PR middle-end/84040
[official-gcc.git] / gcc / sched-deps.c
blob2d0199d5837740bcc4ac84c65e973cd0972accf3
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "memmodel.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "insn-attr.h"
37 #include "cfgbuild.h"
38 #include "sched-int.h"
39 #include "params.h"
40 #include "cselib.h"
42 #ifdef INSN_SCHEDULING
44 /* Holds current parameters for the dependency analyzer. */
45 struct sched_deps_info_def *sched_deps_info;
47 /* The data is specific to the Haifa scheduler. */
48 vec<haifa_deps_insn_data_def>
49 h_d_i_d = vNULL;
51 /* Return the major type present in the DS. */
52 enum reg_note
53 ds_to_dk (ds_t ds)
55 if (ds & DEP_TRUE)
56 return REG_DEP_TRUE;
58 if (ds & DEP_OUTPUT)
59 return REG_DEP_OUTPUT;
61 if (ds & DEP_CONTROL)
62 return REG_DEP_CONTROL;
64 gcc_assert (ds & DEP_ANTI);
66 return REG_DEP_ANTI;
69 /* Return equivalent dep_status. */
70 ds_t
71 dk_to_ds (enum reg_note dk)
73 switch (dk)
75 case REG_DEP_TRUE:
76 return DEP_TRUE;
78 case REG_DEP_OUTPUT:
79 return DEP_OUTPUT;
81 case REG_DEP_CONTROL:
82 return DEP_CONTROL;
84 default:
85 gcc_assert (dk == REG_DEP_ANTI);
86 return DEP_ANTI;
90 /* Functions to operate with dependence information container - dep_t. */
92 /* Init DEP with the arguments. */
93 void
94 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
96 DEP_PRO (dep) = pro;
97 DEP_CON (dep) = con;
98 DEP_TYPE (dep) = type;
99 DEP_STATUS (dep) = ds;
100 DEP_COST (dep) = UNKNOWN_DEP_COST;
101 DEP_NONREG (dep) = 0;
102 DEP_MULTIPLE (dep) = 0;
103 DEP_REPLACE (dep) = NULL;
106 /* Init DEP with the arguments.
107 While most of the scheduler (including targets) only need the major type
108 of the dependency, it is convenient to hide full dep_status from them. */
109 void
110 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
112 ds_t ds;
114 if ((current_sched_info->flags & USE_DEPS_LIST))
115 ds = dk_to_ds (kind);
116 else
117 ds = 0;
119 init_dep_1 (dep, pro, con, kind, ds);
122 /* Make a copy of FROM in TO. */
123 static void
124 copy_dep (dep_t to, dep_t from)
126 memcpy (to, from, sizeof (*to));
129 static void dump_ds (FILE *, ds_t);
131 /* Define flags for dump_dep (). */
133 /* Dump producer of the dependence. */
134 #define DUMP_DEP_PRO (2)
136 /* Dump consumer of the dependence. */
137 #define DUMP_DEP_CON (4)
139 /* Dump type of the dependence. */
140 #define DUMP_DEP_TYPE (8)
142 /* Dump status of the dependence. */
143 #define DUMP_DEP_STATUS (16)
145 /* Dump all information about the dependence. */
146 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
147 |DUMP_DEP_STATUS)
149 /* Dump DEP to DUMP.
150 FLAGS is a bit mask specifying what information about DEP needs
151 to be printed.
152 If FLAGS has the very first bit set, then dump all information about DEP
153 and propagate this bit into the callee dump functions. */
154 static void
155 dump_dep (FILE *dump, dep_t dep, int flags)
157 if (flags & 1)
158 flags |= DUMP_DEP_ALL;
160 fprintf (dump, "<");
162 if (flags & DUMP_DEP_PRO)
163 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
165 if (flags & DUMP_DEP_CON)
166 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
168 if (flags & DUMP_DEP_TYPE)
170 char t;
171 enum reg_note type = DEP_TYPE (dep);
173 switch (type)
175 case REG_DEP_TRUE:
176 t = 't';
177 break;
179 case REG_DEP_OUTPUT:
180 t = 'o';
181 break;
183 case REG_DEP_CONTROL:
184 t = 'c';
185 break;
187 case REG_DEP_ANTI:
188 t = 'a';
189 break;
191 default:
192 gcc_unreachable ();
193 break;
196 fprintf (dump, "%c; ", t);
199 if (flags & DUMP_DEP_STATUS)
201 if (current_sched_info->flags & USE_DEPS_LIST)
202 dump_ds (dump, DEP_STATUS (dep));
205 fprintf (dump, ">");
208 /* Default flags for dump_dep (). */
209 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
211 /* Dump all fields of DEP to STDERR. */
212 void
213 sd_debug_dep (dep_t dep)
215 dump_dep (stderr, dep, 1);
216 fprintf (stderr, "\n");
219 /* Determine whether DEP is a dependency link of a non-debug insn on a
220 debug insn. */
222 static inline bool
223 depl_on_debug_p (dep_link_t dep)
225 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
226 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
229 /* Functions to operate with a single link from the dependencies lists -
230 dep_link_t. */
232 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
233 PREV_NEXT_P. */
234 static void
235 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
237 dep_link_t next = *prev_nextp;
239 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
240 && DEP_LINK_NEXT (l) == NULL);
242 /* Init node being inserted. */
243 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
244 DEP_LINK_NEXT (l) = next;
246 /* Fix next node. */
247 if (next != NULL)
249 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
251 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
254 /* Fix prev node. */
255 *prev_nextp = l;
258 /* Add dep_link LINK to deps_list L. */
259 static void
260 add_to_deps_list (dep_link_t link, deps_list_t l)
262 attach_dep_link (link, &DEPS_LIST_FIRST (l));
264 /* Don't count debug deps. */
265 if (!depl_on_debug_p (link))
266 ++DEPS_LIST_N_LINKS (l);
269 /* Detach dep_link L from the list. */
270 static void
271 detach_dep_link (dep_link_t l)
273 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
274 dep_link_t next = DEP_LINK_NEXT (l);
276 *prev_nextp = next;
278 if (next != NULL)
279 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
281 DEP_LINK_PREV_NEXTP (l) = NULL;
282 DEP_LINK_NEXT (l) = NULL;
285 /* Remove link LINK from list LIST. */
286 static void
287 remove_from_deps_list (dep_link_t link, deps_list_t list)
289 detach_dep_link (link);
291 /* Don't count debug deps. */
292 if (!depl_on_debug_p (link))
293 --DEPS_LIST_N_LINKS (list);
296 /* Move link LINK from list FROM to list TO. */
297 static void
298 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
300 remove_from_deps_list (link, from);
301 add_to_deps_list (link, to);
304 /* Return true of LINK is not attached to any list. */
305 static bool
306 dep_link_is_detached_p (dep_link_t link)
308 return DEP_LINK_PREV_NEXTP (link) == NULL;
311 /* Pool to hold all dependency nodes (dep_node_t). */
312 static object_allocator<_dep_node> *dn_pool;
314 /* Number of dep_nodes out there. */
315 static int dn_pool_diff = 0;
317 /* Create a dep_node. */
318 static dep_node_t
319 create_dep_node (void)
321 dep_node_t n = dn_pool->allocate ();
322 dep_link_t back = DEP_NODE_BACK (n);
323 dep_link_t forw = DEP_NODE_FORW (n);
325 DEP_LINK_NODE (back) = n;
326 DEP_LINK_NEXT (back) = NULL;
327 DEP_LINK_PREV_NEXTP (back) = NULL;
329 DEP_LINK_NODE (forw) = n;
330 DEP_LINK_NEXT (forw) = NULL;
331 DEP_LINK_PREV_NEXTP (forw) = NULL;
333 ++dn_pool_diff;
335 return n;
338 /* Delete dep_node N. N must not be connected to any deps_list. */
339 static void
340 delete_dep_node (dep_node_t n)
342 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
343 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
345 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
347 --dn_pool_diff;
349 dn_pool->remove (n);
352 /* Pool to hold dependencies lists (deps_list_t). */
353 static object_allocator<_deps_list> *dl_pool;
355 /* Number of deps_lists out there. */
356 static int dl_pool_diff = 0;
358 /* Functions to operate with dependences lists - deps_list_t. */
360 /* Return true if list L is empty. */
361 static bool
362 deps_list_empty_p (deps_list_t l)
364 return DEPS_LIST_N_LINKS (l) == 0;
367 /* Create a new deps_list. */
368 static deps_list_t
369 create_deps_list (void)
371 deps_list_t l = dl_pool->allocate ();
373 DEPS_LIST_FIRST (l) = NULL;
374 DEPS_LIST_N_LINKS (l) = 0;
376 ++dl_pool_diff;
377 return l;
380 /* Free deps_list L. */
381 static void
382 free_deps_list (deps_list_t l)
384 gcc_assert (deps_list_empty_p (l));
386 --dl_pool_diff;
388 dl_pool->remove (l);
391 /* Return true if there is no dep_nodes and deps_lists out there.
392 After the region is scheduled all the dependency nodes and lists
393 should [generally] be returned to pool. */
394 bool
395 deps_pools_are_empty_p (void)
397 return dn_pool_diff == 0 && dl_pool_diff == 0;
400 /* Remove all elements from L. */
401 static void
402 clear_deps_list (deps_list_t l)
406 dep_link_t link = DEPS_LIST_FIRST (l);
408 if (link == NULL)
409 break;
411 remove_from_deps_list (link, l);
413 while (1);
416 /* Decide whether a dependency should be treated as a hard or a speculative
417 dependency. */
418 static bool
419 dep_spec_p (dep_t dep)
421 if (current_sched_info->flags & DO_SPECULATION)
423 if (DEP_STATUS (dep) & SPECULATIVE)
424 return true;
426 if (current_sched_info->flags & DO_PREDICATION)
428 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
429 return true;
431 if (DEP_REPLACE (dep) != NULL)
432 return true;
433 return false;
436 static regset reg_pending_sets;
437 static regset reg_pending_clobbers;
438 static regset reg_pending_uses;
439 static regset reg_pending_control_uses;
440 static enum reg_pending_barrier_mode reg_pending_barrier;
442 /* Hard registers implicitly clobbered or used (or may be implicitly
443 clobbered or used) by the currently analyzed insn. For example,
444 insn in its constraint has one register class. Even if there is
445 currently no hard register in the insn, the particular hard
446 register will be in the insn after reload pass because the
447 constraint requires it. */
448 static HARD_REG_SET implicit_reg_pending_clobbers;
449 static HARD_REG_SET implicit_reg_pending_uses;
451 /* To speed up the test for duplicate dependency links we keep a
452 record of dependencies created by add_dependence when the average
453 number of instructions in a basic block is very large.
455 Studies have shown that there is typically around 5 instructions between
456 branches for typical C code. So we can make a guess that the average
457 basic block is approximately 5 instructions long; we will choose 100X
458 the average size as a very large basic block.
460 Each insn has associated bitmaps for its dependencies. Each bitmap
461 has enough entries to represent a dependency on any other insn in
462 the insn chain. All bitmap for true dependencies cache is
463 allocated then the rest two ones are also allocated. */
464 static bitmap_head *true_dependency_cache = NULL;
465 static bitmap_head *output_dependency_cache = NULL;
466 static bitmap_head *anti_dependency_cache = NULL;
467 static bitmap_head *control_dependency_cache = NULL;
468 static bitmap_head *spec_dependency_cache = NULL;
469 static int cache_size;
471 /* True if we should mark added dependencies as a non-register deps. */
472 static bool mark_as_hard;
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
476 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
477 enum reg_note, bool);
478 static void add_dependence_list_and_free (struct deps_desc *, rtx_insn *,
479 rtx_insn_list **, int, enum reg_note,
480 bool);
481 static void delete_all_dependences (rtx_insn *);
482 static void chain_to_prev_insn (rtx_insn *);
484 static void flush_pending_lists (struct deps_desc *, rtx_insn *, int, int);
485 static void sched_analyze_1 (struct deps_desc *, rtx, rtx_insn *);
486 static void sched_analyze_2 (struct deps_desc *, rtx, rtx_insn *);
487 static void sched_analyze_insn (struct deps_desc *, rtx, rtx_insn *);
489 static bool sched_has_condition_p (const rtx_insn *);
490 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
492 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
493 rtx, rtx);
494 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
496 static void check_dep (dep_t, bool);
499 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
501 static int
502 deps_may_trap_p (const_rtx mem)
504 const_rtx addr = XEXP (mem, 0);
506 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
508 const_rtx t = get_reg_known_value (REGNO (addr));
509 if (t)
510 addr = t;
512 return rtx_addr_can_trap_p (addr);
516 /* Find the condition under which INSN is executed. If REV is not NULL,
517 it is set to TRUE when the returned comparison should be reversed
518 to get the actual condition. */
519 static rtx
520 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
522 rtx pat = PATTERN (insn);
523 rtx src;
525 if (rev)
526 *rev = false;
528 if (GET_CODE (pat) == COND_EXEC)
529 return COND_EXEC_TEST (pat);
531 if (!any_condjump_p (insn) || !onlyjump_p (insn))
532 return 0;
534 src = SET_SRC (pc_set (insn));
536 if (XEXP (src, 2) == pc_rtx)
537 return XEXP (src, 0);
538 else if (XEXP (src, 1) == pc_rtx)
540 rtx cond = XEXP (src, 0);
541 enum rtx_code revcode = reversed_comparison_code (cond, insn);
543 if (revcode == UNKNOWN)
544 return 0;
546 if (rev)
547 *rev = true;
548 return cond;
551 return 0;
554 /* Return the condition under which INSN does not execute (i.e. the
555 not-taken condition for a conditional branch), or NULL if we cannot
556 find such a condition. The caller should make a copy of the condition
557 before using it. */
559 sched_get_reverse_condition_uncached (const rtx_insn *insn)
561 bool rev;
562 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
563 if (cond == NULL_RTX)
564 return cond;
565 if (!rev)
567 enum rtx_code revcode = reversed_comparison_code (cond, insn);
568 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
569 XEXP (cond, 0),
570 XEXP (cond, 1));
572 return cond;
575 /* Caching variant of sched_get_condition_with_rev_uncached.
576 We only do actual work the first time we come here for an insn; the
577 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
578 static rtx
579 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
581 bool tmp;
583 if (INSN_LUID (insn) == 0)
584 return sched_get_condition_with_rev_uncached (insn, rev);
586 if (INSN_CACHED_COND (insn) == const_true_rtx)
587 return NULL_RTX;
589 if (INSN_CACHED_COND (insn) != NULL_RTX)
591 if (rev)
592 *rev = INSN_REVERSE_COND (insn);
593 return INSN_CACHED_COND (insn);
596 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
597 INSN_REVERSE_COND (insn) = tmp;
599 if (INSN_CACHED_COND (insn) == NULL_RTX)
601 INSN_CACHED_COND (insn) = const_true_rtx;
602 return NULL_RTX;
605 if (rev)
606 *rev = INSN_REVERSE_COND (insn);
607 return INSN_CACHED_COND (insn);
610 /* True when we can find a condition under which INSN is executed. */
611 static bool
612 sched_has_condition_p (const rtx_insn *insn)
614 return !! sched_get_condition_with_rev (insn, NULL);
619 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
620 static int
621 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
623 if (COMPARISON_P (cond1)
624 && COMPARISON_P (cond2)
625 && GET_CODE (cond1) ==
626 (rev1==rev2
627 ? reversed_comparison_code (cond2, NULL)
628 : GET_CODE (cond2))
629 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
630 && XEXP (cond1, 1) == XEXP (cond2, 1))
631 return 1;
632 return 0;
635 /* Return true if insn1 and insn2 can never depend on one another because
636 the conditions under which they are executed are mutually exclusive. */
637 bool
638 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
640 rtx cond1, cond2;
641 bool rev1 = false, rev2 = false;
643 /* df doesn't handle conditional lifetimes entirely correctly;
644 calls mess up the conditional lifetimes. */
645 if (!CALL_P (insn1) && !CALL_P (insn2))
647 cond1 = sched_get_condition_with_rev (insn1, &rev1);
648 cond2 = sched_get_condition_with_rev (insn2, &rev2);
649 if (cond1 && cond2
650 && conditions_mutex_p (cond1, cond2, rev1, rev2)
651 /* Make sure first instruction doesn't affect condition of second
652 instruction if switched. */
653 && !modified_in_p (cond1, insn2)
654 /* Make sure second instruction doesn't affect condition of first
655 instruction if switched. */
656 && !modified_in_p (cond2, insn1))
657 return true;
659 return false;
663 /* Return true if INSN can potentially be speculated with type DS. */
664 bool
665 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
667 if (HAS_INTERNAL_DEP (insn))
668 return false;
670 if (!NONJUMP_INSN_P (insn))
671 return false;
673 if (SCHED_GROUP_P (insn))
674 return false;
676 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
677 return false;
679 if (side_effects_p (PATTERN (insn)))
680 return false;
682 if (ds & BE_IN_SPEC)
683 /* The following instructions, which depend on a speculatively scheduled
684 instruction, cannot be speculatively scheduled along. */
686 if (may_trap_or_fault_p (PATTERN (insn)))
687 /* If instruction might fault, it cannot be speculatively scheduled.
688 For control speculation it's obvious why and for data speculation
689 it's because the insn might get wrong input if speculation
690 wasn't successful. */
691 return false;
693 if ((ds & BE_IN_DATA)
694 && sched_has_condition_p (insn))
695 /* If this is a predicated instruction, then it cannot be
696 speculatively scheduled. See PR35659. */
697 return false;
700 return true;
703 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
704 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
705 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
706 This function is used to switch sd_iterator to the next list.
707 !!! For internal use only. Might consider moving it to sched-int.h. */
708 void
709 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
710 deps_list_t *list_ptr, bool *resolved_p_ptr)
712 sd_list_types_def types = *types_ptr;
714 if (types & SD_LIST_HARD_BACK)
716 *list_ptr = INSN_HARD_BACK_DEPS (insn);
717 *resolved_p_ptr = false;
718 *types_ptr = types & ~SD_LIST_HARD_BACK;
720 else if (types & SD_LIST_SPEC_BACK)
722 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
723 *resolved_p_ptr = false;
724 *types_ptr = types & ~SD_LIST_SPEC_BACK;
726 else if (types & SD_LIST_FORW)
728 *list_ptr = INSN_FORW_DEPS (insn);
729 *resolved_p_ptr = false;
730 *types_ptr = types & ~SD_LIST_FORW;
732 else if (types & SD_LIST_RES_BACK)
734 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
735 *resolved_p_ptr = true;
736 *types_ptr = types & ~SD_LIST_RES_BACK;
738 else if (types & SD_LIST_RES_FORW)
740 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
741 *resolved_p_ptr = true;
742 *types_ptr = types & ~SD_LIST_RES_FORW;
744 else
746 *list_ptr = NULL;
747 *resolved_p_ptr = false;
748 *types_ptr = SD_LIST_NONE;
752 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
754 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
756 int size = 0;
758 while (list_types != SD_LIST_NONE)
760 deps_list_t list;
761 bool resolved_p;
763 sd_next_list (insn, &list_types, &list, &resolved_p);
764 if (list)
765 size += DEPS_LIST_N_LINKS (list);
768 return size;
771 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
773 bool
774 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
776 while (list_types != SD_LIST_NONE)
778 deps_list_t list;
779 bool resolved_p;
781 sd_next_list (insn, &list_types, &list, &resolved_p);
782 if (!deps_list_empty_p (list))
783 return false;
786 return true;
789 /* Initialize data for INSN. */
790 void
791 sd_init_insn (rtx_insn *insn)
793 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
794 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
795 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
796 INSN_FORW_DEPS (insn) = create_deps_list ();
797 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
799 /* ??? It would be nice to allocate dependency caches here. */
802 /* Free data for INSN. */
803 void
804 sd_finish_insn (rtx_insn *insn)
806 /* ??? It would be nice to deallocate dependency caches here. */
808 free_deps_list (INSN_HARD_BACK_DEPS (insn));
809 INSN_HARD_BACK_DEPS (insn) = NULL;
811 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
812 INSN_SPEC_BACK_DEPS (insn) = NULL;
814 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
815 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
817 free_deps_list (INSN_FORW_DEPS (insn));
818 INSN_FORW_DEPS (insn) = NULL;
820 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
821 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
824 /* Find a dependency between producer PRO and consumer CON.
825 Search through resolved dependency lists if RESOLVED_P is true.
826 If no such dependency is found return NULL,
827 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
828 with an iterator pointing to it. */
829 static dep_t
830 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
831 sd_iterator_def *sd_it_ptr)
833 sd_list_types_def pro_list_type;
834 sd_list_types_def con_list_type;
835 sd_iterator_def sd_it;
836 dep_t dep;
837 bool found_p = false;
839 if (resolved_p)
841 pro_list_type = SD_LIST_RES_FORW;
842 con_list_type = SD_LIST_RES_BACK;
844 else
846 pro_list_type = SD_LIST_FORW;
847 con_list_type = SD_LIST_BACK;
850 /* Walk through either back list of INSN or forw list of ELEM
851 depending on which one is shorter. */
852 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
854 /* Find the dep_link with producer PRO in consumer's back_deps. */
855 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
856 if (DEP_PRO (dep) == pro)
858 found_p = true;
859 break;
862 else
864 /* Find the dep_link with consumer CON in producer's forw_deps. */
865 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
866 if (DEP_CON (dep) == con)
868 found_p = true;
869 break;
873 if (found_p)
875 if (sd_it_ptr != NULL)
876 *sd_it_ptr = sd_it;
878 return dep;
881 return NULL;
884 /* Find a dependency between producer PRO and consumer CON.
885 Use dependency [if available] to check if dependency is present at all.
886 Search through resolved dependency lists if RESOLVED_P is true.
887 If the dependency or NULL if none found. */
888 dep_t
889 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
891 if (true_dependency_cache != NULL)
892 /* Avoiding the list walk below can cut compile times dramatically
893 for some code. */
895 int elem_luid = INSN_LUID (pro);
896 int insn_luid = INSN_LUID (con);
898 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
899 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
902 return NULL;
905 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
908 /* Add or update a dependence described by DEP.
909 MEM1 and MEM2, if non-null, correspond to memory locations in case of
910 data speculation.
912 The function returns a value indicating if an old entry has been changed
913 or a new entry has been added to insn's backward deps.
915 This function merely checks if producer and consumer is the same insn
916 and doesn't create a dep in this case. Actual manipulation of
917 dependence data structures is performed in add_or_update_dep_1. */
918 static enum DEPS_ADJUST_RESULT
919 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
921 rtx_insn *elem = DEP_PRO (dep);
922 rtx_insn *insn = DEP_CON (dep);
924 gcc_assert (INSN_P (insn) && INSN_P (elem));
926 /* Don't depend an insn on itself. */
927 if (insn == elem)
929 if (sched_deps_info->generate_spec_deps)
930 /* INSN has an internal dependence, which we can't overcome. */
931 HAS_INTERNAL_DEP (insn) = 1;
933 return DEP_NODEP;
936 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
939 /* Ask dependency caches what needs to be done for dependence DEP.
940 Return DEP_CREATED if new dependence should be created and there is no
941 need to try to find one searching the dependencies lists.
942 Return DEP_PRESENT if there already is a dependence described by DEP and
943 hence nothing is to be done.
944 Return DEP_CHANGED if there already is a dependence, but it should be
945 updated to incorporate additional information from DEP. */
946 static enum DEPS_ADJUST_RESULT
947 ask_dependency_caches (dep_t dep)
949 int elem_luid = INSN_LUID (DEP_PRO (dep));
950 int insn_luid = INSN_LUID (DEP_CON (dep));
952 gcc_assert (true_dependency_cache != NULL
953 && output_dependency_cache != NULL
954 && anti_dependency_cache != NULL
955 && control_dependency_cache != NULL);
957 if (!(current_sched_info->flags & USE_DEPS_LIST))
959 enum reg_note present_dep_type;
961 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
962 present_dep_type = REG_DEP_TRUE;
963 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
964 present_dep_type = REG_DEP_OUTPUT;
965 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
966 present_dep_type = REG_DEP_ANTI;
967 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
968 present_dep_type = REG_DEP_CONTROL;
969 else
970 /* There is no existing dep so it should be created. */
971 return DEP_CREATED;
973 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
974 /* DEP does not add anything to the existing dependence. */
975 return DEP_PRESENT;
977 else
979 ds_t present_dep_types = 0;
981 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
982 present_dep_types |= DEP_TRUE;
983 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
984 present_dep_types |= DEP_OUTPUT;
985 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
986 present_dep_types |= DEP_ANTI;
987 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
988 present_dep_types |= DEP_CONTROL;
990 if (present_dep_types == 0)
991 /* There is no existing dep so it should be created. */
992 return DEP_CREATED;
994 if (!(current_sched_info->flags & DO_SPECULATION)
995 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
997 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
998 == present_dep_types)
999 /* DEP does not add anything to the existing dependence. */
1000 return DEP_PRESENT;
1002 else
1004 /* Only true dependencies can be data speculative and
1005 only anti dependencies can be control speculative. */
1006 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1007 == present_dep_types);
1009 /* if (DEP is SPECULATIVE) then
1010 ..we should update DEP_STATUS
1011 else
1012 ..we should reset existing dep to non-speculative. */
1016 return DEP_CHANGED;
1019 /* Set dependency caches according to DEP. */
1020 static void
1021 set_dependency_caches (dep_t dep)
1023 int elem_luid = INSN_LUID (DEP_PRO (dep));
1024 int insn_luid = INSN_LUID (DEP_CON (dep));
1026 if (!(current_sched_info->flags & USE_DEPS_LIST))
1028 switch (DEP_TYPE (dep))
1030 case REG_DEP_TRUE:
1031 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1032 break;
1034 case REG_DEP_OUTPUT:
1035 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1036 break;
1038 case REG_DEP_ANTI:
1039 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1040 break;
1042 case REG_DEP_CONTROL:
1043 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1044 break;
1046 default:
1047 gcc_unreachable ();
1050 else
1052 ds_t ds = DEP_STATUS (dep);
1054 if (ds & DEP_TRUE)
1055 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1056 if (ds & DEP_OUTPUT)
1057 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1058 if (ds & DEP_ANTI)
1059 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1060 if (ds & DEP_CONTROL)
1061 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1063 if (ds & SPECULATIVE)
1065 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1066 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1071 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1072 caches accordingly. */
1073 static void
1074 update_dependency_caches (dep_t dep, enum reg_note old_type)
1076 int elem_luid = INSN_LUID (DEP_PRO (dep));
1077 int insn_luid = INSN_LUID (DEP_CON (dep));
1079 /* Clear corresponding cache entry because type of the link
1080 may have changed. Keep them if we use_deps_list. */
1081 if (!(current_sched_info->flags & USE_DEPS_LIST))
1083 switch (old_type)
1085 case REG_DEP_OUTPUT:
1086 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1087 break;
1089 case REG_DEP_ANTI:
1090 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1091 break;
1093 case REG_DEP_CONTROL:
1094 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1095 break;
1097 default:
1098 gcc_unreachable ();
1102 set_dependency_caches (dep);
1105 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1106 static void
1107 change_spec_dep_to_hard (sd_iterator_def sd_it)
1109 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1110 dep_link_t link = DEP_NODE_BACK (node);
1111 dep_t dep = DEP_NODE_DEP (node);
1112 rtx_insn *elem = DEP_PRO (dep);
1113 rtx_insn *insn = DEP_CON (dep);
1115 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1117 DEP_STATUS (dep) &= ~SPECULATIVE;
1119 if (true_dependency_cache != NULL)
1120 /* Clear the cache entry. */
1121 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1122 INSN_LUID (elem));
1125 /* Update DEP to incorporate information from NEW_DEP.
1126 SD_IT points to DEP in case it should be moved to another list.
1127 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1128 data-speculative dependence should be updated. */
1129 static enum DEPS_ADJUST_RESULT
1130 update_dep (dep_t dep, dep_t new_dep,
1131 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1132 rtx mem1 ATTRIBUTE_UNUSED,
1133 rtx mem2 ATTRIBUTE_UNUSED)
1135 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1136 enum reg_note old_type = DEP_TYPE (dep);
1137 bool was_spec = dep_spec_p (dep);
1139 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1140 DEP_MULTIPLE (dep) = 1;
1142 /* If this is a more restrictive type of dependence than the
1143 existing one, then change the existing dependence to this
1144 type. */
1145 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1147 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1148 res = DEP_CHANGED;
1151 if (current_sched_info->flags & USE_DEPS_LIST)
1152 /* Update DEP_STATUS. */
1154 ds_t dep_status = DEP_STATUS (dep);
1155 ds_t ds = DEP_STATUS (new_dep);
1156 ds_t new_status = ds | dep_status;
1158 if (new_status & SPECULATIVE)
1160 /* Either existing dep or a dep we're adding or both are
1161 speculative. */
1162 if (!(ds & SPECULATIVE)
1163 || !(dep_status & SPECULATIVE))
1164 /* The new dep can't be speculative. */
1165 new_status &= ~SPECULATIVE;
1166 else
1168 /* Both are speculative. Merge probabilities. */
1169 if (mem1 != NULL)
1171 dw_t dw;
1173 dw = estimate_dep_weak (mem1, mem2);
1174 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1177 new_status = ds_merge (dep_status, ds);
1181 ds = new_status;
1183 if (dep_status != ds)
1185 DEP_STATUS (dep) = ds;
1186 res = DEP_CHANGED;
1190 if (was_spec && !dep_spec_p (dep))
1191 /* The old dep was speculative, but now it isn't. */
1192 change_spec_dep_to_hard (sd_it);
1194 if (true_dependency_cache != NULL
1195 && res == DEP_CHANGED)
1196 update_dependency_caches (dep, old_type);
1198 return res;
1201 /* Add or update a dependence described by DEP.
1202 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1203 data speculation.
1205 The function returns a value indicating if an old entry has been changed
1206 or a new entry has been added to insn's backward deps or nothing has
1207 been updated at all. */
1208 static enum DEPS_ADJUST_RESULT
1209 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1210 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1212 bool maybe_present_p = true;
1213 bool present_p = false;
1215 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1216 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1218 if (flag_checking)
1219 check_dep (new_dep, mem1 != NULL);
1221 if (true_dependency_cache != NULL)
1223 switch (ask_dependency_caches (new_dep))
1225 case DEP_PRESENT:
1226 dep_t present_dep;
1227 sd_iterator_def sd_it;
1229 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1230 DEP_CON (new_dep),
1231 resolved_p, &sd_it);
1232 DEP_MULTIPLE (present_dep) = 1;
1233 return DEP_PRESENT;
1235 case DEP_CHANGED:
1236 maybe_present_p = true;
1237 present_p = true;
1238 break;
1240 case DEP_CREATED:
1241 maybe_present_p = false;
1242 present_p = false;
1243 break;
1245 default:
1246 gcc_unreachable ();
1247 break;
1251 /* Check that we don't already have this dependence. */
1252 if (maybe_present_p)
1254 dep_t present_dep;
1255 sd_iterator_def sd_it;
1257 gcc_assert (true_dependency_cache == NULL || present_p);
1259 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1260 DEP_CON (new_dep),
1261 resolved_p, &sd_it);
1263 if (present_dep != NULL)
1264 /* We found an existing dependency between ELEM and INSN. */
1265 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1266 else
1267 /* We didn't find a dep, it shouldn't present in the cache. */
1268 gcc_assert (!present_p);
1271 /* Might want to check one level of transitivity to save conses.
1272 This check should be done in maybe_add_or_update_dep_1.
1273 Since we made it to add_or_update_dep_1, we must create
1274 (or update) a link. */
1276 if (mem1 != NULL_RTX)
1278 gcc_assert (sched_deps_info->generate_spec_deps);
1279 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1280 estimate_dep_weak (mem1, mem2));
1283 sd_add_dep (new_dep, resolved_p);
1285 return DEP_CREATED;
1288 /* Initialize BACK_LIST_PTR with consumer's backward list and
1289 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1290 initialize with lists that hold resolved deps. */
1291 static void
1292 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1293 deps_list_t *back_list_ptr,
1294 deps_list_t *forw_list_ptr)
1296 rtx_insn *con = DEP_CON (dep);
1298 if (!resolved_p)
1300 if (dep_spec_p (dep))
1301 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1302 else
1303 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1305 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1307 else
1309 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1310 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1314 /* Add dependence described by DEP.
1315 If RESOLVED_P is true treat the dependence as a resolved one. */
1316 void
1317 sd_add_dep (dep_t dep, bool resolved_p)
1319 dep_node_t n = create_dep_node ();
1320 deps_list_t con_back_deps;
1321 deps_list_t pro_forw_deps;
1322 rtx_insn *elem = DEP_PRO (dep);
1323 rtx_insn *insn = DEP_CON (dep);
1325 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1327 if ((current_sched_info->flags & DO_SPECULATION) == 0
1328 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1329 DEP_STATUS (dep) &= ~SPECULATIVE;
1331 copy_dep (DEP_NODE_DEP (n), dep);
1333 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1335 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1337 if (flag_checking)
1338 check_dep (dep, false);
1340 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1342 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1343 in the bitmap caches of dependency information. */
1344 if (true_dependency_cache != NULL)
1345 set_dependency_caches (dep);
1348 /* Add or update backward dependence between INSN and ELEM
1349 with given type DEP_TYPE and dep_status DS.
1350 This function is a convenience wrapper. */
1351 enum DEPS_ADJUST_RESULT
1352 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1354 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1357 /* Resolved dependence pointed to by SD_IT.
1358 SD_IT will advance to the next element. */
1359 void
1360 sd_resolve_dep (sd_iterator_def sd_it)
1362 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1363 dep_t dep = DEP_NODE_DEP (node);
1364 rtx_insn *pro = DEP_PRO (dep);
1365 rtx_insn *con = DEP_CON (dep);
1367 if (dep_spec_p (dep))
1368 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1369 INSN_RESOLVED_BACK_DEPS (con));
1370 else
1371 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1372 INSN_RESOLVED_BACK_DEPS (con));
1374 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1375 INSN_RESOLVED_FORW_DEPS (pro));
1378 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1379 pointed to by SD_IT to unresolved state. */
1380 void
1381 sd_unresolve_dep (sd_iterator_def sd_it)
1383 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1384 dep_t dep = DEP_NODE_DEP (node);
1385 rtx_insn *pro = DEP_PRO (dep);
1386 rtx_insn *con = DEP_CON (dep);
1388 if (dep_spec_p (dep))
1389 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1390 INSN_SPEC_BACK_DEPS (con));
1391 else
1392 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1393 INSN_HARD_BACK_DEPS (con));
1395 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1396 INSN_FORW_DEPS (pro));
1399 /* Make TO depend on all the FROM's producers.
1400 If RESOLVED_P is true add dependencies to the resolved lists. */
1401 void
1402 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1404 sd_list_types_def list_type;
1405 sd_iterator_def sd_it;
1406 dep_t dep;
1408 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1410 FOR_EACH_DEP (from, list_type, sd_it, dep)
1412 dep_def _new_dep, *new_dep = &_new_dep;
1414 copy_dep (new_dep, dep);
1415 DEP_CON (new_dep) = to;
1416 sd_add_dep (new_dep, resolved_p);
1420 /* Remove a dependency referred to by SD_IT.
1421 SD_IT will point to the next dependence after removal. */
1422 void
1423 sd_delete_dep (sd_iterator_def sd_it)
1425 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1426 dep_t dep = DEP_NODE_DEP (n);
1427 rtx_insn *pro = DEP_PRO (dep);
1428 rtx_insn *con = DEP_CON (dep);
1429 deps_list_t con_back_deps;
1430 deps_list_t pro_forw_deps;
1432 if (true_dependency_cache != NULL)
1434 int elem_luid = INSN_LUID (pro);
1435 int insn_luid = INSN_LUID (con);
1437 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1438 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1439 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1440 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1442 if (current_sched_info->flags & DO_SPECULATION)
1443 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1446 get_back_and_forw_lists (dep, sd_it.resolved_p,
1447 &con_back_deps, &pro_forw_deps);
1449 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1450 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1452 delete_dep_node (n);
1455 /* Dump size of the lists. */
1456 #define DUMP_LISTS_SIZE (2)
1458 /* Dump dependencies of the lists. */
1459 #define DUMP_LISTS_DEPS (4)
1461 /* Dump all information about the lists. */
1462 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1464 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1465 FLAGS is a bit mask specifying what information about the lists needs
1466 to be printed.
1467 If FLAGS has the very first bit set, then dump all information about
1468 the lists and propagate this bit into the callee dump functions. */
1469 static void
1470 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1472 sd_iterator_def sd_it;
1473 dep_t dep;
1474 int all;
1476 all = (flags & 1);
1478 if (all)
1479 flags |= DUMP_LISTS_ALL;
1481 fprintf (dump, "[");
1483 if (flags & DUMP_LISTS_SIZE)
1484 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1486 if (flags & DUMP_LISTS_DEPS)
1488 FOR_EACH_DEP (insn, types, sd_it, dep)
1490 dump_dep (dump, dep, dump_dep_flags | all);
1491 fprintf (dump, " ");
1496 /* Dump all information about deps_lists of INSN specified by TYPES
1497 to STDERR. */
1498 void
1499 sd_debug_lists (rtx insn, sd_list_types_def types)
1501 dump_lists (stderr, insn, types, 1);
1502 fprintf (stderr, "\n");
1505 /* A wrapper around add_dependence_1, to add a dependence of CON on
1506 PRO, with type DEP_TYPE. This function implements special handling
1507 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1508 the type to REG_DEP_ANTI if we can determine that predication is
1509 impossible; otherwise we add additional true dependencies on the
1510 INSN_COND_DEPS list of the jump (which PRO must be). */
1511 void
1512 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1514 if (dep_type == REG_DEP_CONTROL
1515 && !(current_sched_info->flags & DO_PREDICATION))
1516 dep_type = REG_DEP_ANTI;
1518 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1519 so we must also make the insn dependent on the setter of the
1520 condition. */
1521 if (dep_type == REG_DEP_CONTROL)
1523 rtx_insn *real_pro = pro;
1524 rtx_insn *other = real_insn_for_shadow (real_pro);
1525 rtx cond;
1527 if (other != NULL_RTX)
1528 real_pro = other;
1529 cond = sched_get_reverse_condition_uncached (real_pro);
1530 /* Verify that the insn does not use a different value in
1531 the condition register than the one that was present at
1532 the jump. */
1533 if (cond == NULL_RTX)
1534 dep_type = REG_DEP_ANTI;
1535 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1537 HARD_REG_SET uses;
1538 CLEAR_HARD_REG_SET (uses);
1539 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1540 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1541 dep_type = REG_DEP_ANTI;
1543 if (dep_type == REG_DEP_CONTROL)
1545 if (sched_verbose >= 5)
1546 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1547 INSN_UID (real_pro));
1548 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1549 REG_DEP_TRUE, false);
1553 add_dependence_1 (con, pro, dep_type);
1556 /* A convenience wrapper to operate on an entire list. HARD should be
1557 true if DEP_NONREG should be set on newly created dependencies. */
1559 static void
1560 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1561 enum reg_note dep_type, bool hard)
1563 mark_as_hard = hard;
1564 for (; list; list = list->next ())
1566 if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1567 add_dependence (insn, list->insn (), dep_type);
1569 mark_as_hard = false;
1572 /* Similar, but free *LISTP at the same time, when the context
1573 is not readonly. HARD should be true if DEP_NONREG should be set on
1574 newly created dependencies. */
1576 static void
1577 add_dependence_list_and_free (struct deps_desc *deps, rtx_insn *insn,
1578 rtx_insn_list **listp,
1579 int uncond, enum reg_note dep_type, bool hard)
1581 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1583 /* We don't want to short-circuit dependencies involving debug
1584 insns, because they may cause actual dependencies to be
1585 disregarded. */
1586 if (deps->readonly || DEBUG_INSN_P (insn))
1587 return;
1589 free_INSN_LIST_list (listp);
1592 /* Remove all occurrences of INSN from LIST. Return the number of
1593 occurrences removed. */
1595 static int
1596 remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
1598 int removed = 0;
1600 while (*listp)
1602 if ((*listp)->insn () == insn)
1604 remove_free_INSN_LIST_node (listp);
1605 removed++;
1606 continue;
1609 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1612 return removed;
1615 /* Same as above, but process two lists at once. */
1616 static int
1617 remove_from_both_dependence_lists (rtx_insn *insn,
1618 rtx_insn_list **listp,
1619 rtx_expr_list **exprp)
1621 int removed = 0;
1623 while (*listp)
1625 if (XEXP (*listp, 0) == insn)
1627 remove_free_INSN_LIST_node (listp);
1628 remove_free_EXPR_LIST_node (exprp);
1629 removed++;
1630 continue;
1633 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1634 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1637 return removed;
1640 /* Clear all dependencies for an insn. */
1641 static void
1642 delete_all_dependences (rtx_insn *insn)
1644 sd_iterator_def sd_it;
1645 dep_t dep;
1647 /* The below cycle can be optimized to clear the caches and back_deps
1648 in one call but that would provoke duplication of code from
1649 delete_dep (). */
1651 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1652 sd_iterator_cond (&sd_it, &dep);)
1653 sd_delete_dep (sd_it);
1656 /* All insns in a scheduling group except the first should only have
1657 dependencies on the previous insn in the group. So we find the
1658 first instruction in the scheduling group by walking the dependence
1659 chains backwards. Then we add the dependencies for the group to
1660 the previous nonnote insn. */
1662 static void
1663 chain_to_prev_insn (rtx_insn *insn)
1665 sd_iterator_def sd_it;
1666 dep_t dep;
1667 rtx_insn *prev_nonnote;
1669 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1671 rtx_insn *i = insn;
1672 rtx_insn *pro = DEP_PRO (dep);
1676 i = prev_nonnote_insn (i);
1678 if (pro == i)
1679 goto next_link;
1680 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1682 if (! sched_insns_conditions_mutex_p (i, pro))
1683 add_dependence (i, pro, DEP_TYPE (dep));
1684 next_link:;
1687 delete_all_dependences (insn);
1689 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1690 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1691 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1692 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1695 /* Process an insn's memory dependencies. There are four kinds of
1696 dependencies:
1698 (0) read dependence: read follows read
1699 (1) true dependence: read follows write
1700 (2) output dependence: write follows write
1701 (3) anti dependence: write follows read
1703 We are careful to build only dependencies which actually exist, and
1704 use transitivity to avoid building too many links. */
1706 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1707 The MEM is a memory reference contained within INSN, which we are saving
1708 so that we can do memory aliasing on it. */
1710 static void
1711 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1712 rtx_insn *insn, rtx mem)
1714 rtx_insn_list **insn_list;
1715 rtx_insn_list *insn_node;
1716 rtx_expr_list **mem_list;
1717 rtx_expr_list *mem_node;
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1727 else
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1734 insn_node = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = insn_node;
1737 if (sched_deps_info->use_cselib)
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1743 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = mem_node;
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1751 static void
1752 flush_pending_lists (struct deps_desc *deps, rtx_insn *insn, int for_read,
1753 int for_write)
1755 if (for_write)
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1778 if (DEBUG_INSN_P (insn))
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1787 if (!deps->readonly)
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1795 mark_as_hard = false;
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx_insn *cur_insn = NULL;
1801 /* Implement hooks for haifa scheduler. */
1803 static void
1804 haifa_start_insn (rtx_insn *insn)
1806 gcc_assert (insn && !cur_insn);
1808 cur_insn = insn;
1811 static void
1812 haifa_finish_insn (void)
1814 cur_insn = NULL;
1817 void
1818 haifa_note_reg_set (int regno)
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1823 void
1824 haifa_note_reg_clobber (int regno)
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1829 void
1830 haifa_note_reg_use (int regno)
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1838 if (!(ds & SPECULATIVE))
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1847 dep_def _dep, *dep = &_dep;
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1857 static void
1858 haifa_note_dep (rtx_insn *elem, ds_t ds)
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1869 static void
1870 note_reg_use (int r)
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1876 static void
1877 note_reg_set (int r)
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1883 static void
1884 note_reg_clobber (int r)
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1897 static void
1898 note_dep (rtx_insn *e, ds_t ds)
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx_insn *insn)
1931 struct reg_use_data *use;
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1941 /* Allocate reg_set_data structure for REGNO and INSN. */
1942 static void
1943 create_insn_reg_set (int regno, rtx insn)
1945 struct reg_set_data *set;
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1954 /* Set up insn register uses for INSN and dependency context DEPS. */
1955 static void
1956 setup_insn_reg_uses (struct deps_desc *deps, rtx_insn *insn)
1958 unsigned i;
1959 reg_set_iterator rsi;
1960 struct reg_use_data *use, *use2, *next;
1961 struct deps_reg *reg_last;
1963 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1965 if (i < FIRST_PSEUDO_REGISTER
1966 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1967 continue;
1969 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1970 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1971 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1972 /* Ignore use which is not dying. */
1973 continue;
1975 use = create_insn_reg_use (i, insn);
1976 use->next_regno_use = use;
1977 reg_last = &deps->reg_last[i];
1979 /* Create the cycle list of uses. */
1980 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1982 use2 = create_insn_reg_use (i, list->insn ());
1983 next = use->next_regno_use;
1984 use->next_regno_use = use2;
1985 use2->next_regno_use = next;
1990 /* Register pressure info for the currently processed insn. */
1991 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1993 /* Return TRUE if INSN has the use structure for REGNO. */
1994 static bool
1995 insn_use_p (rtx insn, int regno)
1997 struct reg_use_data *use;
1999 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2000 if (use->regno == regno)
2001 return true;
2002 return false;
2005 /* Update the register pressure info after birth of pseudo register REGNO
2006 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2007 the register is in clobber or unused after the insn. */
2008 static void
2009 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2011 int incr, new_incr;
2012 enum reg_class cl;
2014 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2015 cl = sched_regno_pressure_class[regno];
2016 if (cl != NO_REGS)
2018 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2019 if (clobber_p)
2021 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2022 reg_pressure_info[cl].clobber_increase = new_incr;
2024 else if (unused_p)
2026 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2027 reg_pressure_info[cl].unused_set_increase = new_incr;
2029 else
2031 new_incr = reg_pressure_info[cl].set_increase + incr;
2032 reg_pressure_info[cl].set_increase = new_incr;
2033 if (! insn_use_p (insn, regno))
2034 reg_pressure_info[cl].change += incr;
2035 create_insn_reg_set (regno, insn);
2037 gcc_assert (new_incr < (1 << INCREASE_BITS));
2041 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2042 hard registers involved in the birth. */
2043 static void
2044 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2045 bool clobber_p, bool unused_p)
2047 enum reg_class cl;
2048 int new_incr, last = regno + nregs;
2050 while (regno < last)
2052 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2053 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2055 cl = sched_regno_pressure_class[regno];
2056 if (cl != NO_REGS)
2058 if (clobber_p)
2060 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2061 reg_pressure_info[cl].clobber_increase = new_incr;
2063 else if (unused_p)
2065 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2066 reg_pressure_info[cl].unused_set_increase = new_incr;
2068 else
2070 new_incr = reg_pressure_info[cl].set_increase + 1;
2071 reg_pressure_info[cl].set_increase = new_incr;
2072 if (! insn_use_p (insn, regno))
2073 reg_pressure_info[cl].change += 1;
2074 create_insn_reg_set (regno, insn);
2076 gcc_assert (new_incr < (1 << INCREASE_BITS));
2079 regno++;
2083 /* Update the register pressure info after birth of pseudo or hard
2084 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2085 correspondingly that the register is in clobber or unused after the
2086 insn. */
2087 static void
2088 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2090 int regno;
2092 if (GET_CODE (reg) == SUBREG)
2093 reg = SUBREG_REG (reg);
2095 if (! REG_P (reg))
2096 return;
2098 regno = REGNO (reg);
2099 if (regno < FIRST_PSEUDO_REGISTER)
2100 mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
2101 clobber_p, unused_p);
2102 else
2103 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2106 /* Update the register pressure info after death of pseudo register
2107 REGNO. */
2108 static void
2109 mark_pseudo_death (int regno)
2111 int incr;
2112 enum reg_class cl;
2114 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2115 cl = sched_regno_pressure_class[regno];
2116 if (cl != NO_REGS)
2118 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2119 reg_pressure_info[cl].change -= incr;
2123 /* Like mark_pseudo_death except that NREGS saying how many hard
2124 registers involved in the death. */
2125 static void
2126 mark_hard_regno_death (int regno, int nregs)
2128 enum reg_class cl;
2129 int last = regno + nregs;
2131 while (regno < last)
2133 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2134 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2136 cl = sched_regno_pressure_class[regno];
2137 if (cl != NO_REGS)
2138 reg_pressure_info[cl].change -= 1;
2140 regno++;
2144 /* Update the register pressure info after death of pseudo or hard
2145 register REG. */
2146 static void
2147 mark_reg_death (rtx reg)
2149 int regno;
2151 if (GET_CODE (reg) == SUBREG)
2152 reg = SUBREG_REG (reg);
2154 if (! REG_P (reg))
2155 return;
2157 regno = REGNO (reg);
2158 if (regno < FIRST_PSEUDO_REGISTER)
2159 mark_hard_regno_death (regno, REG_NREGS (reg));
2160 else
2161 mark_pseudo_death (regno);
2164 /* Process SETTER of REG. DATA is an insn containing the setter. */
2165 static void
2166 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2168 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2169 return;
2170 mark_insn_reg_birth
2171 ((rtx) data, reg, false,
2172 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2175 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2176 static void
2177 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2179 if (GET_CODE (setter) == CLOBBER)
2180 mark_insn_reg_birth ((rtx) data, reg, true, false);
2183 /* Set up reg pressure info related to INSN. */
2184 void
2185 init_insn_reg_pressure_info (rtx_insn *insn)
2187 int i, len;
2188 enum reg_class cl;
2189 static struct reg_pressure_data *pressure_info;
2190 rtx link;
2192 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2194 if (! INSN_P (insn))
2195 return;
2197 for (i = 0; i < ira_pressure_classes_num; i++)
2199 cl = ira_pressure_classes[i];
2200 reg_pressure_info[cl].clobber_increase = 0;
2201 reg_pressure_info[cl].set_increase = 0;
2202 reg_pressure_info[cl].unused_set_increase = 0;
2203 reg_pressure_info[cl].change = 0;
2206 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2208 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2210 if (AUTO_INC_DEC)
2211 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2212 if (REG_NOTE_KIND (link) == REG_INC)
2213 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2215 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2216 if (REG_NOTE_KIND (link) == REG_DEAD)
2217 mark_reg_death (XEXP (link, 0));
2219 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2220 pressure_info
2221 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2222 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2223 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2224 * sizeof (int), 1);
2225 for (i = 0; i < ira_pressure_classes_num; i++)
2227 cl = ira_pressure_classes[i];
2228 pressure_info[i].clobber_increase
2229 = reg_pressure_info[cl].clobber_increase;
2230 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2231 pressure_info[i].unused_set_increase
2232 = reg_pressure_info[cl].unused_set_increase;
2233 pressure_info[i].change = reg_pressure_info[cl].change;
2240 /* Internal variable for sched_analyze_[12] () functions.
2241 If it is nonzero, this means that sched_analyze_[12] looks
2242 at the most toplevel SET. */
2243 static bool can_start_lhs_rhs_p;
2245 /* Extend reg info for the deps context DEPS given that
2246 we have just generated a register numbered REGNO. */
2247 static void
2248 extend_deps_reg_info (struct deps_desc *deps, int regno)
2250 int max_regno = regno + 1;
2252 gcc_assert (!reload_completed);
2254 /* In a readonly context, it would not hurt to extend info,
2255 but it should not be needed. */
2256 if (reload_completed && deps->readonly)
2258 deps->max_reg = max_regno;
2259 return;
2262 if (max_regno > deps->max_reg)
2264 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2265 max_regno);
2266 memset (&deps->reg_last[deps->max_reg],
2267 0, (max_regno - deps->max_reg)
2268 * sizeof (struct deps_reg));
2269 deps->max_reg = max_regno;
2273 /* Extends REG_INFO_P if needed. */
2274 void
2275 maybe_extend_reg_info_p (void)
2277 /* Extend REG_INFO_P, if needed. */
2278 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2280 size_t new_reg_info_p_size = max_regno + 128;
2282 gcc_assert (!reload_completed && sel_sched_p ());
2284 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2285 new_reg_info_p_size,
2286 reg_info_p_size,
2287 sizeof (*reg_info_p));
2288 reg_info_p_size = new_reg_info_p_size;
2292 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2293 The type of the reference is specified by REF and can be SET,
2294 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2296 static void
2297 sched_analyze_reg (struct deps_desc *deps, int regno, machine_mode mode,
2298 enum rtx_code ref, rtx_insn *insn)
2300 /* We could emit new pseudos in renaming. Extend the reg structures. */
2301 if (!reload_completed && sel_sched_p ()
2302 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2303 extend_deps_reg_info (deps, regno);
2305 maybe_extend_reg_info_p ();
2307 /* A hard reg in a wide mode may really be multiple registers.
2308 If so, mark all of them just like the first. */
2309 if (regno < FIRST_PSEUDO_REGISTER)
2311 int i = hard_regno_nregs (regno, mode);
2312 if (ref == SET)
2314 while (--i >= 0)
2315 note_reg_set (regno + i);
2317 else if (ref == USE)
2319 while (--i >= 0)
2320 note_reg_use (regno + i);
2322 else
2324 while (--i >= 0)
2325 note_reg_clobber (regno + i);
2329 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2330 it does not reload. Ignore these as they have served their
2331 purpose already. */
2332 else if (regno >= deps->max_reg)
2334 enum rtx_code code = GET_CODE (PATTERN (insn));
2335 gcc_assert (code == USE || code == CLOBBER);
2338 else
2340 if (ref == SET)
2341 note_reg_set (regno);
2342 else if (ref == USE)
2343 note_reg_use (regno);
2344 else
2345 note_reg_clobber (regno);
2347 /* Pseudos that are REG_EQUIV to something may be replaced
2348 by that during reloading. We need only add dependencies for
2349 the address in the REG_EQUIV note. */
2350 if (!reload_completed && get_reg_known_equiv_p (regno))
2352 rtx t = get_reg_known_value (regno);
2353 if (MEM_P (t))
2354 sched_analyze_2 (deps, XEXP (t, 0), insn);
2357 /* Don't let it cross a call after scheduling if it doesn't
2358 already cross one. */
2359 if (REG_N_CALLS_CROSSED (regno) == 0)
2361 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2362 deps->sched_before_next_call
2363 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2364 else
2365 add_dependence_list (insn, deps->last_function_call, 1,
2366 REG_DEP_ANTI, false);
2371 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2372 rtx, X, creating all dependencies generated by the write to the
2373 destination of X, and reads of everything mentioned. */
2375 static void
2376 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2378 rtx dest = XEXP (x, 0);
2379 enum rtx_code code = GET_CODE (x);
2380 bool cslr_p = can_start_lhs_rhs_p;
2382 can_start_lhs_rhs_p = false;
2384 gcc_assert (dest);
2385 if (dest == 0)
2386 return;
2388 if (cslr_p && sched_deps_info->start_lhs)
2389 sched_deps_info->start_lhs (dest);
2391 if (GET_CODE (dest) == PARALLEL)
2393 int i;
2395 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2396 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2397 sched_analyze_1 (deps,
2398 gen_rtx_CLOBBER (VOIDmode,
2399 XEXP (XVECEXP (dest, 0, i), 0)),
2400 insn);
2402 if (cslr_p && sched_deps_info->finish_lhs)
2403 sched_deps_info->finish_lhs ();
2405 if (code == SET)
2407 can_start_lhs_rhs_p = cslr_p;
2409 sched_analyze_2 (deps, SET_SRC (x), insn);
2411 can_start_lhs_rhs_p = false;
2414 return;
2417 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2418 || GET_CODE (dest) == ZERO_EXTRACT)
2420 if (GET_CODE (dest) == STRICT_LOW_PART
2421 || GET_CODE (dest) == ZERO_EXTRACT
2422 || read_modify_subreg_p (dest))
2424 /* These both read and modify the result. We must handle
2425 them as writes to get proper dependencies for following
2426 instructions. We must handle them as reads to get proper
2427 dependencies from this to previous instructions.
2428 Thus we need to call sched_analyze_2. */
2430 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2432 if (GET_CODE (dest) == ZERO_EXTRACT)
2434 /* The second and third arguments are values read by this insn. */
2435 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2436 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2438 dest = XEXP (dest, 0);
2441 if (REG_P (dest))
2443 int regno = REGNO (dest);
2444 machine_mode mode = GET_MODE (dest);
2446 sched_analyze_reg (deps, regno, mode, code, insn);
2448 #ifdef STACK_REGS
2449 /* Treat all writes to a stack register as modifying the TOS. */
2450 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2452 /* Avoid analyzing the same register twice. */
2453 if (regno != FIRST_STACK_REG)
2454 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2456 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2457 FIRST_STACK_REG);
2459 #endif
2461 else if (MEM_P (dest))
2463 /* Writing memory. */
2464 rtx t = dest;
2466 if (sched_deps_info->use_cselib)
2468 machine_mode address_mode = get_address_mode (dest);
2470 t = shallow_copy_rtx (dest);
2471 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2472 GET_MODE (t), insn);
2473 XEXP (t, 0)
2474 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2475 insn);
2477 t = canon_rtx (t);
2479 /* Pending lists can't get larger with a readonly context. */
2480 if (!deps->readonly
2481 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2482 >= MAX_PENDING_LIST_LENGTH))
2484 /* Flush all pending reads and writes to prevent the pending lists
2485 from getting any larger. Insn scheduling runs too slowly when
2486 these lists get long. When compiling GCC with itself,
2487 this flush occurs 8 times for sparc, and 10 times for m88k using
2488 the default value of 32. */
2489 flush_pending_lists (deps, insn, false, true);
2491 else
2493 rtx_insn_list *pending;
2494 rtx_expr_list *pending_mem;
2496 pending = deps->pending_read_insns;
2497 pending_mem = deps->pending_read_mems;
2498 while (pending)
2500 if (anti_dependence (pending_mem->element (), t)
2501 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2502 note_mem_dep (t, pending_mem->element (), pending->insn (),
2503 DEP_ANTI);
2505 pending = pending->next ();
2506 pending_mem = pending_mem->next ();
2509 pending = deps->pending_write_insns;
2510 pending_mem = deps->pending_write_mems;
2511 while (pending)
2513 if (output_dependence (pending_mem->element (), t)
2514 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2515 note_mem_dep (t, pending_mem->element (),
2516 pending->insn (),
2517 DEP_OUTPUT);
2519 pending = pending->next ();
2520 pending_mem = pending_mem-> next ();
2523 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2524 REG_DEP_ANTI, true);
2525 add_dependence_list (insn, deps->pending_jump_insns, 1,
2526 REG_DEP_CONTROL, true);
2528 if (!deps->readonly)
2529 add_insn_mem_dependence (deps, false, insn, dest);
2531 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2534 if (cslr_p && sched_deps_info->finish_lhs)
2535 sched_deps_info->finish_lhs ();
2537 /* Analyze reads. */
2538 if (GET_CODE (x) == SET)
2540 can_start_lhs_rhs_p = cslr_p;
2542 sched_analyze_2 (deps, SET_SRC (x), insn);
2544 can_start_lhs_rhs_p = false;
2548 /* Analyze the uses of memory and registers in rtx X in INSN. */
2549 static void
2550 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2552 int i;
2553 int j;
2554 enum rtx_code code;
2555 const char *fmt;
2556 bool cslr_p = can_start_lhs_rhs_p;
2558 can_start_lhs_rhs_p = false;
2560 gcc_assert (x);
2561 if (x == 0)
2562 return;
2564 if (cslr_p && sched_deps_info->start_rhs)
2565 sched_deps_info->start_rhs (x);
2567 code = GET_CODE (x);
2569 switch (code)
2571 CASE_CONST_ANY:
2572 case SYMBOL_REF:
2573 case CONST:
2574 case LABEL_REF:
2575 /* Ignore constants. */
2576 if (cslr_p && sched_deps_info->finish_rhs)
2577 sched_deps_info->finish_rhs ();
2579 return;
2581 case CC0:
2582 if (!HAVE_cc0)
2583 gcc_unreachable ();
2585 /* User of CC0 depends on immediately preceding insn. */
2586 SCHED_GROUP_P (insn) = 1;
2587 /* Don't move CC0 setter to another block (it can set up the
2588 same flag for previous CC0 users which is safe). */
2589 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2591 if (cslr_p && sched_deps_info->finish_rhs)
2592 sched_deps_info->finish_rhs ();
2594 return;
2596 case REG:
2598 int regno = REGNO (x);
2599 machine_mode mode = GET_MODE (x);
2601 sched_analyze_reg (deps, regno, mode, USE, insn);
2603 #ifdef STACK_REGS
2604 /* Treat all reads of a stack register as modifying the TOS. */
2605 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2607 /* Avoid analyzing the same register twice. */
2608 if (regno != FIRST_STACK_REG)
2609 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2610 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2612 #endif
2614 if (cslr_p && sched_deps_info->finish_rhs)
2615 sched_deps_info->finish_rhs ();
2617 return;
2620 case MEM:
2622 /* Reading memory. */
2623 rtx_insn_list *u;
2624 rtx_insn_list *pending;
2625 rtx_expr_list *pending_mem;
2626 rtx t = x;
2628 if (sched_deps_info->use_cselib)
2630 machine_mode address_mode = get_address_mode (t);
2632 t = shallow_copy_rtx (t);
2633 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2634 GET_MODE (t), insn);
2635 XEXP (t, 0)
2636 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2637 insn);
2640 if (!DEBUG_INSN_P (insn))
2642 t = canon_rtx (t);
2643 pending = deps->pending_read_insns;
2644 pending_mem = deps->pending_read_mems;
2645 while (pending)
2647 if (read_dependence (pending_mem->element (), t)
2648 && ! sched_insns_conditions_mutex_p (insn,
2649 pending->insn ()))
2650 note_mem_dep (t, pending_mem->element (),
2651 pending->insn (),
2652 DEP_ANTI);
2654 pending = pending->next ();
2655 pending_mem = pending_mem->next ();
2658 pending = deps->pending_write_insns;
2659 pending_mem = deps->pending_write_mems;
2660 while (pending)
2662 if (true_dependence (pending_mem->element (), VOIDmode, t)
2663 && ! sched_insns_conditions_mutex_p (insn,
2664 pending->insn ()))
2665 note_mem_dep (t, pending_mem->element (),
2666 pending->insn (),
2667 sched_deps_info->generate_spec_deps
2668 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2670 pending = pending->next ();
2671 pending_mem = pending_mem->next ();
2674 for (u = deps->last_pending_memory_flush; u; u = u->next ())
2675 add_dependence (insn, u->insn (), REG_DEP_ANTI);
2677 for (u = deps->pending_jump_insns; u; u = u->next ())
2678 if (deps_may_trap_p (x))
2680 if ((sched_deps_info->generate_spec_deps)
2681 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2683 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2684 MAX_DEP_WEAK);
2686 note_dep (u->insn (), ds);
2688 else
2689 add_dependence (insn, u->insn (), REG_DEP_CONTROL);
2693 /* Always add these dependencies to pending_reads, since
2694 this insn may be followed by a write. */
2695 if (!deps->readonly)
2697 if ((deps->pending_read_list_length
2698 + deps->pending_write_list_length)
2699 >= MAX_PENDING_LIST_LENGTH
2700 && !DEBUG_INSN_P (insn))
2701 flush_pending_lists (deps, insn, true, true);
2702 add_insn_mem_dependence (deps, true, insn, x);
2705 sched_analyze_2 (deps, XEXP (x, 0), insn);
2707 if (cslr_p && sched_deps_info->finish_rhs)
2708 sched_deps_info->finish_rhs ();
2710 return;
2713 /* Force pending stores to memory in case a trap handler needs them.
2714 Also force pending loads from memory; loads and stores can segfault
2715 and the signal handler won't be triggered if the trap insn was moved
2716 above load or store insn. */
2717 case TRAP_IF:
2718 flush_pending_lists (deps, insn, true, true);
2719 break;
2721 case PREFETCH:
2722 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2723 reg_pending_barrier = TRUE_BARRIER;
2724 /* Prefetch insn contains addresses only. So if the prefetch
2725 address has no registers, there will be no dependencies on
2726 the prefetch insn. This is wrong with result code
2727 correctness point of view as such prefetch can be moved below
2728 a jump insn which usually generates MOVE_BARRIER preventing
2729 to move insns containing registers or memories through the
2730 barrier. It is also wrong with generated code performance
2731 point of view as prefetch withouth dependecies will have a
2732 tendency to be issued later instead of earlier. It is hard
2733 to generate accurate dependencies for prefetch insns as
2734 prefetch has only the start address but it is better to have
2735 something than nothing. */
2736 if (!deps->readonly)
2738 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2739 if (sched_deps_info->use_cselib)
2740 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2741 add_insn_mem_dependence (deps, true, insn, x);
2743 break;
2745 case UNSPEC_VOLATILE:
2746 flush_pending_lists (deps, insn, true, true);
2747 /* FALLTHRU */
2749 case ASM_OPERANDS:
2750 case ASM_INPUT:
2752 /* Traditional and volatile asm instructions must be considered to use
2753 and clobber all hard registers, all pseudo-registers and all of
2754 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2756 Consider for instance a volatile asm that changes the fpu rounding
2757 mode. An insn should not be moved across this even if it only uses
2758 pseudo-regs because it might give an incorrectly rounded result. */
2759 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2760 && !DEBUG_INSN_P (insn))
2761 reg_pending_barrier = TRUE_BARRIER;
2763 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2764 We can not just fall through here since then we would be confused
2765 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2766 traditional asms unlike their normal usage. */
2768 if (code == ASM_OPERANDS)
2770 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2771 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2773 if (cslr_p && sched_deps_info->finish_rhs)
2774 sched_deps_info->finish_rhs ();
2776 return;
2778 break;
2781 case PRE_DEC:
2782 case POST_DEC:
2783 case PRE_INC:
2784 case POST_INC:
2785 /* These both read and modify the result. We must handle them as writes
2786 to get proper dependencies for following instructions. We must handle
2787 them as reads to get proper dependencies from this to previous
2788 instructions. Thus we need to pass them to both sched_analyze_1
2789 and sched_analyze_2. We must call sched_analyze_2 first in order
2790 to get the proper antecedent for the read. */
2791 sched_analyze_2 (deps, XEXP (x, 0), insn);
2792 sched_analyze_1 (deps, x, insn);
2794 if (cslr_p && sched_deps_info->finish_rhs)
2795 sched_deps_info->finish_rhs ();
2797 return;
2799 case POST_MODIFY:
2800 case PRE_MODIFY:
2801 /* op0 = op0 + op1 */
2802 sched_analyze_2 (deps, XEXP (x, 0), insn);
2803 sched_analyze_2 (deps, XEXP (x, 1), insn);
2804 sched_analyze_1 (deps, x, insn);
2806 if (cslr_p && sched_deps_info->finish_rhs)
2807 sched_deps_info->finish_rhs ();
2809 return;
2811 default:
2812 break;
2815 /* Other cases: walk the insn. */
2816 fmt = GET_RTX_FORMAT (code);
2817 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2819 if (fmt[i] == 'e')
2820 sched_analyze_2 (deps, XEXP (x, i), insn);
2821 else if (fmt[i] == 'E')
2822 for (j = 0; j < XVECLEN (x, i); j++)
2823 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2826 if (cslr_p && sched_deps_info->finish_rhs)
2827 sched_deps_info->finish_rhs ();
2830 /* Try to group two fusible insns together to prevent scheduler
2831 from scheduling them apart. */
2833 static void
2834 sched_macro_fuse_insns (rtx_insn *insn)
2836 rtx_insn *prev;
2837 /* No target hook would return true for debug insn as any of the
2838 hook operand, and with very large sequences of only debug insns
2839 where on each we call sched_macro_fuse_insns it has quadratic
2840 compile time complexity. */
2841 if (DEBUG_INSN_P (insn))
2842 return;
2843 prev = prev_nonnote_nondebug_insn (insn);
2844 if (!prev)
2845 return;
2847 if (any_condjump_p (insn))
2849 unsigned int condreg1, condreg2;
2850 rtx cc_reg_1;
2851 targetm.fixed_condition_code_regs (&condreg1, &condreg2);
2852 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2853 if (reg_referenced_p (cc_reg_1, PATTERN (insn))
2854 && modified_in_p (cc_reg_1, prev))
2856 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2857 SCHED_GROUP_P (insn) = 1;
2858 return;
2862 if (single_set (insn) && single_set (prev))
2864 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2865 SCHED_GROUP_P (insn) = 1;
2869 /* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2870 void
2871 get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2873 extract_insn (insn);
2874 preprocess_constraints (insn);
2875 alternative_mask preferred = get_preferred_alternatives (insn);
2876 ira_implicitly_set_insn_hard_regs (temp, preferred);
2877 AND_COMPL_HARD_REG_SET (*temp, ira_no_alloc_regs);
2880 /* Analyze an INSN with pattern X to find all dependencies. */
2881 static void
2882 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx_insn *insn)
2884 RTX_CODE code = GET_CODE (x);
2885 rtx link;
2886 unsigned i;
2887 reg_set_iterator rsi;
2889 if (! reload_completed)
2891 HARD_REG_SET temp;
2892 get_implicit_reg_pending_clobbers (&temp, insn);
2893 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2896 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2897 && code == SET);
2899 /* Group compare and branch insns for macro-fusion. */
2900 if (targetm.sched.macro_fusion_p
2901 && targetm.sched.macro_fusion_p ())
2902 sched_macro_fuse_insns (insn);
2904 if (may_trap_p (x))
2905 /* Avoid moving trapping instructions across function calls that might
2906 not always return. */
2907 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2908 1, REG_DEP_ANTI, true);
2910 /* We must avoid creating a situation in which two successors of the
2911 current block have different unwind info after scheduling. If at any
2912 point the two paths re-join this leads to incorrect unwind info. */
2913 /* ??? There are certain situations involving a forced frame pointer in
2914 which, with extra effort, we could fix up the unwind info at a later
2915 CFG join. However, it seems better to notice these cases earlier
2916 during prologue generation and avoid marking the frame pointer setup
2917 as frame-related at all. */
2918 if (RTX_FRAME_RELATED_P (insn))
2920 /* Make sure prologue insn is scheduled before next jump. */
2921 deps->sched_before_next_jump
2922 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2924 /* Make sure epilogue insn is scheduled after preceding jumps. */
2925 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2926 true);
2929 if (code == COND_EXEC)
2931 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2933 /* ??? Should be recording conditions so we reduce the number of
2934 false dependencies. */
2935 x = COND_EXEC_CODE (x);
2936 code = GET_CODE (x);
2938 if (code == SET || code == CLOBBER)
2940 sched_analyze_1 (deps, x, insn);
2942 /* Bare clobber insns are used for letting life analysis, reg-stack
2943 and others know that a value is dead. Depend on the last call
2944 instruction so that reg-stack won't get confused. */
2945 if (code == CLOBBER)
2946 add_dependence_list (insn, deps->last_function_call, 1,
2947 REG_DEP_OUTPUT, true);
2949 else if (code == PARALLEL)
2951 for (i = XVECLEN (x, 0); i--;)
2953 rtx sub = XVECEXP (x, 0, i);
2954 code = GET_CODE (sub);
2956 if (code == COND_EXEC)
2958 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2959 sub = COND_EXEC_CODE (sub);
2960 code = GET_CODE (sub);
2962 if (code == SET || code == CLOBBER)
2963 sched_analyze_1 (deps, sub, insn);
2964 else
2965 sched_analyze_2 (deps, sub, insn);
2968 else
2969 sched_analyze_2 (deps, x, insn);
2971 /* Mark registers CLOBBERED or used by called function. */
2972 if (CALL_P (insn))
2974 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2976 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2977 sched_analyze_1 (deps, XEXP (link, 0), insn);
2978 else if (GET_CODE (XEXP (link, 0)) != SET)
2979 sched_analyze_2 (deps, XEXP (link, 0), insn);
2981 /* Don't schedule anything after a tail call, tail call needs
2982 to use at least all call-saved registers. */
2983 if (SIBLING_CALL_P (insn))
2984 reg_pending_barrier = TRUE_BARRIER;
2985 else if (find_reg_note (insn, REG_SETJMP, NULL))
2986 reg_pending_barrier = MOVE_BARRIER;
2989 if (JUMP_P (insn))
2991 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2992 if (next && BARRIER_P (next))
2993 reg_pending_barrier = MOVE_BARRIER;
2994 else
2996 rtx_insn_list *pending;
2997 rtx_expr_list *pending_mem;
2999 if (sched_deps_info->compute_jump_reg_dependencies)
3001 (*sched_deps_info->compute_jump_reg_dependencies)
3002 (insn, reg_pending_control_uses);
3004 /* Make latency of jump equal to 0 by using anti-dependence. */
3005 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3007 struct deps_reg *reg_last = &deps->reg_last[i];
3008 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3009 false);
3010 add_dependence_list (insn, reg_last->implicit_sets,
3011 0, REG_DEP_ANTI, false);
3012 add_dependence_list (insn, reg_last->clobbers, 0,
3013 REG_DEP_ANTI, false);
3017 /* All memory writes and volatile reads must happen before the
3018 jump. Non-volatile reads must happen before the jump iff
3019 the result is needed by the above register used mask. */
3021 pending = deps->pending_write_insns;
3022 pending_mem = deps->pending_write_mems;
3023 while (pending)
3025 if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3026 add_dependence (insn, pending->insn (),
3027 REG_DEP_OUTPUT);
3028 pending = pending->next ();
3029 pending_mem = pending_mem->next ();
3032 pending = deps->pending_read_insns;
3033 pending_mem = deps->pending_read_mems;
3034 while (pending)
3036 if (MEM_VOLATILE_P (pending_mem->element ())
3037 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3038 add_dependence (insn, pending->insn (),
3039 REG_DEP_OUTPUT);
3040 pending = pending->next ();
3041 pending_mem = pending_mem->next ();
3044 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3045 REG_DEP_ANTI, true);
3046 add_dependence_list (insn, deps->pending_jump_insns, 1,
3047 REG_DEP_ANTI, true);
3051 /* If this instruction can throw an exception, then moving it changes
3052 where block boundaries fall. This is mighty confusing elsewhere.
3053 Therefore, prevent such an instruction from being moved. Same for
3054 non-jump instructions that define block boundaries.
3055 ??? Unclear whether this is still necessary in EBB mode. If not,
3056 add_branch_dependences should be adjusted for RGN mode instead. */
3057 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3058 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3059 reg_pending_barrier = MOVE_BARRIER;
3061 if (sched_pressure != SCHED_PRESSURE_NONE)
3063 setup_insn_reg_uses (deps, insn);
3064 init_insn_reg_pressure_info (insn);
3067 /* Add register dependencies for insn. */
3068 if (DEBUG_INSN_P (insn))
3070 rtx_insn *prev = deps->last_debug_insn;
3071 rtx_insn_list *u;
3073 if (!deps->readonly)
3074 deps->last_debug_insn = insn;
3076 if (prev)
3077 add_dependence (insn, prev, REG_DEP_ANTI);
3079 add_dependence_list (insn, deps->last_function_call, 1,
3080 REG_DEP_ANTI, false);
3082 if (!sel_sched_p ())
3083 for (u = deps->last_pending_memory_flush; u; u = u->next ())
3084 add_dependence (insn, u->insn (), REG_DEP_ANTI);
3086 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3088 struct deps_reg *reg_last = &deps->reg_last[i];
3089 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3090 /* There's no point in making REG_DEP_CONTROL dependencies for
3091 debug insns. */
3092 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3093 false);
3095 if (!deps->readonly)
3096 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3098 CLEAR_REG_SET (reg_pending_uses);
3100 /* Quite often, a debug insn will refer to stuff in the
3101 previous instruction, but the reason we want this
3102 dependency here is to make sure the scheduler doesn't
3103 gratuitously move a debug insn ahead. This could dirty
3104 DF flags and cause additional analysis that wouldn't have
3105 occurred in compilation without debug insns, and such
3106 additional analysis can modify the generated code. */
3107 prev = PREV_INSN (insn);
3109 if (prev && NONDEBUG_INSN_P (prev))
3110 add_dependence (insn, prev, REG_DEP_ANTI);
3112 else
3114 regset_head set_or_clobbered;
3116 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3118 struct deps_reg *reg_last = &deps->reg_last[i];
3119 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3120 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3121 false);
3122 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3123 false);
3125 if (!deps->readonly)
3127 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3128 reg_last->uses_length++;
3132 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3133 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3135 struct deps_reg *reg_last = &deps->reg_last[i];
3136 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3137 add_dependence_list (insn, reg_last->implicit_sets, 0,
3138 REG_DEP_ANTI, false);
3139 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3140 false);
3142 if (!deps->readonly)
3144 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3145 reg_last->uses_length++;
3149 if (targetm.sched.exposed_pipeline)
3151 INIT_REG_SET (&set_or_clobbered);
3152 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3153 reg_pending_sets);
3154 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3156 struct deps_reg *reg_last = &deps->reg_last[i];
3157 rtx list;
3158 for (list = reg_last->uses; list; list = XEXP (list, 1))
3160 rtx other = XEXP (list, 0);
3161 if (INSN_CACHED_COND (other) != const_true_rtx
3162 && refers_to_regno_p (i, INSN_CACHED_COND (other)))
3163 INSN_CACHED_COND (other) = const_true_rtx;
3168 /* If the current insn is conditional, we can't free any
3169 of the lists. */
3170 if (sched_has_condition_p (insn))
3172 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3174 struct deps_reg *reg_last = &deps->reg_last[i];
3175 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3176 false);
3177 add_dependence_list (insn, reg_last->implicit_sets, 0,
3178 REG_DEP_ANTI, false);
3179 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3180 false);
3181 add_dependence_list (insn, reg_last->control_uses, 0,
3182 REG_DEP_CONTROL, false);
3184 if (!deps->readonly)
3186 reg_last->clobbers
3187 = alloc_INSN_LIST (insn, reg_last->clobbers);
3188 reg_last->clobbers_length++;
3191 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3193 struct deps_reg *reg_last = &deps->reg_last[i];
3194 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3195 false);
3196 add_dependence_list (insn, reg_last->implicit_sets, 0,
3197 REG_DEP_ANTI, false);
3198 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3199 false);
3200 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3201 false);
3202 add_dependence_list (insn, reg_last->control_uses, 0,
3203 REG_DEP_CONTROL, false);
3205 if (!deps->readonly)
3206 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3209 else
3211 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3213 struct deps_reg *reg_last = &deps->reg_last[i];
3214 if (reg_last->uses_length >= MAX_PENDING_LIST_LENGTH
3215 || reg_last->clobbers_length >= MAX_PENDING_LIST_LENGTH)
3217 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3218 REG_DEP_OUTPUT, false);
3219 add_dependence_list_and_free (deps, insn,
3220 &reg_last->implicit_sets, 0,
3221 REG_DEP_ANTI, false);
3222 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3223 REG_DEP_ANTI, false);
3224 add_dependence_list_and_free (deps, insn,
3225 &reg_last->control_uses, 0,
3226 REG_DEP_ANTI, false);
3227 add_dependence_list_and_free (deps, insn,
3228 &reg_last->clobbers, 0,
3229 REG_DEP_OUTPUT, false);
3231 if (!deps->readonly)
3233 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3234 reg_last->clobbers_length = 0;
3235 reg_last->uses_length = 0;
3238 else
3240 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3241 false);
3242 add_dependence_list (insn, reg_last->implicit_sets, 0,
3243 REG_DEP_ANTI, false);
3244 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3245 false);
3246 add_dependence_list (insn, reg_last->control_uses, 0,
3247 REG_DEP_CONTROL, false);
3250 if (!deps->readonly)
3252 reg_last->clobbers_length++;
3253 reg_last->clobbers
3254 = alloc_INSN_LIST (insn, reg_last->clobbers);
3257 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3259 struct deps_reg *reg_last = &deps->reg_last[i];
3261 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3262 REG_DEP_OUTPUT, false);
3263 add_dependence_list_and_free (deps, insn,
3264 &reg_last->implicit_sets,
3265 0, REG_DEP_ANTI, false);
3266 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3267 REG_DEP_OUTPUT, false);
3268 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3269 REG_DEP_ANTI, false);
3270 add_dependence_list (insn, reg_last->control_uses, 0,
3271 REG_DEP_CONTROL, false);
3273 if (!deps->readonly)
3275 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3276 reg_last->uses_length = 0;
3277 reg_last->clobbers_length = 0;
3281 if (!deps->readonly)
3283 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3285 struct deps_reg *reg_last = &deps->reg_last[i];
3286 reg_last->control_uses
3287 = alloc_INSN_LIST (insn, reg_last->control_uses);
3292 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3293 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3295 struct deps_reg *reg_last = &deps->reg_last[i];
3296 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3297 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3298 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3299 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3300 false);
3302 if (!deps->readonly)
3303 reg_last->implicit_sets
3304 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3307 if (!deps->readonly)
3309 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3310 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3311 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3312 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3313 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3314 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3315 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3317 /* Set up the pending barrier found. */
3318 deps->last_reg_pending_barrier = reg_pending_barrier;
3321 CLEAR_REG_SET (reg_pending_uses);
3322 CLEAR_REG_SET (reg_pending_clobbers);
3323 CLEAR_REG_SET (reg_pending_sets);
3324 CLEAR_REG_SET (reg_pending_control_uses);
3325 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3326 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3328 /* Add dependencies if a scheduling barrier was found. */
3329 if (reg_pending_barrier)
3331 /* In the case of barrier the most added dependencies are not
3332 real, so we use anti-dependence here. */
3333 if (sched_has_condition_p (insn))
3335 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3337 struct deps_reg *reg_last = &deps->reg_last[i];
3338 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3339 true);
3340 add_dependence_list (insn, reg_last->sets, 0,
3341 reg_pending_barrier == TRUE_BARRIER
3342 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3343 add_dependence_list (insn, reg_last->implicit_sets, 0,
3344 REG_DEP_ANTI, true);
3345 add_dependence_list (insn, reg_last->clobbers, 0,
3346 reg_pending_barrier == TRUE_BARRIER
3347 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3350 else
3352 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3354 struct deps_reg *reg_last = &deps->reg_last[i];
3355 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3356 REG_DEP_ANTI, true);
3357 add_dependence_list_and_free (deps, insn,
3358 &reg_last->control_uses, 0,
3359 REG_DEP_CONTROL, true);
3360 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3361 reg_pending_barrier == TRUE_BARRIER
3362 ? REG_DEP_TRUE : REG_DEP_ANTI,
3363 true);
3364 add_dependence_list_and_free (deps, insn,
3365 &reg_last->implicit_sets, 0,
3366 REG_DEP_ANTI, true);
3367 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3368 reg_pending_barrier == TRUE_BARRIER
3369 ? REG_DEP_TRUE : REG_DEP_ANTI,
3370 true);
3372 if (!deps->readonly)
3374 reg_last->uses_length = 0;
3375 reg_last->clobbers_length = 0;
3380 if (!deps->readonly)
3381 for (i = 0; i < (unsigned)deps->max_reg; i++)
3383 struct deps_reg *reg_last = &deps->reg_last[i];
3384 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3385 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3388 /* Don't flush pending lists on speculative checks for
3389 selective scheduling. */
3390 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3391 flush_pending_lists (deps, insn, true, true);
3393 reg_pending_barrier = NOT_A_BARRIER;
3396 /* If a post-call group is still open, see if it should remain so.
3397 This insn must be a simple move of a hard reg to a pseudo or
3398 vice-versa.
3400 We must avoid moving these insns for correctness on targets
3401 with small register classes, and for special registers like
3402 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3403 hard regs for all targets. */
3405 if (deps->in_post_call_group_p)
3407 rtx tmp, set = single_set (insn);
3408 int src_regno, dest_regno;
3410 if (set == NULL)
3412 if (DEBUG_INSN_P (insn))
3413 /* We don't want to mark debug insns as part of the same
3414 sched group. We know they really aren't, but if we use
3415 debug insns to tell that a call group is over, we'll
3416 get different code if debug insns are not there and
3417 instructions that follow seem like they should be part
3418 of the call group.
3420 Also, if we did, chain_to_prev_insn would move the
3421 deps of the debug insn to the call insn, modifying
3422 non-debug post-dependency counts of the debug insn
3423 dependencies and otherwise messing with the scheduling
3424 order.
3426 Instead, let such debug insns be scheduled freely, but
3427 keep the call group open in case there are insns that
3428 should be part of it afterwards. Since we grant debug
3429 insns higher priority than even sched group insns, it
3430 will all turn out all right. */
3431 goto debug_dont_end_call_group;
3432 else
3433 goto end_call_group;
3436 tmp = SET_DEST (set);
3437 if (GET_CODE (tmp) == SUBREG)
3438 tmp = SUBREG_REG (tmp);
3439 if (REG_P (tmp))
3440 dest_regno = REGNO (tmp);
3441 else
3442 goto end_call_group;
3444 tmp = SET_SRC (set);
3445 if (GET_CODE (tmp) == SUBREG)
3446 tmp = SUBREG_REG (tmp);
3447 if ((GET_CODE (tmp) == PLUS
3448 || GET_CODE (tmp) == MINUS)
3449 && REG_P (XEXP (tmp, 0))
3450 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3451 && dest_regno == STACK_POINTER_REGNUM)
3452 src_regno = STACK_POINTER_REGNUM;
3453 else if (REG_P (tmp))
3454 src_regno = REGNO (tmp);
3455 else
3456 goto end_call_group;
3458 if (src_regno < FIRST_PSEUDO_REGISTER
3459 || dest_regno < FIRST_PSEUDO_REGISTER)
3461 if (!deps->readonly
3462 && deps->in_post_call_group_p == post_call_initial)
3463 deps->in_post_call_group_p = post_call;
3465 if (!sel_sched_p () || sched_emulate_haifa_p)
3467 SCHED_GROUP_P (insn) = 1;
3468 CANT_MOVE (insn) = 1;
3471 else
3473 end_call_group:
3474 if (!deps->readonly)
3475 deps->in_post_call_group_p = not_post_call;
3479 debug_dont_end_call_group:
3480 if ((current_sched_info->flags & DO_SPECULATION)
3481 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3482 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3483 be speculated. */
3485 if (sel_sched_p ())
3486 sel_mark_hard_insn (insn);
3487 else
3489 sd_iterator_def sd_it;
3490 dep_t dep;
3492 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3493 sd_iterator_cond (&sd_it, &dep);)
3494 change_spec_dep_to_hard (sd_it);
3498 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3499 honor their original ordering. */
3500 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3502 if (deps->last_args_size)
3503 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3504 if (!deps->readonly)
3505 deps->last_args_size = insn;
3508 /* We must not mix prologue and epilogue insns. See PR78029. */
3509 if (prologue_contains (insn))
3511 add_dependence_list (insn, deps->last_epilogue, true, REG_DEP_ANTI, true);
3512 if (!deps->readonly)
3514 if (deps->last_logue_was_epilogue)
3515 free_INSN_LIST_list (&deps->last_prologue);
3516 deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
3517 deps->last_logue_was_epilogue = false;
3521 if (epilogue_contains (insn))
3523 add_dependence_list (insn, deps->last_prologue, true, REG_DEP_ANTI, true);
3524 if (!deps->readonly)
3526 if (!deps->last_logue_was_epilogue)
3527 free_INSN_LIST_list (&deps->last_epilogue);
3528 deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
3529 deps->last_logue_was_epilogue = true;
3534 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3535 longjmp, loop forever, ...). */
3536 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3537 test for ECF_NORETURN? */
3538 static bool
3539 call_may_noreturn_p (rtx_insn *insn)
3541 rtx call;
3543 /* const or pure calls that aren't looping will always return. */
3544 if (RTL_CONST_OR_PURE_CALL_P (insn)
3545 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3546 return false;
3548 call = get_call_rtx_from (insn);
3549 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3551 rtx symbol = XEXP (XEXP (call, 0), 0);
3552 if (SYMBOL_REF_DECL (symbol)
3553 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3555 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3556 == BUILT_IN_NORMAL)
3557 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3559 case BUILT_IN_BCMP:
3560 case BUILT_IN_BCOPY:
3561 case BUILT_IN_BZERO:
3562 case BUILT_IN_INDEX:
3563 case BUILT_IN_MEMCHR:
3564 case BUILT_IN_MEMCMP:
3565 case BUILT_IN_MEMCPY:
3566 case BUILT_IN_MEMMOVE:
3567 case BUILT_IN_MEMPCPY:
3568 case BUILT_IN_MEMSET:
3569 case BUILT_IN_RINDEX:
3570 case BUILT_IN_STPCPY:
3571 case BUILT_IN_STPNCPY:
3572 case BUILT_IN_STRCAT:
3573 case BUILT_IN_STRCHR:
3574 case BUILT_IN_STRCMP:
3575 case BUILT_IN_STRCPY:
3576 case BUILT_IN_STRCSPN:
3577 case BUILT_IN_STRLEN:
3578 case BUILT_IN_STRNCAT:
3579 case BUILT_IN_STRNCMP:
3580 case BUILT_IN_STRNCPY:
3581 case BUILT_IN_STRPBRK:
3582 case BUILT_IN_STRRCHR:
3583 case BUILT_IN_STRSPN:
3584 case BUILT_IN_STRSTR:
3585 /* Assume certain string/memory builtins always return. */
3586 return false;
3587 default:
3588 break;
3593 /* For all other calls assume that they might not always return. */
3594 return true;
3597 /* Return true if INSN should be made dependent on the previous instruction
3598 group, and if all INSN's dependencies should be moved to the first
3599 instruction of that group. */
3601 static bool
3602 chain_to_prev_insn_p (rtx_insn *insn)
3604 /* INSN forms a group with the previous instruction. */
3605 if (SCHED_GROUP_P (insn))
3606 return true;
3608 /* If the previous instruction clobbers a register R and this one sets
3609 part of R, the clobber was added specifically to help us track the
3610 liveness of R. There's no point scheduling the clobber and leaving
3611 INSN behind, especially if we move the clobber to another block. */
3612 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3613 if (prev
3614 && INSN_P (prev)
3615 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3616 && GET_CODE (PATTERN (prev)) == CLOBBER)
3618 rtx x = XEXP (PATTERN (prev), 0);
3619 if (set_of (x, insn))
3620 return true;
3623 return false;
3626 /* Analyze INSN with DEPS as a context. */
3627 void
3628 deps_analyze_insn (struct deps_desc *deps, rtx_insn *insn)
3630 if (sched_deps_info->start_insn)
3631 sched_deps_info->start_insn (insn);
3633 /* Record the condition for this insn. */
3634 if (NONDEBUG_INSN_P (insn))
3636 rtx t;
3637 sched_get_condition_with_rev (insn, NULL);
3638 t = INSN_CACHED_COND (insn);
3639 INSN_COND_DEPS (insn) = NULL;
3640 if (reload_completed
3641 && (current_sched_info->flags & DO_PREDICATION)
3642 && COMPARISON_P (t)
3643 && REG_P (XEXP (t, 0))
3644 && CONSTANT_P (XEXP (t, 1)))
3646 unsigned int regno;
3647 int nregs;
3648 rtx_insn_list *cond_deps = NULL;
3649 t = XEXP (t, 0);
3650 regno = REGNO (t);
3651 nregs = REG_NREGS (t);
3652 while (nregs-- > 0)
3654 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3655 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3656 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3657 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3659 INSN_COND_DEPS (insn) = cond_deps;
3663 if (JUMP_P (insn))
3665 /* Make each JUMP_INSN (but not a speculative check)
3666 a scheduling barrier for memory references. */
3667 if (!deps->readonly
3668 && !(sel_sched_p ()
3669 && sel_insn_is_speculation_check (insn)))
3671 /* Keep the list a reasonable size. */
3672 if (deps->pending_flush_length++ >= MAX_PENDING_LIST_LENGTH)
3673 flush_pending_lists (deps, insn, true, true);
3674 else
3675 deps->pending_jump_insns
3676 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3679 /* For each insn which shouldn't cross a jump, add a dependence. */
3680 add_dependence_list_and_free (deps, insn,
3681 &deps->sched_before_next_jump, 1,
3682 REG_DEP_ANTI, true);
3684 sched_analyze_insn (deps, PATTERN (insn), insn);
3686 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3688 sched_analyze_insn (deps, PATTERN (insn), insn);
3690 else if (CALL_P (insn))
3692 int i;
3694 CANT_MOVE (insn) = 1;
3696 if (find_reg_note (insn, REG_SETJMP, NULL))
3698 /* This is setjmp. Assume that all registers, not just
3699 hard registers, may be clobbered by this call. */
3700 reg_pending_barrier = MOVE_BARRIER;
3702 else
3704 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3705 /* A call may read and modify global register variables. */
3706 if (global_regs[i])
3708 SET_REGNO_REG_SET (reg_pending_sets, i);
3709 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3711 /* Other call-clobbered hard regs may be clobbered.
3712 Since we only have a choice between 'might be clobbered'
3713 and 'definitely not clobbered', we must include all
3714 partly call-clobbered registers here. */
3715 else if (targetm.hard_regno_call_part_clobbered (i,
3716 reg_raw_mode[i])
3717 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3718 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3719 /* We don't know what set of fixed registers might be used
3720 by the function, but it is certain that the stack pointer
3721 is among them, but be conservative. */
3722 else if (fixed_regs[i])
3723 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3724 /* The frame pointer is normally not used by the function
3725 itself, but by the debugger. */
3726 /* ??? MIPS o32 is an exception. It uses the frame pointer
3727 in the macro expansion of jal but does not represent this
3728 fact in the call_insn rtl. */
3729 else if (i == FRAME_POINTER_REGNUM
3730 || (i == HARD_FRAME_POINTER_REGNUM
3731 && (! reload_completed || frame_pointer_needed)))
3732 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3735 /* For each insn which shouldn't cross a call, add a dependence
3736 between that insn and this call insn. */
3737 add_dependence_list_and_free (deps, insn,
3738 &deps->sched_before_next_call, 1,
3739 REG_DEP_ANTI, true);
3741 sched_analyze_insn (deps, PATTERN (insn), insn);
3743 /* If CALL would be in a sched group, then this will violate
3744 convention that sched group insns have dependencies only on the
3745 previous instruction.
3747 Of course one can say: "Hey! What about head of the sched group?"
3748 And I will answer: "Basic principles (one dep per insn) are always
3749 the same." */
3750 gcc_assert (!SCHED_GROUP_P (insn));
3752 /* In the absence of interprocedural alias analysis, we must flush
3753 all pending reads and writes, and start new dependencies starting
3754 from here. But only flush writes for constant calls (which may
3755 be passed a pointer to something we haven't written yet). */
3756 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3758 if (!deps->readonly)
3760 /* Remember the last function call for limiting lifetimes. */
3761 free_INSN_LIST_list (&deps->last_function_call);
3762 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3764 if (call_may_noreturn_p (insn))
3766 /* Remember the last function call that might not always return
3767 normally for limiting moves of trapping insns. */
3768 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3769 deps->last_function_call_may_noreturn
3770 = alloc_INSN_LIST (insn, NULL_RTX);
3773 /* Before reload, begin a post-call group, so as to keep the
3774 lifetimes of hard registers correct. */
3775 if (! reload_completed)
3776 deps->in_post_call_group_p = post_call;
3780 if (sched_deps_info->use_cselib)
3781 cselib_process_insn (insn);
3783 if (sched_deps_info->finish_insn)
3784 sched_deps_info->finish_insn ();
3786 /* Fixup the dependencies in the sched group. */
3787 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3788 && chain_to_prev_insn_p (insn)
3789 && !sel_sched_p ())
3790 chain_to_prev_insn (insn);
3793 /* Initialize DEPS for the new block beginning with HEAD. */
3794 void
3795 deps_start_bb (struct deps_desc *deps, rtx_insn *head)
3797 gcc_assert (!deps->readonly);
3799 /* Before reload, if the previous block ended in a call, show that
3800 we are inside a post-call group, so as to keep the lifetimes of
3801 hard registers correct. */
3802 if (! reload_completed && !LABEL_P (head))
3804 rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3806 if (insn && CALL_P (insn))
3807 deps->in_post_call_group_p = post_call_initial;
3811 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3812 dependencies for each insn. */
3813 void
3814 sched_analyze (struct deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3816 rtx_insn *insn;
3818 if (sched_deps_info->use_cselib)
3819 cselib_init (CSELIB_RECORD_MEMORY);
3821 deps_start_bb (deps, head);
3823 for (insn = head;; insn = NEXT_INSN (insn))
3826 if (INSN_P (insn))
3828 /* And initialize deps_lists. */
3829 sd_init_insn (insn);
3830 /* Clean up SCHED_GROUP_P which may be set by last
3831 scheduler pass. */
3832 if (SCHED_GROUP_P (insn))
3833 SCHED_GROUP_P (insn) = 0;
3836 deps_analyze_insn (deps, insn);
3838 if (insn == tail)
3840 if (sched_deps_info->use_cselib)
3841 cselib_finish ();
3842 return;
3845 gcc_unreachable ();
3848 /* Helper for sched_free_deps ().
3849 Delete INSN's (RESOLVED_P) backward dependencies. */
3850 static void
3851 delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
3853 sd_iterator_def sd_it;
3854 dep_t dep;
3855 sd_list_types_def types;
3857 if (resolved_p)
3858 types = SD_LIST_RES_BACK;
3859 else
3860 types = SD_LIST_BACK;
3862 for (sd_it = sd_iterator_start (insn, types);
3863 sd_iterator_cond (&sd_it, &dep);)
3865 dep_link_t link = *sd_it.linkp;
3866 dep_node_t node = DEP_LINK_NODE (link);
3867 deps_list_t back_list;
3868 deps_list_t forw_list;
3870 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3871 remove_from_deps_list (link, back_list);
3872 delete_dep_node (node);
3876 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3877 deps_lists. */
3878 void
3879 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3881 rtx_insn *insn;
3882 rtx_insn *next_tail = NEXT_INSN (tail);
3884 /* We make two passes since some insns may be scheduled before their
3885 dependencies are resolved. */
3886 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3887 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3889 /* Clear forward deps and leave the dep_nodes to the
3890 corresponding back_deps list. */
3891 if (resolved_p)
3892 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3893 else
3894 clear_deps_list (INSN_FORW_DEPS (insn));
3896 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3897 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3899 /* Clear resolved back deps together with its dep_nodes. */
3900 delete_dep_nodes_in_back_deps (insn, resolved_p);
3902 sd_finish_insn (insn);
3906 /* Initialize variables for region data dependence analysis.
3907 When LAZY_REG_LAST is true, do not allocate reg_last array
3908 of struct deps_desc immediately. */
3910 void
3911 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3913 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3915 deps->max_reg = max_reg;
3916 if (lazy_reg_last)
3917 deps->reg_last = NULL;
3918 else
3919 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3920 INIT_REG_SET (&deps->reg_last_in_use);
3922 deps->pending_read_insns = 0;
3923 deps->pending_read_mems = 0;
3924 deps->pending_write_insns = 0;
3925 deps->pending_write_mems = 0;
3926 deps->pending_jump_insns = 0;
3927 deps->pending_read_list_length = 0;
3928 deps->pending_write_list_length = 0;
3929 deps->pending_flush_length = 0;
3930 deps->last_pending_memory_flush = 0;
3931 deps->last_function_call = 0;
3932 deps->last_function_call_may_noreturn = 0;
3933 deps->sched_before_next_call = 0;
3934 deps->sched_before_next_jump = 0;
3935 deps->in_post_call_group_p = not_post_call;
3936 deps->last_debug_insn = 0;
3937 deps->last_args_size = 0;
3938 deps->last_prologue = 0;
3939 deps->last_epilogue = 0;
3940 deps->last_logue_was_epilogue = false;
3941 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3942 deps->readonly = 0;
3945 /* Init only reg_last field of DEPS, which was not allocated before as
3946 we inited DEPS lazily. */
3947 void
3948 init_deps_reg_last (struct deps_desc *deps)
3950 gcc_assert (deps && deps->max_reg > 0);
3951 gcc_assert (deps->reg_last == NULL);
3953 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3957 /* Free insn lists found in DEPS. */
3959 void
3960 free_deps (struct deps_desc *deps)
3962 unsigned i;
3963 reg_set_iterator rsi;
3965 /* We set max_reg to 0 when this context was already freed. */
3966 if (deps->max_reg == 0)
3968 gcc_assert (deps->reg_last == NULL);
3969 return;
3971 deps->max_reg = 0;
3973 free_INSN_LIST_list (&deps->pending_read_insns);
3974 free_EXPR_LIST_list (&deps->pending_read_mems);
3975 free_INSN_LIST_list (&deps->pending_write_insns);
3976 free_EXPR_LIST_list (&deps->pending_write_mems);
3977 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3979 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3980 times. For a testcase with 42000 regs and 8000 small basic blocks,
3981 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3982 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3984 struct deps_reg *reg_last = &deps->reg_last[i];
3985 if (reg_last->uses)
3986 free_INSN_LIST_list (&reg_last->uses);
3987 if (reg_last->sets)
3988 free_INSN_LIST_list (&reg_last->sets);
3989 if (reg_last->implicit_sets)
3990 free_INSN_LIST_list (&reg_last->implicit_sets);
3991 if (reg_last->control_uses)
3992 free_INSN_LIST_list (&reg_last->control_uses);
3993 if (reg_last->clobbers)
3994 free_INSN_LIST_list (&reg_last->clobbers);
3996 CLEAR_REG_SET (&deps->reg_last_in_use);
3998 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3999 it at all. */
4000 free (deps->reg_last);
4001 deps->reg_last = NULL;
4003 deps = NULL;
4006 /* Remove INSN from dependence contexts DEPS. */
4007 void
4008 remove_from_deps (struct deps_desc *deps, rtx_insn *insn)
4010 int removed;
4011 unsigned i;
4012 reg_set_iterator rsi;
4014 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
4015 &deps->pending_read_mems);
4016 if (!DEBUG_INSN_P (insn))
4017 deps->pending_read_list_length -= removed;
4018 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
4019 &deps->pending_write_mems);
4020 deps->pending_write_list_length -= removed;
4022 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4023 deps->pending_flush_length -= removed;
4024 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4025 deps->pending_flush_length -= removed;
4027 unsigned to_clear = -1U;
4028 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4030 if (to_clear != -1U)
4032 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4033 to_clear = -1U;
4035 struct deps_reg *reg_last = &deps->reg_last[i];
4036 if (reg_last->uses)
4037 remove_from_dependence_list (insn, &reg_last->uses);
4038 if (reg_last->sets)
4039 remove_from_dependence_list (insn, &reg_last->sets);
4040 if (reg_last->implicit_sets)
4041 remove_from_dependence_list (insn, &reg_last->implicit_sets);
4042 if (reg_last->clobbers)
4043 remove_from_dependence_list (insn, &reg_last->clobbers);
4044 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4045 && !reg_last->clobbers)
4046 to_clear = i;
4048 if (to_clear != -1U)
4049 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4051 if (CALL_P (insn))
4053 remove_from_dependence_list (insn, &deps->last_function_call);
4054 remove_from_dependence_list (insn,
4055 &deps->last_function_call_may_noreturn);
4057 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4060 /* Init deps data vector. */
4061 static void
4062 init_deps_data_vector (void)
4064 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4065 if (reserve > 0 && ! h_d_i_d.space (reserve))
4066 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4069 /* If it is profitable to use them, initialize or extend (depending on
4070 GLOBAL_P) dependency data. */
4071 void
4072 sched_deps_init (bool global_p)
4074 /* Average number of insns in the basic block.
4075 '+ 1' is used to make it nonzero. */
4076 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4078 init_deps_data_vector ();
4080 /* We use another caching mechanism for selective scheduling, so
4081 we don't use this one. */
4082 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4084 /* ?!? We could save some memory by computing a per-region luid mapping
4085 which could reduce both the number of vectors in the cache and the
4086 size of each vector. Instead we just avoid the cache entirely unless
4087 the average number of instructions in a basic block is very high. See
4088 the comment before the declaration of true_dependency_cache for
4089 what we consider "very high". */
4090 cache_size = 0;
4091 extend_dependency_caches (sched_max_luid, true);
4094 if (global_p)
4096 dl_pool = new object_allocator<_deps_list> ("deps_list");
4097 /* Allocate lists for one block at a time. */
4098 dn_pool = new object_allocator<_dep_node> ("dep_node");
4099 /* Allocate nodes for one block at a time. */
4104 /* Create or extend (depending on CREATE_P) dependency caches to
4105 size N. */
4106 void
4107 extend_dependency_caches (int n, bool create_p)
4109 if (create_p || true_dependency_cache)
4111 int i, luid = cache_size + n;
4113 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4114 luid);
4115 output_dependency_cache = XRESIZEVEC (bitmap_head,
4116 output_dependency_cache, luid);
4117 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4118 luid);
4119 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4120 luid);
4122 if (current_sched_info->flags & DO_SPECULATION)
4123 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4124 luid);
4126 for (i = cache_size; i < luid; i++)
4128 bitmap_initialize (&true_dependency_cache[i], 0);
4129 bitmap_initialize (&output_dependency_cache[i], 0);
4130 bitmap_initialize (&anti_dependency_cache[i], 0);
4131 bitmap_initialize (&control_dependency_cache[i], 0);
4133 if (current_sched_info->flags & DO_SPECULATION)
4134 bitmap_initialize (&spec_dependency_cache[i], 0);
4136 cache_size = luid;
4140 /* Finalize dependency information for the whole function. */
4141 void
4142 sched_deps_finish (void)
4144 gcc_assert (deps_pools_are_empty_p ());
4145 delete dn_pool;
4146 delete dl_pool;
4147 dn_pool = NULL;
4148 dl_pool = NULL;
4150 h_d_i_d.release ();
4151 cache_size = 0;
4153 if (true_dependency_cache)
4155 int i;
4157 for (i = 0; i < cache_size; i++)
4159 bitmap_clear (&true_dependency_cache[i]);
4160 bitmap_clear (&output_dependency_cache[i]);
4161 bitmap_clear (&anti_dependency_cache[i]);
4162 bitmap_clear (&control_dependency_cache[i]);
4164 if (sched_deps_info->generate_spec_deps)
4165 bitmap_clear (&spec_dependency_cache[i]);
4167 free (true_dependency_cache);
4168 true_dependency_cache = NULL;
4169 free (output_dependency_cache);
4170 output_dependency_cache = NULL;
4171 free (anti_dependency_cache);
4172 anti_dependency_cache = NULL;
4173 free (control_dependency_cache);
4174 control_dependency_cache = NULL;
4176 if (sched_deps_info->generate_spec_deps)
4178 free (spec_dependency_cache);
4179 spec_dependency_cache = NULL;
4185 /* Initialize some global variables needed by the dependency analysis
4186 code. */
4188 void
4189 init_deps_global (void)
4191 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4192 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4193 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4194 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4195 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4196 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4197 reg_pending_barrier = NOT_A_BARRIER;
4199 if (!sel_sched_p () || sched_emulate_haifa_p)
4201 sched_deps_info->start_insn = haifa_start_insn;
4202 sched_deps_info->finish_insn = haifa_finish_insn;
4204 sched_deps_info->note_reg_set = haifa_note_reg_set;
4205 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4206 sched_deps_info->note_reg_use = haifa_note_reg_use;
4208 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4209 sched_deps_info->note_dep = haifa_note_dep;
4213 /* Free everything used by the dependency analysis code. */
4215 void
4216 finish_deps_global (void)
4218 FREE_REG_SET (reg_pending_sets);
4219 FREE_REG_SET (reg_pending_clobbers);
4220 FREE_REG_SET (reg_pending_uses);
4221 FREE_REG_SET (reg_pending_control_uses);
4224 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4225 dw_t
4226 estimate_dep_weak (rtx mem1, rtx mem2)
4228 if (mem1 == mem2)
4229 /* MEMs are the same - don't speculate. */
4230 return MIN_DEP_WEAK;
4232 rtx r1 = XEXP (mem1, 0);
4233 rtx r2 = XEXP (mem2, 0);
4235 if (sched_deps_info->use_cselib)
4237 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4238 dangling at this point, since we never preserve them. Instead we
4239 canonicalize manually to get stable VALUEs out of hashing. */
4240 if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
4241 r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
4242 if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
4243 r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
4246 if (r1 == r2
4247 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
4248 /* Again, MEMs are the same. */
4249 return MIN_DEP_WEAK;
4250 else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
4251 /* Different addressing modes - reason to be more speculative,
4252 than usual. */
4253 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4254 else
4255 /* We can't say anything about the dependence. */
4256 return UNCERTAIN_DEP_WEAK;
4259 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4260 This function can handle same INSN and ELEM (INSN == ELEM).
4261 It is a convenience wrapper. */
4262 static void
4263 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4265 ds_t ds;
4266 bool internal;
4268 if (dep_type == REG_DEP_TRUE)
4269 ds = DEP_TRUE;
4270 else if (dep_type == REG_DEP_OUTPUT)
4271 ds = DEP_OUTPUT;
4272 else if (dep_type == REG_DEP_CONTROL)
4273 ds = DEP_CONTROL;
4274 else
4276 gcc_assert (dep_type == REG_DEP_ANTI);
4277 ds = DEP_ANTI;
4280 /* When add_dependence is called from inside sched-deps.c, we expect
4281 cur_insn to be non-null. */
4282 internal = cur_insn != NULL;
4283 if (internal)
4284 gcc_assert (insn == cur_insn);
4285 else
4286 cur_insn = insn;
4288 note_dep (elem, ds);
4289 if (!internal)
4290 cur_insn = NULL;
4293 /* Return weakness of speculative type TYPE in the dep_status DS,
4294 without checking to prevent ICEs on malformed input. */
4295 static dw_t
4296 get_dep_weak_1 (ds_t ds, ds_t type)
4298 ds = ds & type;
4300 switch (type)
4302 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4303 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4304 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4305 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4306 default: gcc_unreachable ();
4309 return (dw_t) ds;
4312 /* Return weakness of speculative type TYPE in the dep_status DS. */
4313 dw_t
4314 get_dep_weak (ds_t ds, ds_t type)
4316 dw_t dw = get_dep_weak_1 (ds, type);
4318 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4319 return dw;
4322 /* Return the dep_status, which has the same parameters as DS, except for
4323 speculative type TYPE, that will have weakness DW. */
4324 ds_t
4325 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4327 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4329 ds &= ~type;
4330 switch (type)
4332 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4333 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4334 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4335 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4336 default: gcc_unreachable ();
4338 return ds;
4341 /* Return the join of two dep_statuses DS1 and DS2.
4342 If MAX_P is true then choose the greater probability,
4343 otherwise multiply probabilities.
4344 This function assumes that both DS1 and DS2 contain speculative bits. */
4345 static ds_t
4346 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4348 ds_t ds, t;
4350 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4352 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4354 t = FIRST_SPEC_TYPE;
4357 if ((ds1 & t) && !(ds2 & t))
4358 ds |= ds1 & t;
4359 else if (!(ds1 & t) && (ds2 & t))
4360 ds |= ds2 & t;
4361 else if ((ds1 & t) && (ds2 & t))
4363 dw_t dw1 = get_dep_weak (ds1, t);
4364 dw_t dw2 = get_dep_weak (ds2, t);
4365 ds_t dw;
4367 if (!max_p)
4369 dw = ((ds_t) dw1) * ((ds_t) dw2);
4370 dw /= MAX_DEP_WEAK;
4371 if (dw < MIN_DEP_WEAK)
4372 dw = MIN_DEP_WEAK;
4374 else
4376 if (dw1 >= dw2)
4377 dw = dw1;
4378 else
4379 dw = dw2;
4382 ds = set_dep_weak (ds, t, (dw_t) dw);
4385 if (t == LAST_SPEC_TYPE)
4386 break;
4387 t <<= SPEC_TYPE_SHIFT;
4389 while (1);
4391 return ds;
4394 /* Return the join of two dep_statuses DS1 and DS2.
4395 This function assumes that both DS1 and DS2 contain speculative bits. */
4396 ds_t
4397 ds_merge (ds_t ds1, ds_t ds2)
4399 return ds_merge_1 (ds1, ds2, false);
4402 /* Return the join of two dep_statuses DS1 and DS2. */
4403 ds_t
4404 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4406 ds_t new_status = ds | ds2;
4408 if (new_status & SPECULATIVE)
4410 if ((ds && !(ds & SPECULATIVE))
4411 || (ds2 && !(ds2 & SPECULATIVE)))
4412 /* Then this dep can't be speculative. */
4413 new_status &= ~SPECULATIVE;
4414 else
4416 /* Both are speculative. Merging probabilities. */
4417 if (mem1)
4419 dw_t dw;
4421 dw = estimate_dep_weak (mem1, mem2);
4422 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4425 if (!ds)
4426 new_status = ds2;
4427 else if (!ds2)
4428 new_status = ds;
4429 else
4430 new_status = ds_merge (ds2, ds);
4434 return new_status;
4437 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4438 probabilities. */
4439 ds_t
4440 ds_max_merge (ds_t ds1, ds_t ds2)
4442 if (ds1 == 0 && ds2 == 0)
4443 return 0;
4445 if (ds1 == 0 && ds2 != 0)
4446 return ds2;
4448 if (ds1 != 0 && ds2 == 0)
4449 return ds1;
4451 return ds_merge_1 (ds1, ds2, true);
4454 /* Return the probability of speculation success for the speculation
4455 status DS. */
4456 dw_t
4457 ds_weak (ds_t ds)
4459 ds_t res = 1, dt;
4460 int n = 0;
4462 dt = FIRST_SPEC_TYPE;
4465 if (ds & dt)
4467 res *= (ds_t) get_dep_weak (ds, dt);
4468 n++;
4471 if (dt == LAST_SPEC_TYPE)
4472 break;
4473 dt <<= SPEC_TYPE_SHIFT;
4475 while (1);
4477 gcc_assert (n);
4478 while (--n)
4479 res /= MAX_DEP_WEAK;
4481 if (res < MIN_DEP_WEAK)
4482 res = MIN_DEP_WEAK;
4484 gcc_assert (res <= MAX_DEP_WEAK);
4486 return (dw_t) res;
4489 /* Return a dep status that contains all speculation types of DS. */
4490 ds_t
4491 ds_get_speculation_types (ds_t ds)
4493 if (ds & BEGIN_DATA)
4494 ds |= BEGIN_DATA;
4495 if (ds & BE_IN_DATA)
4496 ds |= BE_IN_DATA;
4497 if (ds & BEGIN_CONTROL)
4498 ds |= BEGIN_CONTROL;
4499 if (ds & BE_IN_CONTROL)
4500 ds |= BE_IN_CONTROL;
4502 return ds & SPECULATIVE;
4505 /* Return a dep status that contains maximal weakness for each speculation
4506 type present in DS. */
4507 ds_t
4508 ds_get_max_dep_weak (ds_t ds)
4510 if (ds & BEGIN_DATA)
4511 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4512 if (ds & BE_IN_DATA)
4513 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4514 if (ds & BEGIN_CONTROL)
4515 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4516 if (ds & BE_IN_CONTROL)
4517 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4519 return ds;
4522 /* Dump information about the dependence status S. */
4523 static void
4524 dump_ds (FILE *f, ds_t s)
4526 fprintf (f, "{");
4528 if (s & BEGIN_DATA)
4529 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4530 if (s & BE_IN_DATA)
4531 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4532 if (s & BEGIN_CONTROL)
4533 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4534 if (s & BE_IN_CONTROL)
4535 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4537 if (s & HARD_DEP)
4538 fprintf (f, "HARD_DEP; ");
4540 if (s & DEP_TRUE)
4541 fprintf (f, "DEP_TRUE; ");
4542 if (s & DEP_OUTPUT)
4543 fprintf (f, "DEP_OUTPUT; ");
4544 if (s & DEP_ANTI)
4545 fprintf (f, "DEP_ANTI; ");
4546 if (s & DEP_CONTROL)
4547 fprintf (f, "DEP_CONTROL; ");
4549 fprintf (f, "}");
4552 DEBUG_FUNCTION void
4553 debug_ds (ds_t s)
4555 dump_ds (stderr, s);
4556 fprintf (stderr, "\n");
4559 /* Verify that dependence type and status are consistent.
4560 If RELAXED_P is true, then skip dep_weakness checks. */
4561 static void
4562 check_dep (dep_t dep, bool relaxed_p)
4564 enum reg_note dt = DEP_TYPE (dep);
4565 ds_t ds = DEP_STATUS (dep);
4567 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4569 if (!(current_sched_info->flags & USE_DEPS_LIST))
4571 gcc_assert (ds == 0);
4572 return;
4575 /* Check that dependence type contains the same bits as the status. */
4576 if (dt == REG_DEP_TRUE)
4577 gcc_assert (ds & DEP_TRUE);
4578 else if (dt == REG_DEP_OUTPUT)
4579 gcc_assert ((ds & DEP_OUTPUT)
4580 && !(ds & DEP_TRUE));
4581 else if (dt == REG_DEP_ANTI)
4582 gcc_assert ((ds & DEP_ANTI)
4583 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4584 else
4585 gcc_assert (dt == REG_DEP_CONTROL
4586 && (ds & DEP_CONTROL)
4587 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4589 /* HARD_DEP can not appear in dep_status of a link. */
4590 gcc_assert (!(ds & HARD_DEP));
4592 /* Check that dependence status is set correctly when speculation is not
4593 supported. */
4594 if (!sched_deps_info->generate_spec_deps)
4595 gcc_assert (!(ds & SPECULATIVE));
4596 else if (ds & SPECULATIVE)
4598 if (!relaxed_p)
4600 ds_t type = FIRST_SPEC_TYPE;
4602 /* Check that dependence weakness is in proper range. */
4605 if (ds & type)
4606 get_dep_weak (ds, type);
4608 if (type == LAST_SPEC_TYPE)
4609 break;
4610 type <<= SPEC_TYPE_SHIFT;
4612 while (1);
4615 if (ds & BEGIN_SPEC)
4617 /* Only true dependence can be data speculative. */
4618 if (ds & BEGIN_DATA)
4619 gcc_assert (ds & DEP_TRUE);
4621 /* Control dependencies in the insn scheduler are represented by
4622 anti-dependencies, therefore only anti dependence can be
4623 control speculative. */
4624 if (ds & BEGIN_CONTROL)
4625 gcc_assert (ds & DEP_ANTI);
4627 else
4629 /* Subsequent speculations should resolve true dependencies. */
4630 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4633 /* Check that true and anti dependencies can't have other speculative
4634 statuses. */
4635 if (ds & DEP_TRUE)
4636 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4637 /* An output dependence can't be speculative at all. */
4638 gcc_assert (!(ds & DEP_OUTPUT));
4639 if (ds & DEP_ANTI)
4640 gcc_assert (ds & BEGIN_CONTROL);
4644 /* The following code discovers opportunities to switch a memory reference
4645 and an increment by modifying the address. We ensure that this is done
4646 only for dependencies that are only used to show a single register
4647 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4648 instruction involved is subject to only one dep that can cause a pattern
4649 change.
4651 When we discover a suitable dependency, we fill in the dep_replacement
4652 structure to show how to modify the memory reference. */
4654 /* Holds information about a pair of memory reference and register increment
4655 insns which depend on each other, but could possibly be interchanged. */
4656 struct mem_inc_info
4658 rtx_insn *inc_insn;
4659 rtx_insn *mem_insn;
4661 rtx *mem_loc;
4662 /* A register occurring in the memory address for which we wish to break
4663 the dependence. This must be identical to the destination register of
4664 the increment. */
4665 rtx mem_reg0;
4666 /* Any kind of index that is added to that register. */
4667 rtx mem_index;
4668 /* The constant offset used in the memory address. */
4669 HOST_WIDE_INT mem_constant;
4670 /* The constant added in the increment insn. Negated if the increment is
4671 after the memory address. */
4672 HOST_WIDE_INT inc_constant;
4673 /* The source register used in the increment. May be different from mem_reg0
4674 if the increment occurs before the memory address. */
4675 rtx inc_input;
4678 /* Verify that the memory location described in MII can be replaced with
4679 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4680 insn remains unchanged by this function. */
4682 static rtx
4683 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4685 rtx mem = *mii->mem_loc;
4686 rtx new_mem;
4688 /* Jump through a lot of hoops to keep the attributes up to date. We
4689 do not want to call one of the change address variants that take
4690 an offset even though we know the offset in many cases. These
4691 assume you are changing where the address is pointing by the
4692 offset. */
4693 new_mem = replace_equiv_address_nv (mem, new_addr);
4694 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4696 if (sched_verbose >= 5)
4697 fprintf (sched_dump, "validation failure\n");
4698 return NULL_RTX;
4701 /* Put back the old one. */
4702 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4704 return new_mem;
4707 /* Return true if INSN is of a form "a = b op c" where a and b are
4708 regs. op is + if c is a reg and +|- if c is a const. Fill in
4709 informantion in MII about what is found.
4710 BEFORE_MEM indicates whether the increment is found before or after
4711 a corresponding memory reference. */
4713 static bool
4714 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4716 rtx pat = single_set (insn);
4717 rtx src, cst;
4718 bool regs_equal;
4720 if (RTX_FRAME_RELATED_P (insn) || !pat)
4721 return false;
4723 /* Do not allow breaking data dependencies for insns that are marked
4724 with REG_STACK_CHECK. */
4725 if (find_reg_note (insn, REG_STACK_CHECK, NULL))
4726 return false;
4728 /* Result must be single reg. */
4729 if (!REG_P (SET_DEST (pat)))
4730 return false;
4732 if (GET_CODE (SET_SRC (pat)) != PLUS)
4733 return false;
4735 mii->inc_insn = insn;
4736 src = SET_SRC (pat);
4737 mii->inc_input = XEXP (src, 0);
4739 if (!REG_P (XEXP (src, 0)))
4740 return false;
4742 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4743 return false;
4745 cst = XEXP (src, 1);
4746 if (!CONST_INT_P (cst))
4747 return false;
4748 mii->inc_constant = INTVAL (cst);
4750 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4752 if (!before_mem)
4754 mii->inc_constant = -mii->inc_constant;
4755 if (!regs_equal)
4756 return false;
4759 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4761 /* Note that the sign has already been reversed for !before_mem. */
4762 if (STACK_GROWS_DOWNWARD)
4763 return mii->inc_constant > 0;
4764 else
4765 return mii->inc_constant < 0;
4767 return true;
4770 /* Once a suitable mem reference has been found and the corresponding data
4771 in MII has been filled in, this function is called to find a suitable
4772 add or inc insn involving the register we found in the memory
4773 reference. */
4775 static bool
4776 find_inc (struct mem_inc_info *mii, bool backwards)
4778 sd_iterator_def sd_it;
4779 dep_t dep;
4781 sd_it = sd_iterator_start (mii->mem_insn,
4782 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4783 while (sd_iterator_cond (&sd_it, &dep))
4785 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4786 rtx_insn *pro = DEP_PRO (dep);
4787 rtx_insn *con = DEP_CON (dep);
4788 rtx_insn *inc_cand = backwards ? pro : con;
4789 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4790 goto next;
4791 if (parse_add_or_inc (mii, inc_cand, backwards))
4793 struct dep_replacement *desc;
4794 df_ref def;
4795 rtx newaddr, newmem;
4797 if (sched_verbose >= 5)
4798 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4799 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4801 /* Need to assure that none of the operands of the inc
4802 instruction are assigned to by the mem insn. */
4803 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4804 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4805 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4807 if (sched_verbose >= 5)
4808 fprintf (sched_dump,
4809 "inc conflicts with store failure.\n");
4810 goto next;
4813 newaddr = mii->inc_input;
4814 if (mii->mem_index != NULL_RTX)
4815 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4816 mii->mem_index);
4817 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4818 mii->mem_constant + mii->inc_constant);
4819 newmem = attempt_change (mii, newaddr);
4820 if (newmem == NULL_RTX)
4821 goto next;
4822 if (sched_verbose >= 5)
4823 fprintf (sched_dump, "successful address replacement\n");
4824 desc = XCNEW (struct dep_replacement);
4825 DEP_REPLACE (dep) = desc;
4826 desc->loc = mii->mem_loc;
4827 desc->newval = newmem;
4828 desc->orig = *desc->loc;
4829 desc->insn = mii->mem_insn;
4830 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4831 INSN_SPEC_BACK_DEPS (con));
4832 if (backwards)
4834 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4835 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4836 REG_DEP_TRUE);
4838 else
4840 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4841 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4842 REG_DEP_ANTI);
4844 return true;
4846 next:
4847 sd_iterator_next (&sd_it);
4849 return false;
4852 /* A recursive function that walks ADDRESS_OF_X to find memory references
4853 which could be modified during scheduling. We call find_inc for each
4854 one we find that has a recognizable form. MII holds information about
4855 the pair of memory/increment instructions.
4856 We ensure that every instruction with a memory reference (which will be
4857 the location of the replacement) is assigned at most one breakable
4858 dependency. */
4860 static bool
4861 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4863 rtx x = *address_of_x;
4864 enum rtx_code code = GET_CODE (x);
4865 const char *const fmt = GET_RTX_FORMAT (code);
4866 int i;
4868 if (code == MEM)
4870 rtx reg0 = XEXP (x, 0);
4872 mii->mem_loc = address_of_x;
4873 mii->mem_index = NULL_RTX;
4874 mii->mem_constant = 0;
4875 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4877 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4878 reg0 = XEXP (reg0, 0);
4880 if (GET_CODE (reg0) == PLUS)
4882 mii->mem_index = XEXP (reg0, 1);
4883 reg0 = XEXP (reg0, 0);
4885 if (REG_P (reg0))
4887 df_ref use;
4888 int occurrences = 0;
4890 /* Make sure this reg appears only once in this insn. Can't use
4891 count_occurrences since that only works for pseudos. */
4892 FOR_EACH_INSN_USE (use, mii->mem_insn)
4893 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4894 if (++occurrences > 1)
4896 if (sched_verbose >= 5)
4897 fprintf (sched_dump, "mem count failure\n");
4898 return false;
4901 mii->mem_reg0 = reg0;
4902 return find_inc (mii, true) || find_inc (mii, false);
4904 return false;
4907 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4909 /* If REG occurs inside a MEM used in a bit-field reference,
4910 that is unacceptable. */
4911 return false;
4914 /* Time for some deep diving. */
4915 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4917 if (fmt[i] == 'e')
4919 if (find_mem (mii, &XEXP (x, i)))
4920 return true;
4922 else if (fmt[i] == 'E')
4924 int j;
4925 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4926 if (find_mem (mii, &XVECEXP (x, i, j)))
4927 return true;
4930 return false;
4934 /* Examine the instructions between HEAD and TAIL and try to find
4935 dependencies that can be broken by modifying one of the patterns. */
4937 void
4938 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4940 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4941 int success_in_block = 0;
4943 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4945 struct mem_inc_info mii;
4947 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4948 continue;
4950 mii.mem_insn = insn;
4951 if (find_mem (&mii, &PATTERN (insn)))
4952 success_in_block++;
4954 if (success_in_block && sched_verbose >= 5)
4955 fprintf (sched_dump, "%d candidates for address modification found.\n",
4956 success_in_block);
4959 #endif /* INSN_SCHEDULING */