618 break;
2620 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2621 /* KV30: FTFA, 2kB sectors, 1 block */
2622 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2623 /* KV31: FTFA, 2kB sectors, 2 blocks */
2624 k_chip->pflash_sector_size = 2<<10;
2625 /* autodetect 1 or 2 blocks */
2626 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2627 k_chip->cache_type = KINETIS_CACHE_K;
2628 break;
2630 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
2631 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
2632 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
2633 /* KV4x: FTFA, 4kB sectors */
2634 k_chip->pflash_sector_size = 4<<10;
2635 num_blocks = 1;
2636 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2637 k_chip->cache_type = KINETIS_CACHE_K;
2638 cpu_mhz = 168;
2639 break;
2641 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
2642 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
2643 /* KV5x: FTFE, 8kB sectors */
2644 k_chip->pflash_sector_size = 8<<10;
2645 k_chip->max_flash_prog_size = 1<<10;
2646 num_blocks = 1;
2647 maxaddr_shift = 14;
2648 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
2649 k_chip->pflash_base = 0x10000000;
2650 k_chip->progr_accel_ram = 0x18000000;
2651 cpu_mhz = 240;
2652 break;
2654 default:
2655 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
2658 if (name[0] == '\0')
2659 snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
2660 familyid, subfamid, cpu_mhz / 10);
2661 break;
2663 case KINETIS_SDID_SERIESID_KE:
2664 /* KE1x-series */
2665 k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
2666 switch (k_chip->sim_sdid &
2667 (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
2668 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XZ:
2669 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1XZ:
2670 /* KE1xZ: FTFE, 2kB sectors */
2671 k_chip->pflash_sector_size = 2<<10;
2672 k_chip->nvm_sector_size = 2<<10;
2673 k_chip->max_flash_prog_size = 1<<9;
2674 num_blocks = 2;
2675 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2676 k_chip->cache_type = KINETIS_CACHE_L;
2678 cpu_mhz = 72;
2679 snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
2680 familyid, subfamid, cpu_mhz / 10);
2681 break;
2683 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XF:
2684 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1XF:
2685 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1XF:
2686 /* KE1xF: FTFE, 4kB sectors */
2687 k_chip->pflash_sector_size = 4<<10;
2688 k_chip->nvm_sector_size = 2<<10;
2689 k_chip->max_flash_prog_size = 1<<10;
2690 num_blocks = 2;
2691 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2692 k_chip->cache_type = KINETIS_CACHE_MSCM;
2694 cpu_mhz = 168;
2695 snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
2696 familyid, subfamid, cpu_mhz / 10);
2697 break;
2699 default:
2700 LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
2702 break;
2704 default:
2705 LOG_ERROR("Unsupported K-series");
2709 if (k_chip->pflash_sector_size == 0) {
2710 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2711 return ERROR_FLASH_OPER_UNSUPPORTED;
2714 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
2715 if (result != ERROR_OK)
2716 return result;
2718 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
2719 if (result != ERROR_OK)
2720 return result;
2722 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
2723 k_chip->sim_fcfg1, k_chip->sim_fcfg2);
2725 fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
2726 fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
2727 fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
2728 fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2730 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2731 k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
2732 k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
2734 if (num_blocks == 0)
2735 num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
2736 else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
2737 /* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
2738 * Do not adjust block count in this case! */
2739 num_blocks = 1;
2740 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
2741 } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
2742 num_blocks = 2;
2743 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
2746 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
2747 if (!fcfg2_pflsh) {
2748 switch (fcfg1_nvmsize) {
2749 case 0x03:
2750 case 0x05:
2751 case 0x07:
2752 case 0x09:
2753 case 0x0b:
2754 k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
2755 break;
2756 case 0x0f:
2757 if (k_chip->pflash_sector_size >= 4<<10)
2758 k_chip->nvm_size = 512<<10;
2759 else
2760 /* K20_100 */
2761 k_chip->nvm_size = 256<<10;
2762 break;
2763 default:
2764 k_chip->nvm_size = 0;
2765 break;
2768 switch (fcfg1_eesize) {
2769 case 0x00:
2770 case 0x01:
2771 case 0x02:
2772 case 0x03:
2773 case 0x04:
2774 case 0x05:
2775 case 0x06:
2776 case 0x07:
2777 case 0x08:
2778 case 0x09:
2779 ee_size = (16 << (10 - fcfg1_eesize));
2780 break;
2781 default:
2782 ee_size = 0;
2783 break;
2786 switch (fcfg1_depart) {
2787 case 0x01:
2788 case 0x02:
2789 case 0x03:
2790 case 0x04:
2791 case 0x05:
2792 case 0x06:
2793 k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2794 break;
2795 case 0x07:
2796 case 0x08:
2797 k_chip->dflash_size = 0;
2798 break;
2799 case 0x09:
2800 case 0x0a:
2801 case 0x0b:
2802 case 0x0c:
2803 case 0x0d:
2804 k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2805 break;
2806 default:
2807 k_chip->dflash_size = k_chip->nvm_size;
2808 break;
2812 switch (fcfg1_pfsize) {
2813 case 0x00:
2814 k_chip->pflash_size = 8192;
2815 break;
2816 case 0x01:
2817 case 0x03:
2818 case 0x05:
2819 case 0x07:
2820 case 0x09:
2821 case 0x0b:
2822 case 0x0d:
2823 k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
2824 break;
2825 case 0x0f:
2826 /* a peculiar case: Freescale states different sizes for 0xf
2827 * KL03P24M48SF0RM 32 KB .... duplicate of code 0x3
2828 * K02P64M100SFARM 128 KB ... duplicate of code 0x7
2829 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9
2830 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb
2831 * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
2832 * K26P169M180SF5RM 2048 KB ... the only unique value
2833 * fcfg2_maxaddr0 seems to be the only clue to pflash_size
2834 * Checking fcfg2_maxaddr0 in bank probe is pointless then
2836 if (fcfg2_pflsh)
2837 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
2838 else
2839 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
2840 if (k_chip->pflash_size != 2048<<10)
2841 LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %" PRIu32 " KB", k_chip->pflash_size>>10);
2843 break;
2844 default:
2845 k_chip->pflash_size = 0;
2846 break;
2849 if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
2850 k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
2851 /* Program section size is equal to sector size by default */
2854 if (fcfg2_pflsh) {
2855 k_chip->num_pflash_blocks = num_blocks;
2856 k_chip->num_nvm_blocks = 0;
2857 } else {
2858 k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
2859 k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
2862 if (use_nvm_marking) {
2863 nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
2864 nvm_marking[1] = '\0';
2865 } else
2866 nvm_marking[0] = '\0';
2868 pflash_size_k = k_chip->pflash_size / 1024;
2869 pflash_size_m = pflash_size_k / 1024;
2870 if (pflash_size_m)
2871 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
2872 else
2873 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
2875 snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
2876 LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
2877 LOG_INFO("%u PFlash banks: %" PRIu32 " KiB total", k_chip->num_pflash_blocks, pflash_size_k);
2878 if (k_chip->num_nvm_blocks) {
2879 nvm_size_k = k_chip->nvm_size / 1024;
2880 dflash_size_k = k_chip->dflash_size / 1024;
2881 LOG_INFO("%u FlexNVM banks: %" PRIu32 " KiB total, %" PRIu32 " KiB available as data flash, %"
2882 PRIu32 " bytes FlexRAM", k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2885 k_chip->probed = true;
2887 if (create_banks)
2888 kinetis_create_missing_banks(k_chip);
2890 return ERROR_OK;
2893 static int kinetis_probe(struct flash_bank *bank)
2895 int result;
2896 uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
2897 unsigned num_blocks, first_nvm_bank;
2898 uint32_t size_k;
2899 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2900 struct kinetis_chip *k_chip;
2902 assert(k_bank);
2903 k_chip = k_bank->k_chip;
2905 k_bank->probed = false;
2907 if (!k_chip->probed) {
2908 switch (k_chip->chip_type) {
2909 case CT_S32K:
2910 result = kinetis_probe_chip_s32k(k_chip);
2911 break;
2912 default:
2913 result = kinetis_probe_chip(k_chip);
2915 if (result != ERROR_OK)
2916 return result;
2919 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2920 first_nvm_bank = k_chip->num_pflash_blocks;
2922 if (k_bank->bank_number < k_chip->num_pflash_blocks) {
2923 /* pflash, banks start at address zero */
2924 k_bank->flash_class = FC_PFLASH;
2925 bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
2926 bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
2927 k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
2928 k_bank->sector_size = k_chip->pflash_sector_size;
2929 /* pflash is divided into 32 protection areas for
2930 * parts with more than 32K of PFlash. For parts with
2931 * less the protection unit is set to 1024 bytes */
2932 k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
2933 bank->num_prot_blocks = bank->size / k_bank->protection_size;
2934 k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
2936 size_k = bank->size / 1024;
2937 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
2938 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2940 } else if (k_bank->bank_number < num_blocks) {
2941 /* nvm, banks start at address 0x10000000 */
2942 unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
2943 uint32_t limit;
2945 k_bank->flash_class = FC_FLEX_NVM;
2946 bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
2947 bank->base = k_chip->nvm_base + bank->size * nvm_ord;
2948 k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
2949 k_bank->sector_size = k_chip->nvm_sector_size;
2950 if (k_chip->dflash_size == 0) {
2951 k_bank->protection_size = 0;
2952 } else {
2953 int i;
2954 for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
2956 if (i == 1)
2957 k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */
2958 else
2959 k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
2961 bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
2962 k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
2964 /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
2965 if (k_chip->dflash_size > bank->size * nvm_ord)
2966 limit = k_chip->dflash_size - bank->size * nvm_ord;
2967 else
2968 limit = 0;
2970 if (bank->size > limit) {
2971 bank->size = limit;
2972 LOG_DEBUG("FlexNVM bank %u limited to 0x%08" PRIx32 " due to active EEPROM backup",
2973 k_bank->bank_number, limit);
2976 size_k = bank->size / 1024;
2977 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
2978 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2980 } else {
2981 LOG_ERROR("Cannot determine parameters for bank %u, only %u banks on device",
2982 k_bank->bank_number, num_blocks);
2983 return ERROR_FLASH_BANK_INVALID;
2986 /* S32K1xx does not implement FCFG2 register. Skip checks. */
2987 if (k_chip->chip_type != CT_S32K) {
2988 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2989 fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
2990 fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
2992 if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
2993 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2994 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2996 if (fcfg2_pflsh) {
2997 if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
2998 LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2999 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
3000 } else {
3001 if (k_bank->bank_number == first_nvm_bank
3002 && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
3003 LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
3004 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
3008 free(bank->sectors);
3009 bank->sectors = NULL;
3011 free(bank->prot_blocks);
3012 bank->prot_blocks = NULL;
3014 if (k_bank->sector_size == 0) {
3015 LOG_ERROR("Unknown sector size for bank %u", bank->bank_number);
3016 return ERROR_FLASH_BANK_INVALID;
3019 bank->num_sectors = bank->size / k_bank->sector_size;
3021 if (bank->num_sectors > 0) {
3022 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
3023 bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
3024 if (!bank->sectors)
3025 return ERROR_FAIL;
3027 bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
3028 if (!bank->prot_blocks)
3029 return ERROR_FAIL;
3031 } else {
3032 bank->num_prot_blocks = 0;
3035 k_bank->probed = true;
3037 return ERROR_OK;
3040 static int kinetis_auto_probe(struct flash_bank *bank)
3042 struct kinetis_flash_bank *k_bank = bank->driver_priv;
3044 if (k_bank && k_bank->probed)
3045 return ERROR_OK;
3047 return kinetis_probe(bank);
3050 static int kinetis_info(struct flash_bank *bank, struct command_invocation *cmd)
3052 const char *bank_class_names[] = {
3053 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
3056 struct kinetis_flash_bank *k_bank = bank->driver_priv;
3057 struct kinetis_chip *k_chip = k_bank->k_chip;
3058 uint32_t size_k = bank->size / 1024;
3060 command_print_sameline(cmd,
3061 "%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
3062 bank->driver->name, k_chip->name,
3063 size_k, bank_class_names[k_bank->flash_class],
3064 bank->name, bank->base);
3066 return ERROR_OK;
3069 static int kinetis_blank_check(struct flash_bank *bank)
3071 struct kinetis_flash_bank *k_bank = bank->driver_priv;
3072 struct kinetis_chip *k_chip = k_bank->k_chip;
3073 int result;
3075 /* surprisingly blank check does not work in VLPR and HSRUN modes */
3076 result = kinetis_check_run_mode(k_chip);
3077 if (result != ERROR_OK)
3078 return result;
3080 /* reset error flags */
3081 result = kinetis_ftfx_prepare(bank->target);
3082 if (result != ERROR_OK)
3083 return result;
3085 if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
3086 bool block_dirty = true;
3087 bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
3088 uint8_t ftfx_fstat;
3090 if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
3091 uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
3092 /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
3093 if (fcfg1_depart != 0xf && fcfg1_depart != 0)
3094 use_block_cmd = false;
3097 if (use_block_cmd) {
3098 /* check if whole bank is blank */
3099 result = kinetis_ftfx_command(bank->target, FTFX_CMD_BLOCKSTAT, k_bank->prog_base,
3100 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
3102 if (result != ERROR_OK)
3103 kinetis_ftfx_clear_error(bank->target);
3104 else if ((ftfx_fstat & 0x01) == 0)
3105 block_dirty = false;
3108 if (block_dirty) {
3109 /* the whole bank is not erased, check sector-by-sector */
3110 for (unsigned int i = 0; i < bank->num_sectors; i++) {
3111 /* normal margin */
3112 result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTSTAT,
3113 k_bank->prog_base + bank->sectors[i].offset,
3114 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
3116 if (result == ERROR_OK) {
3117 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
3118 } else {
3119 LOG_DEBUG("Ignoring error on PFlash sector blank-check");
3120 kinetis_ftfx_clear_error(bank->target);
3121 bank->sectors[i].is_erased = -1;
3124 } else {
3125 /* the whole bank is erased, update all sectors */
3126 for (unsigned int i = 0; i < bank->num_sectors; i++)
3127 bank->sectors[i].is_erased = 1;
3129 } else {
3130 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
3131 return ERROR_FLASH_OPERATION_FAILED;
3134 return ERROR_OK;
3138 COMMAND_HANDLER(kinetis_nvm_partition)
3140 int result;
3141 unsigned bank_idx;
3142 unsigned num_blocks, first_nvm_bank;
3143 unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
3144 enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
3145 bool enable;
3146 uint8_t load_flex_ram = 1;
3147 uint8_t ee_size_code = 0x3f;
3148 uint8_t flex_nvm_partition_code = 0;
3149 uint8_t ee_split = 3;
3150 struct target *target = get_current_target(CMD_CTX);
3151 struct kinetis_chip *k_chip;
3152 uint32_t sim_fcfg1;
3154 k_chip = kinetis_get_chip(target);
3156 if (k_chip->chip_type == CT_S32K) {
3157 LOG_ERROR("NVM partition not supported on S32K1xx (yet).");
3158 return ERROR_FAIL;
3161 if (CMD_ARGC >= 2) {
3162 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
3163 sz_type = DF_SIZE;
3164 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
3165 sz_type = EEBKP_SIZE;
3167 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], par);
3168 while (par >> (log2 + 3))
3169 log2++;
3171 switch (sz_type) {
3172 case SHOW_INFO:
3173 if (!k_chip) {
3174 LOG_ERROR("Chip not probed.");
3175 return ERROR_FAIL;
3177 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
3178 if (result != ERROR_OK)
3179 return result;
3181 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
3182 switch (flex_nvm_partition_code) {
3183 case 0:
3184 command_print(CMD, "No EEPROM backup, data flash only");
3185 break;
3186 case 1:
3187 case 2:
3188 case 3:
3189 case 4:
3190 case 5:
3191 case 6:
3192 command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
3193 break;
3194 case 8:
3195 command_print(CMD, "No data flash, EEPROM backup only");
3196 break;
3197 case 0x9:
3198 case 0xA:
3199 case 0xB:
3200 case 0xC:
3201 case 0xD:
3202 case 0xE:
3203 command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
3204 break;
3205 case 0xf:
3206 command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
3207 break;
3208 default:
3209 command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
3211 return ERROR_OK;
3213 case DF_SIZE:
3214 flex_nvm_partition_code = 0x8 | log2;
3215 break;
3217 case EEBKP_SIZE:
3218 flex_nvm_partition_code = log2;
3219 break;
3222 if (CMD_ARGC == 3) {
3223 unsigned long eex;
3224 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], eex);
3225 ee1 = ee2 = eex / 2;
3226 } else if (CMD_ARGC >= 4) {
3227 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], ee1);
3228 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[3], ee2);
3231 enable = ee1 + ee2 > 0;
3232 if (enable) {
3233 for (log2 = 2; ; log2++) {
3234 if (ee1 + ee2 == (16u << 10) >> log2)
3235 break;
3236 if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
3237 LOG_ERROR("Unsupported EEPROM size");
3238 return ERROR_FLASH_OPERATION_FAILED;
3242 if (ee1 * 3 == ee2)
3243 ee_split = 1;
3244 else if (ee1 * 7 == ee2)
3245 ee_split = 0;
3246 else if (ee1 != ee2) {
3247 LOG_ERROR("Unsupported EEPROM sizes ratio");
3248 return ERROR_FLASH_OPERATION_FAILED;
3251 ee_size_code = log2 | ee_split << 4;
3254 if (CMD_ARGC >= 5)
3255 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
3256 if (enable)
3257 load_flex_ram = 0;
3259 LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
3260 flex_nvm_partition_code, ee_size_code);
3262 result = kinetis_check_run_mode(k_chip);
3263 if (result != ERROR_OK)
3264 return result;
3266 /* reset error flags */
3267 result = kinetis_ftfx_prepare(target);
3268 if (result != ERROR_OK)
3269 return result;
3271 result = kinetis_ftfx_command(target, FTFX_CMD_PGMPART, load_flex_ram,
3272 ee_size_code, flex_nvm_partition_code, 0, 0,
3273 0, 0, 0, 0, NULL);
3274 if (result != ERROR_OK)
3275 return result;
3277 command_print(CMD, "FlexNVM partition set. Please reset MCU.");
3279 if (k_chip) {
3280 first_nvm_bank = k_chip->num_pflash_blocks;
3281 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
3282 for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
3283 k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
3284 k_chip->probed = false;
3287 command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
3288 return ERROR_OK;
3291 COMMAND_HANDLER(kinetis_fcf_source_handler)
3293 if (CMD_ARGC > 1)
3294 return ERROR_COMMAND_SYNTAX_ERROR;
3296 if (CMD_ARGC == 1) {
3297 if (strcmp(CMD_ARGV[0], "write") == 0)
3298 allow_fcf_writes = true;
3299 else if (strcmp(CMD_ARGV[0], "protection") == 0)
3300 allow_fcf_writes = false;
3301 else
3302 return ERROR_COMMAND_SYNTAX_ERROR;
3305 if (allow_fcf_writes) {
3306 command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
3307 command_print(CMD, "Protection info writes to FCF disabled.");
3308 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
3309 } else {
3310 command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
3311 command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
3314 return ERROR_OK;
3317 COMMAND_HANDLER(kinetis_fopt_handler)
3319 if (CMD_ARGC > 1)
3320 return ERROR_COMMAND_SYNTAX_ERROR;
3322 if (CMD_ARGC == 1) {
3323 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], fcf_fopt);
3324 } else {
3325 command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
3328 return ERROR_OK;
3331 COMMAND_HANDLER(kinetis_create_banks_handler)
3333 if (CMD_ARGC > 0)
3334 return ERROR_COMMAND_SYNTAX_ERROR;
3336 create_banks = true;
3338 return ERROR_OK;
3342 static const struct command_registration kinetis_security_command_handlers[] = {
3344 .name = "check_security",
3345 .mode = COMMAND_EXEC,
3346 .help = "Check status of device security lock",
3347 .usage = "",
3348 .handler = kinetis_check_flash_security_status,
3351 .name = "halt",
3352 .mode = COMMAND_EXEC,
3353 .help = "Issue a halt via the MDM-AP",
3354 .usage = "",
3355 .handler = kinetis_mdm_halt,
3358 .name = "mass_erase",
3359 .mode = COMMAND_EXEC,
3360 .help = "Issue a complete flash erase via the MDM-AP",
3361 .usage = "",
3362 .handler = kinetis_mdm_mass_erase,
3365 .name = "reset",
3366 .mode = COMMAND_EXEC,
3367 .help = "Issue a reset via the MDM-AP",
3368 .usage = "",
3369 .handler = kinetis_mdm_reset,
3371 COMMAND_REGISTRATION_DONE
3374 static const struct command_registration kinetis_exec_command_handlers[] = {
3376 .name = "mdm",
3377 .mode = COMMAND_ANY,
3378 .help = "MDM-AP command group",
3379 .usage = "",
3380 .chain = kinetis_security_command_handlers,
3383 .name = "disable_wdog",
3384 .mode = COMMAND_EXEC,
3385 .help = "Disable the watchdog timer",
3386 .usage = "",
3387 .handler = kinetis_disable_wdog_handler,
3390 .name = "nvm_partition",
3391 .mode = COMMAND_EXEC,
3392 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
3393 " set two EEPROM sizes in bytes and FlexRAM loading during reset",
3394 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
3395 .handler = kinetis_nvm_partition,
3398 .name = "fcf_source",
3399 .mode = COMMAND_EXEC,
3400 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
3401 " Mode 'protection' is safe from unwanted locking of the device.",
3402 .usage = "['protection'|'write']",
3403 .handler = kinetis_fcf_source_handler,
3406 .name = "fopt",
3407 .mode = COMMAND_EXEC,
3408 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
3409 .usage = "[num]",
3410 .handler = kinetis_fopt_handler,
3413 .name = "create_banks",
3414 .mode = COMMAND_CONFIG,
3415 .help = "Driver creates additional banks if device with two/four flash blocks is probed",
3416 .handler = kinetis_create_banks_handler,
3417 .usage = "",
3419 COMMAND_REGISTRATION_DONE
3422 static const struct command_registration kinetis_command_handler[] = {
3424 .name = "kinetis",
3425 .mode = COMMAND_ANY,
3426 .help = "Kinetis flash controller commands",
3427 .usage = "",
3428 .chain = kinetis_exec_command_handlers,
3430 COMMAND_REGISTRATION_DONE
3435 const struct flash_driver kinetis_flash = {
3436 .name = "kinetis",
3437 .commands = kinetis_command_handler,
3438 .flash_bank_command = kinetis_flash_bank_command,
3439 .erase = kinetis_erase,
3440 .protect = kinetis_protect,
3441 .write = kinetis_write,
3442 .read = default_flash_read,
3443 .probe = kinetis_probe,
3444 .auto_probe = kinetis_auto_probe,
3445 .erase_check = kinetis_blank_check,
3446 .protect_check = kinetis_protect_check,
3447 .info = kinetis_info,
3448 .free_driver_priv = kinetis_free_driver_priv,