missing Changelog
[official-gcc.git] / gcc / vec.h
bloba7b3b4cdc8237b630ebe1640672616c65228819f
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Nathan Sidwell <nathan@codesourcery.com>
5 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #ifndef GCC_VEC_H
24 #define GCC_VEC_H
26 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
27 support because the headers generated by gengtype are still not
28 present. In particular, the header file gtype-desc.h is missing,
29 so compilation may fail if we try to include ggc.h.
31 Since we use some of those declarations, we need to provide them
32 (even if the GC-based templates are not used). This is not a
33 problem because the code that runs before gengtype is built will
34 never need to use GC vectors. But it does force us to declare
35 these functions more than once. */
36 #ifdef GENERATOR_FILE
37 #define VEC_GC_ENABLED 0
38 #else
39 #define VEC_GC_ENABLED 1
40 #endif // GENERATOR_FILE
42 #include "statistics.h" // For CXX_MEM_STAT_INFO.
44 #if VEC_GC_ENABLED
45 #include "ggc.h"
46 #else
47 # ifndef GCC_GGC_H
48 /* Even if we think that GC is not enabled, the test that sets it is
49 weak. There are files compiled with -DGENERATOR_FILE that already
50 include ggc.h. We only need to provide these definitions if ggc.h
51 has not been included. Sigh. */
52 extern void ggc_free (void *);
53 extern size_t ggc_round_alloc_size (size_t requested_size);
54 extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL);
55 # endif // GCC_GGC_H
56 #endif // VEC_GC_ENABLED
58 /* Templated vector type and associated interfaces.
60 The interface functions are typesafe and use inline functions,
61 sometimes backed by out-of-line generic functions. The vectors are
62 designed to interoperate with the GTY machinery.
64 There are both 'index' and 'iterate' accessors. The index accessor
65 is implemented by operator[]. The iterator returns a boolean
66 iteration condition and updates the iteration variable passed by
67 reference. Because the iterator will be inlined, the address-of
68 can be optimized away.
70 Each operation that increases the number of active elements is
71 available in 'quick' and 'safe' variants. The former presumes that
72 there is sufficient allocated space for the operation to succeed
73 (it dies if there is not). The latter will reallocate the
74 vector, if needed. Reallocation causes an exponential increase in
75 vector size. If you know you will be adding N elements, it would
76 be more efficient to use the reserve operation before adding the
77 elements with the 'quick' operation. This will ensure there are at
78 least as many elements as you ask for, it will exponentially
79 increase if there are too few spare slots. If you want reserve a
80 specific number of slots, but do not want the exponential increase
81 (for instance, you know this is the last allocation), use the
82 reserve_exact operation. You can also create a vector of a
83 specific size from the get go.
85 You should prefer the push and pop operations, as they append and
86 remove from the end of the vector. If you need to remove several
87 items in one go, use the truncate operation. The insert and remove
88 operations allow you to change elements in the middle of the
89 vector. There are two remove operations, one which preserves the
90 element ordering 'ordered_remove', and one which does not
91 'unordered_remove'. The latter function copies the end element
92 into the removed slot, rather than invoke a memmove operation. The
93 'lower_bound' function will determine where to place an item in the
94 array using insert that will maintain sorted order.
96 Vectors are template types with three arguments: the type of the
97 elements in the vector, the allocation strategy, and the physical
98 layout to use
100 Four allocation strategies are supported:
102 - Heap: allocation is done using malloc/free. This is the
103 default allocation strategy.
105 - Stack: allocation is done using alloca.
107 - GC: allocation is done using ggc_alloc/ggc_free.
109 - GC atomic: same as GC with the exception that the elements
110 themselves are assumed to be of an atomic type that does
111 not need to be garbage collected. This means that marking
112 routines do not need to traverse the array marking the
113 individual elements. This increases the performance of
114 GC activities.
116 Two physical layouts are supported:
118 - Embedded: The vector is structured using the trailing array
119 idiom. The last member of the structure is an array of size
120 1. When the vector is initially allocated, a single memory
121 block is created to hold the vector's control data and the
122 array of elements. These vectors cannot grow without
123 reallocation (see discussion on embeddable vectors below).
125 - Space efficient: The vector is structured as a pointer to an
126 embedded vector. This is the default layout. It means that
127 vectors occupy a single word of storage before initial
128 allocation. Vectors are allowed to grow (the internal
129 pointer is reallocated but the main vector instance does not
130 need to relocate).
132 The type, allocation and layout are specified when the vector is
133 declared.
135 If you need to directly manipulate a vector, then the 'address'
136 accessor will return the address of the start of the vector. Also
137 the 'space' predicate will tell you whether there is spare capacity
138 in the vector. You will not normally need to use these two functions.
140 Notes on the different layout strategies
142 * Embeddable vectors (vec<T, A, vl_embed>)
144 These vectors are suitable to be embedded in other data
145 structures so that they can be pre-allocated in a contiguous
146 memory block.
148 Embeddable vectors are implemented using the trailing array
149 idiom, thus they are not resizeable without changing the address
150 of the vector object itself. This means you cannot have
151 variables or fields of embeddable vector type -- always use a
152 pointer to a vector. The one exception is the final field of a
153 structure, which could be a vector type.
155 You will have to use the embedded_size & embedded_init calls to
156 create such objects, and they will not be resizeable (so the
157 'safe' allocation variants are not available).
159 Properties of embeddable vectors:
161 - The whole vector and control data are allocated in a single
162 contiguous block. It uses the trailing-vector idiom, so
163 allocation must reserve enough space for all the elements
164 in the vector plus its control data.
165 - The vector cannot be re-allocated.
166 - The vector cannot grow nor shrink.
167 - No indirections needed for access/manipulation.
168 - It requires 2 words of storage (prior to vector allocation).
171 * Space efficient vector (vec<T, A, vl_ptr>)
173 These vectors can grow dynamically and are allocated together
174 with their control data. They are suited to be included in data
175 structures. Prior to initial allocation, they only take a single
176 word of storage.
178 These vectors are implemented as a pointer to embeddable vectors.
179 The semantics allow for this pointer to be NULL to represent
180 empty vectors. This way, empty vectors occupy minimal space in
181 the structure containing them.
183 Properties:
185 - The whole vector and control data are allocated in a single
186 contiguous block.
187 - The whole vector may be re-allocated.
188 - Vector data may grow and shrink.
189 - Access and manipulation requires a pointer test and
190 indirection.
191 - It requires 1 word of storage (prior to vector allocation).
193 An example of their use would be,
195 struct my_struct {
196 // A space-efficient vector of tree pointers in GC memory.
197 vec<tree, va_gc, vl_ptr> v;
200 struct my_struct *s;
202 if (s->v.length ()) { we have some contents }
203 s->v.safe_push (decl); // append some decl onto the end
204 for (ix = 0; s->v.iterate (ix, &elt); ix++)
205 { do something with elt }
208 /* Support function for statistics. */
209 extern void dump_vec_loc_statistics (void);
212 /* Control data for vectors. This contains the number of allocated
213 and used slots inside a vector. */
215 struct vec_prefix
217 /* FIXME - These fields should be private, but we need to cater to
218 compilers that have stricter notions of PODness for types. */
220 /* Memory allocation support routines in vec.c. */
221 void register_overhead (size_t, const char *, int, const char *);
222 void release_overhead (void);
223 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
225 /* Note that vec_prefix should be a base class for vec, but we use
226 offsetof() on vector fields of tree structures (e.g.,
227 tree_binfo::base_binfos), and offsetof only supports base types.
229 To compensate, we make vec_prefix a field inside vec and make
230 vec a friend class of vec_prefix so it can access its fields. */
231 template <typename, typename, typename> friend struct vec;
233 /* The allocator types also need access to our internals. */
234 friend struct va_gc;
235 friend struct va_gc_atomic;
236 friend struct va_heap;
237 friend struct va_stack;
239 unsigned alloc_;
240 unsigned num_;
243 template<typename, typename, typename> struct vec;
245 /* Valid vector layouts
247 vl_embed - Embeddable vector that uses the trailing array idiom.
248 vl_ptr - Space efficient vector that uses a pointer to an
249 embeddable vector. */
250 struct vl_embed { };
251 struct vl_ptr { };
254 /* Types of supported allocations
256 va_heap - Allocation uses malloc/free.
257 va_gc - Allocation uses ggc_alloc.
258 va_gc_atomic - Same as GC, but individual elements of the array
259 do not need to be marked during collection.
260 va_stack - Allocation uses alloca. */
262 /* Allocator type for heap vectors. */
263 struct va_heap
265 /* Heap vectors are frequently regular instances, so use the vl_ptr
266 layout for them. */
267 typedef vl_ptr default_layout;
269 template<typename T>
270 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
271 CXX_MEM_STAT_INFO);
273 template<typename T>
274 static void release (vec<T, va_heap, vl_embed> *&);
278 /* Allocator for heap memory. Ensure there are at least RESERVE free
279 slots in V. If EXACT is true, grow exactly, else grow
280 exponentially. As a special case, if the vector had not been
281 allocated and and RESERVE is 0, no vector will be created. */
283 template<typename T>
284 inline void
285 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
286 MEM_STAT_DECL)
288 unsigned alloc
289 = vec_prefix::calculate_allocation (v ? &v->vecpfx_ : 0, reserve, exact);
290 if (!alloc)
292 release (v);
293 return;
296 if (GATHER_STATISTICS && v)
297 v->vecpfx_.release_overhead ();
299 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
300 unsigned nelem = v ? v->length () : 0;
301 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
302 v->embedded_init (alloc, nelem);
304 if (GATHER_STATISTICS)
305 v->vecpfx_.register_overhead (size FINAL_PASS_MEM_STAT);
309 /* Free the heap space allocated for vector V. */
311 template<typename T>
312 void
313 va_heap::release (vec<T, va_heap, vl_embed> *&v)
315 if (v == NULL)
316 return;
318 if (GATHER_STATISTICS)
319 v->vecpfx_.release_overhead ();
320 ::free (v);
321 v = NULL;
325 /* Allocator type for GC vectors. Notice that we need the structure
326 declaration even if GC is not enabled. */
328 struct va_gc
330 /* Use vl_embed as the default layout for GC vectors. Due to GTY
331 limitations, GC vectors must always be pointers, so it is more
332 efficient to use a pointer to the vl_embed layout, rather than
333 using a pointer to a pointer as would be the case with vl_ptr. */
334 typedef vl_embed default_layout;
336 template<typename T, typename A>
337 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
338 CXX_MEM_STAT_INFO);
340 template<typename T, typename A>
341 static void release (vec<T, A, vl_embed> *&v) { v = NULL; }
345 /* Allocator for GC memory. Ensure there are at least RESERVE free
346 slots in V. If EXACT is true, grow exactly, else grow
347 exponentially. As a special case, if the vector had not been
348 allocated and and RESERVE is 0, no vector will be created. */
350 template<typename T, typename A>
351 void
352 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
353 MEM_STAT_DECL)
355 unsigned alloc
356 = vec_prefix::calculate_allocation (v ? &v->vecpfx_ : 0, reserve, exact);
357 if (!alloc)
359 ::ggc_free (v);
360 v = NULL;
361 return;
364 /* Calculate the amount of space we want. */
365 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
367 /* Ask the allocator how much space it will really give us. */
368 size = ::ggc_round_alloc_size (size);
370 /* Adjust the number of slots accordingly. */
371 size_t vec_offset = sizeof (vec_prefix);
372 size_t elt_size = sizeof (T);
373 alloc = (size - vec_offset) / elt_size;
375 /* And finally, recalculate the amount of space we ask for. */
376 size = vec_offset + alloc * elt_size;
378 unsigned nelem = v ? v->length () : 0;
379 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size
380 PASS_MEM_STAT));
381 v->embedded_init (alloc, nelem);
385 /* Allocator type for GC vectors. This is for vectors of types
386 atomics w.r.t. collection, so allocation and deallocation is
387 completely inherited from va_gc. */
388 struct va_gc_atomic : va_gc
393 /* Allocator type for stack vectors. */
394 struct va_stack
396 /* Use vl_ptr as the default layout for stack vectors. */
397 typedef vl_ptr default_layout;
399 template<typename T>
400 static void alloc (vec<T, va_stack, vl_ptr>&, unsigned,
401 vec<T, va_stack, vl_embed> *);
403 template <typename T>
404 static void reserve (vec<T, va_stack, vl_embed> *&, unsigned, bool
405 CXX_MEM_STAT_INFO);
407 template <typename T>
408 static void release (vec<T, va_stack, vl_embed> *&);
411 /* Helper functions to keep track of vectors allocated on the stack. */
412 void register_stack_vec (void *);
413 int stack_vec_register_index (void *);
414 void unregister_stack_vec (unsigned);
416 /* Allocate a vector V which uses alloca for the initial allocation.
417 SPACE is space allocated using alloca. NELEMS is the number of
418 entries allocated. */
420 template<typename T>
421 void
422 va_stack::alloc (vec<T, va_stack, vl_ptr> &v, unsigned nelems,
423 vec<T, va_stack, vl_embed> *space)
425 v.vec_ = space;
426 register_stack_vec (static_cast<void *> (v.vec_));
427 v.vec_->embedded_init (nelems, 0);
431 /* Reserve NELEMS slots for a vector initially allocated on the stack.
432 When this happens, we switch back to heap allocation. We remove
433 the vector from stack_vecs, if it is there, since we no longer need
434 to avoid freeing it. If EXACT is true, grow exactly, otherwise
435 grow exponentially. */
437 template<typename T>
438 void
439 va_stack::reserve (vec<T, va_stack, vl_embed> *&v, unsigned nelems, bool exact
440 MEM_STAT_DECL)
442 int ix = stack_vec_register_index (static_cast<void *> (v));
443 if (ix >= 0)
444 unregister_stack_vec (ix);
445 else
447 /* V is already on the heap. */
448 va_heap::reserve (reinterpret_cast<vec<T, va_heap, vl_embed> *&> (v),
449 nelems, exact PASS_MEM_STAT);
450 return;
453 /* Move VEC_ to the heap. */
454 nelems += v->vecpfx_.num_;
455 vec<T, va_stack, vl_embed> *oldvec = v;
456 v = NULL;
457 va_heap::reserve (reinterpret_cast<vec<T, va_heap, vl_embed> *&>(v), nelems,
458 exact PASS_MEM_STAT);
459 if (v && oldvec)
461 v->vecpfx_.num_ = oldvec->length ();
462 memcpy (v->vecdata_,
463 oldvec->vecdata_,
464 oldvec->length () * sizeof (T));
469 /* Free a vector allocated on the stack. Don't actually free it if we
470 find it in the hash table. */
472 template<typename T>
473 void
474 va_stack::release (vec<T, va_stack, vl_embed> *&v)
476 if (v == NULL)
477 return;
479 int ix = stack_vec_register_index (static_cast<void *> (v));
480 if (ix >= 0)
482 unregister_stack_vec (ix);
483 v = NULL;
485 else
487 /* The vector was not on the list of vectors allocated on the stack, so it
488 must be allocated on the heap. */
489 va_heap::release (reinterpret_cast<vec<T, va_heap, vl_embed> *&> (v));
494 /* Generic vector template. Default values for A and L indicate the
495 most commonly used strategies.
497 FIXME - Ideally, they would all be vl_ptr to encourage using regular
498 instances for vectors, but the existing GTY machinery is limited
499 in that it can only deal with GC objects that are pointers
500 themselves.
502 This means that vector operations that need to deal with
503 potentially NULL pointers, must be provided as free
504 functions (see the vec_safe_* functions above). */
505 template<typename T,
506 typename A = va_heap,
507 typename L = typename A::default_layout>
508 struct GTY((user)) vec
512 /* Type to provide NULL values for vec<T, A, L>. This is used to
513 provide nil initializers for vec instances. Since vec must be
514 a POD, we cannot have proper ctor/dtor for it. To initialize
515 a vec instance, you can assign it the value vNULL. */
516 struct vnull
518 template <typename T, typename A, typename L>
519 operator vec<T, A, L> () { return vec<T, A, L>(); }
521 extern vnull vNULL;
524 /* Embeddable vector. These vectors are suitable to be embedded
525 in other data structures so that they can be pre-allocated in a
526 contiguous memory block.
528 Embeddable vectors are implemented using the trailing array idiom,
529 thus they are not resizeable without changing the address of the
530 vector object itself. This means you cannot have variables or
531 fields of embeddable vector type -- always use a pointer to a
532 vector. The one exception is the final field of a structure, which
533 could be a vector type.
535 You will have to use the embedded_size & embedded_init calls to
536 create such objects, and they will not be resizeable (so the 'safe'
537 allocation variants are not available).
539 Properties:
541 - The whole vector and control data are allocated in a single
542 contiguous block. It uses the trailing-vector idiom, so
543 allocation must reserve enough space for all the elements
544 in the vector plus its control data.
545 - The vector cannot be re-allocated.
546 - The vector cannot grow nor shrink.
547 - No indirections needed for access/manipulation.
548 - It requires 2 words of storage (prior to vector allocation). */
550 template<typename T, typename A>
551 struct GTY((user)) vec<T, A, vl_embed>
553 public:
554 unsigned allocated (void) const { return vecpfx_.alloc_; }
555 unsigned length (void) const { return vecpfx_.num_; }
556 bool is_empty (void) const { return vecpfx_.num_ == 0; }
557 T *address (void) { return vecdata_; }
558 const T *address (void) const { return vecdata_; }
559 const T &operator[] (unsigned) const;
560 T &operator[] (unsigned);
561 T &last (void);
562 bool space (unsigned) const;
563 bool iterate (unsigned, T *) const;
564 bool iterate (unsigned, T **) const;
565 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
566 void splice (vec &);
567 void splice (vec *src);
568 T *quick_push (const T &);
569 T &pop (void);
570 void truncate (unsigned);
571 void quick_insert (unsigned, const T &);
572 void ordered_remove (unsigned);
573 void unordered_remove (unsigned);
574 void block_remove (unsigned, unsigned);
575 void qsort (int (*) (const void *, const void *));
576 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
577 static size_t embedded_size (unsigned);
578 void embedded_init (unsigned, unsigned = 0);
579 void quick_grow (unsigned len);
580 void quick_grow_cleared (unsigned len);
582 /* vec class can access our internal data and functions. */
583 template <typename, typename, typename> friend struct vec;
585 /* The allocator types also need access to our internals. */
586 friend struct va_gc;
587 friend struct va_gc_atomic;
588 friend struct va_heap;
589 friend struct va_stack;
591 /* FIXME - These fields should be private, but we need to cater to
592 compilers that have stricter notions of PODness for types. */
593 vec_prefix vecpfx_;
594 T vecdata_[1];
598 /* Convenience wrapper functions to use when dealing with pointers to
599 embedded vectors. Some functionality for these vectors must be
600 provided via free functions for these reasons:
602 1- The pointer may be NULL (e.g., before initial allocation).
604 2- When the vector needs to grow, it must be reallocated, so
605 the pointer will change its value.
607 Because of limitations with the current GC machinery, all vectors
608 in GC memory *must* be pointers. */
611 /* If V contains no room for NELEMS elements, return false. Otherwise,
612 return true. */
613 template<typename T, typename A>
614 inline bool
615 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
617 return v ? v->space (nelems) : nelems == 0;
621 /* If V is NULL, return 0. Otherwise, return V->length(). */
622 template<typename T, typename A>
623 inline unsigned
624 vec_safe_length (const vec<T, A, vl_embed> *v)
626 return v ? v->length () : 0;
630 /* If V is NULL, return NULL. Otherwise, return V->address(). */
631 template<typename T, typename A>
632 inline T *
633 vec_safe_address (vec<T, A, vl_embed> *v)
635 return v ? v->address () : NULL;
639 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
640 template<typename T, typename A>
641 inline bool
642 vec_safe_is_empty (vec<T, A, vl_embed> *v)
644 return v ? v->is_empty () : true;
648 /* If V does not have space for NELEMS elements, call
649 V->reserve(NELEMS, EXACT). */
650 template<typename T, typename A>
651 inline bool
652 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
653 CXX_MEM_STAT_INFO)
655 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
656 if (extend)
657 A::reserve (v, nelems, exact PASS_MEM_STAT);
658 return extend;
661 template<typename T, typename A>
662 inline bool
663 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
664 CXX_MEM_STAT_INFO)
666 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
670 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
671 is 0, V is initialized to NULL. */
673 template<typename T, typename A>
674 inline void
675 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
677 v = NULL;
678 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
682 /* Free the GC memory allocated by vector V and set it to NULL. */
684 template<typename T, typename A>
685 inline void
686 vec_free (vec<T, A, vl_embed> *&v)
688 A::release (v);
692 /* Grow V to length LEN. Allocate it, if necessary. */
693 template<typename T, typename A>
694 inline void
695 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
697 unsigned oldlen = vec_safe_length (v);
698 gcc_checking_assert (len >= oldlen);
699 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
700 v->quick_grow (len);
704 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
705 template<typename T, typename A>
706 inline void
707 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
709 unsigned oldlen = vec_safe_length (v);
710 vec_safe_grow (v, len PASS_MEM_STAT);
711 memset (&(v->address()[oldlen]), 0, sizeof (T) * (len - oldlen));
715 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
716 template<typename T, typename A>
717 inline bool
718 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
720 if (v)
721 return v->iterate (ix, ptr);
722 else
724 *ptr = 0;
725 return false;
729 template<typename T, typename A>
730 inline bool
731 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
733 if (v)
734 return v->iterate (ix, ptr);
735 else
737 *ptr = 0;
738 return false;
743 /* If V has no room for one more element, reallocate it. Then call
744 V->quick_push(OBJ). */
745 template<typename T, typename A>
746 inline T *
747 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
749 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
750 return v->quick_push (obj);
754 /* if V has no room for one more element, reallocate it. Then call
755 V->quick_insert(IX, OBJ). */
756 template<typename T, typename A>
757 inline void
758 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
759 CXX_MEM_STAT_INFO)
761 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
762 v->quick_insert (ix, obj);
766 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
767 template<typename T, typename A>
768 inline void
769 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
771 if (v)
772 v->truncate (size);
776 /* If SRC is not NULL, return a pointer to a copy of it. */
777 template<typename T, typename A>
778 inline vec<T, A, vl_embed> *
779 vec_safe_copy (vec<T, A, vl_embed> *src)
781 return src ? src->copy () : NULL;
784 /* Copy the elements from SRC to the end of DST as if by memcpy.
785 Reallocate DST, if necessary. */
786 template<typename T, typename A>
787 inline void
788 vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
789 CXX_MEM_STAT_INFO)
791 unsigned src_len = vec_safe_length (src);
792 if (src_len)
794 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
795 PASS_MEM_STAT);
796 dst->splice (*src);
801 /* Index into vector. Return the IX'th element. IX must be in the
802 domain of the vector. */
804 template<typename T, typename A>
805 inline const T &
806 vec<T, A, vl_embed>::operator[] (unsigned ix) const
808 gcc_checking_assert (ix < vecpfx_.num_);
809 return vecdata_[ix];
812 template<typename T, typename A>
813 inline T &
814 vec<T, A, vl_embed>::operator[] (unsigned ix)
816 gcc_checking_assert (ix < vecpfx_.num_);
817 return vecdata_[ix];
821 /* Get the final element of the vector, which must not be empty. */
823 template<typename T, typename A>
824 inline T &
825 vec<T, A, vl_embed>::last (void)
827 gcc_checking_assert (vecpfx_.num_ > 0);
828 return (*this)[vecpfx_.num_ - 1];
832 /* If this vector has space for NELEMS additional entries, return
833 true. You usually only need to use this if you are doing your
834 own vector reallocation, for instance on an embedded vector. This
835 returns true in exactly the same circumstances that vec::reserve
836 will. */
838 template<typename T, typename A>
839 inline bool
840 vec<T, A, vl_embed>::space (unsigned nelems) const
842 return vecpfx_.alloc_ - vecpfx_.num_ >= nelems;
846 /* Return iteration condition and update PTR to point to the IX'th
847 element of this vector. Use this to iterate over the elements of a
848 vector as follows,
850 for (ix = 0; vec<T, A>::iterate(v, ix, &ptr); ix++)
851 continue; */
853 template<typename T, typename A>
854 inline bool
855 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
857 if (ix < vecpfx_.num_)
859 *ptr = vecdata_[ix];
860 return true;
862 else
864 *ptr = 0;
865 return false;
870 /* Return iteration condition and update *PTR to point to the
871 IX'th element of this vector. Use this to iterate over the
872 elements of a vector as follows,
874 for (ix = 0; v->iterate(ix, &ptr); ix++)
875 continue;
877 This variant is for vectors of objects. */
879 template<typename T, typename A>
880 inline bool
881 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
883 if (ix < vecpfx_.num_)
885 *ptr = CONST_CAST (T *, &vecdata_[ix]);
886 return true;
888 else
890 *ptr = 0;
891 return false;
896 /* Return a pointer to a copy of this vector. */
898 template<typename T, typename A>
899 inline vec<T, A, vl_embed> *
900 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
902 vec<T, A, vl_embed> *new_vec = NULL;
903 unsigned len = length ();
904 if (len)
906 vec_alloc (new_vec, len PASS_MEM_STAT);
907 new_vec->embedded_init (len, len);
908 memcpy (new_vec->address(), vecdata_, sizeof (T) * len);
910 return new_vec;
914 /* Copy the elements from SRC to the end of this vector as if by memcpy.
915 The vector must have sufficient headroom available. */
917 template<typename T, typename A>
918 inline void
919 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
921 unsigned len = src.length();
922 if (len)
924 gcc_checking_assert (space (len));
925 memcpy (address() + length(), src.address(), len * sizeof (T));
926 vecpfx_.num_ += len;
930 template<typename T, typename A>
931 inline void
932 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
934 if (src)
935 splice (*src);
939 /* Push OBJ (a new element) onto the end of the vector. There must be
940 sufficient space in the vector. Return a pointer to the slot
941 where OBJ was inserted. */
943 template<typename T, typename A>
944 inline T *
945 vec<T, A, vl_embed>::quick_push (const T &obj)
947 gcc_checking_assert (space (1));
948 T *slot = &vecdata_[vecpfx_.num_++];
949 *slot = obj;
950 return slot;
954 /* Pop and return the last element off the end of the vector. */
956 template<typename T, typename A>
957 inline T &
958 vec<T, A, vl_embed>::pop (void)
960 gcc_checking_assert (length () > 0);
961 return vecdata_[--vecpfx_.num_];
965 /* Set the length of the vector to SIZE. The new length must be less
966 than or equal to the current length. This is an O(1) operation. */
968 template<typename T, typename A>
969 inline void
970 vec<T, A, vl_embed>::truncate (unsigned size)
972 gcc_checking_assert (length () >= size);
973 vecpfx_.num_ = size;
977 /* Insert an element, OBJ, at the IXth position of this vector. There
978 must be sufficient space. */
980 template<typename T, typename A>
981 inline void
982 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
984 gcc_checking_assert (length () < allocated ());
985 gcc_checking_assert (ix <= length ());
986 T *slot = &vecdata_[ix];
987 memmove (slot + 1, slot, (vecpfx_.num_++ - ix) * sizeof (T));
988 *slot = obj;
992 /* Remove an element from the IXth position of this vector. Ordering of
993 remaining elements is preserved. This is an O(N) operation due to
994 memmove. */
996 template<typename T, typename A>
997 inline void
998 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1000 gcc_checking_assert (ix < length());
1001 T *slot = &vecdata_[ix];
1002 memmove (slot, slot + 1, (--vecpfx_.num_ - ix) * sizeof (T));
1006 /* Remove an element from the IXth position of this vector. Ordering of
1007 remaining elements is destroyed. This is an O(1) operation. */
1009 template<typename T, typename A>
1010 inline void
1011 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1013 gcc_checking_assert (ix < length());
1014 vecdata_[ix] = vecdata_[--vecpfx_.num_];
1018 /* Remove LEN elements starting at the IXth. Ordering is retained.
1019 This is an O(N) operation due to memmove. */
1021 template<typename T, typename A>
1022 inline void
1023 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1025 gcc_checking_assert (ix + len <= length());
1026 T *slot = &vecdata_[ix];
1027 vecpfx_.num_ -= len;
1028 memmove (slot, slot + len, (vecpfx_.num_ - ix) * sizeof (T));
1032 /* Sort the contents of this vector with qsort. CMP is the comparison
1033 function to pass to qsort. */
1035 template<typename T, typename A>
1036 inline void
1037 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1039 ::qsort (address(), length(), sizeof (T), cmp);
1043 /* Find and return the first position in which OBJ could be inserted
1044 without changing the ordering of this vector. LESSTHAN is a
1045 function that returns true if the first argument is strictly less
1046 than the second. */
1048 template<typename T, typename A>
1049 unsigned
1050 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1051 const
1053 unsigned int len = length ();
1054 unsigned int half, middle;
1055 unsigned int first = 0;
1056 while (len > 0)
1058 half = len / 2;
1059 middle = first;
1060 middle += half;
1061 T middle_elem = (*this)[middle];
1062 if (lessthan (middle_elem, obj))
1064 first = middle;
1065 ++first;
1066 len = len - half - 1;
1068 else
1069 len = half;
1071 return first;
1075 /* Return the number of bytes needed to embed an instance of an
1076 embeddable vec inside another data structure.
1078 Use these methods to determine the required size and initialization
1079 of a vector V of type T embedded within another structure (as the
1080 final member):
1082 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1083 void v->embedded_init(unsigned alloc, unsigned num);
1085 These allow the caller to perform the memory allocation. */
1087 template<typename T, typename A>
1088 inline size_t
1089 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1091 typedef vec<T, A, vl_embed> vec_embedded;
1092 return offsetof (vec_embedded, vecdata_) + alloc * sizeof (T);
1096 /* Initialize the vector to contain room for ALLOC elements and
1097 NUM active elements. */
1099 template<typename T, typename A>
1100 inline void
1101 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num)
1103 vecpfx_.alloc_ = alloc;
1104 vecpfx_.num_ = num;
1108 /* Grow the vector to a specific length. LEN must be as long or longer than
1109 the current length. The new elements are uninitialized. */
1111 template<typename T, typename A>
1112 inline void
1113 vec<T, A, vl_embed>::quick_grow (unsigned len)
1115 gcc_checking_assert (length () <= len && len <= vecpfx_.alloc_);
1116 vecpfx_.num_ = len;
1120 /* Grow the vector to a specific length. LEN must be as long or longer than
1121 the current length. The new elements are initialized to zero. */
1123 template<typename T, typename A>
1124 inline void
1125 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1127 unsigned oldlen = length ();
1128 quick_grow (len);
1129 memset (&(address()[oldlen]), 0, sizeof (T) * (len - oldlen));
1133 /* Garbage collection support for vec<T, A, vl_embed>. */
1135 template<typename T>
1136 void
1137 gt_ggc_mx (vec<T, va_gc> *v)
1139 extern void gt_ggc_mx (T &);
1140 for (unsigned i = 0; i < v->length (); i++)
1141 gt_ggc_mx ((*v)[i]);
1144 template<typename T>
1145 void
1146 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1148 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1149 be traversed. */
1153 /* PCH support for vec<T, A, vl_embed>. */
1155 template<typename T, typename A>
1156 void
1157 gt_pch_nx (vec<T, A, vl_embed> *v)
1159 extern void gt_pch_nx (T &);
1160 for (unsigned i = 0; i < v->length (); i++)
1161 gt_pch_nx ((*v)[i]);
1164 template<typename T, typename A>
1165 void
1166 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1168 for (unsigned i = 0; i < v->length (); i++)
1169 op (&((*v)[i]), cookie);
1172 template<typename T, typename A>
1173 void
1174 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1176 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1177 for (unsigned i = 0; i < v->length (); i++)
1178 gt_pch_nx (&((*v)[i]), op, cookie);
1182 /* Space efficient vector. These vectors can grow dynamically and are
1183 allocated together with their control data. They are suited to be
1184 included in data structures. Prior to initial allocation, they
1185 only take a single word of storage.
1187 These vectors are implemented as a pointer to an embeddable vector.
1188 The semantics allow for this pointer to be NULL to represent empty
1189 vectors. This way, empty vectors occupy minimal space in the
1190 structure containing them.
1192 Properties:
1194 - The whole vector and control data are allocated in a single
1195 contiguous block.
1196 - The whole vector may be re-allocated.
1197 - Vector data may grow and shrink.
1198 - Access and manipulation requires a pointer test and
1199 indirection.
1200 - It requires 1 word of storage (prior to vector allocation).
1203 Limitations:
1205 These vectors must be PODs because they are stored in unions.
1206 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1207 As long as we use C++03, we cannot have constructors nor
1208 destructors in classes that are stored in unions. */
1210 template<typename T, typename A>
1211 struct vec<T, A, vl_ptr>
1213 public:
1214 /* Memory allocation and deallocation for the embedded vector.
1215 Needed because we cannot have proper ctors/dtors defined. */
1216 void create (unsigned nelems CXX_MEM_STAT_INFO);
1217 void release (void);
1219 /* Vector operations. */
1220 bool exists (void) const
1221 { return vec_ != NULL; }
1223 bool is_empty (void) const
1224 { return vec_ ? vec_->is_empty() : true; }
1226 unsigned length (void) const
1227 { return vec_ ? vec_->length() : 0; }
1229 T *address (void)
1230 { return vec_ ? vec_->vecdata_ : NULL; }
1232 const T *address (void) const
1233 { return vec_ ? vec_->vecdata_ : NULL; }
1235 const T &operator[] (unsigned ix) const
1236 { return (*vec_)[ix]; }
1238 bool operator!=(const vec &other) const
1239 { return !(*this == other); }
1241 bool operator==(const vec &other) const
1242 { return address() == other.address(); }
1244 T &operator[] (unsigned ix)
1245 { return (*vec_)[ix]; }
1247 T &last (void)
1248 { return vec_->last(); }
1250 bool space (int nelems) const
1251 { return vec_ ? vec_->space (nelems) : nelems == 0; }
1253 bool iterate (unsigned ix, T *p) const;
1254 bool iterate (unsigned ix, T **p) const;
1255 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1256 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1257 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1258 void splice (vec &);
1259 void safe_splice (vec & CXX_MEM_STAT_INFO);
1260 T *quick_push (const T &);
1261 T *safe_push (const T &CXX_MEM_STAT_INFO);
1262 T &pop (void);
1263 void truncate (unsigned);
1264 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1265 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1266 void quick_grow (unsigned);
1267 void quick_grow_cleared (unsigned);
1268 void quick_insert (unsigned, const T &);
1269 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1270 void ordered_remove (unsigned);
1271 void unordered_remove (unsigned);
1272 void block_remove (unsigned, unsigned);
1273 void qsort (int (*) (const void *, const void *));
1274 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1276 template<typename T1>
1277 friend void va_stack::alloc(vec<T1, va_stack, vl_ptr>&, unsigned,
1278 vec<T1, va_stack, vl_embed> *);
1280 /* FIXME - This field should be private, but we need to cater to
1281 compilers that have stricter notions of PODness for types. */
1282 vec<T, A, vl_embed> *vec_;
1286 /* Empty specialization for GC allocation. This will prevent GC
1287 vectors from using the vl_ptr layout. FIXME: This is needed to
1288 circumvent limitations in the GTY machinery. */
1290 template<typename T>
1291 struct vec<T, va_gc, vl_ptr>
1296 /* Allocate heap memory for pointer V and create the internal vector
1297 with space for NELEMS elements. If NELEMS is 0, the internal
1298 vector is initialized to empty. */
1300 template<typename T>
1301 inline void
1302 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1304 v = new vec<T>;
1305 v->create (nelems PASS_MEM_STAT);
1309 /* Conditionally allocate heap memory for VEC and its internal vector. */
1311 template<typename T>
1312 inline void
1313 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1315 if (!vec)
1316 vec_alloc (vec, nelems PASS_MEM_STAT);
1320 /* Free the heap memory allocated by vector V and set it to NULL. */
1322 template<typename T>
1323 inline void
1324 vec_free (vec<T> *&v)
1326 if (v == NULL)
1327 return;
1329 v->release ();
1330 delete v;
1331 v = NULL;
1335 /* Allocate a new stack vector with space for exactly NELEMS objects.
1336 If NELEMS is zero, NO vector is created.
1338 For the stack allocator, no memory is really allocated. The vector
1339 is initialized to be at address SPACE and contain NELEMS slots.
1340 Memory allocation actually occurs in the expansion of VEC_alloc.
1342 Usage notes:
1344 * This does not allocate an instance of vec<T, A>. It allocates the
1345 actual vector of elements (i.e., vec<T, A, vl_embed>) inside a
1346 vec<T, A> instance.
1348 * This allocator must always be a macro:
1350 We support a vector which starts out with space on the stack and
1351 switches to heap space when forced to reallocate. This works a
1352 little differently. In the case of stack vectors, vec_alloc will
1353 expand to a call to vec_alloc_1 that calls XALLOCAVAR to request
1354 the initial allocation. This uses alloca to get the initial
1355 space. Since alloca can not be usefully called in an inline
1356 function, vec_alloc must always be a macro.
1358 Important limitations of stack vectors:
1360 - Only the initial allocation will be made using alloca, so pass
1361 a reasonable estimate that doesn't use too much stack space;
1362 don't pass zero.
1364 - Don't return a stack-allocated vector from the function which
1365 allocated it. */
1367 #define vec_stack_alloc(T,V,N) \
1368 do { \
1369 typedef vec<T, va_stack, vl_embed> stackv; \
1370 va_stack::alloc (V, N, XALLOCAVAR (stackv, stackv::embedded_size (N)));\
1371 } while (0)
1374 /* Return iteration condition and update PTR to point to the IX'th
1375 element of this vector. Use this to iterate over the elements of a
1376 vector as follows,
1378 for (ix = 0; v.iterate(ix, &ptr); ix++)
1379 continue; */
1381 template<typename T, typename A>
1382 inline bool
1383 vec<T, A, vl_ptr>::iterate (unsigned ix, T *ptr) const
1385 if (vec_)
1386 return vec_->iterate (ix, ptr);
1387 else
1389 *ptr = 0;
1390 return false;
1395 /* Return iteration condition and update *PTR to point to the
1396 IX'th element of this vector. Use this to iterate over the
1397 elements of a vector as follows,
1399 for (ix = 0; v->iterate(ix, &ptr); ix++)
1400 continue;
1402 This variant is for vectors of objects. */
1404 template<typename T, typename A>
1405 inline bool
1406 vec<T, A, vl_ptr>::iterate (unsigned ix, T **ptr) const
1408 if (vec_)
1409 return vec_->iterate (ix, ptr);
1410 else
1412 *ptr = 0;
1413 return false;
1418 /* Convenience macro for forward iteration. */
1419 #define FOR_EACH_VEC_ELT(V, I, P) \
1420 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1422 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1423 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1425 /* Likewise, but start from FROM rather than 0. */
1426 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1427 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1429 /* Convenience macro for reverse iteration. */
1430 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1431 for (I = (V).length () - 1; \
1432 (V).iterate ((I), &(P)); \
1433 (I)--)
1435 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1436 for (I = vec_safe_length (V) - 1; \
1437 vec_safe_iterate ((V), (I), &(P)); \
1438 (I)--)
1441 /* Return a copy of this vector. */
1443 template<typename T, typename A>
1444 inline vec<T, A, vl_ptr>
1445 vec<T, A, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1447 vec<T, A, vl_ptr> new_vec = vNULL;
1448 if (length ())
1449 new_vec.vec_ = vec_->copy ();
1450 return new_vec;
1454 /* Ensure that the vector has at least RESERVE slots available (if
1455 EXACT is false), or exactly RESERVE slots available (if EXACT is
1456 true).
1458 This may create additional headroom if EXACT is false.
1460 Note that this can cause the embedded vector to be reallocated.
1461 Returns true iff reallocation actually occurred. */
1463 template<typename T, typename A>
1464 inline bool
1465 vec<T, A, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1467 bool extend = nelems ? !space (nelems) : false;
1468 if (extend)
1469 A::reserve (vec_, nelems, exact PASS_MEM_STAT);
1470 return extend;
1474 /* Ensure that this vector has exactly NELEMS slots available. This
1475 will not create additional headroom. Note this can cause the
1476 embedded vector to be reallocated. Returns true iff reallocation
1477 actually occurred. */
1479 template<typename T, typename A>
1480 inline bool
1481 vec<T, A, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1483 return reserve (nelems, true PASS_MEM_STAT);
1487 /* Create the internal vector and reserve NELEMS for it. This is
1488 exactly like vec::reserve, but the internal vector is
1489 unconditionally allocated from scratch. The old one, if it
1490 existed, is lost. */
1492 template<typename T, typename A>
1493 inline void
1494 vec<T, A, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1496 vec_ = NULL;
1497 if (nelems > 0)
1498 reserve_exact (nelems PASS_MEM_STAT);
1502 /* Free the memory occupied by the embedded vector. */
1504 template<typename T, typename A>
1505 inline void
1506 vec<T, A, vl_ptr>::release (void)
1508 if (vec_)
1509 A::release (vec_);
1513 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1514 SRC and this vector must be allocated with the same memory
1515 allocation mechanism. This vector is assumed to have sufficient
1516 headroom available. */
1518 template<typename T, typename A>
1519 inline void
1520 vec<T, A, vl_ptr>::splice (vec<T, A, vl_ptr> &src)
1522 if (src.vec_)
1523 vec_->splice (*(src.vec_));
1527 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1528 SRC and this vector must be allocated with the same mechanism.
1529 If there is not enough headroom in this vector, it will be reallocated
1530 as needed. */
1532 template<typename T, typename A>
1533 inline void
1534 vec<T, A, vl_ptr>::safe_splice (vec<T, A, vl_ptr> &src MEM_STAT_DECL)
1536 if (src.length())
1538 reserve_exact (src.length());
1539 splice (src);
1544 /* Push OBJ (a new element) onto the end of the vector. There must be
1545 sufficient space in the vector. Return a pointer to the slot
1546 where OBJ was inserted. */
1548 template<typename T, typename A>
1549 inline T *
1550 vec<T, A, vl_ptr>::quick_push (const T &obj)
1552 return vec_->quick_push (obj);
1556 /* Push a new element OBJ onto the end of this vector. Reallocates
1557 the embedded vector, if needed. Return a pointer to the slot where
1558 OBJ was inserted. */
1560 template<typename T, typename A>
1561 inline T *
1562 vec<T, A, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1564 reserve (1, false PASS_MEM_STAT);
1565 return quick_push (obj);
1569 /* Pop and return the last element off the end of the vector. */
1571 template<typename T, typename A>
1572 inline T &
1573 vec<T, A, vl_ptr>::pop (void)
1575 return vec_->pop ();
1579 /* Set the length of the vector to LEN. The new length must be less
1580 than or equal to the current length. This is an O(1) operation. */
1582 template<typename T, typename A>
1583 inline void
1584 vec<T, A, vl_ptr>::truncate (unsigned size)
1586 if (vec_)
1587 vec_->truncate (size);
1588 else
1589 gcc_checking_assert (size == 0);
1593 /* Grow the vector to a specific length. LEN must be as long or
1594 longer than the current length. The new elements are
1595 uninitialized. Reallocate the internal vector, if needed. */
1597 template<typename T, typename A>
1598 inline void
1599 vec<T, A, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1601 unsigned oldlen = length ();
1602 gcc_checking_assert (oldlen <= len);
1603 reserve_exact (len - oldlen PASS_MEM_STAT);
1604 vec_->quick_grow (len);
1608 /* Grow the embedded vector to a specific length. LEN must be as
1609 long or longer than the current length. The new elements are
1610 initialized to zero. Reallocate the internal vector, if needed. */
1612 template<typename T, typename A>
1613 inline void
1614 vec<T, A, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1616 unsigned oldlen = length ();
1617 safe_grow (len PASS_MEM_STAT);
1618 memset (&(address()[oldlen]), 0, sizeof (T) * (len - oldlen));
1622 /* Same as vec::safe_grow but without reallocation of the internal vector.
1623 If the vector cannot be extended, a runtime assertion will be triggered. */
1625 template<typename T, typename A>
1626 inline void
1627 vec<T, A, vl_ptr>::quick_grow (unsigned len)
1629 gcc_checking_assert (vec_);
1630 vec_->quick_grow (len);
1634 /* Same as vec::quick_grow_cleared but without reallocation of the
1635 internal vector. If the vector cannot be extended, a runtime
1636 assertion will be triggered. */
1638 template<typename T, typename A>
1639 inline void
1640 vec<T, A, vl_ptr>::quick_grow_cleared (unsigned len)
1642 gcc_checking_assert (vec_);
1643 vec_->quick_grow_cleared (len);
1647 /* Insert an element, OBJ, at the IXth position of this vector. There
1648 must be sufficient space. */
1650 template<typename T, typename A>
1651 inline void
1652 vec<T, A, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1654 vec_->quick_insert (ix, obj);
1658 /* Insert an element, OBJ, at the IXth position of the vector.
1659 Reallocate the embedded vector, if necessary. */
1661 template<typename T, typename A>
1662 inline void
1663 vec<T, A, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1665 reserve (1, false PASS_MEM_STAT);
1666 quick_insert (ix, obj);
1670 /* Remove an element from the IXth position of this vector. Ordering of
1671 remaining elements is preserved. This is an O(N) operation due to
1672 a memmove. */
1674 template<typename T, typename A>
1675 inline void
1676 vec<T, A, vl_ptr>::ordered_remove (unsigned ix)
1678 vec_->ordered_remove (ix);
1682 /* Remove an element from the IXth position of this vector. Ordering
1683 of remaining elements is destroyed. This is an O(1) operation. */
1685 template<typename T, typename A>
1686 inline void
1687 vec<T, A, vl_ptr>::unordered_remove (unsigned ix)
1689 vec_->unordered_remove (ix);
1693 /* Remove LEN elements starting at the IXth. Ordering is retained.
1694 This is an O(N) operation due to memmove. */
1696 template<typename T, typename A>
1697 inline void
1698 vec<T, A, vl_ptr>::block_remove (unsigned ix, unsigned len)
1700 vec_->block_remove (ix, len);
1704 /* Sort the contents of this vector with qsort. CMP is the comparison
1705 function to pass to qsort. */
1707 template<typename T, typename A>
1708 inline void
1709 vec<T, A, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1711 if (vec_)
1712 vec_->qsort (cmp);
1716 /* Find and return the first position in which OBJ could be inserted
1717 without changing the ordering of this vector. LESSTHAN is a
1718 function that returns true if the first argument is strictly less
1719 than the second. */
1721 template<typename T, typename A>
1722 inline unsigned
1723 vec<T, A, vl_ptr>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1724 const
1726 return vec_ ? vec_->lower_bound (obj, lessthan) : 0;
1729 #if (GCC_VERSION >= 3000)
1730 # pragma GCC poison vec_ vecpfx_ vecdata_
1731 #endif
1733 #endif // GCC_VEC_H