2007-01-19 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / gcse.c
blobe6fef41ab62cb1388c36ff0498915967f7619c0f
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
172 #include "tree-pass.h"
173 #include "hashtab.h"
175 /* Propagate flow information through back edges and thus enable PRE's
176 moving loop invariant calculations out of loops.
178 Originally this tended to create worse overall code, but several
179 improvements during the development of PRE seem to have made following
180 back edges generally a win.
182 Note much of the loop invariant code motion done here would normally
183 be done by loop.c, which has more heuristics for when to move invariants
184 out of loops. At some point we might need to move some of those
185 heuristics into gcse.c. */
187 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
188 are a superset of those done by GCSE.
190 We perform the following steps:
192 1) Compute basic block information.
194 2) Compute table of places where registers are set.
196 3) Perform copy/constant propagation.
198 4) Perform global cse using lazy code motion if not optimizing
199 for size, or code hoisting if we are.
201 5) Perform another pass of copy/constant propagation.
203 Two passes of copy/constant propagation are done because the first one
204 enables more GCSE and the second one helps to clean up the copies that
205 GCSE creates. This is needed more for PRE than for Classic because Classic
206 GCSE will try to use an existing register containing the common
207 subexpression rather than create a new one. This is harder to do for PRE
208 because of the code motion (which Classic GCSE doesn't do).
210 Expressions we are interested in GCSE-ing are of the form
211 (set (pseudo-reg) (expression)).
212 Function want_to_gcse_p says what these are.
214 PRE handles moving invariant expressions out of loops (by treating them as
215 partially redundant).
217 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
218 assignment) based GVN (global value numbering). L. T. Simpson's paper
219 (Rice University) on value numbering is a useful reference for this.
221 **********************
223 We used to support multiple passes but there are diminishing returns in
224 doing so. The first pass usually makes 90% of the changes that are doable.
225 A second pass can make a few more changes made possible by the first pass.
226 Experiments show any further passes don't make enough changes to justify
227 the expense.
229 A study of spec92 using an unlimited number of passes:
230 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
231 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
232 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
234 It was found doing copy propagation between each pass enables further
235 substitutions.
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass. The parameter
239 max-gcse-passes can be modified if one wants to experiment.
241 **********************
243 The steps for PRE are:
245 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
247 2) Perform the data flow analysis for PRE.
249 3) Delete the redundant instructions
251 4) Insert the required copies [if any] that make the partially
252 redundant instructions fully redundant.
254 5) For other reaching expressions, insert an instruction to copy the value
255 to a newly created pseudo that will reach the redundant instruction.
257 The deletion is done first so that when we do insertions we
258 know which pseudo reg to use.
260 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
261 argue it is not. The number of iterations for the algorithm to converge
262 is typically 2-4 so I don't view it as that expensive (relatively speaking).
264 PRE GCSE depends heavily on the second CSE pass to clean up the copies
265 we create. To make an expression reach the place where it's redundant,
266 the result of the expression is copied to a new register, and the redundant
267 expression is deleted by replacing it with this new register. Classic GCSE
268 doesn't have this problem as much as it computes the reaching defs of
269 each register in each block and thus can try to use an existing
270 register. */
272 /* GCSE global vars. */
274 /* Note whether or not we should run jump optimization after gcse. We
275 want to do this for two cases.
277 * If we changed any jumps via cprop.
279 * If we added any labels via edge splitting. */
280 static int run_jump_opt_after_gcse;
282 /* An obstack for our working variables. */
283 static struct obstack gcse_obstack;
285 struct reg_use {rtx reg_rtx; };
287 /* Hash table of expressions. */
289 struct expr
291 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
292 rtx expr;
293 /* Index in the available expression bitmaps. */
294 int bitmap_index;
295 /* Next entry with the same hash. */
296 struct expr *next_same_hash;
297 /* List of anticipatable occurrences in basic blocks in the function.
298 An "anticipatable occurrence" is one that is the first occurrence in the
299 basic block, the operands are not modified in the basic block prior
300 to the occurrence and the output is not used between the start of
301 the block and the occurrence. */
302 struct occr *antic_occr;
303 /* List of available occurrence in basic blocks in the function.
304 An "available occurrence" is one that is the last occurrence in the
305 basic block and the operands are not modified by following statements in
306 the basic block [including this insn]. */
307 struct occr *avail_occr;
308 /* Non-null if the computation is PRE redundant.
309 The value is the newly created pseudo-reg to record a copy of the
310 expression in all the places that reach the redundant copy. */
311 rtx reaching_reg;
314 /* Occurrence of an expression.
315 There is one per basic block. If a pattern appears more than once the
316 last appearance is used [or first for anticipatable expressions]. */
318 struct occr
320 /* Next occurrence of this expression. */
321 struct occr *next;
322 /* The insn that computes the expression. */
323 rtx insn;
324 /* Nonzero if this [anticipatable] occurrence has been deleted. */
325 char deleted_p;
326 /* Nonzero if this [available] occurrence has been copied to
327 reaching_reg. */
328 /* ??? This is mutually exclusive with deleted_p, so they could share
329 the same byte. */
330 char copied_p;
333 /* Expression and copy propagation hash tables.
334 Each hash table is an array of buckets.
335 ??? It is known that if it were an array of entries, structure elements
336 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
337 not clear whether in the final analysis a sufficient amount of memory would
338 be saved as the size of the available expression bitmaps would be larger
339 [one could build a mapping table without holes afterwards though].
340 Someday I'll perform the computation and figure it out. */
342 struct hash_table
344 /* The table itself.
345 This is an array of `expr_hash_table_size' elements. */
346 struct expr **table;
348 /* Size of the hash table, in elements. */
349 unsigned int size;
351 /* Number of hash table elements. */
352 unsigned int n_elems;
354 /* Whether the table is expression of copy propagation one. */
355 int set_p;
358 /* Expression hash table. */
359 static struct hash_table expr_hash_table;
361 /* Copy propagation hash table. */
362 static struct hash_table set_hash_table;
364 /* Mapping of uids to cuids.
365 Only real insns get cuids. */
366 static int *uid_cuid;
368 /* Highest UID in UID_CUID. */
369 static int max_uid;
371 /* Get the cuid of an insn. */
372 #ifdef ENABLE_CHECKING
373 #define INSN_CUID(INSN) \
374 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
375 #else
376 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
377 #endif
379 /* Number of cuids. */
380 static int max_cuid;
382 /* Mapping of cuids to insns. */
383 static rtx *cuid_insn;
385 /* Get insn from cuid. */
386 #define CUID_INSN(CUID) (cuid_insn[CUID])
388 /* Maximum register number in function prior to doing gcse + 1.
389 Registers created during this pass have regno >= max_gcse_regno.
390 This is named with "gcse" to not collide with global of same name. */
391 static unsigned int max_gcse_regno;
393 /* Table of registers that are modified.
395 For each register, each element is a list of places where the pseudo-reg
396 is set.
398 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
399 requires knowledge of which blocks kill which regs [and thus could use
400 a bitmap instead of the lists `reg_set_table' uses].
402 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
403 num-regs) [however perhaps it may be useful to keep the data as is]. One
404 advantage of recording things this way is that `reg_set_table' is fairly
405 sparse with respect to pseudo regs but for hard regs could be fairly dense
406 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
407 up functions like compute_transp since in the case of pseudo-regs we only
408 need to iterate over the number of times a pseudo-reg is set, not over the
409 number of basic blocks [clearly there is a bit of a slow down in the cases
410 where a pseudo is set more than once in a block, however it is believed
411 that the net effect is to speed things up]. This isn't done for hard-regs
412 because recording call-clobbered hard-regs in `reg_set_table' at each
413 function call can consume a fair bit of memory, and iterating over
414 hard-regs stored this way in compute_transp will be more expensive. */
416 typedef struct reg_set
418 /* The next setting of this register. */
419 struct reg_set *next;
420 /* The index of the block where it was set. */
421 int bb_index;
422 } reg_set;
424 static reg_set **reg_set_table;
426 /* Size of `reg_set_table'.
427 The table starts out at max_gcse_regno + slop, and is enlarged as
428 necessary. */
429 static int reg_set_table_size;
431 /* Amount to grow `reg_set_table' by when it's full. */
432 #define REG_SET_TABLE_SLOP 100
434 /* This is a list of expressions which are MEMs and will be used by load
435 or store motion.
436 Load motion tracks MEMs which aren't killed by
437 anything except itself. (i.e., loads and stores to a single location).
438 We can then allow movement of these MEM refs with a little special
439 allowance. (all stores copy the same value to the reaching reg used
440 for the loads). This means all values used to store into memory must have
441 no side effects so we can re-issue the setter value.
442 Store Motion uses this structure as an expression table to track stores
443 which look interesting, and might be moveable towards the exit block. */
445 struct ls_expr
447 struct expr * expr; /* Gcse expression reference for LM. */
448 rtx pattern; /* Pattern of this mem. */
449 rtx pattern_regs; /* List of registers mentioned by the mem. */
450 rtx loads; /* INSN list of loads seen. */
451 rtx stores; /* INSN list of stores seen. */
452 struct ls_expr * next; /* Next in the list. */
453 int invalid; /* Invalid for some reason. */
454 int index; /* If it maps to a bitmap index. */
455 unsigned int hash_index; /* Index when in a hash table. */
456 rtx reaching_reg; /* Register to use when re-writing. */
459 /* Array of implicit set patterns indexed by basic block index. */
460 static rtx *implicit_sets;
462 /* Head of the list of load/store memory refs. */
463 static struct ls_expr * pre_ldst_mems = NULL;
465 /* Hashtable for the load/store memory refs. */
466 static htab_t pre_ldst_table = NULL;
468 /* Bitmap containing one bit for each register in the program.
469 Used when performing GCSE to track which registers have been set since
470 the start of the basic block. */
471 static regset reg_set_bitmap;
473 /* For each block, a bitmap of registers set in the block.
474 This is used by compute_transp.
475 It is computed during hash table computation and not by compute_sets
476 as it includes registers added since the last pass (or between cprop and
477 gcse) and it's currently not easy to realloc sbitmap vectors. */
478 static sbitmap *reg_set_in_block;
480 /* Array, indexed by basic block number for a list of insns which modify
481 memory within that block. */
482 static rtx * modify_mem_list;
483 static bitmap modify_mem_list_set;
485 /* This array parallels modify_mem_list, but is kept canonicalized. */
486 static rtx * canon_modify_mem_list;
488 /* Bitmap indexed by block numbers to record which blocks contain
489 function calls. */
490 static bitmap blocks_with_calls;
492 /* Various variables for statistics gathering. */
494 /* Memory used in a pass.
495 This isn't intended to be absolutely precise. Its intent is only
496 to keep an eye on memory usage. */
497 static int bytes_used;
499 /* GCSE substitutions made. */
500 static int gcse_subst_count;
501 /* Number of copy instructions created. */
502 static int gcse_create_count;
503 /* Number of local constants propagated. */
504 static int local_const_prop_count;
505 /* Number of local copies propagated. */
506 static int local_copy_prop_count;
507 /* Number of global constants propagated. */
508 static int global_const_prop_count;
509 /* Number of global copies propagated. */
510 static int global_copy_prop_count;
512 /* For available exprs */
513 static sbitmap *ae_kill, *ae_gen;
515 static void compute_can_copy (void);
516 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
517 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
518 static void *grealloc (void *, size_t);
519 static void *gcse_alloc (unsigned long);
520 static void alloc_gcse_mem (void);
521 static void free_gcse_mem (void);
522 static void alloc_reg_set_mem (int);
523 static void free_reg_set_mem (void);
524 static void record_one_set (int, rtx);
525 static void record_set_info (rtx, rtx, void *);
526 static void compute_sets (void);
527 static void hash_scan_insn (rtx, struct hash_table *, int);
528 static void hash_scan_set (rtx, rtx, struct hash_table *);
529 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
530 static void hash_scan_call (rtx, rtx, struct hash_table *);
531 static int want_to_gcse_p (rtx);
532 static bool can_assign_to_reg_p (rtx);
533 static bool gcse_constant_p (rtx);
534 static int oprs_unchanged_p (rtx, rtx, int);
535 static int oprs_anticipatable_p (rtx, rtx);
536 static int oprs_available_p (rtx, rtx);
537 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
538 struct hash_table *);
539 static void insert_set_in_table (rtx, rtx, struct hash_table *);
540 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
541 static unsigned int hash_set (int, int);
542 static int expr_equiv_p (rtx, rtx);
543 static void record_last_reg_set_info (rtx, int);
544 static void record_last_mem_set_info (rtx);
545 static void record_last_set_info (rtx, rtx, void *);
546 static void compute_hash_table (struct hash_table *);
547 static void alloc_hash_table (int, struct hash_table *, int);
548 static void free_hash_table (struct hash_table *);
549 static void compute_hash_table_work (struct hash_table *);
550 static void dump_hash_table (FILE *, const char *, struct hash_table *);
551 static struct expr *lookup_set (unsigned int, struct hash_table *);
552 static struct expr *next_set (unsigned int, struct expr *);
553 static void reset_opr_set_tables (void);
554 static int oprs_not_set_p (rtx, rtx);
555 static void mark_call (rtx);
556 static void mark_set (rtx, rtx);
557 static void mark_clobber (rtx, rtx);
558 static void mark_oprs_set (rtx);
559 static void alloc_cprop_mem (int, int);
560 static void free_cprop_mem (void);
561 static void compute_transp (rtx, int, sbitmap *, int);
562 static void compute_transpout (void);
563 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
564 struct hash_table *);
565 static void compute_cprop_data (void);
566 static void find_used_regs (rtx *, void *);
567 static int try_replace_reg (rtx, rtx, rtx);
568 static struct expr *find_avail_set (int, rtx);
569 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
570 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
571 static int load_killed_in_block_p (basic_block, int, rtx, int);
572 static void canon_list_insert (rtx, rtx, void *);
573 static int cprop_insn (rtx, int);
574 static int cprop (int);
575 static void find_implicit_sets (void);
576 static int one_cprop_pass (int, bool, bool);
577 static bool constprop_register (rtx, rtx, rtx, bool);
578 static struct expr *find_bypass_set (int, int);
579 static bool reg_killed_on_edge (rtx, edge);
580 static int bypass_block (basic_block, rtx, rtx);
581 static int bypass_conditional_jumps (void);
582 static void alloc_pre_mem (int, int);
583 static void free_pre_mem (void);
584 static void compute_pre_data (void);
585 static int pre_expr_reaches_here_p (basic_block, struct expr *,
586 basic_block);
587 static void insert_insn_end_bb (struct expr *, basic_block, int);
588 static void pre_insert_copy_insn (struct expr *, rtx);
589 static void pre_insert_copies (void);
590 static int pre_delete (void);
591 static int pre_gcse (void);
592 static int one_pre_gcse_pass (int);
593 static void add_label_notes (rtx, rtx);
594 static void alloc_code_hoist_mem (int, int);
595 static void free_code_hoist_mem (void);
596 static void compute_code_hoist_vbeinout (void);
597 static void compute_code_hoist_data (void);
598 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
599 static void hoist_code (void);
600 static int one_code_hoisting_pass (void);
601 static rtx process_insert_insn (struct expr *);
602 static int pre_edge_insert (struct edge_list *, struct expr **);
603 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
604 basic_block, char *);
605 static struct ls_expr * ldst_entry (rtx);
606 static void free_ldst_entry (struct ls_expr *);
607 static void free_ldst_mems (void);
608 static void print_ldst_list (FILE *);
609 static struct ls_expr * find_rtx_in_ldst (rtx);
610 static int enumerate_ldsts (void);
611 static inline struct ls_expr * first_ls_expr (void);
612 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
613 static int simple_mem (rtx);
614 static void invalidate_any_buried_refs (rtx);
615 static void compute_ld_motion_mems (void);
616 static void trim_ld_motion_mems (void);
617 static void update_ld_motion_stores (struct expr *);
618 static void reg_set_info (rtx, rtx, void *);
619 static void reg_clear_last_set (rtx, rtx, void *);
620 static bool store_ops_ok (rtx, int *);
621 static rtx extract_mentioned_regs (rtx);
622 static rtx extract_mentioned_regs_helper (rtx, rtx);
623 static void find_moveable_store (rtx, int *, int *);
624 static int compute_store_table (void);
625 static bool load_kills_store (rtx, rtx, int);
626 static bool find_loads (rtx, rtx, int);
627 static bool store_killed_in_insn (rtx, rtx, rtx, int);
628 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
629 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
630 static void build_store_vectors (void);
631 static void insert_insn_start_bb (rtx, basic_block);
632 static int insert_store (struct ls_expr *, edge);
633 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
634 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
635 static void delete_store (struct ls_expr *, basic_block);
636 static void free_store_memory (void);
637 static void store_motion (void);
638 static void free_insn_expr_list_list (rtx *);
639 static void clear_modify_mem_tables (void);
640 static void free_modify_mem_tables (void);
641 static rtx gcse_emit_move_after (rtx, rtx, rtx);
642 static void local_cprop_find_used_regs (rtx *, void *);
643 static bool do_local_cprop (rtx, rtx, bool, rtx*);
644 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
645 static void local_cprop_pass (bool);
646 static bool is_too_expensive (const char *);
649 /* Entry point for global common subexpression elimination.
650 F is the first instruction in the function. Return nonzero if a
651 change is mode. */
653 static int
654 gcse_main (rtx f ATTRIBUTE_UNUSED)
656 int changed, pass;
657 /* Bytes used at start of pass. */
658 int initial_bytes_used;
659 /* Maximum number of bytes used by a pass. */
660 int max_pass_bytes;
661 /* Point to release obstack data from for each pass. */
662 char *gcse_obstack_bottom;
664 /* We do not construct an accurate cfg in functions which call
665 setjmp, so just punt to be safe. */
666 if (current_function_calls_setjmp)
667 return 0;
669 /* Assume that we do not need to run jump optimizations after gcse. */
670 run_jump_opt_after_gcse = 0;
672 /* Identify the basic block information for this function, including
673 successors and predecessors. */
674 max_gcse_regno = max_reg_num ();
676 if (dump_file)
677 dump_flow_info (dump_file, dump_flags);
679 /* Return if there's nothing to do, or it is too expensive. */
680 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
681 || is_too_expensive (_("GCSE disabled")))
682 return 0;
684 gcc_obstack_init (&gcse_obstack);
685 bytes_used = 0;
687 /* We need alias. */
688 init_alias_analysis ();
689 /* Record where pseudo-registers are set. This data is kept accurate
690 during each pass. ??? We could also record hard-reg information here
691 [since it's unchanging], however it is currently done during hash table
692 computation.
694 It may be tempting to compute MEM set information here too, but MEM sets
695 will be subject to code motion one day and thus we need to compute
696 information about memory sets when we build the hash tables. */
698 alloc_reg_set_mem (max_gcse_regno);
699 compute_sets ();
701 pass = 0;
702 initial_bytes_used = bytes_used;
703 max_pass_bytes = 0;
704 gcse_obstack_bottom = gcse_alloc (1);
705 changed = 1;
706 while (changed && pass < MAX_GCSE_PASSES)
708 changed = 0;
709 if (dump_file)
710 fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
712 /* Initialize bytes_used to the space for the pred/succ lists,
713 and the reg_set_table data. */
714 bytes_used = initial_bytes_used;
716 /* Each pass may create new registers, so recalculate each time. */
717 max_gcse_regno = max_reg_num ();
719 alloc_gcse_mem ();
721 /* Don't allow constant propagation to modify jumps
722 during this pass. */
723 timevar_push (TV_CPROP1);
724 changed = one_cprop_pass (pass + 1, false, false);
725 timevar_pop (TV_CPROP1);
727 if (optimize_size)
728 /* Do nothing. */ ;
729 else
731 timevar_push (TV_PRE);
732 changed |= one_pre_gcse_pass (pass + 1);
733 /* We may have just created new basic blocks. Release and
734 recompute various things which are sized on the number of
735 basic blocks. */
736 if (changed)
738 free_modify_mem_tables ();
739 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
740 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
742 free_reg_set_mem ();
743 alloc_reg_set_mem (max_reg_num ());
744 compute_sets ();
745 run_jump_opt_after_gcse = 1;
746 timevar_pop (TV_PRE);
749 if (max_pass_bytes < bytes_used)
750 max_pass_bytes = bytes_used;
752 /* Free up memory, then reallocate for code hoisting. We can
753 not re-use the existing allocated memory because the tables
754 will not have info for the insns or registers created by
755 partial redundancy elimination. */
756 free_gcse_mem ();
758 /* It does not make sense to run code hoisting unless we are optimizing
759 for code size -- it rarely makes programs faster, and can make
760 them bigger if we did partial redundancy elimination (when optimizing
761 for space, we don't run the partial redundancy algorithms). */
762 if (optimize_size)
764 timevar_push (TV_HOIST);
765 max_gcse_regno = max_reg_num ();
766 alloc_gcse_mem ();
767 changed |= one_code_hoisting_pass ();
768 free_gcse_mem ();
770 if (max_pass_bytes < bytes_used)
771 max_pass_bytes = bytes_used;
772 timevar_pop (TV_HOIST);
775 if (dump_file)
777 fprintf (dump_file, "\n");
778 fflush (dump_file);
781 obstack_free (&gcse_obstack, gcse_obstack_bottom);
782 pass++;
785 /* Do one last pass of copy propagation, including cprop into
786 conditional jumps. */
788 max_gcse_regno = max_reg_num ();
789 alloc_gcse_mem ();
790 /* This time, go ahead and allow cprop to alter jumps. */
791 timevar_push (TV_CPROP2);
792 one_cprop_pass (pass + 1, true, false);
793 timevar_pop (TV_CPROP2);
794 free_gcse_mem ();
796 if (dump_file)
798 fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
799 current_function_name (), n_basic_blocks);
800 fprintf (dump_file, "%d pass%s, %d bytes\n\n",
801 pass, pass > 1 ? "es" : "", max_pass_bytes);
804 obstack_free (&gcse_obstack, NULL);
805 free_reg_set_mem ();
807 /* We are finished with alias. */
808 end_alias_analysis ();
809 allocate_reg_info (max_reg_num (), FALSE, FALSE);
811 if (!optimize_size && flag_gcse_sm)
813 timevar_push (TV_LSM);
814 store_motion ();
815 timevar_pop (TV_LSM);
818 /* Record where pseudo-registers are set. */
819 return run_jump_opt_after_gcse;
822 /* Misc. utilities. */
824 /* Nonzero for each mode that supports (set (reg) (reg)).
825 This is trivially true for integer and floating point values.
826 It may or may not be true for condition codes. */
827 static char can_copy[(int) NUM_MACHINE_MODES];
829 /* Compute which modes support reg/reg copy operations. */
831 static void
832 compute_can_copy (void)
834 int i;
835 #ifndef AVOID_CCMODE_COPIES
836 rtx reg, insn;
837 #endif
838 memset (can_copy, 0, NUM_MACHINE_MODES);
840 start_sequence ();
841 for (i = 0; i < NUM_MACHINE_MODES; i++)
842 if (GET_MODE_CLASS (i) == MODE_CC)
844 #ifdef AVOID_CCMODE_COPIES
845 can_copy[i] = 0;
846 #else
847 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
848 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
849 if (recog (PATTERN (insn), insn, NULL) >= 0)
850 can_copy[i] = 1;
851 #endif
853 else
854 can_copy[i] = 1;
856 end_sequence ();
859 /* Returns whether the mode supports reg/reg copy operations. */
861 bool
862 can_copy_p (enum machine_mode mode)
864 static bool can_copy_init_p = false;
866 if (! can_copy_init_p)
868 compute_can_copy ();
869 can_copy_init_p = true;
872 return can_copy[mode] != 0;
875 /* Cover function to xmalloc to record bytes allocated. */
877 static void *
878 gmalloc (size_t size)
880 bytes_used += size;
881 return xmalloc (size);
884 /* Cover function to xcalloc to record bytes allocated. */
886 static void *
887 gcalloc (size_t nelem, size_t elsize)
889 bytes_used += nelem * elsize;
890 return xcalloc (nelem, elsize);
893 /* Cover function to xrealloc.
894 We don't record the additional size since we don't know it.
895 It won't affect memory usage stats much anyway. */
897 static void *
898 grealloc (void *ptr, size_t size)
900 return xrealloc (ptr, size);
903 /* Cover function to obstack_alloc. */
905 static void *
906 gcse_alloc (unsigned long size)
908 bytes_used += size;
909 return obstack_alloc (&gcse_obstack, size);
912 /* Allocate memory for the cuid mapping array,
913 and reg/memory set tracking tables.
915 This is called at the start of each pass. */
917 static void
918 alloc_gcse_mem (void)
920 int i;
921 basic_block bb;
922 rtx insn;
924 /* Find the largest UID and create a mapping from UIDs to CUIDs.
925 CUIDs are like UIDs except they increase monotonically, have no gaps,
926 and only apply to real insns.
927 (Actually, there are gaps, for insn that are not inside a basic block.
928 but we should never see those anyway, so this is OK.) */
930 max_uid = get_max_uid ();
931 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
932 i = 0;
933 FOR_EACH_BB (bb)
934 FOR_BB_INSNS (bb, insn)
936 if (INSN_P (insn))
937 uid_cuid[INSN_UID (insn)] = i++;
938 else
939 uid_cuid[INSN_UID (insn)] = i;
942 /* Create a table mapping cuids to insns. */
944 max_cuid = i;
945 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
946 i = 0;
947 FOR_EACH_BB (bb)
948 FOR_BB_INSNS (bb, insn)
949 if (INSN_P (insn))
950 CUID_INSN (i++) = insn;
952 /* Allocate vars to track sets of regs. */
953 reg_set_bitmap = BITMAP_ALLOC (NULL);
955 /* Allocate vars to track sets of regs, memory per block. */
956 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
957 /* Allocate array to keep a list of insns which modify memory in each
958 basic block. */
959 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
960 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
961 modify_mem_list_set = BITMAP_ALLOC (NULL);
962 blocks_with_calls = BITMAP_ALLOC (NULL);
965 /* Free memory allocated by alloc_gcse_mem. */
967 static void
968 free_gcse_mem (void)
970 free (uid_cuid);
971 free (cuid_insn);
973 BITMAP_FREE (reg_set_bitmap);
975 sbitmap_vector_free (reg_set_in_block);
976 free_modify_mem_tables ();
977 BITMAP_FREE (modify_mem_list_set);
978 BITMAP_FREE (blocks_with_calls);
981 /* Compute the local properties of each recorded expression.
983 Local properties are those that are defined by the block, irrespective of
984 other blocks.
986 An expression is transparent in a block if its operands are not modified
987 in the block.
989 An expression is computed (locally available) in a block if it is computed
990 at least once and expression would contain the same value if the
991 computation was moved to the end of the block.
993 An expression is locally anticipatable in a block if it is computed at
994 least once and expression would contain the same value if the computation
995 was moved to the beginning of the block.
997 We call this routine for cprop, pre and code hoisting. They all compute
998 basically the same information and thus can easily share this code.
1000 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1001 properties. If NULL, then it is not necessary to compute or record that
1002 particular property.
1004 TABLE controls which hash table to look at. If it is set hash table,
1005 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1006 ABSALTERED. */
1008 static void
1009 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1010 struct hash_table *table)
1012 unsigned int i;
1014 /* Initialize any bitmaps that were passed in. */
1015 if (transp)
1017 if (table->set_p)
1018 sbitmap_vector_zero (transp, last_basic_block);
1019 else
1020 sbitmap_vector_ones (transp, last_basic_block);
1023 if (comp)
1024 sbitmap_vector_zero (comp, last_basic_block);
1025 if (antloc)
1026 sbitmap_vector_zero (antloc, last_basic_block);
1028 for (i = 0; i < table->size; i++)
1030 struct expr *expr;
1032 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1034 int indx = expr->bitmap_index;
1035 struct occr *occr;
1037 /* The expression is transparent in this block if it is not killed.
1038 We start by assuming all are transparent [none are killed], and
1039 then reset the bits for those that are. */
1040 if (transp)
1041 compute_transp (expr->expr, indx, transp, table->set_p);
1043 /* The occurrences recorded in antic_occr are exactly those that
1044 we want to set to nonzero in ANTLOC. */
1045 if (antloc)
1046 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1048 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1050 /* While we're scanning the table, this is a good place to
1051 initialize this. */
1052 occr->deleted_p = 0;
1055 /* The occurrences recorded in avail_occr are exactly those that
1056 we want to set to nonzero in COMP. */
1057 if (comp)
1058 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1060 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1062 /* While we're scanning the table, this is a good place to
1063 initialize this. */
1064 occr->copied_p = 0;
1067 /* While we're scanning the table, this is a good place to
1068 initialize this. */
1069 expr->reaching_reg = 0;
1074 /* Register set information.
1076 `reg_set_table' records where each register is set or otherwise
1077 modified. */
1079 static struct obstack reg_set_obstack;
1081 static void
1082 alloc_reg_set_mem (int n_regs)
1084 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1085 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1087 gcc_obstack_init (&reg_set_obstack);
1090 static void
1091 free_reg_set_mem (void)
1093 free (reg_set_table);
1094 obstack_free (&reg_set_obstack, NULL);
1097 /* Record REGNO in the reg_set table. */
1099 static void
1100 record_one_set (int regno, rtx insn)
1102 /* Allocate a new reg_set element and link it onto the list. */
1103 struct reg_set *new_reg_info;
1105 /* If the table isn't big enough, enlarge it. */
1106 if (regno >= reg_set_table_size)
1108 int new_size = regno + REG_SET_TABLE_SLOP;
1110 reg_set_table = grealloc (reg_set_table,
1111 new_size * sizeof (struct reg_set *));
1112 memset (reg_set_table + reg_set_table_size, 0,
1113 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1114 reg_set_table_size = new_size;
1117 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1118 bytes_used += sizeof (struct reg_set);
1119 new_reg_info->bb_index = BLOCK_NUM (insn);
1120 new_reg_info->next = reg_set_table[regno];
1121 reg_set_table[regno] = new_reg_info;
1124 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1125 an insn. The DATA is really the instruction in which the SET is
1126 occurring. */
1128 static void
1129 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1131 rtx record_set_insn = (rtx) data;
1133 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1134 record_one_set (REGNO (dest), record_set_insn);
1137 /* Scan the function and record each set of each pseudo-register.
1139 This is called once, at the start of the gcse pass. See the comments for
1140 `reg_set_table' for further documentation. */
1142 static void
1143 compute_sets (void)
1145 basic_block bb;
1146 rtx insn;
1148 FOR_EACH_BB (bb)
1149 FOR_BB_INSNS (bb, insn)
1150 if (INSN_P (insn))
1151 note_stores (PATTERN (insn), record_set_info, insn);
1154 /* Hash table support. */
1156 struct reg_avail_info
1158 basic_block last_bb;
1159 int first_set;
1160 int last_set;
1163 static struct reg_avail_info *reg_avail_info;
1164 static basic_block current_bb;
1167 /* See whether X, the source of a set, is something we want to consider for
1168 GCSE. */
1170 static int
1171 want_to_gcse_p (rtx x)
1173 #ifdef STACK_REGS
1174 /* On register stack architectures, don't GCSE constants from the
1175 constant pool, as the benefits are often swamped by the overhead
1176 of shuffling the register stack between basic blocks. */
1177 if (IS_STACK_MODE (GET_MODE (x)))
1178 x = avoid_constant_pool_reference (x);
1179 #endif
1181 switch (GET_CODE (x))
1183 case REG:
1184 case SUBREG:
1185 case CONST_INT:
1186 case CONST_DOUBLE:
1187 case CONST_VECTOR:
1188 case CALL:
1189 return 0;
1191 default:
1192 return can_assign_to_reg_p (x);
1196 /* Used internally by can_assign_to_reg_p. */
1198 static GTY(()) rtx test_insn;
1200 /* Return true if we can assign X to a pseudo register. */
1202 static bool
1203 can_assign_to_reg_p (rtx x)
1205 int num_clobbers = 0;
1206 int icode;
1208 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1209 if (general_operand (x, GET_MODE (x)))
1210 return 1;
1211 else if (GET_MODE (x) == VOIDmode)
1212 return 0;
1214 /* Otherwise, check if we can make a valid insn from it. First initialize
1215 our test insn if we haven't already. */
1216 if (test_insn == 0)
1218 test_insn
1219 = make_insn_raw (gen_rtx_SET (VOIDmode,
1220 gen_rtx_REG (word_mode,
1221 FIRST_PSEUDO_REGISTER * 2),
1222 const0_rtx));
1223 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1226 /* Now make an insn like the one we would make when GCSE'ing and see if
1227 valid. */
1228 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1229 SET_SRC (PATTERN (test_insn)) = x;
1230 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1231 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1234 /* Return nonzero if the operands of expression X are unchanged from the
1235 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1236 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1238 static int
1239 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1241 int i, j;
1242 enum rtx_code code;
1243 const char *fmt;
1245 if (x == 0)
1246 return 1;
1248 code = GET_CODE (x);
1249 switch (code)
1251 case REG:
1253 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1255 if (info->last_bb != current_bb)
1256 return 1;
1257 if (avail_p)
1258 return info->last_set < INSN_CUID (insn);
1259 else
1260 return info->first_set >= INSN_CUID (insn);
1263 case MEM:
1264 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1265 x, avail_p))
1266 return 0;
1267 else
1268 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1270 case PRE_DEC:
1271 case PRE_INC:
1272 case POST_DEC:
1273 case POST_INC:
1274 case PRE_MODIFY:
1275 case POST_MODIFY:
1276 return 0;
1278 case PC:
1279 case CC0: /*FIXME*/
1280 case CONST:
1281 case CONST_INT:
1282 case CONST_DOUBLE:
1283 case CONST_VECTOR:
1284 case SYMBOL_REF:
1285 case LABEL_REF:
1286 case ADDR_VEC:
1287 case ADDR_DIFF_VEC:
1288 return 1;
1290 default:
1291 break;
1294 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1296 if (fmt[i] == 'e')
1298 /* If we are about to do the last recursive call needed at this
1299 level, change it into iteration. This function is called enough
1300 to be worth it. */
1301 if (i == 0)
1302 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1304 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1305 return 0;
1307 else if (fmt[i] == 'E')
1308 for (j = 0; j < XVECLEN (x, i); j++)
1309 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1310 return 0;
1313 return 1;
1316 /* Used for communication between mems_conflict_for_gcse_p and
1317 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1318 conflict between two memory references. */
1319 static int gcse_mems_conflict_p;
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. A memory reference for a load instruction,
1323 mems_conflict_for_gcse_p will see if a memory store conflicts with
1324 this memory load. */
1325 static rtx gcse_mem_operand;
1327 /* DEST is the output of an instruction. If it is a memory reference, and
1328 possibly conflicts with the load found in gcse_mem_operand, then set
1329 gcse_mems_conflict_p to a nonzero value. */
1331 static void
1332 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1333 void *data ATTRIBUTE_UNUSED)
1335 while (GET_CODE (dest) == SUBREG
1336 || GET_CODE (dest) == ZERO_EXTRACT
1337 || GET_CODE (dest) == STRICT_LOW_PART)
1338 dest = XEXP (dest, 0);
1340 /* If DEST is not a MEM, then it will not conflict with the load. Note
1341 that function calls are assumed to clobber memory, but are handled
1342 elsewhere. */
1343 if (! MEM_P (dest))
1344 return;
1346 /* If we are setting a MEM in our list of specially recognized MEMs,
1347 don't mark as killed this time. */
1349 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1351 if (!find_rtx_in_ldst (dest))
1352 gcse_mems_conflict_p = 1;
1353 return;
1356 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1357 rtx_addr_varies_p))
1358 gcse_mems_conflict_p = 1;
1361 /* Return nonzero if the expression in X (a memory reference) is killed
1362 in block BB before or after the insn with the CUID in UID_LIMIT.
1363 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1364 before UID_LIMIT.
1366 To check the entire block, set UID_LIMIT to max_uid + 1 and
1367 AVAIL_P to 0. */
1369 static int
1370 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1372 rtx list_entry = modify_mem_list[bb->index];
1374 /* If this is a readonly then we aren't going to be changing it. */
1375 if (MEM_READONLY_P (x))
1376 return 0;
1378 while (list_entry)
1380 rtx setter;
1381 /* Ignore entries in the list that do not apply. */
1382 if ((avail_p
1383 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1384 || (! avail_p
1385 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1387 list_entry = XEXP (list_entry, 1);
1388 continue;
1391 setter = XEXP (list_entry, 0);
1393 /* If SETTER is a call everything is clobbered. Note that calls
1394 to pure functions are never put on the list, so we need not
1395 worry about them. */
1396 if (CALL_P (setter))
1397 return 1;
1399 /* SETTER must be an INSN of some kind that sets memory. Call
1400 note_stores to examine each hunk of memory that is modified.
1402 The note_stores interface is pretty limited, so we have to
1403 communicate via global variables. Yuk. */
1404 gcse_mem_operand = x;
1405 gcse_mems_conflict_p = 0;
1406 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1407 if (gcse_mems_conflict_p)
1408 return 1;
1409 list_entry = XEXP (list_entry, 1);
1411 return 0;
1414 /* Return nonzero if the operands of expression X are unchanged from
1415 the start of INSN's basic block up to but not including INSN. */
1417 static int
1418 oprs_anticipatable_p (rtx x, rtx insn)
1420 return oprs_unchanged_p (x, insn, 0);
1423 /* Return nonzero if the operands of expression X are unchanged from
1424 INSN to the end of INSN's basic block. */
1426 static int
1427 oprs_available_p (rtx x, rtx insn)
1429 return oprs_unchanged_p (x, insn, 1);
1432 /* Hash expression X.
1434 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1435 indicating if a volatile operand is found or if the expression contains
1436 something we don't want to insert in the table. HASH_TABLE_SIZE is
1437 the current size of the hash table to be probed. */
1439 static unsigned int
1440 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1441 int hash_table_size)
1443 unsigned int hash;
1445 *do_not_record_p = 0;
1447 hash = hash_rtx (x, mode, do_not_record_p,
1448 NULL, /*have_reg_qty=*/false);
1449 return hash % hash_table_size;
1452 /* Hash a set of register REGNO.
1454 Sets are hashed on the register that is set. This simplifies the PRE copy
1455 propagation code.
1457 ??? May need to make things more elaborate. Later, as necessary. */
1459 static unsigned int
1460 hash_set (int regno, int hash_table_size)
1462 unsigned int hash;
1464 hash = regno;
1465 return hash % hash_table_size;
1468 /* Return nonzero if exp1 is equivalent to exp2. */
1470 static int
1471 expr_equiv_p (rtx x, rtx y)
1473 return exp_equiv_p (x, y, 0, true);
1476 /* Insert expression X in INSN in the hash TABLE.
1477 If it is already present, record it as the last occurrence in INSN's
1478 basic block.
1480 MODE is the mode of the value X is being stored into.
1481 It is only used if X is a CONST_INT.
1483 ANTIC_P is nonzero if X is an anticipatable expression.
1484 AVAIL_P is nonzero if X is an available expression. */
1486 static void
1487 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1488 int avail_p, struct hash_table *table)
1490 int found, do_not_record_p;
1491 unsigned int hash;
1492 struct expr *cur_expr, *last_expr = NULL;
1493 struct occr *antic_occr, *avail_occr;
1495 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1497 /* Do not insert expression in table if it contains volatile operands,
1498 or if hash_expr determines the expression is something we don't want
1499 to or can't handle. */
1500 if (do_not_record_p)
1501 return;
1503 cur_expr = table->table[hash];
1504 found = 0;
1506 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1508 /* If the expression isn't found, save a pointer to the end of
1509 the list. */
1510 last_expr = cur_expr;
1511 cur_expr = cur_expr->next_same_hash;
1514 if (! found)
1516 cur_expr = gcse_alloc (sizeof (struct expr));
1517 bytes_used += sizeof (struct expr);
1518 if (table->table[hash] == NULL)
1519 /* This is the first pattern that hashed to this index. */
1520 table->table[hash] = cur_expr;
1521 else
1522 /* Add EXPR to end of this hash chain. */
1523 last_expr->next_same_hash = cur_expr;
1525 /* Set the fields of the expr element. */
1526 cur_expr->expr = x;
1527 cur_expr->bitmap_index = table->n_elems++;
1528 cur_expr->next_same_hash = NULL;
1529 cur_expr->antic_occr = NULL;
1530 cur_expr->avail_occr = NULL;
1533 /* Now record the occurrence(s). */
1534 if (antic_p)
1536 antic_occr = cur_expr->antic_occr;
1538 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1539 antic_occr = NULL;
1541 if (antic_occr)
1542 /* Found another instance of the expression in the same basic block.
1543 Prefer the currently recorded one. We want the first one in the
1544 block and the block is scanned from start to end. */
1545 ; /* nothing to do */
1546 else
1548 /* First occurrence of this expression in this basic block. */
1549 antic_occr = gcse_alloc (sizeof (struct occr));
1550 bytes_used += sizeof (struct occr);
1551 antic_occr->insn = insn;
1552 antic_occr->next = cur_expr->antic_occr;
1553 antic_occr->deleted_p = 0;
1554 cur_expr->antic_occr = antic_occr;
1558 if (avail_p)
1560 avail_occr = cur_expr->avail_occr;
1562 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1564 /* Found another instance of the expression in the same basic block.
1565 Prefer this occurrence to the currently recorded one. We want
1566 the last one in the block and the block is scanned from start
1567 to end. */
1568 avail_occr->insn = insn;
1570 else
1572 /* First occurrence of this expression in this basic block. */
1573 avail_occr = gcse_alloc (sizeof (struct occr));
1574 bytes_used += sizeof (struct occr);
1575 avail_occr->insn = insn;
1576 avail_occr->next = cur_expr->avail_occr;
1577 avail_occr->deleted_p = 0;
1578 cur_expr->avail_occr = avail_occr;
1583 /* Insert pattern X in INSN in the hash table.
1584 X is a SET of a reg to either another reg or a constant.
1585 If it is already present, record it as the last occurrence in INSN's
1586 basic block. */
1588 static void
1589 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1591 int found;
1592 unsigned int hash;
1593 struct expr *cur_expr, *last_expr = NULL;
1594 struct occr *cur_occr;
1596 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1598 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1600 cur_expr = table->table[hash];
1601 found = 0;
1603 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1605 /* If the expression isn't found, save a pointer to the end of
1606 the list. */
1607 last_expr = cur_expr;
1608 cur_expr = cur_expr->next_same_hash;
1611 if (! found)
1613 cur_expr = gcse_alloc (sizeof (struct expr));
1614 bytes_used += sizeof (struct expr);
1615 if (table->table[hash] == NULL)
1616 /* This is the first pattern that hashed to this index. */
1617 table->table[hash] = cur_expr;
1618 else
1619 /* Add EXPR to end of this hash chain. */
1620 last_expr->next_same_hash = cur_expr;
1622 /* Set the fields of the expr element.
1623 We must copy X because it can be modified when copy propagation is
1624 performed on its operands. */
1625 cur_expr->expr = copy_rtx (x);
1626 cur_expr->bitmap_index = table->n_elems++;
1627 cur_expr->next_same_hash = NULL;
1628 cur_expr->antic_occr = NULL;
1629 cur_expr->avail_occr = NULL;
1632 /* Now record the occurrence. */
1633 cur_occr = cur_expr->avail_occr;
1635 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1637 /* Found another instance of the expression in the same basic block.
1638 Prefer this occurrence to the currently recorded one. We want
1639 the last one in the block and the block is scanned from start
1640 to end. */
1641 cur_occr->insn = insn;
1643 else
1645 /* First occurrence of this expression in this basic block. */
1646 cur_occr = gcse_alloc (sizeof (struct occr));
1647 bytes_used += sizeof (struct occr);
1649 cur_occr->insn = insn;
1650 cur_occr->next = cur_expr->avail_occr;
1651 cur_occr->deleted_p = 0;
1652 cur_expr->avail_occr = cur_occr;
1656 /* Determine whether the rtx X should be treated as a constant for
1657 the purposes of GCSE's constant propagation. */
1659 static bool
1660 gcse_constant_p (rtx x)
1662 /* Consider a COMPARE of two integers constant. */
1663 if (GET_CODE (x) == COMPARE
1664 && GET_CODE (XEXP (x, 0)) == CONST_INT
1665 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1666 return true;
1668 /* Consider a COMPARE of the same registers is a constant
1669 if they are not floating point registers. */
1670 if (GET_CODE(x) == COMPARE
1671 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1672 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1673 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1674 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1675 return true;
1677 return CONSTANT_P (x);
1680 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1681 expression one). */
1683 static void
1684 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1686 rtx src = SET_SRC (pat);
1687 rtx dest = SET_DEST (pat);
1688 rtx note;
1690 if (GET_CODE (src) == CALL)
1691 hash_scan_call (src, insn, table);
1693 else if (REG_P (dest))
1695 unsigned int regno = REGNO (dest);
1696 rtx tmp;
1698 /* See if a REG_NOTE shows this equivalent to a simpler expression.
1699 This allows us to do a single GCSE pass and still eliminate
1700 redundant constants, addresses or other expressions that are
1701 constructed with multiple instructions. */
1702 note = find_reg_equal_equiv_note (insn);
1703 if (note != 0
1704 && (table->set_p
1705 ? gcse_constant_p (XEXP (note, 0))
1706 : want_to_gcse_p (XEXP (note, 0))))
1707 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1709 /* Only record sets of pseudo-regs in the hash table. */
1710 if (! table->set_p
1711 && regno >= FIRST_PSEUDO_REGISTER
1712 /* Don't GCSE something if we can't do a reg/reg copy. */
1713 && can_copy_p (GET_MODE (dest))
1714 /* GCSE commonly inserts instruction after the insn. We can't
1715 do that easily for EH_REGION notes so disable GCSE on these
1716 for now. */
1717 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1718 /* Is SET_SRC something we want to gcse? */
1719 && want_to_gcse_p (src)
1720 /* Don't CSE a nop. */
1721 && ! set_noop_p (pat)
1722 /* Don't GCSE if it has attached REG_EQUIV note.
1723 At this point this only function parameters should have
1724 REG_EQUIV notes and if the argument slot is used somewhere
1725 explicitly, it means address of parameter has been taken,
1726 so we should not extend the lifetime of the pseudo. */
1727 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1729 /* An expression is not anticipatable if its operands are
1730 modified before this insn or if this is not the only SET in
1731 this insn. */
1732 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1733 /* An expression is not available if its operands are
1734 subsequently modified, including this insn. It's also not
1735 available if this is a branch, because we can't insert
1736 a set after the branch. */
1737 int avail_p = (oprs_available_p (src, insn)
1738 && ! JUMP_P (insn));
1740 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1743 /* Record sets for constant/copy propagation. */
1744 else if (table->set_p
1745 && regno >= FIRST_PSEUDO_REGISTER
1746 && ((REG_P (src)
1747 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1748 && can_copy_p (GET_MODE (dest))
1749 && REGNO (src) != regno)
1750 || gcse_constant_p (src))
1751 /* A copy is not available if its src or dest is subsequently
1752 modified. Here we want to search from INSN+1 on, but
1753 oprs_available_p searches from INSN on. */
1754 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1755 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1756 && oprs_available_p (pat, tmp))))
1757 insert_set_in_table (pat, insn, table);
1759 /* In case of store we want to consider the memory value as available in
1760 the REG stored in that memory. This makes it possible to remove
1761 redundant loads from due to stores to the same location. */
1762 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1764 unsigned int regno = REGNO (src);
1766 /* Do not do this for constant/copy propagation. */
1767 if (! table->set_p
1768 /* Only record sets of pseudo-regs in the hash table. */
1769 && regno >= FIRST_PSEUDO_REGISTER
1770 /* Don't GCSE something if we can't do a reg/reg copy. */
1771 && can_copy_p (GET_MODE (src))
1772 /* GCSE commonly inserts instruction after the insn. We can't
1773 do that easily for EH_REGION notes so disable GCSE on these
1774 for now. */
1775 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1776 /* Is SET_DEST something we want to gcse? */
1777 && want_to_gcse_p (dest)
1778 /* Don't CSE a nop. */
1779 && ! set_noop_p (pat)
1780 /* Don't GCSE if it has attached REG_EQUIV note.
1781 At this point this only function parameters should have
1782 REG_EQUIV notes and if the argument slot is used somewhere
1783 explicitly, it means address of parameter has been taken,
1784 so we should not extend the lifetime of the pseudo. */
1785 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1786 || ! MEM_P (XEXP (note, 0))))
1788 /* Stores are never anticipatable. */
1789 int antic_p = 0;
1790 /* An expression is not available if its operands are
1791 subsequently modified, including this insn. It's also not
1792 available if this is a branch, because we can't insert
1793 a set after the branch. */
1794 int avail_p = oprs_available_p (dest, insn)
1795 && ! JUMP_P (insn);
1797 /* Record the memory expression (DEST) in the hash table. */
1798 insert_expr_in_table (dest, GET_MODE (dest), insn,
1799 antic_p, avail_p, table);
1804 static void
1805 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1806 struct hash_table *table ATTRIBUTE_UNUSED)
1808 /* Currently nothing to do. */
1811 static void
1812 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1813 struct hash_table *table ATTRIBUTE_UNUSED)
1815 /* Currently nothing to do. */
1818 /* Process INSN and add hash table entries as appropriate.
1820 Only available expressions that set a single pseudo-reg are recorded.
1822 Single sets in a PARALLEL could be handled, but it's an extra complication
1823 that isn't dealt with right now. The trick is handling the CLOBBERs that
1824 are also in the PARALLEL. Later.
1826 If SET_P is nonzero, this is for the assignment hash table,
1827 otherwise it is for the expression hash table.
1828 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1829 not record any expressions. */
1831 static void
1832 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1834 rtx pat = PATTERN (insn);
1835 int i;
1837 if (in_libcall_block)
1838 return;
1840 /* Pick out the sets of INSN and for other forms of instructions record
1841 what's been modified. */
1843 if (GET_CODE (pat) == SET)
1844 hash_scan_set (pat, insn, table);
1845 else if (GET_CODE (pat) == PARALLEL)
1846 for (i = 0; i < XVECLEN (pat, 0); i++)
1848 rtx x = XVECEXP (pat, 0, i);
1850 if (GET_CODE (x) == SET)
1851 hash_scan_set (x, insn, table);
1852 else if (GET_CODE (x) == CLOBBER)
1853 hash_scan_clobber (x, insn, table);
1854 else if (GET_CODE (x) == CALL)
1855 hash_scan_call (x, insn, table);
1858 else if (GET_CODE (pat) == CLOBBER)
1859 hash_scan_clobber (pat, insn, table);
1860 else if (GET_CODE (pat) == CALL)
1861 hash_scan_call (pat, insn, table);
1864 static void
1865 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1867 int i;
1868 /* Flattened out table, so it's printed in proper order. */
1869 struct expr **flat_table;
1870 unsigned int *hash_val;
1871 struct expr *expr;
1873 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1874 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1876 for (i = 0; i < (int) table->size; i++)
1877 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1879 flat_table[expr->bitmap_index] = expr;
1880 hash_val[expr->bitmap_index] = i;
1883 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1884 name, table->size, table->n_elems);
1886 for (i = 0; i < (int) table->n_elems; i++)
1887 if (flat_table[i] != 0)
1889 expr = flat_table[i];
1890 fprintf (file, "Index %d (hash value %d)\n ",
1891 expr->bitmap_index, hash_val[i]);
1892 print_rtl (file, expr->expr);
1893 fprintf (file, "\n");
1896 fprintf (file, "\n");
1898 free (flat_table);
1899 free (hash_val);
1902 /* Record register first/last/block set information for REGNO in INSN.
1904 first_set records the first place in the block where the register
1905 is set and is used to compute "anticipatability".
1907 last_set records the last place in the block where the register
1908 is set and is used to compute "availability".
1910 last_bb records the block for which first_set and last_set are
1911 valid, as a quick test to invalidate them.
1913 reg_set_in_block records whether the register is set in the block
1914 and is used to compute "transparency". */
1916 static void
1917 record_last_reg_set_info (rtx insn, int regno)
1919 struct reg_avail_info *info = &reg_avail_info[regno];
1920 int cuid = INSN_CUID (insn);
1922 info->last_set = cuid;
1923 if (info->last_bb != current_bb)
1925 info->last_bb = current_bb;
1926 info->first_set = cuid;
1927 SET_BIT (reg_set_in_block[current_bb->index], regno);
1932 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1933 Note we store a pair of elements in the list, so they have to be
1934 taken off pairwise. */
1936 static void
1937 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1938 void * v_insn)
1940 rtx dest_addr, insn;
1941 int bb;
1943 while (GET_CODE (dest) == SUBREG
1944 || GET_CODE (dest) == ZERO_EXTRACT
1945 || GET_CODE (dest) == STRICT_LOW_PART)
1946 dest = XEXP (dest, 0);
1948 /* If DEST is not a MEM, then it will not conflict with a load. Note
1949 that function calls are assumed to clobber memory, but are handled
1950 elsewhere. */
1952 if (! MEM_P (dest))
1953 return;
1955 dest_addr = get_addr (XEXP (dest, 0));
1956 dest_addr = canon_rtx (dest_addr);
1957 insn = (rtx) v_insn;
1958 bb = BLOCK_NUM (insn);
1960 canon_modify_mem_list[bb] =
1961 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1962 canon_modify_mem_list[bb] =
1963 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1966 /* Record memory modification information for INSN. We do not actually care
1967 about the memory location(s) that are set, or even how they are set (consider
1968 a CALL_INSN). We merely need to record which insns modify memory. */
1970 static void
1971 record_last_mem_set_info (rtx insn)
1973 int bb = BLOCK_NUM (insn);
1975 /* load_killed_in_block_p will handle the case of calls clobbering
1976 everything. */
1977 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1978 bitmap_set_bit (modify_mem_list_set, bb);
1980 if (CALL_P (insn))
1982 /* Note that traversals of this loop (other than for free-ing)
1983 will break after encountering a CALL_INSN. So, there's no
1984 need to insert a pair of items, as canon_list_insert does. */
1985 canon_modify_mem_list[bb] =
1986 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1987 bitmap_set_bit (blocks_with_calls, bb);
1989 else
1990 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1993 /* Called from compute_hash_table via note_stores to handle one
1994 SET or CLOBBER in an insn. DATA is really the instruction in which
1995 the SET is taking place. */
1997 static void
1998 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2000 rtx last_set_insn = (rtx) data;
2002 if (GET_CODE (dest) == SUBREG)
2003 dest = SUBREG_REG (dest);
2005 if (REG_P (dest))
2006 record_last_reg_set_info (last_set_insn, REGNO (dest));
2007 else if (MEM_P (dest)
2008 /* Ignore pushes, they clobber nothing. */
2009 && ! push_operand (dest, GET_MODE (dest)))
2010 record_last_mem_set_info (last_set_insn);
2013 /* Top level function to create an expression or assignment hash table.
2015 Expression entries are placed in the hash table if
2016 - they are of the form (set (pseudo-reg) src),
2017 - src is something we want to perform GCSE on,
2018 - none of the operands are subsequently modified in the block
2020 Assignment entries are placed in the hash table if
2021 - they are of the form (set (pseudo-reg) src),
2022 - src is something we want to perform const/copy propagation on,
2023 - none of the operands or target are subsequently modified in the block
2025 Currently src must be a pseudo-reg or a const_int.
2027 TABLE is the table computed. */
2029 static void
2030 compute_hash_table_work (struct hash_table *table)
2032 unsigned int i;
2034 /* While we compute the hash table we also compute a bit array of which
2035 registers are set in which blocks.
2036 ??? This isn't needed during const/copy propagation, but it's cheap to
2037 compute. Later. */
2038 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2040 /* re-Cache any INSN_LIST nodes we have allocated. */
2041 clear_modify_mem_tables ();
2042 /* Some working arrays used to track first and last set in each block. */
2043 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2045 for (i = 0; i < max_gcse_regno; ++i)
2046 reg_avail_info[i].last_bb = NULL;
2048 FOR_EACH_BB (current_bb)
2050 rtx insn;
2051 unsigned int regno;
2052 int in_libcall_block;
2054 /* First pass over the instructions records information used to
2055 determine when registers and memory are first and last set.
2056 ??? hard-reg reg_set_in_block computation
2057 could be moved to compute_sets since they currently don't change. */
2059 FOR_BB_INSNS (current_bb, insn)
2061 if (! INSN_P (insn))
2062 continue;
2064 if (CALL_P (insn))
2066 HARD_REG_SET clobbered_regs;
2068 get_call_invalidated_used_regs (insn, &clobbered_regs, true);
2069 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2070 if (TEST_HARD_REG_BIT (clobbered_regs, regno))
2071 record_last_reg_set_info (insn, regno);
2073 mark_call (insn);
2076 note_stores (PATTERN (insn), record_last_set_info, insn);
2079 /* Insert implicit sets in the hash table. */
2080 if (table->set_p
2081 && implicit_sets[current_bb->index] != NULL_RTX)
2082 hash_scan_set (implicit_sets[current_bb->index],
2083 BB_HEAD (current_bb), table);
2085 /* The next pass builds the hash table. */
2086 in_libcall_block = 0;
2087 FOR_BB_INSNS (current_bb, insn)
2088 if (INSN_P (insn))
2090 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2091 in_libcall_block = 1;
2092 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2093 in_libcall_block = 0;
2094 hash_scan_insn (insn, table, in_libcall_block);
2095 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2096 in_libcall_block = 0;
2100 free (reg_avail_info);
2101 reg_avail_info = NULL;
2104 /* Allocate space for the set/expr hash TABLE.
2105 N_INSNS is the number of instructions in the function.
2106 It is used to determine the number of buckets to use.
2107 SET_P determines whether set or expression table will
2108 be created. */
2110 static void
2111 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2113 int n;
2115 table->size = n_insns / 4;
2116 if (table->size < 11)
2117 table->size = 11;
2119 /* Attempt to maintain efficient use of hash table.
2120 Making it an odd number is simplest for now.
2121 ??? Later take some measurements. */
2122 table->size |= 1;
2123 n = table->size * sizeof (struct expr *);
2124 table->table = gmalloc (n);
2125 table->set_p = set_p;
2128 /* Free things allocated by alloc_hash_table. */
2130 static void
2131 free_hash_table (struct hash_table *table)
2133 free (table->table);
2136 /* Compute the hash TABLE for doing copy/const propagation or
2137 expression hash table. */
2139 static void
2140 compute_hash_table (struct hash_table *table)
2142 /* Initialize count of number of entries in hash table. */
2143 table->n_elems = 0;
2144 memset (table->table, 0, table->size * sizeof (struct expr *));
2146 compute_hash_table_work (table);
2149 /* Expression tracking support. */
2151 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2152 table entry, or NULL if not found. */
2154 static struct expr *
2155 lookup_set (unsigned int regno, struct hash_table *table)
2157 unsigned int hash = hash_set (regno, table->size);
2158 struct expr *expr;
2160 expr = table->table[hash];
2162 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2163 expr = expr->next_same_hash;
2165 return expr;
2168 /* Return the next entry for REGNO in list EXPR. */
2170 static struct expr *
2171 next_set (unsigned int regno, struct expr *expr)
2174 expr = expr->next_same_hash;
2175 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2177 return expr;
2180 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2181 types may be mixed. */
2183 static void
2184 free_insn_expr_list_list (rtx *listp)
2186 rtx list, next;
2188 for (list = *listp; list ; list = next)
2190 next = XEXP (list, 1);
2191 if (GET_CODE (list) == EXPR_LIST)
2192 free_EXPR_LIST_node (list);
2193 else
2194 free_INSN_LIST_node (list);
2197 *listp = NULL;
2200 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2201 static void
2202 clear_modify_mem_tables (void)
2204 unsigned i;
2205 bitmap_iterator bi;
2207 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2209 free_INSN_LIST_list (modify_mem_list + i);
2210 free_insn_expr_list_list (canon_modify_mem_list + i);
2212 bitmap_clear (modify_mem_list_set);
2213 bitmap_clear (blocks_with_calls);
2216 /* Release memory used by modify_mem_list_set. */
2218 static void
2219 free_modify_mem_tables (void)
2221 clear_modify_mem_tables ();
2222 free (modify_mem_list);
2223 free (canon_modify_mem_list);
2224 modify_mem_list = 0;
2225 canon_modify_mem_list = 0;
2228 /* Reset tables used to keep track of what's still available [since the
2229 start of the block]. */
2231 static void
2232 reset_opr_set_tables (void)
2234 /* Maintain a bitmap of which regs have been set since beginning of
2235 the block. */
2236 CLEAR_REG_SET (reg_set_bitmap);
2238 /* Also keep a record of the last instruction to modify memory.
2239 For now this is very trivial, we only record whether any memory
2240 location has been modified. */
2241 clear_modify_mem_tables ();
2244 /* Return nonzero if the operands of X are not set before INSN in
2245 INSN's basic block. */
2247 static int
2248 oprs_not_set_p (rtx x, rtx insn)
2250 int i, j;
2251 enum rtx_code code;
2252 const char *fmt;
2254 if (x == 0)
2255 return 1;
2257 code = GET_CODE (x);
2258 switch (code)
2260 case PC:
2261 case CC0:
2262 case CONST:
2263 case CONST_INT:
2264 case CONST_DOUBLE:
2265 case CONST_VECTOR:
2266 case SYMBOL_REF:
2267 case LABEL_REF:
2268 case ADDR_VEC:
2269 case ADDR_DIFF_VEC:
2270 return 1;
2272 case MEM:
2273 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2274 INSN_CUID (insn), x, 0))
2275 return 0;
2276 else
2277 return oprs_not_set_p (XEXP (x, 0), insn);
2279 case REG:
2280 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2282 default:
2283 break;
2286 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2288 if (fmt[i] == 'e')
2290 /* If we are about to do the last recursive call
2291 needed at this level, change it into iteration.
2292 This function is called enough to be worth it. */
2293 if (i == 0)
2294 return oprs_not_set_p (XEXP (x, i), insn);
2296 if (! oprs_not_set_p (XEXP (x, i), insn))
2297 return 0;
2299 else if (fmt[i] == 'E')
2300 for (j = 0; j < XVECLEN (x, i); j++)
2301 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2302 return 0;
2305 return 1;
2308 /* Mark things set by a CALL. */
2310 static void
2311 mark_call (rtx insn)
2313 if (! CONST_OR_PURE_CALL_P (insn))
2314 record_last_mem_set_info (insn);
2317 /* Mark things set by a SET. */
2319 static void
2320 mark_set (rtx pat, rtx insn)
2322 rtx dest = SET_DEST (pat);
2324 while (GET_CODE (dest) == SUBREG
2325 || GET_CODE (dest) == ZERO_EXTRACT
2326 || GET_CODE (dest) == STRICT_LOW_PART)
2327 dest = XEXP (dest, 0);
2329 if (REG_P (dest))
2330 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2331 else if (MEM_P (dest))
2332 record_last_mem_set_info (insn);
2334 if (GET_CODE (SET_SRC (pat)) == CALL)
2335 mark_call (insn);
2338 /* Record things set by a CLOBBER. */
2340 static void
2341 mark_clobber (rtx pat, rtx insn)
2343 rtx clob = XEXP (pat, 0);
2345 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2346 clob = XEXP (clob, 0);
2348 if (REG_P (clob))
2349 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2350 else
2351 record_last_mem_set_info (insn);
2354 /* Record things set by INSN.
2355 This data is used by oprs_not_set_p. */
2357 static void
2358 mark_oprs_set (rtx insn)
2360 rtx pat = PATTERN (insn);
2361 int i;
2363 if (GET_CODE (pat) == SET)
2364 mark_set (pat, insn);
2365 else if (GET_CODE (pat) == PARALLEL)
2366 for (i = 0; i < XVECLEN (pat, 0); i++)
2368 rtx x = XVECEXP (pat, 0, i);
2370 if (GET_CODE (x) == SET)
2371 mark_set (x, insn);
2372 else if (GET_CODE (x) == CLOBBER)
2373 mark_clobber (x, insn);
2374 else if (GET_CODE (x) == CALL)
2375 mark_call (insn);
2378 else if (GET_CODE (pat) == CLOBBER)
2379 mark_clobber (pat, insn);
2380 else if (GET_CODE (pat) == CALL)
2381 mark_call (insn);
2385 /* Compute copy/constant propagation working variables. */
2387 /* Local properties of assignments. */
2388 static sbitmap *cprop_pavloc;
2389 static sbitmap *cprop_absaltered;
2391 /* Global properties of assignments (computed from the local properties). */
2392 static sbitmap *cprop_avin;
2393 static sbitmap *cprop_avout;
2395 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2396 basic blocks. N_SETS is the number of sets. */
2398 static void
2399 alloc_cprop_mem (int n_blocks, int n_sets)
2401 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2402 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2404 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2405 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2408 /* Free vars used by copy/const propagation. */
2410 static void
2411 free_cprop_mem (void)
2413 sbitmap_vector_free (cprop_pavloc);
2414 sbitmap_vector_free (cprop_absaltered);
2415 sbitmap_vector_free (cprop_avin);
2416 sbitmap_vector_free (cprop_avout);
2419 /* For each block, compute whether X is transparent. X is either an
2420 expression or an assignment [though we don't care which, for this context
2421 an assignment is treated as an expression]. For each block where an
2422 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2423 bit in BMAP. */
2425 static void
2426 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2428 int i, j;
2429 basic_block bb;
2430 enum rtx_code code;
2431 reg_set *r;
2432 const char *fmt;
2434 /* repeat is used to turn tail-recursion into iteration since GCC
2435 can't do it when there's no return value. */
2436 repeat:
2438 if (x == 0)
2439 return;
2441 code = GET_CODE (x);
2442 switch (code)
2444 case REG:
2445 if (set_p)
2447 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2449 FOR_EACH_BB (bb)
2450 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2451 SET_BIT (bmap[bb->index], indx);
2453 else
2455 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2456 SET_BIT (bmap[r->bb_index], indx);
2459 else
2461 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2463 FOR_EACH_BB (bb)
2464 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2465 RESET_BIT (bmap[bb->index], indx);
2467 else
2469 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2470 RESET_BIT (bmap[r->bb_index], indx);
2474 return;
2476 case MEM:
2477 if (! MEM_READONLY_P (x))
2479 bitmap_iterator bi;
2480 unsigned bb_index;
2482 /* First handle all the blocks with calls. We don't need to
2483 do any list walking for them. */
2484 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2486 if (set_p)
2487 SET_BIT (bmap[bb_index], indx);
2488 else
2489 RESET_BIT (bmap[bb_index], indx);
2492 /* Now iterate over the blocks which have memory modifications
2493 but which do not have any calls. */
2494 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2495 blocks_with_calls,
2496 0, bb_index, bi)
2498 rtx list_entry = canon_modify_mem_list[bb_index];
2500 while (list_entry)
2502 rtx dest, dest_addr;
2504 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2505 Examine each hunk of memory that is modified. */
2507 dest = XEXP (list_entry, 0);
2508 list_entry = XEXP (list_entry, 1);
2509 dest_addr = XEXP (list_entry, 0);
2511 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2512 x, rtx_addr_varies_p))
2514 if (set_p)
2515 SET_BIT (bmap[bb_index], indx);
2516 else
2517 RESET_BIT (bmap[bb_index], indx);
2518 break;
2520 list_entry = XEXP (list_entry, 1);
2525 x = XEXP (x, 0);
2526 goto repeat;
2528 case PC:
2529 case CC0: /*FIXME*/
2530 case CONST:
2531 case CONST_INT:
2532 case CONST_DOUBLE:
2533 case CONST_VECTOR:
2534 case SYMBOL_REF:
2535 case LABEL_REF:
2536 case ADDR_VEC:
2537 case ADDR_DIFF_VEC:
2538 return;
2540 default:
2541 break;
2544 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2546 if (fmt[i] == 'e')
2548 /* If we are about to do the last recursive call
2549 needed at this level, change it into iteration.
2550 This function is called enough to be worth it. */
2551 if (i == 0)
2553 x = XEXP (x, i);
2554 goto repeat;
2557 compute_transp (XEXP (x, i), indx, bmap, set_p);
2559 else if (fmt[i] == 'E')
2560 for (j = 0; j < XVECLEN (x, i); j++)
2561 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2565 /* Top level routine to do the dataflow analysis needed by copy/const
2566 propagation. */
2568 static void
2569 compute_cprop_data (void)
2571 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2572 compute_available (cprop_pavloc, cprop_absaltered,
2573 cprop_avout, cprop_avin);
2576 /* Copy/constant propagation. */
2578 /* Maximum number of register uses in an insn that we handle. */
2579 #define MAX_USES 8
2581 /* Table of uses found in an insn.
2582 Allocated statically to avoid alloc/free complexity and overhead. */
2583 static struct reg_use reg_use_table[MAX_USES];
2585 /* Index into `reg_use_table' while building it. */
2586 static int reg_use_count;
2588 /* Set up a list of register numbers used in INSN. The found uses are stored
2589 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2590 and contains the number of uses in the table upon exit.
2592 ??? If a register appears multiple times we will record it multiple times.
2593 This doesn't hurt anything but it will slow things down. */
2595 static void
2596 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2598 int i, j;
2599 enum rtx_code code;
2600 const char *fmt;
2601 rtx x = *xptr;
2603 /* repeat is used to turn tail-recursion into iteration since GCC
2604 can't do it when there's no return value. */
2605 repeat:
2606 if (x == 0)
2607 return;
2609 code = GET_CODE (x);
2610 if (REG_P (x))
2612 if (reg_use_count == MAX_USES)
2613 return;
2615 reg_use_table[reg_use_count].reg_rtx = x;
2616 reg_use_count++;
2619 /* Recursively scan the operands of this expression. */
2621 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2623 if (fmt[i] == 'e')
2625 /* If we are about to do the last recursive call
2626 needed at this level, change it into iteration.
2627 This function is called enough to be worth it. */
2628 if (i == 0)
2630 x = XEXP (x, 0);
2631 goto repeat;
2634 find_used_regs (&XEXP (x, i), data);
2636 else if (fmt[i] == 'E')
2637 for (j = 0; j < XVECLEN (x, i); j++)
2638 find_used_regs (&XVECEXP (x, i, j), data);
2642 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2643 Returns nonzero is successful. */
2645 static int
2646 try_replace_reg (rtx from, rtx to, rtx insn)
2648 rtx note = find_reg_equal_equiv_note (insn);
2649 rtx src = 0;
2650 int success = 0;
2651 rtx set = single_set (insn);
2653 /* Usually we substitute easy stuff, so we won't copy everything.
2654 We however need to take care to not duplicate non-trivial CONST
2655 expressions. */
2656 to = copy_rtx (to);
2658 validate_replace_src_group (from, to, insn);
2659 if (num_changes_pending () && apply_change_group ())
2660 success = 1;
2662 /* Try to simplify SET_SRC if we have substituted a constant. */
2663 if (success && set && CONSTANT_P (to))
2665 src = simplify_rtx (SET_SRC (set));
2667 if (src)
2668 validate_change (insn, &SET_SRC (set), src, 0);
2671 /* If there is already a REG_EQUAL note, update the expression in it
2672 with our replacement. */
2673 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2674 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2676 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2678 /* If above failed and this is a single set, try to simplify the source of
2679 the set given our substitution. We could perhaps try this for multiple
2680 SETs, but it probably won't buy us anything. */
2681 src = simplify_replace_rtx (SET_SRC (set), from, to);
2683 if (!rtx_equal_p (src, SET_SRC (set))
2684 && validate_change (insn, &SET_SRC (set), src, 0))
2685 success = 1;
2687 /* If we've failed to do replacement, have a single SET, don't already
2688 have a note, and have no special SET, add a REG_EQUAL note to not
2689 lose information. */
2690 if (!success && note == 0 && set != 0
2691 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2692 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2693 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2696 /* REG_EQUAL may get simplified into register.
2697 We don't allow that. Remove that note. This code ought
2698 not to happen, because previous code ought to synthesize
2699 reg-reg move, but be on the safe side. */
2700 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2701 remove_note (insn, note);
2703 return success;
2706 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2707 NULL no such set is found. */
2709 static struct expr *
2710 find_avail_set (int regno, rtx insn)
2712 /* SET1 contains the last set found that can be returned to the caller for
2713 use in a substitution. */
2714 struct expr *set1 = 0;
2716 /* Loops are not possible here. To get a loop we would need two sets
2717 available at the start of the block containing INSN. i.e. we would
2718 need two sets like this available at the start of the block:
2720 (set (reg X) (reg Y))
2721 (set (reg Y) (reg X))
2723 This can not happen since the set of (reg Y) would have killed the
2724 set of (reg X) making it unavailable at the start of this block. */
2725 while (1)
2727 rtx src;
2728 struct expr *set = lookup_set (regno, &set_hash_table);
2730 /* Find a set that is available at the start of the block
2731 which contains INSN. */
2732 while (set)
2734 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2735 break;
2736 set = next_set (regno, set);
2739 /* If no available set was found we've reached the end of the
2740 (possibly empty) copy chain. */
2741 if (set == 0)
2742 break;
2744 gcc_assert (GET_CODE (set->expr) == SET);
2746 src = SET_SRC (set->expr);
2748 /* We know the set is available.
2749 Now check that SRC is ANTLOC (i.e. none of the source operands
2750 have changed since the start of the block).
2752 If the source operand changed, we may still use it for the next
2753 iteration of this loop, but we may not use it for substitutions. */
2755 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2756 set1 = set;
2758 /* If the source of the set is anything except a register, then
2759 we have reached the end of the copy chain. */
2760 if (! REG_P (src))
2761 break;
2763 /* Follow the copy chain, i.e. start another iteration of the loop
2764 and see if we have an available copy into SRC. */
2765 regno = REGNO (src);
2768 /* SET1 holds the last set that was available and anticipatable at
2769 INSN. */
2770 return set1;
2773 /* Subroutine of cprop_insn that tries to propagate constants into
2774 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2775 it is the instruction that immediately precedes JUMP, and must be a
2776 single SET of a register. FROM is what we will try to replace,
2777 SRC is the constant we will try to substitute for it. Returns nonzero
2778 if a change was made. */
2780 static int
2781 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2783 rtx new, set_src, note_src;
2784 rtx set = pc_set (jump);
2785 rtx note = find_reg_equal_equiv_note (jump);
2787 if (note)
2789 note_src = XEXP (note, 0);
2790 if (GET_CODE (note_src) == EXPR_LIST)
2791 note_src = NULL_RTX;
2793 else note_src = NULL_RTX;
2795 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2796 set_src = note_src ? note_src : SET_SRC (set);
2798 /* First substitute the SETCC condition into the JUMP instruction,
2799 then substitute that given values into this expanded JUMP. */
2800 if (setcc != NULL_RTX
2801 && !modified_between_p (from, setcc, jump)
2802 && !modified_between_p (src, setcc, jump))
2804 rtx setcc_src;
2805 rtx setcc_set = single_set (setcc);
2806 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2807 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2808 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2809 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2810 setcc_src);
2812 else
2813 setcc = NULL_RTX;
2815 new = simplify_replace_rtx (set_src, from, src);
2817 /* If no simplification can be made, then try the next register. */
2818 if (rtx_equal_p (new, SET_SRC (set)))
2819 return 0;
2821 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2822 if (new == pc_rtx)
2823 delete_insn (jump);
2824 else
2826 /* Ensure the value computed inside the jump insn to be equivalent
2827 to one computed by setcc. */
2828 if (setcc && modified_in_p (new, setcc))
2829 return 0;
2830 if (! validate_change (jump, &SET_SRC (set), new, 0))
2832 /* When (some) constants are not valid in a comparison, and there
2833 are two registers to be replaced by constants before the entire
2834 comparison can be folded into a constant, we need to keep
2835 intermediate information in REG_EQUAL notes. For targets with
2836 separate compare insns, such notes are added by try_replace_reg.
2837 When we have a combined compare-and-branch instruction, however,
2838 we need to attach a note to the branch itself to make this
2839 optimization work. */
2841 if (!rtx_equal_p (new, note_src))
2842 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2843 return 0;
2846 /* Remove REG_EQUAL note after simplification. */
2847 if (note_src)
2848 remove_note (jump, note);
2850 /* If this has turned into an unconditional jump,
2851 then put a barrier after it so that the unreachable
2852 code will be deleted. */
2853 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2854 emit_barrier_after (jump);
2857 #ifdef HAVE_cc0
2858 /* Delete the cc0 setter. */
2859 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2860 delete_insn (setcc);
2861 #endif
2863 run_jump_opt_after_gcse = 1;
2865 global_const_prop_count++;
2866 if (dump_file != NULL)
2868 fprintf (dump_file,
2869 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2870 REGNO (from), INSN_UID (jump));
2871 print_rtl (dump_file, src);
2872 fprintf (dump_file, "\n");
2874 purge_dead_edges (bb);
2876 return 1;
2879 static bool
2880 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2882 rtx sset;
2884 /* Check for reg or cc0 setting instructions followed by
2885 conditional branch instructions first. */
2886 if (alter_jumps
2887 && (sset = single_set (insn)) != NULL
2888 && NEXT_INSN (insn)
2889 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2891 rtx dest = SET_DEST (sset);
2892 if ((REG_P (dest) || CC0_P (dest))
2893 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2894 return 1;
2897 /* Handle normal insns next. */
2898 if (NONJUMP_INSN_P (insn)
2899 && try_replace_reg (from, to, insn))
2900 return 1;
2902 /* Try to propagate a CONST_INT into a conditional jump.
2903 We're pretty specific about what we will handle in this
2904 code, we can extend this as necessary over time.
2906 Right now the insn in question must look like
2907 (set (pc) (if_then_else ...)) */
2908 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2909 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2910 return 0;
2913 /* Perform constant and copy propagation on INSN.
2914 The result is nonzero if a change was made. */
2916 static int
2917 cprop_insn (rtx insn, int alter_jumps)
2919 struct reg_use *reg_used;
2920 int changed = 0;
2921 rtx note;
2923 if (!INSN_P (insn))
2924 return 0;
2926 reg_use_count = 0;
2927 note_uses (&PATTERN (insn), find_used_regs, NULL);
2929 note = find_reg_equal_equiv_note (insn);
2931 /* We may win even when propagating constants into notes. */
2932 if (note)
2933 find_used_regs (&XEXP (note, 0), NULL);
2935 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2936 reg_used++, reg_use_count--)
2938 unsigned int regno = REGNO (reg_used->reg_rtx);
2939 rtx pat, src;
2940 struct expr *set;
2942 /* Ignore registers created by GCSE.
2943 We do this because ... */
2944 if (regno >= max_gcse_regno)
2945 continue;
2947 /* If the register has already been set in this block, there's
2948 nothing we can do. */
2949 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2950 continue;
2952 /* Find an assignment that sets reg_used and is available
2953 at the start of the block. */
2954 set = find_avail_set (regno, insn);
2955 if (! set)
2956 continue;
2958 pat = set->expr;
2959 /* ??? We might be able to handle PARALLELs. Later. */
2960 gcc_assert (GET_CODE (pat) == SET);
2962 src = SET_SRC (pat);
2964 /* Constant propagation. */
2965 if (gcse_constant_p (src))
2967 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2969 changed = 1;
2970 global_const_prop_count++;
2971 if (dump_file != NULL)
2973 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2974 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2975 print_rtl (dump_file, src);
2976 fprintf (dump_file, "\n");
2978 if (INSN_DELETED_P (insn))
2979 return 1;
2982 else if (REG_P (src)
2983 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2984 && REGNO (src) != regno)
2986 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2988 changed = 1;
2989 global_copy_prop_count++;
2990 if (dump_file != NULL)
2992 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2993 regno, INSN_UID (insn));
2994 fprintf (dump_file, " with reg %d\n", REGNO (src));
2997 /* The original insn setting reg_used may or may not now be
2998 deletable. We leave the deletion to flow. */
2999 /* FIXME: If it turns out that the insn isn't deletable,
3000 then we may have unnecessarily extended register lifetimes
3001 and made things worse. */
3006 return changed;
3009 /* Like find_used_regs, but avoid recording uses that appear in
3010 input-output contexts such as zero_extract or pre_dec. This
3011 restricts the cases we consider to those for which local cprop
3012 can legitimately make replacements. */
3014 static void
3015 local_cprop_find_used_regs (rtx *xptr, void *data)
3017 rtx x = *xptr;
3019 if (x == 0)
3020 return;
3022 switch (GET_CODE (x))
3024 case ZERO_EXTRACT:
3025 case SIGN_EXTRACT:
3026 case STRICT_LOW_PART:
3027 return;
3029 case PRE_DEC:
3030 case PRE_INC:
3031 case POST_DEC:
3032 case POST_INC:
3033 case PRE_MODIFY:
3034 case POST_MODIFY:
3035 /* Can only legitimately appear this early in the context of
3036 stack pushes for function arguments, but handle all of the
3037 codes nonetheless. */
3038 return;
3040 case SUBREG:
3041 /* Setting a subreg of a register larger than word_mode leaves
3042 the non-written words unchanged. */
3043 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3044 return;
3045 break;
3047 default:
3048 break;
3051 find_used_regs (xptr, data);
3054 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3055 their REG_EQUAL notes need updating. */
3057 static bool
3058 do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3060 rtx newreg = NULL, newcnst = NULL;
3062 /* Rule out USE instructions and ASM statements as we don't want to
3063 change the hard registers mentioned. */
3064 if (REG_P (x)
3065 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3066 || (GET_CODE (PATTERN (insn)) != USE
3067 && asm_noperands (PATTERN (insn)) < 0)))
3069 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3070 struct elt_loc_list *l;
3072 if (!val)
3073 return false;
3074 for (l = val->locs; l; l = l->next)
3076 rtx this_rtx = l->loc;
3077 rtx note;
3079 /* Don't CSE non-constant values out of libcall blocks. */
3080 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3081 continue;
3083 if (gcse_constant_p (this_rtx))
3084 newcnst = this_rtx;
3085 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3086 /* Don't copy propagate if it has attached REG_EQUIV note.
3087 At this point this only function parameters should have
3088 REG_EQUIV notes and if the argument slot is used somewhere
3089 explicitly, it means address of parameter has been taken,
3090 so we should not extend the lifetime of the pseudo. */
3091 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3092 || ! MEM_P (XEXP (note, 0))))
3093 newreg = this_rtx;
3095 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3097 /* If we find a case where we can't fix the retval REG_EQUAL notes
3098 match the new register, we either have to abandon this replacement
3099 or fix delete_trivially_dead_insns to preserve the setting insn,
3100 or make it delete the REG_EUAQL note, and fix up all passes that
3101 require the REG_EQUAL note there. */
3102 bool adjusted;
3104 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3105 gcc_assert (adjusted);
3107 if (dump_file != NULL)
3109 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3110 REGNO (x));
3111 fprintf (dump_file, "insn %d with constant ",
3112 INSN_UID (insn));
3113 print_rtl (dump_file, newcnst);
3114 fprintf (dump_file, "\n");
3116 local_const_prop_count++;
3117 return true;
3119 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3121 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3122 if (dump_file != NULL)
3124 fprintf (dump_file,
3125 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3126 REGNO (x), INSN_UID (insn));
3127 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
3129 local_copy_prop_count++;
3130 return true;
3133 return false;
3136 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3137 their REG_EQUAL notes need updating to reflect that OLDREG has been
3138 replaced with NEWVAL in INSN. Return true if all substitutions could
3139 be made. */
3140 static bool
3141 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3143 rtx end;
3145 while ((end = *libcall_sp++))
3147 rtx note = find_reg_equal_equiv_note (end);
3149 if (! note)
3150 continue;
3152 if (REG_P (newval))
3154 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3158 note = find_reg_equal_equiv_note (end);
3159 if (! note)
3160 continue;
3161 if (reg_mentioned_p (newval, XEXP (note, 0)))
3162 return false;
3164 while ((end = *libcall_sp++));
3165 return true;
3168 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3169 insn = end;
3171 return true;
3174 #define MAX_NESTED_LIBCALLS 9
3176 /* Do local const/copy propagation (i.e. within each basic block).
3177 If ALTER_JUMPS is true, allow propagating into jump insns, which
3178 could modify the CFG. */
3180 static void
3181 local_cprop_pass (bool alter_jumps)
3183 basic_block bb;
3184 rtx insn;
3185 struct reg_use *reg_used;
3186 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3187 bool changed = false;
3189 cselib_init (false);
3190 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3191 *libcall_sp = 0;
3192 FOR_EACH_BB (bb)
3194 FOR_BB_INSNS (bb, insn)
3196 if (INSN_P (insn))
3198 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3200 if (note)
3202 gcc_assert (libcall_sp != libcall_stack);
3203 *--libcall_sp = XEXP (note, 0);
3205 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3206 if (note)
3207 libcall_sp++;
3208 note = find_reg_equal_equiv_note (insn);
3211 reg_use_count = 0;
3212 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3213 NULL);
3214 if (note)
3215 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3217 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3218 reg_used++, reg_use_count--)
3219 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3220 libcall_sp))
3222 changed = true;
3223 break;
3225 if (INSN_DELETED_P (insn))
3226 break;
3228 while (reg_use_count);
3230 cselib_process_insn (insn);
3233 /* Forget everything at the end of a basic block. Make sure we are
3234 not inside a libcall, they should never cross basic blocks. */
3235 cselib_clear_table ();
3236 gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3239 cselib_finish ();
3241 /* Global analysis may get into infinite loops for unreachable blocks. */
3242 if (changed && alter_jumps)
3244 delete_unreachable_blocks ();
3245 free_reg_set_mem ();
3246 alloc_reg_set_mem (max_reg_num ());
3247 compute_sets ();
3251 /* Forward propagate copies. This includes copies and constants. Return
3252 nonzero if a change was made. */
3254 static int
3255 cprop (int alter_jumps)
3257 int changed;
3258 basic_block bb;
3259 rtx insn;
3261 /* Note we start at block 1. */
3262 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3264 if (dump_file != NULL)
3265 fprintf (dump_file, "\n");
3266 return 0;
3269 changed = 0;
3270 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3272 /* Reset tables used to keep track of what's still valid [since the
3273 start of the block]. */
3274 reset_opr_set_tables ();
3276 FOR_BB_INSNS (bb, insn)
3277 if (INSN_P (insn))
3279 changed |= cprop_insn (insn, alter_jumps);
3281 /* Keep track of everything modified by this insn. */
3282 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3283 call mark_oprs_set if we turned the insn into a NOTE. */
3284 if (! NOTE_P (insn))
3285 mark_oprs_set (insn);
3289 if (dump_file != NULL)
3290 fprintf (dump_file, "\n");
3292 return changed;
3295 /* Similar to get_condition, only the resulting condition must be
3296 valid at JUMP, instead of at EARLIEST.
3298 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3299 settle for the condition variable in the jump instruction being integral.
3300 We prefer to be able to record the value of a user variable, rather than
3301 the value of a temporary used in a condition. This could be solved by
3302 recording the value of *every* register scanned by canonicalize_condition,
3303 but this would require some code reorganization. */
3306 fis_get_condition (rtx jump)
3308 return get_condition (jump, NULL, false, true);
3311 /* Check the comparison COND to see if we can safely form an implicit set from
3312 it. COND is either an EQ or NE comparison. */
3314 static bool
3315 implicit_set_cond_p (rtx cond)
3317 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3318 rtx cst = XEXP (cond, 1);
3320 /* We can't perform this optimization if either operand might be or might
3321 contain a signed zero. */
3322 if (HONOR_SIGNED_ZEROS (mode))
3324 /* It is sufficient to check if CST is or contains a zero. We must
3325 handle float, complex, and vector. If any subpart is a zero, then
3326 the optimization can't be performed. */
3327 /* ??? The complex and vector checks are not implemented yet. We just
3328 always return zero for them. */
3329 if (GET_CODE (cst) == CONST_DOUBLE)
3331 REAL_VALUE_TYPE d;
3332 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3333 if (REAL_VALUES_EQUAL (d, dconst0))
3334 return 0;
3336 else
3337 return 0;
3340 return gcse_constant_p (cst);
3343 /* Find the implicit sets of a function. An "implicit set" is a constraint
3344 on the value of a variable, implied by a conditional jump. For example,
3345 following "if (x == 2)", the then branch may be optimized as though the
3346 conditional performed an "explicit set", in this example, "x = 2". This
3347 function records the set patterns that are implicit at the start of each
3348 basic block. */
3350 static void
3351 find_implicit_sets (void)
3353 basic_block bb, dest;
3354 unsigned int count;
3355 rtx cond, new;
3357 count = 0;
3358 FOR_EACH_BB (bb)
3359 /* Check for more than one successor. */
3360 if (EDGE_COUNT (bb->succs) > 1)
3362 cond = fis_get_condition (BB_END (bb));
3364 if (cond
3365 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3366 && REG_P (XEXP (cond, 0))
3367 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3368 && implicit_set_cond_p (cond))
3370 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3371 : FALLTHRU_EDGE (bb)->dest;
3373 if (dest && single_pred_p (dest)
3374 && dest != EXIT_BLOCK_PTR)
3376 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3377 XEXP (cond, 1));
3378 implicit_sets[dest->index] = new;
3379 if (dump_file)
3381 fprintf(dump_file, "Implicit set of reg %d in ",
3382 REGNO (XEXP (cond, 0)));
3383 fprintf(dump_file, "basic block %d\n", dest->index);
3385 count++;
3390 if (dump_file)
3391 fprintf (dump_file, "Found %d implicit sets\n", count);
3394 /* Perform one copy/constant propagation pass.
3395 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3396 propagation into conditional jumps. If BYPASS_JUMPS is true,
3397 perform conditional jump bypassing optimizations. */
3399 static int
3400 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3402 int changed = 0;
3404 global_const_prop_count = local_const_prop_count = 0;
3405 global_copy_prop_count = local_copy_prop_count = 0;
3407 if (cprop_jumps)
3408 local_cprop_pass (cprop_jumps);
3410 /* Determine implicit sets. */
3411 implicit_sets = XCNEWVEC (rtx, last_basic_block);
3412 find_implicit_sets ();
3414 alloc_hash_table (max_cuid, &set_hash_table, 1);
3415 compute_hash_table (&set_hash_table);
3417 /* Free implicit_sets before peak usage. */
3418 free (implicit_sets);
3419 implicit_sets = NULL;
3421 if (dump_file)
3422 dump_hash_table (dump_file, "SET", &set_hash_table);
3423 if (set_hash_table.n_elems > 0)
3425 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3426 compute_cprop_data ();
3427 changed = cprop (cprop_jumps);
3428 if (bypass_jumps)
3429 changed |= bypass_conditional_jumps ();
3430 free_cprop_mem ();
3433 free_hash_table (&set_hash_table);
3435 if (dump_file)
3437 fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
3438 current_function_name (), pass, bytes_used);
3439 fprintf (dump_file, "%d local const props, %d local copy props, ",
3440 local_const_prop_count, local_copy_prop_count);
3441 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
3442 global_const_prop_count, global_copy_prop_count);
3444 /* Global analysis may get into infinite loops for unreachable blocks. */
3445 if (changed && cprop_jumps)
3446 delete_unreachable_blocks ();
3448 return changed;
3451 /* Bypass conditional jumps. */
3453 /* The value of last_basic_block at the beginning of the jump_bypass
3454 pass. The use of redirect_edge_and_branch_force may introduce new
3455 basic blocks, but the data flow analysis is only valid for basic
3456 block indices less than bypass_last_basic_block. */
3458 static int bypass_last_basic_block;
3460 /* Find a set of REGNO to a constant that is available at the end of basic
3461 block BB. Returns NULL if no such set is found. Based heavily upon
3462 find_avail_set. */
3464 static struct expr *
3465 find_bypass_set (int regno, int bb)
3467 struct expr *result = 0;
3469 for (;;)
3471 rtx src;
3472 struct expr *set = lookup_set (regno, &set_hash_table);
3474 while (set)
3476 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3477 break;
3478 set = next_set (regno, set);
3481 if (set == 0)
3482 break;
3484 gcc_assert (GET_CODE (set->expr) == SET);
3486 src = SET_SRC (set->expr);
3487 if (gcse_constant_p (src))
3488 result = set;
3490 if (! REG_P (src))
3491 break;
3493 regno = REGNO (src);
3495 return result;
3499 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3500 any of the instructions inserted on an edge. Jump bypassing places
3501 condition code setters on CFG edges using insert_insn_on_edge. This
3502 function is required to check that our data flow analysis is still
3503 valid prior to commit_edge_insertions. */
3505 static bool
3506 reg_killed_on_edge (rtx reg, edge e)
3508 rtx insn;
3510 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3511 if (INSN_P (insn) && reg_set_p (reg, insn))
3512 return true;
3514 return false;
3517 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3518 basic block BB which has more than one predecessor. If not NULL, SETCC
3519 is the first instruction of BB, which is immediately followed by JUMP_INSN
3520 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3521 Returns nonzero if a change was made.
3523 During the jump bypassing pass, we may place copies of SETCC instructions
3524 on CFG edges. The following routine must be careful to pay attention to
3525 these inserted insns when performing its transformations. */
3527 static int
3528 bypass_block (basic_block bb, rtx setcc, rtx jump)
3530 rtx insn, note;
3531 edge e, edest;
3532 int i, change;
3533 int may_be_loop_header;
3534 unsigned removed_p;
3535 edge_iterator ei;
3537 insn = (setcc != NULL) ? setcc : jump;
3539 /* Determine set of register uses in INSN. */
3540 reg_use_count = 0;
3541 note_uses (&PATTERN (insn), find_used_regs, NULL);
3542 note = find_reg_equal_equiv_note (insn);
3543 if (note)
3544 find_used_regs (&XEXP (note, 0), NULL);
3546 may_be_loop_header = false;
3547 FOR_EACH_EDGE (e, ei, bb->preds)
3548 if (e->flags & EDGE_DFS_BACK)
3550 may_be_loop_header = true;
3551 break;
3554 change = 0;
3555 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3557 removed_p = 0;
3559 if (e->flags & EDGE_COMPLEX)
3561 ei_next (&ei);
3562 continue;
3565 /* We can't redirect edges from new basic blocks. */
3566 if (e->src->index >= bypass_last_basic_block)
3568 ei_next (&ei);
3569 continue;
3572 /* The irreducible loops created by redirecting of edges entering the
3573 loop from outside would decrease effectiveness of some of the following
3574 optimizations, so prevent this. */
3575 if (may_be_loop_header
3576 && !(e->flags & EDGE_DFS_BACK))
3578 ei_next (&ei);
3579 continue;
3582 for (i = 0; i < reg_use_count; i++)
3584 struct reg_use *reg_used = &reg_use_table[i];
3585 unsigned int regno = REGNO (reg_used->reg_rtx);
3586 basic_block dest, old_dest;
3587 struct expr *set;
3588 rtx src, new;
3590 if (regno >= max_gcse_regno)
3591 continue;
3593 set = find_bypass_set (regno, e->src->index);
3595 if (! set)
3596 continue;
3598 /* Check the data flow is valid after edge insertions. */
3599 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3600 continue;
3602 src = SET_SRC (pc_set (jump));
3604 if (setcc != NULL)
3605 src = simplify_replace_rtx (src,
3606 SET_DEST (PATTERN (setcc)),
3607 SET_SRC (PATTERN (setcc)));
3609 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3610 SET_SRC (set->expr));
3612 /* Jump bypassing may have already placed instructions on
3613 edges of the CFG. We can't bypass an outgoing edge that
3614 has instructions associated with it, as these insns won't
3615 get executed if the incoming edge is redirected. */
3617 if (new == pc_rtx)
3619 edest = FALLTHRU_EDGE (bb);
3620 dest = edest->insns.r ? NULL : edest->dest;
3622 else if (GET_CODE (new) == LABEL_REF)
3624 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3625 /* Don't bypass edges containing instructions. */
3626 edest = find_edge (bb, dest);
3627 if (edest && edest->insns.r)
3628 dest = NULL;
3630 else
3631 dest = NULL;
3633 /* Avoid unification of the edge with other edges from original
3634 branch. We would end up emitting the instruction on "both"
3635 edges. */
3637 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3638 && find_edge (e->src, dest))
3639 dest = NULL;
3641 old_dest = e->dest;
3642 if (dest != NULL
3643 && dest != old_dest
3644 && dest != EXIT_BLOCK_PTR)
3646 redirect_edge_and_branch_force (e, dest);
3648 /* Copy the register setter to the redirected edge.
3649 Don't copy CC0 setters, as CC0 is dead after jump. */
3650 if (setcc)
3652 rtx pat = PATTERN (setcc);
3653 if (!CC0_P (SET_DEST (pat)))
3654 insert_insn_on_edge (copy_insn (pat), e);
3657 if (dump_file != NULL)
3659 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3660 "in jump_insn %d equals constant ",
3661 regno, INSN_UID (jump));
3662 print_rtl (dump_file, SET_SRC (set->expr));
3663 fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3664 e->src->index, old_dest->index, dest->index);
3666 change = 1;
3667 removed_p = 1;
3668 break;
3671 if (!removed_p)
3672 ei_next (&ei);
3674 return change;
3677 /* Find basic blocks with more than one predecessor that only contain a
3678 single conditional jump. If the result of the comparison is known at
3679 compile-time from any incoming edge, redirect that edge to the
3680 appropriate target. Returns nonzero if a change was made.
3682 This function is now mis-named, because we also handle indirect jumps. */
3684 static int
3685 bypass_conditional_jumps (void)
3687 basic_block bb;
3688 int changed;
3689 rtx setcc;
3690 rtx insn;
3691 rtx dest;
3693 /* Note we start at block 1. */
3694 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3695 return 0;
3697 bypass_last_basic_block = last_basic_block;
3698 mark_dfs_back_edges ();
3700 changed = 0;
3701 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3702 EXIT_BLOCK_PTR, next_bb)
3704 /* Check for more than one predecessor. */
3705 if (!single_pred_p (bb))
3707 setcc = NULL_RTX;
3708 FOR_BB_INSNS (bb, insn)
3709 if (NONJUMP_INSN_P (insn))
3711 if (setcc)
3712 break;
3713 if (GET_CODE (PATTERN (insn)) != SET)
3714 break;
3716 dest = SET_DEST (PATTERN (insn));
3717 if (REG_P (dest) || CC0_P (dest))
3718 setcc = insn;
3719 else
3720 break;
3722 else if (JUMP_P (insn))
3724 if ((any_condjump_p (insn) || computed_jump_p (insn))
3725 && onlyjump_p (insn))
3726 changed |= bypass_block (bb, setcc, insn);
3727 break;
3729 else if (INSN_P (insn))
3730 break;
3734 /* If we bypassed any register setting insns, we inserted a
3735 copy on the redirected edge. These need to be committed. */
3736 if (changed)
3737 commit_edge_insertions();
3739 return changed;
3742 /* Compute PRE+LCM working variables. */
3744 /* Local properties of expressions. */
3745 /* Nonzero for expressions that are transparent in the block. */
3746 static sbitmap *transp;
3748 /* Nonzero for expressions that are transparent at the end of the block.
3749 This is only zero for expressions killed by abnormal critical edge
3750 created by a calls. */
3751 static sbitmap *transpout;
3753 /* Nonzero for expressions that are computed (available) in the block. */
3754 static sbitmap *comp;
3756 /* Nonzero for expressions that are locally anticipatable in the block. */
3757 static sbitmap *antloc;
3759 /* Nonzero for expressions where this block is an optimal computation
3760 point. */
3761 static sbitmap *pre_optimal;
3763 /* Nonzero for expressions which are redundant in a particular block. */
3764 static sbitmap *pre_redundant;
3766 /* Nonzero for expressions which should be inserted on a specific edge. */
3767 static sbitmap *pre_insert_map;
3769 /* Nonzero for expressions which should be deleted in a specific block. */
3770 static sbitmap *pre_delete_map;
3772 /* Contains the edge_list returned by pre_edge_lcm. */
3773 static struct edge_list *edge_list;
3775 /* Redundant insns. */
3776 static sbitmap pre_redundant_insns;
3778 /* Allocate vars used for PRE analysis. */
3780 static void
3781 alloc_pre_mem (int n_blocks, int n_exprs)
3783 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3784 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3785 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3787 pre_optimal = NULL;
3788 pre_redundant = NULL;
3789 pre_insert_map = NULL;
3790 pre_delete_map = NULL;
3791 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3793 /* pre_insert and pre_delete are allocated later. */
3796 /* Free vars used for PRE analysis. */
3798 static void
3799 free_pre_mem (void)
3801 sbitmap_vector_free (transp);
3802 sbitmap_vector_free (comp);
3804 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3806 if (pre_optimal)
3807 sbitmap_vector_free (pre_optimal);
3808 if (pre_redundant)
3809 sbitmap_vector_free (pre_redundant);
3810 if (pre_insert_map)
3811 sbitmap_vector_free (pre_insert_map);
3812 if (pre_delete_map)
3813 sbitmap_vector_free (pre_delete_map);
3815 transp = comp = NULL;
3816 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3819 /* Top level routine to do the dataflow analysis needed by PRE. */
3821 static void
3822 compute_pre_data (void)
3824 sbitmap trapping_expr;
3825 basic_block bb;
3826 unsigned int ui;
3828 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3829 sbitmap_vector_zero (ae_kill, last_basic_block);
3831 /* Collect expressions which might trap. */
3832 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3833 sbitmap_zero (trapping_expr);
3834 for (ui = 0; ui < expr_hash_table.size; ui++)
3836 struct expr *e;
3837 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3838 if (may_trap_p (e->expr))
3839 SET_BIT (trapping_expr, e->bitmap_index);
3842 /* Compute ae_kill for each basic block using:
3844 ~(TRANSP | COMP)
3847 FOR_EACH_BB (bb)
3849 edge e;
3850 edge_iterator ei;
3852 /* If the current block is the destination of an abnormal edge, we
3853 kill all trapping expressions because we won't be able to properly
3854 place the instruction on the edge. So make them neither
3855 anticipatable nor transparent. This is fairly conservative. */
3856 FOR_EACH_EDGE (e, ei, bb->preds)
3857 if (e->flags & EDGE_ABNORMAL)
3859 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3860 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3861 break;
3864 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3865 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3868 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3869 ae_kill, &pre_insert_map, &pre_delete_map);
3870 sbitmap_vector_free (antloc);
3871 antloc = NULL;
3872 sbitmap_vector_free (ae_kill);
3873 ae_kill = NULL;
3874 sbitmap_free (trapping_expr);
3877 /* PRE utilities */
3879 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3880 block BB.
3882 VISITED is a pointer to a working buffer for tracking which BB's have
3883 been visited. It is NULL for the top-level call.
3885 We treat reaching expressions that go through blocks containing the same
3886 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3887 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3888 2 as not reaching. The intent is to improve the probability of finding
3889 only one reaching expression and to reduce register lifetimes by picking
3890 the closest such expression. */
3892 static int
3893 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3895 edge pred;
3896 edge_iterator ei;
3898 FOR_EACH_EDGE (pred, ei, bb->preds)
3900 basic_block pred_bb = pred->src;
3902 if (pred->src == ENTRY_BLOCK_PTR
3903 /* Has predecessor has already been visited? */
3904 || visited[pred_bb->index])
3905 ;/* Nothing to do. */
3907 /* Does this predecessor generate this expression? */
3908 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3910 /* Is this the occurrence we're looking for?
3911 Note that there's only one generating occurrence per block
3912 so we just need to check the block number. */
3913 if (occr_bb == pred_bb)
3914 return 1;
3916 visited[pred_bb->index] = 1;
3918 /* Ignore this predecessor if it kills the expression. */
3919 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3920 visited[pred_bb->index] = 1;
3922 /* Neither gen nor kill. */
3923 else
3925 visited[pred_bb->index] = 1;
3926 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3927 return 1;
3931 /* All paths have been checked. */
3932 return 0;
3935 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3936 memory allocated for that function is returned. */
3938 static int
3939 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3941 int rval;
3942 char *visited = XCNEWVEC (char, last_basic_block);
3944 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3946 free (visited);
3947 return rval;
3951 /* Given an expr, generate RTL which we can insert at the end of a BB,
3952 or on an edge. Set the block number of any insns generated to
3953 the value of BB. */
3955 static rtx
3956 process_insert_insn (struct expr *expr)
3958 rtx reg = expr->reaching_reg;
3959 rtx exp = copy_rtx (expr->expr);
3960 rtx pat;
3962 start_sequence ();
3964 /* If the expression is something that's an operand, like a constant,
3965 just copy it to a register. */
3966 if (general_operand (exp, GET_MODE (reg)))
3967 emit_move_insn (reg, exp);
3969 /* Otherwise, make a new insn to compute this expression and make sure the
3970 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3971 expression to make sure we don't have any sharing issues. */
3972 else
3974 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3976 if (insn_invalid_p (insn))
3977 gcc_unreachable ();
3981 pat = get_insns ();
3982 end_sequence ();
3984 return pat;
3987 /* Add EXPR to the end of basic block BB.
3989 This is used by both the PRE and code hoisting.
3991 For PRE, we want to verify that the expr is either transparent
3992 or locally anticipatable in the target block. This check makes
3993 no sense for code hoisting. */
3995 static void
3996 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3998 rtx insn = BB_END (bb);
3999 rtx new_insn;
4000 rtx reg = expr->reaching_reg;
4001 int regno = REGNO (reg);
4002 rtx pat, pat_end;
4004 pat = process_insert_insn (expr);
4005 gcc_assert (pat && INSN_P (pat));
4007 pat_end = pat;
4008 while (NEXT_INSN (pat_end) != NULL_RTX)
4009 pat_end = NEXT_INSN (pat_end);
4011 /* If the last insn is a jump, insert EXPR in front [taking care to
4012 handle cc0, etc. properly]. Similarly we need to care trapping
4013 instructions in presence of non-call exceptions. */
4015 if (JUMP_P (insn)
4016 || (NONJUMP_INSN_P (insn)
4017 && (!single_succ_p (bb)
4018 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
4020 #ifdef HAVE_cc0
4021 rtx note;
4022 #endif
4023 /* It should always be the case that we can put these instructions
4024 anywhere in the basic block with performing PRE optimizations.
4025 Check this. */
4026 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4027 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4028 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4030 /* If this is a jump table, then we can't insert stuff here. Since
4031 we know the previous real insn must be the tablejump, we insert
4032 the new instruction just before the tablejump. */
4033 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4034 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4035 insn = prev_real_insn (insn);
4037 #ifdef HAVE_cc0
4038 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4039 if cc0 isn't set. */
4040 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4041 if (note)
4042 insn = XEXP (note, 0);
4043 else
4045 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4046 if (maybe_cc0_setter
4047 && INSN_P (maybe_cc0_setter)
4048 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4049 insn = maybe_cc0_setter;
4051 #endif
4052 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4053 new_insn = emit_insn_before_noloc (pat, insn);
4056 /* Likewise if the last insn is a call, as will happen in the presence
4057 of exception handling. */
4058 else if (CALL_P (insn)
4059 && (!single_succ_p (bb)
4060 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4062 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4063 we search backward and place the instructions before the first
4064 parameter is loaded. Do this for everyone for consistency and a
4065 presumption that we'll get better code elsewhere as well.
4067 It should always be the case that we can put these instructions
4068 anywhere in the basic block with performing PRE optimizations.
4069 Check this. */
4071 gcc_assert (!pre
4072 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4073 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4075 /* Since different machines initialize their parameter registers
4076 in different orders, assume nothing. Collect the set of all
4077 parameter registers. */
4078 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4080 /* If we found all the parameter loads, then we want to insert
4081 before the first parameter load.
4083 If we did not find all the parameter loads, then we might have
4084 stopped on the head of the block, which could be a CODE_LABEL.
4085 If we inserted before the CODE_LABEL, then we would be putting
4086 the insn in the wrong basic block. In that case, put the insn
4087 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4088 while (LABEL_P (insn)
4089 || NOTE_INSN_BASIC_BLOCK_P (insn))
4090 insn = NEXT_INSN (insn);
4092 new_insn = emit_insn_before_noloc (pat, insn);
4094 else
4095 new_insn = emit_insn_after_noloc (pat, insn);
4097 while (1)
4099 if (INSN_P (pat))
4101 add_label_notes (PATTERN (pat), new_insn);
4102 note_stores (PATTERN (pat), record_set_info, pat);
4104 if (pat == pat_end)
4105 break;
4106 pat = NEXT_INSN (pat);
4109 gcse_create_count++;
4111 if (dump_file)
4113 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
4114 bb->index, INSN_UID (new_insn));
4115 fprintf (dump_file, "copying expression %d to reg %d\n",
4116 expr->bitmap_index, regno);
4120 /* Insert partially redundant expressions on edges in the CFG to make
4121 the expressions fully redundant. */
4123 static int
4124 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4126 int e, i, j, num_edges, set_size, did_insert = 0;
4127 sbitmap *inserted;
4129 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4130 if it reaches any of the deleted expressions. */
4132 set_size = pre_insert_map[0]->size;
4133 num_edges = NUM_EDGES (edge_list);
4134 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4135 sbitmap_vector_zero (inserted, num_edges);
4137 for (e = 0; e < num_edges; e++)
4139 int indx;
4140 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4142 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4144 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4146 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4147 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4149 struct expr *expr = index_map[j];
4150 struct occr *occr;
4152 /* Now look at each deleted occurrence of this expression. */
4153 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4155 if (! occr->deleted_p)
4156 continue;
4158 /* Insert this expression on this edge if it would
4159 reach the deleted occurrence in BB. */
4160 if (!TEST_BIT (inserted[e], j))
4162 rtx insn;
4163 edge eg = INDEX_EDGE (edge_list, e);
4165 /* We can't insert anything on an abnormal and
4166 critical edge, so we insert the insn at the end of
4167 the previous block. There are several alternatives
4168 detailed in Morgans book P277 (sec 10.5) for
4169 handling this situation. This one is easiest for
4170 now. */
4172 if (eg->flags & EDGE_ABNORMAL)
4173 insert_insn_end_bb (index_map[j], bb, 0);
4174 else
4176 insn = process_insert_insn (index_map[j]);
4177 insert_insn_on_edge (insn, eg);
4180 if (dump_file)
4182 fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ",
4183 bb->index,
4184 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4185 fprintf (dump_file, "copy expression %d\n",
4186 expr->bitmap_index);
4189 update_ld_motion_stores (expr);
4190 SET_BIT (inserted[e], j);
4191 did_insert = 1;
4192 gcse_create_count++;
4199 sbitmap_vector_free (inserted);
4200 return did_insert;
4203 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4204 Given "old_reg <- expr" (INSN), instead of adding after it
4205 reaching_reg <- old_reg
4206 it's better to do the following:
4207 reaching_reg <- expr
4208 old_reg <- reaching_reg
4209 because this way copy propagation can discover additional PRE
4210 opportunities. But if this fails, we try the old way.
4211 When "expr" is a store, i.e.
4212 given "MEM <- old_reg", instead of adding after it
4213 reaching_reg <- old_reg
4214 it's better to add it before as follows:
4215 reaching_reg <- old_reg
4216 MEM <- reaching_reg. */
4218 static void
4219 pre_insert_copy_insn (struct expr *expr, rtx insn)
4221 rtx reg = expr->reaching_reg;
4222 int regno = REGNO (reg);
4223 int indx = expr->bitmap_index;
4224 rtx pat = PATTERN (insn);
4225 rtx set, first_set, new_insn;
4226 rtx old_reg;
4227 int i;
4229 /* This block matches the logic in hash_scan_insn. */
4230 switch (GET_CODE (pat))
4232 case SET:
4233 set = pat;
4234 break;
4236 case PARALLEL:
4237 /* Search through the parallel looking for the set whose
4238 source was the expression that we're interested in. */
4239 first_set = NULL_RTX;
4240 set = NULL_RTX;
4241 for (i = 0; i < XVECLEN (pat, 0); i++)
4243 rtx x = XVECEXP (pat, 0, i);
4244 if (GET_CODE (x) == SET)
4246 /* If the source was a REG_EQUAL or REG_EQUIV note, we
4247 may not find an equivalent expression, but in this
4248 case the PARALLEL will have a single set. */
4249 if (first_set == NULL_RTX)
4250 first_set = x;
4251 if (expr_equiv_p (SET_SRC (x), expr->expr))
4253 set = x;
4254 break;
4259 gcc_assert (first_set);
4260 if (set == NULL_RTX)
4261 set = first_set;
4262 break;
4264 default:
4265 gcc_unreachable ();
4268 if (REG_P (SET_DEST (set)))
4270 old_reg = SET_DEST (set);
4271 /* Check if we can modify the set destination in the original insn. */
4272 if (validate_change (insn, &SET_DEST (set), reg, 0))
4274 new_insn = gen_move_insn (old_reg, reg);
4275 new_insn = emit_insn_after (new_insn, insn);
4277 /* Keep register set table up to date. */
4278 record_one_set (regno, insn);
4280 else
4282 new_insn = gen_move_insn (reg, old_reg);
4283 new_insn = emit_insn_after (new_insn, insn);
4285 /* Keep register set table up to date. */
4286 record_one_set (regno, new_insn);
4289 else /* This is possible only in case of a store to memory. */
4291 old_reg = SET_SRC (set);
4292 new_insn = gen_move_insn (reg, old_reg);
4294 /* Check if we can modify the set source in the original insn. */
4295 if (validate_change (insn, &SET_SRC (set), reg, 0))
4296 new_insn = emit_insn_before (new_insn, insn);
4297 else
4298 new_insn = emit_insn_after (new_insn, insn);
4300 /* Keep register set table up to date. */
4301 record_one_set (regno, new_insn);
4304 gcse_create_count++;
4306 if (dump_file)
4307 fprintf (dump_file,
4308 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4309 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4310 INSN_UID (insn), regno);
4313 /* Copy available expressions that reach the redundant expression
4314 to `reaching_reg'. */
4316 static void
4317 pre_insert_copies (void)
4319 unsigned int i, added_copy;
4320 struct expr *expr;
4321 struct occr *occr;
4322 struct occr *avail;
4324 /* For each available expression in the table, copy the result to
4325 `reaching_reg' if the expression reaches a deleted one.
4327 ??? The current algorithm is rather brute force.
4328 Need to do some profiling. */
4330 for (i = 0; i < expr_hash_table.size; i++)
4331 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4333 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4334 we don't want to insert a copy here because the expression may not
4335 really be redundant. So only insert an insn if the expression was
4336 deleted. This test also avoids further processing if the
4337 expression wasn't deleted anywhere. */
4338 if (expr->reaching_reg == NULL)
4339 continue;
4341 /* Set when we add a copy for that expression. */
4342 added_copy = 0;
4344 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4346 if (! occr->deleted_p)
4347 continue;
4349 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4351 rtx insn = avail->insn;
4353 /* No need to handle this one if handled already. */
4354 if (avail->copied_p)
4355 continue;
4357 /* Don't handle this one if it's a redundant one. */
4358 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4359 continue;
4361 /* Or if the expression doesn't reach the deleted one. */
4362 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4363 expr,
4364 BLOCK_FOR_INSN (occr->insn)))
4365 continue;
4367 added_copy = 1;
4369 /* Copy the result of avail to reaching_reg. */
4370 pre_insert_copy_insn (expr, insn);
4371 avail->copied_p = 1;
4375 if (added_copy)
4376 update_ld_motion_stores (expr);
4380 /* Emit move from SRC to DEST noting the equivalence with expression computed
4381 in INSN. */
4382 static rtx
4383 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4385 rtx new;
4386 rtx set = single_set (insn), set2;
4387 rtx note;
4388 rtx eqv;
4390 /* This should never fail since we're creating a reg->reg copy
4391 we've verified to be valid. */
4393 new = emit_insn_after (gen_move_insn (dest, src), insn);
4395 /* Note the equivalence for local CSE pass. */
4396 set2 = single_set (new);
4397 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4398 return new;
4399 if ((note = find_reg_equal_equiv_note (insn)))
4400 eqv = XEXP (note, 0);
4401 else
4402 eqv = SET_SRC (set);
4404 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4406 return new;
4409 /* Delete redundant computations.
4410 Deletion is done by changing the insn to copy the `reaching_reg' of
4411 the expression into the result of the SET. It is left to later passes
4412 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4414 Returns nonzero if a change is made. */
4416 static int
4417 pre_delete (void)
4419 unsigned int i;
4420 int changed;
4421 struct expr *expr;
4422 struct occr *occr;
4424 changed = 0;
4425 for (i = 0; i < expr_hash_table.size; i++)
4426 for (expr = expr_hash_table.table[i];
4427 expr != NULL;
4428 expr = expr->next_same_hash)
4430 int indx = expr->bitmap_index;
4432 /* We only need to search antic_occr since we require
4433 ANTLOC != 0. */
4435 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4437 rtx insn = occr->insn;
4438 rtx set;
4439 basic_block bb = BLOCK_FOR_INSN (insn);
4441 /* We only delete insns that have a single_set. */
4442 if (TEST_BIT (pre_delete_map[bb->index], indx)
4443 && (set = single_set (insn)) != 0)
4445 /* Create a pseudo-reg to store the result of reaching
4446 expressions into. Get the mode for the new pseudo from
4447 the mode of the original destination pseudo. */
4448 if (expr->reaching_reg == NULL)
4449 expr->reaching_reg
4450 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4452 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4453 delete_insn (insn);
4454 occr->deleted_p = 1;
4455 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4456 changed = 1;
4457 gcse_subst_count++;
4459 if (dump_file)
4461 fprintf (dump_file,
4462 "PRE: redundant insn %d (expression %d) in ",
4463 INSN_UID (insn), indx);
4464 fprintf (dump_file, "bb %d, reaching reg is %d\n",
4465 bb->index, REGNO (expr->reaching_reg));
4471 return changed;
4474 /* Perform GCSE optimizations using PRE.
4475 This is called by one_pre_gcse_pass after all the dataflow analysis
4476 has been done.
4478 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4479 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4480 Compiler Design and Implementation.
4482 ??? A new pseudo reg is created to hold the reaching expression. The nice
4483 thing about the classical approach is that it would try to use an existing
4484 reg. If the register can't be adequately optimized [i.e. we introduce
4485 reload problems], one could add a pass here to propagate the new register
4486 through the block.
4488 ??? We don't handle single sets in PARALLELs because we're [currently] not
4489 able to copy the rest of the parallel when we insert copies to create full
4490 redundancies from partial redundancies. However, there's no reason why we
4491 can't handle PARALLELs in the cases where there are no partial
4492 redundancies. */
4494 static int
4495 pre_gcse (void)
4497 unsigned int i;
4498 int did_insert, changed;
4499 struct expr **index_map;
4500 struct expr *expr;
4502 /* Compute a mapping from expression number (`bitmap_index') to
4503 hash table entry. */
4505 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4506 for (i = 0; i < expr_hash_table.size; i++)
4507 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4508 index_map[expr->bitmap_index] = expr;
4510 /* Reset bitmap used to track which insns are redundant. */
4511 pre_redundant_insns = sbitmap_alloc (max_cuid);
4512 sbitmap_zero (pre_redundant_insns);
4514 /* Delete the redundant insns first so that
4515 - we know what register to use for the new insns and for the other
4516 ones with reaching expressions
4517 - we know which insns are redundant when we go to create copies */
4519 changed = pre_delete ();
4521 did_insert = pre_edge_insert (edge_list, index_map);
4523 /* In other places with reaching expressions, copy the expression to the
4524 specially allocated pseudo-reg that reaches the redundant expr. */
4525 pre_insert_copies ();
4526 if (did_insert)
4528 commit_edge_insertions ();
4529 changed = 1;
4532 free (index_map);
4533 sbitmap_free (pre_redundant_insns);
4534 return changed;
4537 /* Top level routine to perform one PRE GCSE pass.
4539 Return nonzero if a change was made. */
4541 static int
4542 one_pre_gcse_pass (int pass)
4544 int changed = 0;
4546 gcse_subst_count = 0;
4547 gcse_create_count = 0;
4549 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4550 add_noreturn_fake_exit_edges ();
4551 if (flag_gcse_lm)
4552 compute_ld_motion_mems ();
4554 compute_hash_table (&expr_hash_table);
4555 trim_ld_motion_mems ();
4556 if (dump_file)
4557 dump_hash_table (dump_file, "Expression", &expr_hash_table);
4559 if (expr_hash_table.n_elems > 0)
4561 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4562 compute_pre_data ();
4563 changed |= pre_gcse ();
4564 free_edge_list (edge_list);
4565 free_pre_mem ();
4568 free_ldst_mems ();
4569 remove_fake_exit_edges ();
4570 free_hash_table (&expr_hash_table);
4572 if (dump_file)
4574 fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4575 current_function_name (), pass, bytes_used);
4576 fprintf (dump_file, "%d substs, %d insns created\n",
4577 gcse_subst_count, gcse_create_count);
4580 return changed;
4583 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4584 If notes are added to an insn which references a CODE_LABEL, the
4585 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4586 because the following loop optimization pass requires them. */
4588 /* ??? If there was a jump optimization pass after gcse and before loop,
4589 then we would not need to do this here, because jump would add the
4590 necessary REG_LABEL notes. */
4592 static void
4593 add_label_notes (rtx x, rtx insn)
4595 enum rtx_code code = GET_CODE (x);
4596 int i, j;
4597 const char *fmt;
4599 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4601 /* This code used to ignore labels that referred to dispatch tables to
4602 avoid flow generating (slightly) worse code.
4604 We no longer ignore such label references (see LABEL_REF handling in
4605 mark_jump_label for additional information). */
4607 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4608 REG_NOTES (insn));
4609 if (LABEL_P (XEXP (x, 0)))
4610 LABEL_NUSES (XEXP (x, 0))++;
4611 return;
4614 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4616 if (fmt[i] == 'e')
4617 add_label_notes (XEXP (x, i), insn);
4618 else if (fmt[i] == 'E')
4619 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4620 add_label_notes (XVECEXP (x, i, j), insn);
4624 /* Compute transparent outgoing information for each block.
4626 An expression is transparent to an edge unless it is killed by
4627 the edge itself. This can only happen with abnormal control flow,
4628 when the edge is traversed through a call. This happens with
4629 non-local labels and exceptions.
4631 This would not be necessary if we split the edge. While this is
4632 normally impossible for abnormal critical edges, with some effort
4633 it should be possible with exception handling, since we still have
4634 control over which handler should be invoked. But due to increased
4635 EH table sizes, this may not be worthwhile. */
4637 static void
4638 compute_transpout (void)
4640 basic_block bb;
4641 unsigned int i;
4642 struct expr *expr;
4644 sbitmap_vector_ones (transpout, last_basic_block);
4646 FOR_EACH_BB (bb)
4648 /* Note that flow inserted a nop a the end of basic blocks that
4649 end in call instructions for reasons other than abnormal
4650 control flow. */
4651 if (! CALL_P (BB_END (bb)))
4652 continue;
4654 for (i = 0; i < expr_hash_table.size; i++)
4655 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4656 if (MEM_P (expr->expr))
4658 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4659 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4660 continue;
4662 /* ??? Optimally, we would use interprocedural alias
4663 analysis to determine if this mem is actually killed
4664 by this call. */
4665 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4670 /* Code Hoisting variables and subroutines. */
4672 /* Very busy expressions. */
4673 static sbitmap *hoist_vbein;
4674 static sbitmap *hoist_vbeout;
4676 /* Hoistable expressions. */
4677 static sbitmap *hoist_exprs;
4679 /* ??? We could compute post dominators and run this algorithm in
4680 reverse to perform tail merging, doing so would probably be
4681 more effective than the tail merging code in jump.c.
4683 It's unclear if tail merging could be run in parallel with
4684 code hoisting. It would be nice. */
4686 /* Allocate vars used for code hoisting analysis. */
4688 static void
4689 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4691 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4692 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4693 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4695 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4696 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4697 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4698 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4701 /* Free vars used for code hoisting analysis. */
4703 static void
4704 free_code_hoist_mem (void)
4706 sbitmap_vector_free (antloc);
4707 sbitmap_vector_free (transp);
4708 sbitmap_vector_free (comp);
4710 sbitmap_vector_free (hoist_vbein);
4711 sbitmap_vector_free (hoist_vbeout);
4712 sbitmap_vector_free (hoist_exprs);
4713 sbitmap_vector_free (transpout);
4715 free_dominance_info (CDI_DOMINATORS);
4718 /* Compute the very busy expressions at entry/exit from each block.
4720 An expression is very busy if all paths from a given point
4721 compute the expression. */
4723 static void
4724 compute_code_hoist_vbeinout (void)
4726 int changed, passes;
4727 basic_block bb;
4729 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4730 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4732 passes = 0;
4733 changed = 1;
4735 while (changed)
4737 changed = 0;
4739 /* We scan the blocks in the reverse order to speed up
4740 the convergence. */
4741 FOR_EACH_BB_REVERSE (bb)
4743 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4744 hoist_vbeout[bb->index], transp[bb->index]);
4745 if (bb->next_bb != EXIT_BLOCK_PTR)
4746 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4749 passes++;
4752 if (dump_file)
4753 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4756 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4758 static void
4759 compute_code_hoist_data (void)
4761 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4762 compute_transpout ();
4763 compute_code_hoist_vbeinout ();
4764 calculate_dominance_info (CDI_DOMINATORS);
4765 if (dump_file)
4766 fprintf (dump_file, "\n");
4769 /* Determine if the expression identified by EXPR_INDEX would
4770 reach BB unimpared if it was placed at the end of EXPR_BB.
4772 It's unclear exactly what Muchnick meant by "unimpared". It seems
4773 to me that the expression must either be computed or transparent in
4774 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4775 would allow the expression to be hoisted out of loops, even if
4776 the expression wasn't a loop invariant.
4778 Contrast this to reachability for PRE where an expression is
4779 considered reachable if *any* path reaches instead of *all*
4780 paths. */
4782 static int
4783 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4785 edge pred;
4786 edge_iterator ei;
4787 int visited_allocated_locally = 0;
4790 if (visited == NULL)
4792 visited_allocated_locally = 1;
4793 visited = XCNEWVEC (char, last_basic_block);
4796 FOR_EACH_EDGE (pred, ei, bb->preds)
4798 basic_block pred_bb = pred->src;
4800 if (pred->src == ENTRY_BLOCK_PTR)
4801 break;
4802 else if (pred_bb == expr_bb)
4803 continue;
4804 else if (visited[pred_bb->index])
4805 continue;
4807 /* Does this predecessor generate this expression? */
4808 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4809 break;
4810 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4811 break;
4813 /* Not killed. */
4814 else
4816 visited[pred_bb->index] = 1;
4817 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4818 pred_bb, visited))
4819 break;
4822 if (visited_allocated_locally)
4823 free (visited);
4825 return (pred == NULL);
4828 /* Actually perform code hoisting. */
4830 static void
4831 hoist_code (void)
4833 basic_block bb, dominated;
4834 basic_block *domby;
4835 unsigned int domby_len;
4836 unsigned int i,j;
4837 struct expr **index_map;
4838 struct expr *expr;
4840 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4842 /* Compute a mapping from expression number (`bitmap_index') to
4843 hash table entry. */
4845 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4846 for (i = 0; i < expr_hash_table.size; i++)
4847 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4848 index_map[expr->bitmap_index] = expr;
4850 /* Walk over each basic block looking for potentially hoistable
4851 expressions, nothing gets hoisted from the entry block. */
4852 FOR_EACH_BB (bb)
4854 int found = 0;
4855 int insn_inserted_p;
4857 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4858 /* Examine each expression that is very busy at the exit of this
4859 block. These are the potentially hoistable expressions. */
4860 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4862 int hoistable = 0;
4864 if (TEST_BIT (hoist_vbeout[bb->index], i)
4865 && TEST_BIT (transpout[bb->index], i))
4867 /* We've found a potentially hoistable expression, now
4868 we look at every block BB dominates to see if it
4869 computes the expression. */
4870 for (j = 0; j < domby_len; j++)
4872 dominated = domby[j];
4873 /* Ignore self dominance. */
4874 if (bb == dominated)
4875 continue;
4876 /* We've found a dominated block, now see if it computes
4877 the busy expression and whether or not moving that
4878 expression to the "beginning" of that block is safe. */
4879 if (!TEST_BIT (antloc[dominated->index], i))
4880 continue;
4882 /* Note if the expression would reach the dominated block
4883 unimpared if it was placed at the end of BB.
4885 Keep track of how many times this expression is hoistable
4886 from a dominated block into BB. */
4887 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4888 hoistable++;
4891 /* If we found more than one hoistable occurrence of this
4892 expression, then note it in the bitmap of expressions to
4893 hoist. It makes no sense to hoist things which are computed
4894 in only one BB, and doing so tends to pessimize register
4895 allocation. One could increase this value to try harder
4896 to avoid any possible code expansion due to register
4897 allocation issues; however experiments have shown that
4898 the vast majority of hoistable expressions are only movable
4899 from two successors, so raising this threshold is likely
4900 to nullify any benefit we get from code hoisting. */
4901 if (hoistable > 1)
4903 SET_BIT (hoist_exprs[bb->index], i);
4904 found = 1;
4908 /* If we found nothing to hoist, then quit now. */
4909 if (! found)
4911 free (domby);
4912 continue;
4915 /* Loop over all the hoistable expressions. */
4916 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4918 /* We want to insert the expression into BB only once, so
4919 note when we've inserted it. */
4920 insn_inserted_p = 0;
4922 /* These tests should be the same as the tests above. */
4923 if (TEST_BIT (hoist_exprs[bb->index], i))
4925 /* We've found a potentially hoistable expression, now
4926 we look at every block BB dominates to see if it
4927 computes the expression. */
4928 for (j = 0; j < domby_len; j++)
4930 dominated = domby[j];
4931 /* Ignore self dominance. */
4932 if (bb == dominated)
4933 continue;
4935 /* We've found a dominated block, now see if it computes
4936 the busy expression and whether or not moving that
4937 expression to the "beginning" of that block is safe. */
4938 if (!TEST_BIT (antloc[dominated->index], i))
4939 continue;
4941 /* The expression is computed in the dominated block and
4942 it would be safe to compute it at the start of the
4943 dominated block. Now we have to determine if the
4944 expression would reach the dominated block if it was
4945 placed at the end of BB. */
4946 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4948 struct expr *expr = index_map[i];
4949 struct occr *occr = expr->antic_occr;
4950 rtx insn;
4951 rtx set;
4953 /* Find the right occurrence of this expression. */
4954 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4955 occr = occr->next;
4957 gcc_assert (occr);
4958 insn = occr->insn;
4959 set = single_set (insn);
4960 gcc_assert (set);
4962 /* Create a pseudo-reg to store the result of reaching
4963 expressions into. Get the mode for the new pseudo
4964 from the mode of the original destination pseudo. */
4965 if (expr->reaching_reg == NULL)
4966 expr->reaching_reg
4967 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4969 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4970 delete_insn (insn);
4971 occr->deleted_p = 1;
4972 if (!insn_inserted_p)
4974 insert_insn_end_bb (index_map[i], bb, 0);
4975 insn_inserted_p = 1;
4981 free (domby);
4984 free (index_map);
4987 /* Top level routine to perform one code hoisting (aka unification) pass
4989 Return nonzero if a change was made. */
4991 static int
4992 one_code_hoisting_pass (void)
4994 int changed = 0;
4996 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4997 compute_hash_table (&expr_hash_table);
4998 if (dump_file)
4999 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
5001 if (expr_hash_table.n_elems > 0)
5003 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5004 compute_code_hoist_data ();
5005 hoist_code ();
5006 free_code_hoist_mem ();
5009 free_hash_table (&expr_hash_table);
5011 return changed;
5014 /* Here we provide the things required to do store motion towards
5015 the exit. In order for this to be effective, gcse also needed to
5016 be taught how to move a load when it is kill only by a store to itself.
5018 int i;
5019 float a[10];
5021 void foo(float scale)
5023 for (i=0; i<10; i++)
5024 a[i] *= scale;
5027 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5028 the load out since its live around the loop, and stored at the bottom
5029 of the loop.
5031 The 'Load Motion' referred to and implemented in this file is
5032 an enhancement to gcse which when using edge based lcm, recognizes
5033 this situation and allows gcse to move the load out of the loop.
5035 Once gcse has hoisted the load, store motion can then push this
5036 load towards the exit, and we end up with no loads or stores of 'i'
5037 in the loop. */
5039 static hashval_t
5040 pre_ldst_expr_hash (const void *p)
5042 int do_not_record_p = 0;
5043 const struct ls_expr *x = p;
5044 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
5047 static int
5048 pre_ldst_expr_eq (const void *p1, const void *p2)
5050 const struct ls_expr *ptr1 = p1, *ptr2 = p2;
5051 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
5054 /* This will search the ldst list for a matching expression. If it
5055 doesn't find one, we create one and initialize it. */
5057 static struct ls_expr *
5058 ldst_entry (rtx x)
5060 int do_not_record_p = 0;
5061 struct ls_expr * ptr;
5062 unsigned int hash;
5063 void **slot;
5064 struct ls_expr e;
5066 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5067 NULL, /*have_reg_qty=*/false);
5069 e.pattern = x;
5070 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
5071 if (*slot)
5072 return (struct ls_expr *)*slot;
5074 ptr = XNEW (struct ls_expr);
5076 ptr->next = pre_ldst_mems;
5077 ptr->expr = NULL;
5078 ptr->pattern = x;
5079 ptr->pattern_regs = NULL_RTX;
5080 ptr->loads = NULL_RTX;
5081 ptr->stores = NULL_RTX;
5082 ptr->reaching_reg = NULL_RTX;
5083 ptr->invalid = 0;
5084 ptr->index = 0;
5085 ptr->hash_index = hash;
5086 pre_ldst_mems = ptr;
5087 *slot = ptr;
5089 return ptr;
5092 /* Free up an individual ldst entry. */
5094 static void
5095 free_ldst_entry (struct ls_expr * ptr)
5097 free_INSN_LIST_list (& ptr->loads);
5098 free_INSN_LIST_list (& ptr->stores);
5100 free (ptr);
5103 /* Free up all memory associated with the ldst list. */
5105 static void
5106 free_ldst_mems (void)
5108 if (pre_ldst_table)
5109 htab_delete (pre_ldst_table);
5110 pre_ldst_table = NULL;
5112 while (pre_ldst_mems)
5114 struct ls_expr * tmp = pre_ldst_mems;
5116 pre_ldst_mems = pre_ldst_mems->next;
5118 free_ldst_entry (tmp);
5121 pre_ldst_mems = NULL;
5124 /* Dump debugging info about the ldst list. */
5126 static void
5127 print_ldst_list (FILE * file)
5129 struct ls_expr * ptr;
5131 fprintf (file, "LDST list: \n");
5133 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5135 fprintf (file, " Pattern (%3d): ", ptr->index);
5137 print_rtl (file, ptr->pattern);
5139 fprintf (file, "\n Loads : ");
5141 if (ptr->loads)
5142 print_rtl (file, ptr->loads);
5143 else
5144 fprintf (file, "(nil)");
5146 fprintf (file, "\n Stores : ");
5148 if (ptr->stores)
5149 print_rtl (file, ptr->stores);
5150 else
5151 fprintf (file, "(nil)");
5153 fprintf (file, "\n\n");
5156 fprintf (file, "\n");
5159 /* Returns 1 if X is in the list of ldst only expressions. */
5161 static struct ls_expr *
5162 find_rtx_in_ldst (rtx x)
5164 struct ls_expr e;
5165 void **slot;
5166 if (!pre_ldst_table)
5167 return NULL;
5168 e.pattern = x;
5169 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
5170 if (!slot || ((struct ls_expr *)*slot)->invalid)
5171 return NULL;
5172 return *slot;
5175 /* Assign each element of the list of mems a monotonically increasing value. */
5177 static int
5178 enumerate_ldsts (void)
5180 struct ls_expr * ptr;
5181 int n = 0;
5183 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5184 ptr->index = n++;
5186 return n;
5189 /* Return first item in the list. */
5191 static inline struct ls_expr *
5192 first_ls_expr (void)
5194 return pre_ldst_mems;
5197 /* Return the next item in the list after the specified one. */
5199 static inline struct ls_expr *
5200 next_ls_expr (struct ls_expr * ptr)
5202 return ptr->next;
5205 /* Load Motion for loads which only kill themselves. */
5207 /* Return true if x is a simple MEM operation, with no registers or
5208 side effects. These are the types of loads we consider for the
5209 ld_motion list, otherwise we let the usual aliasing take care of it. */
5211 static int
5212 simple_mem (rtx x)
5214 if (! MEM_P (x))
5215 return 0;
5217 if (MEM_VOLATILE_P (x))
5218 return 0;
5220 if (GET_MODE (x) == BLKmode)
5221 return 0;
5223 /* If we are handling exceptions, we must be careful with memory references
5224 that may trap. If we are not, the behavior is undefined, so we may just
5225 continue. */
5226 if (flag_non_call_exceptions && may_trap_p (x))
5227 return 0;
5229 if (side_effects_p (x))
5230 return 0;
5232 /* Do not consider function arguments passed on stack. */
5233 if (reg_mentioned_p (stack_pointer_rtx, x))
5234 return 0;
5236 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5237 return 0;
5239 return 1;
5242 /* Make sure there isn't a buried reference in this pattern anywhere.
5243 If there is, invalidate the entry for it since we're not capable
5244 of fixing it up just yet.. We have to be sure we know about ALL
5245 loads since the aliasing code will allow all entries in the
5246 ld_motion list to not-alias itself. If we miss a load, we will get
5247 the wrong value since gcse might common it and we won't know to
5248 fix it up. */
5250 static void
5251 invalidate_any_buried_refs (rtx x)
5253 const char * fmt;
5254 int i, j;
5255 struct ls_expr * ptr;
5257 /* Invalidate it in the list. */
5258 if (MEM_P (x) && simple_mem (x))
5260 ptr = ldst_entry (x);
5261 ptr->invalid = 1;
5264 /* Recursively process the insn. */
5265 fmt = GET_RTX_FORMAT (GET_CODE (x));
5267 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5269 if (fmt[i] == 'e')
5270 invalidate_any_buried_refs (XEXP (x, i));
5271 else if (fmt[i] == 'E')
5272 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5273 invalidate_any_buried_refs (XVECEXP (x, i, j));
5277 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5278 being defined as MEM loads and stores to symbols, with no side effects
5279 and no registers in the expression. For a MEM destination, we also
5280 check that the insn is still valid if we replace the destination with a
5281 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5282 which don't match this criteria, they are invalidated and trimmed out
5283 later. */
5285 static void
5286 compute_ld_motion_mems (void)
5288 struct ls_expr * ptr;
5289 basic_block bb;
5290 rtx insn;
5292 pre_ldst_mems = NULL;
5293 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5294 pre_ldst_expr_eq, NULL);
5296 FOR_EACH_BB (bb)
5298 FOR_BB_INSNS (bb, insn)
5300 if (INSN_P (insn))
5302 if (GET_CODE (PATTERN (insn)) == SET)
5304 rtx src = SET_SRC (PATTERN (insn));
5305 rtx dest = SET_DEST (PATTERN (insn));
5307 /* Check for a simple LOAD... */
5308 if (MEM_P (src) && simple_mem (src))
5310 ptr = ldst_entry (src);
5311 if (REG_P (dest))
5312 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5313 else
5314 ptr->invalid = 1;
5316 else
5318 /* Make sure there isn't a buried load somewhere. */
5319 invalidate_any_buried_refs (src);
5322 /* Check for stores. Don't worry about aliased ones, they
5323 will block any movement we might do later. We only care
5324 about this exact pattern since those are the only
5325 circumstance that we will ignore the aliasing info. */
5326 if (MEM_P (dest) && simple_mem (dest))
5328 ptr = ldst_entry (dest);
5330 if (! MEM_P (src)
5331 && GET_CODE (src) != ASM_OPERANDS
5332 /* Check for REG manually since want_to_gcse_p
5333 returns 0 for all REGs. */
5334 && can_assign_to_reg_p (src))
5335 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5336 else
5337 ptr->invalid = 1;
5340 else
5341 invalidate_any_buried_refs (PATTERN (insn));
5347 /* Remove any references that have been either invalidated or are not in the
5348 expression list for pre gcse. */
5350 static void
5351 trim_ld_motion_mems (void)
5353 struct ls_expr * * last = & pre_ldst_mems;
5354 struct ls_expr * ptr = pre_ldst_mems;
5356 while (ptr != NULL)
5358 struct expr * expr;
5360 /* Delete if entry has been made invalid. */
5361 if (! ptr->invalid)
5363 /* Delete if we cannot find this mem in the expression list. */
5364 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5366 for (expr = expr_hash_table.table[hash];
5367 expr != NULL;
5368 expr = expr->next_same_hash)
5369 if (expr_equiv_p (expr->expr, ptr->pattern))
5370 break;
5372 else
5373 expr = (struct expr *) 0;
5375 if (expr)
5377 /* Set the expression field if we are keeping it. */
5378 ptr->expr = expr;
5379 last = & ptr->next;
5380 ptr = ptr->next;
5382 else
5384 *last = ptr->next;
5385 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5386 free_ldst_entry (ptr);
5387 ptr = * last;
5391 /* Show the world what we've found. */
5392 if (dump_file && pre_ldst_mems != NULL)
5393 print_ldst_list (dump_file);
5396 /* This routine will take an expression which we are replacing with
5397 a reaching register, and update any stores that are needed if
5398 that expression is in the ld_motion list. Stores are updated by
5399 copying their SRC to the reaching register, and then storing
5400 the reaching register into the store location. These keeps the
5401 correct value in the reaching register for the loads. */
5403 static void
5404 update_ld_motion_stores (struct expr * expr)
5406 struct ls_expr * mem_ptr;
5408 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5410 /* We can try to find just the REACHED stores, but is shouldn't
5411 matter to set the reaching reg everywhere... some might be
5412 dead and should be eliminated later. */
5414 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5415 where reg is the reaching reg used in the load. We checked in
5416 compute_ld_motion_mems that we can replace (set mem expr) with
5417 (set reg expr) in that insn. */
5418 rtx list = mem_ptr->stores;
5420 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5422 rtx insn = XEXP (list, 0);
5423 rtx pat = PATTERN (insn);
5424 rtx src = SET_SRC (pat);
5425 rtx reg = expr->reaching_reg;
5426 rtx copy, new;
5428 /* If we've already copied it, continue. */
5429 if (expr->reaching_reg == src)
5430 continue;
5432 if (dump_file)
5434 fprintf (dump_file, "PRE: store updated with reaching reg ");
5435 print_rtl (dump_file, expr->reaching_reg);
5436 fprintf (dump_file, ":\n ");
5437 print_inline_rtx (dump_file, insn, 8);
5438 fprintf (dump_file, "\n");
5441 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5442 new = emit_insn_before (copy, insn);
5443 record_one_set (REGNO (reg), new);
5444 SET_SRC (pat) = reg;
5446 /* un-recognize this pattern since it's probably different now. */
5447 INSN_CODE (insn) = -1;
5448 gcse_create_count++;
5453 /* Store motion code. */
5455 #define ANTIC_STORE_LIST(x) ((x)->loads)
5456 #define AVAIL_STORE_LIST(x) ((x)->stores)
5457 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5459 /* This is used to communicate the target bitvector we want to use in the
5460 reg_set_info routine when called via the note_stores mechanism. */
5461 static int * regvec;
5463 /* And current insn, for the same routine. */
5464 static rtx compute_store_table_current_insn;
5466 /* Used in computing the reverse edge graph bit vectors. */
5467 static sbitmap * st_antloc;
5469 /* Global holding the number of store expressions we are dealing with. */
5470 static int num_stores;
5472 /* Checks to set if we need to mark a register set. Called from
5473 note_stores. */
5475 static void
5476 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5477 void *data)
5479 sbitmap bb_reg = data;
5481 if (GET_CODE (dest) == SUBREG)
5482 dest = SUBREG_REG (dest);
5484 if (REG_P (dest))
5486 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5487 if (bb_reg)
5488 SET_BIT (bb_reg, REGNO (dest));
5492 /* Clear any mark that says that this insn sets dest. Called from
5493 note_stores. */
5495 static void
5496 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5497 void *data)
5499 int *dead_vec = data;
5501 if (GET_CODE (dest) == SUBREG)
5502 dest = SUBREG_REG (dest);
5504 if (REG_P (dest) &&
5505 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5506 dead_vec[REGNO (dest)] = 0;
5509 /* Return zero if some of the registers in list X are killed
5510 due to set of registers in bitmap REGS_SET. */
5512 static bool
5513 store_ops_ok (rtx x, int *regs_set)
5515 rtx reg;
5517 for (; x; x = XEXP (x, 1))
5519 reg = XEXP (x, 0);
5520 if (regs_set[REGNO(reg)])
5521 return false;
5524 return true;
5527 /* Returns a list of registers mentioned in X. */
5528 static rtx
5529 extract_mentioned_regs (rtx x)
5531 return extract_mentioned_regs_helper (x, NULL_RTX);
5534 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5535 registers. */
5536 static rtx
5537 extract_mentioned_regs_helper (rtx x, rtx accum)
5539 int i;
5540 enum rtx_code code;
5541 const char * fmt;
5543 /* Repeat is used to turn tail-recursion into iteration. */
5544 repeat:
5546 if (x == 0)
5547 return accum;
5549 code = GET_CODE (x);
5550 switch (code)
5552 case REG:
5553 return alloc_EXPR_LIST (0, x, accum);
5555 case MEM:
5556 x = XEXP (x, 0);
5557 goto repeat;
5559 case PRE_DEC:
5560 case PRE_INC:
5561 case POST_DEC:
5562 case POST_INC:
5563 /* We do not run this function with arguments having side effects. */
5564 gcc_unreachable ();
5566 case PC:
5567 case CC0: /*FIXME*/
5568 case CONST:
5569 case CONST_INT:
5570 case CONST_DOUBLE:
5571 case CONST_VECTOR:
5572 case SYMBOL_REF:
5573 case LABEL_REF:
5574 case ADDR_VEC:
5575 case ADDR_DIFF_VEC:
5576 return accum;
5578 default:
5579 break;
5582 i = GET_RTX_LENGTH (code) - 1;
5583 fmt = GET_RTX_FORMAT (code);
5585 for (; i >= 0; i--)
5587 if (fmt[i] == 'e')
5589 rtx tem = XEXP (x, i);
5591 /* If we are about to do the last recursive call
5592 needed at this level, change it into iteration. */
5593 if (i == 0)
5595 x = tem;
5596 goto repeat;
5599 accum = extract_mentioned_regs_helper (tem, accum);
5601 else if (fmt[i] == 'E')
5603 int j;
5605 for (j = 0; j < XVECLEN (x, i); j++)
5606 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5610 return accum;
5613 /* Determine whether INSN is MEM store pattern that we will consider moving.
5614 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5615 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5616 including) the insn in this basic block. We must be passing through BB from
5617 head to end, as we are using this fact to speed things up.
5619 The results are stored this way:
5621 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5622 -- if the processed expression is not anticipatable, NULL_RTX is added
5623 there instead, so that we can use it as indicator that no further
5624 expression of this type may be anticipatable
5625 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5626 consequently, all of them but this head are dead and may be deleted.
5627 -- if the expression is not available, the insn due to that it fails to be
5628 available is stored in reaching_reg.
5630 The things are complicated a bit by fact that there already may be stores
5631 to the same MEM from other blocks; also caller must take care of the
5632 necessary cleanup of the temporary markers after end of the basic block.
5635 static void
5636 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5638 struct ls_expr * ptr;
5639 rtx dest, set, tmp;
5640 int check_anticipatable, check_available;
5641 basic_block bb = BLOCK_FOR_INSN (insn);
5643 set = single_set (insn);
5644 if (!set)
5645 return;
5647 dest = SET_DEST (set);
5649 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5650 || GET_MODE (dest) == BLKmode)
5651 return;
5653 if (side_effects_p (dest))
5654 return;
5656 /* If we are handling exceptions, we must be careful with memory references
5657 that may trap. If we are not, the behavior is undefined, so we may just
5658 continue. */
5659 if (flag_non_call_exceptions && may_trap_p (dest))
5660 return;
5662 /* Even if the destination cannot trap, the source may. In this case we'd
5663 need to handle updating the REG_EH_REGION note. */
5664 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5665 return;
5667 /* Make sure that the SET_SRC of this store insns can be assigned to
5668 a register, or we will fail later on in replace_store_insn, which
5669 assumes that we can do this. But sometimes the target machine has
5670 oddities like MEM read-modify-write instruction. See for example
5671 PR24257. */
5672 if (!can_assign_to_reg_p (SET_SRC (set)))
5673 return;
5675 ptr = ldst_entry (dest);
5676 if (!ptr->pattern_regs)
5677 ptr->pattern_regs = extract_mentioned_regs (dest);
5679 /* Do not check for anticipatability if we either found one anticipatable
5680 store already, or tested for one and found out that it was killed. */
5681 check_anticipatable = 0;
5682 if (!ANTIC_STORE_LIST (ptr))
5683 check_anticipatable = 1;
5684 else
5686 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5687 if (tmp != NULL_RTX
5688 && BLOCK_FOR_INSN (tmp) != bb)
5689 check_anticipatable = 1;
5691 if (check_anticipatable)
5693 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5694 tmp = NULL_RTX;
5695 else
5696 tmp = insn;
5697 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5698 ANTIC_STORE_LIST (ptr));
5701 /* It is not necessary to check whether store is available if we did
5702 it successfully before; if we failed before, do not bother to check
5703 until we reach the insn that caused us to fail. */
5704 check_available = 0;
5705 if (!AVAIL_STORE_LIST (ptr))
5706 check_available = 1;
5707 else
5709 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5710 if (BLOCK_FOR_INSN (tmp) != bb)
5711 check_available = 1;
5713 if (check_available)
5715 /* Check that we have already reached the insn at that the check
5716 failed last time. */
5717 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5719 for (tmp = BB_END (bb);
5720 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5721 tmp = PREV_INSN (tmp))
5722 continue;
5723 if (tmp == insn)
5724 check_available = 0;
5726 else
5727 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5728 bb, regs_set_after,
5729 &LAST_AVAIL_CHECK_FAILURE (ptr));
5731 if (!check_available)
5732 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5735 /* Find available and anticipatable stores. */
5737 static int
5738 compute_store_table (void)
5740 int ret;
5741 basic_block bb;
5742 unsigned regno;
5743 rtx insn, pat, tmp;
5744 int *last_set_in, *already_set;
5745 struct ls_expr * ptr, **prev_next_ptr_ptr;
5747 max_gcse_regno = max_reg_num ();
5749 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5750 max_gcse_regno);
5751 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5752 pre_ldst_mems = 0;
5753 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5754 pre_ldst_expr_eq, NULL);
5755 last_set_in = XCNEWVEC (int, max_gcse_regno);
5756 already_set = XNEWVEC (int, max_gcse_regno);
5758 /* Find all the stores we care about. */
5759 FOR_EACH_BB (bb)
5761 /* First compute the registers set in this block. */
5762 regvec = last_set_in;
5764 FOR_BB_INSNS (bb, insn)
5766 if (! INSN_P (insn))
5767 continue;
5769 if (CALL_P (insn))
5771 HARD_REG_SET clobbered_regs;
5773 get_call_invalidated_used_regs (insn, &clobbered_regs, true);
5774 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5775 if (TEST_HARD_REG_BIT (clobbered_regs, regno))
5777 last_set_in[regno] = INSN_UID (insn);
5778 SET_BIT (reg_set_in_block[bb->index], regno);
5782 pat = PATTERN (insn);
5783 compute_store_table_current_insn = insn;
5784 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5787 /* Now find the stores. */
5788 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5789 regvec = already_set;
5790 FOR_BB_INSNS (bb, insn)
5792 if (! INSN_P (insn))
5793 continue;
5795 if (CALL_P (insn))
5797 HARD_REG_SET clobbered_regs;
5799 get_call_invalidated_used_regs (insn, &clobbered_regs, true);
5800 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5801 if (TEST_HARD_REG_BIT (clobbered_regs, regno))
5802 already_set[regno] = 1;
5805 pat = PATTERN (insn);
5806 note_stores (pat, reg_set_info, NULL);
5808 /* Now that we've marked regs, look for stores. */
5809 find_moveable_store (insn, already_set, last_set_in);
5811 /* Unmark regs that are no longer set. */
5812 compute_store_table_current_insn = insn;
5813 note_stores (pat, reg_clear_last_set, last_set_in);
5814 if (CALL_P (insn))
5816 HARD_REG_SET clobbered_regs;
5818 get_call_invalidated_used_regs (insn, &clobbered_regs, true);
5819 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5820 if (TEST_HARD_REG_BIT (clobbered_regs, regno)
5821 && last_set_in[regno] == INSN_UID (insn))
5822 last_set_in[regno] = 0;
5826 #ifdef ENABLE_CHECKING
5827 /* last_set_in should now be all-zero. */
5828 for (regno = 0; regno < max_gcse_regno; regno++)
5829 gcc_assert (!last_set_in[regno]);
5830 #endif
5832 /* Clear temporary marks. */
5833 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5835 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5836 if (ANTIC_STORE_LIST (ptr)
5837 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5838 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5842 /* Remove the stores that are not available anywhere, as there will
5843 be no opportunity to optimize them. */
5844 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5845 ptr != NULL;
5846 ptr = *prev_next_ptr_ptr)
5848 if (!AVAIL_STORE_LIST (ptr))
5850 *prev_next_ptr_ptr = ptr->next;
5851 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5852 free_ldst_entry (ptr);
5854 else
5855 prev_next_ptr_ptr = &ptr->next;
5858 ret = enumerate_ldsts ();
5860 if (dump_file)
5862 fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n");
5863 print_ldst_list (dump_file);
5866 free (last_set_in);
5867 free (already_set);
5868 return ret;
5871 /* Check to see if the load X is aliased with STORE_PATTERN.
5872 AFTER is true if we are checking the case when STORE_PATTERN occurs
5873 after the X. */
5875 static bool
5876 load_kills_store (rtx x, rtx store_pattern, int after)
5878 if (after)
5879 return anti_dependence (x, store_pattern);
5880 else
5881 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5882 rtx_addr_varies_p);
5885 /* Go through the entire insn X, looking for any loads which might alias
5886 STORE_PATTERN. Return true if found.
5887 AFTER is true if we are checking the case when STORE_PATTERN occurs
5888 after the insn X. */
5890 static bool
5891 find_loads (rtx x, rtx store_pattern, int after)
5893 const char * fmt;
5894 int i, j;
5895 int ret = false;
5897 if (!x)
5898 return false;
5900 if (GET_CODE (x) == SET)
5901 x = SET_SRC (x);
5903 if (MEM_P (x))
5905 if (load_kills_store (x, store_pattern, after))
5906 return true;
5909 /* Recursively process the insn. */
5910 fmt = GET_RTX_FORMAT (GET_CODE (x));
5912 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5914 if (fmt[i] == 'e')
5915 ret |= find_loads (XEXP (x, i), store_pattern, after);
5916 else if (fmt[i] == 'E')
5917 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5918 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5920 return ret;
5923 /* Check if INSN kills the store pattern X (is aliased with it).
5924 AFTER is true if we are checking the case when store X occurs
5925 after the insn. Return true if it does. */
5927 static bool
5928 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5930 rtx reg, base, note;
5932 if (!INSN_P (insn))
5933 return false;
5935 if (CALL_P (insn))
5937 /* A normal or pure call might read from pattern,
5938 but a const call will not. */
5939 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5940 return true;
5942 /* But even a const call reads its parameters. Check whether the
5943 base of some of registers used in mem is stack pointer. */
5944 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5946 base = find_base_term (XEXP (reg, 0));
5947 if (!base
5948 || (GET_CODE (base) == ADDRESS
5949 && GET_MODE (base) == Pmode
5950 && XEXP (base, 0) == stack_pointer_rtx))
5951 return true;
5954 return false;
5957 if (GET_CODE (PATTERN (insn)) == SET)
5959 rtx pat = PATTERN (insn);
5960 rtx dest = SET_DEST (pat);
5962 if (GET_CODE (dest) == ZERO_EXTRACT)
5963 dest = XEXP (dest, 0);
5965 /* Check for memory stores to aliased objects. */
5966 if (MEM_P (dest)
5967 && !expr_equiv_p (dest, x))
5969 if (after)
5971 if (output_dependence (dest, x))
5972 return true;
5974 else
5976 if (output_dependence (x, dest))
5977 return true;
5980 if (find_loads (SET_SRC (pat), x, after))
5981 return true;
5983 else if (find_loads (PATTERN (insn), x, after))
5984 return true;
5986 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5987 location aliased with X, then this insn kills X. */
5988 note = find_reg_equal_equiv_note (insn);
5989 if (! note)
5990 return false;
5991 note = XEXP (note, 0);
5993 /* However, if the note represents a must alias rather than a may
5994 alias relationship, then it does not kill X. */
5995 if (expr_equiv_p (note, x))
5996 return false;
5998 /* See if there are any aliased loads in the note. */
5999 return find_loads (note, x, after);
6002 /* Returns true if the expression X is loaded or clobbered on or after INSN
6003 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6004 or after the insn. X_REGS is list of registers mentioned in X. If the store
6005 is killed, return the last insn in that it occurs in FAIL_INSN. */
6007 static bool
6008 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
6009 int *regs_set_after, rtx *fail_insn)
6011 rtx last = BB_END (bb), act;
6013 if (!store_ops_ok (x_regs, regs_set_after))
6015 /* We do not know where it will happen. */
6016 if (fail_insn)
6017 *fail_insn = NULL_RTX;
6018 return true;
6021 /* Scan from the end, so that fail_insn is determined correctly. */
6022 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6023 if (store_killed_in_insn (x, x_regs, act, false))
6025 if (fail_insn)
6026 *fail_insn = act;
6027 return true;
6030 return false;
6033 /* Returns true if the expression X is loaded or clobbered on or before INSN
6034 within basic block BB. X_REGS is list of registers mentioned in X.
6035 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6036 static bool
6037 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6038 int *regs_set_before)
6040 rtx first = BB_HEAD (bb);
6042 if (!store_ops_ok (x_regs, regs_set_before))
6043 return true;
6045 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6046 if (store_killed_in_insn (x, x_regs, insn, true))
6047 return true;
6049 return false;
6052 /* Fill in available, anticipatable, transparent and kill vectors in
6053 STORE_DATA, based on lists of available and anticipatable stores. */
6054 static void
6055 build_store_vectors (void)
6057 basic_block bb;
6058 int *regs_set_in_block;
6059 rtx insn, st;
6060 struct ls_expr * ptr;
6061 unsigned regno;
6063 /* Build the gen_vector. This is any store in the table which is not killed
6064 by aliasing later in its block. */
6065 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6066 sbitmap_vector_zero (ae_gen, last_basic_block);
6068 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6069 sbitmap_vector_zero (st_antloc, last_basic_block);
6071 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6073 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6075 insn = XEXP (st, 0);
6076 bb = BLOCK_FOR_INSN (insn);
6078 /* If we've already seen an available expression in this block,
6079 we can delete this one (It occurs earlier in the block). We'll
6080 copy the SRC expression to an unused register in case there
6081 are any side effects. */
6082 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6084 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6085 if (dump_file)
6086 fprintf (dump_file, "Removing redundant store:\n");
6087 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6088 continue;
6090 SET_BIT (ae_gen[bb->index], ptr->index);
6093 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6095 insn = XEXP (st, 0);
6096 bb = BLOCK_FOR_INSN (insn);
6097 SET_BIT (st_antloc[bb->index], ptr->index);
6101 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6102 sbitmap_vector_zero (ae_kill, last_basic_block);
6104 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6105 sbitmap_vector_zero (transp, last_basic_block);
6106 regs_set_in_block = XNEWVEC (int, max_gcse_regno);
6108 FOR_EACH_BB (bb)
6110 for (regno = 0; regno < max_gcse_regno; regno++)
6111 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6113 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6115 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6116 bb, regs_set_in_block, NULL))
6118 /* It should not be necessary to consider the expression
6119 killed if it is both anticipatable and available. */
6120 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6121 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6122 SET_BIT (ae_kill[bb->index], ptr->index);
6124 else
6125 SET_BIT (transp[bb->index], ptr->index);
6129 free (regs_set_in_block);
6131 if (dump_file)
6133 dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
6134 dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block);
6135 dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block);
6136 dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block);
6140 /* Insert an instruction at the beginning of a basic block, and update
6141 the BB_HEAD if needed. */
6143 static void
6144 insert_insn_start_bb (rtx insn, basic_block bb)
6146 /* Insert at start of successor block. */
6147 rtx prev = PREV_INSN (BB_HEAD (bb));
6148 rtx before = BB_HEAD (bb);
6149 while (before != 0)
6151 if (! LABEL_P (before)
6152 && (! NOTE_P (before)
6153 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6154 break;
6155 prev = before;
6156 if (prev == BB_END (bb))
6157 break;
6158 before = NEXT_INSN (before);
6161 insn = emit_insn_after_noloc (insn, prev);
6163 if (dump_file)
6165 fprintf (dump_file, "STORE_MOTION insert store at start of BB %d:\n",
6166 bb->index);
6167 print_inline_rtx (dump_file, insn, 6);
6168 fprintf (dump_file, "\n");
6172 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6173 the memory reference, and E is the edge to insert it on. Returns nonzero
6174 if an edge insertion was performed. */
6176 static int
6177 insert_store (struct ls_expr * expr, edge e)
6179 rtx reg, insn;
6180 basic_block bb;
6181 edge tmp;
6182 edge_iterator ei;
6184 /* We did all the deleted before this insert, so if we didn't delete a
6185 store, then we haven't set the reaching reg yet either. */
6186 if (expr->reaching_reg == NULL_RTX)
6187 return 0;
6189 if (e->flags & EDGE_FAKE)
6190 return 0;
6192 reg = expr->reaching_reg;
6193 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6195 /* If we are inserting this expression on ALL predecessor edges of a BB,
6196 insert it at the start of the BB, and reset the insert bits on the other
6197 edges so we don't try to insert it on the other edges. */
6198 bb = e->dest;
6199 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6200 if (!(tmp->flags & EDGE_FAKE))
6202 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6204 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6205 if (! TEST_BIT (pre_insert_map[index], expr->index))
6206 break;
6209 /* If tmp is NULL, we found an insertion on every edge, blank the
6210 insertion vector for these edges, and insert at the start of the BB. */
6211 if (!tmp && bb != EXIT_BLOCK_PTR)
6213 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6215 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6216 RESET_BIT (pre_insert_map[index], expr->index);
6218 insert_insn_start_bb (insn, bb);
6219 return 0;
6222 /* We can't put stores in the front of blocks pointed to by abnormal
6223 edges since that may put a store where one didn't used to be. */
6224 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6226 insert_insn_on_edge (insn, e);
6228 if (dump_file)
6230 fprintf (dump_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6231 e->src->index, e->dest->index);
6232 print_inline_rtx (dump_file, insn, 6);
6233 fprintf (dump_file, "\n");
6236 return 1;
6239 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6240 memory location in SMEXPR set in basic block BB.
6242 This could be rather expensive. */
6244 static void
6245 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6247 edge_iterator *stack, ei;
6248 int sp;
6249 edge act;
6250 sbitmap visited = sbitmap_alloc (last_basic_block);
6251 rtx last, insn, note;
6252 rtx mem = smexpr->pattern;
6254 stack = XNEWVEC (edge_iterator, n_basic_blocks);
6255 sp = 0;
6256 ei = ei_start (bb->succs);
6258 sbitmap_zero (visited);
6260 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6261 while (1)
6263 if (!act)
6265 if (!sp)
6267 free (stack);
6268 sbitmap_free (visited);
6269 return;
6271 act = ei_edge (stack[--sp]);
6273 bb = act->dest;
6275 if (bb == EXIT_BLOCK_PTR
6276 || TEST_BIT (visited, bb->index))
6278 if (!ei_end_p (ei))
6279 ei_next (&ei);
6280 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6281 continue;
6283 SET_BIT (visited, bb->index);
6285 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6287 for (last = ANTIC_STORE_LIST (smexpr);
6288 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6289 last = XEXP (last, 1))
6290 continue;
6291 last = XEXP (last, 0);
6293 else
6294 last = NEXT_INSN (BB_END (bb));
6296 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6297 if (INSN_P (insn))
6299 note = find_reg_equal_equiv_note (insn);
6300 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6301 continue;
6303 if (dump_file)
6304 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6305 INSN_UID (insn));
6306 remove_note (insn, note);
6309 if (!ei_end_p (ei))
6310 ei_next (&ei);
6311 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6313 if (EDGE_COUNT (bb->succs) > 0)
6315 if (act)
6316 stack[sp++] = ei;
6317 ei = ei_start (bb->succs);
6318 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6323 /* This routine will replace a store with a SET to a specified register. */
6325 static void
6326 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6328 rtx insn, mem, note, set, ptr, pair;
6330 mem = smexpr->pattern;
6331 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6332 insn = emit_insn_after (insn, del);
6334 if (dump_file)
6336 fprintf (dump_file,
6337 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6338 print_inline_rtx (dump_file, del, 6);
6339 fprintf (dump_file, "\nSTORE MOTION replaced with insn:\n ");
6340 print_inline_rtx (dump_file, insn, 6);
6341 fprintf (dump_file, "\n");
6344 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6345 if (XEXP (ptr, 0) == del)
6347 XEXP (ptr, 0) = insn;
6348 break;
6351 /* Move the notes from the deleted insn to its replacement, and patch
6352 up the LIBCALL notes. */
6353 REG_NOTES (insn) = REG_NOTES (del);
6355 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6356 if (note)
6358 pair = XEXP (note, 0);
6359 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6360 XEXP (note, 0) = insn;
6362 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6363 if (note)
6365 pair = XEXP (note, 0);
6366 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6367 XEXP (note, 0) = insn;
6370 delete_insn (del);
6372 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6373 they are no longer accurate provided that they are reached by this
6374 definition, so drop them. */
6375 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6376 if (INSN_P (insn))
6378 set = single_set (insn);
6379 if (!set)
6380 continue;
6381 if (expr_equiv_p (SET_DEST (set), mem))
6382 return;
6383 note = find_reg_equal_equiv_note (insn);
6384 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6385 continue;
6387 if (dump_file)
6388 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6389 INSN_UID (insn));
6390 remove_note (insn, note);
6392 remove_reachable_equiv_notes (bb, smexpr);
6396 /* Delete a store, but copy the value that would have been stored into
6397 the reaching_reg for later storing. */
6399 static void
6400 delete_store (struct ls_expr * expr, basic_block bb)
6402 rtx reg, i, del;
6404 if (expr->reaching_reg == NULL_RTX)
6405 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6407 reg = expr->reaching_reg;
6409 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6411 del = XEXP (i, 0);
6412 if (BLOCK_FOR_INSN (del) == bb)
6414 /* We know there is only one since we deleted redundant
6415 ones during the available computation. */
6416 replace_store_insn (reg, del, bb, expr);
6417 break;
6422 /* Free memory used by store motion. */
6424 static void
6425 free_store_memory (void)
6427 free_ldst_mems ();
6429 if (ae_gen)
6430 sbitmap_vector_free (ae_gen);
6431 if (ae_kill)
6432 sbitmap_vector_free (ae_kill);
6433 if (transp)
6434 sbitmap_vector_free (transp);
6435 if (st_antloc)
6436 sbitmap_vector_free (st_antloc);
6437 if (pre_insert_map)
6438 sbitmap_vector_free (pre_insert_map);
6439 if (pre_delete_map)
6440 sbitmap_vector_free (pre_delete_map);
6441 if (reg_set_in_block)
6442 sbitmap_vector_free (reg_set_in_block);
6444 ae_gen = ae_kill = transp = st_antloc = NULL;
6445 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6448 /* Perform store motion. Much like gcse, except we move expressions the
6449 other way by looking at the flowgraph in reverse. */
6451 static void
6452 store_motion (void)
6454 basic_block bb;
6455 int x;
6456 struct ls_expr * ptr;
6457 int update_flow = 0;
6459 if (dump_file)
6461 fprintf (dump_file, "before store motion\n");
6462 print_rtl (dump_file, get_insns ());
6465 init_alias_analysis ();
6467 /* Find all the available and anticipatable stores. */
6468 num_stores = compute_store_table ();
6469 if (num_stores == 0)
6471 htab_delete (pre_ldst_table);
6472 pre_ldst_table = NULL;
6473 sbitmap_vector_free (reg_set_in_block);
6474 end_alias_analysis ();
6475 return;
6478 /* Now compute kill & transp vectors. */
6479 build_store_vectors ();
6480 add_noreturn_fake_exit_edges ();
6481 connect_infinite_loops_to_exit ();
6483 edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen,
6484 st_antloc, ae_kill, &pre_insert_map,
6485 &pre_delete_map);
6487 /* Now we want to insert the new stores which are going to be needed. */
6488 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6490 /* If any of the edges we have above are abnormal, we can't move this
6491 store. */
6492 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6493 if (TEST_BIT (pre_insert_map[x], ptr->index)
6494 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6495 break;
6497 if (x >= 0)
6499 if (dump_file != NULL)
6500 fprintf (dump_file,
6501 "Can't replace store %d: abnormal edge from %d to %d\n",
6502 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6503 INDEX_EDGE (edge_list, x)->dest->index);
6504 continue;
6507 /* Now we want to insert the new stores which are going to be needed. */
6509 FOR_EACH_BB (bb)
6510 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6511 delete_store (ptr, bb);
6513 for (x = 0; x < NUM_EDGES (edge_list); x++)
6514 if (TEST_BIT (pre_insert_map[x], ptr->index))
6515 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6518 if (update_flow)
6519 commit_edge_insertions ();
6521 free_store_memory ();
6522 free_edge_list (edge_list);
6523 remove_fake_exit_edges ();
6524 end_alias_analysis ();
6528 /* Entry point for jump bypassing optimization pass. */
6530 static int
6531 bypass_jumps (void)
6533 int changed;
6535 /* We do not construct an accurate cfg in functions which call
6536 setjmp, so just punt to be safe. */
6537 if (current_function_calls_setjmp)
6538 return 0;
6540 /* Identify the basic block information for this function, including
6541 successors and predecessors. */
6542 max_gcse_regno = max_reg_num ();
6544 if (dump_file)
6545 dump_flow_info (dump_file, dump_flags);
6547 /* Return if there's nothing to do, or it is too expensive. */
6548 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
6549 || is_too_expensive (_ ("jump bypassing disabled")))
6550 return 0;
6552 gcc_obstack_init (&gcse_obstack);
6553 bytes_used = 0;
6555 /* We need alias. */
6556 init_alias_analysis ();
6558 /* Record where pseudo-registers are set. This data is kept accurate
6559 during each pass. ??? We could also record hard-reg information here
6560 [since it's unchanging], however it is currently done during hash table
6561 computation.
6563 It may be tempting to compute MEM set information here too, but MEM sets
6564 will be subject to code motion one day and thus we need to compute
6565 information about memory sets when we build the hash tables. */
6567 alloc_reg_set_mem (max_gcse_regno);
6568 compute_sets ();
6570 max_gcse_regno = max_reg_num ();
6571 alloc_gcse_mem ();
6572 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6573 free_gcse_mem ();
6575 if (dump_file)
6577 fprintf (dump_file, "BYPASS of %s: %d basic blocks, ",
6578 current_function_name (), n_basic_blocks);
6579 fprintf (dump_file, "%d bytes\n\n", bytes_used);
6582 obstack_free (&gcse_obstack, NULL);
6583 free_reg_set_mem ();
6585 /* We are finished with alias. */
6586 end_alias_analysis ();
6587 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6589 return changed;
6592 /* Return true if the graph is too expensive to optimize. PASS is the
6593 optimization about to be performed. */
6595 static bool
6596 is_too_expensive (const char *pass)
6598 /* Trying to perform global optimizations on flow graphs which have
6599 a high connectivity will take a long time and is unlikely to be
6600 particularly useful.
6602 In normal circumstances a cfg should have about twice as many
6603 edges as blocks. But we do not want to punish small functions
6604 which have a couple switch statements. Rather than simply
6605 threshold the number of blocks, uses something with a more
6606 graceful degradation. */
6607 if (n_edges > 20000 + n_basic_blocks * 4)
6609 warning (OPT_Wdisabled_optimization,
6610 "%s: %d basic blocks and %d edges/basic block",
6611 pass, n_basic_blocks, n_edges / n_basic_blocks);
6613 return true;
6616 /* If allocating memory for the cprop bitmap would take up too much
6617 storage it's better just to disable the optimization. */
6618 if ((n_basic_blocks
6619 * SBITMAP_SET_SIZE (max_reg_num ())
6620 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6622 warning (OPT_Wdisabled_optimization,
6623 "%s: %d basic blocks and %d registers",
6624 pass, n_basic_blocks, max_reg_num ());
6626 return true;
6629 return false;
6632 static bool
6633 gate_handle_jump_bypass (void)
6635 return optimize > 0 && flag_gcse;
6638 /* Perform jump bypassing and control flow optimizations. */
6639 static unsigned int
6640 rest_of_handle_jump_bypass (void)
6642 cleanup_cfg (CLEANUP_EXPENSIVE);
6643 reg_scan (get_insns (), max_reg_num ());
6645 if (bypass_jumps ())
6647 rebuild_jump_labels (get_insns ());
6648 cleanup_cfg (CLEANUP_EXPENSIVE);
6649 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6651 return 0;
6654 struct tree_opt_pass pass_jump_bypass =
6656 "bypass", /* name */
6657 gate_handle_jump_bypass, /* gate */
6658 rest_of_handle_jump_bypass, /* execute */
6659 NULL, /* sub */
6660 NULL, /* next */
6661 0, /* static_pass_number */
6662 TV_BYPASS, /* tv_id */
6663 0, /* properties_required */
6664 0, /* properties_provided */
6665 0, /* properties_destroyed */
6666 0, /* todo_flags_start */
6667 TODO_dump_func |
6668 TODO_ggc_collect | TODO_verify_flow, /* todo_flags_finish */
6669 'G' /* letter */
6673 static bool
6674 gate_handle_gcse (void)
6676 return optimize > 0 && flag_gcse;
6680 static unsigned int
6681 rest_of_handle_gcse (void)
6683 int save_csb, save_cfj;
6684 int tem2 = 0, tem;
6686 tem = gcse_main (get_insns ());
6687 rebuild_jump_labels (get_insns ());
6688 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6690 save_csb = flag_cse_skip_blocks;
6691 save_cfj = flag_cse_follow_jumps;
6692 flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
6694 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6695 by gcse. */
6696 if (flag_expensive_optimizations)
6698 timevar_push (TV_CSE);
6699 reg_scan (get_insns (), max_reg_num ());
6700 tem2 = cse_main (get_insns (), max_reg_num ());
6701 purge_all_dead_edges ();
6702 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6703 timevar_pop (TV_CSE);
6704 cse_not_expected = !flag_rerun_cse_after_loop;
6707 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6708 things up. */
6709 if (tem || tem2)
6711 timevar_push (TV_JUMP);
6712 rebuild_jump_labels (get_insns ());
6713 delete_dead_jumptables ();
6714 cleanup_cfg (CLEANUP_EXPENSIVE);
6715 timevar_pop (TV_JUMP);
6718 flag_cse_skip_blocks = save_csb;
6719 flag_cse_follow_jumps = save_cfj;
6720 return 0;
6723 struct tree_opt_pass pass_gcse =
6725 "gcse1", /* name */
6726 gate_handle_gcse, /* gate */
6727 rest_of_handle_gcse, /* execute */
6728 NULL, /* sub */
6729 NULL, /* next */
6730 0, /* static_pass_number */
6731 TV_GCSE, /* tv_id */
6732 0, /* properties_required */
6733 0, /* properties_provided */
6734 0, /* properties_destroyed */
6735 0, /* todo_flags_start */
6736 TODO_dump_func |
6737 TODO_verify_flow | TODO_ggc_collect, /* todo_flags_finish */
6738 'G' /* letter */
6742 #include "gt-gcse.h"