* gcc.dg/ipa/inlinehint-4.c: Also pass --param inline-unit-growth=20.
[official-gcc.git] / gcc / ipa-inline.c
blob145ffbb5ef0d81fa6af08c47df77c87395352179
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
36 inlining heuristics
38 The inliner itself is split into two passes:
40 pass_early_inlining
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
68 pass_ipa_inline
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "target.h"
97 #include "rtl.h"
98 #include "tree.h"
99 #include "gimple.h"
100 #include "alloc-pool.h"
101 #include "tree-pass.h"
102 #include "gimple-ssa.h"
103 #include "cgraph.h"
104 #include "lto-streamer.h"
105 #include "trans-mem.h"
106 #include "calls.h"
107 #include "tree-inline.h"
108 #include "params.h"
109 #include "profile.h"
110 #include "symbol-summary.h"
111 #include "tree-vrp.h"
112 #include "ipa-prop.h"
113 #include "ipa-fnsummary.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
116 #include "sreal.h"
117 #include "auto-profile.h"
118 #include "builtins.h"
119 #include "fibonacci_heap.h"
120 #include "stringpool.h"
121 #include "attribs.h"
122 #include "asan.h"
124 typedef fibonacci_heap <sreal, cgraph_edge> edge_heap_t;
125 typedef fibonacci_node <sreal, cgraph_edge> edge_heap_node_t;
127 /* Statistics we collect about inlining algorithm. */
128 static int overall_size;
129 static profile_count max_count;
130 static profile_count spec_rem;
132 /* Return false when inlining edge E would lead to violating
133 limits on function unit growth or stack usage growth.
135 The relative function body growth limit is present generally
136 to avoid problems with non-linear behavior of the compiler.
137 To allow inlining huge functions into tiny wrapper, the limit
138 is always based on the bigger of the two functions considered.
140 For stack growth limits we always base the growth in stack usage
141 of the callers. We want to prevent applications from segfaulting
142 on stack overflow when functions with huge stack frames gets
143 inlined. */
145 static bool
146 caller_growth_limits (struct cgraph_edge *e)
148 struct cgraph_node *to = e->caller;
149 struct cgraph_node *what = e->callee->ultimate_alias_target ();
150 int newsize;
151 int limit = 0;
152 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
153 ipa_fn_summary *info, *what_info, *outer_info = ipa_fn_summaries->get (to);
155 /* Look for function e->caller is inlined to. While doing
156 so work out the largest function body on the way. As
157 described above, we want to base our function growth
158 limits based on that. Not on the self size of the
159 outer function, not on the self size of inline code
160 we immediately inline to. This is the most relaxed
161 interpretation of the rule "do not grow large functions
162 too much in order to prevent compiler from exploding". */
163 while (true)
165 info = ipa_fn_summaries->get (to);
166 if (limit < info->self_size)
167 limit = info->self_size;
168 if (stack_size_limit < info->estimated_self_stack_size)
169 stack_size_limit = info->estimated_self_stack_size;
170 if (to->global.inlined_to)
171 to = to->callers->caller;
172 else
173 break;
176 what_info = ipa_fn_summaries->get (what);
178 if (limit < what_info->self_size)
179 limit = what_info->self_size;
181 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
183 /* Check the size after inlining against the function limits. But allow
184 the function to shrink if it went over the limits by forced inlining. */
185 newsize = estimate_size_after_inlining (to, e);
186 if (newsize >= info->size
187 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
188 && newsize > limit)
190 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
191 return false;
194 if (!what_info->estimated_stack_size)
195 return true;
197 /* FIXME: Stack size limit often prevents inlining in Fortran programs
198 due to large i/o datastructures used by the Fortran front-end.
199 We ought to ignore this limit when we know that the edge is executed
200 on every invocation of the caller (i.e. its call statement dominates
201 exit block). We do not track this information, yet. */
202 stack_size_limit += ((gcov_type)stack_size_limit
203 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
205 inlined_stack = (outer_info->stack_frame_offset
206 + outer_info->estimated_self_stack_size
207 + what_info->estimated_stack_size);
208 /* Check new stack consumption with stack consumption at the place
209 stack is used. */
210 if (inlined_stack > stack_size_limit
211 /* If function already has large stack usage from sibling
212 inline call, we can inline, too.
213 This bit overoptimistically assume that we are good at stack
214 packing. */
215 && inlined_stack > info->estimated_stack_size
216 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
218 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
219 return false;
221 return true;
224 /* Dump info about why inlining has failed. */
226 static void
227 report_inline_failed_reason (struct cgraph_edge *e)
229 if (dump_file)
231 fprintf (dump_file, " not inlinable: %s -> %s, %s\n",
232 e->caller->dump_name (),
233 e->callee->dump_name (),
234 cgraph_inline_failed_string (e->inline_failed));
235 if ((e->inline_failed == CIF_TARGET_OPTION_MISMATCH
236 || e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
237 && e->caller->lto_file_data
238 && e->callee->ultimate_alias_target ()->lto_file_data)
240 fprintf (dump_file, " LTO objects: %s, %s\n",
241 e->caller->lto_file_data->file_name,
242 e->callee->ultimate_alias_target ()->lto_file_data->file_name);
244 if (e->inline_failed == CIF_TARGET_OPTION_MISMATCH)
245 cl_target_option_print_diff
246 (dump_file, 2, target_opts_for_fn (e->caller->decl),
247 target_opts_for_fn (e->callee->ultimate_alias_target ()->decl));
248 if (e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
249 cl_optimization_print_diff
250 (dump_file, 2, opts_for_fn (e->caller->decl),
251 opts_for_fn (e->callee->ultimate_alias_target ()->decl));
255 /* Decide whether sanitizer-related attributes allow inlining. */
257 static bool
258 sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
260 if (!caller || !callee)
261 return true;
263 return ((sanitize_flags_p (SANITIZE_ADDRESS, caller)
264 == sanitize_flags_p (SANITIZE_ADDRESS, callee))
265 && (sanitize_flags_p (SANITIZE_POINTER_COMPARE, caller)
266 == sanitize_flags_p (SANITIZE_POINTER_COMPARE, callee))
267 && (sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, caller)
268 == sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, callee)));
271 /* Used for flags where it is safe to inline when caller's value is
272 grater than callee's. */
273 #define check_maybe_up(flag) \
274 (opts_for_fn (caller->decl)->x_##flag \
275 != opts_for_fn (callee->decl)->x_##flag \
276 && (!always_inline \
277 || opts_for_fn (caller->decl)->x_##flag \
278 < opts_for_fn (callee->decl)->x_##flag))
279 /* Used for flags where it is safe to inline when caller's value is
280 smaller than callee's. */
281 #define check_maybe_down(flag) \
282 (opts_for_fn (caller->decl)->x_##flag \
283 != opts_for_fn (callee->decl)->x_##flag \
284 && (!always_inline \
285 || opts_for_fn (caller->decl)->x_##flag \
286 > opts_for_fn (callee->decl)->x_##flag))
287 /* Used for flags where exact match is needed for correctness. */
288 #define check_match(flag) \
289 (opts_for_fn (caller->decl)->x_##flag \
290 != opts_for_fn (callee->decl)->x_##flag)
292 /* Decide if we can inline the edge and possibly update
293 inline_failed reason.
294 We check whether inlining is possible at all and whether
295 caller growth limits allow doing so.
297 if REPORT is true, output reason to the dump file.
299 if DISREGARD_LIMITS is true, ignore size limits.*/
301 static bool
302 can_inline_edge_p (struct cgraph_edge *e, bool report,
303 bool disregard_limits = false, bool early = false)
305 gcc_checking_assert (e->inline_failed);
307 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
309 if (report)
310 report_inline_failed_reason (e);
311 return false;
314 bool inlinable = true;
315 enum availability avail;
316 cgraph_node *caller = e->caller->global.inlined_to
317 ? e->caller->global.inlined_to : e->caller;
318 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
319 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller->decl);
320 tree callee_tree
321 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
323 if (!callee->definition)
325 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
326 inlinable = false;
328 if (!early && (!opt_for_fn (callee->decl, optimize)
329 || !opt_for_fn (caller->decl, optimize)))
331 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
332 inlinable = false;
334 else if (callee->calls_comdat_local)
336 e->inline_failed = CIF_USES_COMDAT_LOCAL;
337 inlinable = false;
339 else if (avail <= AVAIL_INTERPOSABLE)
341 e->inline_failed = CIF_OVERWRITABLE;
342 inlinable = false;
344 /* All edges with call_stmt_cannot_inline_p should have inline_failed
345 initialized to one of FINAL_ERROR reasons. */
346 else if (e->call_stmt_cannot_inline_p)
347 gcc_unreachable ();
348 /* Don't inline if the functions have different EH personalities. */
349 else if (DECL_FUNCTION_PERSONALITY (caller->decl)
350 && DECL_FUNCTION_PERSONALITY (callee->decl)
351 && (DECL_FUNCTION_PERSONALITY (caller->decl)
352 != DECL_FUNCTION_PERSONALITY (callee->decl)))
354 e->inline_failed = CIF_EH_PERSONALITY;
355 inlinable = false;
357 /* TM pure functions should not be inlined into non-TM_pure
358 functions. */
359 else if (is_tm_pure (callee->decl) && !is_tm_pure (caller->decl))
361 e->inline_failed = CIF_UNSPECIFIED;
362 inlinable = false;
364 /* Check compatibility of target optimization options. */
365 else if (!targetm.target_option.can_inline_p (caller->decl,
366 callee->decl))
368 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
369 inlinable = false;
371 else if (!ipa_fn_summaries->get (callee)->inlinable)
373 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
374 inlinable = false;
376 /* Don't inline a function with mismatched sanitization attributes. */
377 else if (!sanitize_attrs_match_for_inline_p (caller->decl, callee->decl))
379 e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
380 inlinable = false;
382 /* Check if caller growth allows the inlining. */
383 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
384 && !disregard_limits
385 && !lookup_attribute ("flatten",
386 DECL_ATTRIBUTES (caller->decl))
387 && !caller_growth_limits (e))
388 inlinable = false;
389 /* Don't inline a function with a higher optimization level than the
390 caller. FIXME: this is really just tip of iceberg of handling
391 optimization attribute. */
392 else if (caller_tree != callee_tree)
394 bool always_inline =
395 (DECL_DISREGARD_INLINE_LIMITS (callee->decl)
396 && lookup_attribute ("always_inline",
397 DECL_ATTRIBUTES (callee->decl)));
398 ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
399 ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
401 /* Until GCC 4.9 we did not check the semantics alterning flags
402 bellow and inline across optimization boundry.
403 Enabling checks bellow breaks several packages by refusing
404 to inline library always_inline functions. See PR65873.
405 Disable the check for early inlining for now until better solution
406 is found. */
407 if (always_inline && early)
409 /* There are some options that change IL semantics which means
410 we cannot inline in these cases for correctness reason.
411 Not even for always_inline declared functions. */
412 else if (check_match (flag_wrapv)
413 || check_match (flag_trapv)
414 || check_match (flag_pcc_struct_return)
415 /* When caller or callee does FP math, be sure FP codegen flags
416 compatible. */
417 || ((caller_info->fp_expressions && callee_info->fp_expressions)
418 && (check_maybe_up (flag_rounding_math)
419 || check_maybe_up (flag_trapping_math)
420 || check_maybe_down (flag_unsafe_math_optimizations)
421 || check_maybe_down (flag_finite_math_only)
422 || check_maybe_up (flag_signaling_nans)
423 || check_maybe_down (flag_cx_limited_range)
424 || check_maybe_up (flag_signed_zeros)
425 || check_maybe_down (flag_associative_math)
426 || check_maybe_down (flag_reciprocal_math)
427 || check_maybe_down (flag_fp_int_builtin_inexact)
428 /* Strictly speaking only when the callee contains function
429 calls that may end up setting errno. */
430 || check_maybe_up (flag_errno_math)))
431 /* We do not want to make code compiled with exceptions to be
432 brought into a non-EH function unless we know that the callee
433 does not throw.
434 This is tracked by DECL_FUNCTION_PERSONALITY. */
435 || (check_maybe_up (flag_non_call_exceptions)
436 && DECL_FUNCTION_PERSONALITY (callee->decl))
437 || (check_maybe_up (flag_exceptions)
438 && DECL_FUNCTION_PERSONALITY (callee->decl))
439 /* When devirtualization is diabled for callee, it is not safe
440 to inline it as we possibly mangled the type info.
441 Allow early inlining of always inlines. */
442 || (!early && check_maybe_down (flag_devirtualize)))
444 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
445 inlinable = false;
447 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
448 else if (always_inline)
450 /* When user added an attribute to the callee honor it. */
451 else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee->decl))
452 && opts_for_fn (caller->decl) != opts_for_fn (callee->decl))
454 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
455 inlinable = false;
457 /* If explicit optimize attribute are not used, the mismatch is caused
458 by different command line options used to build different units.
459 Do not care about COMDAT functions - those are intended to be
460 optimized with the optimization flags of module they are used in.
461 Also do not care about mixing up size/speed optimization when
462 DECL_DISREGARD_INLINE_LIMITS is set. */
463 else if ((callee->merged_comdat
464 && !lookup_attribute ("optimize",
465 DECL_ATTRIBUTES (caller->decl)))
466 || DECL_DISREGARD_INLINE_LIMITS (callee->decl))
468 /* If mismatch is caused by merging two LTO units with different
469 optimizationflags we want to be bit nicer. However never inline
470 if one of functions is not optimized at all. */
471 else if (!opt_for_fn (callee->decl, optimize)
472 || !opt_for_fn (caller->decl, optimize))
474 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
475 inlinable = false;
477 /* If callee is optimized for size and caller is not, allow inlining if
478 code shrinks or we are in MAX_INLINE_INSNS_SINGLE limit and callee
479 is inline (and thus likely an unified comdat). This will allow caller
480 to run faster. */
481 else if (opt_for_fn (callee->decl, optimize_size)
482 > opt_for_fn (caller->decl, optimize_size))
484 int growth = estimate_edge_growth (e);
485 if (growth > 0
486 && (!DECL_DECLARED_INLINE_P (callee->decl)
487 && growth >= MAX (MAX_INLINE_INSNS_SINGLE,
488 MAX_INLINE_INSNS_AUTO)))
490 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
491 inlinable = false;
494 /* If callee is more aggressively optimized for performance than caller,
495 we generally want to inline only cheap (runtime wise) functions. */
496 else if (opt_for_fn (callee->decl, optimize_size)
497 < opt_for_fn (caller->decl, optimize_size)
498 || (opt_for_fn (callee->decl, optimize)
499 > opt_for_fn (caller->decl, optimize)))
501 if (estimate_edge_time (e)
502 >= 20 + ipa_call_summaries->get (e)->call_stmt_time)
504 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
505 inlinable = false;
511 if (!inlinable && report)
512 report_inline_failed_reason (e);
513 return inlinable;
517 /* Return true if the edge E is inlinable during early inlining. */
519 static bool
520 can_early_inline_edge_p (struct cgraph_edge *e)
522 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
523 /* Early inliner might get called at WPA stage when IPA pass adds new
524 function. In this case we can not really do any of early inlining
525 because function bodies are missing. */
526 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
527 return false;
528 if (!gimple_has_body_p (callee->decl))
530 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
531 return false;
533 /* In early inliner some of callees may not be in SSA form yet
534 (i.e. the callgraph is cyclic and we did not process
535 the callee by early inliner, yet). We don't have CIF code for this
536 case; later we will re-do the decision in the real inliner. */
537 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
538 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
540 if (dump_file)
541 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
542 return false;
544 if (!can_inline_edge_p (e, true, false, true))
545 return false;
546 return true;
550 /* Return number of calls in N. Ignore cheap builtins. */
552 static int
553 num_calls (struct cgraph_node *n)
555 struct cgraph_edge *e;
556 int num = 0;
558 for (e = n->callees; e; e = e->next_callee)
559 if (!is_inexpensive_builtin (e->callee->decl))
560 num++;
561 return num;
565 /* Return true if we are interested in inlining small function. */
567 static bool
568 want_early_inline_function_p (struct cgraph_edge *e)
570 bool want_inline = true;
571 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
573 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
575 /* For AutoFDO, we need to make sure that before profile summary, all
576 hot paths' IR look exactly the same as profiled binary. As a result,
577 in einliner, we will disregard size limit and inline those callsites
578 that are:
579 * inlined in the profiled binary, and
580 * the cloned callee has enough samples to be considered "hot". */
581 else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
583 else if (!DECL_DECLARED_INLINE_P (callee->decl)
584 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
586 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
587 report_inline_failed_reason (e);
588 want_inline = false;
590 else
592 int growth = estimate_edge_growth (e);
593 int n;
595 if (growth <= 0)
597 else if (!e->maybe_hot_p ()
598 && growth > 0)
600 if (dump_file)
601 fprintf (dump_file, " will not early inline: %s->%s, "
602 "call is cold and code would grow by %i\n",
603 e->caller->dump_name (),
604 callee->dump_name (),
605 growth);
606 want_inline = false;
608 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
610 if (dump_file)
611 fprintf (dump_file, " will not early inline: %s->%s, "
612 "growth %i exceeds --param early-inlining-insns\n",
613 e->caller->dump_name (),
614 callee->dump_name (),
615 growth);
616 want_inline = false;
618 else if ((n = num_calls (callee)) != 0
619 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
621 if (dump_file)
622 fprintf (dump_file, " will not early inline: %s->%s, "
623 "growth %i exceeds --param early-inlining-insns "
624 "divided by number of calls\n",
625 e->caller->dump_name (),
626 callee->dump_name (),
627 growth);
628 want_inline = false;
631 return want_inline;
634 /* Compute time of the edge->caller + edge->callee execution when inlining
635 does not happen. */
637 inline sreal
638 compute_uninlined_call_time (struct cgraph_edge *edge,
639 sreal uninlined_call_time)
641 cgraph_node *caller = (edge->caller->global.inlined_to
642 ? edge->caller->global.inlined_to
643 : edge->caller);
645 sreal freq = edge->sreal_frequency ();
646 if (freq > 0)
647 uninlined_call_time *= freq;
648 else
649 uninlined_call_time = uninlined_call_time >> 11;
651 sreal caller_time = ipa_fn_summaries->get (caller)->time;
652 return uninlined_call_time + caller_time;
655 /* Same as compute_uinlined_call_time but compute time when inlining
656 does happen. */
658 inline sreal
659 compute_inlined_call_time (struct cgraph_edge *edge,
660 sreal time)
662 cgraph_node *caller = (edge->caller->global.inlined_to
663 ? edge->caller->global.inlined_to
664 : edge->caller);
665 sreal caller_time = ipa_fn_summaries->get (caller)->time;
667 sreal freq = edge->sreal_frequency ();
668 if (freq > 0)
669 time *= freq;
670 else
671 time = time >> 11;
673 /* This calculation should match one in ipa-inline-analysis.c
674 (estimate_edge_size_and_time). */
675 time -= (sreal)ipa_call_summaries->get (edge)->call_stmt_time * freq;
676 time += caller_time;
677 if (time <= 0)
678 time = ((sreal) 1) >> 8;
679 gcc_checking_assert (time >= 0);
680 return time;
683 /* Return true if the speedup for inlining E is bigger than
684 PARAM_MAX_INLINE_MIN_SPEEDUP. */
686 static bool
687 big_speedup_p (struct cgraph_edge *e)
689 sreal unspec_time;
690 sreal spec_time = estimate_edge_time (e, &unspec_time);
691 sreal time = compute_uninlined_call_time (e, unspec_time);
692 sreal inlined_time = compute_inlined_call_time (e, spec_time);
694 if ((time - inlined_time) * 100
695 > (sreal) (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP)))
696 return true;
697 return false;
700 /* Return true if we are interested in inlining small function.
701 When REPORT is true, report reason to dump file. */
703 static bool
704 want_inline_small_function_p (struct cgraph_edge *e, bool report)
706 bool want_inline = true;
707 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
709 /* Allow this function to be called before can_inline_edge_p,
710 since it's usually cheaper. */
711 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
712 want_inline = false;
713 else if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
715 else if (!DECL_DECLARED_INLINE_P (callee->decl)
716 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
718 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
719 want_inline = false;
721 /* Do fast and conservative check if the function can be good
722 inline candidate. At the moment we allow inline hints to
723 promote non-inline functions to inline and we increase
724 MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
725 else if ((!DECL_DECLARED_INLINE_P (callee->decl)
726 && (!e->count.ipa ().initialized_p () || !e->maybe_hot_p ()))
727 && ipa_fn_summaries->get (callee)->min_size
728 - ipa_call_summaries->get (e)->call_stmt_size
729 > MAX (MAX_INLINE_INSNS_SINGLE, MAX_INLINE_INSNS_AUTO))
731 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
732 want_inline = false;
734 else if ((DECL_DECLARED_INLINE_P (callee->decl)
735 || e->count.ipa ().nonzero_p ())
736 && ipa_fn_summaries->get (callee)->min_size
737 - ipa_call_summaries->get (e)->call_stmt_size
738 > 16 * MAX_INLINE_INSNS_SINGLE)
740 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
741 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
742 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
743 want_inline = false;
745 else
747 int growth = estimate_edge_growth (e);
748 ipa_hints hints = estimate_edge_hints (e);
749 bool big_speedup = big_speedup_p (e);
751 if (growth <= 0)
753 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
754 hints suggests that inlining given function is very profitable. */
755 else if (DECL_DECLARED_INLINE_P (callee->decl)
756 && growth >= MAX_INLINE_INSNS_SINGLE
757 && ((!big_speedup
758 && !(hints & (INLINE_HINT_indirect_call
759 | INLINE_HINT_known_hot
760 | INLINE_HINT_loop_iterations
761 | INLINE_HINT_array_index
762 | INLINE_HINT_loop_stride)))
763 || growth >= MAX_INLINE_INSNS_SINGLE * 16))
765 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
766 want_inline = false;
768 else if (!DECL_DECLARED_INLINE_P (callee->decl)
769 && !opt_for_fn (e->caller->decl, flag_inline_functions))
771 /* growth_likely_positive is expensive, always test it last. */
772 if (growth >= MAX_INLINE_INSNS_SINGLE
773 || growth_likely_positive (callee, growth))
775 e->inline_failed = CIF_NOT_DECLARED_INLINED;
776 want_inline = false;
779 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
780 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
781 inlining given function is very profitable. */
782 else if (!DECL_DECLARED_INLINE_P (callee->decl)
783 && !big_speedup
784 && !(hints & INLINE_HINT_known_hot)
785 && growth >= ((hints & (INLINE_HINT_indirect_call
786 | INLINE_HINT_loop_iterations
787 | INLINE_HINT_array_index
788 | INLINE_HINT_loop_stride))
789 ? MAX (MAX_INLINE_INSNS_AUTO,
790 MAX_INLINE_INSNS_SINGLE)
791 : MAX_INLINE_INSNS_AUTO))
793 /* growth_likely_positive is expensive, always test it last. */
794 if (growth >= MAX_INLINE_INSNS_SINGLE
795 || growth_likely_positive (callee, growth))
797 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
798 want_inline = false;
801 /* If call is cold, do not inline when function body would grow. */
802 else if (!e->maybe_hot_p ()
803 && (growth >= MAX_INLINE_INSNS_SINGLE
804 || growth_likely_positive (callee, growth)))
806 e->inline_failed = CIF_UNLIKELY_CALL;
807 want_inline = false;
810 if (!want_inline && report)
811 report_inline_failed_reason (e);
812 return want_inline;
815 /* EDGE is self recursive edge.
816 We hand two cases - when function A is inlining into itself
817 or when function A is being inlined into another inliner copy of function
818 A within function B.
820 In first case OUTER_NODE points to the toplevel copy of A, while
821 in the second case OUTER_NODE points to the outermost copy of A in B.
823 In both cases we want to be extra selective since
824 inlining the call will just introduce new recursive calls to appear. */
826 static bool
827 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
828 struct cgraph_node *outer_node,
829 bool peeling,
830 int depth)
832 char const *reason = NULL;
833 bool want_inline = true;
834 sreal caller_freq = 1;
835 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
837 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
838 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
840 if (!edge->maybe_hot_p ())
842 reason = "recursive call is cold";
843 want_inline = false;
845 else if (depth > max_depth)
847 reason = "--param max-inline-recursive-depth exceeded.";
848 want_inline = false;
850 else if (outer_node->global.inlined_to
851 && (caller_freq = outer_node->callers->sreal_frequency ()) == 0)
853 reason = "caller frequency is 0";
854 want_inline = false;
857 if (!want_inline)
859 /* Inlining of self recursive function into copy of itself within other
860 function is transformation similar to loop peeling.
862 Peeling is profitable if we can inline enough copies to make probability
863 of actual call to the self recursive function very small. Be sure that
864 the probability of recursion is small.
866 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
867 This way the expected number of recursion is at most max_depth. */
868 else if (peeling)
870 sreal max_prob = (sreal)1 - ((sreal)1 / (sreal)max_depth);
871 int i;
872 for (i = 1; i < depth; i++)
873 max_prob = max_prob * max_prob;
874 if (edge->sreal_frequency () >= max_prob * caller_freq)
876 reason = "frequency of recursive call is too large";
877 want_inline = false;
880 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if
881 recursion depth is large. We reduce function call overhead and increase
882 chances that things fit in hardware return predictor.
884 Recursive inlining might however increase cost of stack frame setup
885 actually slowing down functions whose recursion tree is wide rather than
886 deep.
888 Deciding reliably on when to do recursive inlining without profile feedback
889 is tricky. For now we disable recursive inlining when probability of self
890 recursion is low.
892 Recursive inlining of self recursive call within loop also results in
893 large loop depths that generally optimize badly. We may want to throttle
894 down inlining in those cases. In particular this seems to happen in one
895 of libstdc++ rb tree methods. */
896 else
898 if (edge->sreal_frequency () * 100
899 <= caller_freq
900 * PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY))
902 reason = "frequency of recursive call is too small";
903 want_inline = false;
906 if (!want_inline && dump_file)
907 fprintf (dump_file, " not inlining recursively: %s\n", reason);
908 return want_inline;
911 /* Return true when NODE has uninlinable caller;
912 set HAS_HOT_CALL if it has hot call.
913 Worker for cgraph_for_node_and_aliases. */
915 static bool
916 check_callers (struct cgraph_node *node, void *has_hot_call)
918 struct cgraph_edge *e;
919 for (e = node->callers; e; e = e->next_caller)
921 if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once)
922 || !opt_for_fn (e->caller->decl, optimize))
923 return true;
924 if (!can_inline_edge_p (e, true))
925 return true;
926 if (e->recursive_p ())
927 return true;
928 if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
929 *(bool *)has_hot_call = true;
931 return false;
934 /* If NODE has a caller, return true. */
936 static bool
937 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
939 if (node->callers)
940 return true;
941 return false;
944 /* Decide if inlining NODE would reduce unit size by eliminating
945 the offline copy of function.
946 When COLD is true the cold calls are considered, too. */
948 static bool
949 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
951 bool has_hot_call = false;
953 /* Aliases gets inlined along with the function they alias. */
954 if (node->alias)
955 return false;
956 /* Already inlined? */
957 if (node->global.inlined_to)
958 return false;
959 /* Does it have callers? */
960 if (!node->call_for_symbol_and_aliases (has_caller_p, NULL, true))
961 return false;
962 /* Inlining into all callers would increase size? */
963 if (estimate_growth (node) > 0)
964 return false;
965 /* All inlines must be possible. */
966 if (node->call_for_symbol_and_aliases (check_callers, &has_hot_call,
967 true))
968 return false;
969 if (!cold && !has_hot_call)
970 return false;
971 return true;
974 /* A cost model driving the inlining heuristics in a way so the edges with
975 smallest badness are inlined first. After each inlining is performed
976 the costs of all caller edges of nodes affected are recomputed so the
977 metrics may accurately depend on values such as number of inlinable callers
978 of the function or function body size. */
980 static sreal
981 edge_badness (struct cgraph_edge *edge, bool dump)
983 sreal badness;
984 int growth;
985 sreal edge_time, unspec_edge_time;
986 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
987 struct ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
988 ipa_hints hints;
989 cgraph_node *caller = (edge->caller->global.inlined_to
990 ? edge->caller->global.inlined_to
991 : edge->caller);
993 growth = estimate_edge_growth (edge);
994 edge_time = estimate_edge_time (edge, &unspec_edge_time);
995 hints = estimate_edge_hints (edge);
996 gcc_checking_assert (edge_time >= 0);
997 /* Check that inlined time is better, but tolerate some roundoff issues.
998 FIXME: When callee profile drops to 0 we account calls more. This
999 should be fixed by never doing that. */
1000 gcc_checking_assert ((edge_time * 100
1001 - callee_info->time * 101).to_int () <= 0
1002 || callee->count.ipa ().initialized_p ());
1003 gcc_checking_assert (growth <= callee_info->size);
1005 if (dump)
1007 fprintf (dump_file, " Badness calculation for %s -> %s\n",
1008 edge->caller->dump_name (),
1009 edge->callee->dump_name ());
1010 fprintf (dump_file, " size growth %i, time %f unspec %f ",
1011 growth,
1012 edge_time.to_double (),
1013 unspec_edge_time.to_double ());
1014 ipa_dump_hints (dump_file, hints);
1015 if (big_speedup_p (edge))
1016 fprintf (dump_file, " big_speedup");
1017 fprintf (dump_file, "\n");
1020 /* Always prefer inlining saving code size. */
1021 if (growth <= 0)
1023 badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
1024 if (dump)
1025 fprintf (dump_file, " %f: Growth %d <= 0\n", badness.to_double (),
1026 growth);
1028 /* Inlining into EXTERNAL functions is not going to change anything unless
1029 they are themselves inlined. */
1030 else if (DECL_EXTERNAL (caller->decl))
1032 if (dump)
1033 fprintf (dump_file, " max: function is external\n");
1034 return sreal::max ();
1036 /* When profile is available. Compute badness as:
1038 time_saved * caller_count
1039 goodness = -------------------------------------------------
1040 growth_of_caller * overall_growth * combined_size
1042 badness = - goodness
1044 Again use negative value to make calls with profile appear hotter
1045 then calls without.
1047 else if (opt_for_fn (caller->decl, flag_guess_branch_prob)
1048 || caller->count.ipa ().nonzero_p ())
1050 sreal numerator, denominator;
1051 int overall_growth;
1052 sreal inlined_time = compute_inlined_call_time (edge, edge_time);
1054 numerator = (compute_uninlined_call_time (edge, unspec_edge_time)
1055 - inlined_time);
1056 if (numerator <= 0)
1057 numerator = ((sreal) 1 >> 8);
1058 if (caller->count.ipa ().nonzero_p ())
1059 numerator *= caller->count.ipa ().to_gcov_type ();
1060 else if (caller->count.ipa ().initialized_p ())
1061 numerator = numerator >> 11;
1062 denominator = growth;
1064 overall_growth = callee_info->growth;
1066 /* Look for inliner wrappers of the form:
1068 inline_caller ()
1070 do_fast_job...
1071 if (need_more_work)
1072 noninline_callee ();
1074 Withhout panilizing this case, we usually inline noninline_callee
1075 into the inline_caller because overall_growth is small preventing
1076 further inlining of inline_caller.
1078 Penalize only callgraph edges to functions with small overall
1079 growth ...
1081 if (growth > overall_growth
1082 /* ... and having only one caller which is not inlined ... */
1083 && callee_info->single_caller
1084 && !edge->caller->global.inlined_to
1085 /* ... and edges executed only conditionally ... */
1086 && edge->sreal_frequency () < 1
1087 /* ... consider case where callee is not inline but caller is ... */
1088 && ((!DECL_DECLARED_INLINE_P (edge->callee->decl)
1089 && DECL_DECLARED_INLINE_P (caller->decl))
1090 /* ... or when early optimizers decided to split and edge
1091 frequency still indicates splitting is a win ... */
1092 || (callee->split_part && !caller->split_part
1093 && edge->sreal_frequency () * 100
1094 < PARAM_VALUE
1095 (PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY)
1096 /* ... and do not overwrite user specified hints. */
1097 && (!DECL_DECLARED_INLINE_P (edge->callee->decl)
1098 || DECL_DECLARED_INLINE_P (caller->decl)))))
1100 struct ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
1101 int caller_growth = caller_info->growth;
1103 /* Only apply the penalty when caller looks like inline candidate,
1104 and it is not called once and. */
1105 if (!caller_info->single_caller && overall_growth < caller_growth
1106 && caller_info->inlinable
1107 && caller_info->size
1108 < (DECL_DECLARED_INLINE_P (caller->decl)
1109 ? MAX_INLINE_INSNS_SINGLE : MAX_INLINE_INSNS_AUTO))
1111 if (dump)
1112 fprintf (dump_file,
1113 " Wrapper penalty. Increasing growth %i to %i\n",
1114 overall_growth, caller_growth);
1115 overall_growth = caller_growth;
1118 if (overall_growth > 0)
1120 /* Strongly preffer functions with few callers that can be inlined
1121 fully. The square root here leads to smaller binaries at average.
1122 Watch however for extreme cases and return to linear function
1123 when growth is large. */
1124 if (overall_growth < 256)
1125 overall_growth *= overall_growth;
1126 else
1127 overall_growth += 256 * 256 - 256;
1128 denominator *= overall_growth;
1130 denominator *= inlined_time;
1132 badness = - numerator / denominator;
1134 if (dump)
1136 fprintf (dump_file,
1137 " %f: guessed profile. frequency %f, count %" PRId64
1138 " caller count %" PRId64
1139 " time w/o inlining %f, time with inlining %f"
1140 " overall growth %i (current) %i (original)"
1141 " %i (compensated)\n",
1142 badness.to_double (),
1143 edge->sreal_frequency ().to_double (),
1144 edge->count.ipa ().initialized_p () ? edge->count.ipa ().to_gcov_type () : -1,
1145 caller->count.ipa ().initialized_p () ? caller->count.ipa ().to_gcov_type () : -1,
1146 compute_uninlined_call_time (edge,
1147 unspec_edge_time).to_double (),
1148 inlined_time.to_double (),
1149 estimate_growth (callee),
1150 callee_info->growth, overall_growth);
1153 /* When function local profile is not available or it does not give
1154 useful information (ie frequency is zero), base the cost on
1155 loop nest and overall size growth, so we optimize for overall number
1156 of functions fully inlined in program. */
1157 else
1159 int nest = MIN (ipa_call_summaries->get (edge)->loop_depth, 8);
1160 badness = growth;
1162 /* Decrease badness if call is nested. */
1163 if (badness > 0)
1164 badness = badness >> nest;
1165 else
1166 badness = badness << nest;
1167 if (dump)
1168 fprintf (dump_file, " %f: no profile. nest %i\n",
1169 badness.to_double (), nest);
1171 gcc_checking_assert (badness != 0);
1173 if (edge->recursive_p ())
1174 badness = badness.shift (badness > 0 ? 4 : -4);
1175 if ((hints & (INLINE_HINT_indirect_call
1176 | INLINE_HINT_loop_iterations
1177 | INLINE_HINT_array_index
1178 | INLINE_HINT_loop_stride))
1179 || callee_info->growth <= 0)
1180 badness = badness.shift (badness > 0 ? -2 : 2);
1181 if (hints & (INLINE_HINT_same_scc))
1182 badness = badness.shift (badness > 0 ? 3 : -3);
1183 else if (hints & (INLINE_HINT_in_scc))
1184 badness = badness.shift (badness > 0 ? 2 : -2);
1185 else if (hints & (INLINE_HINT_cross_module))
1186 badness = badness.shift (badness > 0 ? 1 : -1);
1187 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1188 badness = badness.shift (badness > 0 ? -4 : 4);
1189 else if ((hints & INLINE_HINT_declared_inline))
1190 badness = badness.shift (badness > 0 ? -3 : 3);
1191 if (dump)
1192 fprintf (dump_file, " Adjusted by hints %f\n", badness.to_double ());
1193 return badness;
1196 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1197 static inline void
1198 update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
1200 sreal badness = edge_badness (edge, false);
1201 if (edge->aux)
1203 edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
1204 gcc_checking_assert (n->get_data () == edge);
1206 /* fibonacci_heap::replace_key does busy updating of the
1207 heap that is unnecesarily expensive.
1208 We do lazy increases: after extracting minimum if the key
1209 turns out to be out of date, it is re-inserted into heap
1210 with correct value. */
1211 if (badness < n->get_key ())
1213 if (dump_file && (dump_flags & TDF_DETAILS))
1215 fprintf (dump_file,
1216 " decreasing badness %s -> %s, %f to %f\n",
1217 edge->caller->dump_name (),
1218 edge->callee->dump_name (),
1219 n->get_key ().to_double (),
1220 badness.to_double ());
1222 heap->decrease_key (n, badness);
1225 else
1227 if (dump_file && (dump_flags & TDF_DETAILS))
1229 fprintf (dump_file,
1230 " enqueuing call %s -> %s, badness %f\n",
1231 edge->caller->dump_name (),
1232 edge->callee->dump_name (),
1233 badness.to_double ());
1235 edge->aux = heap->insert (badness, edge);
1240 /* NODE was inlined.
1241 All caller edges needs to be resetted because
1242 size estimates change. Similarly callees needs reset
1243 because better context may be known. */
1245 static void
1246 reset_edge_caches (struct cgraph_node *node)
1248 struct cgraph_edge *edge;
1249 struct cgraph_edge *e = node->callees;
1250 struct cgraph_node *where = node;
1251 struct ipa_ref *ref;
1253 if (where->global.inlined_to)
1254 where = where->global.inlined_to;
1256 for (edge = where->callers; edge; edge = edge->next_caller)
1257 if (edge->inline_failed)
1258 reset_edge_growth_cache (edge);
1260 FOR_EACH_ALIAS (where, ref)
1261 reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
1263 if (!e)
1264 return;
1266 while (true)
1267 if (!e->inline_failed && e->callee->callees)
1268 e = e->callee->callees;
1269 else
1271 if (e->inline_failed)
1272 reset_edge_growth_cache (e);
1273 if (e->next_callee)
1274 e = e->next_callee;
1275 else
1279 if (e->caller == node)
1280 return;
1281 e = e->caller->callers;
1283 while (!e->next_callee);
1284 e = e->next_callee;
1289 /* Recompute HEAP nodes for each of caller of NODE.
1290 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1291 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1292 it is inlinable. Otherwise check all edges. */
1294 static void
1295 update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
1296 bitmap updated_nodes,
1297 struct cgraph_edge *check_inlinablity_for)
1299 struct cgraph_edge *edge;
1300 struct ipa_ref *ref;
1302 if ((!node->alias && !ipa_fn_summaries->get (node)->inlinable)
1303 || node->global.inlined_to)
1304 return;
1305 if (!bitmap_set_bit (updated_nodes, node->uid))
1306 return;
1308 FOR_EACH_ALIAS (node, ref)
1310 struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
1311 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1314 for (edge = node->callers; edge; edge = edge->next_caller)
1315 if (edge->inline_failed)
1317 if (!check_inlinablity_for
1318 || check_inlinablity_for == edge)
1320 if (want_inline_small_function_p (edge, false)
1321 && can_inline_edge_p (edge, false))
1322 update_edge_key (heap, edge);
1323 else if (edge->aux)
1325 report_inline_failed_reason (edge);
1326 heap->delete_node ((edge_heap_node_t *) edge->aux);
1327 edge->aux = NULL;
1330 else if (edge->aux)
1331 update_edge_key (heap, edge);
1335 /* Recompute HEAP nodes for each uninlined call in NODE.
1336 This is used when we know that edge badnesses are going only to increase
1337 (we introduced new call site) and thus all we need is to insert newly
1338 created edges into heap. */
1340 static void
1341 update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
1342 bitmap updated_nodes)
1344 struct cgraph_edge *e = node->callees;
1346 if (!e)
1347 return;
1348 while (true)
1349 if (!e->inline_failed && e->callee->callees)
1350 e = e->callee->callees;
1351 else
1353 enum availability avail;
1354 struct cgraph_node *callee;
1355 /* We do not reset callee growth cache here. Since we added a new call,
1356 growth chould have just increased and consequentely badness metric
1357 don't need updating. */
1358 if (e->inline_failed
1359 && (callee = e->callee->ultimate_alias_target (&avail, e->caller))
1360 && ipa_fn_summaries->get (callee)->inlinable
1361 && avail >= AVAIL_AVAILABLE
1362 && !bitmap_bit_p (updated_nodes, callee->uid))
1364 if (want_inline_small_function_p (e, false)
1365 && can_inline_edge_p (e, false))
1366 update_edge_key (heap, e);
1367 else if (e->aux)
1369 report_inline_failed_reason (e);
1370 heap->delete_node ((edge_heap_node_t *) e->aux);
1371 e->aux = NULL;
1374 if (e->next_callee)
1375 e = e->next_callee;
1376 else
1380 if (e->caller == node)
1381 return;
1382 e = e->caller->callers;
1384 while (!e->next_callee);
1385 e = e->next_callee;
1390 /* Enqueue all recursive calls from NODE into priority queue depending on
1391 how likely we want to recursively inline the call. */
1393 static void
1394 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1395 edge_heap_t *heap)
1397 struct cgraph_edge *e;
1398 enum availability avail;
1400 for (e = where->callees; e; e = e->next_callee)
1401 if (e->callee == node
1402 || (e->callee->ultimate_alias_target (&avail, e->caller) == node
1403 && avail > AVAIL_INTERPOSABLE))
1404 heap->insert (-e->sreal_frequency (), e);
1405 for (e = where->callees; e; e = e->next_callee)
1406 if (!e->inline_failed)
1407 lookup_recursive_calls (node, e->callee, heap);
1410 /* Decide on recursive inlining: in the case function has recursive calls,
1411 inline until body size reaches given argument. If any new indirect edges
1412 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1413 is NULL. */
1415 static bool
1416 recursive_inlining (struct cgraph_edge *edge,
1417 vec<cgraph_edge *> *new_edges)
1419 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1420 edge_heap_t heap (sreal::min ());
1421 struct cgraph_node *node;
1422 struct cgraph_edge *e;
1423 struct cgraph_node *master_clone = NULL, *next;
1424 int depth = 0;
1425 int n = 0;
1427 node = edge->caller;
1428 if (node->global.inlined_to)
1429 node = node->global.inlined_to;
1431 if (DECL_DECLARED_INLINE_P (node->decl))
1432 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1434 /* Make sure that function is small enough to be considered for inlining. */
1435 if (estimate_size_after_inlining (node, edge) >= limit)
1436 return false;
1437 lookup_recursive_calls (node, node, &heap);
1438 if (heap.empty ())
1439 return false;
1441 if (dump_file)
1442 fprintf (dump_file,
1443 " Performing recursive inlining on %s\n",
1444 node->name ());
1446 /* Do the inlining and update list of recursive call during process. */
1447 while (!heap.empty ())
1449 struct cgraph_edge *curr = heap.extract_min ();
1450 struct cgraph_node *cnode, *dest = curr->callee;
1452 if (!can_inline_edge_p (curr, true))
1453 continue;
1455 /* MASTER_CLONE is produced in the case we already started modified
1456 the function. Be sure to redirect edge to the original body before
1457 estimating growths otherwise we will be seeing growths after inlining
1458 the already modified body. */
1459 if (master_clone)
1461 curr->redirect_callee (master_clone);
1462 reset_edge_growth_cache (curr);
1465 if (estimate_size_after_inlining (node, curr) > limit)
1467 curr->redirect_callee (dest);
1468 reset_edge_growth_cache (curr);
1469 break;
1472 depth = 1;
1473 for (cnode = curr->caller;
1474 cnode->global.inlined_to; cnode = cnode->callers->caller)
1475 if (node->decl
1476 == curr->callee->ultimate_alias_target ()->decl)
1477 depth++;
1479 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1481 curr->redirect_callee (dest);
1482 reset_edge_growth_cache (curr);
1483 continue;
1486 if (dump_file)
1488 fprintf (dump_file,
1489 " Inlining call of depth %i", depth);
1490 if (node->count.nonzero_p ())
1492 fprintf (dump_file, " called approx. %.2f times per call",
1493 (double)curr->count.to_gcov_type ()
1494 / node->count.to_gcov_type ());
1496 fprintf (dump_file, "\n");
1498 if (!master_clone)
1500 /* We need original clone to copy around. */
1501 master_clone = node->create_clone (node->decl, node->count,
1502 false, vNULL, true, NULL, NULL);
1503 for (e = master_clone->callees; e; e = e->next_callee)
1504 if (!e->inline_failed)
1505 clone_inlined_nodes (e, true, false, NULL);
1506 curr->redirect_callee (master_clone);
1507 reset_edge_growth_cache (curr);
1510 inline_call (curr, false, new_edges, &overall_size, true);
1511 lookup_recursive_calls (node, curr->callee, &heap);
1512 n++;
1515 if (!heap.empty () && dump_file)
1516 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1518 if (!master_clone)
1519 return false;
1521 if (dump_file)
1522 fprintf (dump_file,
1523 "\n Inlined %i times, "
1524 "body grown from size %i to %i, time %f to %f\n", n,
1525 ipa_fn_summaries->get (master_clone)->size,
1526 ipa_fn_summaries->get (node)->size,
1527 ipa_fn_summaries->get (master_clone)->time.to_double (),
1528 ipa_fn_summaries->get (node)->time.to_double ());
1530 /* Remove master clone we used for inlining. We rely that clones inlined
1531 into master clone gets queued just before master clone so we don't
1532 need recursion. */
1533 for (node = symtab->first_function (); node != master_clone;
1534 node = next)
1536 next = symtab->next_function (node);
1537 if (node->global.inlined_to == master_clone)
1538 node->remove ();
1540 master_clone->remove ();
1541 return true;
1545 /* Given whole compilation unit estimate of INSNS, compute how large we can
1546 allow the unit to grow. */
1548 static int
1549 compute_max_insns (int insns)
1551 int max_insns = insns;
1552 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1553 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1555 return ((int64_t) max_insns
1556 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1560 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1562 static void
1563 add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
1565 while (new_edges.length () > 0)
1567 struct cgraph_edge *edge = new_edges.pop ();
1569 gcc_assert (!edge->aux);
1570 if (edge->inline_failed
1571 && can_inline_edge_p (edge, true)
1572 && want_inline_small_function_p (edge, true))
1573 edge->aux = heap->insert (edge_badness (edge, false), edge);
1577 /* Remove EDGE from the fibheap. */
1579 static void
1580 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1582 if (e->aux)
1584 ((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
1585 e->aux = NULL;
1589 /* Return true if speculation of edge E seems useful.
1590 If ANTICIPATE_INLINING is true, be conservative and hope that E
1591 may get inlined. */
1593 bool
1594 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1596 enum availability avail;
1597 struct cgraph_node *target = e->callee->ultimate_alias_target (&avail,
1598 e->caller);
1599 struct cgraph_edge *direct, *indirect;
1600 struct ipa_ref *ref;
1602 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1604 if (!e->maybe_hot_p ())
1605 return false;
1607 /* See if IP optimizations found something potentially useful about the
1608 function. For now we look only for CONST/PURE flags. Almost everything
1609 else we propagate is useless. */
1610 if (avail >= AVAIL_AVAILABLE)
1612 int ecf_flags = flags_from_decl_or_type (target->decl);
1613 if (ecf_flags & ECF_CONST)
1615 e->speculative_call_info (direct, indirect, ref);
1616 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1617 return true;
1619 else if (ecf_flags & ECF_PURE)
1621 e->speculative_call_info (direct, indirect, ref);
1622 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1623 return true;
1626 /* If we did not managed to inline the function nor redirect
1627 to an ipa-cp clone (that are seen by having local flag set),
1628 it is probably pointless to inline it unless hardware is missing
1629 indirect call predictor. */
1630 if (!anticipate_inlining && e->inline_failed && !target->local.local)
1631 return false;
1632 /* For overwritable targets there is not much to do. */
1633 if (e->inline_failed && !can_inline_edge_p (e, false, true))
1634 return false;
1635 /* OK, speculation seems interesting. */
1636 return true;
1639 /* We know that EDGE is not going to be inlined.
1640 See if we can remove speculation. */
1642 static void
1643 resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
1645 if (edge->speculative && !speculation_useful_p (edge, false))
1647 struct cgraph_node *node = edge->caller;
1648 struct cgraph_node *where = node->global.inlined_to
1649 ? node->global.inlined_to : node;
1650 auto_bitmap updated_nodes;
1652 if (edge->count.ipa ().initialized_p ())
1653 spec_rem += edge->count.ipa ();
1654 edge->resolve_speculation ();
1655 reset_edge_caches (where);
1656 ipa_update_overall_fn_summary (where);
1657 update_caller_keys (edge_heap, where,
1658 updated_nodes, NULL);
1659 update_callee_keys (edge_heap, where,
1660 updated_nodes);
1664 /* Return true if NODE should be accounted for overall size estimate.
1665 Skip all nodes optimized for size so we can measure the growth of hot
1666 part of program no matter of the padding. */
1668 bool
1669 inline_account_function_p (struct cgraph_node *node)
1671 return (!DECL_EXTERNAL (node->decl)
1672 && !opt_for_fn (node->decl, optimize_size)
1673 && node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED);
1676 /* Count number of callers of NODE and store it into DATA (that
1677 points to int. Worker for cgraph_for_node_and_aliases. */
1679 static bool
1680 sum_callers (struct cgraph_node *node, void *data)
1682 struct cgraph_edge *e;
1683 int *num_calls = (int *)data;
1685 for (e = node->callers; e; e = e->next_caller)
1686 (*num_calls)++;
1687 return false;
1690 /* We use greedy algorithm for inlining of small functions:
1691 All inline candidates are put into prioritized heap ordered in
1692 increasing badness.
1694 The inlining of small functions is bounded by unit growth parameters. */
1696 static void
1697 inline_small_functions (void)
1699 struct cgraph_node *node;
1700 struct cgraph_edge *edge;
1701 edge_heap_t edge_heap (sreal::min ());
1702 auto_bitmap updated_nodes;
1703 int min_size, max_size;
1704 auto_vec<cgraph_edge *> new_indirect_edges;
1705 int initial_size = 0;
1706 struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
1707 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1708 new_indirect_edges.create (8);
1710 edge_removal_hook_holder
1711 = symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
1713 /* Compute overall unit size and other global parameters used by badness
1714 metrics. */
1716 max_count = profile_count::uninitialized ();
1717 ipa_reduced_postorder (order, true, true, NULL);
1718 free (order);
1720 FOR_EACH_DEFINED_FUNCTION (node)
1721 if (!node->global.inlined_to)
1723 if (!node->alias && node->analyzed
1724 && (node->has_gimple_body_p () || node->thunk.thunk_p)
1725 && opt_for_fn (node->decl, optimize))
1727 struct ipa_fn_summary *info = ipa_fn_summaries->get (node);
1728 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
1730 /* Do not account external functions, they will be optimized out
1731 if not inlined. Also only count the non-cold portion of program. */
1732 if (inline_account_function_p (node))
1733 initial_size += info->size;
1734 info->growth = estimate_growth (node);
1736 int num_calls = 0;
1737 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
1738 true);
1739 if (num_calls == 1)
1740 info->single_caller = true;
1741 if (dfs && dfs->next_cycle)
1743 struct cgraph_node *n2;
1744 int id = dfs->scc_no + 1;
1745 for (n2 = node; n2;
1746 n2 = ((struct ipa_dfs_info *) node->aux)->next_cycle)
1747 if (opt_for_fn (n2->decl, optimize))
1749 struct ipa_fn_summary *info2 = ipa_fn_summaries->get (n2);
1750 if (info2->scc_no)
1751 break;
1752 info2->scc_no = id;
1757 for (edge = node->callers; edge; edge = edge->next_caller)
1758 max_count = max_count.max (edge->count.ipa ());
1760 ipa_free_postorder_info ();
1761 initialize_growth_caches ();
1763 if (dump_file)
1764 fprintf (dump_file,
1765 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1766 initial_size);
1768 overall_size = initial_size;
1769 max_size = compute_max_insns (overall_size);
1770 min_size = overall_size;
1772 /* Populate the heap with all edges we might inline. */
1774 FOR_EACH_DEFINED_FUNCTION (node)
1776 bool update = false;
1777 struct cgraph_edge *next = NULL;
1778 bool has_speculative = false;
1780 if (!opt_for_fn (node->decl, optimize))
1781 continue;
1783 if (dump_file)
1784 fprintf (dump_file, "Enqueueing calls in %s.\n", node->dump_name ());
1786 for (edge = node->callees; edge; edge = next)
1788 next = edge->next_callee;
1789 if (edge->inline_failed
1790 && !edge->aux
1791 && can_inline_edge_p (edge, true)
1792 && want_inline_small_function_p (edge, true)
1793 && edge->inline_failed)
1795 gcc_assert (!edge->aux);
1796 update_edge_key (&edge_heap, edge);
1798 if (edge->speculative)
1799 has_speculative = true;
1801 if (has_speculative)
1802 for (edge = node->callees; edge; edge = next)
1803 if (edge->speculative && !speculation_useful_p (edge,
1804 edge->aux != NULL))
1806 edge->resolve_speculation ();
1807 update = true;
1809 if (update)
1811 struct cgraph_node *where = node->global.inlined_to
1812 ? node->global.inlined_to : node;
1813 ipa_update_overall_fn_summary (where);
1814 reset_edge_caches (where);
1815 update_caller_keys (&edge_heap, where,
1816 updated_nodes, NULL);
1817 update_callee_keys (&edge_heap, where,
1818 updated_nodes);
1819 bitmap_clear (updated_nodes);
1823 gcc_assert (in_lto_p
1824 || !(max_count > 0)
1825 || (profile_info && flag_branch_probabilities));
1827 while (!edge_heap.empty ())
1829 int old_size = overall_size;
1830 struct cgraph_node *where, *callee;
1831 sreal badness = edge_heap.min_key ();
1832 sreal current_badness;
1833 int growth;
1835 edge = edge_heap.extract_min ();
1836 gcc_assert (edge->aux);
1837 edge->aux = NULL;
1838 if (!edge->inline_failed || !edge->callee->analyzed)
1839 continue;
1841 #if CHECKING_P
1842 /* Be sure that caches are maintained consistent.
1843 This check is affected by scaling roundoff errors when compiling for
1844 IPA this we skip it in that case. */
1845 if (!edge->callee->count.ipa_p ()
1846 && (!max_count.initialized_p () || !max_count.nonzero_p ()))
1848 sreal cached_badness = edge_badness (edge, false);
1850 int old_size_est = estimate_edge_size (edge);
1851 sreal old_time_est = estimate_edge_time (edge);
1852 int old_hints_est = estimate_edge_hints (edge);
1854 reset_edge_growth_cache (edge);
1855 gcc_assert (old_size_est == estimate_edge_size (edge));
1856 gcc_assert (old_time_est == estimate_edge_time (edge));
1857 /* FIXME:
1859 gcc_assert (old_hints_est == estimate_edge_hints (edge));
1861 fails with profile feedback because some hints depends on
1862 maybe_hot_edge_p predicate and because callee gets inlined to other
1863 calls, the edge may become cold.
1864 This ought to be fixed by computing relative probabilities
1865 for given invocation but that will be better done once whole
1866 code is converted to sreals. Disable for now and revert to "wrong"
1867 value so enable/disable checking paths agree. */
1868 edge_growth_cache[edge->uid].hints = old_hints_est + 1;
1870 /* When updating the edge costs, we only decrease badness in the keys.
1871 Increases of badness are handled lazilly; when we see key with out
1872 of date value on it, we re-insert it now. */
1873 current_badness = edge_badness (edge, false);
1874 gcc_assert (cached_badness == current_badness);
1875 gcc_assert (current_badness >= badness);
1877 else
1878 current_badness = edge_badness (edge, false);
1879 #else
1880 current_badness = edge_badness (edge, false);
1881 #endif
1882 if (current_badness != badness)
1884 if (edge_heap.min () && current_badness > edge_heap.min_key ())
1886 edge->aux = edge_heap.insert (current_badness, edge);
1887 continue;
1889 else
1890 badness = current_badness;
1893 if (!can_inline_edge_p (edge, true))
1895 resolve_noninline_speculation (&edge_heap, edge);
1896 continue;
1899 callee = edge->callee->ultimate_alias_target ();
1900 growth = estimate_edge_growth (edge);
1901 if (dump_file)
1903 fprintf (dump_file,
1904 "\nConsidering %s with %i size\n",
1905 callee->dump_name (),
1906 ipa_fn_summaries->get (callee)->size);
1907 fprintf (dump_file,
1908 " to be inlined into %s in %s:%i\n"
1909 " Estimated badness is %f, frequency %.2f.\n",
1910 edge->caller->dump_name (),
1911 edge->call_stmt
1912 && (LOCATION_LOCUS (gimple_location ((const gimple *)
1913 edge->call_stmt))
1914 > BUILTINS_LOCATION)
1915 ? gimple_filename ((const gimple *) edge->call_stmt)
1916 : "unknown",
1917 edge->call_stmt
1918 ? gimple_lineno ((const gimple *) edge->call_stmt)
1919 : -1,
1920 badness.to_double (),
1921 edge->sreal_frequency ().to_double ());
1922 if (edge->count.ipa ().initialized_p ())
1924 fprintf (dump_file, " Called ");
1925 edge->count.ipa ().dump (dump_file);
1926 fprintf (dump_file, " times\n");
1928 if (dump_flags & TDF_DETAILS)
1929 edge_badness (edge, true);
1932 if (overall_size + growth > max_size
1933 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1935 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1936 report_inline_failed_reason (edge);
1937 resolve_noninline_speculation (&edge_heap, edge);
1938 continue;
1941 if (!want_inline_small_function_p (edge, true))
1943 resolve_noninline_speculation (&edge_heap, edge);
1944 continue;
1947 /* Heuristics for inlining small functions work poorly for
1948 recursive calls where we do effects similar to loop unrolling.
1949 When inlining such edge seems profitable, leave decision on
1950 specific inliner. */
1951 if (edge->recursive_p ())
1953 where = edge->caller;
1954 if (where->global.inlined_to)
1955 where = where->global.inlined_to;
1956 if (!recursive_inlining (edge,
1957 opt_for_fn (edge->caller->decl,
1958 flag_indirect_inlining)
1959 ? &new_indirect_edges : NULL))
1961 edge->inline_failed = CIF_RECURSIVE_INLINING;
1962 resolve_noninline_speculation (&edge_heap, edge);
1963 continue;
1965 reset_edge_caches (where);
1966 /* Recursive inliner inlines all recursive calls of the function
1967 at once. Consequently we need to update all callee keys. */
1968 if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
1969 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
1970 update_callee_keys (&edge_heap, where, updated_nodes);
1971 bitmap_clear (updated_nodes);
1973 else
1975 struct cgraph_node *outer_node = NULL;
1976 int depth = 0;
1978 /* Consider the case where self recursive function A is inlined
1979 into B. This is desired optimization in some cases, since it
1980 leads to effect similar of loop peeling and we might completely
1981 optimize out the recursive call. However we must be extra
1982 selective. */
1984 where = edge->caller;
1985 while (where->global.inlined_to)
1987 if (where->decl == callee->decl)
1988 outer_node = where, depth++;
1989 where = where->callers->caller;
1991 if (outer_node
1992 && !want_inline_self_recursive_call_p (edge, outer_node,
1993 true, depth))
1995 edge->inline_failed
1996 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
1997 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1998 resolve_noninline_speculation (&edge_heap, edge);
1999 continue;
2001 else if (depth && dump_file)
2002 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
2004 gcc_checking_assert (!callee->global.inlined_to);
2005 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
2006 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
2008 reset_edge_caches (edge->callee);
2010 update_callee_keys (&edge_heap, where, updated_nodes);
2012 where = edge->caller;
2013 if (where->global.inlined_to)
2014 where = where->global.inlined_to;
2016 /* Our profitability metric can depend on local properties
2017 such as number of inlinable calls and size of the function body.
2018 After inlining these properties might change for the function we
2019 inlined into (since it's body size changed) and for the functions
2020 called by function we inlined (since number of it inlinable callers
2021 might change). */
2022 update_caller_keys (&edge_heap, where, updated_nodes, NULL);
2023 /* Offline copy count has possibly changed, recompute if profile is
2024 available. */
2025 struct cgraph_node *n = cgraph_node::get (edge->callee->decl);
2026 if (n != edge->callee && n->analyzed && n->count.ipa ().initialized_p ())
2027 update_callee_keys (&edge_heap, n, updated_nodes);
2028 bitmap_clear (updated_nodes);
2030 if (dump_file)
2032 fprintf (dump_file,
2033 " Inlined %s into %s which now has time %f and size %i, "
2034 "net change of %+i.\n",
2035 xstrdup_for_dump (edge->callee->name ()),
2036 xstrdup_for_dump (edge->caller->name ()),
2037 ipa_fn_summaries->get (edge->caller)->time.to_double (),
2038 ipa_fn_summaries->get (edge->caller)->size,
2039 overall_size - old_size);
2041 if (min_size > overall_size)
2043 min_size = overall_size;
2044 max_size = compute_max_insns (min_size);
2046 if (dump_file)
2047 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
2051 free_growth_caches ();
2052 if (dump_file)
2053 fprintf (dump_file,
2054 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2055 initial_size, overall_size,
2056 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
2057 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
2060 /* Flatten NODE. Performed both during early inlining and
2061 at IPA inlining time. */
2063 static void
2064 flatten_function (struct cgraph_node *node, bool early)
2066 struct cgraph_edge *e;
2068 /* We shouldn't be called recursively when we are being processed. */
2069 gcc_assert (node->aux == NULL);
2071 node->aux = (void *) node;
2073 for (e = node->callees; e; e = e->next_callee)
2075 struct cgraph_node *orig_callee;
2076 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2078 /* We've hit cycle? It is time to give up. */
2079 if (callee->aux)
2081 if (dump_file)
2082 fprintf (dump_file,
2083 "Not inlining %s into %s to avoid cycle.\n",
2084 xstrdup_for_dump (callee->name ()),
2085 xstrdup_for_dump (e->caller->name ()));
2086 e->inline_failed = CIF_RECURSIVE_INLINING;
2087 continue;
2090 /* When the edge is already inlined, we just need to recurse into
2091 it in order to fully flatten the leaves. */
2092 if (!e->inline_failed)
2094 flatten_function (callee, early);
2095 continue;
2098 /* Flatten attribute needs to be processed during late inlining. For
2099 extra code quality we however do flattening during early optimization,
2100 too. */
2101 if (!early
2102 ? !can_inline_edge_p (e, true)
2103 : !can_early_inline_edge_p (e))
2104 continue;
2106 if (e->recursive_p ())
2108 if (dump_file)
2109 fprintf (dump_file, "Not inlining: recursive call.\n");
2110 continue;
2113 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
2114 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
2116 if (dump_file)
2117 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
2118 continue;
2121 /* Inline the edge and flatten the inline clone. Avoid
2122 recursing through the original node if the node was cloned. */
2123 if (dump_file)
2124 fprintf (dump_file, " Inlining %s into %s.\n",
2125 xstrdup_for_dump (callee->name ()),
2126 xstrdup_for_dump (e->caller->name ()));
2127 orig_callee = callee;
2128 inline_call (e, true, NULL, NULL, false);
2129 if (e->callee != orig_callee)
2130 orig_callee->aux = (void *) node;
2131 flatten_function (e->callee, early);
2132 if (e->callee != orig_callee)
2133 orig_callee->aux = NULL;
2136 node->aux = NULL;
2137 if (!node->global.inlined_to)
2138 ipa_update_overall_fn_summary (node);
2141 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2142 DATA points to number of calls originally found so we avoid infinite
2143 recursion. */
2145 static bool
2146 inline_to_all_callers_1 (struct cgraph_node *node, void *data,
2147 hash_set<cgraph_node *> *callers)
2149 int *num_calls = (int *)data;
2150 bool callee_removed = false;
2152 while (node->callers && !node->global.inlined_to)
2154 struct cgraph_node *caller = node->callers->caller;
2156 if (!can_inline_edge_p (node->callers, true)
2157 || node->callers->recursive_p ())
2159 if (dump_file)
2160 fprintf (dump_file, "Uninlinable call found; giving up.\n");
2161 *num_calls = 0;
2162 return false;
2165 if (dump_file)
2167 fprintf (dump_file,
2168 "\nInlining %s size %i.\n",
2169 node->name (),
2170 ipa_fn_summaries->get (node)->size);
2171 fprintf (dump_file,
2172 " Called once from %s %i insns.\n",
2173 node->callers->caller->name (),
2174 ipa_fn_summaries->get (node->callers->caller)->size);
2177 /* Remember which callers we inlined to, delaying updating the
2178 overall summary. */
2179 callers->add (node->callers->caller);
2180 inline_call (node->callers, true, NULL, NULL, false, &callee_removed);
2181 if (dump_file)
2182 fprintf (dump_file,
2183 " Inlined into %s which now has %i size\n",
2184 caller->name (),
2185 ipa_fn_summaries->get (caller)->size);
2186 if (!(*num_calls)--)
2188 if (dump_file)
2189 fprintf (dump_file, "New calls found; giving up.\n");
2190 return callee_removed;
2192 if (callee_removed)
2193 return true;
2195 return false;
2198 /* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2199 update. */
2201 static bool
2202 inline_to_all_callers (struct cgraph_node *node, void *data)
2204 hash_set<cgraph_node *> callers;
2205 bool res = inline_to_all_callers_1 (node, data, &callers);
2206 /* Perform the delayed update of the overall summary of all callers
2207 processed. This avoids quadratic behavior in the cases where
2208 we have a lot of calls to the same function. */
2209 for (hash_set<cgraph_node *>::iterator i = callers.begin ();
2210 i != callers.end (); ++i)
2211 ipa_update_overall_fn_summary (*i);
2212 return res;
2215 /* Output overall time estimate. */
2216 static void
2217 dump_overall_stats (void)
2219 sreal sum_weighted = 0, sum = 0;
2220 struct cgraph_node *node;
2222 FOR_EACH_DEFINED_FUNCTION (node)
2223 if (!node->global.inlined_to
2224 && !node->alias)
2226 sreal time = ipa_fn_summaries->get (node)->time;
2227 sum += time;
2228 if (node->count.ipa ().initialized_p ())
2229 sum_weighted += time * node->count.ipa ().to_gcov_type ();
2231 fprintf (dump_file, "Overall time estimate: "
2232 "%f weighted by profile: "
2233 "%f\n", sum.to_double (), sum_weighted.to_double ());
2236 /* Output some useful stats about inlining. */
2238 static void
2239 dump_inline_stats (void)
2241 int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
2242 int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
2243 int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
2244 int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
2245 int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
2246 int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
2247 int64_t reason[CIF_N_REASONS][2];
2248 sreal reason_freq[CIF_N_REASONS];
2249 int i;
2250 struct cgraph_node *node;
2252 memset (reason, 0, sizeof (reason));
2253 for (i=0; i < CIF_N_REASONS; i++)
2254 reason_freq[i] = 0;
2255 FOR_EACH_DEFINED_FUNCTION (node)
2257 struct cgraph_edge *e;
2258 for (e = node->callees; e; e = e->next_callee)
2260 if (e->inline_failed)
2262 if (e->count.ipa ().initialized_p ())
2263 reason[(int) e->inline_failed][0] += e->count.ipa ().to_gcov_type ();
2264 reason_freq[(int) e->inline_failed] += e->sreal_frequency ();
2265 reason[(int) e->inline_failed][1] ++;
2266 if (DECL_VIRTUAL_P (e->callee->decl)
2267 && e->count.ipa ().initialized_p ())
2269 if (e->indirect_inlining_edge)
2270 noninlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2271 else
2272 noninlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2274 else if (e->count.ipa ().initialized_p ())
2276 if (e->indirect_inlining_edge)
2277 noninlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2278 else
2279 noninlined_cnt += e->count.ipa ().to_gcov_type ();
2282 else if (e->count.ipa ().initialized_p ())
2284 if (e->speculative)
2286 if (DECL_VIRTUAL_P (e->callee->decl))
2287 inlined_speculative_ply += e->count.ipa ().to_gcov_type ();
2288 else
2289 inlined_speculative += e->count.ipa ().to_gcov_type ();
2291 else if (DECL_VIRTUAL_P (e->callee->decl))
2293 if (e->indirect_inlining_edge)
2294 inlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2295 else
2296 inlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2298 else
2300 if (e->indirect_inlining_edge)
2301 inlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2302 else
2303 inlined_cnt += e->count.ipa ().to_gcov_type ();
2307 for (e = node->indirect_calls; e; e = e->next_callee)
2308 if (e->indirect_info->polymorphic
2309 & e->count.ipa ().initialized_p ())
2310 indirect_poly_cnt += e->count.ipa ().to_gcov_type ();
2311 else if (e->count.ipa ().initialized_p ())
2312 indirect_cnt += e->count.ipa ().to_gcov_type ();
2314 if (max_count.initialized_p ())
2316 fprintf (dump_file,
2317 "Inlined %" PRId64 " + speculative "
2318 "%" PRId64 " + speculative polymorphic "
2319 "%" PRId64 " + previously indirect "
2320 "%" PRId64 " + virtual "
2321 "%" PRId64 " + virtual and previously indirect "
2322 "%" PRId64 "\n" "Not inlined "
2323 "%" PRId64 " + previously indirect "
2324 "%" PRId64 " + virtual "
2325 "%" PRId64 " + virtual and previously indirect "
2326 "%" PRId64 " + stil indirect "
2327 "%" PRId64 " + still indirect polymorphic "
2328 "%" PRId64 "\n", inlined_cnt,
2329 inlined_speculative, inlined_speculative_ply,
2330 inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
2331 noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
2332 noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
2333 fprintf (dump_file, "Removed speculations ");
2334 spec_rem.dump (dump_file);
2335 fprintf (dump_file, "\n");
2337 dump_overall_stats ();
2338 fprintf (dump_file, "\nWhy inlining failed?\n");
2339 for (i = 0; i < CIF_N_REASONS; i++)
2340 if (reason[i][1])
2341 fprintf (dump_file, "%-50s: %8i calls, %8f freq, %" PRId64" count\n",
2342 cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
2343 (int) reason[i][1], reason_freq[i].to_double (), reason[i][0]);
2346 /* Called when node is removed. */
2348 static void
2349 flatten_remove_node_hook (struct cgraph_node *node, void *data)
2351 if (lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) == NULL)
2352 return;
2354 hash_set<struct cgraph_node *> *removed
2355 = (hash_set<struct cgraph_node *> *) data;
2356 removed->add (node);
2359 /* Decide on the inlining. We do so in the topological order to avoid
2360 expenses on updating data structures. */
2362 static unsigned int
2363 ipa_inline (void)
2365 struct cgraph_node *node;
2366 int nnodes;
2367 struct cgraph_node **order;
2368 int i, j;
2369 int cold;
2370 bool remove_functions = false;
2372 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
2374 if (dump_file)
2375 ipa_dump_fn_summaries (dump_file);
2377 nnodes = ipa_reverse_postorder (order);
2378 spec_rem = profile_count::zero ();
2380 FOR_EACH_FUNCTION (node)
2382 node->aux = 0;
2384 /* Recompute the default reasons for inlining because they may have
2385 changed during merging. */
2386 if (in_lto_p)
2388 for (cgraph_edge *e = node->callees; e; e = e->next_callee)
2390 gcc_assert (e->inline_failed);
2391 initialize_inline_failed (e);
2393 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
2394 initialize_inline_failed (e);
2398 if (dump_file)
2399 fprintf (dump_file, "\nFlattening functions:\n");
2401 /* First shrink order array, so that it only contains nodes with
2402 flatten attribute. */
2403 for (i = nnodes - 1, j = i; i >= 0; i--)
2405 node = order[i];
2406 if (lookup_attribute ("flatten",
2407 DECL_ATTRIBUTES (node->decl)) != NULL)
2408 order[j--] = order[i];
2411 /* After the above loop, order[j + 1] ... order[nnodes - 1] contain
2412 nodes with flatten attribute. If there is more than one such
2413 node, we need to register a node removal hook, as flatten_function
2414 could remove other nodes with flatten attribute. See PR82801. */
2415 struct cgraph_node_hook_list *node_removal_hook_holder = NULL;
2416 hash_set<struct cgraph_node *> *flatten_removed_nodes = NULL;
2417 if (j < nnodes - 2)
2419 flatten_removed_nodes = new hash_set<struct cgraph_node *>;
2420 node_removal_hook_holder
2421 = symtab->add_cgraph_removal_hook (&flatten_remove_node_hook,
2422 flatten_removed_nodes);
2425 /* In the first pass handle functions to be flattened. Do this with
2426 a priority so none of our later choices will make this impossible. */
2427 for (i = nnodes - 1; i > j; i--)
2429 node = order[i];
2430 if (flatten_removed_nodes
2431 && flatten_removed_nodes->contains (node))
2432 continue;
2434 /* Handle nodes to be flattened.
2435 Ideally when processing callees we stop inlining at the
2436 entry of cycles, possibly cloning that entry point and
2437 try to flatten itself turning it into a self-recursive
2438 function. */
2439 if (dump_file)
2440 fprintf (dump_file, "Flattening %s\n", node->name ());
2441 flatten_function (node, false);
2444 if (j < nnodes - 2)
2446 symtab->remove_cgraph_removal_hook (node_removal_hook_holder);
2447 delete flatten_removed_nodes;
2449 free (order);
2451 if (dump_file)
2452 dump_overall_stats ();
2454 inline_small_functions ();
2456 gcc_assert (symtab->state == IPA_SSA);
2457 symtab->state = IPA_SSA_AFTER_INLINING;
2458 /* Do first after-inlining removal. We want to remove all "stale" extern
2459 inline functions and virtual functions so we really know what is called
2460 once. */
2461 symtab->remove_unreachable_nodes (dump_file);
2463 /* Inline functions with a property that after inlining into all callers the
2464 code size will shrink because the out-of-line copy is eliminated.
2465 We do this regardless on the callee size as long as function growth limits
2466 are met. */
2467 if (dump_file)
2468 fprintf (dump_file,
2469 "\nDeciding on functions to be inlined into all callers and "
2470 "removing useless speculations:\n");
2472 /* Inlining one function called once has good chance of preventing
2473 inlining other function into the same callee. Ideally we should
2474 work in priority order, but probably inlining hot functions first
2475 is good cut without the extra pain of maintaining the queue.
2477 ??? this is not really fitting the bill perfectly: inlining function
2478 into callee often leads to better optimization of callee due to
2479 increased context for optimization.
2480 For example if main() function calls a function that outputs help
2481 and then function that does the main optmization, we should inline
2482 the second with priority even if both calls are cold by themselves.
2484 We probably want to implement new predicate replacing our use of
2485 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2486 to be hot. */
2487 for (cold = 0; cold <= 1; cold ++)
2489 FOR_EACH_DEFINED_FUNCTION (node)
2491 struct cgraph_edge *edge, *next;
2492 bool update=false;
2494 if (!opt_for_fn (node->decl, optimize)
2495 || !opt_for_fn (node->decl, flag_inline_functions_called_once))
2496 continue;
2498 for (edge = node->callees; edge; edge = next)
2500 next = edge->next_callee;
2501 if (edge->speculative && !speculation_useful_p (edge, false))
2503 if (edge->count.ipa ().initialized_p ())
2504 spec_rem += edge->count.ipa ();
2505 edge->resolve_speculation ();
2506 update = true;
2507 remove_functions = true;
2510 if (update)
2512 struct cgraph_node *where = node->global.inlined_to
2513 ? node->global.inlined_to : node;
2514 reset_edge_caches (where);
2515 ipa_update_overall_fn_summary (where);
2517 if (want_inline_function_to_all_callers_p (node, cold))
2519 int num_calls = 0;
2520 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
2521 true);
2522 while (node->call_for_symbol_and_aliases
2523 (inline_to_all_callers, &num_calls, true))
2525 remove_functions = true;
2530 /* Free ipa-prop structures if they are no longer needed. */
2531 ipa_free_all_structures_after_iinln ();
2533 if (dump_file)
2535 fprintf (dump_file,
2536 "\nInlined %i calls, eliminated %i functions\n\n",
2537 ncalls_inlined, nfunctions_inlined);
2538 dump_inline_stats ();
2541 if (dump_file)
2542 ipa_dump_fn_summaries (dump_file);
2543 return remove_functions ? TODO_remove_functions : 0;
2546 /* Inline always-inline function calls in NODE. */
2548 static bool
2549 inline_always_inline_functions (struct cgraph_node *node)
2551 struct cgraph_edge *e;
2552 bool inlined = false;
2554 for (e = node->callees; e; e = e->next_callee)
2556 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2557 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2558 continue;
2560 if (e->recursive_p ())
2562 if (dump_file)
2563 fprintf (dump_file, " Not inlining recursive call to %s.\n",
2564 e->callee->name ());
2565 e->inline_failed = CIF_RECURSIVE_INLINING;
2566 continue;
2569 if (!can_early_inline_edge_p (e))
2571 /* Set inlined to true if the callee is marked "always_inline" but
2572 is not inlinable. This will allow flagging an error later in
2573 expand_call_inline in tree-inline.c. */
2574 if (lookup_attribute ("always_inline",
2575 DECL_ATTRIBUTES (callee->decl)) != NULL)
2576 inlined = true;
2577 continue;
2580 if (dump_file)
2581 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
2582 xstrdup_for_dump (e->callee->name ()),
2583 xstrdup_for_dump (e->caller->name ()));
2584 inline_call (e, true, NULL, NULL, false);
2585 inlined = true;
2587 if (inlined)
2588 ipa_update_overall_fn_summary (node);
2590 return inlined;
2593 /* Decide on the inlining. We do so in the topological order to avoid
2594 expenses on updating data structures. */
2596 static bool
2597 early_inline_small_functions (struct cgraph_node *node)
2599 struct cgraph_edge *e;
2600 bool inlined = false;
2602 for (e = node->callees; e; e = e->next_callee)
2604 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2605 if (!ipa_fn_summaries->get (callee)->inlinable
2606 || !e->inline_failed)
2607 continue;
2609 /* Do not consider functions not declared inline. */
2610 if (!DECL_DECLARED_INLINE_P (callee->decl)
2611 && !opt_for_fn (node->decl, flag_inline_small_functions)
2612 && !opt_for_fn (node->decl, flag_inline_functions))
2613 continue;
2615 if (dump_file)
2616 fprintf (dump_file, "Considering inline candidate %s.\n",
2617 callee->name ());
2619 if (!can_early_inline_edge_p (e))
2620 continue;
2622 if (e->recursive_p ())
2624 if (dump_file)
2625 fprintf (dump_file, " Not inlining: recursive call.\n");
2626 continue;
2629 if (!want_early_inline_function_p (e))
2630 continue;
2632 if (dump_file)
2633 fprintf (dump_file, " Inlining %s into %s.\n",
2634 xstrdup_for_dump (callee->name ()),
2635 xstrdup_for_dump (e->caller->name ()));
2636 inline_call (e, true, NULL, NULL, false);
2637 inlined = true;
2640 if (inlined)
2641 ipa_update_overall_fn_summary (node);
2643 return inlined;
2646 unsigned int
2647 early_inliner (function *fun)
2649 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2650 struct cgraph_edge *edge;
2651 unsigned int todo = 0;
2652 int iterations = 0;
2653 bool inlined = false;
2655 if (seen_error ())
2656 return 0;
2658 /* Do nothing if datastructures for ipa-inliner are already computed. This
2659 happens when some pass decides to construct new function and
2660 cgraph_add_new_function calls lowering passes and early optimization on
2661 it. This may confuse ourself when early inliner decide to inline call to
2662 function clone, because function clones don't have parameter list in
2663 ipa-prop matching their signature. */
2664 if (ipa_node_params_sum)
2665 return 0;
2667 if (flag_checking)
2668 node->verify ();
2669 node->remove_all_references ();
2671 /* Rebuild this reference because it dosn't depend on
2672 function's body and it's required to pass cgraph_node
2673 verification. */
2674 if (node->instrumented_version
2675 && !node->instrumentation_clone)
2676 node->create_reference (node->instrumented_version, IPA_REF_CHKP, NULL);
2678 /* Even when not optimizing or not inlining inline always-inline
2679 functions. */
2680 inlined = inline_always_inline_functions (node);
2682 if (!optimize
2683 || flag_no_inline
2684 || !flag_early_inlining
2685 /* Never inline regular functions into always-inline functions
2686 during incremental inlining. This sucks as functions calling
2687 always inline functions will get less optimized, but at the
2688 same time inlining of functions calling always inline
2689 function into an always inline function might introduce
2690 cycles of edges to be always inlined in the callgraph.
2692 We might want to be smarter and just avoid this type of inlining. */
2693 || (DECL_DISREGARD_INLINE_LIMITS (node->decl)
2694 && lookup_attribute ("always_inline",
2695 DECL_ATTRIBUTES (node->decl))))
2697 else if (lookup_attribute ("flatten",
2698 DECL_ATTRIBUTES (node->decl)) != NULL)
2700 /* When the function is marked to be flattened, recursively inline
2701 all calls in it. */
2702 if (dump_file)
2703 fprintf (dump_file,
2704 "Flattening %s\n", node->name ());
2705 flatten_function (node, true);
2706 inlined = true;
2708 else
2710 /* If some always_inline functions was inlined, apply the changes.
2711 This way we will not account always inline into growth limits and
2712 moreover we will inline calls from always inlines that we skipped
2713 previously because of conditional above. */
2714 if (inlined)
2716 timevar_push (TV_INTEGRATION);
2717 todo |= optimize_inline_calls (current_function_decl);
2718 /* optimize_inline_calls call above might have introduced new
2719 statements that don't have inline parameters computed. */
2720 for (edge = node->callees; edge; edge = edge->next_callee)
2722 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2723 es->call_stmt_size
2724 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2725 es->call_stmt_time
2726 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2728 ipa_update_overall_fn_summary (node);
2729 inlined = false;
2730 timevar_pop (TV_INTEGRATION);
2732 /* We iterate incremental inlining to get trivial cases of indirect
2733 inlining. */
2734 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2735 && early_inline_small_functions (node))
2737 timevar_push (TV_INTEGRATION);
2738 todo |= optimize_inline_calls (current_function_decl);
2740 /* Technically we ought to recompute inline parameters so the new
2741 iteration of early inliner works as expected. We however have
2742 values approximately right and thus we only need to update edge
2743 info that might be cleared out for newly discovered edges. */
2744 for (edge = node->callees; edge; edge = edge->next_callee)
2746 /* We have no summary for new bound store calls yet. */
2747 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2748 es->call_stmt_size
2749 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2750 es->call_stmt_time
2751 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2753 if (edge->callee->decl
2754 && !gimple_check_call_matching_types (
2755 edge->call_stmt, edge->callee->decl, false))
2757 edge->inline_failed = CIF_MISMATCHED_ARGUMENTS;
2758 edge->call_stmt_cannot_inline_p = true;
2761 if (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) - 1)
2762 ipa_update_overall_fn_summary (node);
2763 timevar_pop (TV_INTEGRATION);
2764 iterations++;
2765 inlined = false;
2767 if (dump_file)
2768 fprintf (dump_file, "Iterations: %i\n", iterations);
2771 if (inlined)
2773 timevar_push (TV_INTEGRATION);
2774 todo |= optimize_inline_calls (current_function_decl);
2775 timevar_pop (TV_INTEGRATION);
2778 fun->always_inline_functions_inlined = true;
2780 return todo;
2783 /* Do inlining of small functions. Doing so early helps profiling and other
2784 passes to be somewhat more effective and avoids some code duplication in
2785 later real inlining pass for testcases with very many function calls. */
2787 namespace {
2789 const pass_data pass_data_early_inline =
2791 GIMPLE_PASS, /* type */
2792 "einline", /* name */
2793 OPTGROUP_INLINE, /* optinfo_flags */
2794 TV_EARLY_INLINING, /* tv_id */
2795 PROP_ssa, /* properties_required */
2796 0, /* properties_provided */
2797 0, /* properties_destroyed */
2798 0, /* todo_flags_start */
2799 0, /* todo_flags_finish */
2802 class pass_early_inline : public gimple_opt_pass
2804 public:
2805 pass_early_inline (gcc::context *ctxt)
2806 : gimple_opt_pass (pass_data_early_inline, ctxt)
2809 /* opt_pass methods: */
2810 virtual unsigned int execute (function *);
2812 }; // class pass_early_inline
2814 unsigned int
2815 pass_early_inline::execute (function *fun)
2817 return early_inliner (fun);
2820 } // anon namespace
2822 gimple_opt_pass *
2823 make_pass_early_inline (gcc::context *ctxt)
2825 return new pass_early_inline (ctxt);
2828 namespace {
2830 const pass_data pass_data_ipa_inline =
2832 IPA_PASS, /* type */
2833 "inline", /* name */
2834 OPTGROUP_INLINE, /* optinfo_flags */
2835 TV_IPA_INLINING, /* tv_id */
2836 0, /* properties_required */
2837 0, /* properties_provided */
2838 0, /* properties_destroyed */
2839 0, /* todo_flags_start */
2840 ( TODO_dump_symtab ), /* todo_flags_finish */
2843 class pass_ipa_inline : public ipa_opt_pass_d
2845 public:
2846 pass_ipa_inline (gcc::context *ctxt)
2847 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
2848 NULL, /* generate_summary */
2849 NULL, /* write_summary */
2850 NULL, /* read_summary */
2851 NULL, /* write_optimization_summary */
2852 NULL, /* read_optimization_summary */
2853 NULL, /* stmt_fixup */
2854 0, /* function_transform_todo_flags_start */
2855 inline_transform, /* function_transform */
2856 NULL) /* variable_transform */
2859 /* opt_pass methods: */
2860 virtual unsigned int execute (function *) { return ipa_inline (); }
2862 }; // class pass_ipa_inline
2864 } // anon namespace
2866 ipa_opt_pass_d *
2867 make_pass_ipa_inline (gcc::context *ctxt)
2869 return new pass_ipa_inline (ctxt);