* system.h: Poison NO_RECURSIVE_FUNCTION_CSE.
[official-gcc.git] / gcc / config / xtensa / xtensa.h
blob9eb017507a745642933fb568d039692813fa8132
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
25 /* Standard GCC variables that we reference. */
26 extern int current_function_calls_alloca;
27 extern int target_flags;
28 extern int optimize;
30 /* External variables defined in xtensa.c. */
32 /* comparison type */
33 enum cmp_type {
34 CMP_SI, /* four byte integers */
35 CMP_DI, /* eight byte integers */
36 CMP_SF, /* single precision floats */
37 CMP_DF, /* double precision floats */
38 CMP_MAX /* max comparison type */
41 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
42 extern enum cmp_type branch_type; /* what type of branch to use */
43 extern unsigned xtensa_current_frame_size;
45 /* Masks for the -m switches */
46 #define MASK_NO_FUSED_MADD 0x00000001 /* avoid f-p mul/add */
47 #define MASK_CONST16 0x00000002 /* use CONST16 instruction */
49 /* Macros used in the machine description to select various Xtensa
50 configuration options. */
51 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
52 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
53 #define TARGET_MAC16 XCHAL_HAVE_MAC16
54 #define TARGET_MUL16 XCHAL_HAVE_MUL16
55 #define TARGET_MUL32 XCHAL_HAVE_MUL32
56 #define TARGET_DIV32 XCHAL_HAVE_DIV32
57 #define TARGET_NSA XCHAL_HAVE_NSA
58 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
59 #define TARGET_SEXT XCHAL_HAVE_SEXT
60 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
61 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
62 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
63 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
64 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
65 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
66 #define TARGET_ABS XCHAL_HAVE_ABS
67 #define TARGET_ADDX XCHAL_HAVE_ADDX
69 /* Macros controlled by command-line options. */
70 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
71 #define TARGET_CONST16 (target_flags & MASK_CONST16)
73 #define TARGET_DEFAULT ( \
74 (XCHAL_HAVE_L32R ? 0 : MASK_CONST16))
76 #define TARGET_SWITCHES \
77 { \
78 {"const16", MASK_CONST16, \
79 N_("Use CONST16 instruction to load constants")}, \
80 {"no-const16", -MASK_CONST16, \
81 N_("Use PC-relative L32R instruction to load constants")}, \
82 {"no-fused-madd", MASK_NO_FUSED_MADD, \
83 N_("Disable fused multiply/add and multiply/subtract FP instructions")}, \
84 {"fused-madd", -MASK_NO_FUSED_MADD, \
85 N_("Enable fused multiply/add and multiply/subtract FP instructions")}, \
86 {"text-section-literals", 0, \
87 N_("Intersperse literal pools with code in the text section")}, \
88 {"no-text-section-literals", 0, \
89 N_("Put literal pools in a separate literal section")}, \
90 {"target-align", 0, \
91 N_("Automatically align branch targets to reduce branch penalties")}, \
92 {"no-target-align", 0, \
93 N_("Do not automatically align branch targets")}, \
94 {"longcalls", 0, \
95 N_("Use indirect CALLXn instructions for large programs")}, \
96 {"no-longcalls", 0, \
97 N_("Use direct CALLn instructions for fast calls")}, \
98 {"", TARGET_DEFAULT, 0} \
102 #define OVERRIDE_OPTIONS override_options ()
104 /* Target CPU builtins. */
105 #define TARGET_CPU_CPP_BUILTINS() \
106 do { \
107 builtin_assert ("cpu=xtensa"); \
108 builtin_assert ("machine=xtensa"); \
109 builtin_define ("__xtensa__"); \
110 builtin_define ("__XTENSA__"); \
111 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
112 if (!TARGET_HARD_FLOAT) \
113 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
114 if (flag_pic) \
116 builtin_define ("__PIC__"); \
117 builtin_define ("__pic__"); \
119 } while (0)
121 #define CPP_SPEC " %(subtarget_cpp_spec) "
123 #ifndef SUBTARGET_CPP_SPEC
124 #define SUBTARGET_CPP_SPEC ""
125 #endif
127 #define EXTRA_SPECS \
128 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
130 #ifdef __XTENSA_EB__
131 #define LIBGCC2_WORDS_BIG_ENDIAN 1
132 #else
133 #define LIBGCC2_WORDS_BIG_ENDIAN 0
134 #endif
136 /* Show we can debug even without a frame pointer. */
137 #define CAN_DEBUG_WITHOUT_FP
140 /* Target machine storage layout */
142 /* Define this if most significant bit is lowest numbered
143 in instructions that operate on numbered bit-fields. */
144 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
146 /* Define this if most significant byte of a word is the lowest numbered. */
147 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
149 /* Define this if most significant word of a multiword number is the lowest. */
150 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
152 #define MAX_BITS_PER_WORD 32
154 /* Width of a word, in units (bytes). */
155 #define UNITS_PER_WORD 4
156 #define MIN_UNITS_PER_WORD 4
158 /* Width of a floating point register. */
159 #define UNITS_PER_FPREG 4
161 /* Size in bits of various types on the target machine. */
162 #define INT_TYPE_SIZE 32
163 #define SHORT_TYPE_SIZE 16
164 #define LONG_TYPE_SIZE 32
165 #define LONG_LONG_TYPE_SIZE 64
166 #define FLOAT_TYPE_SIZE 32
167 #define DOUBLE_TYPE_SIZE 64
168 #define LONG_DOUBLE_TYPE_SIZE 64
170 /* Allocation boundary (in *bits*) for storing pointers in memory. */
171 #define POINTER_BOUNDARY 32
173 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
174 #define PARM_BOUNDARY 32
176 /* Allocation boundary (in *bits*) for the code of a function. */
177 #define FUNCTION_BOUNDARY 32
179 /* Alignment of field after 'int : 0' in a structure. */
180 #define EMPTY_FIELD_BOUNDARY 32
182 /* Every structure's size must be a multiple of this. */
183 #define STRUCTURE_SIZE_BOUNDARY 8
185 /* There is no point aligning anything to a rounder boundary than this. */
186 #define BIGGEST_ALIGNMENT 128
188 /* Set this nonzero if move instructions will actually fail to work
189 when given unaligned data. */
190 #define STRICT_ALIGNMENT 1
192 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
193 for QImode, because there is no 8-bit load from memory with sign
194 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
195 loads both with and without sign extension. */
196 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
197 do { \
198 if (GET_MODE_CLASS (MODE) == MODE_INT \
199 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
201 if ((MODE) == QImode) \
202 (UNSIGNEDP) = 1; \
203 (MODE) = SImode; \
205 } while (0)
207 /* Imitate the way many other C compilers handle alignment of
208 bitfields and the structures that contain them. */
209 #define PCC_BITFIELD_TYPE_MATTERS 1
211 /* Align string constants and constructors to at least a word boundary.
212 The typical use of this macro is to increase alignment for string
213 constants to be word aligned so that 'strcpy' calls that copy
214 constants can be done inline. */
215 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
216 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
217 && (ALIGN) < BITS_PER_WORD \
218 ? BITS_PER_WORD \
219 : (ALIGN))
221 /* Align arrays, unions and records to at least a word boundary.
222 One use of this macro is to increase alignment of medium-size
223 data to make it all fit in fewer cache lines. Another is to
224 cause character arrays to be word-aligned so that 'strcpy' calls
225 that copy constants to character arrays can be done inline. */
226 #undef DATA_ALIGNMENT
227 #define DATA_ALIGNMENT(TYPE, ALIGN) \
228 ((((ALIGN) < BITS_PER_WORD) \
229 && (TREE_CODE (TYPE) == ARRAY_TYPE \
230 || TREE_CODE (TYPE) == UNION_TYPE \
231 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
233 /* Operations between registers always perform the operation
234 on the full register even if a narrower mode is specified. */
235 #define WORD_REGISTER_OPERATIONS
237 /* Xtensa loads are zero-extended by default. */
238 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
240 /* Standard register usage. */
242 /* Number of actual hardware registers.
243 The hardware registers are assigned numbers for the compiler
244 from 0 to just below FIRST_PSEUDO_REGISTER.
245 All registers that the compiler knows about must be given numbers,
246 even those that are not normally considered general registers.
248 The fake frame pointer and argument pointer will never appear in
249 the generated code, since they will always be eliminated and replaced
250 by either the stack pointer or the hard frame pointer.
252 0 - 15 AR[0] - AR[15]
253 16 FRAME_POINTER (fake = initial sp)
254 17 ARG_POINTER (fake = initial sp + framesize)
255 18 BR[0] for floating-point CC
256 19 - 34 FR[0] - FR[15]
257 35 MAC16 accumulator */
259 #define FIRST_PSEUDO_REGISTER 36
261 /* Return the stabs register number to use for REGNO. */
262 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
264 /* 1 for registers that have pervasive standard uses
265 and are not available for the register allocator. */
266 #define FIXED_REGISTERS \
268 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
269 1, 1, 0, \
270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
271 0, \
274 /* 1 for registers not available across function calls.
275 These must include the FIXED_REGISTERS and also any
276 registers that can be used without being saved.
277 The latter must include the registers where values are returned
278 and the register where structure-value addresses are passed.
279 Aside from that, you can include as many other registers as you like. */
280 #define CALL_USED_REGISTERS \
282 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
283 1, 1, 1, \
284 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
285 1, \
288 /* For non-leaf procedures on Xtensa processors, the allocation order
289 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
290 want to use the lowest numbered registers first to minimize
291 register window overflows. However, local-alloc is not smart
292 enough to consider conflicts with incoming arguments. If an
293 incoming argument in a2 is live throughout the function and
294 local-alloc decides to use a2, then the incoming argument must
295 either be spilled or copied to another register. To get around
296 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
297 reg_alloc_order for leaf functions such that lowest numbered
298 registers are used first with the exception that the incoming
299 argument registers are not used until after other register choices
300 have been exhausted. */
302 #define REG_ALLOC_ORDER \
303 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
304 18, \
305 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
306 0, 1, 16, 17, \
307 35, \
310 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
312 /* For Xtensa, the only point of this is to prevent GCC from otherwise
313 giving preference to call-used registers. To minimize window
314 overflows for the AR registers, we want to give preference to the
315 lower-numbered AR registers. For other register files, which are
316 not windowed, we still prefer call-used registers, if there are any. */
317 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
318 #define LEAF_REGISTERS xtensa_leaf_regs
320 /* For Xtensa, no remapping is necessary, but this macro must be
321 defined if LEAF_REGISTERS is defined. */
322 #define LEAF_REG_REMAP(REGNO) (REGNO)
324 /* This must be declared if LEAF_REGISTERS is set. */
325 extern int leaf_function;
327 /* Internal macros to classify a register number. */
329 /* 16 address registers + fake registers */
330 #define GP_REG_FIRST 0
331 #define GP_REG_LAST 17
332 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
334 /* Coprocessor registers */
335 #define BR_REG_FIRST 18
336 #define BR_REG_LAST 18
337 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
339 /* 16 floating-point registers */
340 #define FP_REG_FIRST 19
341 #define FP_REG_LAST 34
342 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
344 /* MAC16 accumulator */
345 #define ACC_REG_FIRST 35
346 #define ACC_REG_LAST 35
347 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
349 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
350 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
351 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
352 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
354 /* Return number of consecutive hard regs needed starting at reg REGNO
355 to hold something of mode MODE. */
356 #define HARD_REGNO_NREGS(REGNO, MODE) \
357 (FP_REG_P (REGNO) ? \
358 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
359 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
361 /* Value is 1 if hard register REGNO can hold a value of machine-mode
362 MODE. */
363 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
365 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
366 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
368 /* Value is 1 if it is a good idea to tie two pseudo registers
369 when one has mode MODE1 and one has mode MODE2.
370 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
371 for any hard reg, then this must be 0 for correct output. */
372 #define MODES_TIEABLE_P(MODE1, MODE2) \
373 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
374 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
375 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
376 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
378 /* Register to use for pushing function arguments. */
379 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
381 /* Base register for access to local variables of the function. */
382 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
384 /* The register number of the frame pointer register, which is used to
385 access automatic variables in the stack frame. For Xtensa, this
386 register never appears in the output. It is always eliminated to
387 either the stack pointer or the hard frame pointer. */
388 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
390 /* Value should be nonzero if functions must have frame pointers.
391 Zero means the frame pointer need not be set up (and parms
392 may be accessed via the stack pointer) in functions that seem suitable.
393 This is computed in 'reload', in reload1.c. */
394 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
396 /* Base register for access to arguments of the function. */
397 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
399 /* If the static chain is passed in memory, these macros provide rtx
400 giving 'mem' expressions that denote where they are stored.
401 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
402 seen by the calling and called functions, respectively. */
404 #define STATIC_CHAIN \
405 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
407 #define STATIC_CHAIN_INCOMING \
408 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
410 /* For now we don't try to use the full set of boolean registers. Without
411 software pipelining of FP operations, there's not much to gain and it's
412 a real pain to get them reloaded. */
413 #define FPCC_REGNUM (BR_REG_FIRST + 0)
415 /* It is as good or better to call a constant function address than to
416 call an address kept in a register. */
417 #define NO_FUNCTION_CSE 1
419 /* Xtensa processors have "register windows". GCC does not currently
420 take advantage of the possibility for variable-sized windows; instead,
421 we use a fixed window size of 8. */
423 #define INCOMING_REGNO(OUT) \
424 ((GP_REG_P (OUT) && \
425 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
426 (OUT) - WINDOW_SIZE : (OUT))
428 #define OUTGOING_REGNO(IN) \
429 ((GP_REG_P (IN) && \
430 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
431 (IN) + WINDOW_SIZE : (IN))
434 /* Define the classes of registers for register constraints in the
435 machine description. */
436 enum reg_class
438 NO_REGS, /* no registers in set */
439 BR_REGS, /* coprocessor boolean registers */
440 FP_REGS, /* floating point registers */
441 ACC_REG, /* MAC16 accumulator */
442 SP_REG, /* sp register (aka a1) */
443 RL_REGS, /* preferred reload regs (not sp or fp) */
444 GR_REGS, /* integer registers except sp */
445 AR_REGS, /* all integer registers */
446 ALL_REGS, /* all registers */
447 LIM_REG_CLASSES /* max value + 1 */
450 #define N_REG_CLASSES (int) LIM_REG_CLASSES
452 #define GENERAL_REGS AR_REGS
454 /* An initializer containing the names of the register classes as C
455 string constants. These names are used in writing some of the
456 debugging dumps. */
457 #define REG_CLASS_NAMES \
459 "NO_REGS", \
460 "BR_REGS", \
461 "FP_REGS", \
462 "ACC_REG", \
463 "SP_REG", \
464 "RL_REGS", \
465 "GR_REGS", \
466 "AR_REGS", \
467 "ALL_REGS" \
470 /* Contents of the register classes. The Nth integer specifies the
471 contents of class N. The way the integer MASK is interpreted is
472 that register R is in the class if 'MASK & (1 << R)' is 1. */
473 #define REG_CLASS_CONTENTS \
475 { 0x00000000, 0x00000000 }, /* no registers */ \
476 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
477 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
478 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
479 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
480 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
481 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
482 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
483 { 0xffffffff, 0x0000000f } /* all registers */ \
486 /* A C expression whose value is a register class containing hard
487 register REGNO. In general there is more that one such class;
488 choose a class which is "minimal", meaning that no smaller class
489 also contains the register. */
490 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
492 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
494 /* Use the Xtensa AR register file for base registers.
495 No index registers. */
496 #define BASE_REG_CLASS AR_REGS
497 #define INDEX_REG_CLASS NO_REGS
499 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
500 16 AR registers may be explicitly used in the RTL, as either
501 incoming or outgoing arguments. */
502 #define SMALL_REGISTER_CLASSES 1
505 /* REGISTER AND CONSTANT CLASSES */
507 /* Get reg_class from a letter such as appears in the machine
508 description.
510 Available letters: a-f,h,j-l,q,t-z,A-D,W,Y-Z
512 DEFINED REGISTER CLASSES:
514 'a' general-purpose registers except sp
515 'q' sp (aka a1)
516 'D' general-purpose registers (only if density option enabled)
517 'd' general-purpose registers, including sp (only if density enabled)
518 'A' MAC16 accumulator (only if MAC16 option enabled)
519 'B' general-purpose registers (only if sext instruction enabled)
520 'C' general-purpose registers (only if mul16 option enabled)
521 'W' general-purpose registers (only if const16 option enabled)
522 'b' coprocessor boolean registers
523 'f' floating-point registers
526 extern enum reg_class xtensa_char_to_class[256];
528 #define REG_CLASS_FROM_LETTER(C) xtensa_char_to_class[ (int) (C) ]
530 /* The letters I, J, K, L, M, N, O, and P in a register constraint
531 string can be used to stand for particular ranges of immediate
532 operands. This macro defines what the ranges are. C is the
533 letter, and VALUE is a constant value. Return 1 if VALUE is
534 in the range specified by C.
536 For Xtensa:
538 I = 12-bit signed immediate for movi
539 J = 8-bit signed immediate for addi
540 K = 4-bit value in (b4const U {0})
541 L = 4-bit value in b4constu
542 M = 7-bit value in simm7
543 N = 8-bit unsigned immediate shifted left by 8 bits for addmi
544 O = 4-bit value in ai4const
545 P = valid immediate mask value for extui */
547 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
548 ((C) == 'I' ? (xtensa_simm12b (VALUE)) \
549 : (C) == 'J' ? (xtensa_simm8 (VALUE)) \
550 : (C) == 'K' ? (((VALUE) == 0) || xtensa_b4const (VALUE)) \
551 : (C) == 'L' ? (xtensa_b4constu (VALUE)) \
552 : (C) == 'M' ? (xtensa_simm7 (VALUE)) \
553 : (C) == 'N' ? (xtensa_simm8x256 (VALUE)) \
554 : (C) == 'O' ? (xtensa_ai4const (VALUE)) \
555 : (C) == 'P' ? (xtensa_mask_immediate (VALUE)) \
556 : FALSE)
559 /* Similar, but for floating constants, and defining letters G and H.
560 Here VALUE is the CONST_DOUBLE rtx itself. */
561 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) (0)
564 /* Other letters can be defined in a machine-dependent fashion to
565 stand for particular classes of registers or other arbitrary
566 operand types.
568 R = memory that can be accessed with a 4-bit unsigned offset
569 T = memory in a constant pool (addressable with a pc-relative load)
570 U = memory *NOT* in a constant pool
572 The offset range should not be checked here (except to distinguish
573 denser versions of the instructions for which more general versions
574 are available). Doing so leads to problems in reloading: an
575 argptr-relative address may become invalid when the phony argptr is
576 eliminated in favor of the stack pointer (the offset becomes too
577 large to fit in the instruction's immediate field); a reload is
578 generated to fix this but the RTL is not immediately updated; in
579 the meantime, the constraints are checked and none match. The
580 solution seems to be to simply skip the offset check here. The
581 address will be checked anyway because of the code in
582 GO_IF_LEGITIMATE_ADDRESS. */
584 #define EXTRA_CONSTRAINT(OP, CODE) \
585 ((GET_CODE (OP) != MEM) ? \
586 ((CODE) >= 'R' && (CODE) <= 'U' \
587 && reload_in_progress && GET_CODE (OP) == REG \
588 && REGNO (OP) >= FIRST_PSEUDO_REGISTER) \
589 : ((CODE) == 'R') ? smalloffset_mem_p (OP) \
590 : ((CODE) == 'T') ? !TARGET_CONST16 && constantpool_mem_p (OP) \
591 : ((CODE) == 'U') ? !constantpool_mem_p (OP) \
592 : FALSE)
594 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
595 xtensa_preferred_reload_class (X, CLASS, 0)
597 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
598 xtensa_preferred_reload_class (X, CLASS, 1)
600 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
601 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
603 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
604 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
606 /* Return the maximum number of consecutive registers
607 needed to represent mode MODE in a register of class CLASS. */
608 #define CLASS_UNITS(mode, size) \
609 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
611 #define CLASS_MAX_NREGS(CLASS, MODE) \
612 (CLASS_UNITS (MODE, UNITS_PER_WORD))
615 /* Stack layout; function entry, exit and calling. */
617 #define STACK_GROWS_DOWNWARD
619 /* Offset within stack frame to start allocating local variables at. */
620 #define STARTING_FRAME_OFFSET \
621 current_function_outgoing_args_size
623 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
624 they are eliminated to either the stack pointer or hard frame pointer. */
625 #define ELIMINABLE_REGS \
626 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
627 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
628 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
629 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
631 #define CAN_ELIMINATE(FROM, TO) 1
633 /* Specify the initial difference between the specified pair of registers. */
634 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
635 do { \
636 compute_frame_size (get_frame_size ()); \
637 if ((FROM) == FRAME_POINTER_REGNUM) \
638 (OFFSET) = 0; \
639 else if ((FROM) == ARG_POINTER_REGNUM) \
640 (OFFSET) = xtensa_current_frame_size; \
641 else \
642 abort (); \
643 } while (0)
645 /* If defined, the maximum amount of space required for outgoing
646 arguments will be computed and placed into the variable
647 'current_function_outgoing_args_size'. No space will be pushed
648 onto the stack for each call; instead, the function prologue
649 should increase the stack frame size by this amount. */
650 #define ACCUMULATE_OUTGOING_ARGS 1
652 /* Offset from the argument pointer register to the first argument's
653 address. On some machines it may depend on the data type of the
654 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
655 location above the first argument's address. */
656 #define FIRST_PARM_OFFSET(FNDECL) 0
658 /* Align stack frames on 128 bits for Xtensa. This is necessary for
659 128-bit datatypes defined in TIE (e.g., for Vectra). */
660 #define STACK_BOUNDARY 128
662 /* Functions do not pop arguments off the stack. */
663 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
665 /* Use a fixed register window size of 8. */
666 #define WINDOW_SIZE 8
668 /* Symbolic macros for the registers used to return integer, floating
669 point, and values of coprocessor and user-defined modes. */
670 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
671 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
673 /* Symbolic macros for the first/last argument registers. */
674 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
675 #define GP_ARG_LAST (GP_REG_FIRST + 7)
676 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
677 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
679 #define MAX_ARGS_IN_REGISTERS 6
681 /* Don't worry about compatibility with PCC. */
682 #define DEFAULT_PCC_STRUCT_RETURN 0
684 /* Define how to find the value returned by a library function
685 assuming the value has mode MODE. Because we have defined
686 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
687 perform the same promotions as PROMOTE_MODE. */
688 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
689 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
690 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
691 ? SImode : (MODE), \
692 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
694 #define LIBCALL_VALUE(MODE) \
695 XTENSA_LIBCALL_VALUE ((MODE), 0)
697 #define LIBCALL_OUTGOING_VALUE(MODE) \
698 XTENSA_LIBCALL_VALUE ((MODE), 1)
700 /* Define how to find the value returned by a function.
701 VALTYPE is the data type of the value (as a tree).
702 If the precise function being called is known, FUNC is its FUNCTION_DECL;
703 otherwise, FUNC is 0. */
704 #define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
705 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
706 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
707 ? SImode: TYPE_MODE (VALTYPE), \
708 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
710 #define FUNCTION_VALUE(VALTYPE, FUNC) \
711 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
713 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
714 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
716 /* A C expression that is nonzero if REGNO is the number of a hard
717 register in which the values of called function may come back. A
718 register whose use for returning values is limited to serving as
719 the second of a pair (for a value of type 'double', say) need not
720 be recognized by this macro. If the machine has register windows,
721 so that the caller and the called function use different registers
722 for the return value, this macro should recognize only the caller's
723 register numbers. */
724 #define FUNCTION_VALUE_REGNO_P(N) \
725 ((N) == GP_RETURN)
727 /* A C expression that is nonzero if REGNO is the number of a hard
728 register in which function arguments are sometimes passed. This
729 does *not* include implicit arguments such as the static chain and
730 the structure-value address. On many machines, no registers can be
731 used for this purpose since all function arguments are pushed on
732 the stack. */
733 #define FUNCTION_ARG_REGNO_P(N) \
734 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
736 /* Record the number of argument words seen so far, along with a flag to
737 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
738 is used for both incoming and outgoing args, so a separate flag is
739 needed. */
740 typedef struct xtensa_args
742 int arg_words;
743 int incoming;
744 } CUMULATIVE_ARGS;
746 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
747 init_cumulative_args (&CUM, 0)
749 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
750 init_cumulative_args (&CUM, 1)
752 /* Update the data in CUM to advance over an argument
753 of mode MODE and data type TYPE.
754 (TYPE is null for libcalls where that information may not be available.) */
755 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
756 function_arg_advance (&CUM, MODE, TYPE)
758 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
759 function_arg (&CUM, MODE, TYPE, FALSE)
761 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
762 function_arg (&CUM, MODE, TYPE, TRUE)
764 /* Arguments are never passed partly in memory and partly in registers. */
765 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
767 /* Specify function argument alignment. */
768 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
769 ((TYPE) != 0 \
770 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
771 ? PARM_BOUNDARY \
772 : TYPE_ALIGN (TYPE)) \
773 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
774 ? PARM_BOUNDARY \
775 : GET_MODE_ALIGNMENT (MODE)))
777 /* Nonzero if we do not know how to pass TYPE solely in registers.
778 We cannot do so in the following cases:
780 - if the type has variable size
781 - if the type is marked as addressable (it is required to be constructed
782 into the stack)
784 This differs from the default in that it does not check if the padding
785 and mode of the type are such that a copy into a register would put it
786 into the wrong part of the register. */
788 #define MUST_PASS_IN_STACK(MODE, TYPE) \
789 ((TYPE) != 0 \
790 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
791 || TREE_ADDRESSABLE (TYPE)))
793 /* Profiling Xtensa code is typically done with the built-in profiling
794 feature of Tensilica's instruction set simulator, which does not
795 require any compiler support. Profiling code on a real (i.e.,
796 non-simulated) Xtensa processor is currently only supported by
797 GNU/Linux with glibc. The glibc version of _mcount doesn't require
798 counter variables. The _mcount function needs the current PC and
799 the current return address to identify an arc in the call graph.
800 Pass the current return address as the first argument; the current
801 PC is available as a0 in _mcount's register window. Both of these
802 values contain window size information in the two most significant
803 bits; we assume that _mcount will mask off those bits. The call to
804 _mcount uses a window size of 8 to make sure that it doesn't clobber
805 any incoming argument values. */
807 #define NO_PROFILE_COUNTERS 1
809 #define FUNCTION_PROFILER(FILE, LABELNO) \
810 do { \
811 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
812 if (flag_pic) \
814 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
815 fprintf (FILE, "\tcallx8\ta8\n"); \
817 else \
818 fprintf (FILE, "\tcall8\t_mcount\n"); \
819 } while (0)
821 /* Stack pointer value doesn't matter at exit. */
822 #define EXIT_IGNORE_STACK 1
824 /* A C statement to output, on the stream FILE, assembler code for a
825 block of data that contains the constant parts of a trampoline.
826 This code should not include a label--the label is taken care of
827 automatically.
829 For Xtensa, the trampoline must perform an entry instruction with a
830 minimal stack frame in order to get some free registers. Once the
831 actual call target is known, the proper stack frame size is extracted
832 from the entry instruction at the target and the current frame is
833 adjusted to match. The trampoline then transfers control to the
834 instruction following the entry at the target. Note: this assumes
835 that the target begins with an entry instruction. */
837 /* minimum frame = reg save area (4 words) plus static chain (1 word)
838 and the total number of words must be a multiple of 128 bits */
839 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
841 #define TRAMPOLINE_TEMPLATE(STREAM) \
842 do { \
843 fprintf (STREAM, "\t.begin no-generics\n"); \
844 fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE); \
846 /* save the return address */ \
847 fprintf (STREAM, "\tmov\ta10, a0\n"); \
849 /* Use a CALL0 instruction to skip past the constants and in the \
850 process get the PC into A0. This allows PC-relative access to \
851 the constants without relying on L32R, which may not always be \
852 available. */ \
854 fprintf (STREAM, "\tcall0\t.Lskipconsts\n"); \
855 fprintf (STREAM, "\t.align\t4\n"); \
856 fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE)); \
857 fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE)); \
858 fprintf (STREAM, ".Lskipconsts:\n"); \
860 /* store the static chain */ \
861 fprintf (STREAM, "\taddi\ta0, a0, 3\n"); \
862 fprintf (STREAM, "\tl32i\ta8, a0, 0\n"); \
863 fprintf (STREAM, "\ts32i\ta8, sp, %d\n", MIN_FRAME_SIZE - 20); \
865 /* set the proper stack pointer value */ \
866 fprintf (STREAM, "\tl32i\ta8, a0, 4\n"); \
867 fprintf (STREAM, "\tl32i\ta9, a8, 0\n"); \
868 fprintf (STREAM, "\textui\ta9, a9, %d, 12\n", \
869 TARGET_BIG_ENDIAN ? 8 : 12); \
870 fprintf (STREAM, "\tslli\ta9, a9, 3\n"); \
871 fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE); \
872 fprintf (STREAM, "\tsub\ta9, sp, a9\n"); \
873 fprintf (STREAM, "\tmovsp\tsp, a9\n"); \
875 /* restore the return address */ \
876 fprintf (STREAM, "\tmov\ta0, a10\n"); \
878 /* jump to the instruction following the entry */ \
879 fprintf (STREAM, "\taddi\ta8, a8, 3\n"); \
880 fprintf (STREAM, "\tjx\ta8\n"); \
881 fprintf (STREAM, "\t.end no-generics\n"); \
882 } while (0)
884 /* Size in bytes of the trampoline, as an integer. */
885 #define TRAMPOLINE_SIZE 59
887 /* Alignment required for trampolines, in bits. */
888 #define TRAMPOLINE_ALIGNMENT (32)
890 /* A C statement to initialize the variable parts of a trampoline. */
891 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
892 do { \
893 rtx addr = ADDR; \
894 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
895 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 16)), FUNC); \
896 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"), \
897 0, VOIDmode, 1, addr, Pmode); \
898 } while (0)
900 /* Implement `va_start' for varargs and stdarg. */
901 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
902 xtensa_va_start (valist, nextarg)
904 /* Implement `va_arg'. */
905 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
906 xtensa_va_arg (valist, type)
908 /* If defined, a C expression that produces the machine-specific code
909 to setup the stack so that arbitrary frames can be accessed.
911 On Xtensa, a stack back-trace must always begin from the stack pointer,
912 so that the register overflow save area can be located. However, the
913 stack-walking code in GCC always begins from the hard_frame_pointer
914 register, not the stack pointer. The frame pointer is usually equal
915 to the stack pointer, but the __builtin_return_address and
916 __builtin_frame_address functions will not work if count > 0 and
917 they are called from a routine that uses alloca. These functions
918 are not guaranteed to work at all if count > 0 so maybe that is OK.
920 A nicer solution would be to allow the architecture-specific files to
921 specify whether to start from the stack pointer or frame pointer. That
922 would also allow us to skip the machine->accesses_prev_frame stuff that
923 we currently need to ensure that there is a frame pointer when these
924 builtin functions are used. */
926 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
928 /* A C expression whose value is RTL representing the address in a
929 stack frame where the pointer to the caller's frame is stored.
930 Assume that FRAMEADDR is an RTL expression for the address of the
931 stack frame itself.
933 For Xtensa, there is no easy way to get the frame pointer if it is
934 not equivalent to the stack pointer. Moreover, the result of this
935 macro is used for continuing to walk back up the stack, so it must
936 return the stack pointer address. Thus, there is some inconsistency
937 here in that __builtin_frame_address will return the frame pointer
938 when count == 0 and the stack pointer when count > 0. */
940 #define DYNAMIC_CHAIN_ADDRESS(frame) \
941 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
943 /* Define this if the return address of a particular stack frame is
944 accessed from the frame pointer of the previous stack frame. */
945 #define RETURN_ADDR_IN_PREVIOUS_FRAME
947 /* A C expression whose value is RTL representing the value of the
948 return address for the frame COUNT steps up from the current
949 frame, after the prologue. */
950 #define RETURN_ADDR_RTX xtensa_return_addr
952 /* Addressing modes, and classification of registers for them. */
954 /* C expressions which are nonzero if register number NUM is suitable
955 for use as a base or index register in operand addresses. It may
956 be either a suitable hard register or a pseudo register that has
957 been allocated such a hard register. The difference between an
958 index register and a base register is that the index register may
959 be scaled. */
961 #define REGNO_OK_FOR_BASE_P(NUM) \
962 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
964 #define REGNO_OK_FOR_INDEX_P(NUM) 0
966 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
967 valid for use as a base or index register. For hard registers, it
968 should always accept those which the hardware permits and reject
969 the others. Whether the macro accepts or rejects pseudo registers
970 must be controlled by `REG_OK_STRICT'. This usually requires two
971 variant definitions, of which `REG_OK_STRICT' controls the one
972 actually used. The difference between an index register and a base
973 register is that the index register may be scaled. */
975 #ifdef REG_OK_STRICT
977 #define REG_OK_FOR_INDEX_P(X) 0
978 #define REG_OK_FOR_BASE_P(X) \
979 REGNO_OK_FOR_BASE_P (REGNO (X))
981 #else /* !REG_OK_STRICT */
983 #define REG_OK_FOR_INDEX_P(X) 0
984 #define REG_OK_FOR_BASE_P(X) \
985 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
987 #endif /* !REG_OK_STRICT */
989 /* Maximum number of registers that can appear in a valid memory address. */
990 #define MAX_REGS_PER_ADDRESS 1
992 /* Identify valid Xtensa addresses. */
993 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
994 do { \
995 rtx xinsn = (ADDR); \
997 /* allow constant pool addresses */ \
998 if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD \
999 && !TARGET_CONST16 && constantpool_address_p (xinsn)) \
1000 goto LABEL; \
1002 while (GET_CODE (xinsn) == SUBREG) \
1003 xinsn = SUBREG_REG (xinsn); \
1005 /* allow base registers */ \
1006 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
1007 goto LABEL; \
1009 /* check for "register + offset" addressing */ \
1010 if (GET_CODE (xinsn) == PLUS) \
1012 rtx xplus0 = XEXP (xinsn, 0); \
1013 rtx xplus1 = XEXP (xinsn, 1); \
1014 enum rtx_code code0; \
1015 enum rtx_code code1; \
1017 while (GET_CODE (xplus0) == SUBREG) \
1018 xplus0 = SUBREG_REG (xplus0); \
1019 code0 = GET_CODE (xplus0); \
1021 while (GET_CODE (xplus1) == SUBREG) \
1022 xplus1 = SUBREG_REG (xplus1); \
1023 code1 = GET_CODE (xplus1); \
1025 /* swap operands if necessary so the register is first */ \
1026 if (code0 != REG && code1 == REG) \
1028 xplus0 = XEXP (xinsn, 1); \
1029 xplus1 = XEXP (xinsn, 0); \
1030 code0 = GET_CODE (xplus0); \
1031 code1 = GET_CODE (xplus1); \
1034 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
1035 && code1 == CONST_INT \
1036 && xtensa_mem_offset (INTVAL (xplus1), (MODE))) \
1038 goto LABEL; \
1041 } while (0)
1043 /* A C expression that is 1 if the RTX X is a constant which is a
1044 valid address. This is defined to be the same as 'CONSTANT_P (X)',
1045 but rejecting CONST_DOUBLE. */
1046 #define CONSTANT_ADDRESS_P(X) \
1047 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1048 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1049 || (GET_CODE (X) == CONST)))
1051 /* Nonzero if the constant value X is a legitimate general operand.
1052 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1053 #define LEGITIMATE_CONSTANT_P(X) 1
1055 /* A C expression that is nonzero if X is a legitimate immediate
1056 operand on the target machine when generating position independent
1057 code. */
1058 #define LEGITIMATE_PIC_OPERAND_P(X) \
1059 ((GET_CODE (X) != SYMBOL_REF \
1060 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
1061 && GET_CODE (X) != LABEL_REF \
1062 && GET_CODE (X) != CONST)
1064 /* Tell GCC how to use ADDMI to generate addresses. */
1065 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1066 do { \
1067 rtx xinsn = (X); \
1068 if (GET_CODE (xinsn) == PLUS) \
1070 rtx plus0 = XEXP (xinsn, 0); \
1071 rtx plus1 = XEXP (xinsn, 1); \
1073 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) \
1075 plus0 = XEXP (xinsn, 1); \
1076 plus1 = XEXP (xinsn, 0); \
1079 if (GET_CODE (plus0) == REG \
1080 && GET_CODE (plus1) == CONST_INT \
1081 && !xtensa_mem_offset (INTVAL (plus1), MODE) \
1082 && !xtensa_simm8 (INTVAL (plus1)) \
1083 && xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE) \
1084 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff)) \
1086 rtx temp = gen_reg_rtx (Pmode); \
1087 emit_insn (gen_rtx_SET (Pmode, temp, \
1088 gen_rtx_PLUS (Pmode, plus0, \
1089 GEN_INT (INTVAL (plus1) & ~0xff)))); \
1090 (X) = gen_rtx_PLUS (Pmode, temp, \
1091 GEN_INT (INTVAL (plus1) & 0xff)); \
1092 goto WIN; \
1095 } while (0)
1098 /* Treat constant-pool references as "mode dependent" since they can
1099 only be accessed with SImode loads. This works around a bug in the
1100 combiner where a constant pool reference is temporarily converted
1101 to an HImode load, which is then assumed to zero-extend based on
1102 our definition of LOAD_EXTEND_OP. This is wrong because the high
1103 bits of a 16-bit value in the constant pool are now sign-extended
1104 by default. */
1106 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1107 do { \
1108 if (constantpool_address_p (ADDR)) \
1109 goto LABEL; \
1110 } while (0)
1112 /* Specify the machine mode that this machine uses
1113 for the index in the tablejump instruction. */
1114 #define CASE_VECTOR_MODE (SImode)
1116 /* Define this as 1 if 'char' should by default be signed; else as 0. */
1117 #define DEFAULT_SIGNED_CHAR 0
1119 /* Max number of bytes we can move from memory to memory
1120 in one reasonably fast instruction. */
1121 #define MOVE_MAX 4
1122 #define MAX_MOVE_MAX 4
1124 /* Prefer word-sized loads. */
1125 #define SLOW_BYTE_ACCESS 1
1127 /* Shift instructions ignore all but the low-order few bits. */
1128 #define SHIFT_COUNT_TRUNCATED 1
1130 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1131 is done just by pretending it is already truncated. */
1132 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1134 /* Specify the machine mode that pointers have.
1135 After generation of rtl, the compiler makes no further distinction
1136 between pointers and any other objects of this machine mode. */
1137 #define Pmode SImode
1139 /* A function address in a call instruction is a word address (for
1140 indexing purposes) so give the MEM rtx a words's mode. */
1141 #define FUNCTION_MODE SImode
1143 /* A C expression for the cost of moving data from a register in
1144 class FROM to one in class TO. The classes are expressed using
1145 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
1146 the default; other values are interpreted relative to that. */
1147 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1148 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
1149 ? 2 \
1150 : (reg_class_subset_p ((FROM), AR_REGS) \
1151 && reg_class_subset_p ((TO), AR_REGS) \
1152 ? 2 \
1153 : (reg_class_subset_p ((FROM), AR_REGS) \
1154 && (TO) == ACC_REG \
1155 ? 3 \
1156 : ((FROM) == ACC_REG \
1157 && reg_class_subset_p ((TO), AR_REGS) \
1158 ? 3 \
1159 : 10))))
1161 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
1163 #define BRANCH_COST 3
1165 /* Optionally define this if you have added predicates to
1166 'MACHINE.c'. This macro is called within an initializer of an
1167 array of structures. The first field in the structure is the
1168 name of a predicate and the second field is an array of rtl
1169 codes. For each predicate, list all rtl codes that can be in
1170 expressions matched by the predicate. The list should have a
1171 trailing comma. */
1173 #define PREDICATE_CODES \
1174 {"add_operand", { REG, CONST_INT, SUBREG }}, \
1175 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
1176 {"nonimmed_operand", { REG, SUBREG, MEM }}, \
1177 {"mem_operand", { MEM }}, \
1178 {"mask_operand", { REG, CONST_INT, SUBREG }}, \
1179 {"extui_fldsz_operand", { CONST_INT }}, \
1180 {"sext_fldsz_operand", { CONST_INT }}, \
1181 {"lsbitnum_operand", { CONST_INT }}, \
1182 {"fpmem_offset_operand", { CONST_INT }}, \
1183 {"sext_operand", { REG, SUBREG, MEM }}, \
1184 {"branch_operand", { REG, CONST_INT, SUBREG }}, \
1185 {"ubranch_operand", { REG, CONST_INT, SUBREG }}, \
1186 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG }}, \
1187 {"move_operand", { REG, SUBREG, MEM, CONST_INT, CONST_DOUBLE, \
1188 CONST, SYMBOL_REF, LABEL_REF }}, \
1189 {"const_float_1_operand", { CONST_DOUBLE }}, \
1190 {"branch_operator", { EQ, NE, LT, GE }}, \
1191 {"ubranch_operator", { LTU, GEU }}, \
1192 {"boolean_operator", { EQ, NE }},
1194 /* Control the assembler format that we output. */
1196 /* How to refer to registers in assembler output.
1197 This sequence is indexed by compiler's hard-register-number (see above). */
1198 #define REGISTER_NAMES \
1200 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
1201 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
1202 "fp", "argp", "b0", \
1203 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1204 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
1205 "acc" \
1208 /* If defined, a C initializer for an array of structures containing a
1209 name and a register number. This macro defines additional names
1210 for hard registers, thus allowing the 'asm' option in declarations
1211 to refer to registers using alternate names. */
1212 #define ADDITIONAL_REGISTER_NAMES \
1214 { "a1", 1 + GP_REG_FIRST } \
1217 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1218 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1220 /* Recognize machine-specific patterns that may appear within
1221 constants. Used for PIC-specific UNSPECs. */
1222 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
1223 do { \
1224 if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
1226 switch (XINT ((X), 1)) \
1228 case UNSPEC_PLT: \
1229 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
1230 fputs ("@PLT", (STREAM)); \
1231 break; \
1232 default: \
1233 goto FAIL; \
1235 break; \
1237 else \
1238 goto FAIL; \
1239 } while (0)
1241 /* Globalizing directive for a label. */
1242 #define GLOBAL_ASM_OP "\t.global\t"
1244 /* Declare an uninitialized external linkage data object. */
1245 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1246 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1248 /* This is how to output an element of a case-vector that is absolute. */
1249 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1250 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
1251 LOCAL_LABEL_PREFIX, VALUE)
1253 /* This is how to output an element of a case-vector that is relative.
1254 This is used for pc-relative code. */
1255 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1256 do { \
1257 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
1258 LOCAL_LABEL_PREFIX, (VALUE), \
1259 LOCAL_LABEL_PREFIX, (REL)); \
1260 } while (0)
1262 /* This is how to output an assembler line that says to advance the
1263 location counter to a multiple of 2**LOG bytes. */
1264 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
1265 do { \
1266 if ((LOG) != 0) \
1267 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
1268 } while (0)
1270 /* Indicate that jump tables go in the text section. This is
1271 necessary when compiling PIC code. */
1272 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1275 /* Define the strings to put out for each section in the object file. */
1276 #define TEXT_SECTION_ASM_OP "\t.text"
1277 #define DATA_SECTION_ASM_OP "\t.data"
1278 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1281 /* Define output to appear before the constant pool. If the function
1282 has been assigned to a specific ELF section, or if it goes into a
1283 unique section, set the name of that section to be the literal
1284 prefix. */
1285 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
1286 do { \
1287 tree fnsection; \
1288 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
1289 fnsection = DECL_SECTION_NAME (FUNDECL); \
1290 if (fnsection != NULL_TREE) \
1292 const char *fnsectname = TREE_STRING_POINTER (fnsection); \
1293 fprintf (FILE, "\t.begin\tliteral_prefix %s\n", \
1294 strcmp (fnsectname, ".text") ? fnsectname : ""); \
1296 if ((SIZE) > 0) \
1298 function_section (FUNDECL); \
1299 fprintf (FILE, "\t.literal_position\n"); \
1301 } while (0)
1304 /* Define code to write out the ".end literal_prefix" directive for a
1305 function in a special section. This is appended to the standard ELF
1306 code for ASM_DECLARE_FUNCTION_SIZE. */
1307 #define XTENSA_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1308 if (DECL_SECTION_NAME (DECL) != NULL_TREE) \
1309 fprintf (FILE, "\t.end\tliteral_prefix\n")
1311 /* A C statement (with or without semicolon) to output a constant in
1312 the constant pool, if it needs special treatment. */
1313 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
1314 do { \
1315 xtensa_output_literal (FILE, X, MODE, LABELNO); \
1316 goto JUMPTO; \
1317 } while (0)
1319 /* How to start an assembler comment. */
1320 #define ASM_COMMENT_START "#"
1322 /* Exception handling TODO!! */
1323 #define DWARF_UNWIND_INFO 0
1325 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1326 section in where code resides. We have to write it as asm code. Use
1327 a MOVI and let the assembler relax it -- for the .init and .fini
1328 sections, the assembler knows to put the literal in the right
1329 place. */
1330 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1331 asm (SECTION_OP "\n\
1332 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1333 callx8\ta8\n" \
1334 TEXT_SECTION_ASM_OP);