* Mainline merge as of 2006-02-16 (@111136).
[official-gcc.git] / gcc / tree-vrp.c
bloba0950feeab2d956a4a7ebe937f40c24938ed6bb4
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
195 /* Set value range VR to a non-NULL range of type TYPE. */
197 static inline void
198 set_value_range_to_nonnull (value_range_t *vr, tree type)
200 tree zero = build_int_cst (type, 0);
201 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
205 /* Set value range VR to a NULL range of type TYPE. */
207 static inline void
208 set_value_range_to_null (value_range_t *vr, tree type)
210 tree zero = build_int_cst (type, 0);
211 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
215 /* Set value range VR to VR_VARYING. */
217 static inline void
218 set_value_range_to_varying (value_range_t *vr)
220 vr->type = VR_VARYING;
221 vr->min = vr->max = NULL_TREE;
222 if (vr->equiv)
223 bitmap_clear (vr->equiv);
227 /* Set value range VR to VR_UNDEFINED. */
229 static inline void
230 set_value_range_to_undefined (value_range_t *vr)
232 vr->type = VR_UNDEFINED;
233 vr->min = vr->max = NULL_TREE;
234 if (vr->equiv)
235 bitmap_clear (vr->equiv);
239 /* Return value range information for VAR. Create an empty range
240 if none existed. */
242 static value_range_t *
243 get_value_range (tree var)
245 value_range_t *vr;
246 tree sym;
247 unsigned ver = SSA_NAME_VERSION (var);
249 vr = vr_value[ver];
250 if (vr)
251 return vr;
253 /* Create a default value range. */
254 vr_value[ver] = vr = XNEW (value_range_t);
255 memset (vr, 0, sizeof (*vr));
257 /* Allocate an equivalence set. */
258 vr->equiv = BITMAP_ALLOC (NULL);
260 /* If VAR is a default definition, the variable can take any value
261 in VAR's type. */
262 sym = SSA_NAME_VAR (var);
263 if (var == default_def (sym))
265 /* Try to use the "nonnull" attribute to create ~[0, 0]
266 anti-ranges for pointers. Note that this is only valid with
267 default definitions of PARM_DECLs. */
268 if (TREE_CODE (sym) == PARM_DECL
269 && POINTER_TYPE_P (TREE_TYPE (sym))
270 && nonnull_arg_p (sym))
271 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
272 else
273 set_value_range_to_varying (vr);
276 return vr;
280 /* Update the value range and equivalence set for variable VAR to
281 NEW_VR. Return true if NEW_VR is different from VAR's previous
282 value.
284 NOTE: This function assumes that NEW_VR is a temporary value range
285 object created for the sole purpose of updating VAR's range. The
286 storage used by the equivalence set from NEW_VR will be freed by
287 this function. Do not call update_value_range when NEW_VR
288 is the range object associated with another SSA name. */
290 static inline bool
291 update_value_range (tree var, value_range_t *new_vr)
293 value_range_t *old_vr;
294 bool is_new;
296 /* Update the value range, if necessary. */
297 old_vr = get_value_range (var);
298 is_new = old_vr->type != new_vr->type
299 || old_vr->min != new_vr->min
300 || old_vr->max != new_vr->max
301 || (old_vr->equiv == NULL && new_vr->equiv)
302 || (old_vr->equiv && new_vr->equiv == NULL)
303 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
305 if (is_new)
306 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
307 new_vr->equiv);
309 BITMAP_FREE (new_vr->equiv);
310 new_vr->equiv = NULL;
312 return is_new;
316 /* Add VAR and VAR's equivalence set to EQUIV. */
318 static void
319 add_equivalence (bitmap equiv, tree var)
321 unsigned ver = SSA_NAME_VERSION (var);
322 value_range_t *vr = vr_value[ver];
324 bitmap_set_bit (equiv, ver);
325 if (vr && vr->equiv)
326 bitmap_ior_into (equiv, vr->equiv);
330 /* Return true if VR is ~[0, 0]. */
332 static inline bool
333 range_is_nonnull (value_range_t *vr)
335 return vr->type == VR_ANTI_RANGE
336 && integer_zerop (vr->min)
337 && integer_zerop (vr->max);
341 /* Return true if VR is [0, 0]. */
343 static inline bool
344 range_is_null (value_range_t *vr)
346 return vr->type == VR_RANGE
347 && integer_zerop (vr->min)
348 && integer_zerop (vr->max);
352 /* Return true if value range VR involves at least one symbol. */
354 static inline bool
355 symbolic_range_p (value_range_t *vr)
357 return (!is_gimple_min_invariant (vr->min)
358 || !is_gimple_min_invariant (vr->max));
362 /* Like tree_expr_nonzero_p, but this function uses value ranges
363 obtained so far. */
365 static bool
366 vrp_expr_computes_nonzero (tree expr)
368 if (tree_expr_nonzero_p (expr))
369 return true;
371 /* If we have an expression of the form &X->a, then the expression
372 is nonnull if X is nonnull. */
373 if (TREE_CODE (expr) == ADDR_EXPR)
375 tree base = get_base_address (TREE_OPERAND (expr, 0));
377 if (base != NULL_TREE
378 && TREE_CODE (base) == INDIRECT_REF
379 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
381 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
382 if (range_is_nonnull (vr))
383 return true;
387 return false;
391 /* Compare two values VAL1 and VAL2. Return
393 -2 if VAL1 and VAL2 cannot be compared at compile-time,
394 -1 if VAL1 < VAL2,
395 0 if VAL1 == VAL2,
396 +1 if VAL1 > VAL2, and
397 +2 if VAL1 != VAL2
399 This is similar to tree_int_cst_compare but supports pointer values
400 and values that cannot be compared at compile time. */
402 static int
403 compare_values (tree val1, tree val2)
405 if (val1 == val2)
406 return 0;
408 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
409 both integers. */
410 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
411 == POINTER_TYPE_P (TREE_TYPE (val2)));
413 /* Do some limited symbolic comparisons. */
414 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
416 /* We can determine some comparisons against +INF and -INF even
417 if the other value is an expression. */
418 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
419 && TREE_CODE (val2) == MINUS_EXPR)
421 /* +INF > NAME - CST. */
422 return 1;
424 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
425 && TREE_CODE (val2) == PLUS_EXPR)
427 /* -INF < NAME + CST. */
428 return -1;
430 else if (TREE_CODE (val1) == MINUS_EXPR
431 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
433 /* NAME - CST < +INF. */
434 return -1;
436 else if (TREE_CODE (val1) == PLUS_EXPR
437 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
439 /* NAME + CST > -INF. */
440 return 1;
444 if ((TREE_CODE (val1) == SSA_NAME
445 || TREE_CODE (val1) == PLUS_EXPR
446 || TREE_CODE (val1) == MINUS_EXPR)
447 && (TREE_CODE (val2) == SSA_NAME
448 || TREE_CODE (val2) == PLUS_EXPR
449 || TREE_CODE (val2) == MINUS_EXPR))
451 tree n1, c1, n2, c2;
453 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
454 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
455 same name, return -2. */
456 if (TREE_CODE (val1) == SSA_NAME)
458 n1 = val1;
459 c1 = NULL_TREE;
461 else
463 n1 = TREE_OPERAND (val1, 0);
464 c1 = TREE_OPERAND (val1, 1);
467 if (TREE_CODE (val2) == SSA_NAME)
469 n2 = val2;
470 c2 = NULL_TREE;
472 else
474 n2 = TREE_OPERAND (val2, 0);
475 c2 = TREE_OPERAND (val2, 1);
478 /* Both values must use the same name. */
479 if (n1 != n2)
480 return -2;
482 if (TREE_CODE (val1) == SSA_NAME)
484 if (TREE_CODE (val2) == SSA_NAME)
485 /* NAME == NAME */
486 return 0;
487 else if (TREE_CODE (val2) == PLUS_EXPR)
488 /* NAME < NAME + CST */
489 return -1;
490 else if (TREE_CODE (val2) == MINUS_EXPR)
491 /* NAME > NAME - CST */
492 return 1;
494 else if (TREE_CODE (val1) == PLUS_EXPR)
496 if (TREE_CODE (val2) == SSA_NAME)
497 /* NAME + CST > NAME */
498 return 1;
499 else if (TREE_CODE (val2) == PLUS_EXPR)
500 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
501 return compare_values (c1, c2);
502 else if (TREE_CODE (val2) == MINUS_EXPR)
503 /* NAME + CST1 > NAME - CST2 */
504 return 1;
506 else if (TREE_CODE (val1) == MINUS_EXPR)
508 if (TREE_CODE (val2) == SSA_NAME)
509 /* NAME - CST < NAME */
510 return -1;
511 else if (TREE_CODE (val2) == PLUS_EXPR)
512 /* NAME - CST1 < NAME + CST2 */
513 return -1;
514 else if (TREE_CODE (val2) == MINUS_EXPR)
515 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
516 C1 and C2 are swapped in the call to compare_values. */
517 return compare_values (c2, c1);
520 gcc_unreachable ();
523 /* We cannot compare non-constants. */
524 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
525 return -2;
527 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
529 /* We cannot compare overflowed values. */
530 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
531 return -2;
533 return tree_int_cst_compare (val1, val2);
535 else
537 tree t;
539 /* First see if VAL1 and VAL2 are not the same. */
540 if (val1 == val2 || operand_equal_p (val1, val2, 0))
541 return 0;
543 /* If VAL1 is a lower address than VAL2, return -1. */
544 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
545 if (t == boolean_true_node)
546 return -1;
548 /* If VAL1 is a higher address than VAL2, return +1. */
549 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
550 if (t == boolean_true_node)
551 return 1;
553 /* If VAL1 is different than VAL2, return +2. */
554 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
555 if (t == boolean_true_node)
556 return 2;
558 return -2;
563 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
564 0 if VAL is not inside VR,
565 -2 if we cannot tell either way.
567 FIXME, the current semantics of this functions are a bit quirky
568 when taken in the context of VRP. In here we do not care
569 about VR's type. If VR is the anti-range ~[3, 5] the call
570 value_inside_range (4, VR) will return 1.
572 This is counter-intuitive in a strict sense, but the callers
573 currently expect this. They are calling the function
574 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
575 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
576 themselves.
578 This also applies to value_ranges_intersect_p and
579 range_includes_zero_p. The semantics of VR_RANGE and
580 VR_ANTI_RANGE should be encoded here, but that also means
581 adapting the users of these functions to the new semantics. */
583 static inline int
584 value_inside_range (tree val, value_range_t *vr)
586 int cmp1, cmp2;
588 cmp1 = compare_values (val, vr->min);
589 if (cmp1 == -2 || cmp1 == 2)
590 return -2;
592 cmp2 = compare_values (val, vr->max);
593 if (cmp2 == -2 || cmp2 == 2)
594 return -2;
596 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
600 /* Return true if value ranges VR0 and VR1 have a non-empty
601 intersection. */
603 static inline bool
604 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
606 return (value_inside_range (vr1->min, vr0) == 1
607 || value_inside_range (vr1->max, vr0) == 1
608 || value_inside_range (vr0->min, vr1) == 1
609 || value_inside_range (vr0->max, vr1) == 1);
613 /* Return true if VR includes the value zero, false otherwise. FIXME,
614 currently this will return false for an anti-range like ~[-4, 3].
615 This will be wrong when the semantics of value_inside_range are
616 modified (currently the users of this function expect these
617 semantics). */
619 static inline bool
620 range_includes_zero_p (value_range_t *vr)
622 tree zero;
624 gcc_assert (vr->type != VR_UNDEFINED
625 && vr->type != VR_VARYING
626 && !symbolic_range_p (vr));
628 zero = build_int_cst (TREE_TYPE (vr->min), 0);
629 return (value_inside_range (zero, vr) == 1);
633 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
634 initially consider X_i and Y_j equivalent, so the equivalence set
635 of Y_j is added to the equivalence set of X_i. However, it is
636 possible to have a chain of ASSERT_EXPRs whose predicates are
637 actually incompatible. This is usually the result of nesting of
638 contradictory if-then-else statements. For instance, in PR 24670:
640 count_4 has range [-INF, 63]
642 if (count_4 != 0)
644 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
645 if (count_19 > 63)
647 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
648 if (count_18 <= 63)
653 Notice that 'if (count_19 > 63)' is trivially false and will be
654 folded out at the end. However, during propagation, the flowgraph
655 is not cleaned up and so, VRP will evaluate predicates more
656 predicates than necessary, so it must support these
657 inconsistencies. The problem here is that because of the chaining
658 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
659 Since count_4 has an incompatible range, we ICE when evaluating the
660 ranges in the equivalency set. So, we need to remove count_4 from
661 it. */
663 static void
664 fix_equivalence_set (value_range_t *vr_p)
666 bitmap_iterator bi;
667 unsigned i;
668 bitmap e = vr_p->equiv;
669 bitmap to_remove = BITMAP_ALLOC (NULL);
671 /* Only detect inconsistencies on numeric ranges. */
672 if (vr_p->type == VR_VARYING
673 || vr_p->type == VR_UNDEFINED
674 || symbolic_range_p (vr_p))
675 return;
677 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
679 value_range_t *equiv_vr = vr_value[i];
681 if (equiv_vr->type == VR_VARYING
682 || equiv_vr->type == VR_UNDEFINED
683 || symbolic_range_p (equiv_vr))
684 continue;
686 if (equiv_vr->type == VR_RANGE
687 && vr_p->type == VR_RANGE
688 && !value_ranges_intersect_p (vr_p, equiv_vr))
689 bitmap_set_bit (to_remove, i);
690 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
691 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
693 /* A range and an anti-range have an empty intersection if
694 their end points are the same. FIXME,
695 value_ranges_intersect_p should handle this
696 automatically. */
697 if (compare_values (equiv_vr->min, vr_p->min) == 0
698 && compare_values (equiv_vr->max, vr_p->max) == 0)
699 bitmap_set_bit (to_remove, i);
703 bitmap_and_compl_into (vr_p->equiv, to_remove);
704 BITMAP_FREE (to_remove);
708 /* Extract value range information from an ASSERT_EXPR EXPR and store
709 it in *VR_P. */
711 static void
712 extract_range_from_assert (value_range_t *vr_p, tree expr)
714 tree var, cond, limit, min, max, type;
715 value_range_t *var_vr, *limit_vr;
716 enum tree_code cond_code;
718 var = ASSERT_EXPR_VAR (expr);
719 cond = ASSERT_EXPR_COND (expr);
721 gcc_assert (COMPARISON_CLASS_P (cond));
723 /* Find VAR in the ASSERT_EXPR conditional. */
724 if (var == TREE_OPERAND (cond, 0))
726 /* If the predicate is of the form VAR COMP LIMIT, then we just
727 take LIMIT from the RHS and use the same comparison code. */
728 limit = TREE_OPERAND (cond, 1);
729 cond_code = TREE_CODE (cond);
731 else
733 /* If the predicate is of the form LIMIT COMP VAR, then we need
734 to flip around the comparison code to create the proper range
735 for VAR. */
736 limit = TREE_OPERAND (cond, 0);
737 cond_code = swap_tree_comparison (TREE_CODE (cond));
740 type = TREE_TYPE (limit);
741 gcc_assert (limit != var);
743 /* For pointer arithmetic, we only keep track of pointer equality
744 and inequality. */
745 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
747 set_value_range_to_varying (vr_p);
748 return;
751 /* If LIMIT is another SSA name and LIMIT has a range of its own,
752 try to use LIMIT's range to avoid creating symbolic ranges
753 unnecessarily. */
754 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
756 /* LIMIT's range is only interesting if it has any useful information. */
757 if (limit_vr
758 && (limit_vr->type == VR_UNDEFINED
759 || limit_vr->type == VR_VARYING
760 || symbolic_range_p (limit_vr)))
761 limit_vr = NULL;
763 /* Special handling for integral types with super-types. Some FEs
764 construct integral types derived from other types and restrict
765 the range of values these new types may take.
767 It may happen that LIMIT is actually smaller than TYPE's minimum
768 value. For instance, the Ada FE is generating code like this
769 during bootstrap:
771 D.1480_32 = nam_30 - 300000361;
772 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
773 <L112>:;
774 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
776 All the names are of type types__name_id___XDLU_300000000__399999999
777 which has min == 300000000 and max == 399999999. This means that
778 the ASSERT_EXPR would try to create the range [3000000, 1] which
779 is invalid.
781 The fact that the type specifies MIN and MAX values does not
782 automatically mean that every variable of that type will always
783 be within that range, so the predicate may well be true at run
784 time. If we had symbolic -INF and +INF values, we could
785 represent this range, but we currently represent -INF and +INF
786 using the type's min and max values.
788 So, the only sensible thing we can do for now is set the
789 resulting range to VR_VARYING. TODO, would having symbolic -INF
790 and +INF values be worth the trouble? */
791 if (TREE_CODE (limit) != SSA_NAME
792 && INTEGRAL_TYPE_P (type)
793 && TREE_TYPE (type))
795 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
797 tree type_min = TYPE_MIN_VALUE (type);
798 int cmp = compare_values (limit, type_min);
800 /* For < or <= comparisons, if LIMIT is smaller than
801 TYPE_MIN, set the range to VR_VARYING. */
802 if (cmp == -1 || cmp == 0)
804 set_value_range_to_varying (vr_p);
805 return;
808 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
810 tree type_max = TYPE_MIN_VALUE (type);
811 int cmp = compare_values (limit, type_max);
813 /* For > or >= comparisons, if LIMIT is bigger than
814 TYPE_MAX, set the range to VR_VARYING. */
815 if (cmp == 1 || cmp == 0)
817 set_value_range_to_varying (vr_p);
818 return;
823 /* Initially, the new range has the same set of equivalences of
824 VAR's range. This will be revised before returning the final
825 value. Since assertions may be chained via mutually exclusive
826 predicates, we will need to trim the set of equivalences before
827 we are done. */
828 gcc_assert (vr_p->equiv == NULL);
829 vr_p->equiv = BITMAP_ALLOC (NULL);
830 add_equivalence (vr_p->equiv, var);
832 /* Extract a new range based on the asserted comparison for VAR and
833 LIMIT's value range. Notice that if LIMIT has an anti-range, we
834 will only use it for equality comparisons (EQ_EXPR). For any
835 other kind of assertion, we cannot derive a range from LIMIT's
836 anti-range that can be used to describe the new range. For
837 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
838 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
839 no single range for x_2 that could describe LE_EXPR, so we might
840 as well build the range [b_4, +INF] for it. */
841 if (cond_code == EQ_EXPR)
843 enum value_range_type range_type;
845 if (limit_vr)
847 range_type = limit_vr->type;
848 min = limit_vr->min;
849 max = limit_vr->max;
851 else
853 range_type = VR_RANGE;
854 min = limit;
855 max = limit;
858 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
860 /* When asserting the equality VAR == LIMIT and LIMIT is another
861 SSA name, the new range will also inherit the equivalence set
862 from LIMIT. */
863 if (TREE_CODE (limit) == SSA_NAME)
864 add_equivalence (vr_p->equiv, limit);
866 else if (cond_code == NE_EXPR)
868 /* As described above, when LIMIT's range is an anti-range and
869 this assertion is an inequality (NE_EXPR), then we cannot
870 derive anything from the anti-range. For instance, if
871 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
872 not imply that VAR's range is [0, 0]. So, in the case of
873 anti-ranges, we just assert the inequality using LIMIT and
874 not its anti-range.
876 If LIMIT_VR is a range, we can only use it to build a new
877 anti-range if LIMIT_VR is a single-valued range. For
878 instance, if LIMIT_VR is [0, 1], the predicate
879 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
880 Rather, it means that for value 0 VAR should be ~[0, 0]
881 and for value 1, VAR should be ~[1, 1]. We cannot
882 represent these ranges.
884 The only situation in which we can build a valid
885 anti-range is when LIMIT_VR is a single-valued range
886 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
887 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
888 if (limit_vr
889 && limit_vr->type == VR_RANGE
890 && compare_values (limit_vr->min, limit_vr->max) == 0)
892 min = limit_vr->min;
893 max = limit_vr->max;
895 else
897 /* In any other case, we cannot use LIMIT's range to build a
898 valid anti-range. */
899 min = max = limit;
902 /* If MIN and MAX cover the whole range for their type, then
903 just use the original LIMIT. */
904 if (INTEGRAL_TYPE_P (type)
905 && min == TYPE_MIN_VALUE (type)
906 && max == TYPE_MAX_VALUE (type))
907 min = max = limit;
909 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
911 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
913 min = TYPE_MIN_VALUE (type);
915 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
916 max = limit;
917 else
919 /* If LIMIT_VR is of the form [N1, N2], we need to build the
920 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
921 LT_EXPR. */
922 max = limit_vr->max;
925 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
926 if (cond_code == LT_EXPR)
928 tree one = build_int_cst (type, 1);
929 max = fold_build2 (MINUS_EXPR, type, max, one);
932 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
934 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
936 max = TYPE_MAX_VALUE (type);
938 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
939 min = limit;
940 else
942 /* If LIMIT_VR is of the form [N1, N2], we need to build the
943 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
944 GT_EXPR. */
945 min = limit_vr->min;
948 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
949 if (cond_code == GT_EXPR)
951 tree one = build_int_cst (type, 1);
952 min = fold_build2 (PLUS_EXPR, type, min, one);
955 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
957 else
958 gcc_unreachable ();
960 /* If VAR already had a known range, it may happen that the new
961 range we have computed and VAR's range are not compatible. For
962 instance,
964 if (p_5 == NULL)
965 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
966 x_7 = p_6->fld;
967 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
969 While the above comes from a faulty program, it will cause an ICE
970 later because p_8 and p_6 will have incompatible ranges and at
971 the same time will be considered equivalent. A similar situation
972 would arise from
974 if (i_5 > 10)
975 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
976 if (i_5 < 5)
977 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
979 Again i_6 and i_7 will have incompatible ranges. It would be
980 pointless to try and do anything with i_7's range because
981 anything dominated by 'if (i_5 < 5)' will be optimized away.
982 Note, due to the wa in which simulation proceeds, the statement
983 i_7 = ASSERT_EXPR <...> we would never be visited because the
984 conditional 'if (i_5 < 5)' always evaluates to false. However,
985 this extra check does not hurt and may protect against future
986 changes to VRP that may get into a situation similar to the
987 NULL pointer dereference example.
989 Note that these compatibility tests are only needed when dealing
990 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
991 are both anti-ranges, they will always be compatible, because two
992 anti-ranges will always have a non-empty intersection. */
994 var_vr = get_value_range (var);
996 /* We may need to make adjustments when VR_P and VAR_VR are numeric
997 ranges or anti-ranges. */
998 if (vr_p->type == VR_VARYING
999 || vr_p->type == VR_UNDEFINED
1000 || var_vr->type == VR_VARYING
1001 || var_vr->type == VR_UNDEFINED
1002 || symbolic_range_p (vr_p)
1003 || symbolic_range_p (var_vr))
1004 goto done;
1006 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1008 /* If the two ranges have a non-empty intersection, we can
1009 refine the resulting range. Since the assert expression
1010 creates an equivalency and at the same time it asserts a
1011 predicate, we can take the intersection of the two ranges to
1012 get better precision. */
1013 if (value_ranges_intersect_p (var_vr, vr_p))
1015 /* Use the larger of the two minimums. */
1016 if (compare_values (vr_p->min, var_vr->min) == -1)
1017 min = var_vr->min;
1018 else
1019 min = vr_p->min;
1021 /* Use the smaller of the two maximums. */
1022 if (compare_values (vr_p->max, var_vr->max) == 1)
1023 max = var_vr->max;
1024 else
1025 max = vr_p->max;
1027 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1029 else
1031 /* The two ranges do not intersect, set the new range to
1032 VARYING, because we will not be able to do anything
1033 meaningful with it. */
1034 set_value_range_to_varying (vr_p);
1037 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1038 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1040 /* A range and an anti-range will cancel each other only if
1041 their ends are the same. For instance, in the example above,
1042 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1043 so VR_P should be set to VR_VARYING. */
1044 if (compare_values (var_vr->min, vr_p->min) == 0
1045 && compare_values (var_vr->max, vr_p->max) == 0)
1046 set_value_range_to_varying (vr_p);
1047 else
1049 tree min, max, anti_min, anti_max, real_min, real_max;
1051 /* We want to compute the logical AND of the two ranges;
1052 there are three cases to consider.
1055 1. The VR_ANTI_RANGE range is competely within the
1056 VR_RANGE and the endpoints of the ranges are
1057 different. In that case the resulting range
1058 should be whichever range is more precise.
1059 Typically that will be the VR_RANGE.
1061 2. The VR_ANTI_RANGE is completely disjoint from
1062 the VR_RANGE. In this case the resulting range
1063 should be the VR_RANGE.
1065 3. There is some overlap between the VR_ANTI_RANGE
1066 and the VR_RANGE.
1068 3a. If the high limit of the VR_ANTI_RANGE resides
1069 within the VR_RANGE, then the result is a new
1070 VR_RANGE starting at the high limit of the
1071 the VR_ANTI_RANGE + 1 and extending to the
1072 high limit of the original VR_RANGE.
1074 3b. If the low limit of the VR_ANTI_RANGE resides
1075 within the VR_RANGE, then the result is a new
1076 VR_RANGE starting at the low limit of the original
1077 VR_RANGE and extending to the low limit of the
1078 VR_ANTI_RANGE - 1. */
1079 if (vr_p->type == VR_ANTI_RANGE)
1081 anti_min = vr_p->min;
1082 anti_max = vr_p->max;
1083 real_min = var_vr->min;
1084 real_max = var_vr->max;
1086 else
1088 anti_min = var_vr->min;
1089 anti_max = var_vr->max;
1090 real_min = vr_p->min;
1091 real_max = vr_p->max;
1095 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1096 not including any endpoints. */
1097 if (compare_values (anti_max, real_max) == -1
1098 && compare_values (anti_min, real_min) == 1)
1100 set_value_range (vr_p, VR_RANGE, real_min,
1101 real_max, vr_p->equiv);
1103 /* Case 2, VR_ANTI_RANGE completely disjoint from
1104 VR_RANGE. */
1105 else if (compare_values (anti_min, real_max) == 1
1106 || compare_values (anti_max, real_min) == -1)
1108 set_value_range (vr_p, VR_RANGE, real_min,
1109 real_max, vr_p->equiv);
1111 /* Case 3a, the anti-range extends into the low
1112 part of the real range. Thus creating a new
1113 low for the real reange. */
1114 else if ((compare_values (anti_max, real_min) == 1
1115 || compare_values (anti_max, real_min) == 0)
1116 && compare_values (anti_max, real_max) == -1)
1118 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1119 anti_max,
1120 build_int_cst (TREE_TYPE (var_vr->min), 1));
1121 max = real_max;
1122 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1124 /* Case 3b, the anti-range extends into the high
1125 part of the real range. Thus creating a new
1126 higher for the real reange. */
1127 else if (compare_values (anti_min, real_min) == 1
1128 && (compare_values (anti_min, real_max) == -1
1129 || compare_values (anti_min, real_max) == 0))
1131 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1132 anti_min,
1133 build_int_cst (TREE_TYPE (var_vr->min), 1));
1134 min = real_min;
1135 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1140 /* Remove names from the equivalence set that have ranges
1141 incompatible with VR_P. */
1142 done:
1143 fix_equivalence_set (vr_p);
1147 /* Extract range information from SSA name VAR and store it in VR. If
1148 VAR has an interesting range, use it. Otherwise, create the
1149 range [VAR, VAR] and return it. This is useful in situations where
1150 we may have conditionals testing values of VARYING names. For
1151 instance,
1153 x_3 = y_5;
1154 if (x_3 > y_5)
1157 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1158 always false. */
1160 static void
1161 extract_range_from_ssa_name (value_range_t *vr, tree var)
1163 value_range_t *var_vr = get_value_range (var);
1165 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1166 copy_value_range (vr, var_vr);
1167 else
1168 set_value_range (vr, VR_RANGE, var, var, NULL);
1170 add_equivalence (vr->equiv, var);
1174 /* Wrapper around int_const_binop. If the operation overflows and we
1175 are not using wrapping arithmetic, then adjust the result to be
1176 -INF or +INF depending on CODE, VAL1 and VAL2. */
1178 static inline tree
1179 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1181 tree res;
1183 if (flag_wrapv)
1184 return int_const_binop (code, val1, val2, 0);
1186 /* If we are not using wrapping arithmetic, operate symbolically
1187 on -INF and +INF. */
1188 res = int_const_binop (code, val1, val2, 0);
1190 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1192 int checkz = compare_values (res, val1);
1194 /* Ensure that res = val1 [+*] val2 >= val1
1195 or that res = val1 - val2 <= val1. */
1196 if (((code == PLUS_EXPR || code == MULT_EXPR)
1197 && !(checkz == 1 || checkz == 0))
1198 || (code == MINUS_EXPR
1199 && !(checkz == 0 || checkz == -1)))
1201 res = copy_node (res);
1202 TREE_OVERFLOW (res) = 1;
1205 else if (TREE_OVERFLOW (res)
1206 && !TREE_OVERFLOW (val1)
1207 && !TREE_OVERFLOW (val2))
1209 /* If the operation overflowed but neither VAL1 nor VAL2 are
1210 overflown, return -INF or +INF depending on the operation
1211 and the combination of signs of the operands. */
1212 int sgn1 = tree_int_cst_sgn (val1);
1213 int sgn2 = tree_int_cst_sgn (val2);
1215 /* Notice that we only need to handle the restricted set of
1216 operations handled by extract_range_from_binary_expr.
1217 Among them, only multiplication, addition and subtraction
1218 can yield overflow without overflown operands because we
1219 are working with integral types only... except in the
1220 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1221 for division too. */
1223 /* For multiplication, the sign of the overflow is given
1224 by the comparison of the signs of the operands. */
1225 if ((code == MULT_EXPR && sgn1 == sgn2)
1226 /* For addition, the operands must be of the same sign
1227 to yield an overflow. Its sign is therefore that
1228 of one of the operands, for example the first. */
1229 || (code == PLUS_EXPR && sgn1 > 0)
1230 /* For subtraction, the operands must be of different
1231 signs to yield an overflow. Its sign is therefore
1232 that of the first operand or the opposite of that
1233 of the second operand. A first operand of 0 counts
1234 as positive here, for the corner case 0 - (-INF),
1235 which overflows, but must yield +INF. */
1236 || (code == MINUS_EXPR && sgn1 >= 0)
1237 /* For division, the only case is -INF / -1 = +INF. */
1238 || code == TRUNC_DIV_EXPR
1239 || code == FLOOR_DIV_EXPR
1240 || code == CEIL_DIV_EXPR
1241 || code == EXACT_DIV_EXPR
1242 || code == ROUND_DIV_EXPR)
1243 return TYPE_MAX_VALUE (TREE_TYPE (res));
1244 else
1245 return TYPE_MIN_VALUE (TREE_TYPE (res));
1248 return res;
1252 /* Extract range information from a binary expression EXPR based on
1253 the ranges of each of its operands and the expression code. */
1255 static void
1256 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1258 enum tree_code code = TREE_CODE (expr);
1259 enum value_range_type type;
1260 tree op0, op1, min, max;
1261 int cmp;
1262 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1263 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1265 /* Not all binary expressions can be applied to ranges in a
1266 meaningful way. Handle only arithmetic operations. */
1267 if (code != PLUS_EXPR
1268 && code != MINUS_EXPR
1269 && code != MULT_EXPR
1270 && code != TRUNC_DIV_EXPR
1271 && code != FLOOR_DIV_EXPR
1272 && code != CEIL_DIV_EXPR
1273 && code != EXACT_DIV_EXPR
1274 && code != ROUND_DIV_EXPR
1275 && code != MIN_EXPR
1276 && code != MAX_EXPR
1277 && code != BIT_AND_EXPR
1278 && code != TRUTH_ANDIF_EXPR
1279 && code != TRUTH_ORIF_EXPR
1280 && code != TRUTH_AND_EXPR
1281 && code != TRUTH_OR_EXPR)
1283 set_value_range_to_varying (vr);
1284 return;
1287 /* Get value ranges for each operand. For constant operands, create
1288 a new value range with the operand to simplify processing. */
1289 op0 = TREE_OPERAND (expr, 0);
1290 if (TREE_CODE (op0) == SSA_NAME)
1291 vr0 = *(get_value_range (op0));
1292 else if (is_gimple_min_invariant (op0))
1293 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1294 else
1295 set_value_range_to_varying (&vr0);
1297 op1 = TREE_OPERAND (expr, 1);
1298 if (TREE_CODE (op1) == SSA_NAME)
1299 vr1 = *(get_value_range (op1));
1300 else if (is_gimple_min_invariant (op1))
1301 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1302 else
1303 set_value_range_to_varying (&vr1);
1305 /* If either range is UNDEFINED, so is the result. */
1306 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1308 set_value_range_to_undefined (vr);
1309 return;
1312 /* The type of the resulting value range defaults to VR0.TYPE. */
1313 type = vr0.type;
1315 /* Refuse to operate on VARYING ranges, ranges of different kinds
1316 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1317 because we may be able to derive a useful range even if one of
1318 the operands is VR_VARYING or symbolic range. TODO, we may be
1319 able to derive anti-ranges in some cases. */
1320 if (code != BIT_AND_EXPR
1321 && code != TRUTH_AND_EXPR
1322 && code != TRUTH_OR_EXPR
1323 && (vr0.type == VR_VARYING
1324 || vr1.type == VR_VARYING
1325 || vr0.type != vr1.type
1326 || symbolic_range_p (&vr0)
1327 || symbolic_range_p (&vr1)))
1329 set_value_range_to_varying (vr);
1330 return;
1333 /* Now evaluate the expression to determine the new range. */
1334 if (POINTER_TYPE_P (TREE_TYPE (expr))
1335 || POINTER_TYPE_P (TREE_TYPE (op0))
1336 || POINTER_TYPE_P (TREE_TYPE (op1)))
1338 /* For pointer types, we are really only interested in asserting
1339 whether the expression evaluates to non-NULL. FIXME, we used
1340 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1341 ivopts is generating expressions with pointer multiplication
1342 in them. */
1343 if (code == PLUS_EXPR)
1345 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1346 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1347 else if (range_is_null (&vr0) && range_is_null (&vr1))
1348 set_value_range_to_null (vr, TREE_TYPE (expr));
1349 else
1350 set_value_range_to_varying (vr);
1352 else
1354 /* Subtracting from a pointer, may yield 0, so just drop the
1355 resulting range to varying. */
1356 set_value_range_to_varying (vr);
1359 return;
1362 /* For integer ranges, apply the operation to each end of the
1363 range and see what we end up with. */
1364 if (code == TRUTH_ANDIF_EXPR
1365 || code == TRUTH_ORIF_EXPR
1366 || code == TRUTH_AND_EXPR
1367 || code == TRUTH_OR_EXPR)
1369 /* If one of the operands is zero, we know that the whole
1370 expression evaluates zero. */
1371 if (code == TRUTH_AND_EXPR
1372 && ((vr0.type == VR_RANGE
1373 && integer_zerop (vr0.min)
1374 && integer_zerop (vr0.max))
1375 || (vr1.type == VR_RANGE
1376 && integer_zerop (vr1.min)
1377 && integer_zerop (vr1.max))))
1379 type = VR_RANGE;
1380 min = max = build_int_cst (TREE_TYPE (expr), 0);
1382 /* If one of the operands is one, we know that the whole
1383 expression evaluates one. */
1384 else if (code == TRUTH_OR_EXPR
1385 && ((vr0.type == VR_RANGE
1386 && integer_onep (vr0.min)
1387 && integer_onep (vr0.max))
1388 || (vr1.type == VR_RANGE
1389 && integer_onep (vr1.min)
1390 && integer_onep (vr1.max))))
1392 type = VR_RANGE;
1393 min = max = build_int_cst (TREE_TYPE (expr), 1);
1395 else if (vr0.type != VR_VARYING
1396 && vr1.type != VR_VARYING
1397 && vr0.type == vr1.type
1398 && !symbolic_range_p (&vr0)
1399 && !symbolic_range_p (&vr1))
1401 /* Boolean expressions cannot be folded with int_const_binop. */
1402 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1403 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1405 else
1407 set_value_range_to_varying (vr);
1408 return;
1411 else if (code == PLUS_EXPR
1412 || code == MIN_EXPR
1413 || code == MAX_EXPR)
1415 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1416 VR_VARYING. It would take more effort to compute a precise
1417 range for such a case. For example, if we have op0 == 1 and
1418 op1 == -1 with their ranges both being ~[0,0], we would have
1419 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1420 Note that we are guaranteed to have vr0.type == vr1.type at
1421 this point. */
1422 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1424 set_value_range_to_varying (vr);
1425 return;
1428 /* For operations that make the resulting range directly
1429 proportional to the original ranges, apply the operation to
1430 the same end of each range. */
1431 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1432 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1434 else if (code == MULT_EXPR
1435 || code == TRUNC_DIV_EXPR
1436 || code == FLOOR_DIV_EXPR
1437 || code == CEIL_DIV_EXPR
1438 || code == EXACT_DIV_EXPR
1439 || code == ROUND_DIV_EXPR)
1441 tree val[4];
1442 size_t i;
1444 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1445 drop to VR_VARYING. It would take more effort to compute a
1446 precise range for such a case. For example, if we have
1447 op0 == 65536 and op1 == 65536 with their ranges both being
1448 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1449 we cannot claim that the product is in ~[0,0]. Note that we
1450 are guaranteed to have vr0.type == vr1.type at this
1451 point. */
1452 if (code == MULT_EXPR
1453 && vr0.type == VR_ANTI_RANGE
1454 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1456 set_value_range_to_varying (vr);
1457 return;
1460 /* Multiplications and divisions are a bit tricky to handle,
1461 depending on the mix of signs we have in the two ranges, we
1462 need to operate on different values to get the minimum and
1463 maximum values for the new range. One approach is to figure
1464 out all the variations of range combinations and do the
1465 operations.
1467 However, this involves several calls to compare_values and it
1468 is pretty convoluted. It's simpler to do the 4 operations
1469 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1470 MAX1) and then figure the smallest and largest values to form
1471 the new range. */
1473 /* Divisions by zero result in a VARYING value. */
1474 if (code != MULT_EXPR
1475 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1477 set_value_range_to_varying (vr);
1478 return;
1481 /* Compute the 4 cross operations. */
1482 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1484 val[1] = (vr1.max != vr1.min)
1485 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1486 : NULL_TREE;
1488 val[2] = (vr0.max != vr0.min)
1489 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1490 : NULL_TREE;
1492 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1493 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1494 : NULL_TREE;
1496 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1497 of VAL[i]. */
1498 min = val[0];
1499 max = val[0];
1500 for (i = 1; i < 4; i++)
1502 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1503 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1504 break;
1506 if (val[i])
1508 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1510 /* If we found an overflowed value, set MIN and MAX
1511 to it so that we set the resulting range to
1512 VARYING. */
1513 min = max = val[i];
1514 break;
1517 if (compare_values (val[i], min) == -1)
1518 min = val[i];
1520 if (compare_values (val[i], max) == 1)
1521 max = val[i];
1525 else if (code == MINUS_EXPR)
1527 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1528 VR_VARYING. It would take more effort to compute a precise
1529 range for such a case. For example, if we have op0 == 1 and
1530 op1 == 1 with their ranges both being ~[0,0], we would have
1531 op0 - op1 == 0, so we cannot claim that the difference is in
1532 ~[0,0]. Note that we are guaranteed to have
1533 vr0.type == vr1.type at this point. */
1534 if (vr0.type == VR_ANTI_RANGE)
1536 set_value_range_to_varying (vr);
1537 return;
1540 /* For MINUS_EXPR, apply the operation to the opposite ends of
1541 each range. */
1542 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1543 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1545 else if (code == BIT_AND_EXPR)
1547 if (vr0.type == VR_RANGE
1548 && vr0.min == vr0.max
1549 && tree_expr_nonnegative_p (vr0.max)
1550 && TREE_CODE (vr0.max) == INTEGER_CST)
1552 min = build_int_cst (TREE_TYPE (expr), 0);
1553 max = vr0.max;
1555 else if (vr1.type == VR_RANGE
1556 && vr1.min == vr1.max
1557 && tree_expr_nonnegative_p (vr1.max)
1558 && TREE_CODE (vr1.max) == INTEGER_CST)
1560 type = VR_RANGE;
1561 min = build_int_cst (TREE_TYPE (expr), 0);
1562 max = vr1.max;
1564 else
1566 set_value_range_to_varying (vr);
1567 return;
1570 else
1571 gcc_unreachable ();
1573 /* If either MIN or MAX overflowed, then set the resulting range to
1574 VARYING. */
1575 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1576 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1578 set_value_range_to_varying (vr);
1579 return;
1582 cmp = compare_values (min, max);
1583 if (cmp == -2 || cmp == 1)
1585 /* If the new range has its limits swapped around (MIN > MAX),
1586 then the operation caused one of them to wrap around, mark
1587 the new range VARYING. */
1588 set_value_range_to_varying (vr);
1590 else
1591 set_value_range (vr, type, min, max, NULL);
1595 /* Extract range information from a unary expression EXPR based on
1596 the range of its operand and the expression code. */
1598 static void
1599 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1601 enum tree_code code = TREE_CODE (expr);
1602 tree min, max, op0;
1603 int cmp;
1604 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1606 /* Refuse to operate on certain unary expressions for which we
1607 cannot easily determine a resulting range. */
1608 if (code == FIX_TRUNC_EXPR
1609 || code == FIX_CEIL_EXPR
1610 || code == FIX_FLOOR_EXPR
1611 || code == FIX_ROUND_EXPR
1612 || code == FLOAT_EXPR
1613 || code == BIT_NOT_EXPR
1614 || code == NON_LVALUE_EXPR
1615 || code == CONJ_EXPR)
1617 set_value_range_to_varying (vr);
1618 return;
1621 /* Get value ranges for the operand. For constant operands, create
1622 a new value range with the operand to simplify processing. */
1623 op0 = TREE_OPERAND (expr, 0);
1624 if (TREE_CODE (op0) == SSA_NAME)
1625 vr0 = *(get_value_range (op0));
1626 else if (is_gimple_min_invariant (op0))
1627 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1628 else
1629 set_value_range_to_varying (&vr0);
1631 /* If VR0 is UNDEFINED, so is the result. */
1632 if (vr0.type == VR_UNDEFINED)
1634 set_value_range_to_undefined (vr);
1635 return;
1638 /* Refuse to operate on varying and symbolic ranges. Also, if the
1639 operand is neither a pointer nor an integral type, set the
1640 resulting range to VARYING. TODO, in some cases we may be able
1641 to derive anti-ranges (like nonzero values). */
1642 if (vr0.type == VR_VARYING
1643 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1644 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1645 || symbolic_range_p (&vr0))
1647 set_value_range_to_varying (vr);
1648 return;
1651 /* If the expression involves pointers, we are only interested in
1652 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1653 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1655 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1656 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1657 else if (range_is_null (&vr0))
1658 set_value_range_to_null (vr, TREE_TYPE (expr));
1659 else
1660 set_value_range_to_varying (vr);
1662 return;
1665 /* Handle unary expressions on integer ranges. */
1666 if (code == NOP_EXPR || code == CONVERT_EXPR)
1668 tree inner_type = TREE_TYPE (op0);
1669 tree outer_type = TREE_TYPE (expr);
1671 /* If VR0 represents a simple range, then try to convert
1672 the min and max values for the range to the same type
1673 as OUTER_TYPE. If the results compare equal to VR0's
1674 min and max values and the new min is still less than
1675 or equal to the new max, then we can safely use the newly
1676 computed range for EXPR. This allows us to compute
1677 accurate ranges through many casts. */
1678 if (vr0.type == VR_RANGE)
1680 tree new_min, new_max;
1682 /* Convert VR0's min/max to OUTER_TYPE. */
1683 new_min = fold_convert (outer_type, vr0.min);
1684 new_max = fold_convert (outer_type, vr0.max);
1686 /* Verify the new min/max values are gimple values and
1687 that they compare equal to VR0's min/max values. */
1688 if (is_gimple_val (new_min)
1689 && is_gimple_val (new_max)
1690 && tree_int_cst_equal (new_min, vr0.min)
1691 && tree_int_cst_equal (new_max, vr0.max)
1692 && compare_values (new_min, new_max) <= 0
1693 && compare_values (new_min, new_max) >= -1)
1695 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1696 return;
1700 /* When converting types of different sizes, set the result to
1701 VARYING. Things like sign extensions and precision loss may
1702 change the range. For instance, if x_3 is of type 'long long
1703 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1704 is impossible to know at compile time whether y_5 will be
1705 ~[0, 0]. */
1706 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1707 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1709 set_value_range_to_varying (vr);
1710 return;
1714 /* Apply the operation to each end of the range and see what we end
1715 up with. */
1716 if (code == NEGATE_EXPR
1717 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1719 /* NEGATE_EXPR flips the range around. */
1720 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1721 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1722 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1724 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1725 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1726 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1728 else if (code == ABS_EXPR
1729 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1731 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1732 useful range. */
1733 if (flag_wrapv
1734 && ((vr0.type == VR_RANGE
1735 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1736 || (vr0.type == VR_ANTI_RANGE
1737 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1738 && !range_includes_zero_p (&vr0))))
1740 set_value_range_to_varying (vr);
1741 return;
1744 /* ABS_EXPR may flip the range around, if the original range
1745 included negative values. */
1746 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1747 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1748 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1750 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1752 cmp = compare_values (min, max);
1754 /* If a VR_ANTI_RANGEs contains zero, then we have
1755 ~[-INF, min(MIN, MAX)]. */
1756 if (vr0.type == VR_ANTI_RANGE)
1758 if (range_includes_zero_p (&vr0))
1760 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1762 /* Take the lower of the two values. */
1763 if (cmp != 1)
1764 max = min;
1766 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1767 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1768 flag_wrapv is set and the original anti-range doesn't include
1769 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1770 min = (flag_wrapv && vr0.min != type_min_value
1771 ? int_const_binop (PLUS_EXPR,
1772 type_min_value,
1773 integer_one_node, 0)
1774 : type_min_value);
1776 else
1778 /* All else has failed, so create the range [0, INF], even for
1779 flag_wrapv since TYPE_MIN_VALUE is in the original
1780 anti-range. */
1781 vr0.type = VR_RANGE;
1782 min = build_int_cst (TREE_TYPE (expr), 0);
1783 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1787 /* If the range contains zero then we know that the minimum value in the
1788 range will be zero. */
1789 else if (range_includes_zero_p (&vr0))
1791 if (cmp == 1)
1792 max = min;
1793 min = build_int_cst (TREE_TYPE (expr), 0);
1795 else
1797 /* If the range was reversed, swap MIN and MAX. */
1798 if (cmp == 1)
1800 tree t = min;
1801 min = max;
1802 max = t;
1806 else
1808 /* Otherwise, operate on each end of the range. */
1809 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1810 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1813 cmp = compare_values (min, max);
1814 if (cmp == -2 || cmp == 1)
1816 /* If the new range has its limits swapped around (MIN > MAX),
1817 then the operation caused one of them to wrap around, mark
1818 the new range VARYING. */
1819 set_value_range_to_varying (vr);
1821 else
1822 set_value_range (vr, vr0.type, min, max, NULL);
1826 /* Extract range information from a comparison expression EXPR based
1827 on the range of its operand and the expression code. */
1829 static void
1830 extract_range_from_comparison (value_range_t *vr, tree expr)
1832 tree val = vrp_evaluate_conditional (expr, false);
1833 if (val)
1835 /* Since this expression was found on the RHS of an assignment,
1836 its type may be different from _Bool. Convert VAL to EXPR's
1837 type. */
1838 val = fold_convert (TREE_TYPE (expr), val);
1839 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1841 else
1842 set_value_range_to_varying (vr);
1846 /* Try to compute a useful range out of expression EXPR and store it
1847 in *VR. */
1849 static void
1850 extract_range_from_expr (value_range_t *vr, tree expr)
1852 enum tree_code code = TREE_CODE (expr);
1854 if (code == ASSERT_EXPR)
1855 extract_range_from_assert (vr, expr);
1856 else if (code == SSA_NAME)
1857 extract_range_from_ssa_name (vr, expr);
1858 else if (TREE_CODE_CLASS (code) == tcc_binary
1859 || code == TRUTH_ANDIF_EXPR
1860 || code == TRUTH_ORIF_EXPR
1861 || code == TRUTH_AND_EXPR
1862 || code == TRUTH_OR_EXPR
1863 || code == TRUTH_XOR_EXPR)
1864 extract_range_from_binary_expr (vr, expr);
1865 else if (TREE_CODE_CLASS (code) == tcc_unary)
1866 extract_range_from_unary_expr (vr, expr);
1867 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1868 extract_range_from_comparison (vr, expr);
1869 else if (is_gimple_min_invariant (expr))
1870 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1871 else if (vrp_expr_computes_nonzero (expr))
1872 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1873 else
1874 set_value_range_to_varying (vr);
1877 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1878 would be profitable to adjust VR using scalar evolution information
1879 for VAR. If so, update VR with the new limits. */
1881 static void
1882 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1883 tree var)
1885 tree init, step, chrec;
1886 bool init_is_max, unknown_max;
1888 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1889 better opportunities than a regular range, but I'm not sure. */
1890 if (vr->type == VR_ANTI_RANGE)
1891 return;
1893 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1894 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1895 return;
1897 init = initial_condition_in_loop_num (chrec, loop->num);
1898 step = evolution_part_in_loop_num (chrec, loop->num);
1900 /* If STEP is symbolic, we can't know whether INIT will be the
1901 minimum or maximum value in the range. */
1902 if (step == NULL_TREE
1903 || !is_gimple_min_invariant (step))
1904 return;
1906 /* Do not adjust ranges when chrec may wrap. */
1907 if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
1908 current_loops->parray[CHREC_VARIABLE (chrec)],
1909 &init_is_max, &unknown_max)
1910 || unknown_max)
1911 return;
1913 if (!POINTER_TYPE_P (TREE_TYPE (init))
1914 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1916 /* For VARYING or UNDEFINED ranges, just about anything we get
1917 from scalar evolutions should be better. */
1918 tree min = TYPE_MIN_VALUE (TREE_TYPE (init));
1919 tree max = TYPE_MAX_VALUE (TREE_TYPE (init));
1921 if (init_is_max)
1922 max = init;
1923 else
1924 min = init;
1926 /* If we would create an invalid range, then just assume we
1927 know absolutely nothing. This may be over-conservative,
1928 but it's clearly safe. */
1929 if (compare_values (min, max) == 1)
1930 return;
1932 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1934 else if (vr->type == VR_RANGE)
1936 tree min = vr->min;
1937 tree max = vr->max;
1939 if (init_is_max)
1941 /* INIT is the maximum value. If INIT is lower than VR->MAX
1942 but no smaller than VR->MIN, set VR->MAX to INIT. */
1943 if (compare_values (init, max) == -1)
1945 max = init;
1947 /* If we just created an invalid range with the minimum
1948 greater than the maximum, take the minimum all the
1949 way to -INF. */
1950 if (compare_values (min, max) == 1)
1951 min = TYPE_MIN_VALUE (TREE_TYPE (min));
1954 else
1956 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1957 if (compare_values (init, min) == 1)
1959 min = init;
1961 /* If we just created an invalid range with the minimum
1962 greater than the maximum, take the maximum all the
1963 way to +INF. */
1964 if (compare_values (min, max) == 1)
1965 max = TYPE_MAX_VALUE (TREE_TYPE (max));
1969 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1974 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1976 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1977 all the values in the ranges.
1979 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1981 - Return NULL_TREE if it is not always possible to determine the
1982 value of the comparison. */
1985 static tree
1986 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
1988 /* VARYING or UNDEFINED ranges cannot be compared. */
1989 if (vr0->type == VR_VARYING
1990 || vr0->type == VR_UNDEFINED
1991 || vr1->type == VR_VARYING
1992 || vr1->type == VR_UNDEFINED)
1993 return NULL_TREE;
1995 /* Anti-ranges need to be handled separately. */
1996 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
1998 /* If both are anti-ranges, then we cannot compute any
1999 comparison. */
2000 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2001 return NULL_TREE;
2003 /* These comparisons are never statically computable. */
2004 if (comp == GT_EXPR
2005 || comp == GE_EXPR
2006 || comp == LT_EXPR
2007 || comp == LE_EXPR)
2008 return NULL_TREE;
2010 /* Equality can be computed only between a range and an
2011 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2012 if (vr0->type == VR_RANGE)
2014 /* To simplify processing, make VR0 the anti-range. */
2015 value_range_t *tmp = vr0;
2016 vr0 = vr1;
2017 vr1 = tmp;
2020 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2022 if (compare_values (vr0->min, vr1->min) == 0
2023 && compare_values (vr0->max, vr1->max) == 0)
2024 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2026 return NULL_TREE;
2029 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2030 operands around and change the comparison code. */
2031 if (comp == GT_EXPR || comp == GE_EXPR)
2033 value_range_t *tmp;
2034 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2035 tmp = vr0;
2036 vr0 = vr1;
2037 vr1 = tmp;
2040 if (comp == EQ_EXPR)
2042 /* Equality may only be computed if both ranges represent
2043 exactly one value. */
2044 if (compare_values (vr0->min, vr0->max) == 0
2045 && compare_values (vr1->min, vr1->max) == 0)
2047 int cmp_min = compare_values (vr0->min, vr1->min);
2048 int cmp_max = compare_values (vr0->max, vr1->max);
2049 if (cmp_min == 0 && cmp_max == 0)
2050 return boolean_true_node;
2051 else if (cmp_min != -2 && cmp_max != -2)
2052 return boolean_false_node;
2054 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2055 else if (compare_values (vr0->min, vr1->max) == 1
2056 || compare_values (vr1->min, vr0->max) == 1)
2057 return boolean_false_node;
2059 return NULL_TREE;
2061 else if (comp == NE_EXPR)
2063 int cmp1, cmp2;
2065 /* If VR0 is completely to the left or completely to the right
2066 of VR1, they are always different. Notice that we need to
2067 make sure that both comparisons yield similar results to
2068 avoid comparing values that cannot be compared at
2069 compile-time. */
2070 cmp1 = compare_values (vr0->max, vr1->min);
2071 cmp2 = compare_values (vr0->min, vr1->max);
2072 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2073 return boolean_true_node;
2075 /* If VR0 and VR1 represent a single value and are identical,
2076 return false. */
2077 else if (compare_values (vr0->min, vr0->max) == 0
2078 && compare_values (vr1->min, vr1->max) == 0
2079 && compare_values (vr0->min, vr1->min) == 0
2080 && compare_values (vr0->max, vr1->max) == 0)
2081 return boolean_false_node;
2083 /* Otherwise, they may or may not be different. */
2084 else
2085 return NULL_TREE;
2087 else if (comp == LT_EXPR || comp == LE_EXPR)
2089 int tst;
2091 /* If VR0 is to the left of VR1, return true. */
2092 tst = compare_values (vr0->max, vr1->min);
2093 if ((comp == LT_EXPR && tst == -1)
2094 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2095 return boolean_true_node;
2097 /* If VR0 is to the right of VR1, return false. */
2098 tst = compare_values (vr0->min, vr1->max);
2099 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2100 || (comp == LE_EXPR && tst == 1))
2101 return boolean_false_node;
2103 /* Otherwise, we don't know. */
2104 return NULL_TREE;
2107 gcc_unreachable ();
2111 /* Given a value range VR, a value VAL and a comparison code COMP, return
2112 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2113 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2114 always returns false. Return NULL_TREE if it is not always
2115 possible to determine the value of the comparison. */
2117 static tree
2118 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2120 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2121 return NULL_TREE;
2123 /* Anti-ranges need to be handled separately. */
2124 if (vr->type == VR_ANTI_RANGE)
2126 /* For anti-ranges, the only predicates that we can compute at
2127 compile time are equality and inequality. */
2128 if (comp == GT_EXPR
2129 || comp == GE_EXPR
2130 || comp == LT_EXPR
2131 || comp == LE_EXPR)
2132 return NULL_TREE;
2134 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2135 if (value_inside_range (val, vr) == 1)
2136 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2138 return NULL_TREE;
2141 if (comp == EQ_EXPR)
2143 /* EQ_EXPR may only be computed if VR represents exactly
2144 one value. */
2145 if (compare_values (vr->min, vr->max) == 0)
2147 int cmp = compare_values (vr->min, val);
2148 if (cmp == 0)
2149 return boolean_true_node;
2150 else if (cmp == -1 || cmp == 1 || cmp == 2)
2151 return boolean_false_node;
2153 else if (compare_values (val, vr->min) == -1
2154 || compare_values (vr->max, val) == -1)
2155 return boolean_false_node;
2157 return NULL_TREE;
2159 else if (comp == NE_EXPR)
2161 /* If VAL is not inside VR, then they are always different. */
2162 if (compare_values (vr->max, val) == -1
2163 || compare_values (vr->min, val) == 1)
2164 return boolean_true_node;
2166 /* If VR represents exactly one value equal to VAL, then return
2167 false. */
2168 if (compare_values (vr->min, vr->max) == 0
2169 && compare_values (vr->min, val) == 0)
2170 return boolean_false_node;
2172 /* Otherwise, they may or may not be different. */
2173 return NULL_TREE;
2175 else if (comp == LT_EXPR || comp == LE_EXPR)
2177 int tst;
2179 /* If VR is to the left of VAL, return true. */
2180 tst = compare_values (vr->max, val);
2181 if ((comp == LT_EXPR && tst == -1)
2182 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2183 return boolean_true_node;
2185 /* If VR is to the right of VAL, return false. */
2186 tst = compare_values (vr->min, val);
2187 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2188 || (comp == LE_EXPR && tst == 1))
2189 return boolean_false_node;
2191 /* Otherwise, we don't know. */
2192 return NULL_TREE;
2194 else if (comp == GT_EXPR || comp == GE_EXPR)
2196 int tst;
2198 /* If VR is to the right of VAL, return true. */
2199 tst = compare_values (vr->min, val);
2200 if ((comp == GT_EXPR && tst == 1)
2201 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2202 return boolean_true_node;
2204 /* If VR is to the left of VAL, return false. */
2205 tst = compare_values (vr->max, val);
2206 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2207 || (comp == GE_EXPR && tst == -1))
2208 return boolean_false_node;
2210 /* Otherwise, we don't know. */
2211 return NULL_TREE;
2214 gcc_unreachable ();
2218 /* Debugging dumps. */
2220 void dump_value_range (FILE *, value_range_t *);
2221 void debug_value_range (value_range_t *);
2222 void dump_all_value_ranges (FILE *);
2223 void debug_all_value_ranges (void);
2224 void dump_vr_equiv (FILE *, bitmap);
2225 void debug_vr_equiv (bitmap);
2228 /* Dump value range VR to FILE. */
2230 void
2231 dump_value_range (FILE *file, value_range_t *vr)
2233 if (vr == NULL)
2234 fprintf (file, "[]");
2235 else if (vr->type == VR_UNDEFINED)
2236 fprintf (file, "UNDEFINED");
2237 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2239 tree type = TREE_TYPE (vr->min);
2241 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2243 if (INTEGRAL_TYPE_P (type)
2244 && !TYPE_UNSIGNED (type)
2245 && vr->min == TYPE_MIN_VALUE (type))
2246 fprintf (file, "-INF");
2247 else
2248 print_generic_expr (file, vr->min, 0);
2250 fprintf (file, ", ");
2252 if (INTEGRAL_TYPE_P (type)
2253 && vr->max == TYPE_MAX_VALUE (type))
2254 fprintf (file, "+INF");
2255 else
2256 print_generic_expr (file, vr->max, 0);
2258 fprintf (file, "]");
2260 if (vr->equiv)
2262 bitmap_iterator bi;
2263 unsigned i, c = 0;
2265 fprintf (file, " EQUIVALENCES: { ");
2267 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2269 print_generic_expr (file, ssa_name (i), 0);
2270 fprintf (file, " ");
2271 c++;
2274 fprintf (file, "} (%u elements)", c);
2277 else if (vr->type == VR_VARYING)
2278 fprintf (file, "VARYING");
2279 else
2280 fprintf (file, "INVALID RANGE");
2284 /* Dump value range VR to stderr. */
2286 void
2287 debug_value_range (value_range_t *vr)
2289 dump_value_range (stderr, vr);
2293 /* Dump value ranges of all SSA_NAMEs to FILE. */
2295 void
2296 dump_all_value_ranges (FILE *file)
2298 size_t i;
2300 for (i = 0; i < num_ssa_names; i++)
2302 if (vr_value[i])
2304 print_generic_expr (file, ssa_name (i), 0);
2305 fprintf (file, ": ");
2306 dump_value_range (file, vr_value[i]);
2307 fprintf (file, "\n");
2311 fprintf (file, "\n");
2315 /* Dump all value ranges to stderr. */
2317 void
2318 debug_all_value_ranges (void)
2320 dump_all_value_ranges (stderr);
2324 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2325 create a new SSA name N and return the assertion assignment
2326 'V = ASSERT_EXPR <V, V OP W>'. */
2328 static tree
2329 build_assert_expr_for (tree cond, tree v)
2331 tree n, assertion;
2333 gcc_assert (TREE_CODE (v) == SSA_NAME);
2334 n = duplicate_ssa_name (v, NULL_TREE);
2336 if (COMPARISON_CLASS_P (cond))
2338 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2339 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2341 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2343 /* Given !V, build the assignment N = false. */
2344 tree op0 = TREE_OPERAND (cond, 0);
2345 gcc_assert (op0 == v);
2346 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2348 else if (TREE_CODE (cond) == SSA_NAME)
2350 /* Given V, build the assignment N = true. */
2351 gcc_assert (v == cond);
2352 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2354 else
2355 gcc_unreachable ();
2357 SSA_NAME_DEF_STMT (n) = assertion;
2359 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2360 operand of the ASSERT_EXPR. Register the new name and the old one
2361 in the replacement table so that we can fix the SSA web after
2362 adding all the ASSERT_EXPRs. */
2363 register_new_name_mapping (n, v);
2365 return assertion;
2369 /* Return false if EXPR is a predicate expression involving floating
2370 point values. */
2372 static inline bool
2373 fp_predicate (tree expr)
2375 return (COMPARISON_CLASS_P (expr)
2376 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2380 /* If the range of values taken by OP can be inferred after STMT executes,
2381 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2382 describes the inferred range. Return true if a range could be
2383 inferred. */
2385 static bool
2386 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2388 *val_p = NULL_TREE;
2389 *comp_code_p = ERROR_MARK;
2391 /* Do not attempt to infer anything in names that flow through
2392 abnormal edges. */
2393 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2394 return false;
2396 /* Similarly, don't infer anything from statements that may throw
2397 exceptions. */
2398 if (tree_could_throw_p (stmt))
2399 return false;
2401 /* If STMT is the last statement of a basic block with no
2402 successors, there is no point inferring anything about any of its
2403 operands. We would not be able to find a proper insertion point
2404 for the assertion, anyway. */
2405 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2406 return false;
2408 if (POINTER_TYPE_P (TREE_TYPE (op)))
2410 bool is_store;
2411 unsigned num_uses, num_derefs;
2413 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2414 if (num_derefs > 0 && flag_delete_null_pointer_checks)
2416 /* We can only assume that a pointer dereference will yield
2417 non-NULL if -fdelete-null-pointer-checks is enabled. */
2418 *val_p = build_int_cst (TREE_TYPE (op), 0);
2419 *comp_code_p = NE_EXPR;
2420 return true;
2424 return false;
2428 void dump_asserts_for (FILE *, tree);
2429 void debug_asserts_for (tree);
2430 void dump_all_asserts (FILE *);
2431 void debug_all_asserts (void);
2433 /* Dump all the registered assertions for NAME to FILE. */
2435 void
2436 dump_asserts_for (FILE *file, tree name)
2438 assert_locus_t loc;
2440 fprintf (file, "Assertions to be inserted for ");
2441 print_generic_expr (file, name, 0);
2442 fprintf (file, "\n");
2444 loc = asserts_for[SSA_NAME_VERSION (name)];
2445 while (loc)
2447 fprintf (file, "\t");
2448 print_generic_expr (file, bsi_stmt (loc->si), 0);
2449 fprintf (file, "\n\tBB #%d", loc->bb->index);
2450 if (loc->e)
2452 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2453 loc->e->dest->index);
2454 dump_edge_info (file, loc->e, 0);
2456 fprintf (file, "\n\tPREDICATE: ");
2457 print_generic_expr (file, name, 0);
2458 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2459 print_generic_expr (file, loc->val, 0);
2460 fprintf (file, "\n\n");
2461 loc = loc->next;
2464 fprintf (file, "\n");
2468 /* Dump all the registered assertions for NAME to stderr. */
2470 void
2471 debug_asserts_for (tree name)
2473 dump_asserts_for (stderr, name);
2477 /* Dump all the registered assertions for all the names to FILE. */
2479 void
2480 dump_all_asserts (FILE *file)
2482 unsigned i;
2483 bitmap_iterator bi;
2485 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2486 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2487 dump_asserts_for (file, ssa_name (i));
2488 fprintf (file, "\n");
2492 /* Dump all the registered assertions for all the names to stderr. */
2494 void
2495 debug_all_asserts (void)
2497 dump_all_asserts (stderr);
2501 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2502 'NAME COMP_CODE VAL' at a location that dominates block BB or
2503 E->DEST, then register this location as a possible insertion point
2504 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2506 BB, E and SI provide the exact insertion point for the new
2507 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2508 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2509 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2510 must not be NULL. */
2512 static void
2513 register_new_assert_for (tree name,
2514 enum tree_code comp_code,
2515 tree val,
2516 basic_block bb,
2517 edge e,
2518 block_stmt_iterator si)
2520 assert_locus_t n, loc, last_loc;
2521 bool found;
2522 basic_block dest_bb;
2524 #if defined ENABLE_CHECKING
2525 gcc_assert (bb == NULL || e == NULL);
2527 if (e == NULL)
2528 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2529 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2530 #endif
2532 /* The new assertion A will be inserted at BB or E. We need to
2533 determine if the new location is dominated by a previously
2534 registered location for A. If we are doing an edge insertion,
2535 assume that A will be inserted at E->DEST. Note that this is not
2536 necessarily true.
2538 If E is a critical edge, it will be split. But even if E is
2539 split, the new block will dominate the same set of blocks that
2540 E->DEST dominates.
2542 The reverse, however, is not true, blocks dominated by E->DEST
2543 will not be dominated by the new block created to split E. So,
2544 if the insertion location is on a critical edge, we will not use
2545 the new location to move another assertion previously registered
2546 at a block dominated by E->DEST. */
2547 dest_bb = (bb) ? bb : e->dest;
2549 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2550 VAL at a block dominating DEST_BB, then we don't need to insert a new
2551 one. Similarly, if the same assertion already exists at a block
2552 dominated by DEST_BB and the new location is not on a critical
2553 edge, then update the existing location for the assertion (i.e.,
2554 move the assertion up in the dominance tree).
2556 Note, this is implemented as a simple linked list because there
2557 should not be more than a handful of assertions registered per
2558 name. If this becomes a performance problem, a table hashed by
2559 COMP_CODE and VAL could be implemented. */
2560 loc = asserts_for[SSA_NAME_VERSION (name)];
2561 last_loc = loc;
2562 found = false;
2563 while (loc)
2565 if (loc->comp_code == comp_code
2566 && (loc->val == val
2567 || operand_equal_p (loc->val, val, 0)))
2569 /* If the assertion NAME COMP_CODE VAL has already been
2570 registered at a basic block that dominates DEST_BB, then
2571 we don't need to insert the same assertion again. Note
2572 that we don't check strict dominance here to avoid
2573 replicating the same assertion inside the same basic
2574 block more than once (e.g., when a pointer is
2575 dereferenced several times inside a block).
2577 An exception to this rule are edge insertions. If the
2578 new assertion is to be inserted on edge E, then it will
2579 dominate all the other insertions that we may want to
2580 insert in DEST_BB. So, if we are doing an edge
2581 insertion, don't do this dominance check. */
2582 if (e == NULL
2583 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2584 return;
2586 /* Otherwise, if E is not a critical edge and DEST_BB
2587 dominates the existing location for the assertion, move
2588 the assertion up in the dominance tree by updating its
2589 location information. */
2590 if ((e == NULL || !EDGE_CRITICAL_P (e))
2591 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2593 loc->bb = dest_bb;
2594 loc->e = e;
2595 loc->si = si;
2596 return;
2600 /* Update the last node of the list and move to the next one. */
2601 last_loc = loc;
2602 loc = loc->next;
2605 /* If we didn't find an assertion already registered for
2606 NAME COMP_CODE VAL, add a new one at the end of the list of
2607 assertions associated with NAME. */
2608 n = XNEW (struct assert_locus_d);
2609 n->bb = dest_bb;
2610 n->e = e;
2611 n->si = si;
2612 n->comp_code = comp_code;
2613 n->val = val;
2614 n->next = NULL;
2616 if (last_loc)
2617 last_loc->next = n;
2618 else
2619 asserts_for[SSA_NAME_VERSION (name)] = n;
2621 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2625 /* Try to register an edge assertion for SSA name NAME on edge E for
2626 the conditional jump pointed to by SI. Return true if an assertion
2627 for NAME could be registered. */
2629 static bool
2630 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2632 tree val, stmt;
2633 enum tree_code comp_code;
2635 stmt = bsi_stmt (si);
2637 /* Do not attempt to infer anything in names that flow through
2638 abnormal edges. */
2639 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2640 return false;
2642 /* If NAME was not found in the sub-graph reachable from E, then
2643 there's nothing to do. */
2644 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2645 return false;
2647 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2648 Register an assertion for NAME according to the value that NAME
2649 takes on edge E. */
2650 if (TREE_CODE (stmt) == COND_EXPR)
2652 /* If BB ends in a COND_EXPR then NAME then we should insert
2653 the original predicate on EDGE_TRUE_VALUE and the
2654 opposite predicate on EDGE_FALSE_VALUE. */
2655 tree cond = COND_EXPR_COND (stmt);
2656 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2658 /* Predicates may be a single SSA name or NAME OP VAL. */
2659 if (cond == name)
2661 /* If the predicate is a name, it must be NAME, in which
2662 case we create the predicate NAME == true or
2663 NAME == false accordingly. */
2664 comp_code = EQ_EXPR;
2665 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2667 else
2669 /* Otherwise, we have a comparison of the form NAME COMP VAL
2670 or VAL COMP NAME. */
2671 if (name == TREE_OPERAND (cond, 1))
2673 /* If the predicate is of the form VAL COMP NAME, flip
2674 COMP around because we need to register NAME as the
2675 first operand in the predicate. */
2676 comp_code = swap_tree_comparison (TREE_CODE (cond));
2677 val = TREE_OPERAND (cond, 0);
2679 else
2681 /* The comparison is of the form NAME COMP VAL, so the
2682 comparison code remains unchanged. */
2683 comp_code = TREE_CODE (cond);
2684 val = TREE_OPERAND (cond, 1);
2687 /* If we are inserting the assertion on the ELSE edge, we
2688 need to invert the sign comparison. */
2689 if (is_else_edge)
2690 comp_code = invert_tree_comparison (comp_code, 0);
2692 /* Do not register always-false predicates. FIXME, this
2693 works around a limitation in fold() when dealing with
2694 enumerations. Given 'enum { N1, N2 } x;', fold will not
2695 fold 'if (x > N2)' to 'if (0)'. */
2696 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2697 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2698 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2700 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2701 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2703 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2704 return false;
2706 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2707 return false;
2711 else
2713 /* FIXME. Handle SWITCH_EXPR. */
2714 gcc_unreachable ();
2717 register_new_assert_for (name, comp_code, val, NULL, e, si);
2718 return true;
2722 static bool find_assert_locations (basic_block bb);
2724 /* Determine whether the outgoing edges of BB should receive an
2725 ASSERT_EXPR for each of the operands of BB's last statement. The
2726 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2728 If any of the sub-graphs rooted at BB have an interesting use of
2729 the predicate operands, an assert location node is added to the
2730 list of assertions for the corresponding operands. */
2732 static bool
2733 find_conditional_asserts (basic_block bb)
2735 bool need_assert;
2736 block_stmt_iterator last_si;
2737 tree op, last;
2738 edge_iterator ei;
2739 edge e;
2740 ssa_op_iter iter;
2742 need_assert = false;
2743 last_si = bsi_last (bb);
2744 last = bsi_stmt (last_si);
2746 /* Look for uses of the operands in each of the sub-graphs
2747 rooted at BB. We need to check each of the outgoing edges
2748 separately, so that we know what kind of ASSERT_EXPR to
2749 insert. */
2750 FOR_EACH_EDGE (e, ei, bb->succs)
2752 if (e->dest == bb)
2753 continue;
2755 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2756 Otherwise, when we finish traversing each of the sub-graphs, we
2757 won't know whether the variables were found in the sub-graphs or
2758 if they had been found in a block upstream from BB.
2760 This is actually a bad idea is some cases, particularly jump
2761 threading. Consider a CFG like the following:
2771 Assume that one or more operands in the conditional at the
2772 end of block 0 are used in a conditional in block 2, but not
2773 anywhere in block 1. In this case we will not insert any
2774 assert statements in block 1, which may cause us to miss
2775 opportunities to optimize, particularly for jump threading. */
2776 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2777 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2779 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2780 to determine if any of the operands in the conditional
2781 predicate are used. */
2782 if (e->dest != bb)
2783 need_assert |= find_assert_locations (e->dest);
2785 /* Register the necessary assertions for each operand in the
2786 conditional predicate. */
2787 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2788 need_assert |= register_edge_assert_for (op, e, last_si);
2791 /* Finally, indicate that we have found the operands in the
2792 conditional. */
2793 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2794 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2796 return need_assert;
2800 /* Traverse all the statements in block BB looking for statements that
2801 may generate useful assertions for the SSA names in their operand.
2802 If a statement produces a useful assertion A for name N_i, then the
2803 list of assertions already generated for N_i is scanned to
2804 determine if A is actually needed.
2806 If N_i already had the assertion A at a location dominating the
2807 current location, then nothing needs to be done. Otherwise, the
2808 new location for A is recorded instead.
2810 1- For every statement S in BB, all the variables used by S are
2811 added to bitmap FOUND_IN_SUBGRAPH.
2813 2- If statement S uses an operand N in a way that exposes a known
2814 value range for N, then if N was not already generated by an
2815 ASSERT_EXPR, create a new assert location for N. For instance,
2816 if N is a pointer and the statement dereferences it, we can
2817 assume that N is not NULL.
2819 3- COND_EXPRs are a special case of #2. We can derive range
2820 information from the predicate but need to insert different
2821 ASSERT_EXPRs for each of the sub-graphs rooted at the
2822 conditional block. If the last statement of BB is a conditional
2823 expression of the form 'X op Y', then
2825 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2827 b) If the conditional is the only entry point to the sub-graph
2828 corresponding to the THEN_CLAUSE, recurse into it. On
2829 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2830 an ASSERT_EXPR is added for the corresponding variable.
2832 c) Repeat step (b) on the ELSE_CLAUSE.
2834 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2836 For instance,
2838 if (a == 9)
2839 b = a;
2840 else
2841 b = c + 1;
2843 In this case, an assertion on the THEN clause is useful to
2844 determine that 'a' is always 9 on that edge. However, an assertion
2845 on the ELSE clause would be unnecessary.
2847 4- If BB does not end in a conditional expression, then we recurse
2848 into BB's dominator children.
2850 At the end of the recursive traversal, every SSA name will have a
2851 list of locations where ASSERT_EXPRs should be added. When a new
2852 location for name N is found, it is registered by calling
2853 register_new_assert_for. That function keeps track of all the
2854 registered assertions to prevent adding unnecessary assertions.
2855 For instance, if a pointer P_4 is dereferenced more than once in a
2856 dominator tree, only the location dominating all the dereference of
2857 P_4 will receive an ASSERT_EXPR.
2859 If this function returns true, then it means that there are names
2860 for which we need to generate ASSERT_EXPRs. Those assertions are
2861 inserted by process_assert_insertions.
2863 TODO. Handle SWITCH_EXPR. */
2865 static bool
2866 find_assert_locations (basic_block bb)
2868 block_stmt_iterator si;
2869 tree last, phi;
2870 bool need_assert;
2871 basic_block son;
2873 if (TEST_BIT (blocks_visited, bb->index))
2874 return false;
2876 SET_BIT (blocks_visited, bb->index);
2878 need_assert = false;
2880 /* Traverse all PHI nodes in BB marking used operands. */
2881 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2883 use_operand_p arg_p;
2884 ssa_op_iter i;
2886 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2888 tree arg = USE_FROM_PTR (arg_p);
2889 if (TREE_CODE (arg) == SSA_NAME)
2891 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2892 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2897 /* Traverse all the statements in BB marking used names and looking
2898 for statements that may infer assertions for their used operands. */
2899 last = NULL_TREE;
2900 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2902 tree stmt, op;
2903 ssa_op_iter i;
2905 stmt = bsi_stmt (si);
2907 /* See if we can derive an assertion for any of STMT's operands. */
2908 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2910 tree value;
2911 enum tree_code comp_code;
2913 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2914 the sub-graph of a conditional block, when we return from
2915 this recursive walk, our parent will use the
2916 FOUND_IN_SUBGRAPH bitset to determine if one of the
2917 operands it was looking for was present in the sub-graph. */
2918 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2920 /* If OP is used only once, namely in this STMT, don't
2921 bother creating an ASSERT_EXPR for it. Such an
2922 ASSERT_EXPR would do nothing but increase compile time.
2923 Experiments show that with this simple check, we can save
2924 more than 20% of ASSERT_EXPRs. */
2925 if (has_single_use (op))
2926 continue;
2928 /* If OP is used in such a way that we can infer a value
2929 range for it, and we don't find a previous assertion for
2930 it, create a new assertion location node for OP. */
2931 if (infer_value_range (stmt, op, &comp_code, &value))
2933 register_new_assert_for (op, comp_code, value, bb, NULL, si);
2934 need_assert = true;
2938 /* Remember the last statement of the block. */
2939 last = stmt;
2942 /* If BB's last statement is a conditional expression
2943 involving integer operands, recurse into each of the sub-graphs
2944 rooted at BB to determine if we need to add ASSERT_EXPRs. */
2945 if (last
2946 && TREE_CODE (last) == COND_EXPR
2947 && !fp_predicate (COND_EXPR_COND (last))
2948 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
2949 need_assert |= find_conditional_asserts (bb);
2951 /* Recurse into the dominator children of BB. */
2952 for (son = first_dom_son (CDI_DOMINATORS, bb);
2953 son;
2954 son = next_dom_son (CDI_DOMINATORS, son))
2955 need_assert |= find_assert_locations (son);
2957 return need_assert;
2961 /* Create an ASSERT_EXPR for NAME and insert it in the location
2962 indicated by LOC. Return true if we made any edge insertions. */
2964 static bool
2965 process_assert_insertions_for (tree name, assert_locus_t loc)
2967 /* Build the comparison expression NAME_i COMP_CODE VAL. */
2968 tree stmt, cond, assert_expr;
2969 edge_iterator ei;
2970 edge e;
2972 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
2973 assert_expr = build_assert_expr_for (cond, name);
2975 if (loc->e)
2977 /* We have been asked to insert the assertion on an edge. This
2978 is used only by COND_EXPR and SWITCH_EXPR assertions. */
2979 #if defined ENABLE_CHECKING
2980 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
2981 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
2982 #endif
2984 bsi_insert_on_edge (loc->e, assert_expr);
2985 return true;
2988 /* Otherwise, we can insert right after LOC->SI iff the
2989 statement must not be the last statement in the block. */
2990 stmt = bsi_stmt (loc->si);
2991 if (!stmt_ends_bb_p (stmt))
2993 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
2994 return false;
2997 /* If STMT must be the last statement in BB, we can only insert new
2998 assertions on the non-abnormal edge out of BB. Note that since
2999 STMT is not control flow, there may only be one non-abnormal edge
3000 out of BB. */
3001 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3002 if (!(e->flags & EDGE_ABNORMAL))
3004 bsi_insert_on_edge (e, assert_expr);
3005 return true;
3008 gcc_unreachable ();
3012 /* Process all the insertions registered for every name N_i registered
3013 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3014 found in ASSERTS_FOR[i]. */
3016 static void
3017 process_assert_insertions (void)
3019 unsigned i;
3020 bitmap_iterator bi;
3021 bool update_edges_p = false;
3022 int num_asserts = 0;
3024 if (dump_file && (dump_flags & TDF_DETAILS))
3025 dump_all_asserts (dump_file);
3027 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3029 assert_locus_t loc = asserts_for[i];
3030 gcc_assert (loc);
3032 while (loc)
3034 assert_locus_t next = loc->next;
3035 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3036 free (loc);
3037 loc = next;
3038 num_asserts++;
3042 if (update_edges_p)
3043 bsi_commit_edge_inserts ();
3045 if (dump_file && (dump_flags & TDF_STATS))
3046 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3047 num_asserts);
3051 /* Traverse the flowgraph looking for conditional jumps to insert range
3052 expressions. These range expressions are meant to provide information
3053 to optimizations that need to reason in terms of value ranges. They
3054 will not be expanded into RTL. For instance, given:
3056 x = ...
3057 y = ...
3058 if (x < y)
3059 y = x - 2;
3060 else
3061 x = y + 3;
3063 this pass will transform the code into:
3065 x = ...
3066 y = ...
3067 if (x < y)
3069 x = ASSERT_EXPR <x, x < y>
3070 y = x - 2
3072 else
3074 y = ASSERT_EXPR <y, x <= y>
3075 x = y + 3
3078 The idea is that once copy and constant propagation have run, other
3079 optimizations will be able to determine what ranges of values can 'x'
3080 take in different paths of the code, simply by checking the reaching
3081 definition of 'x'. */
3083 static void
3084 insert_range_assertions (void)
3086 edge e;
3087 edge_iterator ei;
3088 bool update_ssa_p;
3090 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3091 sbitmap_zero (found_in_subgraph);
3093 blocks_visited = sbitmap_alloc (last_basic_block);
3094 sbitmap_zero (blocks_visited);
3096 need_assert_for = BITMAP_ALLOC (NULL);
3097 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3098 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3100 calculate_dominance_info (CDI_DOMINATORS);
3102 update_ssa_p = false;
3103 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3104 if (find_assert_locations (e->dest))
3105 update_ssa_p = true;
3107 if (update_ssa_p)
3109 process_assert_insertions ();
3110 update_ssa (TODO_update_ssa_no_phi);
3113 if (dump_file && (dump_flags & TDF_DETAILS))
3115 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3116 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3119 sbitmap_free (found_in_subgraph);
3120 free (asserts_for);
3121 BITMAP_FREE (need_assert_for);
3125 /* Convert range assertion expressions into the implied copies and
3126 copy propagate away the copies. Doing the trivial copy propagation
3127 here avoids the need to run the full copy propagation pass after
3128 VRP.
3130 FIXME, this will eventually lead to copy propagation removing the
3131 names that had useful range information attached to them. For
3132 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3133 then N_i will have the range [3, +INF].
3135 However, by converting the assertion into the implied copy
3136 operation N_i = N_j, we will then copy-propagate N_j into the uses
3137 of N_i and lose the range information. We may want to hold on to
3138 ASSERT_EXPRs a little while longer as the ranges could be used in
3139 things like jump threading.
3141 The problem with keeping ASSERT_EXPRs around is that passes after
3142 VRP need to handle them appropriately.
3144 Another approach would be to make the range information a first
3145 class property of the SSA_NAME so that it can be queried from
3146 any pass. This is made somewhat more complex by the need for
3147 multiple ranges to be associated with one SSA_NAME. */
3149 static void
3150 remove_range_assertions (void)
3152 basic_block bb;
3153 block_stmt_iterator si;
3155 /* Note that the BSI iterator bump happens at the bottom of the
3156 loop and no bump is necessary if we're removing the statement
3157 referenced by the current BSI. */
3158 FOR_EACH_BB (bb)
3159 for (si = bsi_start (bb); !bsi_end_p (si);)
3161 tree stmt = bsi_stmt (si);
3163 if (TREE_CODE (stmt) == MODIFY_EXPR
3164 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3166 tree rhs = TREE_OPERAND (stmt, 1);
3167 tree cond = fold (ASSERT_EXPR_COND (rhs));
3168 use_operand_p use_p;
3169 imm_use_iterator iter;
3171 gcc_assert (cond != boolean_false_node);
3172 TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
3173 update_stmt (stmt);
3175 /* The statement is now a copy. Propagate the RHS into
3176 every use of the LHS. */
3177 FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
3179 SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
3180 update_stmt (USE_STMT (use_p));
3183 /* And finally, remove the copy, it is not needed. */
3184 bsi_remove (&si, true);
3186 else
3187 bsi_next (&si);
3190 sbitmap_free (blocks_visited);
3194 /* Return true if STMT is interesting for VRP. */
3196 static bool
3197 stmt_interesting_for_vrp (tree stmt)
3199 if (TREE_CODE (stmt) == PHI_NODE
3200 && is_gimple_reg (PHI_RESULT (stmt))
3201 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3202 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3203 return true;
3204 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3206 tree lhs = TREE_OPERAND (stmt, 0);
3208 if (TREE_CODE (lhs) == SSA_NAME
3209 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3210 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3211 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3212 return true;
3214 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3215 return true;
3217 return false;
3221 /* Initialize local data structures for VRP. */
3223 static void
3224 vrp_initialize (void)
3226 basic_block bb;
3228 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3229 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3231 FOR_EACH_BB (bb)
3233 block_stmt_iterator si;
3234 tree phi;
3236 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3238 if (!stmt_interesting_for_vrp (phi))
3240 tree lhs = PHI_RESULT (phi);
3241 set_value_range_to_varying (get_value_range (lhs));
3242 DONT_SIMULATE_AGAIN (phi) = true;
3244 else
3245 DONT_SIMULATE_AGAIN (phi) = false;
3248 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3250 tree stmt = bsi_stmt (si);
3252 if (!stmt_interesting_for_vrp (stmt))
3254 ssa_op_iter i;
3255 tree def;
3256 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3257 set_value_range_to_varying (get_value_range (def));
3258 DONT_SIMULATE_AGAIN (stmt) = true;
3260 else
3262 DONT_SIMULATE_AGAIN (stmt) = false;
3269 /* Visit assignment STMT. If it produces an interesting range, record
3270 the SSA name in *OUTPUT_P. */
3272 static enum ssa_prop_result
3273 vrp_visit_assignment (tree stmt, tree *output_p)
3275 tree lhs, rhs, def;
3276 ssa_op_iter iter;
3278 lhs = TREE_OPERAND (stmt, 0);
3279 rhs = TREE_OPERAND (stmt, 1);
3281 /* We only keep track of ranges in integral and pointer types. */
3282 if (TREE_CODE (lhs) == SSA_NAME
3283 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3284 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3286 struct loop *l;
3287 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3289 extract_range_from_expr (&new_vr, rhs);
3291 /* If STMT is inside a loop, we may be able to know something
3292 else about the range of LHS by examining scalar evolution
3293 information. */
3294 if (current_loops && (l = loop_containing_stmt (stmt)))
3295 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3297 if (update_value_range (lhs, &new_vr))
3299 *output_p = lhs;
3301 if (dump_file && (dump_flags & TDF_DETAILS))
3303 fprintf (dump_file, "Found new range for ");
3304 print_generic_expr (dump_file, lhs, 0);
3305 fprintf (dump_file, ": ");
3306 dump_value_range (dump_file, &new_vr);
3307 fprintf (dump_file, "\n\n");
3310 if (new_vr.type == VR_VARYING)
3311 return SSA_PROP_VARYING;
3313 return SSA_PROP_INTERESTING;
3316 return SSA_PROP_NOT_INTERESTING;
3319 /* Every other statement produces no useful ranges. */
3320 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3321 set_value_range_to_varying (get_value_range (def));
3323 return SSA_PROP_VARYING;
3327 /* Compare all the value ranges for names equivalent to VAR with VAL
3328 using comparison code COMP. Return the same value returned by
3329 compare_range_with_value. */
3331 static tree
3332 compare_name_with_value (enum tree_code comp, tree var, tree val)
3334 bitmap_iterator bi;
3335 unsigned i;
3336 bitmap e;
3337 tree retval, t;
3339 t = retval = NULL_TREE;
3341 /* Get the set of equivalences for VAR. */
3342 e = get_value_range (var)->equiv;
3344 /* Add VAR to its own set of equivalences so that VAR's value range
3345 is processed by this loop (otherwise, we would have to replicate
3346 the body of the loop just to check VAR's value range). */
3347 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3349 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3351 value_range_t equiv_vr = *(vr_value[i]);
3353 /* If name N_i does not have a valid range, use N_i as its own
3354 range. This allows us to compare against names that may
3355 have N_i in their ranges. */
3356 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3358 equiv_vr.type = VR_RANGE;
3359 equiv_vr.min = ssa_name (i);
3360 equiv_vr.max = ssa_name (i);
3363 t = compare_range_with_value (comp, &equiv_vr, val);
3364 if (t)
3366 /* All the ranges should compare the same against VAL. */
3367 gcc_assert (retval == NULL || t == retval);
3368 retval = t;
3372 /* Remove VAR from its own equivalence set. */
3373 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3375 if (retval)
3376 return retval;
3378 /* We couldn't find a non-NULL value for the predicate. */
3379 return NULL_TREE;
3383 /* Given a comparison code COMP and names N1 and N2, compare all the
3384 ranges equivalent to N1 against all the ranges equivalent to N2
3385 to determine the value of N1 COMP N2. Return the same value
3386 returned by compare_ranges. */
3388 static tree
3389 compare_names (enum tree_code comp, tree n1, tree n2)
3391 tree t, retval;
3392 bitmap e1, e2;
3393 bitmap_iterator bi1, bi2;
3394 unsigned i1, i2;
3396 /* Compare the ranges of every name equivalent to N1 against the
3397 ranges of every name equivalent to N2. */
3398 e1 = get_value_range (n1)->equiv;
3399 e2 = get_value_range (n2)->equiv;
3401 /* Add N1 and N2 to their own set of equivalences to avoid
3402 duplicating the body of the loop just to check N1 and N2
3403 ranges. */
3404 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3405 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3407 /* If the equivalence sets have a common intersection, then the two
3408 names can be compared without checking their ranges. */
3409 if (bitmap_intersect_p (e1, e2))
3411 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3412 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3414 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3415 ? boolean_true_node
3416 : boolean_false_node;
3419 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3420 N2 to their own set of equivalences to avoid duplicating the body
3421 of the loop just to check N1 and N2 ranges. */
3422 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3424 value_range_t vr1 = *(vr_value[i1]);
3426 /* If the range is VARYING or UNDEFINED, use the name itself. */
3427 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3429 vr1.type = VR_RANGE;
3430 vr1.min = ssa_name (i1);
3431 vr1.max = ssa_name (i1);
3434 t = retval = NULL_TREE;
3435 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3437 value_range_t vr2 = *(vr_value[i2]);
3439 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3441 vr2.type = VR_RANGE;
3442 vr2.min = ssa_name (i2);
3443 vr2.max = ssa_name (i2);
3446 t = compare_ranges (comp, &vr1, &vr2);
3447 if (t)
3449 /* All the ranges in the equivalent sets should compare
3450 the same. */
3451 gcc_assert (retval == NULL || t == retval);
3452 retval = t;
3456 if (retval)
3458 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3459 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3460 return retval;
3464 /* None of the equivalent ranges are useful in computing this
3465 comparison. */
3466 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3467 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3468 return NULL_TREE;
3472 /* Given a conditional predicate COND, try to determine if COND yields
3473 true or false based on the value ranges of its operands. Return
3474 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3475 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3476 NULL if the conditional cannot be evaluated at compile time.
3478 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3479 the operands in COND are used when trying to compute its value.
3480 This is only used during final substitution. During propagation,
3481 we only check the range of each variable and not its equivalents. */
3483 tree
3484 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3486 gcc_assert (TREE_CODE (cond) == SSA_NAME
3487 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3489 if (TREE_CODE (cond) == SSA_NAME)
3491 value_range_t *vr;
3492 tree retval;
3494 if (use_equiv_p)
3495 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3496 else
3498 value_range_t *vr = get_value_range (cond);
3499 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3502 /* If COND has a known boolean range, return it. */
3503 if (retval)
3504 return retval;
3506 /* Otherwise, if COND has a symbolic range of exactly one value,
3507 return it. */
3508 vr = get_value_range (cond);
3509 if (vr->type == VR_RANGE && vr->min == vr->max)
3510 return vr->min;
3512 else
3514 tree op0 = TREE_OPERAND (cond, 0);
3515 tree op1 = TREE_OPERAND (cond, 1);
3517 /* We only deal with integral and pointer types. */
3518 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3519 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3520 return NULL_TREE;
3522 if (use_equiv_p)
3524 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3525 return compare_names (TREE_CODE (cond), op0, op1);
3526 else if (TREE_CODE (op0) == SSA_NAME)
3527 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3528 else if (TREE_CODE (op1) == SSA_NAME)
3529 return compare_name_with_value (
3530 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3532 else
3534 value_range_t *vr0, *vr1;
3536 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3537 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3539 if (vr0 && vr1)
3540 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3541 else if (vr0 && vr1 == NULL)
3542 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3543 else if (vr0 == NULL && vr1)
3544 return compare_range_with_value (
3545 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3549 /* Anything else cannot be computed statically. */
3550 return NULL_TREE;
3554 /* Visit conditional statement STMT. If we can determine which edge
3555 will be taken out of STMT's basic block, record it in
3556 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3557 SSA_PROP_VARYING. */
3559 static enum ssa_prop_result
3560 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3562 tree cond, val;
3564 *taken_edge_p = NULL;
3566 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3567 add ASSERT_EXPRs for them. */
3568 if (TREE_CODE (stmt) == SWITCH_EXPR)
3569 return SSA_PROP_VARYING;
3571 cond = COND_EXPR_COND (stmt);
3573 if (dump_file && (dump_flags & TDF_DETAILS))
3575 tree use;
3576 ssa_op_iter i;
3578 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3579 print_generic_expr (dump_file, cond, 0);
3580 fprintf (dump_file, "\nWith known ranges\n");
3582 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3584 fprintf (dump_file, "\t");
3585 print_generic_expr (dump_file, use, 0);
3586 fprintf (dump_file, ": ");
3587 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3590 fprintf (dump_file, "\n");
3593 /* Compute the value of the predicate COND by checking the known
3594 ranges of each of its operands.
3596 Note that we cannot evaluate all the equivalent ranges here
3597 because those ranges may not yet be final and with the current
3598 propagation strategy, we cannot determine when the value ranges
3599 of the names in the equivalence set have changed.
3601 For instance, given the following code fragment
3603 i_5 = PHI <8, i_13>
3605 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3606 if (i_14 == 1)
3609 Assume that on the first visit to i_14, i_5 has the temporary
3610 range [8, 8] because the second argument to the PHI function is
3611 not yet executable. We derive the range ~[0, 0] for i_14 and the
3612 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3613 the first time, since i_14 is equivalent to the range [8, 8], we
3614 determine that the predicate is always false.
3616 On the next round of propagation, i_13 is determined to be
3617 VARYING, which causes i_5 to drop down to VARYING. So, another
3618 visit to i_14 is scheduled. In this second visit, we compute the
3619 exact same range and equivalence set for i_14, namely ~[0, 0] and
3620 { i_5 }. But we did not have the previous range for i_5
3621 registered, so vrp_visit_assignment thinks that the range for
3622 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3623 is not visited again, which stops propagation from visiting
3624 statements in the THEN clause of that if().
3626 To properly fix this we would need to keep the previous range
3627 value for the names in the equivalence set. This way we would've
3628 discovered that from one visit to the other i_5 changed from
3629 range [8, 8] to VR_VARYING.
3631 However, fixing this apparent limitation may not be worth the
3632 additional checking. Testing on several code bases (GCC, DLV,
3633 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3634 4 more predicates folded in SPEC. */
3635 val = vrp_evaluate_conditional (cond, false);
3636 if (val)
3637 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3639 if (dump_file && (dump_flags & TDF_DETAILS))
3641 fprintf (dump_file, "\nPredicate evaluates to: ");
3642 if (val == NULL_TREE)
3643 fprintf (dump_file, "DON'T KNOW\n");
3644 else
3645 print_generic_stmt (dump_file, val, 0);
3648 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3652 /* Evaluate statement STMT. If the statement produces a useful range,
3653 return SSA_PROP_INTERESTING and record the SSA name with the
3654 interesting range into *OUTPUT_P.
3656 If STMT is a conditional branch and we can determine its truth
3657 value, the taken edge is recorded in *TAKEN_EDGE_P.
3659 If STMT produces a varying value, return SSA_PROP_VARYING. */
3661 static enum ssa_prop_result
3662 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3664 tree def;
3665 ssa_op_iter iter;
3666 stmt_ann_t ann;
3668 if (dump_file && (dump_flags & TDF_DETAILS))
3670 fprintf (dump_file, "\nVisiting statement:\n");
3671 print_generic_stmt (dump_file, stmt, dump_flags);
3672 fprintf (dump_file, "\n");
3675 ann = stmt_ann (stmt);
3676 if (TREE_CODE (stmt) == MODIFY_EXPR
3677 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3678 return vrp_visit_assignment (stmt, output_p);
3679 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3680 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3682 /* All other statements produce nothing of interest for VRP, so mark
3683 their outputs varying and prevent further simulation. */
3684 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3685 set_value_range_to_varying (get_value_range (def));
3687 return SSA_PROP_VARYING;
3691 /* Meet operation for value ranges. Given two value ranges VR0 and
3692 VR1, store in VR0 the result of meeting VR0 and VR1.
3694 The meeting rules are as follows:
3696 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3698 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3699 union of VR0 and VR1. */
3701 static void
3702 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3704 if (vr0->type == VR_UNDEFINED)
3706 copy_value_range (vr0, vr1);
3707 return;
3710 if (vr1->type == VR_UNDEFINED)
3712 /* Nothing to do. VR0 already has the resulting range. */
3713 return;
3716 if (vr0->type == VR_VARYING)
3718 /* Nothing to do. VR0 already has the resulting range. */
3719 return;
3722 if (vr1->type == VR_VARYING)
3724 set_value_range_to_varying (vr0);
3725 return;
3728 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3730 /* If VR0 and VR1 have a non-empty intersection, compute the
3731 union of both ranges. */
3732 if (value_ranges_intersect_p (vr0, vr1))
3734 int cmp;
3735 tree min, max;
3737 /* The lower limit of the new range is the minimum of the
3738 two ranges. If they cannot be compared, the result is
3739 VARYING. */
3740 cmp = compare_values (vr0->min, vr1->min);
3741 if (cmp == 0 || cmp == 1)
3742 min = vr1->min;
3743 else if (cmp == -1)
3744 min = vr0->min;
3745 else
3747 set_value_range_to_varying (vr0);
3748 return;
3751 /* Similarly, the upper limit of the new range is the
3752 maximum of the two ranges. If they cannot be compared,
3753 the result is VARYING. */
3754 cmp = compare_values (vr0->max, vr1->max);
3755 if (cmp == 0 || cmp == -1)
3756 max = vr1->max;
3757 else if (cmp == 1)
3758 max = vr0->max;
3759 else
3761 set_value_range_to_varying (vr0);
3762 return;
3765 /* The resulting set of equivalences is the intersection of
3766 the two sets. */
3767 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3768 bitmap_and_into (vr0->equiv, vr1->equiv);
3769 else if (vr0->equiv && !vr1->equiv)
3770 bitmap_clear (vr0->equiv);
3772 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3774 else
3775 goto no_meet;
3777 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3779 /* Two anti-ranges meet only if they are both identical. */
3780 if (compare_values (vr0->min, vr1->min) == 0
3781 && compare_values (vr0->max, vr1->max) == 0
3782 && compare_values (vr0->min, vr0->max) == 0)
3784 /* The resulting set of equivalences is the intersection of
3785 the two sets. */
3786 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3787 bitmap_and_into (vr0->equiv, vr1->equiv);
3788 else if (vr0->equiv && !vr1->equiv)
3789 bitmap_clear (vr0->equiv);
3791 else
3792 goto no_meet;
3794 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3796 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3797 meet only if the ranges have an empty intersection. The
3798 result of the meet operation is the anti-range. */
3799 if (!symbolic_range_p (vr0)
3800 && !symbolic_range_p (vr1)
3801 && !value_ranges_intersect_p (vr0, vr1))
3803 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3804 set. We need to compute the intersection of the two
3805 equivalence sets. */
3806 if (vr1->type == VR_ANTI_RANGE)
3807 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3809 /* The resulting set of equivalences is the intersection of
3810 the two sets. */
3811 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3812 bitmap_and_into (vr0->equiv, vr1->equiv);
3813 else if (vr0->equiv && !vr1->equiv)
3814 bitmap_clear (vr0->equiv);
3816 else
3817 goto no_meet;
3819 else
3820 gcc_unreachable ();
3822 return;
3824 no_meet:
3825 /* The two range VR0 and VR1 do not meet. Before giving up and
3826 setting the result to VARYING, see if we can at least derive a
3827 useful anti-range. FIXME, all this nonsense about distinguishing
3828 anti-ranges from ranges is necessary because of the odd
3829 semantics of range_includes_zero_p and friends. */
3830 if (!symbolic_range_p (vr0)
3831 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3832 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3833 && !symbolic_range_p (vr1)
3834 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
3835 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
3837 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3839 /* Since this meet operation did not result from the meeting of
3840 two equivalent names, VR0 cannot have any equivalences. */
3841 if (vr0->equiv)
3842 bitmap_clear (vr0->equiv);
3844 else
3845 set_value_range_to_varying (vr0);
3849 /* Visit all arguments for PHI node PHI that flow through executable
3850 edges. If a valid value range can be derived from all the incoming
3851 value ranges, set a new range for the LHS of PHI. */
3853 static enum ssa_prop_result
3854 vrp_visit_phi_node (tree phi)
3856 int i;
3857 tree lhs = PHI_RESULT (phi);
3858 value_range_t *lhs_vr = get_value_range (lhs);
3859 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3861 copy_value_range (&vr_result, lhs_vr);
3863 if (dump_file && (dump_flags & TDF_DETAILS))
3865 fprintf (dump_file, "\nVisiting PHI node: ");
3866 print_generic_expr (dump_file, phi, dump_flags);
3869 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
3871 edge e = PHI_ARG_EDGE (phi, i);
3873 if (dump_file && (dump_flags & TDF_DETAILS))
3875 fprintf (dump_file,
3876 "\n Argument #%d (%d -> %d %sexecutable)\n",
3877 i, e->src->index, e->dest->index,
3878 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
3881 if (e->flags & EDGE_EXECUTABLE)
3883 tree arg = PHI_ARG_DEF (phi, i);
3884 value_range_t vr_arg;
3886 if (TREE_CODE (arg) == SSA_NAME)
3887 vr_arg = *(get_value_range (arg));
3888 else
3890 vr_arg.type = VR_RANGE;
3891 vr_arg.min = arg;
3892 vr_arg.max = arg;
3893 vr_arg.equiv = NULL;
3896 if (dump_file && (dump_flags & TDF_DETAILS))
3898 fprintf (dump_file, "\t");
3899 print_generic_expr (dump_file, arg, dump_flags);
3900 fprintf (dump_file, "\n\tValue: ");
3901 dump_value_range (dump_file, &vr_arg);
3902 fprintf (dump_file, "\n");
3905 vrp_meet (&vr_result, &vr_arg);
3907 if (vr_result.type == VR_VARYING)
3908 break;
3912 if (vr_result.type == VR_VARYING)
3913 goto varying;
3915 /* To prevent infinite iterations in the algorithm, derive ranges
3916 when the new value is slightly bigger or smaller than the
3917 previous one. */
3918 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
3920 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
3922 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
3923 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
3925 /* If the new minimum is smaller or larger than the previous
3926 one, go all the way to -INF. In the first case, to avoid
3927 iterating millions of times to reach -INF, and in the
3928 other case to avoid infinite bouncing between different
3929 minimums. */
3930 if (cmp_min > 0 || cmp_min < 0)
3931 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
3933 /* Similarly, if the new maximum is smaller or larger than
3934 the previous one, go all the way to +INF. */
3935 if (cmp_max < 0 || cmp_max > 0)
3936 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
3938 /* If we ended up with a (-INF, +INF) range, set it to
3939 VARYING. */
3940 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
3941 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
3942 goto varying;
3946 /* If the new range is different than the previous value, keep
3947 iterating. */
3948 if (update_value_range (lhs, &vr_result))
3949 return SSA_PROP_INTERESTING;
3951 /* Nothing changed, don't add outgoing edges. */
3952 return SSA_PROP_NOT_INTERESTING;
3954 /* No match found. Set the LHS to VARYING. */
3955 varying:
3956 set_value_range_to_varying (lhs_vr);
3957 return SSA_PROP_VARYING;
3960 /* Simplify a division or modulo operator to a right shift or
3961 bitwise and if the first operand is unsigned or is greater
3962 than zero and the second operand is an exact power of two. */
3964 static void
3965 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
3967 tree val = NULL;
3968 tree op = TREE_OPERAND (rhs, 0);
3969 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3971 if (TYPE_UNSIGNED (TREE_TYPE (op)))
3973 val = integer_one_node;
3975 else
3977 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
3980 if (val && integer_onep (val))
3982 tree t;
3983 tree op0 = TREE_OPERAND (rhs, 0);
3984 tree op1 = TREE_OPERAND (rhs, 1);
3986 if (rhs_code == TRUNC_DIV_EXPR)
3988 t = build_int_cst (NULL_TREE, tree_log2 (op1));
3989 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
3991 else
3993 t = build_int_cst (TREE_TYPE (op1), 1);
3994 t = int_const_binop (MINUS_EXPR, op1, t, 0);
3995 t = fold_convert (TREE_TYPE (op0), t);
3996 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
3999 TREE_OPERAND (stmt, 1) = t;
4000 update_stmt (stmt);
4004 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4005 ABS_EXPR. If the operand is <= 0, then simplify the
4006 ABS_EXPR into a NEGATE_EXPR. */
4008 static void
4009 simplify_abs_using_ranges (tree stmt, tree rhs)
4011 tree val = NULL;
4012 tree op = TREE_OPERAND (rhs, 0);
4013 tree type = TREE_TYPE (op);
4014 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4016 if (TYPE_UNSIGNED (type))
4018 val = integer_zero_node;
4020 else if (vr)
4022 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4023 if (!val)
4025 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4027 if (val)
4029 if (integer_zerop (val))
4030 val = integer_one_node;
4031 else if (integer_onep (val))
4032 val = integer_zero_node;
4036 if (val
4037 && (integer_onep (val) || integer_zerop (val)))
4039 tree t;
4041 if (integer_onep (val))
4042 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4043 else
4044 t = op;
4046 TREE_OPERAND (stmt, 1) = t;
4047 update_stmt (stmt);
4052 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4053 a known value range VR.
4055 If there is one and only one value which will satisfy the
4056 conditional, then return that value. Else return NULL. */
4058 static tree
4059 test_for_singularity (enum tree_code cond_code, tree op0,
4060 tree op1, value_range_t *vr)
4062 tree min = NULL;
4063 tree max = NULL;
4065 /* Extract minimum/maximum values which satisfy the
4066 the conditional as it was written. */
4067 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4069 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4071 max = op1;
4072 if (cond_code == LT_EXPR)
4074 tree one = build_int_cst (TREE_TYPE (op0), 1);
4075 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4078 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4080 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4082 min = op1;
4083 if (cond_code == GT_EXPR)
4085 tree one = build_int_cst (TREE_TYPE (op0), 1);
4086 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4090 /* Now refine the minimum and maximum values using any
4091 value range information we have for op0. */
4092 if (min && max)
4094 if (compare_values (vr->min, min) == -1)
4095 min = min;
4096 else
4097 min = vr->min;
4098 if (compare_values (vr->max, max) == 1)
4099 max = max;
4100 else
4101 max = vr->max;
4103 /* If the new min/max values have converged to a single value,
4104 then there is only one value which can satisfy the condition,
4105 return that value. */
4106 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4107 return min;
4109 return NULL;
4112 /* Simplify a conditional using a relational operator to an equality
4113 test if the range information indicates only one value can satisfy
4114 the original conditional. */
4116 static void
4117 simplify_cond_using_ranges (tree stmt)
4119 tree cond = COND_EXPR_COND (stmt);
4120 tree op0 = TREE_OPERAND (cond, 0);
4121 tree op1 = TREE_OPERAND (cond, 1);
4122 enum tree_code cond_code = TREE_CODE (cond);
4124 if (cond_code != NE_EXPR
4125 && cond_code != EQ_EXPR
4126 && TREE_CODE (op0) == SSA_NAME
4127 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4128 && is_gimple_min_invariant (op1))
4130 value_range_t *vr = get_value_range (op0);
4132 /* If we have range information for OP0, then we might be
4133 able to simplify this conditional. */
4134 if (vr->type == VR_RANGE)
4136 tree new = test_for_singularity (cond_code, op0, op1, vr);
4138 if (new)
4140 if (dump_file)
4142 fprintf (dump_file, "Simplified relational ");
4143 print_generic_expr (dump_file, cond, 0);
4144 fprintf (dump_file, " into ");
4147 COND_EXPR_COND (stmt)
4148 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4149 update_stmt (stmt);
4151 if (dump_file)
4153 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4154 fprintf (dump_file, "\n");
4156 return;
4160 /* Try again after inverting the condition. We only deal
4161 with integral types here, so no need to worry about
4162 issues with inverting FP comparisons. */
4163 cond_code = invert_tree_comparison (cond_code, false);
4164 new = test_for_singularity (cond_code, op0, op1, vr);
4166 if (new)
4168 if (dump_file)
4170 fprintf (dump_file, "Simplified relational ");
4171 print_generic_expr (dump_file, cond, 0);
4172 fprintf (dump_file, " into ");
4175 COND_EXPR_COND (stmt)
4176 = build2 (NE_EXPR, boolean_type_node, op0, new);
4177 update_stmt (stmt);
4179 if (dump_file)
4181 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4182 fprintf (dump_file, "\n");
4184 return;
4191 /* Simplify STMT using ranges if possible. */
4193 void
4194 simplify_stmt_using_ranges (tree stmt)
4196 if (TREE_CODE (stmt) == MODIFY_EXPR)
4198 tree rhs = TREE_OPERAND (stmt, 1);
4199 enum tree_code rhs_code = TREE_CODE (rhs);
4201 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4202 and BIT_AND_EXPR respectively if the first operand is greater
4203 than zero and the second operand is an exact power of two. */
4204 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4205 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4206 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4207 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4209 /* Transform ABS (X) into X or -X as appropriate. */
4210 if (rhs_code == ABS_EXPR
4211 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4212 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4213 simplify_abs_using_ranges (stmt, rhs);
4215 else if (TREE_CODE (stmt) == COND_EXPR
4216 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4218 simplify_cond_using_ranges (stmt);
4222 /* Stack of dest,src equivalency pairs that need to be restored after
4223 each attempt to thread a block's incoming edge to an outgoing edge.
4225 A NULL entry is used to mark the end of pairs which need to be
4226 restored. */
4227 static VEC(tree,heap) *stack;
4229 /* A trivial wrapper so that we can present the generic jump
4230 threading code with a simple API for simplifying statements. */
4231 static tree
4232 simplify_stmt_for_jump_threading (tree stmt)
4234 /* We only use VRP information to simplify conditionals. This is
4235 overly conservative, but it's unclear if doing more would be
4236 worth the compile time cost. */
4237 if (TREE_CODE (stmt) != COND_EXPR)
4238 return NULL;
4240 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4243 /* Blocks which have more than one predecessor and more than
4244 one successor present jump threading opportunities. ie,
4245 when the block is reached from a specific predecessor, we
4246 may be able to determine which of the outgoing edges will
4247 be traversed. When this optimization applies, we are able
4248 to avoid conditionals at runtime and we may expose secondary
4249 optimization opportunities.
4251 This routine is effectively a driver for the generic jump
4252 threading code. It basically just presents the generic code
4253 with edges that may be suitable for jump threading.
4255 Unlike DOM, we do not iterate VRP if jump threading was successful.
4256 While iterating may expose new opportunities for VRP, it is expected
4257 those opportunities would be very limited and the compile time cost
4258 to expose those opportunities would be significant.
4260 As jump threading opportunities are discovered, they are registered
4261 for later realization. */
4263 static void
4264 identify_jump_threads (void)
4266 basic_block bb;
4267 tree dummy;
4269 /* Ugh. When substituting values earlier in this pass we can
4270 wipe the dominance information. So rebuild the dominator
4271 information as we need it within the jump threading code. */
4272 calculate_dominance_info (CDI_DOMINATORS);
4274 /* We do not allow VRP information to be used for jump threading
4275 across a back edge in the CFG. Otherwise it becomes too
4276 difficult to avoid eliminating loop exit tests. Of course
4277 EDGE_DFS_BACK is not accurate at this time so we have to
4278 recompute it. */
4279 mark_dfs_back_edges ();
4281 /* Allocate our unwinder stack to unwind any temporary equivalences
4282 that might be recorded. */
4283 stack = VEC_alloc (tree, heap, 20);
4285 /* To avoid lots of silly node creation, we create a single
4286 conditional and just modify it in-place when attempting to
4287 thread jumps. */
4288 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4289 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4291 /* Walk through all the blocks finding those which present a
4292 potential jump threading opportunity. We could set this up
4293 as a dominator walker and record data during the walk, but
4294 I doubt it's worth the effort for the classes of jump
4295 threading opportunities we are trying to identify at this
4296 point in compilation. */
4297 FOR_EACH_BB (bb)
4299 tree last, cond;
4301 /* If the generic jump threading code does not find this block
4302 interesting, then there is nothing to do. */
4303 if (! potentially_threadable_block (bb))
4304 continue;
4306 /* We only care about blocks ending in a COND_EXPR. While there
4307 may be some value in handling SWITCH_EXPR here, I doubt it's
4308 terribly important. */
4309 last = bsi_stmt (bsi_last (bb));
4310 if (TREE_CODE (last) != COND_EXPR)
4311 continue;
4313 /* We're basically looking for any kind of conditional with
4314 integral type arguments. */
4315 cond = COND_EXPR_COND (last);
4316 if ((TREE_CODE (cond) == SSA_NAME
4317 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4318 || (COMPARISON_CLASS_P (cond)
4319 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4320 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4321 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4322 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4323 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4325 edge_iterator ei;
4326 edge e;
4328 /* We've got a block with multiple predecessors and multiple
4329 successors which also ends in a suitable conditional. For
4330 each predecessor, see if we can thread it to a specific
4331 successor. */
4332 FOR_EACH_EDGE (e, ei, bb->preds)
4334 /* Do not thread across back edges or abnormal edges
4335 in the CFG. */
4336 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4337 continue;
4339 thread_across_edge (dummy, e, true,
4340 &stack,
4341 simplify_stmt_for_jump_threading);
4346 /* We do not actually update the CFG or SSA graphs at this point as
4347 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4348 handle ASSERT_EXPRs gracefully. */
4351 /* We identified all the jump threading opportunities earlier, but could
4352 not transform the CFG at that time. This routine transforms the
4353 CFG and arranges for the dominator tree to be rebuilt if necessary.
4355 Note the SSA graph update will occur during the normal TODO
4356 processing by the pass manager. */
4357 static void
4358 finalize_jump_threads (void)
4360 bool cfg_altered = false;
4361 cfg_altered = thread_through_all_blocks ();
4363 /* If we threaded jumps, then we need to recompute the dominance
4364 information, to safely do that we must clean up the CFG first. */
4365 if (cfg_altered)
4367 free_dominance_info (CDI_DOMINATORS);
4368 cleanup_tree_cfg ();
4369 calculate_dominance_info (CDI_DOMINATORS);
4371 VEC_free (tree, heap, stack);
4375 /* Traverse all the blocks folding conditionals with known ranges. */
4377 static void
4378 vrp_finalize (void)
4380 size_t i;
4381 prop_value_t *single_val_range;
4382 bool do_value_subst_p;
4384 if (dump_file)
4386 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4387 dump_all_value_ranges (dump_file);
4388 fprintf (dump_file, "\n");
4391 /* We may have ended with ranges that have exactly one value. Those
4392 values can be substituted as any other copy/const propagated
4393 value using substitute_and_fold. */
4394 single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
4395 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4397 do_value_subst_p = false;
4398 for (i = 0; i < num_ssa_names; i++)
4399 if (vr_value[i]
4400 && vr_value[i]->type == VR_RANGE
4401 && vr_value[i]->min == vr_value[i]->max)
4403 single_val_range[i].value = vr_value[i]->min;
4404 do_value_subst_p = true;
4407 if (!do_value_subst_p)
4409 /* We found no single-valued ranges, don't waste time trying to
4410 do single value substitution in substitute_and_fold. */
4411 free (single_val_range);
4412 single_val_range = NULL;
4415 substitute_and_fold (single_val_range, true);
4417 /* We must identify jump threading opportunities before we release
4418 the datastructures built by VRP. */
4419 identify_jump_threads ();
4421 /* Free allocated memory. */
4422 for (i = 0; i < num_ssa_names; i++)
4423 if (vr_value[i])
4425 BITMAP_FREE (vr_value[i]->equiv);
4426 free (vr_value[i]);
4429 free (single_val_range);
4430 free (vr_value);
4434 /* Main entry point to VRP (Value Range Propagation). This pass is
4435 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4436 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4437 Programming Language Design and Implementation, pp. 67-78, 1995.
4438 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4440 This is essentially an SSA-CCP pass modified to deal with ranges
4441 instead of constants.
4443 While propagating ranges, we may find that two or more SSA name
4444 have equivalent, though distinct ranges. For instance,
4446 1 x_9 = p_3->a;
4447 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4448 3 if (p_4 == q_2)
4449 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4450 5 endif
4451 6 if (q_2)
4453 In the code above, pointer p_5 has range [q_2, q_2], but from the
4454 code we can also determine that p_5 cannot be NULL and, if q_2 had
4455 a non-varying range, p_5's range should also be compatible with it.
4457 These equivalences are created by two expressions: ASSERT_EXPR and
4458 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4459 result of another assertion, then we can use the fact that p_5 and
4460 p_4 are equivalent when evaluating p_5's range.
4462 Together with value ranges, we also propagate these equivalences
4463 between names so that we can take advantage of information from
4464 multiple ranges when doing final replacement. Note that this
4465 equivalency relation is transitive but not symmetric.
4467 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4468 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4469 in contexts where that assertion does not hold (e.g., in line 6).
4471 TODO, the main difference between this pass and Patterson's is that
4472 we do not propagate edge probabilities. We only compute whether
4473 edges can be taken or not. That is, instead of having a spectrum
4474 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4475 DON'T KNOW. In the future, it may be worthwhile to propagate
4476 probabilities to aid branch prediction. */
4478 static void
4479 execute_vrp (void)
4481 insert_range_assertions ();
4483 current_loops = loop_optimizer_init (LOOPS_NORMAL);
4484 if (current_loops)
4485 scev_initialize (current_loops);
4487 vrp_initialize ();
4488 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4489 vrp_finalize ();
4491 if (current_loops)
4493 scev_finalize ();
4494 loop_optimizer_finalize (current_loops);
4495 current_loops = NULL;
4498 /* ASSERT_EXPRs must be removed before finalizing jump threads
4499 as finalizing jump threads calls the CFG cleanup code which
4500 does not properly handle ASSERT_EXPRs. */
4501 remove_range_assertions ();
4503 /* If we exposed any new variables, go ahead and put them into
4504 SSA form now, before we handle jump threading. This simplifies
4505 interactions between rewriting of _DECL nodes into SSA form
4506 and rewriting SSA_NAME nodes into SSA form after block
4507 duplication and CFG manipulation. */
4508 update_ssa (TODO_update_ssa);
4510 finalize_jump_threads ();
4514 static bool
4515 gate_vrp (void)
4517 return flag_tree_vrp != 0;
4520 struct tree_opt_pass pass_vrp =
4522 "vrp", /* name */
4523 gate_vrp, /* gate */
4524 execute_vrp, /* execute */
4525 NULL, /* sub */
4526 NULL, /* next */
4527 0, /* static_pass_number */
4528 TV_TREE_VRP, /* tv_id */
4529 PROP_ssa | PROP_alias, /* properties_required */
4530 0, /* properties_provided */
4531 0, /* properties_destroyed */
4532 0, /* todo_flags_start */
4533 TODO_cleanup_cfg
4534 | TODO_ggc_collect
4535 | TODO_verify_ssa
4536 | TODO_dump_func
4537 | TODO_update_ssa, /* todo_flags_finish */
4538 0 /* letter */