* Mainline merge as of 2006-02-16 (@111136).
[official-gcc.git] / gcc / basic-block.h
blob2a2e8de30dc421bff7cc1c8a09eb0125d58c21a2
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "function.h"
34 /* Head of register set linked list. */
35 typedef bitmap_head regset_head;
37 /* A pointer to a regset_head. */
38 typedef bitmap regset;
40 /* Allocate a register set with oballoc. */
41 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
43 /* Do any cleanup needed on a regset when it is no longer used. */
44 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
46 /* Initialize a new regset. */
47 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
49 /* Clear a register set by freeing up the linked list. */
50 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
52 /* Copy a register set to another register set. */
53 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
55 /* Compare two register sets. */
56 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
58 /* `and' a register set with a second register set. */
59 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
61 /* `and' the complement of a register set with a register set. */
62 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
64 /* Inclusive or a register set with a second register set. */
65 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
67 /* Exclusive or a register set with a second register set. */
68 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
70 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
71 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
72 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
74 /* Clear a single register in a register set. */
75 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
77 /* Set a single register in a register set. */
78 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
80 /* Return true if a register is set in a register set. */
81 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
83 /* Copy the hard registers in a register set to the hard register set. */
84 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
85 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
86 do { \
87 CLEAR_HARD_REG_SET (TO); \
88 reg_set_to_hard_reg_set (&TO, FROM); \
89 } while (0)
91 typedef bitmap_iterator reg_set_iterator;
93 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
94 register number and executing CODE for all registers that are set. */
95 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
96 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
98 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
99 REGNUM to the register number and executing CODE for all registers that are
100 set in the first regset and not set in the second. */
101 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
102 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
104 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
105 REGNUM to the register number and executing CODE for all registers that are
106 set in both regsets. */
107 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
108 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
110 /* Type we use to hold basic block counters. Should be at least
111 64bit. Although a counter cannot be negative, we use a signed
112 type, because erroneous negative counts can be generated when the
113 flow graph is manipulated by various optimizations. A signed type
114 makes those easy to detect. */
115 typedef HOST_WIDEST_INT gcov_type;
117 /* Control flow edge information. */
118 struct edge_def GTY(())
120 /* The two blocks at the ends of the edge. */
121 struct basic_block_def *src;
122 struct basic_block_def *dest;
124 /* Instructions queued on the edge. */
125 union edge_def_insns {
126 rtx GTY ((tag ("0"))) r;
127 tree GTY ((tag ("1"))) t;
128 } GTY ((desc ("ir_type ()"))) insns;
130 /* Auxiliary info specific to a pass. */
131 PTR GTY ((skip (""))) aux;
133 /* Location of any goto implicit in the edge, during tree-ssa. */
134 source_locus goto_locus;
136 int flags; /* see EDGE_* below */
137 int probability; /* biased by REG_BR_PROB_BASE */
138 gcov_type count; /* Expected number of executions calculated
139 in profile.c */
141 /* The index number corresponding to this edge in the edge vector
142 dest->preds. */
143 unsigned int dest_idx;
146 typedef struct edge_def *edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
150 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
151 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
152 label, or eh */
153 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
154 like an exception, or sibcall */
155 #define EDGE_EH 8 /* Exception throw */
156 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
157 #define EDGE_DFS_BACK 32 /* A backwards edge */
158 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
159 flow. */
160 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
161 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
162 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
163 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
164 predicate is nonzero. */
165 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
166 predicate is zero. */
167 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
168 valid during SSA-CCP. */
169 #define EDGE_CROSSING 8192 /* Edge crosses between hot
170 and cold sections, when we
171 do partitioning. */
172 #define EDGE_ALL_FLAGS 16383
174 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
176 /* Counter summary from the last set of coverage counts read by
177 profile.c. */
178 extern const struct gcov_ctr_summary *profile_info;
180 /* Declared in cfgloop.h. */
181 struct loop;
182 struct loops;
184 /* Declared in tree-flow.h. */
185 struct edge_prediction;
186 struct rtl_bb_info;
188 /* A basic block is a sequence of instructions with only entry and
189 only one exit. If any one of the instructions are executed, they
190 will all be executed, and in sequence from first to last.
192 There may be COND_EXEC instructions in the basic block. The
193 COND_EXEC *instructions* will be executed -- but if the condition
194 is false the conditionally executed *expressions* will of course
195 not be executed. We don't consider the conditionally executed
196 expression (which might have side-effects) to be in a separate
197 basic block because the program counter will always be at the same
198 location after the COND_EXEC instruction, regardless of whether the
199 condition is true or not.
201 Basic blocks need not start with a label nor end with a jump insn.
202 For example, a previous basic block may just "conditionally fall"
203 into the succeeding basic block, and the last basic block need not
204 end with a jump insn. Block 0 is a descendant of the entry block.
206 A basic block beginning with two labels cannot have notes between
207 the labels.
209 Data for jump tables are stored in jump_insns that occur in no
210 basic block even though these insns can follow or precede insns in
211 basic blocks. */
213 /* Basic block information indexed by block number. */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
216 /* Pointers to the first and last trees of the block. */
217 tree stmt_list;
219 /* The edges into and out of the block. */
220 VEC(edge,gc) *preds;
221 VEC(edge,gc) *succs;
223 /* Auxiliary info specific to a pass. */
224 PTR GTY ((skip (""))) aux;
226 /* Innermost loop containing the block. */
227 struct loop * GTY ((skip (""))) loop_father;
229 /* The dominance and postdominance information node. */
230 struct et_node * GTY ((skip (""))) dom[2];
232 /* Previous and next blocks in the chain. */
233 struct basic_block_def *prev_bb;
234 struct basic_block_def *next_bb;
236 union basic_block_il_dependent {
237 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
238 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
240 /* Chain of PHI nodes for this block. */
241 tree phi_nodes;
243 /* A list of predictions. */
244 struct edge_prediction *predictions;
246 /* Expected number of executions: calculated in profile.c. */
247 gcov_type count;
249 /* The index of this block. */
250 int index;
252 /* The loop depth of this block. */
253 int loop_depth;
255 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
256 int frequency;
258 /* Various flags. See BB_* below. */
259 int flags;
262 struct rtl_bb_info GTY(())
264 /* The first and last insns of the block. */
265 rtx head_;
266 rtx end_;
268 /* The registers that are live on entry to this block. */
269 bitmap GTY ((skip (""))) global_live_at_start;
271 /* The registers that are live on exit from this block. */
272 bitmap GTY ((skip (""))) global_live_at_end;
274 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
275 and after the block. */
276 rtx header;
277 rtx footer;
279 /* This field is used by the bb-reorder and tracer passes. */
280 int visited;
283 typedef struct basic_block_def *basic_block;
285 DEF_VEC_P(basic_block);
286 DEF_VEC_ALLOC_P(basic_block,gc);
287 DEF_VEC_ALLOC_P(basic_block,heap);
289 #define BB_FREQ_MAX 10000
291 /* Masks for basic_block.flags.
293 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
294 the compilation, so they are never cleared.
296 All other flags may be cleared by clear_bb_flags(). It is generally
297 a bad idea to rely on any flags being up-to-date. */
299 enum bb_flags
302 /* Set if insns in BB have are modified. Used for updating liveness info. */
303 BB_DIRTY = 1,
305 /* Only set on blocks that have just been created by create_bb. */
306 BB_NEW = 2,
308 /* Set by find_unreachable_blocks. Do not rely on this being set in any
309 pass. */
310 BB_REACHABLE = 4,
312 /* Set for blocks in an irreducible loop by loop analysis. */
313 BB_IRREDUCIBLE_LOOP = 8,
315 /* Set on blocks that may actually not be single-entry single-exit block. */
316 BB_SUPERBLOCK = 16,
318 /* Set on basic blocks that the scheduler should not touch. This is used
319 by SMS to prevent other schedulers from messing with the loop schedule. */
320 BB_DISABLE_SCHEDULE = 32,
322 /* Set on blocks that should be put in a hot section. */
323 BB_HOT_PARTITION = 64,
325 /* Set on blocks that should be put in a cold section. */
326 BB_COLD_PARTITION = 128,
328 /* Set on block that was duplicated. */
329 BB_DUPLICATED = 256,
331 /* Set on blocks that are in RTL format. */
332 BB_RTL = 1024,
334 /* Set on blocks that are forwarder blocks.
335 Only used in cfgcleanup.c. */
336 BB_FORWARDER_BLOCK = 2048,
338 /* Set on blocks that cannot be threaded through.
339 Only used in cfgcleanup.c. */
340 BB_NONTHREADABLE_BLOCK = 4096
343 /* Dummy flag for convenience in the hot/cold partitioning code. */
344 #define BB_UNPARTITIONED 0
346 /* Partitions, to be used when partitioning hot and cold basic blocks into
347 separate sections. */
348 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
349 #define BB_SET_PARTITION(bb, part) do { \
350 basic_block bb_ = (bb); \
351 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
352 | (part)); \
353 } while (0)
355 #define BB_COPY_PARTITION(dstbb, srcbb) \
356 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
358 /* A structure to group all the per-function control flow graph data.
359 The x_* prefixing is necessary because otherwise references to the
360 fields of this struct are interpreted as the defines for backward
361 source compatibility following the definition of this struct. */
362 struct control_flow_graph GTY(())
364 /* Block pointers for the exit and entry of a function.
365 These are always the head and tail of the basic block list. */
366 basic_block x_entry_block_ptr;
367 basic_block x_exit_block_ptr;
369 /* Index by basic block number, get basic block struct info. */
370 VEC(basic_block,gc) *x_basic_block_info;
372 /* Number of basic blocks in this flow graph. */
373 int x_n_basic_blocks;
375 /* Number of edges in this flow graph. */
376 int x_n_edges;
378 /* The first free basic block number. */
379 int x_last_basic_block;
381 /* Mapping of labels to their associated blocks. At present
382 only used for the tree CFG. */
383 VEC(basic_block,gc) *x_label_to_block_map;
385 enum profile_status {
386 PROFILE_ABSENT,
387 PROFILE_GUESSED,
388 PROFILE_READ
389 } x_profile_status;
392 /* Defines for accessing the fields of the CFG structure for function FN. */
393 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
394 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
395 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
396 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
397 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
398 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
399 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
401 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
402 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
404 /* Defines for textual backward source compatibility. */
405 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
406 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
407 #define basic_block_info (cfun->cfg->x_basic_block_info)
408 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
409 #define n_edges (cfun->cfg->x_n_edges)
410 #define last_basic_block (cfun->cfg->x_last_basic_block)
411 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
412 #define profile_status (cfun->cfg->x_profile_status)
414 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
415 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
417 /* TRUE if we should re-run loop discovery after threading jumps, FALSE
418 otherwise. */
419 extern bool rediscover_loops_after_threading;
421 /* For iterating over basic blocks. */
422 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
423 for (BB = FROM; BB != TO; BB = BB->DIR)
425 #define FOR_EACH_BB_FN(BB, FN) \
426 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
428 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
430 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
431 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
433 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
435 /* For iterating over insns in basic block. */
436 #define FOR_BB_INSNS(BB, INSN) \
437 for ((INSN) = BB_HEAD (BB); \
438 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
439 (INSN) = NEXT_INSN (INSN))
441 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
442 for ((INSN) = BB_END (BB); \
443 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
444 (INSN) = PREV_INSN (INSN))
446 /* Cycles through _all_ basic blocks, even the fake ones (entry and
447 exit block). */
449 #define FOR_ALL_BB(BB) \
450 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
452 #define FOR_ALL_BB_FN(BB, FN) \
453 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
455 extern bitmap_obstack reg_obstack;
457 /* Indexed by n, gives number of basic block that (REG n) is used in.
458 If the value is REG_BLOCK_GLOBAL (-2),
459 it means (REG n) is used in more than one basic block.
460 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
461 This information remains valid for the rest of the compilation
462 of the current function; it is used to control register allocation. */
464 #define REG_BLOCK_UNKNOWN -1
465 #define REG_BLOCK_GLOBAL -2
467 #define REG_BASIC_BLOCK(N) (VARRAY_REG (reg_n_info, N)->basic_block)
469 /* Stuff for recording basic block info. */
471 #define BB_HEAD(B) (B)->il.rtl->head_
472 #define BB_END(B) (B)->il.rtl->end_
474 /* Special block numbers [markers] for entry and exit. */
475 #define ENTRY_BLOCK (0)
476 #define EXIT_BLOCK (1)
478 /* The two blocks that are always in the cfg. */
479 #define NUM_FIXED_BLOCKS (2)
482 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
483 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
485 extern void compute_bb_for_insn (void);
486 extern void free_bb_for_insn (void);
487 extern void update_bb_for_insn (basic_block);
489 extern void free_basic_block_vars (void);
491 extern void insert_insn_on_edge (rtx, edge);
492 bool safe_insert_insn_on_edge (rtx, edge);
494 extern void commit_edge_insertions (void);
495 extern void commit_edge_insertions_watch_calls (void);
497 extern void remove_fake_edges (void);
498 extern void remove_fake_exit_edges (void);
499 extern void add_noreturn_fake_exit_edges (void);
500 extern void connect_infinite_loops_to_exit (void);
501 extern edge unchecked_make_edge (basic_block, basic_block, int);
502 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
503 extern edge make_edge (basic_block, basic_block, int);
504 extern edge make_single_succ_edge (basic_block, basic_block, int);
505 extern void remove_edge (edge);
506 extern void redirect_edge_succ (edge, basic_block);
507 extern edge redirect_edge_succ_nodup (edge, basic_block);
508 extern void redirect_edge_pred (edge, basic_block);
509 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
510 extern void clear_bb_flags (void);
511 extern int post_order_compute (int *, bool);
512 extern int pre_and_rev_post_order_compute (int *, int *, bool);
513 extern int dfs_enumerate_from (basic_block, int,
514 bool (*)(basic_block, void *),
515 basic_block *, int, void *);
516 extern void compute_dominance_frontiers (bitmap *);
517 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
518 extern void dump_edge_info (FILE *, edge, int);
519 extern void brief_dump_cfg (FILE *);
520 extern void clear_edges (void);
521 extern rtx first_insn_after_basic_block_note (basic_block);
522 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
523 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
524 gcov_type);
526 /* Structure to group all of the information to process IF-THEN and
527 IF-THEN-ELSE blocks for the conditional execution support. This
528 needs to be in a public file in case the IFCVT macros call
529 functions passing the ce_if_block data structure. */
531 typedef struct ce_if_block
533 basic_block test_bb; /* First test block. */
534 basic_block then_bb; /* THEN block. */
535 basic_block else_bb; /* ELSE block or NULL. */
536 basic_block join_bb; /* Join THEN/ELSE blocks. */
537 basic_block last_test_bb; /* Last bb to hold && or || tests. */
538 int num_multiple_test_blocks; /* # of && and || basic blocks. */
539 int num_and_and_blocks; /* # of && blocks. */
540 int num_or_or_blocks; /* # of || blocks. */
541 int num_multiple_test_insns; /* # of insns in && and || blocks. */
542 int and_and_p; /* Complex test is &&. */
543 int num_then_insns; /* # of insns in THEN block. */
544 int num_else_insns; /* # of insns in ELSE block. */
545 int pass; /* Pass number. */
547 #ifdef IFCVT_EXTRA_FIELDS
548 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
549 #endif
551 } ce_if_block_t;
553 /* This structure maintains an edge list vector. */
554 struct edge_list
556 int num_blocks;
557 int num_edges;
558 edge *index_to_edge;
561 /* The base value for branch probability notes and edge probabilities. */
562 #define REG_BR_PROB_BASE 10000
564 /* This is the value which indicates no edge is present. */
565 #define EDGE_INDEX_NO_EDGE -1
567 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
568 if there is no edge between the 2 basic blocks. */
569 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
571 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
572 block which is either the pred or succ end of the indexed edge. */
573 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
574 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
576 /* INDEX_EDGE returns a pointer to the edge. */
577 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
579 /* Number of edges in the compressed edge list. */
580 #define NUM_EDGES(el) ((el)->num_edges)
582 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
583 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
584 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
586 /* BB is assumed to contain conditional jump. Return the branch edge. */
587 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
588 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
590 /* Return expected execution frequency of the edge E. */
591 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
592 * (e)->probability \
593 + REG_BR_PROB_BASE / 2) \
594 / REG_BR_PROB_BASE)
596 /* Return nonzero if edge is critical. */
597 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
598 && EDGE_COUNT ((e)->dest->preds) >= 2)
600 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
601 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
602 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
603 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
605 /* Returns true if BB has precisely one successor. */
607 static inline bool
608 single_succ_p (basic_block bb)
610 return EDGE_COUNT (bb->succs) == 1;
613 /* Returns true if BB has precisely one predecessor. */
615 static inline bool
616 single_pred_p (basic_block bb)
618 return EDGE_COUNT (bb->preds) == 1;
621 /* Returns the single successor edge of basic block BB. Aborts if
622 BB does not have exactly one successor. */
624 static inline edge
625 single_succ_edge (basic_block bb)
627 gcc_assert (single_succ_p (bb));
628 return EDGE_SUCC (bb, 0);
631 /* Returns the single predecessor edge of basic block BB. Aborts
632 if BB does not have exactly one predecessor. */
634 static inline edge
635 single_pred_edge (basic_block bb)
637 gcc_assert (single_pred_p (bb));
638 return EDGE_PRED (bb, 0);
641 /* Returns the single successor block of basic block BB. Aborts
642 if BB does not have exactly one successor. */
644 static inline basic_block
645 single_succ (basic_block bb)
647 return single_succ_edge (bb)->dest;
650 /* Returns the single predecessor block of basic block BB. Aborts
651 if BB does not have exactly one predecessor.*/
653 static inline basic_block
654 single_pred (basic_block bb)
656 return single_pred_edge (bb)->src;
659 /* Iterator object for edges. */
661 typedef struct {
662 unsigned index;
663 VEC(edge,gc) **container;
664 } edge_iterator;
666 static inline VEC(edge,gc) *
667 ei_container (edge_iterator i)
669 gcc_assert (i.container);
670 return *i.container;
673 #define ei_start(iter) ei_start_1 (&(iter))
674 #define ei_last(iter) ei_last_1 (&(iter))
676 /* Return an iterator pointing to the start of an edge vector. */
677 static inline edge_iterator
678 ei_start_1 (VEC(edge,gc) **ev)
680 edge_iterator i;
682 i.index = 0;
683 i.container = ev;
685 return i;
688 /* Return an iterator pointing to the last element of an edge
689 vector. */
690 static inline edge_iterator
691 ei_last_1 (VEC(edge,gc) **ev)
693 edge_iterator i;
695 i.index = EDGE_COUNT (*ev) - 1;
696 i.container = ev;
698 return i;
701 /* Is the iterator `i' at the end of the sequence? */
702 static inline bool
703 ei_end_p (edge_iterator i)
705 return (i.index == EDGE_COUNT (ei_container (i)));
708 /* Is the iterator `i' at one position before the end of the
709 sequence? */
710 static inline bool
711 ei_one_before_end_p (edge_iterator i)
713 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
716 /* Advance the iterator to the next element. */
717 static inline void
718 ei_next (edge_iterator *i)
720 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
721 i->index++;
724 /* Move the iterator to the previous element. */
725 static inline void
726 ei_prev (edge_iterator *i)
728 gcc_assert (i->index > 0);
729 i->index--;
732 /* Return the edge pointed to by the iterator `i'. */
733 static inline edge
734 ei_edge (edge_iterator i)
736 return EDGE_I (ei_container (i), i.index);
739 /* Return an edge pointed to by the iterator. Do it safely so that
740 NULL is returned when the iterator is pointing at the end of the
741 sequence. */
742 static inline edge
743 ei_safe_edge (edge_iterator i)
745 return !ei_end_p (i) ? ei_edge (i) : NULL;
748 /* Return 1 if we should continue to iterate. Return 0 otherwise.
749 *Edge P is set to the next edge if we are to continue to iterate
750 and NULL otherwise. */
752 static inline bool
753 ei_cond (edge_iterator ei, edge *p)
755 if (!ei_end_p (ei))
757 *p = ei_edge (ei);
758 return 1;
760 else
762 *p = NULL;
763 return 0;
767 /* This macro serves as a convenient way to iterate each edge in a
768 vector of predecessor or successor edges. It must not be used when
769 an element might be removed during the traversal, otherwise
770 elements will be missed. Instead, use a for-loop like that shown
771 in the following pseudo-code:
773 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
775 IF (e != taken_edge)
776 remove_edge (e);
777 ELSE
778 ei_next (&ei);
782 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
783 for ((ITER) = ei_start ((EDGE_VEC)); \
784 ei_cond ((ITER), &(EDGE)); \
785 ei_next (&(ITER)))
787 struct edge_list * create_edge_list (void);
788 void free_edge_list (struct edge_list *);
789 void print_edge_list (FILE *, struct edge_list *);
790 void verify_edge_list (FILE *, struct edge_list *);
791 int find_edge_index (struct edge_list *, basic_block, basic_block);
792 edge find_edge (basic_block, basic_block);
795 enum update_life_extent
797 UPDATE_LIFE_LOCAL = 0,
798 UPDATE_LIFE_GLOBAL = 1,
799 UPDATE_LIFE_GLOBAL_RM_NOTES = 2
802 /* Flags for life_analysis and update_life_info. */
804 #define PROP_DEATH_NOTES 1 /* Create DEAD and UNUSED notes. */
805 #define PROP_LOG_LINKS 2 /* Create LOG_LINKS. */
806 #define PROP_REG_INFO 4 /* Update regs_ever_live et al. */
807 #define PROP_KILL_DEAD_CODE 8 /* Remove dead code. */
808 #define PROP_SCAN_DEAD_CODE 16 /* Scan for dead code. */
809 #define PROP_ALLOW_CFG_CHANGES 32 /* Allow the CFG to be changed
810 by dead code removal. */
811 #define PROP_AUTOINC 64 /* Create autoinc mem references. */
812 #define PROP_SCAN_DEAD_STORES 128 /* Scan for dead code. */
813 #define PROP_ASM_SCAN 256 /* Internal flag used within flow.c
814 to flag analysis of asms. */
815 #define PROP_DEAD_INSN 1024 /* Internal flag used within flow.c
816 to flag analysis of dead insn. */
817 #define PROP_POST_REGSTACK 2048 /* We run after reg-stack and need
818 to preserve REG_DEAD notes for
819 stack regs. */
820 #define PROP_FINAL (PROP_DEATH_NOTES | PROP_LOG_LINKS \
821 | PROP_REG_INFO | PROP_KILL_DEAD_CODE \
822 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
823 | PROP_ALLOW_CFG_CHANGES \
824 | PROP_SCAN_DEAD_STORES)
825 #define PROP_POSTRELOAD (PROP_DEATH_NOTES \
826 | PROP_KILL_DEAD_CODE \
827 | PROP_SCAN_DEAD_CODE \
828 | PROP_SCAN_DEAD_STORES)
830 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
831 except for edge forwarding */
832 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
833 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
834 to care REG_DEAD notes. */
835 #define CLEANUP_PRE_LOOP 8 /* Take care to preserve syntactic loop
836 notes. */
837 #define CLEANUP_UPDATE_LIFE 16 /* Keep life information up to date. */
838 #define CLEANUP_THREADING 32 /* Do jump threading. */
839 #define CLEANUP_NO_INSN_DEL 64 /* Do not try to delete trivially dead
840 insns. */
841 #define CLEANUP_CFGLAYOUT 128 /* Do cleanup in cfglayout mode. */
842 #define CLEANUP_LOG_LINKS 256 /* Update log links. */
844 /* The following are ORed in on top of the CLEANUP* flags in calls to
845 struct_equiv_block_eq. */
846 #define STRUCT_EQUIV_START 512 /* Initializes the search range. */
847 #define STRUCT_EQUIV_RERUN 1024 /* Rerun to find register use in
848 found equivalence. */
849 #define STRUCT_EQUIV_FINAL 2048 /* Make any changes necessary to get
850 actual equivalence. */
851 #define STRUCT_EQUIV_NEED_FULL_BLOCK 4096 /* struct_equiv_block_eq is required
852 to match only full blocks */
853 #define STRUCT_EQUIV_MATCH_JUMPS 8192 /* Also include the jumps at the end of the block in the comparison. */
855 extern void life_analysis (int);
856 extern int update_life_info (sbitmap, enum update_life_extent, int);
857 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
858 extern int count_or_remove_death_notes (sbitmap, int);
859 extern int propagate_block (basic_block, regset, regset, regset, int);
861 struct propagate_block_info;
862 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
863 extern struct propagate_block_info *init_propagate_block_info
864 (basic_block, regset, regset, regset, int);
865 extern void free_propagate_block_info (struct propagate_block_info *);
867 /* In lcm.c */
868 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
869 sbitmap *, sbitmap *, sbitmap **,
870 sbitmap **);
871 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
872 sbitmap *, sbitmap *,
873 sbitmap *, sbitmap **,
874 sbitmap **);
875 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
877 /* In predict.c */
878 extern void estimate_probability (struct loops *);
879 extern void expected_value_to_br_prob (void);
880 extern bool maybe_hot_bb_p (basic_block);
881 extern bool probably_cold_bb_p (basic_block);
882 extern bool probably_never_executed_bb_p (basic_block);
883 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
884 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
885 extern void tree_predict_edge (edge, enum br_predictor, int);
886 extern void rtl_predict_edge (edge, enum br_predictor, int);
887 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
888 extern void guess_outgoing_edge_probabilities (basic_block);
889 extern void remove_predictions_associated_with_edge (edge);
891 /* In flow.c */
892 extern void init_flow (void);
893 extern void debug_bb (basic_block);
894 extern basic_block debug_bb_n (int);
895 extern void dump_regset (regset, FILE *);
896 extern void debug_regset (regset);
897 extern void allocate_reg_life_data (void);
898 extern void expunge_block (basic_block);
899 extern void link_block (basic_block, basic_block);
900 extern void unlink_block (basic_block);
901 extern void compact_blocks (void);
902 extern basic_block alloc_block (void);
903 extern void find_unreachable_blocks (void);
904 extern int delete_noop_moves (void);
905 extern basic_block force_nonfallthru (edge);
906 extern rtx block_label (basic_block);
907 extern bool forwarder_block_p (basic_block);
908 extern bool purge_all_dead_edges (void);
909 extern bool purge_dead_edges (basic_block);
910 extern void find_many_sub_basic_blocks (sbitmap);
911 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
912 extern bool can_fallthru (basic_block, basic_block);
913 extern bool could_fall_through (basic_block, basic_block);
914 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
915 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
916 extern void alloc_aux_for_block (basic_block, int);
917 extern void alloc_aux_for_blocks (int);
918 extern void clear_aux_for_blocks (void);
919 extern void free_aux_for_blocks (void);
920 extern void alloc_aux_for_edge (edge, int);
921 extern void alloc_aux_for_edges (int);
922 extern void clear_aux_for_edges (void);
923 extern void free_aux_for_edges (void);
924 extern void find_basic_blocks (rtx);
925 extern bool cleanup_cfg (int);
926 extern bool delete_unreachable_blocks (void);
927 extern bool merge_seq_blocks (void);
929 typedef struct conflict_graph_def *conflict_graph;
931 /* Callback function when enumerating conflicts. The arguments are
932 the smaller and larger regno in the conflict. Returns zero if
933 enumeration is to continue, nonzero to halt enumeration. */
934 typedef int (*conflict_graph_enum_fn) (int, int, void *);
937 /* Prototypes of operations on conflict graphs. */
939 extern conflict_graph conflict_graph_new
940 (int);
941 extern void conflict_graph_delete (conflict_graph);
942 extern int conflict_graph_add (conflict_graph, int, int);
943 extern int conflict_graph_conflict_p (conflict_graph, int, int);
944 extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
945 void *);
946 extern void conflict_graph_merge_regs (conflict_graph, int, int);
947 extern void conflict_graph_print (conflict_graph, FILE*);
948 extern bool mark_dfs_back_edges (void);
949 extern void set_edge_can_fallthru_flag (void);
950 extern void update_br_prob_note (basic_block);
951 extern void fixup_abnormal_edges (void);
952 extern bool inside_basic_block_p (rtx);
953 extern bool control_flow_insn_p (rtx);
955 /* In bb-reorder.c */
956 extern void reorder_basic_blocks (unsigned int);
958 /* In dominance.c */
960 enum cdi_direction
962 CDI_DOMINATORS,
963 CDI_POST_DOMINATORS
966 enum dom_state
968 DOM_NONE, /* Not computed at all. */
969 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
970 DOM_OK /* Everything is ok. */
973 extern enum dom_state dom_computed[2];
975 extern bool dom_info_available_p (enum cdi_direction);
976 extern void calculate_dominance_info (enum cdi_direction);
977 extern void free_dominance_info (enum cdi_direction);
978 extern basic_block nearest_common_dominator (enum cdi_direction,
979 basic_block, basic_block);
980 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
981 bitmap);
982 extern void set_immediate_dominator (enum cdi_direction, basic_block,
983 basic_block);
984 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
985 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
986 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
987 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
988 unsigned, basic_block *);
989 extern void add_to_dominance_info (enum cdi_direction, basic_block);
990 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
991 basic_block recount_dominator (enum cdi_direction, basic_block);
992 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
993 basic_block);
994 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
995 extern void verify_dominators (enum cdi_direction);
996 extern basic_block first_dom_son (enum cdi_direction, basic_block);
997 extern basic_block next_dom_son (enum cdi_direction, basic_block);
998 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
999 extern void break_superblocks (void);
1000 extern void check_bb_profile (basic_block, FILE *);
1001 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
1002 extern void init_rtl_bb_info (basic_block);
1004 extern void initialize_original_copy_tables (void);
1005 extern void free_original_copy_tables (void);
1006 extern void set_bb_original (basic_block, basic_block);
1007 extern basic_block get_bb_original (basic_block);
1008 extern void set_bb_copy (basic_block, basic_block);
1009 extern basic_block get_bb_copy (basic_block);
1011 #include "cfghooks.h"
1013 /* In struct-equiv.c */
1015 /* Constants used to size arrays in struct equiv_info (currently only one).
1016 When these limits are exceeded, struct_equiv returns zero.
1017 The maximum number of pseudo registers that are different in the two blocks,
1018 but appear in equivalent places and are dead at the end (or where one of
1019 a pair is dead at the end). */
1020 #define STRUCT_EQUIV_MAX_LOCAL 16
1021 /* The maximum number of references to an input register that struct_equiv
1022 can handle. */
1024 /* Structure used to track state during struct_equiv that can be rolled
1025 back when we find we can't match an insn, or if we want to match part
1026 of it in a different way.
1027 This information pertains to the pair of partial blocks that has been
1028 matched so far. Since this pair is structurally equivalent, this is
1029 conceptually just one partial block expressed in two potentially
1030 different ways. */
1031 struct struct_equiv_checkpoint
1033 int ninsns; /* Insns are matched so far. */
1034 int local_count; /* Number of block-local registers. */
1035 int input_count; /* Number of inputs to the block. */
1037 /* X_START and Y_START are the first insns (in insn stream order)
1038 of the partial blocks that have been considered for matching so far.
1039 Since we are scanning backwards, they are also the instructions that
1040 are currently considered - or the last ones that have been considered -
1041 for matching (Unless we tracked back to these because a preceding
1042 instruction failed to match). */
1043 rtx x_start, y_start;
1045 /* INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
1046 during the current pass; we keep X_INPUT / Y_INPUT around between passes
1047 so that we can match REG_EQUAL / REG_EQUIV notes referring to these. */
1048 bool input_valid;
1050 /* Some information would be expensive to exactly checkpoint, so we
1051 merely increment VERSION any time information about local
1052 registers, inputs and/or register liveness changes. When backtracking,
1053 it is decremented for changes that can be undone, and if a discrepancy
1054 remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
1055 that a new pass should be made over the entire block match to get
1056 accurate register information. */
1057 int version;
1060 /* A struct equiv_info is used to pass information to struct_equiv and
1061 to gather state while two basic blocks are checked for structural
1062 equivalence. */
1064 struct equiv_info
1066 /* Fields set up by the caller to struct_equiv_block_eq */
1068 basic_block x_block, y_block; /* The two blocks being matched. */
1070 /* MODE carries the mode bits from cleanup_cfg if we are called from
1071 try_crossjump_to_edge, and additionally it carries the
1072 STRUCT_EQUIV_* bits described above. */
1073 int mode;
1075 /* INPUT_COST is the cost that adding an extra input to the matched blocks
1076 is supposed to have, and is taken into account when considering if the
1077 matched sequence should be extended backwards. input_cost < 0 means
1078 don't accept any inputs at all. */
1079 int input_cost;
1082 /* Fields to track state inside of struct_equiv_block_eq. Some of these
1083 are also outputs. */
1085 /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1086 is used as an input parameter, i.e. where different registers are used
1087 as sources. This is only used for a register that is live at the end
1088 of the blocks, or in some identical code at the end of the blocks;
1089 Inputs that are dead at the end go into X_LOCAL / Y_LOCAL. */
1090 rtx x_input, y_input;
1091 /* When a previous pass has identified a valid input, INPUT_REG is set
1092 by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1093 for the input. */
1094 rtx input_reg;
1096 /* COMMON_LIVE keeps track of the registers which are currently live
1097 (as we scan backwards from the end) and have the same numbers in both
1098 blocks. N.B. a register that is in common_live is unsuitable to become
1099 a local reg. */
1100 regset common_live;
1101 /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1102 local to one of the blocks; these registers must not be accepted as
1103 identical when encountered in both blocks. */
1104 regset x_local_live, y_local_live;
1106 /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1107 being used, to avoid having to backtrack in the next pass, so that we
1108 get accurate life info for this insn then. For each such insn,
1109 the bit with the number corresponding to the CUR.NINSNS value at the
1110 time of scanning is set. */
1111 bitmap equiv_used;
1113 /* Current state that can be saved & restored easily. */
1114 struct struct_equiv_checkpoint cur;
1115 /* BEST_MATCH is used to store the best match so far, weighing the
1116 cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1117 CUR.INPUT_COUNT * INPUT_COST of setting up the inputs. */
1118 struct struct_equiv_checkpoint best_match;
1119 /* If a checkpoint restore failed, or an input conflict newly arises,
1120 NEED_RERUN is set. This has to be tested by the caller to re-run
1121 the comparison if the match appears otherwise sound. The state kept in
1122 x_start, y_start, equiv_used and check_input_conflict ensures that
1123 we won't loop indefinitely. */
1124 bool need_rerun;
1125 /* If there is indication of an input conflict at the end,
1126 CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1127 for each insn in the next pass. This is needed so that we won't discard
1128 a partial match if there is a longer match that has to be abandoned due
1129 to an input conflict. */
1130 bool check_input_conflict;
1131 /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1132 have passed a point where there were multiple dying inputs. This helps
1133 us decide if we should set check_input_conflict for the next pass. */
1134 bool had_input_conflict;
1136 /* LIVE_UPDATE controls if we want to change any life info at all. We
1137 set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1138 pass so that we don't introduce new registers just for the note; if we
1139 can't match the notes without the current register information, we drop
1140 them. */
1141 bool live_update;
1143 /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1144 that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1145 to the next free entry. */
1146 rtx x_local[STRUCT_EQUIV_MAX_LOCAL], y_local[STRUCT_EQUIV_MAX_LOCAL];
1147 /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1148 was a source operand (including STRICT_LOW_PART) for the last invocation
1149 of struct_equiv mentioning it, zero if it was a destination-only operand.
1150 Since we are scanning backwards, this means the register is input/local
1151 for the (partial) block scanned so far. */
1152 bool local_rvalue[STRUCT_EQUIV_MAX_LOCAL];
1155 /* Additional fields that are computed for the convenience of the caller. */
1157 /* DYING_INPUTS is set to the number of local registers that turn out
1158 to be inputs to the (possibly partial) block. */
1159 int dying_inputs;
1160 /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1161 that are being compared. A final jump insn will not be included. */
1162 rtx x_end, y_end;
1164 /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1165 Y_LABEL in Y_BLOCK. */
1166 rtx x_label, y_label;
1170 extern bool insns_match_p (rtx, rtx, struct equiv_info *);
1171 extern int struct_equiv_block_eq (int, struct equiv_info *);
1172 extern bool struct_equiv_init (int, struct equiv_info *);
1173 extern bool rtx_equiv_p (rtx *, rtx, int, struct equiv_info *);
1175 /* In cfgrtl.c */
1176 extern bool condjump_equiv_p (struct equiv_info *, bool);
1178 #endif /* GCC_BASIC_BLOCK_H */